
In pioneer days they used oxen for heavy pulling, and when one ox could not budge a log,
they did not try to grow a larger ox. We should not be trying for bigger computers, but for

more systems of computers.

– Grace Hopper

University of Alberta

ENHANCING QUERY SUPPORT IN HBASE VIA AN EXTENDED COPROCESSOR
FRAMEWORK

by

Himanshu Vashishtha

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

c©Himanshu Vashishtha
Fall 2011

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of
this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only.

Where the thesis is converted to, or otherwise made available in digital form, the University of
Alberta will advise potential users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the
thesis, and except as herein before provided, neither the thesis nor any substantial portion thereof
may be printed or otherwise reproduced in any material form whatever without the author’s prior

written permission.

To Ayn Rand
(for opening my eyes, at the most appropriate time)

And, To Krishna, my adorable nephew
(The apple of my eye)

Abstract

Data is growing at an unforeseen rate, with TBs being generated daily. A large part of this

data is unstructured in nature. This has pushed the traditional techniques of storing it in

relational databases to its limit and new alternatives are necessary. Cloud databases have

emerged as a viable candidate and have been gaining popularity due to their high scalability

and availability. However, as yet, they lag behind RDBM systems in terms of the support

to developers for querying the data. The problem of developing frameworks to support

flexibe data queries is a very active area of research. In this work we consider HBase,

a popular cloud database, inspired by Google’s BigTable data structure. Relying on the

recent Coprocessor feature of HBase, we have developed a framework that developers can

use to implement aggregate functions like row count, max, min, etc. We further extended

the existing Coprocessor framework to support Cursor functionality so that a client can

incrementally consume the Coprocessor generated result. We demonstrate the effectiveness

of our extension by comparatively evaluating it against the original Coprocessor framework

with four queries on three different data sets. We also share our experience while migrating

an existing text analysis application, TAPoR, to HBase.

Acknowledgements

As I write this page, I can recollect my journey when I started looking for my Thesis topic

in 2010 summer. I was meandering around HBase but was not sure about the exact topic to

work on. I got a sniff from HBase community to look the newly developed Coprocessors

functionality. It was a long shot for me as I was new to HBase and Coprocessors as such,

and it was not even finalized whether it will be added to HBase or not.

I was really lucky to have Dr. Eleni Stroulia as my supervisor as she showed more

confidence than I about its potential. I give full credit to her for stretching herself beyond

her core area and allowing me to work on the chosen thesis topic. I thank Gary Helmling

and Michael Stack of Apache HBase team for their constant guidance and motivation for

my work.

During this long run, whenever I felt stressed or emotionally down, it was my lovely

sister, Vijeta, and my friend and brother in law, Nav, who were always there to help me out.

Without their emotional and moral support, this work wouldn’t have been possible. I am

really grateful for their unconditional help. Lastly and most importantly, I would like to

thank my parents for their constant encouragement and good wishes.

Table of Contents

1 Introduction 1
1.1 Contributions . 4
1.2 Thesis organization . 4

2 Background and Related Research 6
2.1 Hadoop, HDFS and HBase . 6

2.1.1 Hadoop . 7
2.1.2 HDFS . 9
2.1.3 HBase . 12

2.2 Relevance of this work . 18
2.3 Related Research . 19

3 Enhancing Query Support using Coprocessor Endpoints 21
3.1 Extending HBase Endpoints . 22

3.1.1 Endpoint Queries . 22
3.1.2 Aggregate functions using Coprocessor Endpoints 25
3.1.3 Streaming Results from Coprocessor Endpoints 26

3.2 Experiment Setup . 28
3.2.1 Datasets . 28
3.2.2 Sample Queries . 30
3.2.3 Schema Design . 32
3.2.4 Cluster Setup . 34
3.2.5 Experiment Results . 35

3.3 Evaluation . 37
3.4 Aggregate Functions Benchmarking and Future Work 40
3.5 Summary . 42

4 Migrating TAPoR to HBase 43
4.1 TAPoR . 44
4.2 Schema design . 45

4.2.1 Possible schema options . 47
4.3 Workflow Design and Overall Architecture 48
4.4 Design Discussion of individual components 50

4.4.1 Inverted Index with MapReduce 50
4.4.2 Frequency index with Coprocessor Endpoint 51
4.4.3 TAPoR middleman: Restlet based Webservices 52
4.4.4 TAPoR APIs . 54

4.5 Summary . 56

5 Conclusion 57
5.1 Contributions . 57
5.2 Future Work . 58

Bibliography 60

List of Tables

3.1 Google 1 gram data sample (from [1]) . 31
3.2 Bixi Schema. 33
3.3 NGram Schema. 34
3.4 Cluster configuration . 35
3.5 Response time for Query 1, in seconds . 36
3.6 Response time for Query 3 and 4 on NGram dataset. 36
3.7 Response time of row count operation with 3 approaches, in seconds. 41

4.1 Percentage of requests for each operation of the existing service 45
4.2 Possible TAPoR Schema. 47
4.3 Final TAPoR Schema. 48

List of Figures

2.1 Workflow of a typical MapReduce application [2] 8
2.2 HDFS architecture. [3] . 11
2.3 HBase conceptual schema . 14
2.4 Region Observer flow, observing a client side get operation. 17

3.1 Sequence Diagram of Row Count Approach with Scan API. 23
3.2 Sequence Diagram of Row Count Approach with Coprocessors. 24
3.3 Aggregate Protocol interface code sample (shows aggregate method to get

maximum value of a table for a given Scan object) 25
3.4 ColumnInterpreter interface, with javadoc explaining cell data type and pro-

moted datatype. 26
3.5 Conceptual Class diagram of Streaming Results from Endpoint. 28
3.6 Sequence Diagram of Streaming Results from Endpoint. 29
3.7 Sample bixi data for a station. 30
3.8 Response time for Query 2 for 1, 6, 12 and 18 hrs time range for 3 stations,

in seconds. 37
3.9 Response time for Query 2 for 1, 6, 12 and 18 hrs time range for All stations,

in seconds. 38
3.10 Response time for Query 2 for 1, 6, 12 and 18 hrs time range for 3 stations,

in seconds. 40
3.11 Response time for Query 2 for 1, 6, 12 and 18 hrs time range for 3 stations,

in seconds. 41

4.1 Overall workflow of modified Tapor, from document uploading to recipe
querying . 49

4.2 Overall architecture of Indexed based TAPoR application 50
4.3 Indexing MapReduce job, showing Map, Reduce and the implicit Shuffle

phase . 51
4.4 ListWord Resource . 53
4.5 Main class of TAPoR Rest application . 54

Chapter 1

Introduction

We are witnessing the unprecedented generation of substantial amounts of digitized data.

Books are being digitized on a massive scale 1. Social-networking platforms like twitter,

Facebook, YouTube, Flickr, forums, and blogs collect data at mind-boggling rates. Pingdom
2, ordering social networks and countries according to their population, places Facebook

slightly after Brazil and QZone just ahead of it. Twitter alone produces 15-20 terabytes

uncompressed data daily. Sensors embedded in most devices, from refrigerators to cars to

airplanes, continuously record a multitude of variables. Anecdotally, a Boeing jet generates

10 terabytes data per engine every 30 minutes of flight time [4].

This new massive scale of data to be collected, archived and processed makes the tradi-

tional model of computing, where an organization invests capital costs in purchasing its own

infrastructure and operation costs in maintaining it, impractical, unaffordable and eventually

obsolete. Instead, infrastructure is increasingly provided as a service (IaaS) with special-

ized providers offering large-scale computational resources (computing power, storage and

network bandwidth) at economical rates. In this new model of computing infrastructure,

one can lease storage and virtual machines, configured in a manner that meets the com-

puting task at hand. So affordable are the prices of these offerings that more than a few

corporations don’t own any infrastructure at all; they store “everything” on the cloud [5, 6].

The availability of massive and scalable infrastructure brings to the forefront two inter-

esting challenges. The first challenge is to develop support for storing data in a scalable

and fault-tolerant manner, assuming infrastructure failures as a norm rather than as an aber-

rant behavior. The second challenge involves the development of a software layer that will

enable software developers to implement scalable analyses methods, be able to process big
1http://books.google.com/googlebooks/library.html
2http://royal.pingdom.com/2009/03/13/battle-of-the-sizes-social-

network-users-vs-country-populations/

1

http://books.google.com/googlebooks/library.html
http://royal.pingdom.com/2009/03/13/battle-of-the-sizes-social-network-users-vs-country-populations/
http://royal.pingdom.com/2009/03/13/battle-of-the-sizes-social-network-users-vs-country-populations/

data with high throughput, in order to extract useful, actionable knowledge from it. These

two challenges push the idea of virtualization from the infrastructure level to the platform

level, where the software-engineering challenge is to provide layers of software support to

make the manipulation of data on the cloud as easy conceptually as it is on the traditional

infrastructures to which most developers are accustomed.

The Apache Hadoop project [7] represents one such platform. With the underlying

Hadoop Distributed File System (HDFS), it provides a distributed, scalable and fault-tolerant

file system for storing big data. It is designed for storing and accessing large files (with

an assumed upper limit to its size in terabytes). Relying on HDFS, Hadoop supports the

MapReduce[2] programming model, where computation is conceived as a combination of

a map and a reduce phase. In the map phase, the data is processed to generate intermediate

results, stored locally on each of the nodes that have run the map phase. In the reduce phase,

these intermediary results are collected at the reducing node and processed further to form

a collective output. The map phase supports data-parallel computation as it can be run con-

currently across multiple nodes on a different sets of data. The MapReduce computation is

reminiscent of batch processing, where the whole data set needs to be processed in some

manner – a typical job in MapReduce runs with in the range of a few minutes to few hours

or more – but it is a less than ideal candidate for on-line query type of workloads, where

small subsets of data need to be examined and manipulated.

Google developed BigTable, a scalable data structure that provides fast random read

performance and support incremental data updates. It is being used in Google for more than

90 of its products such as Google Map, Google App Engine, Gmail, etc. Its data storage

pattern can be visualized as distributed, sparse, column-oriented, multi-dimensional table,

sorted on a primary key [8]. Apache HBase is an open source Java implementation of

BigTable and is widely used in a number of corporations [5]. It has become an active field

of research, focused on the optimization and extension of its current feature set. HBase

provides APIs for storing and accessing big data, as if it is stored in a table. Developers can

develop client-side software to invoke server-side “filters” to sieve through the data, which

can then be returned to the client for further processing. HBase stores its data in a data

structure similar to the BigTable’s SSTAble, called HTable. In a typical HBase workflow,

data is first accessed at the individual nodes, i.e., the Region servers where HTable Regions

are stored, and is then sent to the client for further processing. A Region is a subset of a

table.

A canonical example for a database operation is to do a row count of an entire table,

2

or its subset. In HBase, there is a Scan API which supports transferring HTable rows to

the client, where the actual row count will be computed. Note that, if multiple Regions

are involved, all their corresponding rows will be transferred to the client sequentially, one

Region following another. This does not scale well and becomes quite slow, as the number

of Regions is increased. A better approach would be to parallelize it at the granularity of

Regions. As mentioned above, Scan API of the original HBase is sequential, but one could

also run a MapReduce job on the table, where in the map phase, all Regions scan their rows

and emit out a key with a unary value, and in the reduction phase, all these unary values are

summed up giving the entire table row count. This approach provides better throughput, as

it is done in parallel on all nodes, and is effective for a large table but still suffers from two

major limitations:

• it processes the entire data set (the complete HTable) even if the end user was in-

terested in a small subset of selected rows (this is an inherent design in Hadoop on

HBase); and

• because of the above limitation, its latency cost is high, which makes it an undesirable

candidate for on-line queries.

