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Abstract

This thesis is dedicated to the study of some geometric properties on Banach

spaces associated to hypergroups. This thesis contains three major parts.

The purpose of the �rst part is to initiate a systematic approach to the

study of the class of invariant complemented subspaces of L∞(K) and C0(K),

the class of left translation invariant W ∗-subalgebras of L∞(K) and �nally

the class of non-zero left translation invariant C∗-subalgebras of C0(K) in

the hypergroup context with the goal of �nding some relations between these

function spaces.

The second part consists of two themes; �xed point properties for non-

expansive and a�ne maps. The �rst theme provides a condition when a

non-expansive self map on a weak (weak*) compact convex subset of several

function spaces over K has a �xed point while the second theme present some

applications of common �xed point properties for a�ne actions of K.

The main concentration of the third part is on initiating the study of inner

amenable hypergroups extending amenable hypergroups and inner amenable

locally compact groups.
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Chapter 1

Introduction and Backgrounds

1.1 Introduction

A hypergroup is a locally compact Hausdor� space equipped with a convolution

product which maps any two points to a probability measure with a compact

support. Hypergroups generalize locally compact groups in which the above

convolution reduces to a point mass measure. It was in the 1970's that Dunkl

[15], Jewett [30] and Spector [66] began the study of hypergroups (in [30]

it is called a convo). The theory of hypergroups then developed in various

directions, namely in the area of commutative hypergroups ([9], [16], [59],

[61]), speci�cally orthogonal polynomials ([38] and [77]), function spaces [75]

and weighted hypergroups ([21], [22]). It is worthwhile to mention that there

are some axiomatic di�erences in the de�nition of hypergroups given by these

three authors, however, the core idea remains the same. Since almost all of the

analysis on hypergroups has been based on the de�nition of Jewett, we shall

base our work on his de�nition. For a complete history, we refer the interested

reader to ([60] and [61]). Throughout, K will denote a hypergroup with a left

Haar measure λ.

The idea behind amenable hypergroups came from a well-known object

called F -algebras, also known as Lau algebras. The class of F -algebras was

created and analysed in 1983 [41]. The construction was made to generalize
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the notion of several algebras. This rich structure contains the Fourier algebra

A(G), the Fourier-Stieltjes algebra B(G), the group algebra L1(G) and the

measure algebra M(G) of a locally compact group G. It also contains the hy-

pergroup algebra L1(K) and the measure algebra M(K). Lau introduced left

amenable F -algebras ([41], § 4) and provided various characterizations of this

object (see also [20] and [51]), from which one can obtain in particular that

L1(K) is left amenable if and only if L1(K)∗ has a topological left invariant

mean ([41], Theorem 4.1). With this groundwork, the class of amenable hy-

pergroups came to existence [64]. By ([64], Theorem 3.2) K is amenable if and

only if L1(K) is left amenable. On the other hand, L1(K) demonstrates di�er-

ent behaviours in terms of amenability and weak amenability ([64] and [37]) in

comparison with its group counterpart. See ([31], Theorem 2.5) for amenabil-

ity and [32] for weak amenability of the group algebra L1(G). Amenability of

hypergroups has attracted the attention of many authors ([2] and [74]).

Let L∞(K) be theW ∗-algebra of all essentially bounded measurable complex-

valued functions on K with essential supremum norm and point-wise multi-

plication and let Y be a closed, translation invariant subspace of L∞(K). A

closed, left translation invariant subspace X of Y is said to be invariantly

complemented in Y if X is the range of a continuous projection on Y , which

commutes with all left translation operators on Y or equivalently if Y has a

closed left translation complement in X. This concept was introduced by Lau

[42] for locally compact groups and was studied in ([19] and [18]). However,

this area was open in the theory of hypergroups on which we started an in-

vestigation. Motivated by the harmonic analysis considered by Lau [42] and

Lau-Losert [46], we initiate the study of the class of invariant complemented

subspaces of L∞(K) and C0(K), the class of non-zero left translation invari-

ant C∗-subalgebras of C0(K) and �nally the class of left translation invariant

W ∗-subalgebras of L∞(K) in the hypergroup context with the goal of �nding

some relations between these function spaces.

Let X be a left translation invariant W ∗-subalgebra of L∞(K). Takesaki

and Tatsuuma in 1971 showed thatX = {f ∈ L∞(K) | Rnf = f, ∀n ∈ N}, for
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a unique closed subgroup N of a locally compact groupK ([70], Theorem 2, see

also [42], Lemma 3.2 for a di�erent proof). A decade later, Lau ([42], Theorem

3.3) proved that K is amenable if and only if X is invariantly complemented

in L∞(K), where K is a locally compact group.

In section 2.2 we shall initiate a formal study of the class of left translation

invariant W ∗-subalgebras of L∞(K) in the hypergroup setting. In the process

of building a bridge between this class and closed subhypergroups, by the

nature of our framework, we encounter a feature which is dormant in the

group context. We note that the constructed W ∗-subalgebra X has a certain

property that we assume for obtaining a reasonable correspondence. This

new notion, �local translation property TB�, extends the notion of translation

property TB, which was considered by Voit [73]. We say that X has the local

translation property TB if for each element k0 ∈ K

k0 ∗ {g ∈ K | f |k∗g ≡ f(k), ∀f ∈ X, k ∈ K}

= {g ∈ K | Rgf = Rk0f, ∀f ∈ X}.

After providing this de�nition we demonstrate our main theorem of this sec-

tion and we prove that X is a left translation invariant W ∗-subalgebra of

L∞(K) such that X ∩ CB(K) has the local translation property TB if and

only if there exists a unique closed Weil subhypergroup N such that X =

{f ∈ L∞(K) | Rgf = Rkf, ∀g ∈ k ∗ N, k ∈ K}. Furthermore, the

normality of N is characterized by X being translation invariant and in-

version invariant (Theorem 2.2.5). For compact hypergroups we even have

X = {f ∈ L∞(K) | Rnf = f, ∀n ∈ N}, for a unique compact subhypergroup.

As a consequence, then we prove that every left translation invariant W ∗-

subalgebra of L∞(K) such that X ∩CB(K) has the local translation property

TB is invariantly complemented in L∞(K), where K is a compact hypergroup

(Corollary 2.2.6).

Let X be a non-zero left translation invariant C∗-subalgebra of C0(K).

DeLeeuw ([12], Theorem 5.1) proved that X is the algebra C0(K/N), for some

subgroup N of K, if K is a commutative locally compact group. Lau-Losert
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([46], Lemma 12) extended his result to any locally compact group K. In sec-

tion 2.3, we commence an investigation of the class of non-zero left translation

invariant C∗-subalgebras of C0(K), when K is furnished with a hypergroup

structure. We �rst set up a basis by providing a characterization of hyper-

groups admitting an invariant mean on the space WAP (K), the space of all

continuous weakly almost periodic functions on K (Lemma 2.3.2). As another

fundamental result, we endow X with the local translation property TB and

we prove thatX is a non-zero left translation invariant C∗-subalgebra of C0(K)

with the local translation property TB if and only if there exists a unique com-

pact subhypergroup N of K such that X = {f ∈ C0(K) | Rnf = f, ∀n ∈ N}

(Lemma 2.3.5). Then in one of our major results we show in particular that

X is invariantly complemented in C0(K) provided that X has the local trans-

lation property TB (Theorem 2.3.6).

Let C be a non-empty closed bounded convex subset of a Banach space E.

Then C is said to have the �xed point property if every nonexpansive map-

ping from C into C has a �xed point. It is shown by Browder ([8], Theorem

1) that a nonempty closed bounded convex subset of a uniformly convex Ba-

nach space has the �xed point property. However, not every non-empty closed

bounded convex subset of l1 has the �xed point property [34]. In addition,

there is a weakly compact convex subset D of L1[0, 1] and an isometry T from

D into D without a �xed point ([1], see also [5], Theorem 4.2 and [4]). In 1965

Kirk proved that if C is weakly compact convex and has normal structure,

then C has the �xed point property [33]. Furthermore, if E is a dual Banach

space, C is weak*-compact convex and has normal structure, then C has the

�xed point property [54]. Therefore, it is useful to determine whether a (dual)

Banach space E has weak (weak*)-normal structure (every weakly (weak*)

compact convex subset of E has normal structure). In 1988, Lau and Mah

studied conditions under which various dual of function spaces over a locally

compact group G have weak*-normal structure or certain geometric properties

related to weak*-normal structure [48] (for other related geometric properties

of Banach spaces see [71]). Inspired by their work, in section 3.2 we shall ini-
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tiate a formal study of interconnection between the structure of a hypergroup

and weak*-normal structure and the weak (weak*) �xed point property (every

weakly (weak*) compact convex subset has the �xed point property) for (dual

of) function spaces or algebras associated with the hypergroup. The central

result of this section states that if weak* convergence and weak convergence

for sequences agree on the unit sphere of X∗, then K is discrete, here X is a

closed subspace of CB(K) containing C0(K) (Theorem 3.2.1). With the help

of Theorem 3.2.1, among other results we provide a necessary and su�cient

condition for M(K) to have weak*-normal structure or the weak* �xed point

property, for L1(K) (M(K), where K is a separable hypergroup) to have the

weak (weak*) �xed point property for left reversible semigroups (Corollaries

3.2.3 and 3.2.4).

Let (E, τ) be a separated locally convex space. In 1973 Lau [43] gave a char-

acterization of topological semigroups S for which AP (S) has a left invariant

mean; if S acts on a compact convex subset C of a locally convex topologi-

cal vector space (E, τ) and the action is separately continuous equicontinuous

and a�ne, then C contains a common �xed point for S ([43], Theorem 3.2,

see also [28]). Moreover, in 2008 Lau and Zhang [52] characterized separa-

ble semitopological semigroups S having a left invariant mean on the space

WAP (S); whenever S acts on a weakly compact convex subset Y of (E, τ)

and the action is weakly separately continuous, weakly quasi-equicontinuous

and τ -nonexpansive, Y has a common �xed point for S ([52], Theorem 3.4).

One of the purposes of section 3.3 is to commence an investigation on com-

mon �xed point properties of a�ne actions of a hypergroup K possessing an

invariant mean on the space WAP (K) or AP (K). We prove in Lemma 3.3.1

that AP (K) has an invariant mean if and only if for any separately (jointly)

continuous, equicontinuous and a�ne action of K on a compact convex sub-

set Y of (E, τ), Y has a common �xed point for K. In addition, we show

in Theorem 3.3.4 that WAP (K) has an invariant mean if and only if for any

separately (jointly) weakly continuous, quasi weakly equicontinuous, weakly

almost periodic linear representation {Tg | g ∈ K} of K on (E, τ) and for any
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weakly compact convex TK-invariant subset Y of E, there is in Y a common

�xed point for K.

Let LUC(K) be the space of all bounded left uniformly continuous complex-

valued functions on K. In 1982, Lau proved that a locally compact group G is

amenable if and only if every weak*-closed left translation invariant subspace

of L∞(G) which is contained and complemented in LUC(G) is invariantly

complemented in LUC(G) ([42], Corollary 4.4). Four years later, Lau showed

in ([47]) in particular that a locally compact group G is amenable if and

only if every weak*-closed left translation invariant complemented subspace of

L∞(G) is invariantly complemented in L∞(G) ([47], Corollary 2). With these

backgrounds, we also launch in section 3.3 an investigation to �nd similar out-

comes when the ground work is a hypergroup. As a result, we provide three

important applications of common �xed point properties for a�ne actions on

an amenable hypergroup (Lemma 3.3.5 and Theorems 3.3.7 and 3.3.11). Be-

ing equipped with these fertile seeds, we conclude that K is amenable if and

only if for every weak*-closed left translation invariant subspace X of L∞(K)

which is contained and complemented in LUC(K) with norm ≤ γ, there is

a bounded linear operator P from LUC(K) into X with ||P || ≤ γ such that

Pf ∈ co(LKf)
W ∗

, for f ∈ X and that PLg = P , for all g ∈ K (Corollary

3.3.6), K is amenable if and only if for every weak*-closed left translation

invariant complemented subspace X of L∞(K), there is a bounded linear op-

erator P from L∞(K) into X such that Pf ∈ co(LKf)
W ∗

, for f ∈ X and that

PLg = P , for all g ∈ K (Corollary 3.3.12). As another application of Theorem

3.3.7 we state in Corollary 3.3.10 that if A and X are closed left translation

invariant subspaces of Lp(K) with 1 < p < ∞ such that X is contained and

complemented in A, then there exists a continuous projection P from A onto

{f ∈ X | Lnf = f, ∀n ∈ N} such that PLg = P , for all g ∈ K, where N is a

closed Weil subhypergroup of an amenable hypergroup K.

Inner amenable locally compact groups G are ones possessing a mean m

on L∞(G) such that m(RgLg−1f) = m(f), for all f ∈ L∞(G) and g ∈ G. This

concept was introduced by E�ros in 1975 for discrete groups and was studied
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by several authors ([11], [10], [17], [49], [50], [56] and [57]). It has been shown

by Losert and Rindler [56] that the existence of an inner invariant mean on

L∞(G) is equivalent to the existence of an asymptotically central net in L1(G)

which is in the case of groups equivalent to the existence of a quasi central net

in L1(G). In section 4.2 we de�ne the notion of inner amenable hypergroups

extending amenable hypergroups and inner amenable locally compact groups.

We say that a hypergroup K is inner amenable and m is an inner invariant

mean if m is a mean on L∞(K) and m(Lgf) = m(Rgf) for all f ∈ L∞(K) and

all g ∈ K. An inner invariant meanm on a discrete hypergroup K is nontrivial

if m(f) 6= f(e) for f ∈ l∞(K). In the process of constructing a discrete

hypergroup with no nontrivial inner invariant mean we also de�ne the concept

of strong ergodicity of an action of a locally compact group on a hypergroup.

Then we prove a relation between nontrivial inner invariant means on bounded

functions of the semidirect product K oτ G of a discrete hypergroup K and a

discrete group G and strong ergodicity of the action τ ; If K is commutative

and τ is not strongly ergodic, then l∞(K oτ |S S) possesses a nontrivial inner

invariant mean for each subgroup S of G, however, if τ is strongly ergodic

and l∞(G) has no nontrivial inner invariant mean, then l∞(K oτ G) has no

nontrivial inner invariant mean (Theorem 4.2.4). Then we prove that inner

amenability is an asymptotic property; there is a positive norm one net {φα}

in L1(K) such that ||Lgφα−∆(g)Rgφα||1 → 0, for all g ∈ K if and only if K is

inner amenable (Lemma 4.2.1), while the existence of a positive norm one net

{φα} in L2(K) such that ||Lgφα−∆
1

2 (g)Rgφα||2 → 0, for all g ∈ K only implies

the inner amenability of K (Lemma 4.2.5) and implies the existence of a state

m on B(L2(K)) such that m(Lg) = m(∆
1

2 (g)Rg), for all g ∈ K (Theorem

4.2.6). Furthermore, in Corollary 4.2.8 we characterize inner amenability of a

hypergroup K in terms of compact operators; K is inner amenable if and only

if there is a non-zero compact operator T in B(L∞(K)) such that TLg = TRg,

for all g ∈ K and T (f) ≥ 0, for f ≥ 0.

Classical Hahn-Banach extension theorem and monotone extension prop-

erty are well known and are widely used in several areas of mathematics. As
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one deals with (positive normalized) anti-actions of a semigroup on a real

(partially ordered) topological vector space (with a topological vector unit),

it is also interesting to know the condition under which the extension of an

invariant (monotonic) linear functional is also invariant (and monotonic). In

1974 Lau characterized left amenable semigroups with these properties ([40],

Theorems 1 and 2). In section 4.3 we shall be concerned about hypergroup

version of Hahn-Banach extension and monotone extension properties and we

prove in Theorem 4.3.1 that RUC(K) has a right invariant mean if and only

if whenever {Tg ∈ B(E) | g ∈ K} is a separately continuous representation

of K on a Banach space E and F is a closed TK-invariant subspace of E. If

p is a continuous seminorm on E such that p(Tgx) ≤ p(x) for all x ∈ E and

g ∈ K and Φ is a continuous TK-invariant linear functional on F such that

|Φ(x)| ≤ p(x), then there is a continuous TK-invariant linear functional Φ̃ on

E extending Φ such that |Φ̃(x)| ≤ p(x), for all x ∈ E, if and only if for any

positive normalized separately continuous linear representation T of K on a

partially ordered real Banach space E with a topological order unit 1, if F

is a closed T -invariant subspace of E containing 1, and Φ is a T -invariant

monotonic linear functional on F , then there exists a T -invariant monotonic

linear functional Φ̃ on E extending Φ. The three statements above are also

equivalent to an algebraic property: for any positive normalized separately

continuous linear representation T of K on a partially ordered real Banach

space E with a topological order unit 1, E contains a maximal proper T -

invariant ideal. As an application of these important geometric properties we

provide a new proof of the known result; if K is a commutative hypergroup,

then UC(K) has an invariant mean (Corollary 4.3.2).

Let X be a weak*-closed left translation invariant subspace of L∞(K). The

concentration of section 4.4 is mainly on weak*-weak*-continuous projection

from L∞(K) onto X commuting with left translations. It turns out that

similar to the locally compact groups ([42], Lemma 5.2), if X is an invariant

complemented subspace of L∞(K), then there is a weak*-weak*-continuous

projection from L∞(K) onto X commuting with left translations if and only
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if X ∩C0(K) is weak∗-dense in X (Theorem 4.4.1). This theorem has a major

consequence; if K is compact, then X is invariantly complemented in L∞(K)

if and only if there is a weak*-weak*-continuous projection from L∞(K) onto

X commuting with left translations (Corollary 4.4.2). Furthermore, we also

characterize compact hypergroups; K is compact if and only if K is amenable

and for every weak*-closed left translation invariant, invariant complemented

subspace X of L∞(K), there exists a weak*-weak*-continuous projection from

L∞(K) onto X commuting with left translations (Corollary 4.4.4).

Finally, in chapter 5 we provide some related remarks and open problems.

1.2 Notations

Throughout, K will denote a hypergroup with a left Haar measure λ. For

basic notations we refer to Jewett [30] and the book of Bloom and Heyer [7].

The involution on K is denoted by x 7→ x̌.

Let L∞(K) be theW ∗-algebra of all essentially bounded measurable complex-

valued functions on K with essential supremum norm and point-wise multi-

plication and let CB(K) denote the Banach space of all bounded continuous

complex-valued functions on K and Cc(K) denote the space of all continuous

bounded functions on K with compact support. Let LUC(K) (RUC(K)) be

the space of all bounded left (right) uniformly continuous functions on K, i.e.

all f ∈ CB(K) such that the map g 7→ Lgf (g 7→ Rgf) from K into CB(K) is

continuous when CB(K) has the norm topology and let AP (K) (WAP (K))

denote the space of continuous (weakly) almost periodic functions on K, that

is the collection of all f ∈ CB(K) for which the set {Lgf | g ∈ K} is rela-

tively compact in the norm (weak) topology of CB(K). Each of the spaces

AP (K), WAP (K) and LUC(K) is a norm closed, conjugate closed, transla-

tion invariant subspace of CB(K) containing constant functions and we have

that AP (K), C0(K) ⊆ WAP (K) ⊆ LUC(K) [65].

We denote by W ∗.o.t, the weak∗-operator topology on B(X∗) determined
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by the family of seminorms:

{pz,φ | z ∈ X∗, φ ∈ X}, where pz,φ(T ) := | < Tz, φ > |, T ∈ B(X∗),

where B(X∗) is the space of bounded linear operators on X∗.

1.3 Basic de�nitions

De�nition 1.3.1. [30] A pair (K, ∗) is called a hypergroup if the following are

satis�ed:

1. K is a non-empty locally compact Hausdor� space.

2. The symbol ∗ denotes a binary operation (x, y) 7→ δx ∗ δy from K ×K to

M(K) which extends to an operator ∗ : (µ, ν) 7→ µ∗ν fromM(K)×M(K)

to M(K) such that for f ∈ C0(K),

µ ∗ ν(f) =

∫

K

fdµ ∗ ν =

∫

K

∫

K

∫

K

fd(δx ∗ δy)dµ(x)dν(y).

This identity will then hold for all bounded Borel measurable functions f

on K.

3. With this operation, M(K) is a complex (associative) algebra.

4. The map (g, k) 7→ δg∗δk from K×K toM(K) is continuous whenM(K)

is given the cone topology, i.e, the weak topology σ(M(K), Cc(K)∪{1}),

which is the weak*-topology if and only if K is compact

5. δx ∗ δy is a probability measure for x, y ∈ K and supp(δx ∗ δy) is compact.

6. The map (x, y) 7→ supp(δx ∗ δy) from K × K to C (K), the space of

all non-empty compact subsets of K, where C (K) is given the Michael

topology, is continuous.

7. There exists a unique element e ∈ K such that δe ∗ δx = δx ∗ δe = δx, for

each x ∈ K.
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8. There exists a homeomorphism x 7→ x̌ of K such that for x ∈ K, ˇ̌x = x,

9. For x, y ∈ K, e ∈ supp(δx ∗ δy) i� y = x̌.

De�nition 1.3.2. Let (X,Γ) be a Hausdor� topological space and C (X) be the

space of all non-empty compact subsets of X. The Michael topology on C (X)

is the topology generated by collections of the form {A ∈ C (X) | A ∩ Ui 6=

∅ and A ⊆
⋃n
i=1 Ui, i = 1, 2, .., n}, where U1, U2, ..., Un are open subsets of X

[30].

De�nition 1.3.3. [30]

1. A hypergroup K is said to be commutative if δg ∗ δk = δk ∗ δg for all

g, k ∈ K.

2. If A,B are subsets of K then the set A ∗ B is de�ned by A ∗ B :=

∪x∈A
y∈B

supp(δx ∗ δy).

3. A closed non-empty subset H of K is called a subhypergroup if Hˇ = H

and H ∗H ⊆ H.

4. A subhypergroup N of K is said to be normal in K if g ∗N = N ∗ g for

all g ∈ K.

5. A subhypergroup H is called a subgroup, if δh ∗ δȟ = δe = δȟ ∗ δh, for all

h ∈ H.