The new Coprocessors feature of HBase is conceived to address exactly this challenge:

developers can now develop software for computing local results server-side, i.e., at each

node where HTable Regions are stored. These results can then be aggregated (relying on

special-purpose Coprocessor libraries) at the client-side.

In this thesis, we have developed an extension to the HBase Coprocessor framework

to enhance its query processing capability. Our work supports “streaming” of the partial

results that are generated by the Coprocessors , by providing a cursor-like feature at the

server, so that the client may get incremental results from the HBase Regions. 3 With this

support, one can use a Coprocessor instance on a Region server in a stateful way, i.e., can

store the client state such as a pointer to the Region row read in the last call; and therefore

use it across multiple Remote Procedure Calls where each one sending intermediate results

to the client. The existing Coprocessor framework supports only stateless calls, one should

access a Region in one Remote Procedure Call only and receive the complete result set all

at once.
3Part of this work has been accepted and committed to the Apache HBase project and the rest is under

review.

3

1.1 Contributions

The main contributions of this work are as follows.

1. We have designed and implemented six standard aggregate functions, viz., sum, aver-

age, minimum, maximum, standard deviation and row count, using the Coprocessors

framework. The design is generic enough to support any kind of data. This piece of

work is part of Apache HBase now. This is explained in more detail in Section 3.1.2.

2. We have designed and implemented a results-streaming functionality, extending the

HBase Coprocessors endpoints. The current Coprocessor framework supports only

stateless RPC to a table Region. Its limitation is that a Region has to be exhausted

in its entirety before returning the RPC result, because there is no support for the

server to maintain information about the client state. Some use cases need support

for a streaming functionality, like the NGram example we discuss in section 3.2.1.

This streaming functionality substantially improves the usability of the Coprocessor

framework.

3. The above mentioned results-streaming functionality can be used to support a parallel

Scanner functionality, which augments the current Scanner API with the parallel

Coprocessor feature.

4. We have migrated an existing text analysis application, TAPoR, to HBase. We share

our experience of important considerations like HBase schema design and develop-

ment of REST web services to interact with HBase. We believe that the lessons we

learned through our experience are relevant to any developer wishing to migrate sim-

ilar applications to HBase.

1.2 Thesis organization

This thesis is organized as follows. Chapter 2 gives background information about Hadoop

and two of its eco system projects, namely HDFS and HBase, which are core components

of this work. We also shed light on the relevance of our work, acceptance of Hadoop as a

de-facto tool for data parallel applications. We conclude it by mentioning related work in

HBase, and about possible Coprocessors use cases. Chapter 3 covers our extension, viz.,

HBase aggregate functions on Coprocessors , Streaming results API, experiments and their

discussion. It also discusses the limitation of current aggregate functions in the case of large

4

table size, and a possible solution by using the streaming results. We discuss the TAPoR

migration to HBase in Chapter 4. We explain application selection criteria, schema design

process and overall application architecture. Finally, we conclude with a summary of our

work, a review of our contributions and our plans for future work in Chapter 5.

5

Chapter 2

Background and Related Research

The focus of this thesis is HBase, an open-source NoSQL database developed under the

Apache Hadoop aegis. NoSQL (aka Not only SQL) databases distinguish themselves from

the relational databases as they are un-relational, column oriented databases, that can be

distributed over 100s of machines, and that provide their own APIs to interact with the

persisted data. This impressive scalability comes at the cost that most of them come with

no support for joins, SQL-like standard query languages, and datatypes (with byte arrays as

the only data type). Even with these limitations, NoSQL databases are being increasingly

adopted for workloads involving large amount of data (up to the petabytes scale).

In this chapter, we first provide some background knowledge about HBase, including a

review of the architecture principles of Hadoop, HDFS, and HBase. In the HBase section,

we give an overview of the Coprocessors framework, the newly added feature that allows

clients to deploy user defined arbitrary code at server side. Then we discuss how this work

relates to the family of these tools. Finally, we review related research.

2.1 Hadoop, HDFS and HBase

This thesis belongs to the Hadoop ecosystem, which is a open source implementation of

the MapReduce paradigm [2]. Overall, we used three Hadoop projects, viz., Hadoop-

core, Hadoop Distributed File System (HDFS), and HBase. The later is a popular NoSQL

database and forms the main area of concentration, where we extended the Coprocessors

framework for more interactive query processing. In this section, we define the basic archi-

tecture of Hadoop, HDFS and HBase, in same order. In the HBase part, we also explain the

Coprocessors framework, which forms the crux of this work.

6

2.1.1 Hadoop

Starting with the now seminal MapReduce paper[2], there has been a tremendous growth

in data analytics using this paradigm. MapReduce is a scalable and easy way of process-

ing large amounts of data (up to petabyte scale) to be processed in parallel on a cluster of

commodity machines. It is not a silver bullet for all kinds of big-data problems, rather it is

specific to workloads that are data-parallel in nature. It proposes the design of applications

in terms of map and reduce functions, where the map process consumes raw data as key-

value pairs and generate intermediary key-value pairs, which are collected by the reducer

process. The processing of the map phase relies on the data-locality concept, with computa-

tion performed at the data nodes (nodes where data is residing). The MapReduce paradigm

has, for a long time, been part of functional languages in general; however, its usage in data-

parallel big-data applications, where individual map tasks can be completed independently,

has been a key factor in its popularity. It is being used in many large production systems,

where multiple terabytes of data are processed on a daily basis.

The main advantage of this model is the inherent support for execution in a distributed

environment, where the developer does not need to take care of inter-process communi-

cation among the nodes. This helps in using this framework on a cluster of commodity

machines instead of requiring high end shared-memory machines.

2.1.1.1 MapReduce architecture

Figure 2.1 depicts the dynamic behavior of a typical MapReduce job.

1. The user library forks a set of separate processes in a cluster. Specifically, the cluster

is configured with two kind of machines: a master, which coordinates the MapReduce

job execution in the entire cluster, and the worker node that actually execute the

computation. This is shown as step (1) in Figure 2.1. These worker nodes are a part

of a distributed file system, HDFS (which will be discussed next) and on them reside

the data to be processed. It is interesting to mention here that, as all one-master-

many-slaves distributed-computing models, the master in the MapReduce model is a

single point of failure.

2. In step 2, the master node assigns the map tasks to available nodes. It keeps track of

which node is processing what chunk of the data; thus, in a case of a worker node

failure, it reassigns the processing of the same data chunk to some other node.

7

Figure 2.1: Workflow of a typical MapReduce application [2]

3. Step 3 shows the actual map phase, in which worker nodes read raw data from the

file system as key-value pairs and generate intermediate key-value pairs. The map

function, as defined by the user, is executed in this phase. After completing the

map phase, these worker nodes send a signal to master node to inform it of their

availability for further tasks.

4. Step 4 is optional. It involves the writing of the intermediate keys to the local native

file system. It happens only when the size of this intermediate result is too large for

the memory of the worker node.

5. Step 5 is the reduce phase. Here, the master node is aware of some intermediate

results of the map phase, so it selects available nodes to do the reduce phase. The

reduce phase involves reading of the intermediate key values, so it may involve re-

mote procedure calls (RPCs) to transfer the data to the reduce nodes. The data is

transferred such as all the values related to a key are transferred to a single reduce

8

node. This is an important feature of the MapReduce paradigm.

6. Finally, in step 6, the reduce nodes generate the output of the reduce function. Each

reduce node produces its own output.

With the emerging cloud-computing environments, one can easily leverage the potential

of the MapReduce paradigm. Amazon, the leading cloud-computing environment provider,

has started various services like Elastic MapReduce, suited specifically to MapReduce type

of applications. In this environment, software developers can rather easily program dis-

tributed software on a virtual cluster, by implementing the two functions. Platform libraries

take care of the rest, including RPCs, distributing the workload among nodes, using data

locality, handling node failures, etc. Equally importantly, one can add or remove nodes

from the cluster simply by editing configuration files, and, again, the migration to make use

of the new configuration is taken care by the platform libraries.

One important consideration for MapReduce is that it provides a high throughput when

run in a cluster environment. Though there has been some work of using it in multi-core

shared-memory machines, its real advantage is using it for a distributing-computing appli-

cation, on a cluster of machines. Having said that, its core features, namely handling node

failures and rerunning of failed tasks, work on the assumption of using a distributed file

system. We discuss the essential features of such file systems in the next section.

The Apache Hadoop project offers an open-source Java implementation of MapReduce.

We used it for our work, and it is necessary to describe some terms specific to Hadoop. Its

overall architecture is as we discussed above, with some minor differences in nomenclature:

the master node is called JobTracker and the worker nodes are called TaskTrackers.

2.1.2 HDFS

MapReduce jobs impose a different set of requirements for reading/storing files as com-

pared to traditional native file systems (POSIX). Below are the main requirements for such

a file system.

• A distributed file system should run on inexpensive commodity machines, and it

should continuously monitor itself and recover from inconsistencies.

• It should be optimized to store large files, with file sizes in the multiple of gigabytes

being the common case.

9

• It should primarily support two kind of “read” workloads: large streaming reads (up

to few MBs) and small random reads (up to few KBs).

• It should support large sequential writes; updates are relatively rare, primarily file

appends.

• It should support concurrent updates and reads, as there may be more than one appli-

cation using the file system.

Google designed and implemented the Google File System (GFS) [9], in order to pro-

vide the above functionalities. It is based on single master and multiple worker architecture

(similar to MapReduce). The workflow in the file system is such that client interaction

with master is kept as less as possible. This is done to prevent the master from becoming

a bottleneck of the system. Files are divided in blocks (of configurable size), and the Mas-

ter node contains the meta data about mapping files to GFS blocks, and blocks to worker

nodes addresses (these worker nodes are referred to as chunk servers). A client interacts

with the master only when it has to look for a chunk location (whether reading an existing

or, writing to a new chunk); it caches that location thereafter and connects directly to the

chunk server without any Master lookup. Thus, the actual user data never flows through

master; the Distributed File System (DFS) clients interact directly with the chunk servers.

Fault tolerance is supported by replicating the blocks on multiple nodes, considering intra-

rack and inter-rack topology while deciding these nodes. For example, in case the desired

replication factor is 3, the second copy is made on the same rack, and the third copy is made

on a different rack. This ensures data availability even in case of a rack failure. Though the

tradeoff it entails is a longer write operation as copies are made to different racks and the

client is not given a write acknowledgement until all the copies are made.

The Apache Hadoop Distribute File System (HDFS) is an open source Java implemen-

tation of the GFS. Here, the Master node is named Namenode, and the chunk servers are

called Datanodes. As we have used Hadoop and its subprojects for this work, it will be

convenient for the reader if we follow only Hadoop terminology in this thesis. We have

seen two set of processes so far, MapReduce and HDFS. The MapReduce master and slave

are called JobTracker and TaskTracker, and the HDFS master and slave nodes are called

NameNode and Datanodes respectively.

Figure 2.2 shows the architecture of HDFS. The Namenode stores metadata of the file

system in an in-memory data structure. The metadata has mappings for file-name to block

Ids, and block IDs to locations. The Datanodes are worker nodes which store data as blocks.

10

Figure 2.2: HDFS architecture. [3]

These Datanodes periodically send heartbeat signals to the Namenode about their health

(liveness). The Datanode’s meta information, like available disk space, disk usage ratio,

data blocks information is also piggy backed on these signals. This way, the Namenode

is aware of entire filesystem state and monitors its health. In case a Datanode goes down

or has bad disk, the corresponding blocks will become under replicated and the Namenode

assigns additional Datanodes to copy these blocks. In this workflow, one Datanode acts as

the DFS client and copies in the under replicated block from other available source.

A HDFS Client first interacts with the Namenode to get the location of file system

blocks. Once it knows the Datanodes location, it makes a direct TCP connection to them

and read/write the data. It keeps this meta information of the blocks until the connection

is reset. This is done to avoid making Namenode a bottleneck of the system. Going back

to the requirement of streaming data for the map phase in a Hadoop job, the mapper node

initiates a TCP connection to the data node and reads in one block at a time. This is an

efficient operation given the block size is 64MB or more.

There are some workloads where random reads are required. In HDFS, this entails

seeking to the byte offset and reading the file, which can be a costly operation given the

large block size. With sorted data, Hadoop provides a special format, MapFile. It comprises

11

of two separate files: a data file that contains the actual data, and an index file that has byte

offset of values after a configurable gap. For example, a file with 1k records will have 10

entries in the index file if gap is defined as 100. When reading, a binary search on the

index file is performed and the correct byte offset is located. In the latest Hadoop version,

MapFile has been deprecated and replaced by TFile. Though discussion of TFile is beyond

the scope of this work, it is worth mentioning that TFile is the prime motivation of HBase’s

HFile. We will look at it in detail in section 2.1.3.2.

2.1.3 HBase

The results of MapReduce computations can be stored on a variety of systems, ranging from

HDFS to machine native file system to relational databases, depending upon workload. The

choice varies with the access patterns of the target application and the expected latency

range. If the computed data is large (in the order of terabytes), storing it in a RDMS is usu-

ally not appropriate. HDFS is not an optimal candidate for random read-write operations

given its affinity for larger files. As mentioned in the previous section, reading a record in

HDFS involves

1. TCP connection to the Namenode and reading of the metadata to locate the nearest

datanode that has the required chunk data (optional in case the location is already

cached in the client);

2. TCP connection to the datanode, and opening the data block that has the data;

3. a disk seek to reach the specific record, and

4. reading the data in a buffer to send it to the client.

Therefore, using core HDFS is not always the best solution for random read operations.

Also, HDFS is more suitable to write-once-read-multiple-times kind of workloads.

In distributed systems, there are workloads which require fast random read/write oper-

ations (in the order of milli seconds), as in a scalable real-time application. Though HDFS

provides the basic features of a distributed file system, its support for random read opera-

tions is far from optimal, for such use cases. Google designed and implemented BigTable

[8], to cater to this requirement. It is a distributed, column oriented database, built on top

of GFS [9] in order to support such random-access patterns on large data. Apache HBase is

an open source Java implementation of BigTable, which stores its contents (aka tables) on

HDFS. We discuss HBase in this section.

12

HBase belongs to the general class of NoSQL databases. These databases are not a re-

placement of traditional relational databases, rather they should be considered their orthog-

onal counterparts, preferable in use cases where the data is unstructured (where the primary

requirement for RDBMs is to define and model in the database schema the relations between

the data entities). They are scalable to big data (petabytes), run in a clustered environment,

provide fault tolerance, offer limited transaction support, and usually the do not support

specific data types (other than byte arrays). The other main advantage of NoSQL databases

is their theoretically unlimited scalability and elasticity. One just need to add/remove nodes

to scale up/down. Usually, they do not support any standard querying language like SQL,

no joins; they only have custom APIs to access the data, which is stored in de-normalized

schemas. This proves good for unstructured data like text, logs, web pages etc where it is

difficult to find a meaningful relationships in terms of entities and such.

2.1.3.1 Data Model

In this subsection, we discuss the HBase data model using a top-down approach. One can

conceptualize HBase data to be stored in a three-dimensional RDBMs table. Apart from

length and breadth, the third dimension is the depth of the table, such that user can see

the previous value of a given row:column cell, by asking a specific version number. The

updates do not alter the cell value as such, rather a new value is inserted on to the cell stack.

HBase stores records sorted by primary key that is treated as a record identifier. This

is the only key in the entire schema, and the original HBase does not support secondary

indexes. After defining a HBase table, one has to define a column family. As its name

suggests, it represents a collection of columns. To keep the description simple, one can say

that these are defined at table creation time and the idea is to group those columns in one

family which are accessed in a single transaction, like in one read/write call 1. Each column

family is stored as a separate file on the file system. This helps in limiting the number of disk

I/O operations in one transaction. This optimization has significant performance advantage

on typical HBase applications and it scales up to 4k reads and 8k reads per second on a 3

node cluster 2. One can visualize stored data in these tables as a cell. The syntax of a cell

value is columnFamily:columnQualifier:value.

For flexibility’s sake, one need not define columns qualifiers before hand; they are ap-

pended to the given column family at run time. Each cell can be treated as an independent
1The current HBase version (0.20.6 onwards) supports adding column family at a later stage
2We obtained these numbers on an ec2 cluster while inserting data through YCSB

13

Figure 2.3: HBase conceptual schema

entity because it has a copy of its associated row key, column family, column qualifier, data

content and creation timestamp. This gives rise to a three-dimensional datastore, where

records are sorted based on primary key, one record can have millions of columns, and each

cell value can have multiple timestamps, where with each timestamp value a different value

is associated to that cell.

Figure 2.3 represents a sample schema of a HBase table. In the figure, the cell value

is depicted as Rowkey:ColumnFamily:ColumnQualifier:Data:Timestamp. There are two

column families (CF1 and CF2), and three rows. Row 1 has two cell values in CF1 and no

value in CF2. Row 2 has three different values for CF1:CQ1 combination, latest being of

timestamp t5. Row 3 has one cell in CF2 with a qualifier CQ4. It is to show that a row can

have any qualifier for a given column family. There is no cost of storing empty cells.

It is possible to store sparse tables expanding to millions of columns to billions of rows.

It serves the exact requirement of low latency read and write (random and sequential) with

large datasets in a clustered environment.

2.1.3.2 HFile and Data Distribution

The main advantage of using HBase is the better random read/write performance as com-

pared to HDFS in a distributed environment. This is achieved by storing the above men-

tioned key value (key is row key, value is the cell value), in a special file, HFile. When

reading a record value, it is looked up based on the row key. A HFile is composed of fixed

14

size data blocks, where each of these blocks contains its content in form of key values. For

example, a typical size of HFile is 64MB, and each individual data block size is 64KB. At

the end of each HFile, there is an index block, which contains the starting key value of all

the data blocks present in the HFile. This index block is kept in memory of the Region

server, and consulted when ever a user is looking for a specific key. All the key values in

a HFile are inserted in ascending order, so keys in the index block are also ordered. Thus,

a read operation basically involves a binary search on the index block to locate the corre-

sponding data block in the HFile. Other optimizations such as using a bloom filter, and

timestamps check, are also applied to further improve the response time [9].

While inserting data, HBase stores a data structure similar to these files in memory,

called memstore, and flushes it in form of HFiles when its size increases beyond a pre-

defined threshold. The resulting HFiles are opened while reading the records. Subsequently,

the number of such flushed files keeps increasing. When the number of these HFiles goes

beyond a threshold, they are merged to form one HFile (a house keeping process named as

compaction) and the older HFiles are deleted. During a read access, all these HFiles from

a Region are referred to form a unified result for the read. Since these files are immutable,

these files are merged on a scheduled basis to form a single, compacted HFile to avoid the

overhead of reading multiple files.

HBase stores tables across multiple servers by dividing the data set into Regions , where

each Region represents an ordered subset of a table. It is designed such that, irrespective of

the number of columns in a row, each row is always stored in its entirety, only within one

Region. These Regions store their data in multiple immutable HFiles as explained above.

There is one meta table, which contains the meta data of each Region in the cluster. When

a client is looking for a rowkey, this meta table is referred to look for the Region server that

contains that record. This is very similar to the Namenode lookup in the case of HDFS.

HBase data can be stored on a local or a distributed file system like HDFS. In a cluster

environment, HDFS should be used. It leverages the benefits of HDFS and also provides

the additional benefits of random reads, random writes, and file appends. HBase has proven

to be an effective solution for storing large datasets as it leverages the benefits of already

proven HDFS and also provides faster access to the data.

2.1.3.3 APIs

HBase provides several APIs for accessing data. It is worth mentioning here that there are

no datatypes in HBase. It stores all its data as byte arrays.

15

1. get(byte[] row): fetches a given row;

2. getScanner(Scan): returns a Scanner object that is used to iterate on a subset of a

table; the argument Scan defines the start/stop rows, column families, and other filters

to be used while scanning the table;

3. put(byte[] row): inserts a new row; and

4. delete(byte[] row): deletes an existing row.

2.1.3.4 Coprocessors

Given the above APIs, the client program requests data through get (one row) or scan (mul-

tiple rows) and proceeds to process the collected rows. It is important to note here that

the actual processing occurs at the client side, after the selected rows have been fetched

from their respective regions. HBase originally did not offer any support to developers for

deploying code at the nodes where the table Regions are stored in order to perform com-

putations local to the data and return results (and not just table rows) to the client node.

This limitation makes the cost of several computations prohibitive. Consider, for example,

a row-count process: a developer has to either implement a MapReduce job over the table,

or a sequential scan on the entire data, fetched locally. HBase tables are indexed based on

a primary key, which enables fast access to the data when it is queried by row key, through

a get. One can also scan a range of table rows by providing the start and end row keys. Se-

quential access is also supported at the Region level (through the scan API) and developers

can subsequently run a MapReduce job, where the data of a single Region is provided to a

single mapper.

HBase Coprocessors, inspired by Google’s BigTable coprocessors [10], are meant as a

means of creating supporting functionalities to simplify the design of the main process and

they are used to implement solutions for specific types of frequent workloads. In HBase,

they are an arbitrary piece of software deployed per table Region and can be used to act as

a guard against any client or server side operation, or perform a Region level computation.

They can be used for the following use cases.

1. Region Observers. They can be used to observe any Region activity, invoked either

by a client (Get, Put, Delete, Scan) or server administration process (Region split,

memstore flush, compactions, etc). It can be compared to the trigger functionality

in RDBMs, where one can deploy triggers as coprocessors. Figure 2.4 represents a

16

Figure 2.4: Region Observer flow, observing a client side get operation.

sequence diagram of a Region observer that is guarding a client side get operation.

Note that the Coprocessor framework provides hooks for processing before and after

these calls.