6. The maximal subgroup G(K) is de�ned by {g ∈ K | δg ∗δǧ = δǧ ∗δg = δe}

Example 1.3.1. 1. All locally compact groups are hypergroups. A hyper-

group is a locally compact group precisely when the convolution product

of every two point measures is again a point measure [30].

2. Let G be a locally compact group. Let H be a compact, non-normal

subgroup of G. The space of double cosets, G//H := {HxH | x ∈ G}

with the quotient topology and the convolution given by δHxH ∗ δHyH =
∫
H
δHxtyHdt, for x, y ∈ K is a hypergroup [30].
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3. The cosine-hypergroup on R+ is given by the convolution

δx ∗ δy := 1/2(δx+y + δ|x−y|), x, y ∈ R+.

4. The cosh-hypergroup on R+ is given by the convolution

δk ∗ δm =
cosh(k −m)

2coshk.coshm
δ|k−m| +

cosh(k +m)

2coshk.coshm
δk+m, k,m ∈ R+.

De�nition 1.3.4. Suppose H is a compact hypergroup and J is a discrete

hypergroup with H ∩ J = {e} where e is the identity of both hypergroups. Let

K := H ∪ J have the unique topology for which H and J are closed subspaces

of K. Let σ be the normalized Haar measure on H and de�ne the operation .

on K as follows:

1. If s, t ∈ H then δs.δt := δs ∗ δt.

2. If a, b ∈ J and a 6= b̌ then δa.δb := δa ∗ δb.

3. If s ∈ H and a ∈ J (a 6= e ) then δa.δs = δs.δa = δa.

4. If a ∈ J and a 6= e and δǎ ∗ δa =
∑

b∈J δǎ ∗ δa(b)δb, then

δǎ.δa = δǎ ∗ δa(e)σ +
∑

t∈K\{e}

δǎ ∗ δa(t)δt.

The hypergroup K is called the join of H and J and is written by K = H ∨ J.

De�nition 1.3.5. A (left) Haar measure λ on a hypergroup K is a non-

zero, non-negative, possibly unbounded, regular Borel measure which is left

translation-invariant, i.e, δx ∗ λ = λ [30].

Remark 1.3.1. It remains an open question whether every hypergroup admits

a left Haar measure. However if K admits a left Haar measure, it is unique

up to a scalar multiple by Jewett ([30], 5.2). It has been shown that every

compact, commutative, or discrete hypergroup admits a left Haar measure.

(Jewett 1975, Spector 1978, Jewett 1975 resp.)
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Remark 1.3.2. In contrast to the group case, AP (K) and WAP (K) need

not be algebras even for discrete commutative hypergroups ([75], Remark 2.8).

By ([64], Remark 2.3 and Proposition 2.4) if the maximal subgroup G(K) of

K is open or if K is the hypergroup join of a compact hypergroup H and a

discrete hypergroup J with H ∩ J = {e}, where e is the identity of H and J ,

then LUC(K) is an algebra.

De�nition 1.3.6. For any f ∈ L∞(K) we de�ne the left (right) translation

operator Lx and Ry by Ryf(x) = Lxf(y) =
∫
K
f(u)dδx∗δy(u), for any x, y ∈ K

if this integral exists though it may not be �nite. In addition we de�ne an

inversion operator f̌ by f̌(x) = f(x̌) [30].

Note that in contrast to the group case, the operators Lx and Rx are not

isometry if we deal with hypergroups.

De�nition 1.3.7. Let φ∗µ(g) =
∫
Rǩφ(g)dµ(k) and φ~µ(g) =

∫
∆(ǩ)Rǩφ(g)dµ(k),

for µ ∈M(K) and φ ∈ L1(K). Then (φ~ µ)λ = φλ ∗ µ.

We note that φ~ µ is denoted by φ ∗ µ in the group setting.

De�nition 1.3.8. Let N be a closed subhypergroup of K. Then K/N =

{g∗N | g ∈ K} is a locally compact space when it is equipped with the quotient

topology. N is called a Weil subhypergroup if the mapping f 7→ TNf , where

(TNf)(g ∗ N) =
∫
Rnf(g)dλN(n) and λN is a left Haar measure on N is a

well de�ned map from Cc(K) onto Cc(K/N) [26]. This map can be extended

to a well-de�ned surjective map from C0(K) onto C0(K/N) by the density of

Cc(K) in C0(K).

Remark 1.3.3. It is well known that the class of Weil subhypergroups include

the class of subgroups and the class of compact subhypergroups ([26], p 250).

De�nition 1.3.9. If N is a closed normal subhypergroup, then K/N is said

to be a hypergroup if the convolution δg∗N ∗ δk∗N(f) =
∫
f(u ∗ N)dδg ∗ δk(u)

(f ∈ Cc(K/N)) is independent of the representatives g ∗N and k ∗N [72].

Remark 1.3.4. It has been proved that K/N is a hypergroup if and only if N

is a closed normal Weil subhypergroup of K ([72], Theorems 2.3 and 2.6).
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De�nition 1.3.10. Let (K, ∗) and (J, .) be hypergroups. Then a continuous

mapping p : K → J is said to be a hypergroup homomorphism if δp(g).δp(k)ˇ =

p(δg ∗ δǩ), for all g, k ∈ K([72], p 291).

De�nition 1.3.11. Let G be a locally compact group and let τ be a con-

tinuous group homomorphism from G into the topological group Aut(K) of

all hypergroup homomorphisms on K (with the topology of pointwise conver-

gence). The semidirect product KoG of K and G is the locally compact space

K × G equipped with the product topology, the convolution δ(k1,g1) ∗ δ(k2,g2) =

δk1 ∗ δτg1 (k2) × δg1g2 [74].

De�nition 1.3.12. Let X be a closed translation invariant subspace of L∞(K)

containing constants. A left invariant mean on X is a positive norm one

linear functional, which is invariant under left translations by elements of K.

A hypergroup K is said to be amenable if there is a left invariant mean on

L∞(K) [64].

Remark 1.3.5. Amenable hypergroups include all compact hypergroups and

all commutative hypergroups [64].

Remark 1.3.6. It is still an open question as to whether WAP (K) (AP (K))

always has an invariant mean. It is clear by an application of the Ryll-

Nardzewski �xed point theorem [62] that WAP (G) (AP (G)) has a unique in-

variant mean when G is a locally compact group.

De�nition 1.3.13. Let Y be a closed, translation invariant subspace of L∞(K).

A closed, left translation invariant subspace X of Y is said to be invariantly

complemented in Y if X is the range of a continuous projection on Y , which

commutes with all left translation operators on Y or equivalently if Y has a

closed left translation invariant complement in X.

De�nition 1.3.14. The action T = {Tg | g ∈ K} is a separately continuous

representation of K on a Banach space X if Tg : X → X, Te = I, ||Tg|| ≤ 1,

for each g ∈ K, the mapping (g, x) 7→ Tgx from K × X to X is separately

14



continuous, and Tg1Tg2x =
∫
Tuxdδg1 ∗ δg2(u), for x ∈ X and g1, g2 ∈ K.

If T is a separately continuous representation of K on X, then for g ∈ K,

µ ∈M(K), f ∈ X∗ and φ ∈ X de�ne f . g =Mgf by < f . g, φ >=< f, Tgφ >

and f . µ = Mµf by < f . µ, φ >=
∫
< f, Tgφ > dµ(g). Then f . µ ∈ X∗,

f . δg = f . g and (f . µ) . ν = f . (µ ∗ ν), for µ, ν ∈ M(K). We say that a

subspace Y of X∗ is K-invariant if Y . g ⊆ Y , for all g ∈ K. Moreover, let

< Ngm, f >=< m,Mgf >, < Nµm, f >=< m, f . µ > and Nφ = Nφλ, for

µ ∈ M(K), φ ∈ L1(K), m ∈ X∗∗, f ∈ X∗ and g ∈ K. Then NµNν = Nµ∗ν

and NφNµ = Nφ~µ, for each µ, ν ∈M(K). In addition, ||Mg|| ≤ 1, ||Ng|| ≤ 1,

||Mµ|| ≤ ||µ|| and ||Nµ|| ≤ ||µ||, for all µ ∈M(K) and g ∈ K.

Remark 1.3.7. A hypergroup K is amenable if and only if whenever there is

a jointly (separately) continuous representation T = {Tg | g ∈ K} of K on a

non-empty compact convex subset C of a locally convex topological vector space

such that Tex = x, for x ∈ C, the mapping g 7→ Tgx is a�ne for each x ∈ C

and TgTkx = δg ∗ δk . x, for all g, k ∈ K and x ∈ C, then there is a point

x0 ∈ C such that Tgx0 = x0, for all g ∈ K [65].
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Chapter 2

Hypergroups and invariant

complemented subspaces.1

2.1 Introduction

The purpose of the present chapter is to initiate a systematic approach to the

study of the class of invariant complemented subspaces of L∞(K) and C0(K),

the class of left translation invariant W ∗-subalgebras of L∞(K) and �nally

the class of non-zero left translation invariant C∗-subalgebras of C0(K) in

the hypergroup context with the goal of �nding some relations between these

function spaces.

Among other results, we construct two correspondences: one, between

closedWeil subhypergroups and certain left translation invariantW ∗-subalgebras

of L∞(K), and another between compact subhypergroups and a speci�c sub-

class of the class of left translation invariant C∗-subalgebras of C0(K). By the

help of these two characterizations, we extract some results about invariant

complemented subspaces of L∞(K) and C0(K).

1A version of this chapter has been published. N. Tahmasebi, Hypergroups and invariant
complemented subspaces, J. Math. Anal. Appl. 414 (2014) 641-655.[68]
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2.2 Invariant complemented subspaces of L∞(K)

The strict topology on CB(K) is a locally convex topology determined by the

seminorms:

{pφ | φ ∈ C0(K)}, where pφ(f) = ||fφ||, f ∈ CB(K),

and the relative weak*-topology on CB(K) is de�ned by the seminorms:

{pφ | φ ∈ L1(K)}, where pφ(f) = |

∫
f(g)φ(g)dλ(g)|, f ∈ CB(K).

Remark 2.2.1. Let X be a locally compact Hausdor� space and A be a closed

self-adjoint subalgebra of CB(X) (with the strict topology) which separates X

in the sense that for any pair x1, x2 of distinct points of X there is an f in A

with f(x1) = 1, f(x2) = 0. Then A = CB(X) ([23], Corollary).

De�nition 2.2.1. The representation {Tg | g ∈ K} of K on a Banach space

X is (weakly) almost periodic if the orbit {Tgx ∈ X | g ∈ K} is a relatively

(weakly) compact subset of X, for each x ∈ X.

The goal of this section is to originate a systematic approach to the class

of left translation invariant W ∗-subalgebras of L∞(K).

Lemma 2.2.1. Let K be an amenable hypergroup and let the representation

{Tg ∈ B(X) | g ∈ K} be a separately continuous representation of K on a

Banach space X. Then there exists a continuous projection P from X∗ onto

the weak*-closed subspace F = {f ∈ X∗ | Mgf = f, ∀g ∈ K} of X∗ and P

commutes with any weak*-weak*-continuous linear operator from X∗ into X∗

which commutes with operators {Mg | g ∈ K}.

Proof. Let K be an amenable hypergroup and �x a non-zero function f ∈ X∗.

Then coMKf
W ∗

is nonempty , weak*-compact convex subset of X∗. De�ne

an a�ne action (g, φ) 7→ Mgφ from K × coMKf
W ∗

into coMKf
W ∗

. This

action is separately continuous when coMKf
W ∗

has the weak∗-topology of X∗.

17



Thus, there is some ψ0 ∈ coMKf
W ∗

∩ F , since K is amenable ([65], Theorem

3.3.1). We will show that coMK
W ∗.o.t

is a semigroup of operators. If {Pα} and

{Pβ} are nets in coMK such that Pα → P1 and Pβ → P2 in W ∗.o.t, where

Pα =
∑n

i=1 λi,αMgi,α and Pβ =
∑m

i=1 λi,βMgi,β , then for φ ∈ X and f ∈ X∗

< Pα(Pβf), φ >=
n∑

i=1

λi,α < Mgi,αPβf, φ >→
n∑

i=1

λi,α < Mgi,αP2f, φ >=< PαP2f, φ >,

sinceMg is weak*-weak*-continuous. In addition, Pα(Pβf) ∈ coMKf
W ∗

. Con-

sequently, P1 ◦ P2f ∈ coMKf
W ∗

, since < PαP2f, φ >→< P1P2f, φ >, for each

φ ∈ X. Therefore, there exists a continuous projection P from X∗ onto F

such that P commutes with any weak*-weak*-continuous linear operator from

X∗ into X∗ which commutes with {Mg ∈ B(X∗) | g ∈ K} ([45], Theorem 2.1).

In ([45], Theorem 2.1) it is the part of assumption that MK is a semigroup,

however, by a close look at the proof, one will see that the only requirement is

that the representation is norm-decreasing and coMK
W ∗.o.t

is a semigroup.

Corollary 2.2.2. Let N be a closed amenable subhypergroup of K. Then for

each 1 < p ≤ ∞ there exists a continuous projection P from Lp(K) onto

{f ∈ Lp(K) | Rnf = f, ∀n ∈ N} and P commutes with any weak*-weak*-

continuous linear operator from Lp(K) into Lp(K) which commutes with right

translations {Rg | g ∈ N}. In particular, P commute with left translations.

Proof. Consider the continuous representation of N on Lq(K) (1 ≤ q < ∞)

given by {Rn ∈ B(Lq(K)) | n ∈ N}. Then apply Lemma 2.2.1 to get the

required projection.

Next de�nition is originally due to Voit [73].

De�nition 2.2.2. Let N be a closed subhypergroup of K. Then N has the

translation property TB if

X : = {f ∈ CB(K) | Rnf = f, ∀n ∈ N}

= {f ∈ CB(K) | Rgf = Rkf, ∀g ∈ k ∗N, k ∈ K}
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We note that in this case X = {f ∈ CB(K) | f |g∗N ≡ f(g), ∀g ∈ K} and X

is a left translation invariant subalgebra of CB(K).

De�nition 2.2.3. Let X be a closed subspace of CB(K). We say that X has

the local translation property TB if for each element k0 ∈ K

k0 ∗ {g ∈ K | f |k∗g ≡ f(k), ∀f ∈ X, k ∈ K}

= {g ∈ K | Rgf = Rk0f, ∀f ∈ X}.

It turns out that there is a connection between the local translation prop-

erty TB and the translation property TB. The relation appears as we change

our perspective from subhypergroups to subspaces of CB(K); the translation

property TB of a subhypergroup N is an equivalent condition of the local

translation property TB of {f ∈ CB(K) | Rgf = f, ∀g ∈ N}. Therefore,

this property can be considered as an extension of the translation property

TB.

Remark 2.2.2. Let N be a closed subhypergroup of K. Then N has the

translation property TB if and only if X = {f ∈ CB(K) | Rgf = f, ∀g ∈ N}

has the local translation property TB.

Proof. Let k0 ∈ K, k0 ∗N1 = k0 ∗{g ∈ K | f |k∗g ≡ f(k), ∀f ∈ X, k ∈ K} and

Nk0
2 = {g ∈ K | Rgf = Rk0f, ∀f ∈ X}. Then k0 ∗N1 ⊆ Nk0

2 since X is left

translation invariant. In addition, Nk0
2 ⊆ k0 ∗N . In fact if g0 ∈ Nk0

2 \ k0 ∗N ,

let f ∈ CB(K/N) such that f(g0 ∗ N) 6= f(k0 ∗ N) and let f̃(k) = f(k ∗ N),

then f̃ ∈ X and Rg0 f̃(e) 6= Rk0 f̃(e). This statement contradicts the de�nition

of Nk0
2 . Now it is easy to check the equivalence.

Example 2.2.1. Let K = H∨J , where H is a compact hypergroup and J is a

discrete hypergroup with H ∩ J = {e}. Then by Remark 2.2.2, ([64], Example

3.3) and Corollary 2.2.2, X = {f ∈ L∞(K) | Rgf = f, ∀g ∈ H} is a left

translation invariant W ∗-subalgebra of L∞(K) such that X ∩ CB(K) has the

local translation property TB and X is invariantly complemented in L∞(K).
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In 1993 Hermann [26] de�ned the notion of a Weil subhypergroups on which

the Weil formula may be applied. The de�nition of a Weil subhypergroup

involves its left Haar measure, however, a more concrete equivalent condition

can be obtained from [73]; see Remark 2.2.3. As a consequence, in Lemma

2.2.3 we are able to provide a strong connection between a Weil subhypergroup

N and the algebra {f ∈ CB(K) | f |g∗N ≡ f(g), ∀g ∈ K}. This relation plays

a prominent role in the main Theorem of this section.

Remark 2.2.3. :

1. Let N be a closed subhypergroup of K, p1 : g 7→ g∗N and p2 : g 7→ N∗g be

canonical mappings from K to the corresponding quotient spaces. Then

by taking the hypergroup involution it is easy to see that

{Lk(f◦p1) | f ∈ Cc(K/N), k ∈ K} ⊆ {f ∈ CB(K) | f |g∗N ≡ f(g), ∀g ∈ K}

if and only if

{Rk(f◦p2) | f ∈ Cc(K/N), k ∈ K} ⊆ {f ∈ CB(K) | f |N∗g ≡ f(g), ∀g ∈ K}.

2. Using part 1 of this Remark, we can remove the normality condition in

Theorems 2.3 and 2.6 of [73] to obtain that N is a Weil subhypergroup

if and only if

{Lk(f◦p1) | f ∈ Cc(K/N), k ∈ K} ⊆ {f ∈ CB(K) | f |g∗N ≡ f(g), ∀g ∈ K}.

Lemma 2.2.3. Let N be a closed subhypergroup of K. If we put X to be

X = {f ∈ CB(K) | f |g∗N ≡ f(g), ∀g ∈ K}, then the following are equivalent:

1. N is a Weil subhypergroup.

2. X is left translation invariant.

3. X has the local translation property TB.
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4. {f ∈ CB(K) | f |N∗g ≡ f(g), ∀g ∈ K} is right translation invariant.

Proof. (2) → (1) follows from Remark 2.2.3.

For (1) → (2), let f ∈ X and view f as a function f̄ on the locally

compact space K/N , where f̄(g ∗N) = f(g). Then f̄ ∈ CB(K/N). Let {fα}

be a net in Cc(K/N) converging to f̄ in the strict topology of CB(K/N) and

put f̃α(g) := fα(g ∗N). Then for g, k ∈ K

|Lgf̃α(k)− Lgf(k)| = |
∫
f̃α(u)− f(u)dδg ∗ δk(u)|

≤
∫
|f̃α(u)− f(u)|dδg ∗ δk(u) → 0,

since strict convergent implies pointwise convergent. Let g, k ∈ K, k0 ∈ k ∗N

and let ε > 0 be given. Pick α0 such that |Lgf̃α(k0) − Lgf(k0)| <
ε
2
and

|Lgf̃α(k)− Lgf(k)| <
ε
2
, for α ≥ α0. Then

|Lgf(k0)− Lgf(k)| ≤ |Lgf̃α(k0)− Lgf(k0)|+ |Lgf̃α(k0)− Lgfα(k)|

+|Lgf̃α(k)− Lgf(k)| < ε,

by Remark 2.2.3 (2). Hence, Lgf(k0) = Lgf(k) since ε > 0 is arbitrary.

For (2) ↔ (3), let k0 ∈ K,

k0 ∗N1 = k0 ∗ {g ∈ K | f |k∗g ≡ f(k), ∀f ∈ X, k ∈ K}

and k0 ∗N2 = {g ∈ K | Rgf = Rk0f, ∀f ∈ X}. Then by (2),

k0 ∗N1 = k0 ∗ {g ∈ K | Rvf = Rkf, ∀f ∈ X, k ∈ K, v ∈ k ∗ g}

Thus, k0 ∗N ⊆ k0 ∗N1 ⊆ k0 ∗N2. If g0 ∈ k0 ∗N2 \ k0 ∗N , let f ∈ CB(K/N)

such that f(g0 ∗ N) 6= f(k0 ∗ N) and let f̃(k) = f(k ∗ N). Then f̃ ∈ X and

Rg0 f̃(e) 6= Rk0 f̃(e). Hence, k0 ∗ N = k0 ∗ N1 = k0 ∗ N2, i.e. X has the local

translation property TB. Conversely, if X has the local translation property

TB, u ∈ k0 ∗n, n ∈ N and f ∈ X, then u ∈ {g ∈ K | Rgf = Rk0f, ∀f ∈ X}.

Thus, Lkf |k0∗N ≡ Lkf(k0), for k ∈ K.

The implication (2) ↔ (4) is by taking the hypergroup involution.
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Consider the set D of all left translation invariant W ∗-subalgebras X of

L∞(K) such that X ∩ CB(K) has the local translation property TB. Then

it reveals to the author that there is a one-to-one correspondence between

elements of D and closed Weil subhypergroups of K. This characterization is

given in Theorem 2.2.5.

Lemma 2.2.4. Let X be a weak∗-closed left translation invariant subspace of

L∞(K). Then X ∩ LUC(K) is weak*-dense in X.

Proof. Let {eα} be a bounded approximate identity for L1(K) and let f ∈ X.

Then {eα ∗ f} ⊆ X ∩ LUC(K), since X is left translation invariant and the

net eα ∗ f converge to f in the weak*-topology of L∞(K) ([65], Lemma 2.2.5,

ii).

Remark 2.2.4. Let X be a translation invariant inversion invariant subspace

of CB(K). Then X has the local translation property TB if and only if for

each element k0 ∈ K

{g ∈ K | f |g∗k ≡ f(k), ∀f ∈ X, k ∈ K}∗ǩ0 = {g ∈ K | Lgf = Lǩ0f, ∀f ∈ X}.

We are now ready to prove the main Theorem of this section

Theorem 2.2.5. X is a left translation invariant W ∗-subalgebra of L∞(K)

such that X∩CB(K) has the local translation property TB if and only if there

exists a unique closed Weil subhypergroup N of K such that

X = {f ∈ L∞(K) | Rgf = Rkf, ∀g ∈ k ∗N, k ∈ K}.

Furthermore, N is normal if and only if X is inversion invariant and trans-

lation invariant.