2. Endpoints. One can precompute results at the Region level and feed these interim

results to the client, instead of the raw table rows. This may result in a reduced

RPC traffic depending upon the use case. For example, to compute a row count on a

subset of a table, the current way is to scan the entire table, which basically entails

passing all rows to the client and it keeps on incrementing itself for all the rows or,

run a MapReduce job on the entire table. Here, one can use a Coprocessor to send

back the number of rows in the target Region, and client will do a cumulative sum

of all these individual results. The client library of Coprocessor framework makes

sure to fire all the calls to individual Regions in parallel. Developers need to define

their own Coprocessor interface by extending the CoprocessorProtocol interface and

instantiating a concrete implementation at the server side. The framework supports

invocation of any arbitrary Coprocessor APIs from the client side and retrieve results.

17

2.2 Relevance of this work

In 2009, in their famous and rather “panicky” paper, Stonebraker and others from the

Database community claimed that the only advantage of Hadoop over parallel databases

was its easy and hassle free deployment compared to databases like Vertica and DBMS-

X[11]. Two years later, one of the co-authors, Daniel Abadi [12], is a co-founder of Hadapt

[13], a company selling a hybrid solution of relational database and Hadoop sub projects

for big data. This is not a coincidence; Hadoop and its ecosystem projects have been getting

more and more traction worldwide not only in industry but also in academia. For instance,

Hadoop has been added as a part of curriculum in many universities.

In a more recent article in June 2011, Stonebraker argued in favour of the in-memory

databases for simple operation applications (read and write and with no complex transac-

tions) because of the continuously decreasing cost of physical memory [14]. He acknowl-

edged that the “one size fits all” solution of RDBMs is not welcome and has faced serious

issues in companies like Facebook, which at one point was using 4,000 shards of MySQL

instances in its application logic. His suggestion of voting for memory based database does

not seem plausible when one is working on data PB scale. But it shows that even a staunch

supporter of RDBMs has accepted their limitations for some kind of workloads.

Apache Hadoop project is no longer limited to its map and reduce computations. The

CERN project, which daily produces 1 terabyte of data uses the Hadoop Distributed File

System (HDFS) as its data store, without doing any MapReduce computations [15]. Though

HDFS presents reasonably good read-write performance for streaming applications, it is not

an optimal file system for web-based applications that need fast random read write response.

This has led to cloud databases, also referred to as NoSQL databases, where NoSQL stands

for “Not Only SQL”. These non-relational databases either provide a interface over dis-

tributed file system, or provide their own ingenious file systems. They are mostly key value

based, column oriented, distributed file systems.

There is a plethora of Cloud databases such as HBase, Cassandra, MongoDB, CouchDB,

Azure. Among these, Apache HBase is one of the most popular cloud database, having

made its mark in academia and industry[5, 21, 22]. There are some interesting use cases.

Mendeley, academic social network and a reference manager, has a collection of more than

99 million research papers and uses HBase at its backend [5, 16]. Facebook, which invented

Cassandra [17], the closest HBase competitor in its area, picked HBase as its data store for

its recently launched messaging service [18]. This is not to say that HBase is better than

18

Cassandra; there has been a lot of heated discussion between these two communities. In

fact this has been an interesting research question in academia [19, 20], and their detailed

comparison is beyond the scope of this work. The official HBase clientele web page [5]

lists 38 companies that use HBase in their application stack, and has names like Adobe,

Facebook, HP, Meetup, Twitter, Yahoo!, etc.

2.3 Related Research

In this section, we discuss the research most related to our work with the Coprocessor

framework. The original HBase supports single-row transactions. Zhang et al. developed

a support for multi-row distributed transactions using snapshot isolation. They proposed

a group of meta tables to store the datastore state before and after each transaction [21].

This incurred extra steps of scanning and updating these meta tables before every single

transaction. The cost of adding transactional support was fairly high, at least doubling the

response time for most of the operations. We do not know the current status of this work,

but a similar kind of transaction support using Coprocessors is being currently discussed

within the community. The idea is that one can access such meta tables within the HBase

cluster itself, i.e., one Region server communicating with other using Coprocessors. In this

approach, there is no need to move back and forth between the client and Region server

nodes.

A common use case of HBase is to store documents. Konstantinou et al. [22] used

HBase for storing document indexes for a real time application. They used the existing

APIs and commented that their application has to make client-side merging of two queries

before rendering the complete solution. It required two server trips before producing the

end result. In a similar work of creating and storing document index, N. Li et al [23] defined

HIndex, that gets persisted on top of HBase and supports parallel lookup of target indexes.

These indexes are fetched and the results are merged at the client side. We believe that

having a Coprocessor Endpoint that supports streaming of results will help in such use

cases, since filtering and merging can be done at the server side. Our claim is supported by

the experiment and results as described in Section 3.3, where we did a similar kind of index

storing and server side processing.

Apart from storing documents, HBase is also used for persisting emails in some applica-

tions. A common schema is a row belongs to a user, and a column qualifier for each unique

word. The cell value can be the document id, its byte offset and other application specific

19

attributes. Each word can have multiple versions based on time stamp of the correspond-

ing emails. In the original HBase version, when a user searches his inbox with multiple

keywords, it filters out all the emails that have those words (OR operation), and sends them

to the client side. The client is supposed to do an AND operation on these emails to filter

only those emails that have “all” the input keywords. This operation, if done at the server,

helps to reduce the network traffic by sending only the relevant emails to the client side.

This can be achieved using the Coprocessor approach. We did a similar kind of work when

we migrated the TAPoR application to HBase. With this design, one can analyse multiple

documents in one request, a functionality not available in existing TAPoR version. This

work is explained in Chapter 4 in more detail.

HBase stores all its data in a special type of files called HFile, which is explained in

section 2.1.3.2. Facebook recently proposed a new file type for HBase, HFile-v2, which

consumes less memory. This work is still under review and is expected to significantly

improve the overall memory footprint. Trendmicro, another major contributor, recently

announced at Berlin Buzzwords [24] some new features that were added to HBase via the

Coprocessor framework. These included a Secure version of HBase, support of aggregate

functions, and index creation for Apache Lucene [25].

20

Chapter 3

Enhancing Query Support using
Coprocessor Endpoints

In this work we have extended the HBase-Coprocessor functionality, in order to enhance

the query-processing capability of the framework This work is accepted as a Research track

paper in Services Wave conference, 2011, and will be printed by Springer publication [26].

The reader should remember that in its original incarnation, the core get and scan APIs

of HBase simply support the selection of a (sequence of) row(s) and its (their) return to

the client-side for further processing. With Coprocessors, one can define server-side code,

which upon execution can return results to the client based on the scanned rows. This gives

an option to perform computation at the server side, and return the computed results to the

client. We used this feature for supporting aggregate functions in HBase.

The current Coprocessors calls are stateless: no client specific state is stored at the

server side. This makes them lightweight and also helps in supporting concurrent requests

to the database, with the underlying assumption that a client processes one Region in each

RPC. However, there are use cases where a client needs to process these results in an incre-

mental manner, i.e., consuming one Region in a sequence of multiple RPCs, which would

entail saving client’s state at the server side, to know its row offset in a Region for future

RPCs. We designed an extension to the Coprocessors framework to support this stream-

ing of results from Regions in multiple RPCs. In this chapter, we discuss our design and

implementation of the HBase aggregate functions, our result-streaming extension and their

evaluation. We also discuss the limitations of the current aggregate functions, which are

built on top of the original Coprocessors framework, when the table size becomes too large

(row count approaching 100m). We conclude this chapter with a suggestion of using results-

streaming functionality to extend the implementation of these functions.

21

3.1 Extending HBase Endpoints

Our Coprocessor extension, to which we will refer to as extended endpoint or simply as

endpoint from now on, is not only able to perform server-side execution of specific types

of BigTable queries, but also send the result to the client in an incremental manner. The

original Coprocessor framework provides support only for directly invoking Coprocessor

code in parallel on all the interested regions, from the client code. Its limitation is the end

user is supposed to get only one result from a region. With our extension, developers enjoy

greater flexibility in their decision of how their code should be distributed, instead of having

all their functionality at the client side.

3.1.1 Endpoint Queries

As we have already discussed, given their high-latency cost, running MapReduce jobs on

a HBase cluster is less than ideal solution for on-line queries. MapReduce provides high

throughput for batch analytical jobs, where there is a need to scan the entire table or a large

subset of a table. Consider however use cases where (a) one does not need to process the

entire table, or (b) one needs to perform a computation on the table in order to produce a

single end result for the client, such as “calculating the row count on a sub set of a table

with a given property” for example. Currently, one way to do such a task is to invoke a scan

of these rows, collect them at the client-side, and then count them and compute the result.

Alternatively, one can run a MapReduce job on the entire table (there is no way to run it on a

subset of a table). Clearly, it would be better if one could actually compute the counts at the

regions’ level, at the server, and return them to the client that would still need to aggregate

them, i.e., sum the individual counts. In such an alternative scenario, there would be fewer

RPCs, less network traffic, and less client-side computation.

There are several use cases that resemble the type of workload we have described above:

• Counting the number of rows within a given row range, with some kind of filtering

on the row value, and the boundary condition being a row count on the entire table;

• Aggregate-statistics functions, such as computing the sum, maximum, minimum of a

specific column in a given row range; also average, standard deviation for a column

in a given row range; and

• More generally, a computationally intensive task at the server-side, which would ma-

nipulate and substantially transform the table rows.

22

This last use case is necessarily specific to each dataset and we emulate it in Section

3.2 using the Bixi dataset.

Figure 3.1: Sequence Diagram of Row Count Approach with Scan API.

Let us now discuss, in some detail, how the above use cases would be implemented with

the original HBase scan vs. our implementation of scan with Coprocessor endpoints. The

differences should be apparent in the sequence diagrams of Figures 3.1 and 3.2.

Figure 3.1 shows the sequence diagram for the use case of performing a row count with

the original scan API. The first step for the client is to get a Scanner object from the HTable

API. It involves instantiating a Scan object that encapsulates query-specific details like start

and end row, filtering criteria, batch size of the results, etc. This causes the instantiation

of a scan object at the Region that has the given start row, its registration with the hosting

Region server, and the return of its identifier to the client. The client sequentially consumes

the table rows from the starting Region while iterating over it. When scanning a Region is

completed, the scanner automatically (from client’s perspective) moves to the next region.

This process stops when it has reached the end row.

23

Figure 3.2: Sequence Diagram of Row Count Approach with Coprocessors.

Figure 3.2 shows the sequence diagram for the case of performing a row count using

the Coprocessor framework. The first step is to define a Coprocessor implementation to

load it as part of the Region instantiation. The next step is to define a pair of callable and

callback objects at the client side. The callable object is used to wrap method invocations

to the server, using the Coprocessor RPC framework. In this use case, one needs to invoke

the row count method with proper arguments present in the deployed Coprocessor . The

callback object is invoked when the results of the above call become available for the client

by the coprocessor. Its purpose is to perform client-side aggregation of the results returned

from the individual Coprocessor calls on various regions. Note that the calls to the Regions

are made in parallel and are executed as a batch process. So, if a client calls 10 Regions via

this mechanism, it gets its result only after when all those 10 Regions have returned their

individual results. It is invoked per RPC invocation of callable at the server-side. Once the

computation is done by the callback, the end result is rendered to the user.