Proof. Let N be a closed Weil subhypergroup of K and let

X := {f ∈ CB(K) | f |g∗N ≡ f(g), ∀g ∈ K}
W ∗

.
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Then X ∩CB(K) has the local translation property TB and by Lemma 2.2.3,

X = {f ∈ L∞(K) | Rgf = Rkf, ∀g ∈ k ∗ N, k ∈ K}. Thus, X is a

weak∗-closed, conjugate-closed, left translation invariant subspace of L∞(K).

In addition, X is also an algebra, since X ∩ CB(K) is weak∗-dense in X.

Conversely, let X be a left translation invariant W ∗-subalgebra of L∞(K)

such that X ∩ CB(K) has the local translation property TB. Then X ∩

CB(K) is strictly closed in CB(K) since strict convergence implies pointwise

convergence. Set N := {g ∈ K | f |k∗g ≡ f(k), ∀f ∈ X ∩ CB(K), k ∈ K}.

Then N = {n ∈ K | Rnf = f, ∀f ∈ X ∩ CB(K)} since X ∩ CB(K) has

local translation property. Hence, N is closed since X∩CB(K) is closed in the

relative weak*-topology of CB(K). Next we prove that N is a subhypergroup.

To this end let f ∈ X ∩ CB(K), g ∈ K and a ∈ n1 ∗ n2, for some n1, n2 ∈ N .

Then f(g) = f(b) = f(c), for b ∈ g ∗n1 and c ∈ b∗n2. Hence, f(u) = f(g), for

u ∈ g ∗ a ⊆ g ∗n1 ∗n2 =
⋃
b∈g∗n1

b ∗n2, i.e, N ∗N ⊆ N . Let k ∈ K, n ∈ N and

u ∈ k ∗ ň that is to say that k ∈ u ∗n. Then f(u) = f(k), for f ∈ X ∩CB(K)

by the de�nition of N .

Let A = {f ∈ L∞(K) | Rgf = Rkf, ∀g ∈ k ∗ N, k ∈ K} and let

Y = {f ∈ CB(K) | f |g∗N ≡ f(g), ∀g ∈ K}
W ∗

. Then X ∩ CB(K) ⊆ A ∩

CB(K) ⊆ Y ∩CB(K) since X ∩CB(K) is left translation invariant . We will

next show that Y ∩CB(K) ⊆ X ∩CB(K). First observe that each function f

in Y ∩ CB(K) or X ∩ CB(K) can be regarded as a continuous function f̄ on

the locally compact Hausdor� spaceK/N , where f̄ is given by f̄(g∗N) = f(g).

De�ne a function p : f 7→ f̃ from CB(K/N) to CB(K), where, f̃(g) = f(g∗N).

Then p is continuous when CB(K/N) and CB(K) equipped with their strict

topologies, hence, p is a strict-isomorphism from CB(K/N) onto Y ∩CB(K)

and p preserve the conjugation. In addition, X∩CB(K) is closed when CB(K)

equipped with the relative weak*-topology, and so it is strictly closed. Thus,

p−1(X ∩ CB(K)) = {f̄ | f ∈ X ∩ CB(K)} is a strictly closed subalgebra of

CB(K/N) which separate points of K/N . In fact suppose f(x) = f(y), for

all f ∈ X ∩ CB(K). Then Rxf(k) = Lkf(x) = Lkf(y) = Ryf(k), for k ∈ K

and f ∈ X ∩ CB(K), since X ∩ CB(K) is left translation invariant. Thus,
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x ∈ y∗N becauseX∩CB(K) has the local translation property TB. Therefore,

p−1(X ∩CB(K)) = CB(K/N) by the strict Stone-Weierstrass Theorem ([23],

Corollary). Consequently, X ∩ CB(K) = Y ∩ CB(K) and an application of

Lemma 2.2.4 shows that X = A = Y . Moreover, N is a Weil subhypergroup

by Lemma 2.2.3 since A ∩ CB(K) = Y ∩ CB(K).

Suppose to the contrary that N0 is another closed Weil subhypergroup of

K such that X = {f ∈ CB(K) | f |g∗N0
≡ f(g), ∀g ∈ K}

W ∗

. Then N0 ⊆ N .

If g /∈ N \ N0, let f ∈ CB(K/N0) such that f(g ∗ N0) 6= f(N0) and let

f̃(k) := f(k ∗ N0), then f̃ ∈ X ∩ CB(K) and f̃(g) 6= f̃(e) which contradicts

the de�nition of N . Therefore, N0 = N .

Finally, if N is normal, then

X = {f ∈ CB(K) | f |g∗N ≡ f(g), ∀g ∈ K}
W ∗

= {f ∈ CB(K) | f |N∗g ≡ f(g), ∀g ∈ K}
W ∗

.

Thus X is right translation invariant by Lemma 2.2.3. In addition, X is also

inversion invariant, let u ∈ g ∗ N , for some g ∈ K and f ∈ X ∩ CB(K),

then ǔ ∈ N ∗ ǧ = ǧ ∗ N , hence f̌(u) = f̌(g). Thus, f̌ ∈ X ∩ CB(K).

Conversely, if X is inversion invariant and translation invariant, then by the

same process we �nd a unique closed subhypergroup N1 of K such that X =

{f ∈ CB(K) | f |g∗N1
≡ f(g), ∀g ∈ K}

W ∗

, where

N1 = {g ∈ K | f |g∗k ≡ f(k), ∀f ∈ X ∩ CB(K), k ∈ K}.

Then N1 = N . In fact if g0 ∈ N \ N1, then by Remark 2.2.4, there is some

h ∈ X ∩CB(K) such that Lgh 6= h since X ∩CB(K) has the local translation

property TB. Thus, Rǧȟ 6= ȟ and ȟ ∈ X ∩ CB(K) since X and CB(K)

are inversion invariant which is a contradiction by the de�nition of N . Thus,

N1 ⊆ N . The converse inclusion follows similarly. To see that N is normal,

let u ∈ N ∗ g, then there is some gu ∈ K such that u ∈ gu ∗N1 = gu ∗N . For

any f ∈ X ∩ CB(K) we have that f(g) = f(u) = f(gu) by the de�nition of

N and N1. Thus, gu ∗ N = g ∗ N since {f̄ ∈ CB(K/N) | f ∈ X ∩ CB(K)}
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separates points of K/N . Hence, N ∗ g ⊆ g ∗N . Using the same argument we

obtain the equality.

Remark 2.2.5. Let X be a left translation invariantW ∗-subalgebra of L∞(K),

N = {g ∈ K | f |k∗g ≡ f(k), ∀f ∈ X ∩ CB(K), k ∈ K} and also let

A = {f ∈ L∞(K) | Rgf = Rkf, ∀g ∈ k ∗N, k ∈ K}. Then

1. X ∩CB(K) has the local translation property TB if and only if {f̄ | f ∈

X ∩ CB(K)} separate points of K/N .

2. X ∩CB(K) has the local translation property TB if and only if X = A.

If X ∩ CB(K) does not have the local translation property TB and x0 ∈ x ∗

N2 \ x ∗N for some x ∈ K, where

x ∗N2 := {g ∈ K | Rgf = Rxf, ∀f ∈ X ∩ CB(K)},

then f(x0) = Rx0f(e) = Rxf(e) = f(x), for all f ∈ X ∩ CB(K). Hence

{f̄ | f ∈ X ∩ CB(K)} does not separate points of K/N . In addition, let

f ∈ CB(K/N) with f(x0 ∗ N) 6= f(x ∗ N) and put f̃(g) = f(g ∗ N). Then

f̃ ∈ A and Rx0 f̃(e) 6= Rxf̃(e). Thus, f̃ /∈ X since x0 ∈ x∗N2. For other parts

see the proof of Theorem 2.2.5

Corollary 2.2.6. Let K be a compact hypergroup. Then every left translation

invariant W ∗-subalgebra X of L∞(K) such that X ∩ CB(K) has the local

translation property TB is invariantly complemented in L∞(K).

Proof. By Theorem 2.2.5, X = {f ∈ L∞(K) | Rnf = f, ∀n ∈ N}, for a com-

pact subhypergroup N of K since compact subhypergroups have the trans-

lation property TB ([73], Lemma 1.5). Now the result follows from Lemma

2.2.2.

Example 2.2.2. Consider the example of Jewett ([30], 9.1.D), where K is

the conjugacy class of A4, the subgroup of even permutation of S4. Let X be a

proper translation invariant W ∗-subalgebra of L∞(K) such that the character

ξ ∈ X. Then X ∩ CB(K) does not have the local translation property TB.
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Proof. Suppose that X has the local translation property TB. Then by ([73],

Lemma 1.5) and Theorem 2.2.5, there is a compact subhypergroup N such

that X = {f ∈ L∞(K) | Rnf = f, ∀n ∈ N}. In particular, Rnξ = ξ, for all

n ∈ N . Thus, N = {e} since 0 = Rbξ 6= ξ, 0 = Rcξ 6= ξ and Raξ(a) 6= ξ(a).

Therefore, X = L∞(K).

Example 2.2.3. :

1. Let K be the cosh-hypergroup on R+ or N0. Then in view of Theorem

2.2.5 and ([73], 4.3), {f ∈ L∞(K) | Rgf = f, ∀g ∈ H2} is the only

non-trivial translation invariant W ∗-subalgebra of L∞(K) such that X ∩

CB(K) has the local translation property TB, where H2 = {0, 2, 4, ...}.

2. Let K be the cosine-hypergroup on R+ or N0. Then by Theorem 2.2.5,

([73], 4.2) and ([77], Remark 5.3) all translation invariantW ∗-subalgebra

of L∞(K) such that X ∩ CB(K) has the local translation property TB

are of the form Xn = {f ∈ L∞(K) | Rgf = f, ∀g ∈ Hn}, where

Hn = {0, n, 2n, 3n, ...} and n ∈ N0.

3. Let K be a hypergroup on R+ with supp(δx ∗ δy) = [|x− y|, x+ y]. Then

an application of Theorem 2.2.5 together with ([77], Remark 5.3) show

that for any non-trivial translation invariant W ∗-subalgebra of L∞(K),

X ∩ CB(K) does not have the local translation property TB.

Remark 2.2.6. Skantharajah ([64], Proposition 3.5) proved that every closed

subgroup N of an amenable hypergroup is amenable and if in addition N is

normal, then K/N is also amenable ([64], Proposition 3.6). However, from

the proofs of these results it follows that these Propositions not only hold for

closed subgroups, but in fact hold for any closed Weil subhypergroups.

2.3 Invariant complemented subspaces of C0(K)

In this section we initiate the study of the class of non-zero left translation

invariant C∗-subalgebras of C0(K). Our investigation is based on two impor-
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tant characterizations: one for hypergroups admitting an invariant mean on

the spaceWAP (K) (Lemma 2.3.2) and one for the class of non-zero left trans-

lation invariant C∗-subalgebras of C0(K) with the local translation property

TB (Lemma 2.3.5).

Let X be a linear subspace of L∞(K). X is said to be left introverted if

for any n ∈ X∗ and h ∈ X the function nlh : g 7→ n(Lgh) belongs to X. If

X is left introverted, then it is easy to see that X∗, with the multiplication

given by < m � n, h >=< m,nlh >, for m,n ∈ X∗ and h ∈ X becomes a

Banach algebra and the set Mean(X) of all means on X renders a semigroup

structure. Moreover, we can embed K into X∗ via point evaluations, δg, for

g ∈ K. It is known that spaces WAP (K) and AP (K) are left introverted

([65], p 101).

Lemma 2.3.1. Let X be a Banach space and let {Tg ∈ B(X) | g ∈ K} be

a (weakly) almost periodic separately continuous representation. Then φTKf

is an element of AP (K) (WAP (K)), for each f ∈ X and φ ∈ X∗, where

(φTKf)(g) =< φ, Tgf >.

Furthermore, for each m ∈ Mean(WAP (K)) and each f ∈ X, there is a

unique Pmf in the closed convex hull of TKf := {Tgf | g ∈ K}, where Pmf is

given via < φ, Pmf >=< m,φTKf >, for φ ∈ X∗.

Proof. We �rst note that for each f ∈ X, the function φTKf ∈ CB(K), since

g 7→ Tgf is continuous from K to X. Fix φ ∈ X∗ and de�ne a bounded linear

operator Tφ from X into CB(K) via Tφ(f) = φTKf . Then Tφ is also weakly

continuous and Rk(φTKf)(g) =
∫
< φ, Tuf > dδg ∗ δk(u) =< φ, TgTkf >=

φTK (Tkf)(g), for each f ∈ X. Therefore, RK(φTKf) = Tφ(TKf) is relatively

(weakly) compact, since the action is (weakly) almost periodic.

The rest follows by the point of view taken in ([65], Lemma 4.3.1).

Lemma 2.3.2. WAP (K) admits an invariant mean if and only if for any

Banach space X and any weakly almost periodic separately continuous repre-

sentation {Tg ∈ B(X) | g ∈ K} of K on X, there exists a representation

{Pm ∈ B(X) | m ∈Mean(WAP (K))} such that:
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1. For each m ∈ Mean(WAP (K)), < φ, Pmf >=< m, φTKf >, where

(φTKf)(g) =< φ, Tgf > and φ ∈ X∗.

2. ||Pm|| ≤ 1, for each m ∈Mean(WAP (K)).

3. Pδg = Tg, for each g ∈ K.

4. Pm�n = Pm ◦ Pn, for m,n ∈Mean(WAP (K)).

5. There exists an element m0 ∈Mean(WAP (K)) such that Pm0
is a con-

tinuous projection from X onto F = {f ∈ X | Tgf = f, ∀g ∈ K}.

6. Pm0
commutes with any continuous linear operator T from X to X which

commutes with {Tg ∈ B(X) | g ∈ K}.

A similar statement is true for AP (K) if {Tg ∈ B(X) | g ∈ K} is a separately

continuous almost periodic representation.

Proof. Let X be a Banach space, {Tg ∈ B(X) | g ∈ K} be a weakly al-

most periodic separately continuous representation. For each f ∈ X, φ ∈

X∗ and m ∈ Mean(WAP (K)), we let < φ, Pmf >=< m, φTKf >, where

(φTKf)(g) =< φ, Tgf > (Lemma 2.3.1). Then Pm is a bounded linear op-

erator on X (Lemma 2.3.1), ||Pm|| ≤ 1 and Pδg = Tg. We will show that

Pm�n = Pm ◦ Pn. For f ∈ X, φ ∈ X∗ and g, x ∈ K,

LgφTKf(x) =
∫
φTKf(u)dδg ∗ δx(u)

=
∫
< φ, Tuf > dδg ∗ δx(u)

=< φ, TgTxf >=< T ∗
g φ, Txf >

= (T ∗
g φ)TKf(x).

Hence, for m,n ∈Mean(WAP (K))

nlφTKf(g) =< n,LgφTKf >=< n, (T ∗
g φ)TKf >

=< T ∗
g φ, Pnf >=< φ, TgPnf >= φTKPnf(g).
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Therefore,

< φ, Pm�nf > =< m� n, φTKf >=< m,nlφTKf >

=< m,φTKPnf >=< φ, Pm(Pnf) > .

since WAP (K) is left introverted. i.e, Pm�n = Pm ◦ Pn, because X
∗ separates

points of X. If mK is an invariant mean on WAP (K), then by an idea similar

to that of ([46], Lemma 10) PmK
is a continuous projection from X onto

F , commuting with any continuous linear operator T from X to X which

commutes with {Tg ∈ B(X) | g ∈ K}.

Conversely, let X = WAP (K) and consider weakly almost periodic sepa-

rately continuous representation {Rk ∈ B(WAP (K)) | k ∈ K} ([65], Lemma

4.2.1 and Proposition 4.2.4). If m0 ∈ Mean(WAP (K)) such that Pm0
is a

continuous projection from WAP (K) onto C.1 with ||Pm0
|| ≤ 1 commuting

in particular with left translation operators on WAP (K), then P (Lgf) =

Lg(Pf) = Pf , for f ∈ WAP (K) and g ∈ K. In addition, for φ ∈ WAP (K)∗

< φ, Pm0
1 >=< m0, φRǩ

1 >=< m0, φ(1) >=< φ, 1 > .

Hence, Pm0
1 = 1, since WAP (K)∗ separate points of WAP (K). Thus,

||Pm0
|| = 1. Therefore, Pm0

is a left invariant mean on WAP (K).

Remark 2.3.1. Let X be a Banach space, {Tg ∈ B(X) | g ∈ K} be a (weakly)

almost periodic separately continuous representation of K on X and let mK

be an invariant mean on AP (K) (WAP (K)). Then by an argument similar

to that of ([65], Proposition 4.3.2, see [24], Theorem 3.8.4 for semigroups) we

have

1. X = {f ∈ X | Tgf = f, ∀g ∈ K} ⊕< {Tgf − f | g ∈ K, f ∈ X} >.

2. PmK
f = co(TKf) ∩ {f ∈ X | Tgf = f, ∀g ∈ K}.

Where < {Tgf − f | g ∈ K, f ∈ X} > denote the closed subspace of X spanned

by {Tgf − f | g ∈ K, f ∈ X}.
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It follows from ([72], Theorem 1.6 and [65], Proposition 4.3.4, i) that if

N is a closed normal Weil subhypergroup of a hypergroup K possessing an

invariant mean on the space WAP (K) (AP (K)), then there is an invariant

mean on WAP (K/N) (AP (K/N)) since the natural mapping K 7→ K/N is

a hypergroup homomorphism and WAP (K) (AP (K)) has an invariant mean.

Next we will prove the converse, in case that WAP (N) (AP (N)) has also an

invariant mean and N has the translation property TB. This result is one of

the applications of Lemma 2.3.2 which is of independent interest.

Corollary 2.3.3. Let N be a closed normal subhypergroup of K with the trans-

lation property TB. If WAP (N) has an invariant mean, then WAP (K/N)

when viewed as a subspace ofWAP (K) is invariantly complemented inWAP (K).

If, in addition, WAP (K/N) has an invariant mean, then there is an invariant

mean on WAP (K).

This result can also be obtained for AP (K).

Proof. Let N be a closed normal subhypergroup of K with the translation

property TB. Then the canonical mapping π from K onto K/N is an open

hypergroup homomorphism ([72], Theorem 1.6 and [73], Lemma 1.7). Hence

by ([65], Proposition 4.2.11) we have

˜WAP (K/N) ∼= A := {f ∈ WAP (K) | Rgf = f, ∀g ∈ N},

where for f ∈ WAP (K/N) we let f̃(g) := f(g ∗ N). Now the �rst asser-

tion follows from Lemma 2.3.2 by taking X = WAP (K) and the representa-

tion {Rn ∈ B(X) | n ∈ N} which is weakly almost periodic and separately

continuous. Next let mN and mK/N be invariant means on WAP (N) and

WAP (K/N), respectively. If PmN
is a continuous projection from WAP (K)

onto A commuting with left translations, then set PmN
(f) := PmN

f , where

PmN
f(g ∗ N) = (PmN

f)(g) and f ∈ WAP (K). Now it is easy to see that

m := mK/N ◦PmN
is an invariant mean on WAP (K), since m(1K) = ||m|| = 1

and LgPmN
f = Lg∗NPmN

f , for g ∈ K.

30



Lemma 2.3.4. Let X be a closed translation invariant subspace of WAP (K)

and let N be a closed subhypergroup of K. If WAP (N) has an invariant

mean, then there exists a continuous projection P from X onto the closed

subspace {f ∈ X | Rgf = f, ∀g ∈ N} of X with ||P || ≤ 1 and P commutes

with any continuous linear operator from X into X which commutes with right

translations {Rg | g ∈ N}. In particular, P commutes with any left translation.

Proof. This is a direct consequence of Lemma 2.3.2 by considering the repre-

sentation {Rn ∈ B(X) | n ∈ N}.

Lemma 2.3.5. X is a non-zero left translation invariant C∗-subalgebra of

C0(K) with the local translation property TB if and only if there exists a

unique compact subhypergroup N of K such that

X = {f ∈ C0(K) | Rnf = f, ∀n ∈ N}.

Furthermore, N is normal if and only if X is inversion invariant and trans-

lation invariant

Proof. Let N be a compact subhypergroup of K and de�ne X as X :=

{f ∈ C0(K) | Rnf = f, ∀n ∈ N}. Then X can also be written as

X = {f ∈ C0(K) | f |k∗N ≡ f(k), ∀k ∈ K} ([73], Lemma 1.5). Thus,

X is a left translation invariant C∗-subalgebra of C0(K). In addition, since

X ∼= C0(K/N), in which we identify f ∈ X by f ◦π ∈ X, where π : g 7→ g ∗N

is the canonical mapping from K onto K/N , X is non-zero.

To see that X has the local translation property TB, for k0 ∈ K we let

k0 ∗N1 = k0 ∗ {g ∈ K | f |k∗g ≡ f(k), ∀f ∈ X, k ∈ K}

and let k0 ∗N2 = {g ∈ K | Rgf = Rk0f, ∀f ∈ X}. Then, k0 ∗N ⊆ k0 ∗N1 ⊆

k0 ∗ N2 since X is left translation invariant. If g0 ∈ k0 ∗ N2 \ k0 ∗ N , let

f ∈ Cc(K/N) such that f(g0 ∗ N) 6= f(k0 ∗ N). Then �nd some h ∈ Cc(K)

such that
∫
Rnh(x)dλN(n) = f(x∗N), where λN is a normalized Haar measure
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on N ([26]) and let f̃(x) := f(x ∗ N). Then f̃ ∈ X and Rg0 f̃(e) 6= Rk0 f̃(e).

This shows that X has the local translation property TB.

Conversely, let X be a non-zero left translation invariant C∗-subalgebra of

C0(K) with the local translation property TB and let

N := {g ∈ K | f |k∗g ≡ f(k), ∀f ∈ X, k ∈ K}.

Then by the same argument as in the proof of Theorem 2.2.5 we can show

that N is a closed subhypergroup of K. Set Y := {f ∈ C0(K) | Rgf =

f, ∀g ∈ N}. Then X ⊆ Y . For the converse inclusion we �rst note that

each f in Y or X can be regarded as a function f̄ in C0(K/N) ([73], Lemma

1.5), where f̄(g ∗ N) := f(g). Let A := {f̄ ∈ C0(K/N) | f ∈ X} and

B := {f̄ ∈ C0(K/N) | f ∈ Y }. Then A ⊆ B. By the Stone-Weierstrass

Theorem A = B. We note that A separates points of K/N , because X has

the local translation property TB (see the proof of Theorem 2.2.5 for details).

Consequently, X = Y.

Suppose N0 is another compact subhypergroup of K such that X is also

given by X = {f ∈ C0(K) | Rgf = f, ∀g ∈ N0}. Then N0 ⊆ N . In

addition, if g /∈ N \ N0, then we will have a contradiction. In fact let f ∈

Cc(K/N0) such that f(g ∗ N0) 6= f(N0). Choose some h ∈ Cc(K) such that
∫
Rnh(x)dλN0

(n) = f(x ∗N0), where λN0
is a normalized Haar measure on N0

([26]) and let f̃(x) := f(x ∗N0). By this setup, one can see that f̃ ∈ X, while

Rgf̃(e) 6= f̃(e). Therefore, N0 = N .

The last assertion also can be proved similar to that of Theorem 2.2.5 with

the observation that A separates points of K/N .

Remark 2.3.2. Let X be a left translation invariant C∗-subalgebra of C0(K).

Let N = {g ∈ K | f |k∗g ≡ f(k), ∀f ∈ X, k ∈ K} and consider A as

A = {f ∈ C0(K) | Rnf = f, ∀n ∈ N}. Then

1. X has the local translation property TB if and only if the subspace {f̄ ∈

C0(K/N) | f ∈ X} separates point of K/N.
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2. X has the local translation property TB if and only if X = A.

Proof is similar to that of Remark 2.3.2.

Theorem 2.3.6. Let X be a non-zero left translation invariant C∗-subalgebra

of C0(K) with the local translation property TB. Then there exists a contin-

uous projection P from C0(K) onto X and P commutes with any continuous

linear operator from C0(K) into C0(K) which commutes with right transla-

tions.

In particular, P commutes with any left translation operator on C0(K).

Proof. This follows directly from Lemmas 2.3.4 and 2.3.5 with the observation

that compact hypergroups are amenable ([64], Example 3.3).

Remark 2.3.3. Let X be a non-zero left translation invariant C∗-subalgebra

of C0(K) with the local translation property TB and N be a compact subhy-

pergroup of K given by N = {g ∈ K | Rgf = f, ∀f ∈ X}. Then we have

a correspondence between the projection P in Theorem 2.3.6 and the mapping

f 7→ TNf , where (TNf)(g) =
∫
Rnf(g)dλN(n) and λN is a normalized Haar

measure on N which maps C0(K) onto C0(K/N) when C0(K/N) viewed as a

closed subspace of C0(K).
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Chapter 3

Fixed point properties, invariant

means and invariant projections

related to hypergroups.1

3.1 Introduction

A closed bounded subset C of a Banach space E is said to have normal struc-

ture if for every nontrivial convex subset B of C, there is some x0 ∈ B such

that supy∈B ||x0 − y|| < diam(B), where diam(B) = supx,y∈B ||x − y||. In

addition, a (dual) Banach space E has weak (weak*)-normal structure, if ev-

ery weakly (weak*) compact convex subset of E has normal structure. It is

known that a C∗-algebra A has weak-normal structure if and only if it is �nite

dimensional ([53], Theorem 4.5). The concept of weak*-normal structure was

introduced by Lim who showed that l1 has weak*-normal structure ([54], p

189). A self mapping T on a subset F of a (dual) Banach space is said to be

nonexpansive if ||Tx − Ty|| ≤ ||x − y||, for x, y ∈ F . Furthermore, a (dual)

Banach space E has the weak (weak*) �xed point property weak-FPP (FPP*)

if for every non-empty weakly (weak*) compact convex subset C of E and for

1A version of this chapter is under review. N. Tahmasebi, Fixed point properties, invari-
ant means and invariant projections related to hypergroups, [67].
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every nonexpansive map T from C into C, T has a �xed point in C. It follows

from ([53], Theorem 4.5) that C0(K) has weak-normal structure if and only if

K is �nite.

De�nition 3.1.1. T = {Tg | g ∈ K} is a continuous representation of K on a

compact convex subset X of a separated locally convex topological vector space

(E, τ) if Tg : X → X, Te = I and < f, Tg1Tg2x >=
∫
< f, Tux > dδg1 ∗ δg2(u),

for x ∈ X, f ∈ E∗ and g1, g2 ∈ K. Moreover, T is called equicontinuous if for

each y ∈ X and ε > 0 there is some δ > 0 such that whenever pα(x − y) < δ

for all pα ∈ Q where Q is the set of seminorms that generate the topology τ ,

one has pα(Tgx− Tgy) < ε for all g ∈ K and pα ∈ Q.

3.2 Fixed point properties for nonexpansive map-

pings

In this section we initiate the study of various geometric property including

weak (weak*)-normal structure and the weak (weak*) �xed point property

weak-FPP (FPP*) on several function spaces over K.

Theorem 3.2.1. Let X be a closed subspace of CB(K) containing C0(K).

If weak* convergence and weak convergence for sequences agree on the unit

sphere of X∗, then K is discrete.

Proof. If K is not discrete then λ({e}) = 0 ([30], Theorem 7.1.B). Let Un be a

sequence of open neighbourhoods of e such that Ūn is compact and λ(Un) → 0.

De�ne a function h1 ∈ C0(K) via

h1(x) =

{
1 if x = e,

0 if x ∈ U c
1

(3.1)

and 0 ≤ h1(x) ≤ 1, for x ∈ K and let V1 := {g ∈ K | h1(g) 6= 0}. Then
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V1 ⊆ U1. De�ne h2 ∈ C0(K) via

h2(x) =

{
1 if x = e,

0 if x ∈ U c
2 ∪ V

c
1

(3.2)

and 0 ≤ h2(x) ≤ 1, for x ∈ K. Let V2 := {g ∈ K | h2(g) 6= 0}. Then

V2 ⊆ U1 ∩ V1. De�ne hn+1 ∈ C0(K) recursively by

hn+1(x) =

{
1 if x = e,

0 if x ∈ U c
n+1 ∪ V

c
n

(3.3)

and 0 ≤ hn+1(x) ≤ 1, for x ∈ K, where Vn = {g ∈ K | hn(g) 6= 0}. Now for

each n de�ne a function dn on K ×K by

dn(a, e) := sup
k,g∈K

|hn|a∗k(g)− hn(k)|

and

dn(x, y) := inf
a∈x∗y̌

dn(a, e).

We will show that dn is a pseudo-metric. Clearly dn(x, x) = 0, since e ∈ x ∗ x̌.

In addition,

dn(a, e) = supk,g∈K |hn|a∗k(g)− hn(k)|

= supk,g∈K |hn(g)− hn|ǎ∗g(k)|

= dn(ǎ, e),

since g ∈ a ∗ k and k ∈ ǎ ∗ g are equivalent. Thus,

dn(x, y) = inf
a∈x∗y̌

dn(a, e) = inf
ǎ∈y∗x̌

dn(a, e) = inf
ǎ∈y∗x̌

dn(ǎ, e) = dn(y, x).

To see the triangle inequality, let ε > 0 be given, a1 ∈ x ∗ y̌ and a2 ∈ y ∗ ž are

chosen such that dn(a1, e) ≤ dn(x, y) + ε and dn(a2, e) ≤ dn(y, z) + ε. Hence,

a1 ∗ a2 ∩ x ∗ ž 6= ∅ since a1 ∈ x ∗ ž ∗ ǎ2. Take a3 ∈ a1 ∗ a2 ∩ x ∗ ž and let k1 ∈ K

and g1 ∈ a3 ∗ k1 ⊆ a1 ∗ a2 ∗ k1 be such that dn(a3, e) − ε ≤ |hn(g1) − hn(k1)|.
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Choose a4 ∈ ǎ1 ∗ g1 ∩ a2 ∗ k1. Then

dn(a3, e)− ε ≤ |hn(g1)− hn(k1)|

≤ |hn(a4)− hn(g1)|+ |hn(a4)− hn(k1)|

≤ dn(ǎ1, e) + dn(a2, e)

= dn(a1, e) + dn(a2, e)

≤ dn(x, y) + dn(y, z) + 2ε.

Thus, dn(a3, e) ≤ dn(x, y) + dn(y, z). Therefore, dn(x, z) ≤ dn(x, y) + dn(y, z),

since a3 ∈ x ∗ ž. For each n let

Cn : = {x ∈ K | dn(x, e) = 0}

= {x ∈ K | supk,g∈K |hn|x∗k(g)− hn(k)| = 0}

= {x ∈ K | hn|x∗k(g) ≡ hn(k), ∀k, g ∈ K}

Then Cn is a compact subhypergroup of K (see the proof of Lemma 2.3.5).

Let C :=
⋂∞
n=1Cn. Then dn(C ∗x, C ∗ y) := dn(x, y) de�nes a metric on K/C.

In fact if C ∗ x 6= C ∗ y, then C ∗ x ∗ y̌ ∩ C = ∅. Thus, for each a ∈ x ∗ y̌,

C ∗ a 6= C. Hence, dn(a, e) > 0, for all n. Therefore, dn(C ∗ x, C ∗ y) =

infa∈x∗y̌ dn(a, e) > 0. Observe that {Vn} is a decreasing sequence, e ∈ Vn,

Vn ⊆ Un, C ⊆ Vn, for each n and �nally λ(Vn) → 0 as n→ ∞. Since K/C has

a countable base at the identity C, letWn be a decreasing sequence of relatively

compact neighbourhoods of C such that C =
⋂∞
n=1Wn. Let φn =

χWn

λ(Wn)
,

where χWn
is the characteristic function on Wn. Then φn ∈ L1(K) and for

every f ∈ CB(K) we have φn(f) =
∫
fφndλ →

∫
fdλC , where λC is the

normalized Haar measure on C. In particular, φn converges to λC in the weak*

topology of X∗, hence, it also converges in the weak topology of X∗. Since

the weak topology on X∗ is the relative weak topology for a subset of M(K),

φn converges to λC in the weak topology in M(K). Then λC ∈ L1(K), since

φn ∈ L1(K) and L1(K) is weakly sequentially complete. Thus, λC(C) = 1

which is a contradiction since λ(C) = 0.

Corollary 3.2.2. The following are equivalent:
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1. K is discrete.

2. M(K) is isometrically isomorphic to l1(K).

3. Weak* convergence and weak convergence of sequences agree on the unit

sphere of M(K).

4. M(K) has weak*-normal structure.

5. M(K) has the weak* �xed point property FPP*.

Proof. 3 ⇒ 1 follows from Theorem 3.2.1 and other parts are obvious (for

details see [48], Theorem 1).

Let S be a semitopological semigroup, i.e, a semigroup with a Hausdor�

topology such that for each a ∈ S the mappings s 7→ as and s 7→ sa are

continuous from S into S. Then S is called left reversible if aS∩bS 6= ∅, for any

a, b ∈ S. It is known that all commutative semigroups and all semitopological

semigroups which are algebraically groups are left reversible. In 1973, Lau

proved that if T = {Ts | s ∈ S} is a separately continuous nonexpansive

representation of a left reversible semitopological semigroup S (i.e, Ts1s2 =

Ts1Ts2 , for s1, s2 ∈ S) on a nonempty compact convex subset C of a Banach

space E, then C has a common �xed point for S([43], Theorem 4.1). A (dual)

Banach space E is said to have the weak (weak*) �xed point property for left

reversible semigroups if whenever T is a separately continuous nonexpansive

representation of a left reversible semitopological semigroup S on a nonempty

weakly (weak*) compact convex subset C of E, C contains a common �xed

point for S. Lim showed that E has the weak �xed point property for left

reversible semigroups if it has weak-normal structure ([55], Theorem 3), l1 and

any uniformly convex Banach space have the weak* �xed point property for

left reversible semigroups ([54], p 189 and [55], Theorem 3).

Remark 3.2.1. Let C be a nonempty, weakly compact convex subset of E

and assume that C has normal structure. Let S be a topological semigroup

and {Tg | g ∈ S} be a left reversible semigroup of nonexpansive, separately
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continuous actions on C. Then C contains a common �xed point for S, i.e.

there exists x ∈ C such that Tgx = x for every s ∈ S ([55], Theorem 3).

Corollary 3.2.3. The following are equivalent:

1. K is discrete.

2. L1(K) has the weak �xed point property for left reversible semigroups.

Proof. 1 ⇒ 2 follows from Corollary 3.2.2, ([55], Theorem 3) and the fact that

weak*-normal structure implies weak-normal structure. Conversely, if 2 holds

whileK is not discrete, then L1(K) has weak �xed point property and contains

an isometric copy of L1[0, 1] ([35], Corollary, p 136) which is not possible ([1],

The example).

Corollary 3.2.4. Let K be a separable hypergroup. The following are equiv-

alent:

1. K is discrete.

2. M(K) has the weak* �xed point property for left reversible semigroups.

Proof. 2⇒ 1 is a consequence of Corollary 3.2.2 and 1⇒ 2 can be derived from

([54], p 189) since if K is discrete and hence countable, then M(K) = l1.

The following is a consequence of ([48], Lemma 3).

Lemma 3.2.5. Let X be a C*-subalgebra of CB(K) containing C0(K)

1. If X∗ has weak-normal structure then K is discrete.

2. If X contains the constants and X∗ has weak*-normal structure then K

is �nite.

Remark 3.2.2. 1. Weak* convergence and weak convergence for sequences

agree on the unit sphere of LUC(K)∗ if and only if K is discrete.

2. Suppose that LUC(K) is an algebra. Then
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(a) LUC(K)∗ has weak*-normal structure if and only if K is �nite.

(b) LUC(K) has weak-normal structure if and only if K is �nite.

Proof. The �rst part follows from Theorem 3.2.1 and ([13], Theorem 15, page

103). For the second part apply Lemma 3.2.5, and ([53], Theorem 4.5) respec-

tively and note that C0(K) ⊆ LUC(K).

Example 3.2.1. 1. Let K = H ∨ J be the hypergroup join of a compact

hypergroup H and a discrete hypergroup J with H ∩ J = {e}, where e is

the identity of H and J . Then

(a) Weak* convergence and weak convergence for sequences agree on the

unit sphere of LUC(K)∗ if and only if H is �nite.

(b) LUC(K)∗ has weak*-normal structure if and only if H and J are

�nite.

(c) LUC(K) has weak-normal structure if and only if H and J are

�nite.

(d) L1(K) has the weak �xed point property for left reversible semi-

groups if and only if H is �nite.

(e) M(K) has weak* �xed point property FPP* if and only if H is

�nite.

2. Let K be any hypergroup structure on N0. Then

(a) M(K) has weak*-normal structure.

(b) CB(K)∗ does not have weak*-normal structure.

(c) CB(K) does not have weak-normal structure.

(d) L1(K) has the weak �xed point property for left reversible semi-

groups.

Proof. This follows from Corollaries 3.2.2 and 3.2.3 and Remark 3.2.2 since in

both cases LUC(K) = CB(K) is an algebra ([64], Proposition 2.4).
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3.3 Common �xed point properties for a�ne maps

It is the goal of this section to present several applications of common �xed

point properties for a�ne actions of a hypergroup K.

Note that if E is any locally convex space, and A is any equicontinuous

subset of the dual E∗, then the weak∗ topology and the topology of uniform

convergence on totally bounded subsets of E coincide when restricted to A.

Lemma 3.3.1. AP (K) has an invariant mean if and only if for any separately

continuous equicontinuous and a�ne representation {Tg | g ∈ K} of K on a

compact convex subset Y of a separated locally convex topological vector space

(E, τ) one of the following holds:

1. Y has a common �xed point for K.

2. There exists a uniformly continuous retraction P from Y onto {φ ∈

Y | φ = Tgφ, ∀g ∈ K} and P commutes with any a�ne continuous

operator from Y into Y which commutes with {Tg | g ∈ K}.

Proof. Let m be an invariant mean on AP (K) and let f ∈ E∗ be �xed. For

each y ∈ Y de�ne a continuous bounded function hy,f on K via hy,f (g) =<

f, Tgy > and consider an operator T : Y → (CB(K), ||.||), where T (y) = hy,f .

Then T is continuous, since the action is equicontinuous. Thus, hy,f ∈ AP (K)

because RK(hy,f ) = T (TKy). If m is an invariant mean on AP (K) and for

each φ ∈ Y , let Pφ be an accumulation point of the net {
∑nα

i=1 λi,αTgi,αφ},

where {
∑nα

i=1 λi,αδgi,α}α is a net of convex combination of point evaluations on

AP (K)∗ converging tom in weak*-topology of AP (K)∗. Then Pφ ∈ Y since Y

is compact. In addition, < f, Pφ >= m(hφ,f ) = m(Lghφ,f ) = m(hφ,f . g) =<

f . g, Pφ >=< f, TgPφ > since the action is a�ne. Thus, TgPφ = Pφ because

E∗ separates the points of E. Let Q = {qβ | β ∈ I} be the family of seminorms

generating the topology τ of E and let ε > 0 be given. Then there is some

δ > 0 such that qβ(Tgφ1 − Tgφ2) < ε for all g ∈ K, whenever φ1, φ2 ∈ Y and
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qβ(φ1 − φ2) < δ. Hence,

qβ(Pφ1 − Pφ2) ≤ lim
α

nα∑

i=1

λi,αqβ(Tgi,αφ1 − Tgi,αφ2) < ε,

which means that P is uniformly continuous. Moreover, it is easy to see that

P is a retraction and commutes with any a�ne continuous function from Y

into Y which commutes with {Tg | g ∈ K}. Conversely, let E = AP (K)∗

and Y =Mean(AP (K)), where Y is equipped with the weak*-topology of E.

Consider an a�ne representation T = {L∗
g | g ∈ K} of K on Y . Then T is

jointly continuous since AP (K) ⊆ LUC(K). For each f ∈ AP (K), de�ne a

seminorm pf on AP (K)∗ by pf (Ψ) := supg∈K | < Ψ, Lgf > |, Ψ ∈ AP (K)∗

and let Q = {pf | f ∈ AP (K)} be the family of such seminorms and τ be the

locally convex topology determined by Q. Then T is τ -equicontinuous. In fact

let ε > 0, f ∈ WAP (K) be given and choose δ := ε. If m1,m2 ∈ WAP (K)∗

such that supx∈K | < m1 −m2, Lxf > | < δ, then for each g0 ∈ K,

supx∈K | < L∗
g0
m1 − L∗

g0
m2, Lxf > |

≤ supx∈K
∫
| < m1 −m2, Luf > |dδg0 ∗ δx(u)

< δ = ε.

In addition, τ agrees with the weak* topology on Y . Hence, the action of K

on Y is equicontinuous. Therefore, the common �xed point of the action is an

invariant mean on AP (K).

Theorem 3.3.2. The following are equivalent:

1. AP (K) has an invariant mean.

2. K has the following �xed point property:

Let {Tg ∈ B(E) | g ∈ K} be a separately continuous representation of K

as contractions on a Banach space E such that TKf is relatively compact

in E for each f ∈ E. If X is a closed TK-invariant subspace of E and if

there exists a bounded linear operator Q on E∗ with ||Q|| ≤ γ such that
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QΦ0|coTKf ≡ f , for some Φ0 ∈ E∗ and for all f ∈ X, then there exists a

linear operator P on E∗ with ||P || ≤ γ such that PΦ0|coTKf ≡ f , for all

f ∈ X and that MgP = P .

Proof. Let

P = {P ∈ B(E∗) | ||P || ≤ γ and PΦ0|coTKf ≡ f , for all f ∈ X}

and let τ1 and τ2 denote locally convex topologies de�ned on E∗ and B(E∗)

respectively by the family of seminorms:

{pf | f ∈ E}, where pf (Φ) = sup
g∈K

| < Φ, Tgf > |, Φ ∈ E∗

and

{pΦ,f | Φ ∈ E∗, f ∈ E}, where pΦ,f (T ) = pf (TΦ), T ∈ B(E∗).

Then (P,W ∗.o.t) is a non-empty closed convex subset of {P ∈ B(E∗) | ||P || ≤

γ}, and hence (P,W ∗.o.t) is also compact. Furthermore, since weak* topology

on PΦ agrees with the topology of uniform convergence on totally bounded

subsets of E and TKf is totally bounded because it is relatively compact for

each f ∈ E, τ1 agrees with the weak* topology on PΦ, for each Φ ∈ E∗

(note that PΦ is an equicontinuous subset of E∗). Thus, τ2 agrees with

the weak* operator topology on P. Hence, the action (g, P ) 7→ MgP from

K×(P,W ∗.o.t) into (P,W ∗.o.t) is separately continuous, a�ne and equicon-

tinuous. For let ε > 0, Φ ∈ E∗ and f ∈ E be given and choose δ := ε. If

T1, T2 ∈ B(E∗) such that pΦ,f (T1 − T2) < δ, then for each g ∈ K,

pΦ,f (MgT1 −MgT2) = supk∈K | < Mg(T1 − T2)Φ, Tkf > |

≤ supk∈K
∫
| < (T1 − T2)Φ, Tuf > |dδg ∗ δk(u)

< δ = ε.
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In addition, for Φ ∈ E∗ and f ∈ E,

< MgMkPΦ, f > =< PΦ, TkTgf >

=
∫
< PΦ, Tuf > dδk ∗ δg(u)

=
∫
< MuPΦ, f > dδk ∗ δg(u)

and (B(E∗),W ∗.o.t)∗ = {δΦ,f | Φ ∈ E∗, f ∈ E}, where δΦ,f (P ) =< PΦ, f >,

for P ∈ B(E∗). Therefore, by Lemma 3.3.1 there exists P0 ∈ P such that

MgP0 = P0, for all g ∈ K.

Conversely, let E = AP (K) and X = C.1. Consider the representation

{Lǧ ∈ B(AP (K)) | g ∈ K} of K on AP (K). Then MgΦ = L∗
gΦ for Φ ∈

AP (K)∗ and g ∈ K. In addition, the map (g, f) → Lgf is jointly continuous

from K × (E, ||.||) to (E, ||.||) and LKf is relatively compact, for f ∈ AP (K).

Let Q be an identity operator on E∗ and m ∈ Mean(AP (K)). Then <

Qm, h >=< m, f >= f for each f ∈ X and h ∈ coLKf = f . By assumption,

there exists a continuous linear operator P on AP (K)∗ with ||P || ≤ 1 such

that Pm(f) = f , for all f ∈ X and that L∗
gP = P . Then Pm(1) = 1 = ||Pm||

and hence, Pm in an invariant mean on AP (K).