The key advantage of this framework is that the calls to the Regions are executed in par-

allel as compared to the sequential flow in the previous case, shown in Figure 3.1, providing

24

better throughput. The original endpoint functionality provides the support of invoking a

Coprocessor API at a specific region, and return results. But, it suffers from a limitation

that these calls are stateless. So, once a Coprocessor API executes and returns result to the

client, it does not contain/store any reference to the call at server. Therefore, an API should

process the entire Region before returning any result. In our work we have further improved

this feature to produce a cursor infrastructure that streams results from a Coprocessor , as

opposed to collecting them as a single batch. We explain it in more detail in section 3.1.3.

3.1.2 Aggregate functions using Coprocessor Endpoints

We designed and implemented six standard aggregate functions, i.e., max, min, average,

standard deviation, sum and row count using the original Coprocessor framework in HBase.

It involved writing a Coprocessor interface, AggregateProtocol that defines the APIs to be

called on the regionserver side from the client side. The implementation is generic, in the

sense it is independent of the nature of the table data content. Since HBase stores all its

content as byte arrays, we define a column interpreter ColumnInterpreter interface whose

implementation is passed to the aggregate APIs from the client side. It is done so that client

can define how to interpret specific cell value of a table and compute the result accordingly.

Figure 3.3: Aggregate Protocol interface code sample (shows aggregate method to get
maximum value of a table for a given Scan object)

Figures 3.3 and 3.4 represent the snapshot of the code of AggegateProtocol and Column-

Interpreter interfaces respectively. To interpret a cell value to be used for computatation,

one needs to provide a concrete implementation of ColumnInterpreter. This makes the ag-

gregator implementation generic. While computing aggregate function, one may overflow

the value (for example, computing sum of int columns may result in a long data type),

25

Figure 3.4: ColumnInterpreter interface, with javadoc explaining cell data type and pro-
moted datatype.

therefore we always return the promoted data type. Hence, the generic ColumnInterpreter

interface takes two data types, one is the data type of the cell data (denoted by T), and other

is the promoted data type (denoted by S). This part of work has been committed to Apache

HBase.

3.1.3 Streaming Results from Coprocessor Endpoints

As we have mentioned above, the calls to individual Regions from the client are done in par-

allel by the Coprocessor infrastructure. The original Coprocessor implementation provides

the functionality for the client code to be executed at the Regions and the complete result

set, the aggregation of the individual Region result sets, to be returned as the response to a

single call. This is a stateless call; the server doesn’t maintain any reference to the client

request and, therefore, has no means to consume the results of individual Regions result in

an incremental way. Clearly, in many cases the result from a Region may be quite large and

the client is likely to want to consume it in an incremental fashion. This is the functional-

ity that our extension to the Coprocessor framework provides: namely, enabling the client

to consume these endpoint results incrementally. We demonstrate this functionality in our

26

experiment with the NGram dataset (see Section 3.2.2).

We built our extension using the endpoint feature of the Coprocessor framework. An

endpoint in the Coprocessor framework is a stateless singleton object composed in the

region. We do not store any client side state in an endpoint as such, however, as each

Coprocessor has an associated environment object that holds the context of the owning

Coprocessor, such as the associated Region and Region server; we utilize this fact to create

a registry or map like data structure in it.

We also define a Cursor interface that defines the contract of providing iterative APIs

like next, hasNext. The concrete implementor of the Cursor interface defines the run-time

behavior of the cursor, such as what processing has to be done on raw table rows, how

the results per table row are to be aggregated, and how the results per RPC call should

be sorted (or if they are to rendered in some specific way, for example a group by). The

grouping of results per RPC is required because one RPC can return many result rows.

This concrete implementation is part of the endpoint defined by the client. When a client

needs this functionality in its endpoint, it defines and instantiates a concrete Cursor object

as an anonymous object, registers it in the Coprocessor registry, and returns a handler to

the client. The client can then use this handle in order to use the registered Cursor object.

In this design, multiple cursor objects can be also supported.

Figure 3.5 depicts the class diagram of our design. We have removed many attributes

and classes in order to give a simpler representation and to avoid unnecessary cluttering

of the diagram. All Endpoints are implementations of BaseEndpointCP and provide the

environment object to it. Here, the context is for NGram dataset, please refer to section

3.2.1.2 for more detail about the NGram dataset we have used. NGramImpl is the client-

defined endpoint (a concrete coprocessor) that has an API to provide details of words that

are similar to a given list of words, i.e., getSimilarWords. This API defines a concrete

Cursor class and registers its instance with the corresponding Environment object of the

coprocessor. The API returns the handler (an int value, cursorId) to the client-side. The

client invokes the next API and pass the cursor handler. This API looks for the respective

Cursor object in the Environment registry and invokes its next API on the cursor object. The

cursor object knows how to process the next method and returns result to the caller.

It is important to note here that the client is getting these handlers from all the Regions

to which the invocation was made. So, we define a client-side cursor object (named as

ClientCursor) that encapsulates these handlers. It maintains a list of all these handlers and

exposes iterative methods like next, hasNext to the client. Invoking next calls is executed

27

Figure 3.5: Conceptual Class diagram of Streaming Results from Endpoint.

at all the interested Regions in parallel and aggregates their individual results for the client.

Figure 3.6 gives a sequence diagram for the overall flow. Whenever a call results in a

null result from a Region in the Endpoint, it is assumed that the respective cursor at the

Region has exhausted it and that Cursor object is deregistered before it returns. When the

ClientCursor notices a null result from a Region, it removes the corresponding handler from

its handler list and does not send any request in future when the client invokes next on it.

Subsequently, it sets its hasNext variable to false when the handler list becomes empty,

marking the end of results from all Regions. To summarize, the ClientCursor takes care

of all the parallel calls to the Regions. The developer’s code is not aware of these cursor

handlers that are registered at the server-side. It simply calls next(), and expects all the

Regions to return their results. This part of work is under review from Apache HBase team.

3.2 Experiment Setup

This section discusses the experiment setup we used for evaluating the coprocessor frame-

work discussing datasets, query selection, schema design and cluster configuration. Query

selection and schema design are very much correlated with each other given our propensity

over the type of processing we want to support. The reader is advised to read the next two

subsections (3.2.1 and 3.2.2) in conjunction to get the comprehensive picture.

3.2.1 Datasets

To evaluate our work and analyze the relative merits of the two variants of the coprocessor

framework, i.e., the original and our extension, we had to select appropriate datasets and

28

Figure 3.6: Sequence Diagram of Streaming Results from Endpoint.

queries. One one hand, the datasets need to be large enough to be labeled as ‘big data’

in order to defend our decision of storing it in HBase. On the other hand, they should

provide opportunity to select queries that involve substantial server-side computation and

also provides large results to use the results streaming functionality. An implicit (prag-

matic) constraint was that they should be publicly available. According to these criteria, we

decided to use the Bixi and Google NGrams dataset for our experiments.

3.2.1.1 Bixi

Bixi is a public dataset collected by Public Bike Systems Inc. for their Montreal operation

in Quebec, Canada. This is a service for renting bikes and provides around 404 stations

in Montreal. A user has to subscribe to the service order to use the facility. Once he is a

member, he can take out and return a bike in a station based on the availability of bikes and

empty docks respectively. These stations are equipped with sensors, which transmit this

information at regular intervals. This information is stored and is made publicly available

to the user, who can issue a query to look for information for all these stations at any given

29

Figure 3.7: Sample bixi data for a station.

time. This status information is rendered as a XML file.

Figure 3.7 shows a segment of the XML document representing the status of one station.

It has the information of station id, name, geographical coordinates, docks status and other

station related information. This data is publicly available and one can get information for

all these 404 stations at any given point of time. 1 We used the dataset that was collected on

a per minute basis for a period of 70 days, from September 24, 2010 to December 1, 2010.

It is a 12 GB dataset that contains 96,842 data-points for all the Montreal stations.

3.2.1.2 Google Ngram

Google Ngrams is a collection of ngrams from the entire Google-Books collection, which

the company made available for research work in 2009 [27]. These are one, two, three, four

and five word grams for all the published books that are there in its repository. We used the

1-gram dataset for our experiments, which contains 6,641,214 unique words. Table 3.1

represents the structure of 1-gram dataset. The first column is the word, second column

represents year; third, fourth and last columns represent the word count, unique pages and

unique books frequencies containing the word in that year. For example, in year 1938, word

‘America14’ appears 5 times on 5 pages in 5 distinct books.

3.2.2 Sample Queries

Evaluation of the result-streaming functionality requires a specific set of queries where

one can use the streaming functionality for coprocessor generated results. As mentioned
1https://profil.bixi.ca/data/bikeStations.xml

30

https://profil.bixi.ca/data/bikeStations.xml

Word Year Word count Unique pages Unique Books
America14 1936 1 1 1
America14 1938 5 5 5
.....
Americaensche 2001 17 14 7
Americaensche 2002 11 11 9

Table 3.1: Google 1 gram data sample (from [1])

earlier, this implies two requirements: (a) there should be a substantial computation that

can be transferred to server side and, (b) the result set should be large enough so that client

needs to do more than one RPC to fetch the result from a Region . It is to be noted that

original HBase provides optimizations where one can send a customized number of rows

from the server to the client in one RPC. To have a fair evaluation between original Scan

and Streaming result, we keep this as high as 1000 in most of our experiments, i.e., in each

RPC, send 1000 table rows for a Scan and similarly, 1000 result rows with Coprocessors

from server to client. Therefore, the queries should be able to provide a large number of

results. We came up with four different type of queries, based on the datasets we chose.

3.2.2.1 Bixi Queries

Our choice of the Bixi dataset was motivated by the fact that it provides opportunities for

several interesting queries, including general descriptive statistics (sum, min, max, average

and standard deviation) but, more importantly, potentially complex domain specific queries.

In our experiments, we have implemented the following two queries, the first invoking a get

on a given time-stamp and the second invoking a range scan over a sequence of time-stamps.

• Query 1: For a given time, central location and radius, get a list of stations with

available bikes, sorted by their distance from the given location.

• Query 2: For a given list of stations and a time, get their average bike usage for last

1, 6, 12 and 18hr. Its boundary condition is to get such an average for all the 404

stations.

3.2.2.2 NGrams Queries

The NGram dataset has already been the subject of much study. In this work, we wanted to

take advantage of the HBase platform to explore it in ways that is not currently supported

on the Google’s NGram viewer [1]. The current NGram viewer can be used to see evolution

31

for a specific word or a set of words. It does an exact match of the given word to its dataset.

There are some words that share a common prefix up to a good part of their length, like

there are 424 different words that starts with ‘America’, spanning across almost 530 years!

We use this dataset for the following queries.

• Query 3: For a given word prefix, get the top 3 count frequencies with their respective

years for all the words that share that prefix. For the prefix ’America’, a result set of

424 rows is produced.

• Query 4: Similarly for a bag of words in one call, look at the evolution of words like,

‘love’, ‘blood’, ‘passion’.

Again, we should note that Query 3 involves a range scan with a common prefix, the range

for Query 4 was large enough to span multiple Regions such that it was executed in parallel

across different Regions using the Streaming results API. We will discuss the result of

choosing the above 4 queries in section 3.2.3 after describing the schema for both datasets.