De�nition 3.3.1. A collection of separately weakly continuous mappings T =

{Tg | g ∈ K} as linear maps from a separated locally convex topological vector

space (E, τ) into (E, τ) is said to be weakly almost periodic if coTKx is relatively

weakly compact in E, for each x ∈ E. In this case the weak vector valued

integral
∫
Tuxdδg1 ∗ δg2(u) exists and is a unique element in E and hence T

de�nes a representation on E. i.e, < f, Tg1Tg2x >=
∫
< f, Tux > dδg1 ∗δg2(u),

for x ∈ E, f ∈ E∗ and g1, g2 ∈ K. T is called quasi weakly equicontinuous if

the closure of TK in the product space EE, consists of only weakly continuous

mappings.

The following Lemma is a consequence of ([6], Theorem 4.2.3):

Lemma 3.3.3. For f ∈ CB(K) the following are equivalent:

1. f ∈ WAP (K).
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2. LKf is σ(CB(K),∆(CB(K)))-relatively compact.

3. RKf is σ(CB(K),∆(CB(K)))-relatively compact.

Where, ∆(CB(K)) is the spectrum of CB(K).

Theorem 3.3.4. The following are equivalent:

1. WAP (K) has an invariant mean.

2. Whenever {Tg | g ∈ K} is a separately weakly continuous, quasi weakly

equicontinuous, weakly almost periodic linear representation of K on a

separated locally convex topological vector space (E, τ) and Y is a weakly

compact convex TK-invariant subset of E, there is in Y a common �xed

point for K.

Proof. Let m0 be an invariant mean on WAP (K) and {Tg | g ∈ K} be sep-

arately weakly continuous. For each f ∈ E∗ de�ne hy,f (g) =< f, Tgy >,

for g ∈ K and y ∈ Y and let T be an operator from (Y, w) to CB(K)

de�ned by T (y) = hy,f , where CB(K) has σ(CB(K),∆(CB(K)))-topology.

Let m ∈ ∆(CB(K)) and let {δgα} be a net in CB(K)∗ converging to m in

the weak*-topology. Without loss of generality assume that Tgα converges to

some continuous function φ ∈ (Y, w)Y . If {yβ} is a net in Y converging to

some y ∈ Y , then < m, T (yβ) >=< f, φ(yβ) >→< f, φ(y) >=< Ty,m > .

Therefore, T is continuous. In addition, for each y1 ∈ Y we have that

hTgy1,f (k) =< f, TkTgy1 >=
∫
< f, Tuy1 > dδk ∗ δg(u) = Rghy1,f (k), for f ∈ E∗

and k ∈ K. Thus, RKhy1,f = T (TKy1). Consequently, hy1,f ∈ WAP (K) since

TKy1 is relatively weakly compact and T is continuous (Lemma 3.3.3). Let

φ0 ∈ Y be �xed and let ψ be a weak cluster point of the net {
∑nα

i=1 λi,αTgi,αφ0}α

in Y , where {
∑nα

i=1 λi,αδgi,α}α is a net of convex combination of point evalua-
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tions on WAP (K) converging to m0 in weak*-topology of WAP (K)∗. Then

< f1, ψ >= m0(hφ0,f1) = m0(Lkhφ0,f1)

= lim
∑nα

i=1 λi,α
∫
< f1, Tuφ0 > dδk ∗ δgi,α(u)

= lim
∑nα

i=1 λi,α < f1, TkTgi,αφ0 >

= lim
∑nα

i=1 λi,α < f1 . k, Tgi,αφ0 >

=< f1 . k, ψ >=< Tkψ, f1 >,

for each f1 ∈ E∗, since f1 . k ∈ E∗ by the linearity of the action. Conversely,

let E = WAP (K)∗, Y = Mean(WAP (K)) and de�ne a family of seminorms

Q on E by:

{pf | f ∈ WAP (K)}, where pf (ψ) = sup
g∈K

| < ψ,Lgf > |, ψ ∈ WAP (K)∗.

Let τ be the topology determined by Q. Then, the weak topology of (E, τ) and

the weak*-topology on WAP (K)∗ coincide, by Mackey-Arens Theorem on E.

Hence, Y is a weakly compact convex subset of (E, τ). Consider the separately

weakly continuous weakly almost periodic representation T = {L∗
g | g ∈ K}

of K on (WAP (K)∗, τ). In addition, the action is τ -equicontinuous (see the

proof of Lemma 3.3.1). Thus, T is also quasi weakly equicontinuous since it

is a�ne and weakly continuous ([52], p 2541). Consequently, the �xed point

in Mean(WAP (K)) under this action is an invariant mean on WAP (K).

By a similar argument as in Theorem 3.3.4 we have the following common

�xed property:

Remark 3.3.1. The following are equivalent:

1. WAP (K) has an invariant mean.

2. Whenever {Tg | g ∈ K} is a separately weakly continuous, equicontin-

uous, weakly almost periodic linear representation of K on a separated

locally convex topological vector space (E, τ) and let Y be a weakly com-

pact convex TK-invariant subset of E, there is some φ ∈ Y such that

Tgφ = φ, for all g ∈ K.
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Lemma 3.3.5. The following are equivalent:

1. K is amenable.

2. K has the following property:

Let {Tg ∈ B(E∗) | g ∈ K} be a separately weak*-weak*-continuous

representation of K as contractions on the dual of a Banach space E.

Let A be a closed TK-invariant subspace of E∗ such that the mapping

(g, x) 7→ Tgx is separately continuous from K × (A, ||.||) to (A, ||.||). If

X is a weak∗-closed TK-invariant subspace of E∗ contained in A and if

there exists a continuous projection Q from A onto X with ||Q|| ≤ γ,

then there exists a linear operator P from A into X with ||P || ≤ γ such

that Pf ∈ co(TKf)
W ∗

, for f ∈ X and that PTg = P , for all g ∈ K.

Proof. Let

P = {P ∈ B(A,X) | ||P || ≤ γ and Pf ∈ co(TKf)
W ∗

, for f ∈ X}

and let τ be the relative weak∗-operator topology on B(A,X) de�ned by the

family of seminorms:

{pf,φ | f ∈ A, φ ∈ E}, where pf,φ(T ) = | < Tf, φ > |, T ∈ B(A,X).

Then (P, τ) is a non-empty subset of B(A,X) . In addition, co(TKf)
W ∗

is a

weak*-compact convex subset of X for each f ∈ X because the representation

is contractive. Hence, (P, τ) is compact and convex. Consider the action

(g, P ) 7→ PTg from K × (P, τ) to (P, τ). Then for g ∈ K the map P 7→ PTg

is clearly a�ne and continuous from (P, τ) to (P, τ). Also, for P ∈ P the

map g 7→ PTg is continuous from K to (P, τ). Moreover, since the map

g 7→ Tgf is continuous from K to (A, ||.||) and A is a Banach space, the weak

vector valued integral < TkTgf,Φ >=
∫
< Tuf,Φ > dδk ∗ δg(u) exists, for each
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Φ ∈ A∗, g, k ∈ K and f ∈ A . Thus, for f ∈ A, φ ∈ E and g, k ∈ K

< PTkTgf, φ > =< TkTgf, P
∗φ >

=
∫
< Tuf, P

∗φ > dδk ∗ δg(u)

=
∫
< PTuf, φ > dδk ∗ δg(u),

since P ∗φ ∈ A∗. By Skantharajah ([65], Theorem 3.3.1) there exists P2 ∈ P

such that P2Tg = P2, for all g ∈ K.

Conversely, let A = LUC(K), X = C.1 and consider the representation

{Lǧ ∈ B(L∞(K)) | g ∈ K} of K on L∞(K). Then A is a closed left translation

invariant subspace of L∞(K) containing X ([64], Lemma 2.2). In addition, the

map (g, f) → Lǧf is jointly continuous from K× (A, ||.||) to (A, ||.||). De�ne a

continuous norm one projection Q from A onto X by Q(f) = f(e)1, for f ∈ A.

Then by assumption, there exists a continuous linear operator P from A into

X with ||P || ≤ 1 such that Pf ∈ co(LKf)
W ∗

, for f ∈ X and that PLg = P ,

for all g ∈ K which in this case is also a projection. Let m(f) = (Pf)(e), for

each f ∈ A. Then m(1) = 1 = ||m|| and m(f) = m(Lgf), for each g ∈ K,

f ∈ A. Thus, K is amenable ([64], Theorem 3.2).

As an application of Lemma 3.3.5 one has:

Corollary 3.3.6. K is amenable if and only if for every weak*-closed left

translation invariant subspace X of L∞(K) which is contained and comple-

mented in LUC(K) with norm ≤ γ, there is a bounded linear operator P from

LUC(K) into X with ||P || ≤ γ such that Pf ∈ co(LKf)
W ∗

, for f ∈ X and

that PLg = P , for all g ∈ K.

Theorem 3.3.7. Let N be a closed Weil subhypergroup of K. Then the fol-

lowing are equivalent:

1. K is amenable.

2. K has the following �xed point property:

Let {Tg ∈ B(E∗) | g ∈ K} be a separately weak*-weak*-continuous repre-

sentation of K as contractions on the dual of a Banach space E. Let A be
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a closed TK-invariant subspace of E∗ such that the mapping (g, x) 7→ Tgx

is jointly continuous from K×(A, ||.||) to (A, ||.||). If X is a weak∗-closed

TK-invariant subspace of E∗ contained in A and if there exists a contin-

uous projection Q from A onto X with ||Q|| ≤ γ, then there exists a

continuous projection P from A onto {f ∈ X | Tnf = f, ∀n ∈ N} with

||P || ≤ γ such that TnPTg = P , for all g ∈ K and n ∈ N .

Proof. Let P be as in Lemma 3.3.5 and let τ be the relative weak∗-operator

topology on B(A,X). Then (P, τ) is a non-empty compact convex subset

of B(A,X) (Lemma 3.3.5). Consider the action ((n, k), P ) 7→ TnPTǩ from

(N ×K)× (P, τ) to (P, τ). Then for k ∈ K and n ∈ N the map P 7→ TnPTǩ

is a�ne and continuous from (P, τ) to (P, τ). Also, for P ∈ P the map

(n, k) 7→ TnPTǩ is continuous from N ×K to (P, τ) by the joint continuity of

the action on A. Moreover, since the map g 7→ Tgf is continuous for f ∈ A and

is weak*-continuous for f ∈ E, the weak vector valued integral < TkTgf,Φ >=
∫
< Tuf,Φ > dδk ∗ δg(u) and < TkTgh, φ >=

∫
< Tuh, φ > dδk ∗ δg(u) exists,

for each Φ ∈ A∗, g, k ∈ K, f ∈ A, φ ∈ E and h ∈ E∗. Thus, for f ∈ A, φ ∈ E,

g1, k1 ∈ N and g2, k2 ∈ K

∫
< TuPTv̌f, φ > dδ(k1,k2) ∗ δ(g1,g2)(u, v)

=
∫ ∫

< TuPTv̌f, φ > dδk1 ∗ δg1(u)dδk2 ∗ δg2(v)

=
∫
< Tk1Tg1PTv̌f, φ > dδk2 ∗ δg2(v)

=
∫
< Tv̌f, P

∗Mg1Mk1φ > dδk2 ∗ δg2(v)

=< Tǧ2Tǩ2f, P
∗Mg1Mk1φ >

=< Tk1Tg1PTǧ2Tǩ2f, φ >

since P ∗Mg1Mk1φ ∈ A∗. By Skantharajah ([65], Theorem 3.3.1) there exists

P2 ∈ P such that TnP2Tǩ = P2, for k ∈ K and n ∈ N since N × K is

amenable ([64], Proposition 3.8 and Remark 2.2.6). In this case, P2 is an

operator from A into F = {f ∈ X | Tnf = f, ∀n ∈ N} and if h ∈ F , then

P2h ∈ co(TNh)
W ∗

= h. Thus, P2 is a continuous projection from A onto F .

For the converse see the proof of Lemma 3.3.5.
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Corollary 3.3.8. Let N be a closed Weil subhypergroup of an amenable hyper-

group K and let X be a weak*-closed translation invariant subspace of L∞(K)

which is contained in WAP (K). Then there is a continuous projection P from

X onto {f ∈ X | Lnf = f = Rnf, ∀n ∈ N} such that PLg = P , for all

g ∈ K.

Proof. By Remark 2.2.6 N is an amenable subhypergroup. Thus, WAP (N)

has an invariant mean. In addition, F := {f ∈ X | Rnf = f, ∀n ∈ N} is a

weak*-closed left translation invariant subspace of L∞(K) and F is contained

and complemented in X ( Lemma 2.3.5). Consider the representation {Lǧ ∈

B(L∞(K)) | g ∈ K}. Then the mapping (g, f) 7→ Lǧf is jointly continuous

from K × (WAP (K), ||.||) to (WAP (K), ||.||) since WAP (K) ⊆ LUC(K).

Therefore, there is a continuous projection P from X onto {f ∈ F | Lnf =

f, ∀n ∈ N} such that PLg = P , for all g ∈ K (Theorem 3.3.7).

Corollary 3.3.9. Let N be a closed Weil subhypergroup of an amenable hy-

pergroup K and let 1 < p <∞. Then there is a continuous projection P from

Lp(K) onto {f ∈ Lp(K) | Lnf = f = Rnf, ∀n ∈ N} such that PLg = P , for

all g ∈ K.

Proof. This follows from Theorem 3.3.7 and Corollary 2.2.2.

Using Lemma 3.3.5, Theorem 3.3.7 and Remark 2.2.6 we have the following

�xed point properties:

Corollary 3.3.10. Let K be an amenable hypergroup and let A and X be

closed left translation invariant subspaces of Lp(K) (1 < p < ∞) such that

X is contained and complemented in A. Then there exists a bounded linear

operator P1 from A into X such that P1f ∈ co(LKf), for f ∈ X and that

P1Lg = P1, for all g ∈ K.

In addition, for any closed Weil subhypergroup N of K, there exists a

continuous projection P2 from A onto {f ∈ X | Lnf = f, ∀n ∈ N} such that

P2Lg = P2, for all g ∈ K.

Theorem 3.3.11. The following are equivalent:
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1. K is amenable.

2. Let {Tg ∈ B(X) | g ∈ K} be a separately continuous representation of

K on a Banach space X as contractions and Y be a weak*-closed K-

invariant subspace of X∗. If there is a continuous projection Q from X∗

onto Y with ||Q|| ≤ γ, then there exists a bounded linear operator P

from X∗ into Y with ||P || ≤ γ such that Pf ∈ co{f . g | g ∈ K}
W ∗

, for

f ∈ Y and Pf = P (f . g), for f ∈ X∗ and g ∈ K.

Proof. Let m be a left invariant mean on L∞(K) and {φα} be a bounded ap-

proximate identity for L1(K). For each φ ∈ X and f ∈ X∗ de�ne hα,φ,f (g) =<

Q(f . Lǧφα), φ >. Then hα,φ,f is bounded by ||Q|| ||φ|| and is continuous since

the mapping g 7→ Lǧφα is continuous. De�ne a bounded linear operator P on

X∗ by < Pf, φ >= limα < Pαf, φ >, where < Pαf, φ >= m(hα,φ,f ). Then

||P || ≤ ||Q|| and Pf ∈ Y , for each f ∈ X∗ since < Pαf, φ >= 0, for φ ∈ Y⊥

and f ∈ X∗. We will show that Pf = P (f . g), for f ∈ X∗ and g ∈ K. To this

end, de�ne a continuous function cf,α from K into X∗ by cf,α(g) = f . Lǧφα.

Then the Bochner integral
∫
(f . Lǔφα)dδx ∗ δg(u) exists since

∫
||(f . Lǔφα)||dδx ∗ δg(u) ≤

∫
||Lǔφα|| ||f || dδx ∗ δg(u)

≤
∫
||φα|| ||f || dδx ∗ δg(u)

= ||φα|| ||f || <∞.

In addition, for each m ∈ X∗∗

<

∫
(f . Lǔφα)dδx ∗ δg(u),m >=

∫
< f . Lǔφα,m > dδx ∗ δg(u).
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Thus, for φ ∈ X

<
∫
(f . Lǔφα)dδx ∗ δg(u), φ > =

∫
< f . Lǔφα, φ > dδx ∗ δg(u)

=
∫ ∫

< f, Lkφ > Lǔφα(k)dλ(k)dδx ∗ δg(u)

=
∫ ∫

< f, Lkφ > Lǔφα(k)dδx ∗ δg(u)dλ(k)

=
∫
< f, Lkφ > Lx̌Lǧφα(k)dλ(k)

=< f . Lx̌Lǧφα, φ >

Therefore, f . Lx̌Lǧφα =
∫
(f . Lǔφα)dδx ∗ δg(u). For x ∈ K, f ∈ X∗ and

φ ∈ X

Lxhα,φ,f (g) =
∫
< Q(f . Lǔφα), φ > dδx ∗ δg(u)

=
∫
< f . Lǔφα, Q

∗φ > dδx ∗ δg(u)

=<
∫
(f . Lǔφα)dδx ∗ δg(u), Q

∗φ >

=< f . Lx̌Lǧφα, Q
∗φ >

=< f . (δx ∗ Lǧφα), Q
∗φ >

=< Q((f . x) . Lǧφα), φ >

= hα,φ,f . x(g).

Hence,

< Pαf, φ >= m(hα,φ,f ) = m(Lxhα,φ,f ) = m(hα,φ,f . x) =< Pα(f . x), φ > .

Let {
∑n

i=1 λi,βδgi,β}β be a net of convex combination of point evaluations on

L∞(K) converging to m in weak*-topology of L∞(K)∗. Then for each φ ∈ X

and f ∈ Y

< Pf, φ > = limα limβ

∑n
i=1 λi,β < Q(f . Lǧi,βφα), φ >

= limα limβ

∑n
i=1 λi,β < f . Lǧi,βφα, φ >

= limα limβ

∑n
i=1 λi,β < f . (δgi,β ∗ φα), φ >

= limα limβ

∑n
i=1 λi,β < (f . gi,β) . φα, φ >

= limβ limα

∑n
i=1 λi,β

∫
< f . g

i,β
, Lkφ > φα(k)dλ(k)

= limβ

∑n
i=1 λi,β < f . g

i,β
, φ >,
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since f . Lgφα ∈ Y , for g ∈ K ([47], Lemma 2). That is Pf ∈ co{f . g | g ∈ K}
W ∗

.

Conversely, let X = L1(K), Y = C.1 and let φ0 ∈ L1(K) with ||φ0|| = 1 be

�xed. De�ne the representation {Lǧ ∈ B(L1(K)) | g ∈ K} of K on L1(K).

Then f . g = Lgf , for g ∈ K and f ∈ L∞(K) ([30], Theorem 5.1.D). Consider

a weak*-continuous norm one projection Q from L∞(K) onto C.1 de�ned by

Qf = f(φ0).1. By assumption, there exists a continuous linear operator P

from L∞(K) into Y with ||P || ≤ 1 such that Pf ∈ co(LKf)
W ∗

, for f ∈ Y

and that PLg = P , for all g ∈ K. We note that P is also a projection since

co(LKf)
W ∗

= f , for f ∈ Y . De�ne a bounded linear functional on L∞(K)

by m(f) = c if Pf = c.1. Then m(1) = 1 = ||m|| and m(f) = m(Lgf), for

f ∈ L∞(K) and g ∈ K. Thus, K is amenable.

Corollary 3.3.12. The following are equivalent:

1. K is amenable.

2. Let Y be a weak*-closed left translation invariant subspace of L∞(K). If

there is a continuous projection Q from L∞(K) onto Y with ||Q|| ≤ γ,

then there exists a bounded linear operator P from L∞(K) into Y with

||P || ≤ γ such that Pf ∈ coLKf
W ∗

, for f ∈ Y and P = PLg, for g ∈ K.

Proof. This follows directly from Theorem 3.3.11 by considering the represen-

tation {Lǧ | g ∈ K} of K on L1(K).

Corollary 3.3.13. Let K be an amenable hypergroup. Let X be a closed

left translation invariant subspace of LUC(K) and Y be a weak*-closed left

translation invariant subspace of X∗. If there is a continuous projection Q

from X∗ onto Y with ||Q|| ≤ γ, then there exists a bounded linear operator

P from X∗ into Y with ||P || ≤ γ such that Pf ∈ coL∗
Kf

W ∗

, for f ∈ Y and

P = PL∗
g, for g ∈ K.

Proof. Apply Theorem 3.3.11 to the representation {Lǧ | g ∈ K} of K on

X.
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Chapter 4

Inner amenable hypergroups,

Invariant projections and

Hahn-Banach extension theorem

related to hypergroups.1

4.1 Introduction

Let G be a locally compact group. A mean m on L∞(G) is called inner

invariant and G is called inner amenable if m(LgRg−1f) = m(f), for all g ∈ G

and f ∈ L∞(G) (see [17] for discrete case) which is equivalent to saying that

L∗
gm = R∗

gm, for all g ∈ G. However, this equivalence relation breaks down

when one deals with hypergroups. We say that a hypergroup K is inner

amenable if there exists a mean m on L∞(K) such that m(Rgf) = m(Lgf)

for all g ∈ K and f ∈ L∞(K). Of course amenable hypergroups are inner

amenable. An inner invariant mean m on a non-trivial discrete hypergroup is

called non-trivial if m 6= δe, the point evaluation function on l∞(K). If this

is the case, then m1 = m−m({e})δe
1−m({e})

is an inner invariant mean on l∞(K) and

1A version of this chapter is under review. N. Tahmasebi, Inner amenable hypergroups,
Invariant projections and Hahn-Banach extension theorem related to hypergroups, [69].
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m1({e}) = 0. Any invariant mean on l∞(K) is a non-trivial inner invariant

mean and hence any non-trivial discrete amenable hypergroup possesses a

non-trivial inner invariant mean.

4.2 Inner amenable hypergroups

Example 4.2.1. Let H be a discrete amenable hypergroup and J be a discrete

non-amenable hypergroup. Then K = H × J is a non-amenable hypergroup

and l∞(K) has a non-trivial inner invariant mean.