3.2.3 Schema Design

The performance of HBase is directly correlated to the underlying schema and data-access

patterns. It stores its data on top of HDFS and uses the data locality provided by it. There

are some key guidelines in creating the HBase schema.

• Group frequently read columns in one column family: A Region server acts as a

HDFS client and stores the table data in HFiles, a file format specific to HBase. A

HFile technically represents one column family; so columns that are accessed simul-

taneously in a call should be placed in one family. This reduces the number of HFiles

to be read for one call. One important consideration is HBase tries to open all HFiles

and read their index blocks in memory. This way, it can determine which HFiles are

“interesting” for a specific query. Therefore, lesser number of HFiles are better.

• Minimize number of column family: Having a minimum number of column fami-

lies helps in keeping the number of open files during a read operation small and also

reduces other Region level overheads.

• Avoid hot Regions by sprinkling keys: For a write-heavy application, the row key

selection should be done such that writes are distributed normally across all the Re-

gion servers. Usually, for most applications the intuitive choice is to select a chrono-

logical key, but this might result in all the writes going to one active Region at a given

32

Row Key CF:1 CF:2 CF:3
<Timestamp1> NotreDame,

45.508153,
-73.554094, 4, 27

Saint-Antoine,
45.512323 ,
-73.5539304, 1, 24

Saint-Laurent,
45.51066,
-73.56497, 3,12

<Timestamp2> NotreDame,
45.508153,
-73.554094, 3, 28

Saint-Antoine,
45.512323 ,
-73.5539304, 4, 21

Saint-Laurent,
45.51066,
-73.56497, 0,15

Table 3.2: Bixi Schema.

instant of time. One can elaborate such keys with some application-specific informa-

tion to cause a different distribution pattern, such as hashing those keys. This avoids

the problem of having a hot Region in the cluster and makes more efficient use of the

resources.

• Do not exceed the cell value size beyond a defined threshold: As mentioned in

section 2.1.3.2, a HFile stores its content in form of key values in multiple data blocks,

of fixed size. Practical experiments have shown that with larger ‘key value’ (HBase

table cell) size (larger than 50MB), read write performance of HBase suffers badly.

It is advised to store large key values directly in HDFS, while just storing a reference

to the HDFS location in HBase.

Table 3.2 represents the schema for the bixi dataset. We chose the row key to be time-

stamp because our access pattern is time-stamp based, and the application is not write

heavy; it has only one write per minute (if it was to be a real time application). We define

one column family and used the station ids as column qualifier. Instead of storing direct

XML structure, we extract relevant information like longitude, latitude, available bikes,

empty docks, and stored it in a predefined format as the qualifier value. This removed the

redundant XML tags and reduces the dataset size to 9GB. As per Table 3.2, at timestamp1

and timestamp2 value of available bikes and empty docks at station id 1 is 4, 27 and 3, 28

respectively. A typical row size of the table data is approximately 90KB.

With the above schema, Query 1 processes only 1 table row. It entails a complex com-

putation of calculating distance between 404 stations. This query helps us in evaluating

whether to pass the entire row to the client or compute the result at the server side. Query 2

accesses variable number of rows depending upon the hours duration. This helps in realiz-

ing the response time variation of the two approaches as we increase the number of rows to

be processed.

33

Row Key CF:1936 CF:1938 CF:2001 CF:2002
<America14> 1,1,1 5,5,5

<Americaensche> 17,14,7 11,11, 9

Table 3.3: NGram Schema.

Table 3.3 represents a snapshot of the schema for the Ngram dataset. Its value correlates

to the sample dataset shown in Figure 3.1. We chose a word as the row key, and years as

column qualifiers. All the frequencies are concatenated with a delimiter and stored as the

qualifier value. Thus in order to look for a word, we need to read only one row. Accordingly,

the row size distribution varies as per the word history, varying from a few bytes to 10s of

KB depending upon the popularity of a word. Thus, Query 3 processes a group of rows that

are located near each other (rows are sorted by row key, and in this schema, each word is a

key) as we are looking for words that share a common prefix; and Query 4 accesses similar

groups in parallel.

3.2.4 Cluster Setup

We used a 5-node cluster on Amazon EC2 to run our experiments. Table 3.4 describes our

machine specifications. In order to get a better understanding of various processes running

in the experiments, we briefly describe the processes that run in a typical HBase cluster.

• Namenode: HDFS master, which keeps track of metadata for all the blocks in the file

system.

• Secondary Namenode: HDFS fault tolerance solution for a Namenode failure.

• Job Tracker: master for tracking all MapReduce jobs in the cluster; it assigns tasks to

Tasknodes.

• Task Tracker: working process that processes the MapReduce computation. These

processes report to Job Tracker.

• Datanode: process that keeps the data block in HDFS. These processes report to

Namenode.

• Zookeeper: Quorum for managing cluster. Each active node registers itself in the

quorum to become part of the cluster.

• HMaster: HBase master, which coordinates the HBase cluster like coordinating Re-

gion movements, RegionServer registration.

34

Node No. Instance type Processes running
1 m1.xlarge Namenode, Secondary Namenode,

Job Tracker, HMaster, TestClient
2 m1.xlarge Zookeeper
3 c1.xlarge RegionServer, DataNode
4 c1.xlarge RegionServer, DataNode
5 c1.xlarge RegionServer, DataNode

Table 3.4: Cluster configuration

• RegionServer: serves Regions of HBase tables. It manages HBase data and serves it

to the client. It acts as client to the underlying HDFS.

• TestClient: It is the process used to run the experiments.

We used the recommended node configurations, giving more memory to HMaster (HBase

Master process) and Namenode, and larger computing resources to Datanode and Region-

Server processes. Since Coprocessors are not yet part of the released version, and we have

added/modified the HBase source code to add our functionalities, we created our own Ama-

zon machine image (AMI) containing relevant Hadoop and HBase jars 2.

3.2.5 Experiment Results

We uploaded the bixi and ngram datasets to Amazon S3. Because the datasets contain a

varying size of rows, in order to have a fair evaluation between the two approaches (reading

from cache or from disk), we pre-run a query with the same arguments, a number of times

in order to cache the required table rows in the Region server. We executed these queries

from simple Unix console on to the HBase cluster for at least three to five times till we get

almost same value and measured the average response time. This way, even if the operating

system cache plays role while reading the values, it should have the same effect for both

variations. We performed experiments for all the four queries as described in the section

3.2.2. For all these queries, we set the batch size of scan and the cursor to be 1000 (to

minimize the number of RPCs).

Table 3.5 gives the result for Query 1. As expected, since these are simple Get like

queries on one row and involves computation of calculating distance, they results in almost

same response time. We discuss it more in section 3.3.

We used Query 2 for computing the average for the last 1, 6, 12 and 18 hr from a given

time value with two variations. In one condition, we compute these values for 3 stations,
2This AMI is publicly available with tag name “himanshu-hbase”

35

Query 1 Get Coprocessor
response time in sec 1.57 1.61

Table 3.5: Response time for Query 1, in seconds

Prefix Cache
size

Scanner
time (in
sec)

Coprocessor
time (in sec)

Number of
unique words

America 1000 1.84 1.66 424
America 100 1.84 1.80 424
A 1000 29.65 21.15 219,797
blood, love,
change, pas-
sion

1000 158.21 44.7 NA

Table 3.6: Response time for Query 3 and 4 on NGram dataset.

and in other we compute it for all 404 stations. Figure 3.8 shows the response time of Query

2 for 3 stations. The X and Y axes represent the hour for which the average was computed

and the response time. In the scanner approach, the relevant columns are fetched for the

rows that fall in the time range and the client computes the average value. In the case of 3

stations, we set the scanner object to fetch only those specific columns. Figure 3.9 shows

the response time for all 404 stations. We chose 3 and 402 as the boundary conditions of

the query, which should enable us to understand the trends governing the performance of

our approach.

Table 3.6 shows the response time for Query 3 on the Ngram dataset. The target word

used was ‘America’ and there are 424 distinct words that start with this prefix. The scanner

cache size (number of results to be returned in a RPC) was set to 1000, so all the results were

returned in a single call. In order to test the streaming result from Endpoint functionality,

we executed Query 3 to fetch all words that starts with ‘America’ with batch size of 100.

The results were almost the same with the case when the batch size is 1000. We also test

the streaming results by executing Query 3 to fetch all words that starts with prefix ‘A’ with

a batch size of 1000. There are 219,797 such words spanning across 2 regions.

The last row of Table 3.6 shows the experiment results for Query 4. In this query, a

user enters a bag of target words and it returns all the words that match the prefix of either

of these words. We used words that start with different letters to evaluate the parallelism

provided by the Coprocessor framework.

36

Figure 3.8: Response time for Query 2 for 1, 6, 12 and 18 hrs time range for 3 stations, in
seconds.

3.3 Evaluation

The four queries described above represent different use cases and we consider them sep-

arately. Table 3.5 reports the response time for Query 1. This query points to a single row

using only one row key and results in almost similar response time for both approaches. Al-

though it involves the computation for calculating the distance between a point-of-interest

and each of all the 404 stations, the effect of this computation cost on the response time is

almost negligible, which can easily be correlated to the node capacity running the client.

Thus we almost get similar result for both the variations.

We evaluated Query 2 under two different scenarios, one with 3 stations and other with

all 404 stations, with scan cache size and streaming result batch size equal to 1000. The

experiment is to compute the average number of the bikes available at each station for last

1, 6, 12 and 18hr from a given time. Since the dataset is on a per-minute basis, 60, 360,

720 and 1080 rows need to be read respectively. Figure 3.8 shows response-time results

with 3 stations. Note for the bixi schema, stationIds become the column qualifiers, and

one can scan at a granularity of qualifier level. So, we select only those 3 columns for this

scenario. The response time for 1 hour computation was better in the case of the scanner

and as we move towards 18 hr average, the Coprocessor method started winning. This is

because, in the case of the scanner, all the selected values are sent to the client and with

a larger time window, the number of such rows increased from 60 to 1080. In the case of

37

Figure 3.9: Response time for Query 2 for 1, 6, 12 and 18 hrs time range for All stations,
in seconds.

the Coprocessor, the computation of the average was performed at the server-side and only

the average value was sent to the client. This difference gets manifested when we increase

the number of stations from 3 to 404. Figure 3.9 shows the result of Query 2 with all 404

stations. In this case, the scanner needs to pass the entire row to the client. With each row

sizing 90KB, RPC and client-side computation cost builds up as the time range is increased.

In this use case, the Coprocessor gives better result than scanner for all the time ranges that

we tested. This shows the Endpoint are more effective than normal scanner when it involves

computation with a large amount of data.

We executed Queries 3 and 4 on the NGram dataset. We used this dataset to test the

result-streaming functionality and tried to build up the case when we can exploit the par-

allelism that comes inherent with the Coprocessor framework. We tested Query 3 with the

prefix ‘America’. As mentioned in the section 3.2.2 we were interested in top 3 frequencies

of words that share the same prefix. The motivation in designing this query was to ensure

that, apart from fetching the rows, it should have some computation that reduces the result

size. For example, the row key ‘America’, which matches the criteria, has more than 500

frequencies for these many years. Table 3.6 shows the results for this experiment. The

difference in response time for Scanner and Streaming Endpoint approach is not large, and

its reason is once again, the computation and result size is fairly small to make any impact.