Proof. Let H be a discrete amenable hypergroup and J be a discrete non-

amenable hypergroup. Let K = H × J with the identity (e1, e2). If m is an

invariant mean on l∞(H) and f ∈ l∞(K), then for each k ∈ J de�ne a function

fk ∈ l∞(H) via fk(g) = f(g, k). Furthermore, de�ne a mean m1 on l∞(K) by

m1(f) = m(fe2). Then m1(f) = m(fe2) 6= fe2(e1) = f(e1, e2). In addition, for

(g1, g2) ∈ K and k ∈ H we have

(L(g1,g2)f)e2(k) = L(g1,g2)f(k, e2)

=
∑

(u,v)∈K f(u, v)δ(g1,g2) ∗ δ(k,e2)(u, v)

=
∑

u∈H

∑
v∈J f(u, v)δg1 ∗ δk(u)δg2 ∗ δe2(v)

=
∑

u∈H fg2(u)δg1 ∗ δk(u)

= Lg1fg2(k).

Hence, (L(g1,g2)f)e2 = Lg1fg2 . Similarly, (R(g1,g2)f)e2 = Rg1fg2 . Thus,

m1(L(g1,g2)f) = m((L(g1,g2)f)e2) = m(Lg1fg2) = m(Rg1fg2)

= m((R(g1,g2)f)e2) = m1(R(g1,g2)f).

The modular function ∆ is de�ned by λ ∗ δǧ = ∆(g)λ, where λ is a left

Haar measure on K and g ∈ K.

The following result shows that similar to the locally compact groups ([57],
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Proposition 1), inner amenability of a hypergroup is also an asymptotic prop-

erty.

Lemma 4.2.1. The following are equivalent:

1. K is inner amenable.

2. There is a net {φα} in L1(K) with φα ≥ 0 and ||φα||1 = 1 such that

||Lgφα −∆(g)Rgφα||1 → 0, for all g ∈ K.

3. There is a net {ψβ} in L1(K) with ψβ ≥ 0 such that 1
||ψβ ||

||Lgψβ −

∆(g)Rgψβ||1 → 0, for all g ∈ K.

Proof. For 3 ⇒ 2 put φα = ψα

||ψα||
. We will prove the equivalence of 1 and 2.

Let m be a mean on L∞(K) such that m(Lgf) = m(Rgf), for f ∈ L∞(K)

and g ∈ K. Then there is a net of positive norm one elements {qγ} in L1(K)

such that < Lgqγ −∆(g)Rgqγ, f >→ 0, for each f ∈ L∞(K). Let T be a map

from L1(K) into L1(K)K de�ned by Tφ(g) = ∆(g)Rgφ−Lgφ, for f ∈ L∞(K),

φ ∈ L1(K) and g ∈ K. Thus, 0 ∈ T (P1(K)) by Mazur's theorem, where

P1(K) = {φ ∈ L1(K) | φ ≥ 0, ||φ|| = 1}. Therefore, there is a net of

positive norm one elements {φα} in L1(K) such that ||Lgφα −∆(g)Rgφα|| →

0. Conversely, let m be any weak*-cluster point of {φα} in L∞(K)∗. Then

m is a mean on L∞(K) such that m(Rgf) = m(Lgf) for all g ∈ K and

f ∈ L∞(K).

Corollary 4.2.2. Let K be a discrete hypergroup. Then the following are

equivalent:

1. There is an inner invariant mean m on l∞(K) such that m({e}) = 0.

2. There is a net {φα} in l1(K) with φα ≥ 0 and ||φα||1 = 1 such that

φα(e) = 0 and that ||Lgφα −∆(g)Rgφα||1 → 0, for all g ∈ K.

Let G be a locally compact group and let τ be a continuous group homo-

morphism from G into the topological group Aut(K) of all hypergroup homo-

morphisms on K with the topology of pointwise convergence. The semidirect
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product KoτG of K and G is the locally compact space K×G equipped with

the product topology, the convolution δ(k1,g1) ∗δ(k2,g2) = δk1 ∗δτg1 (k2)×δg1g2 [74].

In this case, there is a natural action τ of G on Lp(K) (1 ≤ p ≤ ∞) de�ned

by τgf(k) = f(τgk) for f ∈ Lp(K), g ∈ G and k ∈ K. If G and K are discrete,

then we say that τ is strongly ergodic if the condition ||τgφα − φα||2 → 0,

for some positive norm one net {φα} in l2(K) and all g ∈ G implies that

φα(e1) → 1, where e1 is the identity of K. In addition, a mean m on l∞(K)

is τ -invariant if m(τgf) = m(f), for all g ∈ G and f ∈ l∞(K). The trivial

τ -invariant mean on l∞(K) is given by δe1(f) = f(e1), for f ∈ l∞(K) ( for the

corresponding de�nitions in the countable group setting see [10]).

The following three results are inspired by [10].

Lemma 4.2.3. Let G be a discrete group and let τ be a continuous group

homomorphism from G into the topological group Aut(K) of all hypergroup

homomorphisms on a discrete hypergroup K. Then there is a non-trivial τ -

invariant mean m on l∞(K) if and only if τ is not strongly ergodic.

Proof. Let m be a non-trivial τ -invariant mean on l∞(K). Without loss of

generality assume m(δe) = 0, where e is the identity of K. By a standard

argument (see the proof of Lemma 4.2.1 for example) �nd a positive norm one

net {ψα} in l1(K) such that ||τgψα−ψα|| → 0 for all g ∈ G and limα ψα(e) = 0.

Then {φα = ψ
1

2

α} is a positive norm one net in l2(K), limα φα(e) = 0 and for

g ∈ G

||τgφα − φα||
2
2 = ||τg(ψ

1

2

α )− ψ
1

2

α ||
2
2 = ||(τgψα)

1

2 − ψ
1

2

α ||
2
2 ≤ ||τgψα − ψα||1 → 0.

Therefore, τ is not strongly ergodic. Conversely, let {φα}α∈I be a positive

norm one net in l2(K) such that ||τgφα − φα||
2
2 → 0 and that limα φα(e) 6= 1.

Choose α0 ∈ I such that φα(e) 6= 1 for all α ≥ α0 and put I1 = {α ∈

I | α ≥ α0}. Then {ψα = φα−φα(e)δe
1−φα(e)

}α∈I1 is a positive norm one net in l2(K)

such that ||τgψα − ψα||
2
2 → 0 and ψα(e) = 0 for all α ∈ I1. Let m be a

weak*-cluster point of {ψ2
α}α∈I1 in l∞(K)∗ and by passing possibly to a subnet
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assume m(f) = lim < ψ2
α, f >. Then m is a nontrivial τ -invariant mean on

l∞(K).

Theorem 4.2.4. Let KoτG be the semidirect product hypergroup of a discrete

hypergroup K and a discrete group G.

1. If K is commutative and τ is not strongly ergodic, then for each subgroup

S of G, l∞(K oτ |S S) possesses a non-trivial inner invariant mean.

2. If τ is strongly ergodic and l∞(G) has no non-trivial inner invariant

mean, then l∞(K oτ G) has no non-trivial inner invariant mean.

Proof. Assume that there exists a subgroup S of G such that l∞(K oτ |S S)

has no non-trivial inner invariant mean. Let m be a mean on l∞(K) such

that m(τgf) = m(f), for all g ∈ S and f ∈ l∞(K). We will show that m is

trivial. For f ∈ l∞(K oτ |S S) and g ∈ S de�ne a function fg ∈ l∞(K) by

fg(k) = f(k, g), (k ∈ K). Let M(f) = m(fe2), for f ∈ l∞(K oτ |S S). Then

M is a mean on l∞(K oτ |S S). For f ∈ l∞(K oτ |S S), (k1, g1) ∈ K oτ |S S and

k ∈ K

(L(k1,g1)f)e2(k) = L(k1,g1)f(k, e2)

=
∑

(u,v) f(u, v)δ(k1,g1) ∗ δ(k,e2)(u, v)

=
∑

u

∑
v f(u, v)δk1 ∗ δτg1k(u)δg1e2(v)

=
∑

u f(u, g1)δk1 ∗ δτg1k(u)

=
∑

u fg1(u)δk1 ∗ δτg1k(u)

= Lk1fg1(τg1k)

= τg1(Lk1fg1)(k).

Moreover,

(R(k1,g1)f)e2(k) = R(k1,g1)f(k, e2)

=
∑

(u,v) f(u, v)δ(k,e2) ∗ δ(k1,g1)(u, v)

=
∑

u

∑
v f(u, v)δk ∗ δτe2k1(u)δe2g1(v)

=
∑
fg1(u)δk ∗ δk1(u)

= Lk1fg1(k),
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since K is commutative. Hence,

M(L(k1,g1)f) = m((L(k1,g1)f)e2) = m(τg1(Lk1fg1)) = m(Lk1fg1)

= m((R(k1,g1)f)e2) =M(R(k1,g1)f).

Therefore, M is inner invariant. Then M is trivial, i.e, M(f) = f(e1, e2). For

f ∈ l∞(K) let f1(k, g) = f(k) if g = e2 and zero otherwise, ((k, g) ∈ Koτ |S S).

Then (f1)e2(k) = f1(k, e2) = f(k). Thus, f(e1) = f1(e1, e2) = M(f1) =

m((f1)e2) = m(f) which means that m is trivial. Consequently, τ is strongly

ergodic by Lemma 4.2.3.

Suppose m is a non-trivial inner invariant mean on l∞(KoτG) and assume

without loss of generality that m(δ(e1,e2)) = 0, where (e1, e2) is the identity of

K oτ G. Then m(R(e1,g−1)L(e1,g)h) = m(h), for all h ∈ l∞(K oτ G) and

(e1, g) ∈ K oτ G. For f ∈ l∞(K) let f1(k, g) = f(k) if g = e2 and zero

otherwise, ((k, g) ∈ K oτ G). Then f1 ∈ l∞(K oτ G). We will show that

m(χKoτ e2) = 0. If not, then m1 with m1(f) = m(f1)
m(χKoτ e2

)
, (f ∈ l∞(K)) is a

mean on l∞(K) and m1(δe1) = 0. For (k1, g1), (e1, g) ∈ Koτ G and f ∈ l∞(K)

R(e1,g)(τgf)1(k1, g1) =
∑

(u,v)(τgf)1(u, v)δ(k1,g1) ∗ δ(e1,g)(u, v)

=
∑

u

∑
v(τgf)1(u, v)δk1 ∗ δe1(u)δg1g(v)

= (τgf)1(k1, g1g)

Hence,

R(e1,g)(τgf)1(k1, g1) =

{
τgf(k1) = f(τg(k1)) if g1g = e2,

0 if g1g 6= e2.
(4.1)

In addition,

L(e1,g)f1(k1, g1) =
∑

(u,v) f1(u, v)δ(e1,g) ∗ δ(k1,g1)(u, v)

=
∑

u

∑
v f1(u, v)δe1 ∗ δτg(k1)(u)dδgg1(v)

= f1(τg(k1), gg1)
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Thus,

L(e1,g)(f)1(k1, g1) =

{
f(τg(k1)) if gg1 = e2,

0 if gg1 6= e2.
(4.2)

Therefore, R(e1,g)(τgf)1 = L(e1,g)f1. In other words (τgf)1 = R(e1,g−1)L(e1,g)f1.

Now observe that

m1(τgf) =
m((τgf)1)

m(χKoτ e2)
=
m(R(e1,g−1)L(e1,g)f1)

m(χKoτ e2)
=

m(f1)

m(χKoτ e2)
= m(f).

A contradiction with the strong ergodicity of τ (Lemma 4.2.3). Consequently,

m(χKoτ e2) = 0. For a subset C of G let m2(χC) = m(χKoτC) and let m3 be

an extension of m2 to a mean on l∞(G). Then m3 is a mean on l∞(G) and

m3(δe2) = m(χKoτ e2) = 0. Furthermore, m3 is also inner invariant since m3 is

an extension of m2 and (K × gCg−1) = (e1, g)(K ×C)(e1, g
−1) for each g ∈ G

and each subset C of G.

Lemma 4.2.5. The following conditions hold:

1. If there is a net {φα} in L2(K) with φα ≥ 0 and ||φα||2 = 1 such that

||Lgφα −∆
1

2 (g)Rgφα||2 → 0, for all g ∈ K, then K is inner amenable.

2. If K is unimodular and there is a net {Vα} of Borel subsets of K with

0 < λ(Vα) < ∞ such that ||LgχVα

λ(Vα)
− RgχVα

λ(Vα)
||1 → 0 for all g ∈ K, then

there is a net {ψα} in L2(K) with ψα ≥ 0 and ||ψα||2 = 1 such that

||Lgψα −Rgψα||2 → 0, for all g ∈ K.

Proof. (1): For each α put ψα = φ2
α. Then for g, k ∈ K

∫ ∫
(φα(u)−∆

1

2 (g)φα(v))
2dδg ∗ δk(u)dδk ∗ δg(v)

= Lgφ
2
α(k) + ∆(g)Rgφ

2
α(k)− 2∆

1

2 (g)Lgφα(k)Rgφα(k)

= (Lgφα(k)−∆
1

2 (g)Rgφα(k))
2 + Lgφ

2
α(k) + ∆(g)Rgφ

2
α(k)− (Lgφα)

2(k)−∆(g)(Rgφα)
2(k)
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Hence,

−[
∫ ∫ ∫

(φα(u)−∆
1

2 (g)φα(v))
2dδg ∗ δk(u)dδk ∗ δg(v)dλ(k)]

= −[
∫
(Lgφα(k)−∆

1

2 (g)Rgφα(k))
2dλ(k) +

∫
Lgφ

2
α(k)dλ(k) +

∫
∆(g)Rgφ

2
α(k)dλ(k)

−
∫
(Lgφα)

2(k)dλ(k)−
∫
∆(g)(Rgφα)

2(k)dλ(k)]

≤ −||Lgφα(k)−∆
1

2 (g)Rgφα(k)||
2
2 − ||φα||

2
2 − ||φα||

2
2 + ||φα||

2
2 + ||φα||

2
2 → 0,

because
∫
∆(g)(Rgφα)

2(k)dλ(k) =< ∆(g)Rgφα, Rgφα >=< φα, RǧRgφα >≤

||φα||
2
2 and each φα is positive. In addition,

∆
1

2 (g)Lgφα(k)Rgφα(k)−∆(g)Rgφ
2
α(k) ≤ ∆

1

2 (g)Lgφα(k)Rgφα(k)−∆(g)(Rgφα)
2(k)

= [Lgφα(k)−∆
1

2 (g)Rgφα(k)] ∆
1

2 (g)Rgφα(k),

by Holder's inequality. Thus,

∫
|∆

1

2 (g)Lgφα(k)Rgφα(k)−∆(g)Rgφ
2
α(k)|dλ(k)

≤ ∆
1

2 (g)||Rgφα||2 ||Lgφα(k)−∆
1

2 (g)Rgφα(k)||2 → 0.

Therefore,

||Lgψα −∆(g)Rgψα||1 =
∫
|Lgφ

2
α(k)−∆(g)Rgφ

2
α(k)|dλ(k)

≤
∫
|
∫ ∫

(φα(u)−∆
1

2 (g)φα(v))
2dδg ∗ δk(u)dδk ∗ δg(v)|dλ(k)

+
∫
|2∆

1

2 (g)Lgφα(k)Rgφα(k)− 2∆(g)Rgφ
2
α(k)|dλ(k) → 0,

since,

∫ ∫
(φα(u)−∆

1

2 (g)φα(v))
2dδg ∗ δk(u)dδk ∗ δg(v)

=
∫ ∫

[φ2
α(u) + ∆(g)φ2

α(v)− 2∆
1

2 (g)φα(u)φα(v)]dδg ∗ δk(u)dδk ∗ δg(v)

= Lgφ
2
α(k)−∆(g)Rgφ

2
α(k) + 2∆(g)Rgφ

2
α(k)− 2∆

1

2 (g)Rgφ
2
α(k)Lgφ

2
α(k).

By Lemma 4.2.1 then K is inner amenable. The rest follows by a similar

argument as in ([64], Theorem 4.3) if K is unimodular.

Remark 4.2.1. Let K be a discrete hypergroup. If there is a positive norm
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one net {φα} in l2(K) with φα(e) → 0 such that ||Lgφα −∆
1

2 (g)Rgφα||2 → 0,

for all g ∈ K, l∞(K) has a non-trivial inner invariant mean.

Theorem 4.2.6. The following are equivalent:

1. There is a net {φα} in L2(K) with φα ≥ 0 and ||φα||2 = 1 such that

||Lgφα −∆
1

2 (g)Rgφα||2 → 0, for all g ∈ K.

2. There is a net {φα} in L2(K) with φα ≥ 0 and ||φα||2 = 1 such that for

each g ∈ K

| ||Lgφα||
2
2−∆

1

2 (g)Lgφα∗Lǧφ̌α(e)| → 0 and | ||∆
1

2 (g)Rgφα||
2
2−∆

1

2 (g)Lgφα∗Lǧφ̌α(e)| → 0.

In this case K is inner amenable and there is a state m on B(L2(K)) such

that m(Lg) = m(∆
1

2 (g)Rg), for all g ∈ K, where Lg (Rg) is the left (right)

translation operator on L2(K).

Proof. If (1) holds, then for g ∈ K

| ||Lgφα||
2
2 −∆

1

2 (g)Lgφα ∗ Lǧφ̌α(e) | = | < Lgφα, Lgφα > − < Lgφα,∆
1

2 (g)Rgφα > |

= | < Lgφα, Lgφα −∆
1

2 (g)Rgφα > |

≤ ||Lgφα −∆
1

2 (g)Rgφα|| → 0.

Similarly, | ||∆
1

2 (g)Rgφα||
2
2−∆

1

2 (g)Lgφα∗Lǧφ̌α(e) | → 0, for g ∈ K. Conversely,

for each g ∈ K we have

||Lgφα −∆
1

2 (g)Rgφα||
2
2 =< Lgφα −∆

1

2 (g)Rgφα, Lgφα −∆
1

2 (g)Rgφα >

= ||Lgφα||
2
2 + ||∆

1

2 (g)Rgφα||
2
2 − 2 < Lgφα,∆

1

2 (g)Rgφα >

= ||Lgφα||
2
2 + ||∆

1

2 (g)Rgφα||
2
2 − 2∆

1

2 (g)Lgφα ∗ Lǧφ̌α(e)

≤ | ||Lgφα||
2
2 −∆

1

2 (g)Lgφα ∗ Lǧφ̌α(e) |

+| ||∆
1

2 (g)Rgφα||
2
2 −∆

1

2 (g)Lgφα ∗ Lǧφ̌α(e) | → 0.

For each T ∈ B(L2(K)) let mαT =< Tφα, φα > and let m be a weak*-cluster

point of the net {mα} in B(L2(K))∗. Without loss of generality assume that
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mT = limαmα(T ). Then m is a state on B(L2(K)) and for g ∈ K

|m(Lg)−m(∆
1

2 (g)Rg)| = | limα < Lgφα, φα > − limα < ∆
1

2 (g)Rgφα, φα > |

= | limα < Lgφα −∆
1

2 (g)Rgφα, φα > |

≤ limα ||Lgφα −∆
1

2 (g)Rgφα|| = 0.

In addition, K is inner amenable by Lemma 4.2.5.

Let G be a locally compact group. Then G is an [IN ]-group if and only

if G possesses a compact neighborhood V of e with LgχV = RgχV , for all

g ∈ G. However, one may not expect this equivalence relation to hold in the

hypergroup setting. A hypergroup K is called [IN ]-hypergroup if there is a

compact neighbourhood V of e such that g∗V = V ∗g, for all g ∈ K. It is easy

to see that each of compact or commutative hypergroups are [IN ]-hypergroups

and possess a compact neighborhood V of e with LgχV = RgχV , for all g ∈ K.

For a discrete hypergroup K the situation is quite di�erent: although K is

an [IN ]-hypergroup, we have that Lgδe = Rgδe, for all g ∈ K if and only if

δg ∗ δǧ(e) = δǧ ∗ δg(e), for all g ∈ K.

Corollary 4.2.7. Let K be a hypergroup possessing a compact neighborhood V

of e with LgχV = RgχV , for all g ∈ K. Let QV be the operator on L2(K) given

by QV f =< f, χV > .χV for f ∈ L2(K). Then the following are equivalent:

1. There is a net {φα} in L2(K) with φα ≥ 0, < φα, χV >= 0 and ||φα||2 = 1

such that ||Lgφα −∆
1

2 (g)Rgφα||2 → 0, for all g ∈ K.

2. There is a net {φα} in L2(K) with φα ≥ 0, < φα, χV >= 0 and ||φα||2 = 1

such that for g ∈ K

| ||Lgφα||
2
2−∆

1

2 (g)Lgφα∗Lǧφ̌α(e)| → 0, and | ||∆
1

2 (g)Rgφα||
2
2−∆

1

2 (g)Lgφα∗Lǧφ̌α(e)| → 0.

In this case

a. There is an inner invariant mean m on L∞(K) with m(χV ) = 0.
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b. There is a state m on B(L2(K)) such that m(QV ) = 0 and m(Lg) =

m(∆
1

2 (g)Rg), for all g ∈ K.

c. The operators id−QV and id+QV are not in the C∗-algebra generated

by {Lg −∆
1

2 (g)Rg | g ∈ K}.

Proof. We will show b ⇒ c, for all other parts we refer to the proof of Theorem

4.2.6. Let T =
∑n

i=1 λi(Lgi −∆
1

2 (gi)Rgi). Then m(T ) = 0 and hence

||T − (id−QV )|| ≥ |m(T )−m(id−QV )| = 1.

Similarly, ||T − (id + QV )|| ≥ 1. Thus, id − QV and id + QV are not in the

C∗-algebra generated by {Lg −∆
1

2 (g)Rg | g ∈ K}.

Remark 4.2.2. Let K be a unimodular hypergroup possessing a compact

neighbourhood V of e with LgχV = RgχV , for all g ∈ K and let 1 ≤ p < ∞.

Then there is a compact operator T in B(Lp(K)) such that LgT = RgT ,

LǩTLg = RǩTRg and TLg = TRg, for all g, k ∈ K.

Proof. Let Tf :=< χV , f > χV . Then for f ∈ Lp(K) and g, k ∈ K,

LǩTLgf =< χV , Lgf > LǩχV

=< LǧχV , f > LǩχV

=< RǧχV , f > RǩχV

=< χV , Rgf > RǩχV

= RǩTRgf.

Hence, LǩTLg = RǩTRg, for all g, k ∈ K. Similarly we can prove other

parts.

Example 4.2.2. 1. Let K = H ∨ J be the hypergroup join of a compact

group H and a discrete commutative hypergroup J with H ∩ J = {e}.

Then there is a compact neighbourhood V of e with LgχV = RgχV , for

all g ∈ K.
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2. Let K = H∨J be the hypergroup join of a �nite commutative hypergroup

H and a discrete group J with H ∩J = {e}. Then δg ∗ δǧ(e) = δǧ ∗ δg(e),

for all g ∈ K and hence Lgδe = Rgδe, for all g ∈ K.

Lau and Paterson in ([50], Theorem 2) proved that a locally compact group

G is inner amenable if and only if there exists a non-zero compact operator in

A
′

∞, where A
′

∞ = {T ∈ B(L∞(G)) | Lg−1RgT = TLg−1Rg, ∀g ∈ G}. We note

that A
′

∞ = {T ∈ B(L∞(G)) | RgTRg−1 = LgTLg−1 , ∀g ∈ G} which is not

the case as we step beyond the groundwork of locally compact groups. The

following is an extension of ([50], Theorem 2):

Remark 4.2.3. The following conditions hold:

1. If K is inner amenable, then there is a compact operator T in B(L∞(K))

such that T (h) = 1, for some h ∈ L∞(K), LňTLg = Rm̌TRg, TLg =

TRg, for all g, n,m ∈ K and T (f) ≥ 0, for f ≥ 0.

2. If there is a non-zero operator T in B(L∞(K)) such that TLg = TRg,

for all g ∈ K and T (f) ≥ 0, for f ≥ 0, then K is inner amenable and

T (f) ≥ 0, for f ≥ 0.

Proof. 1. If m is an inner invariant mean on L∞(K), then the operator T

in B(L∞(K)) de�ned by T (f) = m(f)1, for f ∈ L∞(K) is the desired

operator.

2. Let m be a mean on L∞(K). Then m ◦ T is an inner invariant positive

linear functional on L∞(K). Let f0 ∈ L∞(K) such that T (f0) > 0.

Then f0 can be decomposed into positive elements and if f ≥ 0, then

T (f) ≤ ||f ||T (1). Hence, m ◦ T (1) 6= 0 and m◦T
m◦T (1)

is an inner invariant

mean on L∞(K).

Corollary 4.2.8. K is inner amenable if and only if there is a non-zero com-

pact operator T in B(L∞(K)) such that TLg = TRg, for all g ∈ K and

T (f) ≥ 0, for f ≥ 0.
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Corollary 4.2.9. Let G be a locally compact group. Then G is inner amenable

if and only if there is a non-zero operator T in A
′

∞ such that TLg = TRg, for

all g ∈ G and T (f) ≥ 0, for f ≥ 0.

We say that K satis�es central Reiter's condition P1, if there is a net {φα}

in L1(K) with φα ≥ 0 and ||φα||1 = 1 such that ||Lgφα − ∆(g)Rgφα||1 → 0

uniformly on compact subsets of K. By Lemma 4.2.1 if K satis�es central

Reiter's condition P1, then K is inner amenable. Sinclair ([63], page 47) in

particular called a net {φα} in L1(G) quasi central if ||µ ∗ φα − φα ∗ µ|| → 0,

for all µ ∈ M(G), where G is a locally compact group. We say that the net

{φα} in L1(K) is quasi central if ||µ ∗ φα − φα ~ µ|| → 0, for all µ ∈M(K).

Remark 4.2.4. If the net {φα} in L1(K) satis�es central Reiter's condition

P1, then

1. For given {ψi}
n
i=1 ⊆ L1(K) and ε > 0, there is an element φ ∈ L1(K)

such that ||ψi ∗ φ− φ ∗ ψi|| < ε, for i = 1, 2, ..., n.

2. The net {φα} is a quasi central net in L1(K).

Proof. (1): Let ε > 0 be given and let Ci be compact subsets of K such

that
∫
K\Ci

|ψi|(g)dλ(g) < ε. Let C =
⋃n
i=1Ci and let α ∈ I be such that

||Lǧφα(k)−∆(ǧ)Rǧφα(k)|| < ε, for all g ∈ C. Then

||ψi ∗ φα − φα ∗ ψi||1

=
∫
|
∫
ψi(g)Lǧφα(k)dλ(g)−

∫
ψi(g)∆(ǧ)Rǧφα(k)dλ(g)|dλ(k)

≤
∫
|ψi(g)|

∫
|Lǧφα(k)−∆(ǧ)Rǧφα(k)|dλ(k) dλ(g)

=
∫
K\C

|ψi(g)|
∫
|Lǧφα(k)−∆(ǧ)Rǧφα(k)|dλ(k) dλ(g)

+
∫
C
|ψi(g)|

∫
|Lǧφα(k)−∆(ǧ)Rǧφα(k)|dλ(k) dλ(g) < ε2 + ε Maxi=1,...,n||ψi||1

(2): Without loss of generality assume that µ ∈ M(K) has a compact

support C. Let ε > 0 be given and let α ∈ I be such that ||Lǧφα−∆(ǧ)Rǧφα|| <
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ε, for all g ∈ C. Then

||µ ∗ φα − φα ~ µ|| =
∫
|
∫
(Lǧφα(k)−∆(ǧ)Rǧφα)dµ(g)|dλ(k)

≤
∫ ∫

C
|Lǧφα(k)−∆(ǧ)Rǧφα|dµ(g)dλ(k)

+
∫ ∫

K\C
|Lǧφα(k)−∆(ǧ)Rǧφα|dµ(g)dλ(k)

≤ ε||µ||.

Losert and Rindler called a net {φα} in L1(G), G is a locally compact

group, asymptotically central if 1
||φα||

(∆(g)RgLg−1φα − φα) → 0 weakly for all

g ∈ G ([56]). We say that the net {φα} in L1(K) is ( hypergroup) asymptot-

ically central if 1
||φα||

(∆(g)RgLǧφα − φα) → 0 ( 1
||φα||

(∆(g)Rgφα − Lgφα) → 0)

weakly for all g ∈ K. The reason for our de�nition is that Z(L1(K)) = {φ ∈

L1(K) | ∆(g)Rgφ = Lgφ, ∀g ∈ K}, where Z(L1(K)) is the algebraic center

of the hypergroup algebra L1(K). Then it is easy to see that if K is discrete

and unimodular or commutative, then any approximate identity in L1(K) is

hypergroup asymptotically central.

Remark 4.2.5. If L1(K) has an asymptotically central bounded approximate

identity, then K is an inner amenable locally compact group.

Proof. Let {φα} be an asymptotically central bounded approximate identity

for L1(K) and m be a weak*-cluster point of {φα} in L∞(K)∗. Without loss

of generality assume that φα's are real-valued and lim < φα, f >=< m, f >

for each f ∈ L∞(K). Then m(LgRǧf) = m(f), for each f ∈ L∞(K) and

g ∈ K. In addition, m(φ ∗ f) = lim < φα, φ ∗ f >= lim < ∆̌φ̌ ∗ φα, f >=<

∆̌φ̌, f >= φ ∗ f(e), for φ ∈ L1(K) and f ∈ L∞(K). Thus, m(f) = f(e), for

each f ∈ C0(K) ([64], Lemma 2.2). Therefore,

δg ∗ δǧ(f) = Rǧf(g) = LgRǧf(e) = m(LgRǧf) = m(f) = δe(f),

for f ∈ C0(K). i.e. δg ∗ δǧ = δe, for all g ∈ K and hence G(K) = K. It follows

then by the proof of ([56], Theorem 2) that the locally compact group K is
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also inner amenable.

In 1991, Lau and Paterson characterized inner amenable locally compact

groups G in terms of a �xed point property of an action of G on a Banach

space ([49], Theorem 5.1). This characterization can be extended naturally to

hypergroups and we have:

Remark 4.2.6. The following are equivalent:

1. K is inner amenable.

2. Whenever {Tg ∈ B(E) | g ∈ K} is a separately continuous repre-

sentation of K on a Banach space E as contractions, there is some

T ∈ {Nφ | φ ∈ L1(K), ||φ|| = 1, φ ≥ 0}
W ∗.o.t

such that NgT = TNg,

for all g ∈ K.

Remark 4.2.7. Let N be a closed normal Weil subhypergroup of K. If K is

inner amenable, then K/N is also inner amenable.

Proof. De�ne a linear isometry φ from L∞(K/N) to the subspace {f ∈ L∞(K) |Rgf =

Rkf, g ∈ k ∗N, k ∈ K} of L∞(K) by φ(f) = f ◦ π, where π is the quotient

map from K onto K/N . Then

∫
|Lg(φf)(k)− φ(Lg∗Nf)(k)|dλ(k) =

∫
|
∫
f(u ∗N)dδg ∗ δk(u)− (Lg∗Nf) ◦ π(k)|dλ(k)

=
∫
|
∫
f(u ∗N)dδg∗N ∗ δk∗N(u ∗N)− Lg∗Nf(k ∗N)|dλ(k)

= 0,

since N is a Weil subhypergroup. Thus, φ(Lg∗Nf) = Lg(φf) for f ∈ L∞(K/N)

and g ∈ K. Similarly, φ(Rg∗Nf) = Rg(φf) for f ∈ L∞(K/N) and g ∈ K. Let

m be an inner invariant mean on L∞(K) and de�ne m1(f) = m(φf), f ∈

L∞(K/N). Then m1 is a mean on L∞(K/N). In addition, for f ∈ L∞(K/N)

and g ∈ K

m1(Lg∗Nf) = m(φ(Lg∗Nf)) = m(Lgφf) = m(Rgφf) = m(φ(Rg∗Nf)) = m1(Rg∗Nf).
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4.3 Hahn-Banach extension and monotone ex-

tension properties

De�nition 4.3.1. Monotone extension property: If X is a subspace of a par-

tially ordered linear space Y , p is a positive-homogeneous, subadditive (sub-

linear) function from Y to R, f is an additive monotonic function from X

to R such that f(x) ≤ p(x), x ∈ X, then there exists an additive monotonic

extension F of f de�ned from Y to R such that F (y) ≤ p(y), for all y ∈ Y .

It is the purpose of this section to provide a hypergroup version of Hahn-

Banach extension property and monotone extension property by which amenable

hypergroups can be characterized.

Let E be a partially ordered Banach space over R. An element 1 ∈ E is

called a topological order unit if for each f ∈ E there exists λ > 0 such that

−λ1 ≤ f ≤ λ1 and the set {f ∈ E | 1 ≤ f ≤ 1} is a neighbourhood of E and a

proper subspace I of E is said to be a proper ideal if [0, f ] ⊆ I, for each f ∈ E.

Moreover, a separately continuous linear representation T = {Tg | g ∈ K} of

K on E is positive if Tgf ≥ 0 for all g ∈ K and f ≥ 0. T is normalized if

Tg1 = 1 for all g ∈ K.

De�nition 4.3.2. (Riesz, 1928) A vector lattice E is de�ned to be a vector

space endowed with a partial order, ≤, that for any x, y, z ∈ E, satis�es:

1. x ≤ y implies x+ z ≤ y + z.

2. For any scalar 0 ≤ a, x ≤ y implies ax ≤ ay.

3. For any pair of vectors x, y ∈ E there exists a supremum in E with

respect to the partial order of the lattice structure (≤).

De�nition 4.3.3. A Banach lattice E is a vector lattice that is at the same

time a Banach space with a norm which satis�es the monotonicity condition,

i.e, x ≤ y implies ||x|| ≤ ||y||, for all x, y ∈ E.

Theorem 4.3.1. The following are equivalent:
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1. RUC(K) has a right invariant mean.

2. Let {Tg ∈ B(E) | g ∈ K} be a separately continuous representation of

K on a Banach space E and let F be a closed TK-invariant subspace of

E. Let p be a continuous seminorm on E such that p(Tgx) ≤ p(x) for

all x ∈ E and g ∈ K and Φ be a continuous linear functional on F such

that |Φ(x)| ≤ p(x) and Φ(Tgx) = Φ(x) for g ∈ K and x ∈ F . Then there

is a continuous linear functional Φ̃ on E such that

(a) Φ̃|F ≡ Φ.

(b) |Φ̃(x)| ≤ p(x) for each x ∈ E.

(c) Φ̃(Tgx) = Φ̃(x) for g ∈ K and x ∈ E.

3. For any positive normalized separately continuous linear representation

T of K on a partially ordered real Banach space E with a topological

order unit 1, if F is a closed T -invariant subspace of E containing 1,

and Φ is a T -invariant monotonic linear functional on F , then there

exists a T -invariant monotonic linear functional Φ̃ on E extending Φ.

4. For any positive normalized separately continuous linear representation

T of K on a partially ordered real Banach space E with a topological

order unit 1, E contains a maximal proper T -invariant ideal.

5. Whenever T = {Tg ∈ B(E) | g ∈ K} is a separately continuous rep-

resentation of K on a real Banach space E and let F be a closed T -

invariant subspace of E and p is a continuous sublinear map on E such

that p(Tgx) ≤ p(x) for all x ∈ E and g ∈ K. If Φ is a continuous

T -invariant linear functional on F such that Φ(x) ≤ p(x) for x ∈ F ,

then there is a continuous T -invariant extension Φ̃ of Φ to E such that

Φ̃(x) ≤ p(x) for each x ∈ E.

Proof. 1 ⇒ 2: By Hahn-Banach extension theorem there is a continuous linear

functional Φ1 on E such that |Φ1(x)| ≤ p(x) for each x ∈ E and Φ1|F ≡ Φ. For
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each f ∈ E de�ne a continuous bounded function hΦ1,f on K via hΦ1,f (g) =

Φ1(Tgf). Let {gα} be a net in K converging to e. Then

||RgαhΦ1,f − hΦ1,f || = supg∈K |RgαhΦ1,f (g)− hΦ1,f (g)|

= supg∈K |
∫
Φ1(Tuf)dδg ∗ δgα(u)− Φ1(Tgf)|

= supg∈K |Φ1(TgTgαf) + Φ1(−Tgf)|

≤ supg∈K p(TgTgαf − Tgf)

≤ p(Tgαf − f) → 0,

since Φ1 ∈ E∗. Hence, hΦ1,f ∈ RUC(K) ([64], Remark 2.3). Let m be

a right invariant mean on RUC(K) and let Φ̃(f) = m(hΦ1,f ), for f ∈ E.

Then Φ̃|F ≡ Φ since hΦ1,f (g) = Φ1(Tgf) = Φ(f), for f ∈ F . Furthermore,

|Φ̃(f)| ≤ supg∈K |Φ1(Tgf)| ≤ p(f), for f ∈ E and

hΦ1,Tgf (k) = Φ1(TkTgf) =

∫
Φ1(Tuf)dδk∗δg(u) =

∫
hΦ1,f (u)dδk∗δg(u) = RghΦ1,f (k).

Thus,

Φ̃(Tgf) = m(hΦ1,Tgf ) = m(RghΦ1,f ) = m(hΦ1,f ) = Φ̃(f).

2⇒ 1: Let E = RUC(K), F = C.1 and consider the continuous representation

{Rg | g ∈ K} of K on RUC(K). De�ne a seminorm p on E by p(f) = ||f ||.

Then p(Rgf) ≤ p(f), for f ∈ E and g ∈ K. In addition, δa is a left invariant

mean on F for a given a ∈ K with |δa(f)| ≤ p(f). Therefore, there is some

m ∈ RUC(K)∗ such that m|F ≡ δa, m(f) ≤ ||f || and m(Rgf) = m(f), for

f ∈ E and g ∈ K. Then m is a right invariant mean on RUC(K) because

m(1) = δa(1) = 1 = ||m||.

For all other parts we refer to ([40], Theorem 2) and a similar argument as

above.

Let CBR(K) denote all bounded continuous real-valued functions on K

and UCR(K) (RUCR(K)) denote all functions in CBR(K) which are (right)

uniformly continuous. It is easy to see that UCR(K) and RUCR(K) are norm-

closed translation invariant subspace of CBR(K) containing constants. How-
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ever, in contrast to the group case, RUCR(K) need not be a Banach lattice in

general. The following result is a consequence of Theorem 4.3.1 and the proof

of ([40], Theorem 1).

Remark 4.3.1. Let K be a hypergroup such that RUCR(K) is a Banach lat-

tice. Then the following are equivalent:

1. RUC(K) has a right invariant mean.

2. For any linear action T of K on a Banach space E, if U is a T -invariant

open convex subset of E containing a T -invariant element, and M is a

T -invariant subspace of E which does not meet U , then there exists a

closed T -invariant hyperplane H of E such that H contains M and H

does not meet U .

3. For any contractive action T = {Tg ∈ B(E) | g ∈ K} of K on a

Hausdor� Banach space E, any two points in {f ∈ E | Tgf = f, ∀g ∈

K} can be separated by a continuous T -invariant linear functional on

E.

Example 4.3.1. 1. Let K be a hypergroup such that the maximal subgroup

G(K) is open. Then RUCR(K) is a Banach lattice.

2. Let K = H ∨ J be the hypergroup join of a compact hypergroup H and a

discrete hypergroup J with H ∩ J = {e}. Then RUCR(K) = CBR(K) is

a Banach lattice.

Proof. To see 1, let f, h ∈ RUCR(K) and {gα} be a net in K converging

to e. Then gα ∈ G(K), for some α0 and all α ≥ α0 since G(K) is open.

Thus, Rgα(f ∨ h) = Rgαf ∨ Rgαh for α ≥ α0. Therefore, the mapping g 7→

(Rgf,Rgh) 7→ Rgf ∨ Rgh from K to CBR(K) is continuous at e and hence

f ∨ h ∈ RUCR(K).

Next we use Theorem 4.3.1 to prove that UC(K) = LUC(K) ∩ RUC(K)

has an invariant mean, for any commutative hypergroup K.

72



Corollary 4.3.2. Let K be a commutative hypergroup. Then UC(K) has an

invariant mean.

Proof. Let T = {Tg ∈ B(E) | g ∈ K} be a separately continuous representa-

tion ofK on a real Banach space E and let F be a closed T -invariant subspace

of E. Let p be a continuous sublinear map on E such that p(Tgx) ≤ p(x)

for all x ∈ E and g ∈ K and φ be a continuous T -invariant linear func-

tional on F such that φ(x) ≤ p(x) for x ∈ F . De�ne a representation

{Tµ ∈ B(E) | µ ∈ M c
1(K)} of M c

1(K), the probability measures with com-

pact support on K, on E via Tµx =
∫
Tgxdµ(g). Then Tµ∗ν = TµTν , for

µ, ν ∈M c
1(K). In addition, p(Tµx) = p(

∫
Tgxdµ(g)) ≤

∫
p(Tgx)dµ(g) ≤ p(x).

De�ne a real valued function q on E via q(x) = inf{ 1
m
p(Tµ1x+ ...+Tµmx)},

where the inf is taken over all �nite collections of probability measures with

compact support {µ1, ..., µm} on K. Then q(x) ≤ p(x) for x ∈ E since for

each m ∈ N,

1
m
p(Tµ1x+ ...+ Tµmx) ≤ 1

m

[
p(Tµ1x) + ...+ p(Tµmx)

]
≤ p(x).

Moreover, q is sublinear. In fact for m ∈ N, α ∈ R+ and x ∈ E,

1
m
p(Tµ1(αx) + ...+ Tµm(αx)) =

1
m
αp(Tµ1x+ ...+ Tµmx).

Thus, q(αx) = αq(x) for α ∈ R+ and x ∈ E. To see that q(x + y) ≤

q(x) + q(y), let x, y ∈ E and ε > 0 be given. Choose probability mea-

sures µ1, ..., µm, ν1, ..., νn on K with compact support such that 1
m
p(Tµ1x +

...+ Tµmx) ≤ q(x) + ε, and 1
n
p(Tν1x+ ...+ Tνnx) ≤ q(y) + ε. Consider the set
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K = {νj ∗ µi | j = 1, ..., n, i = 1, ...,m}. Then

1
nm
p
[∑n

j=1

∑m
i=1 Tνj∗µix

]
= 1

nm
p
[∑n

j=1 Tνj(
∑m

i=1 Tµix)
]

≤ 1
nm

∑n
j=1 p

[
Tνj(

∑m
i=1 Tµix)

]

≤ 1
nm

∑n
j=1 p

[∑m
i=1 Tµix

]

= 1
m
p
[∑m

i=1 Tµix
]

≤ q(x) + ε,

and similarly, 1
nm
p
[∑n

j=1

∑m
i=1 Tνj∗µiy

]
≤ q(y) + ε. Hence,

1
nm
p
[∑n

j=1

∑m
i=1 Tνj∗µi(x+ y)

]

= 1
nm
p
[∑n

j=1

∑m
i=1 Tνj∗µix+

∑n
j=1

∑m
i=1 Tνj∗µiy

]

≤ 1
nm
p
[∑n

j=1

∑m
i=1 Tνj∗µix

]
+ 1

nm
p
[∑n

j=1

∑m
i=1 Tνj∗µiy

]

≤ q(x) + q(y) + 2ε.

Therefore, q(x+ y) ≤ q(x) + q(y). For µ ∈M c
1(K), x ∈ E and m ∈ N,

1
m
p(Tµ1Tµx+ ...+ TµmTµx)

= 1
m
p(TµTµ1x+ ...+ TµTµmx)

≤ 1
m
p(Tµ1x+ ...+ Tµmx).

Hence, q(Tµx) ≤ q(x). Furthermore, for each m ∈ N

1
m
p(Tµ1x+ ...+ Tµmx) ≤ 1

m
[p(Tµ1x) + ...+ p(Tµmx)] ≤ p(x).

Thus, q(x) ≤ p(x). By Hahn-Banach extension theorem there is a continuous

linear functional φ̃ on E such that φ̃(x) ≤ q(x) for each x ∈ E and φ̃|F ≡ φ.