The overall size of the result was about 630 KB only, which can be termed as an insignif-

icant amount and explains the near same time (rather Scanner doing it marginally better).

38

Interestingly, there was almost no effect of changing the cache value from 1000 to 100 in

the case of a Scanner. This can be attributed to the smaller result size and nuances of virtual

environment.

We aimed to test the result streaming, therefore we executed a query where the prefix

was ‘A’;, i.e.,, give the computation for all words starting with the letter ‘A’. There are

around 0.2 million such words, distributed in 2 regions. The benefit of Endpoint approach

becomes evident when it did the task in 21 seconds as compared to 29 seconds taken by

the scanner. We further expanded this test to consider the query for a bag of words (Query

4). We aimed to further increase the number of target Regions and test the result-streaming

functionality. We tested it with a group of 4 words, chosen such that they are popular (good

enough to produce large amount of results) and start with different letters to make it more

distributed. Before executing requests to individual regions, the Coprocessor framework

first looks for the range of row keys that are provided. So, it needs to look at the start and

end row, which are derived from the argument list, and then it executes requests across all

the Regions that lie in the range. There are 12 such Regions . It may happen that some

interleaving Regions do not have any of the required words, in that case a null result is

returned from them. The ClientCursor makes sure that these Regions are not called in the

next invocation. In the case of scanner, the call begins at the Region having the start key,

and flows sequentially to the Region containing the end row. The benefit of the Endpoint

approach becomes clear when it finishes the task in 44 seconds as compared to 158 seconds

taken by the Scanner API. Figures 3.10 and 3.11 present a schematic diagram of both these

cases. The former figure shows the Coprocessors client making RPCs to different Regions

in parallel, whereas the later is a sequential scan across multiple Regions. The Regions are

shown as an ordered stack with their start and end keys marked on it. The ordering is based

on the row keys. The client requests are shown in black, and the server responses are shown

in blue.

In the case when an interleaving Region does not have any result rows, the Endpoint has

to scan the entire Region before sending the null result. Scanning and entire Region in one

RPC may take a while in the case when there are many such Regions on a Region server.

Therefore, in the first call to fetch result, these null resulting Regions behave as bottleneck

because ClientCursor needs to aggregate results from all Regions before rendering result to

client. We discuss this bottleneck in more detail in the next section.

39

Figure 3.10: Response time for Query 2 for 1, 6, 12 and 18 hrs time range for 3 stations, in
seconds.

3.4 Aggregate Functions Benchmarking and Future Work

We now discuss the benchmarking results for the aggregation functions 3.1.2 that we de-

veloped using Coprocessor Endpoint. Since all these functions follow a similar call stack,

we will discuss only the Row count operation and it can be generalized to other functions.

We used the Yahoo Cloud System Benchmarking tool to generate our dataset [19]. One can

use it to load a configurable dataset (in terms of record count and row size). On a similar

set up as used for other experiments discussed above, we loaded the table with 1m, 10m

and 100m records of size 1KB each in three iterations. We ran the row counter task with a

using a normal scan, MapReduce job and row counter using Coprocessor framework. The

cache size for all these three approaches was set to 1000.

Table 3.7 details the response time for these three datasets. It is evident from the results

that the coprocessor-based approach is faster for datasets size up to 10m. MapReduce

provides high throughput with larger datasets. It has a higher starting cost and it gradually

picks up as the data set grows to 100m, which justifies its use for batch analytical jobs. We

used FirstKeyValueFilter (a filter provided in HBase that makes sure we are reading only

one column per row to avoid reading the entire row). It is just an optimization for row count

like operation.

As the dataset increased to 100m, we get time out exception at the coprocessor client-

40

Figure 3.11: Response time for Query 2 for 1, 6, 12 and 18 hrs time range for 3 stations, in
seconds.

Row Count Scan MapReduce Job Row count with Co-
processor

1m 8.2 24 1.6
10m 240 118 100
100m Not tested 631 Failed

Table 3.7: Response time of row count operation with 3 approaches, in seconds.

side.

This is because there are 256 Regions across 3 Region server nodes for the 100m rows

table. The row-count operation essentially involves reading all the rows of the table, i.e, 256

Regions. In HBase, the default “timeout” time is set to be 6 minutes. This means that the

maximum time for a request to be executed by HBase is 6 minutes, else it will get a timeout

exception. In the row count case with Coprocessors, when the client issues the request, it

goes to all the 256 Regions in parallel. Though each server has 100 request handlers (each

handler is a thread listening for client request), it takes more than 6 minutes to read all

the 256 Region s. In other words, we are setting an upper time limit of 6 minutes for this

operation. The actual computation takes more time than the default value. The client library

is fail fast, in the sense that even if one Region fails to render response in the set timeout

limit, the entire process is failed. So, in effect, we are trying to read the entire table in 6

41

min, and it fails otherwise.

It is worth mentioning that the row counter (or any other aggregate function built on

top of Coprocessor) does not uses result streaming, where we can define the cache size

and use the cursor like functionality. Therefore, the entire Region has to be scanned before

returning result to the Coprocessor client. In the near future, we plan to rectify this by using

the result-streaming approach. In this approach, we can define a cache limit, and there is no

need to scan the entire Region in one RPC, which should alleviate this problem. Resolving

this limitation is our immediate future task.

We also plan to test it under a real time system under active load, in order to explore its

behaviour not only with “read” operations but with a mix of “read” and “write” operations.

One important application of the result-streaming functionality is in parallel scanning. One

can use the inherent parallelism provided by the Coprocessor framework in coming up

with a design to support for parallel scanning, as compared to the existing sequential Scan

API. It has been long sought in HBase project [34], and we plan to extend result-streaming

functionality to support parallel scans.

3.5 Summary

In this chapter, we discussed the design and implementation of aggregate functions using

original HBase Coprocessors. The implementation is generic to cater to support any kind of

data in the table; the end user is supposed to provide an implementation to interpret the byte

arrays in terms of the application data types. They present a better alternative as compared

to a sequential scan or a mapreduce job, in workloads when one is interested in a subset of

table. Though increasing the size of the subset (to 100m approximately) results in timeout

exceptions as the default timeout limit is 6min. One possible workaround is increase the

timeout limit. A cleaner approach would be to use streaming Coprocessors results API,

where one can get incremental results from the regions. This way, one RPC can in much

lesser time (as it is not exhausting the entire Region before returning). We discuss this

extension, and also supported our claim with experiments on NGram and Bixi datasets.

42

Chapter 4

Migrating TAPoR to HBase

Up to this point, we have discussed Hadoop, HDFS, HBase and its detailed design, in-

cluding Coprocessors endpoints and result streaming. This gives us an insight about the

features and behavior of these distributed computing projects. In this chapter, we switch

our perspective to that of a developer, and build an application leveraging these projects,

specifically HBase. From this perspective, we share our experience migrating an existing

text-analysis web application over to HBase. By migration we mean re-designing the busi-

ness logic and the back end store, and exposing it as web services so that any kind of front

end (existing or future) can use it. This approach can be used for other types of applica-

tions also. Overall, any such migration involves selecting a proper application (scalable

application with some degree of un-relational domain objects), designing a corresponding

HBase schema, implementing the application services and exposing them as web services

to support existing or any future front-end client.

In this chapter, we explain our motivation for selecting TAPoR as the target application

for migration. There are some basic steps that are to be followed when migrating an ap-

plication to HBase. For instance, one should know the application workload, its read-write

access pattern, load, peak and average load. This plays a vital role in coming with a good

schema, which is one of the key factor in any application build on top of the HBase stack.

We explain our methodology for schema design in following sections. We also discuss in

detail our use of Rest web services, and Stargate (HBase Rest server) and Restlet (TAPoR

specific middleman application), that forms the core parts of our application stack. In the

end, we provide a list of the TAPoR APIs reimplemented in HBase.

It is to be noted that we did a similar kind of migration of TAPoR in a previous work and

used core HDFS as the backend, and significantly improving the over all end-user response

time as compared to the original version [28].

43

4.1 TAPoR

As we have seen so far, HBase is about storing big data, and it does it in a de-normalized

form. Text analysis, especially syntactic and semantic analysis of electronic texts provides

an exciting opportunity to deal with unstructured data with HBase. This is hot area of re-

search for Digital Humanists, who tend to explore electronic data for both these kinds of

analysis, semantic for analysis of intertextuality of documents to infer influence relations

among them, and syntactic for analyzing the words in the texts, their frequency and patterns.

The later provides a varying workload from computing a simple word count to finding top

K words, to finding concordance of given words. A common use case includes doing the

analysis for one document or on a collection of documents, and repeating the experiment

with different request parameters. These are among the many operations supported by

TAPoR, Text Analysis Portal for Research. TAPoR is a lexical analysis web based appli-

cation, developed by Digital Humanists [29]. The tool offers recipes for listing words and

word counts, finding word co-occurrence, finding concordance, generating word clouds,

and more. TAPoR has several deployments around the world and an increasing number

of users, who use it to analyze the lexical properties of texts and collections. The existing

TAPoR implementation suffers several limitations that make the flexible experimentation

of Digital Humanists with different collections a challenge.

One major bottleneck is its lack of scalability to larger documents, due to its design; it

was originally built to cater to small documents, processing the document in its entirety for

all requests each time, though the new request may have only a different parameter from

the previous one. So, if one does a concordance for a word ‘love’ and now wants to do

for ‘blood’, it will process the entire document and look for ‘blood’. In this approach, we

are doing the same computation again but with different request parameters. This approach

suffices when the document is small, but it is not scalable to larger documents (size in few

MBs is sufficient enough it to give a response time out error). This results in a poor end-

user experience, as each request takes the same O(n) time, where n is proportional to the

document size. An alternative to this approach is the standard way of creating indexes of

the document, and then using these indexes for TAPoR operations. Index creation process

is also costly and its cost is proportional to document size; but it pays off in the long run as

this cost is incurred only once and we use these indexes over and over again. But for smaller

documents (such as when a single-page document, like a web page needs to be indexed), it

may still lead to a poor user experience. Therefore we decide to add more power to TAPoR

44

Operation %
Word Cloud 45.6
List Words 22.0

Concordance 16.3
Collocation 4.6

Co-occurrence 3.1
Pattern Distribution 3.0

Extract Text 3.0
Visual Collocation 1.8

Googlizer 0.6

Table 4.1: Percentage of requests for each operation of the existing service

by having an indexing mechanism for larger documents. This will give a new dimension

to it and Digital Humanists can now explore Shakespeare’s collective works (containing

901,325 words), for example, in matter of seconds.

This reasoning motivates us to migrate TAPoR to the new paradigm of the Hadoop

ecosystem, using (a) Hadoop MapReduce to create the document indexes, (b) HBase to

store them, and (c) HDFS to store the raw documents. This will enable TAPoR to analyze

not only small web pages (which it does now), but also large files sizing in MBs to GBs.

Storing the indexes in HBase enables us to solve the scalability issue where the user can

process large documents, and also provides fast random-read performance, which is an

essential attribute for a web-based application.