74



For x ∈ E, n ∈ N and µ ∈M c
1(K)

q(x− Tµx)

≤ 1
n+1

p
[(
Te(x− Tµx) + Tµ(x− Tµx) + TµTµ(x− Tµx) + ...+ TµTµ...Tµ︸ ︷︷ ︸

n times

(x− Tµx)
)]

= 1
n+1

p(x+ TµTµ...Tµ︸ ︷︷ ︸
n+1 times

(−x)) ≤ 1
n+1

[p(x) + p(−x)] → 0.

Therefore, φ̃(x − Tµx) ≤ q(x − Tµx) ≤ 0. Since φ̃ is linear By replacing x

by −x, one has φ̃(Tµx) = φ̃(x). In particular, φ̃(Tgx) = φ̃(x) for g ∈ K and

x ∈ E. Therefore, UC(K) has an invariant mean (Theorem 4.3.1).

4.4 Weak*-invariant complemented subspaces of

L∞(K)

Let X be a weak*-closed left translation invariant, invariant complemented

subspace of L∞(K). Then this section provides a connection between X being

invariantly complemented in L∞(K) by a weak*-weak*-continuous projection

and the behaviour of X ∩ C0(K).

De�nition 4.4.1. A closed left translation invariant complemented subspace

Y of L∞(K) is called invariant subspace, if there is a continuous projection

P from L∞(K) onto Y commuting with left translations. If Y is weak*-closed

and P is weak*-weak*-continuous, then we say that Y is weak*-invariant com-

plemented subspace of L∞(K).

Theorem 4.4.1. Let X be a weak∗-closed, left translation invariant, invariant

complemented subspace of L∞(K). Then X ∩ C0(K) is weak* dense in X if

and only if there exists a weak*-weak*-continuous projection Q from L∞(K)

onto X commuting with left translations.

Proof. Let P be a continuous projection from L∞(K) onto X commuting with

left translations. We �rst observe that P (LUC(K)) ⊆ LUC(K). In fact if
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f ∈ LUC(K) and {gα} is a net in K such that gα → g ∈ K, then

||LgαPf − LgPf || = ||P (Lgαf − Lgf)|| ≤ ||P || ||Lgαf − Lgf || → 0.

Thus, P |C0(K) is a bounded operator from C0(K) into CB(K). De�ne a

bounded linear functional on C0(K) by ψ1(f) := (P f̌)(e). Let µ ∈ M(K)

be such that (Pf)(e) =
∫
f̌(x)dµ(x), for each f ∈ C0(K). Then for x ∈ K

and f ∈ C0(K),

(Pf)(x) = LxPf(e) = PLxf(e) =
∫
Lxf(y̌)dµ(y) = f ∗ µ(x).

Hence, P (f) = f ∗ µ, for f ∈ C0(K). De�ne an operator T : L1(K) → L1(K)

via T (h) := h∗ µ̌. Then Q = T ∗ is weak*-weak*-continuous and < Qf, h >=<

f, h∗ µ̌ >=< f ∗µ, h >, for h ∈ L1(K) and f ∈ C0(K). Thus, Q(f) = f ∗µ for

f ∈ C0(K). In addition, Q commutes with left translations on L∞(K), since

for h ∈ L1(K) and f ∈ L∞(K)

< QLxf, h >=< Lxf, h ∗ µ̌ > =< f, (Lx̌h) ∗ µ̌ >=< Q(f), Lx̌h >=< LxQ(f), h >

We will show that Q is a projection. For f ∈ C0(K) ∩X, and h ∈ L1(K),

< f ∗ µ, h > = [(f ∗ µ) ∗ ȟ](e)

= [f ∗ (h ∗ µ̌)ˇ](e)

= [(h ∗ µ̌) ∗ f̌ ](e)

=
∫
(h ∗ µ̌)(x)f̌(x̌)dx

=< f, h ∗ µ̌ > .

Hence,

< Q(f), h > =< f, h ∗ µ̌ >=< f ∗ µ, h >=< P (f), h >=< f, h > .

If X ∩ C0(K) is weak* dense in X, let {fα} be a net in X ∩ C0(K) such

that fα → f in the weak*-topology of L∞(K). Then, Q(f) = f since Q is
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weak*-continuous.

Moreover, for f ∈ C0(K) and h ∈ X⊥,

< Q(f), h > =< f, h ∗ µ̌ >=< f ∗ µ, h >=< P (f), h >= 0.

Thus, < Q(f), h >= 0, for each f ∈ L∞(K) and h ∈ X⊥, since C0(K) is

weak*-dense in L∞(K). i.e. Q(f) ∈ X.

Conversely, if Q is a weak*-weak*-continuous projection from L∞(K) onto

X commuting with left translations, then there exists some µ ∈ M(K) such

that Q∗|L1(K)(h) = h ∗ µ, for h ∈ L1(K) ([7], Theorem 1.6.24). Hence, for

f ∈ C0(K) we have Q(f) = f ∗ µ̌ which is in C0(K)∩X ([7], Theorem 1.2.16,

iv). Then C0(K)∩X is weak*-dense in X = {Q(f) | f ∈ L∞(K)} since C0(K)

is weak*-dense in L∞(K) and Q is weak*-weak*-continuous.

As a direct consequence of Theorem 4.4.1 we have the following result:

Corollary 4.4.2. Let K be a compact hypergroup and let X be a weak*-closed

left translation invariant subspace of L∞(K). Then X is invariantly com-

plemented if and only if there is a weak*-weak*-continuous projection from

L∞(K) onto X commuting with left translations.

Corollary 4.4.3. Let K be a compact hypergroup and let X be a left trans-

lation invariant W ∗-subalgebra of L∞(K) such that X ∩ CB(K) has the local

translation property TB. Then X is the range of a weak*-weak*-continuous

projection commuting with left translations.

Proof. This follows from ([68], Corollary 3.13, Lemma 3.9) and Theorem 4.4.1.

Corollary 4.4.4. The following are equivalent:

1. K is compact.

2. K is amenable and for every weak*-closed left translation invariant, in-

variant complemented subspace X of L∞(K), there exists a weak*-weak*-
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continuous projection from L∞(K) onto X commuting with left transla-

tions.

Proof. If K is compact, then item 2 follows from ([68], Lemma 3.9), Theorem

4.4.1 and ([64], Example 3.3) since C0(K) = LUC(K) and LUC(K) ∩ X is

weak*-dense in X. Conversely, consider the one-dimensional subspace X =

C.1. Then X is a weak*-closed left translation invariant, invariant comple-

mented subspace of L∞(K), since K is amenable. If P is a weak*-weak*-

continuous projection from L∞(K) onto C.1 commuting with left translations,

then there is some φ ∈ L1(K) such that P (f) = δφ(f) for f ∈ L∞(K). Hence,

δφ(1) = 1 and < δφ, Lgf >=< δφ, f >. i.e., Lgφ = φ, for g ∈ K. In particular,

Lgφ(e) = φ(g) = φ(e), for all g ∈ K. Therefore, 1 = δφ(1) =
∫
K
φ(g)dλ(g) =

φ(e)λ(K) which means that K is compact.
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Chapter 5

Final remarks and open problems

5.1 Remarks related to chapter 2

A subspace X of M(K) is said to be C0(K)-invariant if X.C0(K) ⊆ X, where,

d(µ.φ)(g) = φ(g)dµ(g). Similar to locally compact groups, we have the follow-

ing characterization of non-zero weak*-closed, C0(K)-invariant ∗-subalgebras

of M(K) (for the group case see [3], Theorem 3.1).

Remark 5.1.1. X is a non-zero weak*-closed, C0(K)-invariant ∗-subalgebra

of M(K) if and only if X = {µ ∈ M(K) | supp(µ) ⊆ N}, for some closed

subhypergroup N of K, where N =
⋃
µ∈X supp(µ).

Remark 5.1.2. X is a left translation invariant strictly closed, C∗-subalgebra

of CB(K) possessing the local translation property TB if and only if there

exists a unique closed Weil subhypergroup N such that X is given by X =

{f ∈ CB(K) | Rgf = Rkf, ∀g ∈ k ∗N, k ∈ K}.

Furthermore, N is normal if and only if X is inversion invariant and

translation invariant.

Proof. The proof is very similar to that of Theorem 2.2.5.

By a similar method as in Lemma 2.3.2 we observe that:
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Remark 5.1.3. Let K be an amenable hypergroup. Then for any re�exive

Banach space X and any jointly weak*-weak*-continuous representation {Tg ∈

B(X∗) | g ∈ K}, there exists a semigroup S of operators in B(X∗) such that

each P ∈ S commutes with any continuous linear operator T from X∗ into

X∗ which commutes with {Tg ∈ B(X∗) | g ∈ K} and for each f ∈ X∗,

co(TKf)∩{f ∈ X∗ | Tgf = f, ∀g ∈ K} is the set of all Pf such that P ∈ S

and P is a continuous projection from X∗ onto F .

Corollary 5.1.1. Let N be a closed Weil subhypergroup of an amenable hy-

pergroup K. Then there exists a semigroup S = {Pm ∈ B(Lp(K)) | m ∈

Mean(LUC(K))} of operators on Lp(K) (1 < p < ∞) such that for each

f ∈ Lp(K), co(RNf) ∩ {f ∈ Lp(K) | Rnf = f, ∀n ∈ N} is the set

of all Pf such that P ∈ S is a continuous projection from Lp(K) onto

{f ∈ Lp(K) | Rnf = f, ∀n ∈ N} commuting with left translations.

Proof. This follows from Remarks 2.2.6 and 5.1.3.

Open problem 1. Does any left translation invariantW ∗-subalgebra of L∞(K)

contain the constant functions? This statement is true when K is a locally

compact group ([42], Lemma 3.1).

The answer is a�rmative if K is a compact hypergroup.

Remark 5.1.4. Let K be a compact hypergroup and let X be a non-zero

weak*-closed left translation invariant subspace of L∞(K). Then X contain

the constant functions. In fact let f ∈ X be non-zero. Then 1 ∗ f ∈ X is a

non-zero constant function in X since L1(K) ∗X ⊆ X.

Open problem 2. Provide an example of a Weil subhypergroup without the

translation property TB.

Open problem 3. Let N be a closed, normal Weil subhypergroup of K such

that WAP (K/N) and WAP (N) both have invariant means, does WAP (K)

possess an invariant mean? Is a similar statement true for AP (K)?
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5.2 Problems related to chapter 3

Open problem 4. Let K be an arbitrary hypergroup such that WAP (K)∗ has

weak*-normal structure. Can we conclude that K is �nite?

Open problem 5. If AP (K) is �nite dimensional, then AP (K)∗ has weak*-

normal structure. Is the converse true?

Open problem 6. Can amenability of K be characterized by any common

�xed point property for non-expansive mappings?

Open problem 7. Can we characterize hypergroups possessing an invariant

mean on the space WAP (K)(AP(K)) with any common �xed point property

for non-expansive mappings?

Open problem 8. By a similar argument as in the proof of Remark 3.3.1

(Theorem 3.3.4) one can show that if for any separately (weakly) continuous,

(quasi weakly) equicontinuous and nonexpansive representation {Tg | g ∈ K} of

K on a compact convex subset Y of a separated locally convex topological vector

space (E, τ), Y has a common �xed point for K, then AP (K) (WAP (K)) has

an invariant mean. Is the converse true?

Open problem 9. Let K be an amenable hypergroup and let X be a weak*-

closed left translation invariant subspace of L∞(K), which is contained and

complemented in LUC(K). Is X invariantly complemented in LUC(K)?

Open problem 10. Let K be an amenable hypergroup and X be a weak*-

closed left translation invariant, complemented subspace of L∞(K). Is X in-

variantly complemented in L∞(K)? We do not know the answer even if K is

commutative.

Open problem 11. Let K be an amenable hypergroup and let m be an in-

variant mean on WAP (K). Is AP (K) complemented in WAP (K)?

It is known that WAP (G) = AP (G) ⊕ {f ∈ WAP (G) | m1(|f |) = 0},

where G is a locally compact group and m1 is an invariant mean on WAP (G).
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However, by ([75], p, 72) if K a hypergroup arising from the Jacobi polynomial

p(1/2,1/2)(x), then there is a non-zero element h∗ ∈ C0(K) ∩ AP (K). Hence,

m(|h∗|) = 0 ([65], Remark 3.4.2). Therefore, AP (K)∩{f ∈ WAP (K) |m(|f |) =

0} 6= {0}

Open problem 12. Let K be an amenable hypergroup such that C0(K) ∩

AP (K) = {0} and let m be an invariant mean on WAP (K). Do we have that

AP (K) ∩ {f ∈ WAP (K) | m(|f |) = 0} = {0}?

5.3 Problems related to chapter 4

Open problem 13. Is there any non-inner amenable hypergroup K such that

Z(L1(K)) is non-trivial?

Open problem 14. Let K be a hypergroup such that L1(K) has a positive

non-trivial center. Is there a compact neighbourhood V of the identity with

∆(g)RgχV = LgχV ?

Open problem 15. Let K be a connected, inner amenable hypergroup. Is K

amenable?

We say that a hypergroup K is topologically inner amenable if there exists

a mean m on L∞(K) such that m((∆φ)ˇ ∗f) = m(f ∗ φ̌) for any positive norm

one element φ in L1(K) and any f ∈ L∞(K). It is easy to see that any inner

invariant mean on UC(K) is topologically inner invariant since for a positive

norm one element φ in L1(K) and f ∈ LUK(K)

m(f ∗ φ̌) =
∫
< m,Rgfφ(g) > dλ(g)

=
∫
< m,Lgfφ(g) > dλ(g)

=< m,
∫
Lgfφ(g)dλ(g) >

=< m,
∫
Lgfφ(g)∆(g)dλ̌(g) >

= m((∆φ)ˇ ∗ f).

However, on the space L∞(K) the relation between topological inner invariant

means and inner invariant means is not clear.

82



Open problem 16. Let m be a topological inner invariant mean on L∞(K).

Is m also an inner invariant mean?

Open problem 17. Let K be an inner amenable hypergroup. Is there any

topological inner invariant mean on L∞(K)?

Open problem 18. Let K be an inner amenable hypergroup. Does K satisfy

central Reiter's condition P1? (see ([57], Remark) for the group case).

5.4 Other remarks and problems

Let A be a closed translation invariant subalgebra of L∞(K) containing con-

stant functions. In what follows we provide an equivalent condition for A

to possess a multiplicative left invariant mean. This equivalence is given in

terms of a �xed point property which is a generalization of Mitchell �xed point

theorem ([58], Theorem 1).

De�nition 5.4.1. Let A be a closed translation-invariant subalgebra of L∞(K)

containing constant functions. Let E be a separated locally convex topological

vector space and Y be a compact subset of E. Let X be the space of all probabil-

ity measures on Y . Let T = {Tg | g ∈ K} be a continuous representation of K

on X. Suppose that B := {y ∈ Y | Tgy ∈ Y, ∀g ∈ K} 6= ∅ and for each y ∈ B,

de�ne hy,φ(g) = φ(Tgy), for g ∈ K and φ ∈ CB(Y ). It is easy to see that hy,φ

is continuous and ||hy,φ|| ≤ ||φ||. Therefore, hy : φ 7→ hy,φ is a bounded linear

operator from CB(Y ) into CB(K). Let Y1 := {y ∈ B | hy(CB(Y )) ⊆ A}.

The family T is an E − E-representation of K, A on X if B 6= ∅ and

Y1 6= ∅,

De�nition 5.4.2. The pair K, A has the common �xed point property on

compacta with respect to E − E-representations if, for each compact subset Y

of a separated locally convex topological vector space E and for each E − E-

representation of K, A on X, there is in Y a common �xed point of the family

T .
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Remark 5.4.1. Let A be a closed translation-invariant subalgebra of L∞(K)

containing constant functions. Then the following are equivalent:

1. A has a multiplicative left invariant mean.

2. The pair K, A has the common �xed point property on compacta with

respect to E − E-representations.

Proof. Let T be an E − E-representation of K, A on X. Then there exists

an element y ∈ Y such that hy(CB(Y )) ⊆ A and Tgy ∈ Y for all g ∈ K.

Let h∗y be the adjoint of hy and let m be a multiplicative left invariant mean

on A. Then < h∗ym, 1 >= 1, where 1 is the constant 1 function on Y . Also

hy(f1f2) = (hy,f1)(hy,f2), for f1, f2 ∈ CB(Y ) and g ∈ K. In addition, since m

is multiplicative, h∗ym is a nonzero multiplicative linear functional on CB(Y )

and < h∗y(m), h̄ >= < h∗y(m), h >, Thus, there exists an element xy ∈ Y such

that f(xy) =< h∗ym, f >=< m, hy,f >, for all f ∈ CB(Y ).

For each g ∈ K, de�ne a map Ψg : E
∗ → CB(Y ) via (Ψgf)(z) =< f, Tgz >,

for f ∈ E∗, z ∈ Y . Then hy,Ψgf = Lg[hy,f ] since f ∈ E∗. Hence,

< f, xy >= m(hy,f ) = m(Lghy,f ) = m(hy,Ψgf ) = hy,Ψgf (xy) =< f, hy,Ψgf >

Thus, Tgxy = xy, for each g ∈ K since m is left translation invariant and E∗

separates point of E.

Conversely, let E = A∗ and Y be the set of all multiplicative means on A.

ThenX =Mean(A). De�ne (g,m) 7→ L∗
gm fromK×Mean(A) intoMean(A),

where Mean(A) has the weak*-topology of A∗. Then T = {L∗
g | g ∈ K}

is a separately continuous representation of K on X. We note that each

φ ∈ CB(Y ) corresponds to an element fφ ∈ A such that φ(m) = m(fφ), for

m ∈ Y . Let P (K) = {g ∈ K | δk ∗ δg is a point mass measuse, δkg, ∀k ∈ K},

g ∈ P (K) and k ∈ K. Then

δgLK
φ(k) = φ(L∗

kδg) = φ(δkg) = δkg(fφ) = Rgfφ(k).

Hence, δgLK
φ ∈ A, since A is right translation invariant. i.e, δgLK

(CB(Y )) ⊆
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A, for g ∈ P (K). Thus, T is anE−E-representation ofK, A onX. Therefore,

there is some m0 ∈ Y such that L∗
gm0 = m0, for all g ∈ K.

Let T be a bounded linear operator from L∞(K) into L∞(K). Then T

commutes with convolution from the left if T (φ ∗ f) = φ ∗ T (f), for all φ ∈

L1(K) and f ∈ L∞(K). The following can be proved by a similar argument

as in ([44], Theorem 2).

Remark 5.4.2. The following are equivalent:

1. K is compact.

2. Any bounded linear operator from L∞(K) into L∞(K) which commutes

with convolution from the left is weak∗-weak∗ continuous.

Using bounded approximate identity of L1(K), one can show that any

bounded linear operator from L∞(K) into L∞(K) which commutes with con-

volution from the left also commutes with left translations. However, the

converse is not true in general. For instance, if K is a direct product G × J

of any locally compact non-discrete group G which is amenable as a discrete

group and a �nite hypergroup J , then for any left invariant meanm on L∞(K)

which is not topological left invariant, the operator T (f) := m(f).1 commutes

with left translations but not with convolutions from the left. It is important

to note that in contrast to the group case, there is a class of compact commu-

tative hypergroups for which any bounded linear operator from L∞(K) into

L∞(K) commuting with convolution is weak∗-weak∗ continuous:

Example 5.4.1. Fix 0 < a ≤ 1
2
and let Ha be the hypergroup on Z+ ∪ {∞}

given by δm ∗ δn = δmin(n,m), for m 6= n ∈ Z+, δ∞ ∗ δm = δm ∗ δ∞ = δm and

δn ∗ δn = 1−2a
1−a

δn+
∑∞

k=n+1 a
kδk ([16]). Then any bounded linear operator from

L∞(Ha) into L∞(Ha) commuting with translations is weak∗-weak∗ continuous.

Proof. Let T be a bounded linear operator from L∞(Ha) into L∞(Ha) commut-

ing with translations. For each φ ∈ L1(K) and n ∈ Z+ de�ne a function φn on

K which coincide with φ on {0, 1, ..., n} and zero otherwise. Then ||φn−φ||1 →

85



0. In addition, for each f ∈ L∞(K) we have ||T (φn ∗ f)− T (φ ∗ f)|| → 0 and

||φn ∗ Tf − φ ∗ Tf || → 0 ([30], 6.2 C). For each f ∈ L∞(K)

T (φn ∗ f) = T (
∑n

k=0 φn(k)(1− a)akLǩf)

=
∑n

k=0 φn(k)(1− a)akT (Lǩf)

=
∑n

k=0 φn(k)(1− a)akLǩTf

= φn ∗ Tf

we have that T (φ∗f) = φ∗Tf . Now the result follows from Remark 5.4.2.

Open problem 19. Let K be a compact hypergroup such that L∞(K) has a

unique left invariant mean. Let T be a bounded linear operator from L∞(K)

into L∞(K) which commutes with left translations. Can we conclude that T

commutes with convolution from the left?

As a consequence of Remark 5.4.2 and a similar argument as in ([47],

Proposition 1) we have the following:

Corollary 5.4.1. Let K be a compact hypergroup. The following are equiva-

lent:

1. Any bounded linear operator from L∞(K) into L∞(K) which commutes

with left translations is weak*-weak*-continuous.

2. Any bounded linear operator from L∞(K) into L∞(K) which commutes

with left translations also commutes with convolution from the left.

Each of items 1 or 2 implies that L∞(K) has a unique left invariant mean.

Remark 5.4.3. Let T be a representation of K on a �nite dimensional vector

space V . Then there is an inner product <,>1 on V such that T is unitary.

Proof. Let <,> be an inner product on V and de�ne an inner product <,>1
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on V by < v1, v2 >1:=
∫ ∫

< Tgv1, Tkv2 > dλ̌(g)dλ̌(k). Then for k0 ∈ K

< Tk0v1, Tk0v2 >1 =
∫ ∫

< TgTk0v1, TkTk0v2 > dλ̌(g)dλ̌(k)

=
∫ ∫ ∫ ∫

< Txv1, Tyv2 > dδg ∗ δk0(x)dδk ∗ δk0(y)dλ̌(g)dλ̌(k)

=
∫ ∫

< Txv1, Tyv2 > dλ̌ ∗ δk0(x)dλ̌ ∗ δk0(y)

=
∫ ∫

< Txv1, Tyv2 > dλ̌(x)dλ̌(y)

=< v1, v2 >1 .
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