4.2 Schema design

The first step in designing an application in HBase is to come up with a schema. The

overall performance of an application in HBase is very much dependent on its schema,

which should be designed while considering the application workload. Though there are

no hard and fast rules about this process, but there are some useful guidelines like the ones

mentioned in section 3.2.3.

We analyzed TAPoR access logs ranging for 3 years and contains 53,769 requests, and

profile out the workload. This proved quite helpful especially in case of TAPoR, as it has

around 44 recipes in its belly, but we found out that 4 most popular services cover up to

87% of the total requests spanning across the above mentioned timeframe. We prioritized

the operations to be implemented in the new service based on the frequency of their use in

the old service (Table 4.1).

45

So, the lesson learnt was even though we are interested in migrating the application

to a whole new paradigm, the legacy version is essential for eliciting the requirements for

the design of the newer version. It can provide insights like existing usage pattern, which

helped us here in schema designing.

Having identified the top 4 recipes, list words, word cloud, concordance and co-occurrence,

that form the major part of TAPoR workload, we decided to focus on these services while

designing the schema. Before thinking about the actual schema design however, it is worth

looking at these recipes in a bit more detail, mainly from the point of view of their read-

access pattern. One important point is that the current TAPoR implementation supports

analyzing only one document in one request, but we don’t want this limitation in the new

version.

1. List word: It lists out all the words with their frequency found in the document. One

can add a filter list to remove some words from the final output.

2. Word cloud: It creates a word cloud for top K words found in the document. Es-

sentially, it uses the List words output and filter out top K and pass it to a third-party

cloud building library.

3. Concordance: It takes a input word and renders its occurrence in the document with

some user defined context (like 5 words or 5 sentences on either side).

4. Co-occurrence: It takes two words and a context length (for example, 20 words),

and renders the subset of document where the two input words are within the given

contextual distance.

Close analysis of these 4 operations reveals that the first two can be pre-computed (dur-

ing the indexing phase). They will not change as the document is not editable. Concordance

can be helped by having a positional based inverted index, where we know the byte offsets

of target words in the document. It will help in directly seeking to the desired offset rather

than sequentially reading the entire file up to that offset. For co-occurrence, we can use the

byte offset indexes and then do the computation on these indexes to figure out their proxim-

ity. Thereafter, one can read the final offsets. It will help in an approximate solution, which

can be further refined while reading the file and generating the final output.

46

Row Key CF:byteLoc
doc#1,foo 3123, 4223,#2
doc#1,bar 553,643,5544#3
doc#1,...

doc#1,Top100 hello:105, world:56,
love:45, blood:40

doc#2,foo 909, 656,6786#3

Table 4.2: Possible TAPoR Schema.

4.2.1 Possible schema options

Our analysis suggests two level of indexes, one at the document level (for list words and

word cloud), and other at the document-word level (for concordance and co-occurrence).

We initially designed a schema, with each row corresponding to a word, containing as its

values the byte-offset locations of the word in the document. To distinguish a word for a

document, each such word is prefixed with a auto generated document id. Table 4.2 gives

an example of such a schema for a document, with its id as #1. The row key of a document

level index in such a schema will be special keyword, like “Top100” for the top 100 words,

as shown in the table. Document with Id 2 also has the word foo but it is in a separate row,

as shown in the row of the table.

This schema meets all the requirements for looking a specific word (one just need to add

the document Id as the prefix), and also for the list-words functionality where the keyword

is given as input. The only drawback with this design is that it results in a tall table as there

is one row for each unique word in the document. The reason this is a drawback is due to

how HBase stores its data and does its read operation. We have discussed HFile in section

2.1.3.2. This schema results in a large number of rows (a 1 MB document has on average

220,000 words), and it increases the index block size in the HFile. This index block size

is directly proportional to the number of rows in the table. While doing a read operation,

HBase tends to keep this index block of all HFiles in memory (the reason why HBase has a

large memory foot print), and as a result this is not an optimal schema. So even though all

our the required functionalities are met by this schema, it is still suboptimal from HBase’s

perspective.

We finally settled on the schema shown in Table 4.3. It has two column families, viz.,

“bl” and “spl”, which stand for “byte location” and “special keywords” respectively. This

design has only one row per document, therefore it does not suffer from the HFile index

size bottleneck. Each unique word becomes a column qualifier in “bl” column family, and

47

Row
Key

bl:foo bl:bar bl:sports spl:Top100

1 3123, 4223, #2 553, 643, 5544,
#3

hello:105,
world:56,
love:45,
blood:40

2 434, 423, 545,
646, #4

games:10, soc-
cer:5, sports:4

Table 4.3: Final TAPoR Schema.

its cell value is the byte offset locations in the document, followed by its frequency. To read

the top K words, one can simply read the topK column qualifier in the “spl” family, and

byte offset of a word can be fetch by a Get operation on “bl” family with the target word

as the column qualifier, viz., “bl:word”. Therefore, one need to do a single read operation

(transaction) with HBase for any of these operation. Though to form a complete answer for

concordance and co-occurrence, we also need read the actual file(s) from HDFS. It is to be

noted that while inserting the data in the HBase table, we used large Put objects (with usual

size of 10 MB, containing multi column qualifiers). This is done because HBase supports

row level transactions, and using large number of small Put objects for a row is not efficient.

4.3 Workflow Design and Overall Architecture

After finalizing the schema design, the next task was to design the workflow of the applica-

tion in order to be able to use the new back-end infrastructure. There were three important

processes that were to be joined together to make it a coherent and complete application:

1. Uploading the document on the distributed file system, viz., HDFS, to make it acces-

sible for other processes. HDFS provides a command line interface for such opera-

tions. We wrote a bash script for this purpose.

2. Kickstarting the indexing process, to create positional inverted index and special in-

dexes for top K, dates, Acronyms etc.

3. Implementing the web services for accessing these values at the request of the end

user from the front end.

Figure 4.1 shows the conceptual flow of the new indexed-based TAPoR. It starts with

an end user uploading a document to be analysed. The front end invokes the application

web service and passes the URI of the document. This triggers a bash script to upload

48

Figure 4.1: Overall workflow of modified Tapor, from document uploading to recipe query-
ing .

the document to Hadoop Distributed File System (HDFS). This is done so that all Hadoop

daemons can access the file. Once uploaded, the script kick starts the indexing process,

i.e., start the Hadoop mapreduce job to create the indexes. These indexes are inserted in

HBase, and the value of document Id is the system time of the JobTracker node at the time

when the job was started, in nanoseconds. Once HBase is updated, the user can access its

data via the TAPoR specific application services, implemented as RESTweb services[30].

These services manipulate the data fetched from the back-end to make it compatible for the

front-end. This TAPoR application acts as a client to HBase and accessed indexes and other

data via standard REST web services that comes with HBase. Another option of accessing

HBase data was to make direct client connection to it. The former method is a standard

approach and has some advantages like one is using already instantiated clients (maintained

by the HBase Web service application), so it can use the cached locations of table rows, as

explained in Section 2.1.3. In later case, we will be creating new TCP connection to HBase

for each request. It incurs cost of doing a .META. table lookup for the target rows for all

these requests.

Figure 4.2 shows the overall architecture of the new TAPoR application. This gives a

top level view of how various software pieces (processes) are running and interacting with

each other.

49

Figure 4.2: Overall architecture of Indexed based TAPoR application

Now that we have discussed the overall workflow of the application, we discuss each of

these sub-components in more detail in the next section.

4.4 Design Discussion of individual components

In this section, we explain the individual components of the migrated TAPoR in more de-

tail. We discuss the index-generation process (Hadoop MapReduce job), a Coprocessor

Endpoint use case for computing the top-K words and storing them in HBase, and the de-

velopment of the TAPoR functionalities as Rest web services.

4.4.1 Inverted Index with MapReduce

As per the workflow in section 4.3, our first major use of Hadoop is creating indexes of

the newly updated document (step 2 in the enumeration). This is essentially a MapReduce

computation.

Figure 4.3 shows the workflow of the indexing phase. We have seen in section 2.1.1

that the input and output for a MapReduce task are key value pairs. The input to the map

phase is provided by reading the input file line by line. The key of the Map input is the byte

50

Figure 4.3: Indexing MapReduce job, showing Map, Reduce and the implicit Shuffle phase

offset of the line read from the input file, and value is the read line itself.

The figure shows the map phase receiving an input line “Tiger Tiger burning bright” and

its offset in the input file is 3123 bytes. The value is split in terms of words along with their

byte offset, using space as the delimiter, computed by adding cumulative words length to

the line-starting offset. This forms the map phase output. Before sending this intermediary

output to the reduce phase, Hadoop does a shuffle and sort of the data based on the key’s

value. This is an essential step if we consider the distributed mode this Hadoop works in:

A single key goes to only one reducer, and it has all its associated values in a list. The

output of this intermediary step shows that map output is sorted on keys. Thus the reduce

phase appends all the byte offsets for a word, and post append the word frequency to the

list. Finally, we have the word, all its byte offset positions and its frequency. This final data

structure is used as a cell value in HBase, where it is stored under the column family bl and

the column qualifier is the word itself.

4.4.2 Frequency index with Coprocessor Endpoint

The “word-level” index, where the byte offset position of each word is recorded, is created

in the reduce phase. The “document level” index for the top-K words is computed after the

reduce phase using a Coprocessor implementation.

51

After the reduce phase, we had the frequency of each word (it is appended as the last

value in the list of values for a key. The requirement is to sieve out top K words out of these

values and store them separately in a cell value. This could not be done in the indexing

reduce phase because there can be more than one reduce process in one MapReduce job

(especially in case of large document), and there is no way to communicate among different

Reduce processes. Assuming the basic computation for computing top K words remains the

same (like storing it in a data structure based on a priority and sieving out top “K” words),

there are three ways to compute the frequency index.

1. Do a Get on the document row, and fetch the entire “word level” index from HBase,

and do the computation at the client side,

2. Use the MapReduce paradigm to do it on server side, or

3. Use a coprocessor endpoint to go to the Region server node containing that document

row, and compute it locally.

Since we are interested in a scalable application, the first option is ruled out since it

involves transferring the entire “word-level index” to the client side. Its size is likely to be

comparable to the original document size. Running a Hadoop job involves scanning the

entire ‘docIndex’ table, but we are interested only in a single row. This approach will not

scale when we upload more and more documents (where each document accounts for one

row in the table). Using a Coprocessor endpoint seemed to be the better alternative as it

goes to the target row and will does the processing at the server node itself.

We defined an interface TaporCoprocessor, which defines a method to create frequency

index for a given document Id. It uses the Coprocessor endpoint logic that is covered in

section 3.1.1. In our experiments with a local 3 node cluster, it takes 3 seconds to create the

frequency index for a document of size 110MB.

4.4.3 TAPoR middleman: Restlet based Webservices

The index-creation workflow, discussed above, is a one-time activity for any given doc-

ument. Let us now move to discussing the actual business logic of the application. The

end user is more interested in exploring the document in ways as supported by the existing

TAPoR application, using various text-analysis recipes as listed in Table 4.1. We explain

our TAPoR API, which acts as an interface for front end applications. This middleman is a

REST web service based application that provides signature for all required functionalities,

from uploading a document to actually running the recipes [30].

52

Figure 4.4: ListWord Resource

Since we had to create a whole new backend, we had the opportunity of re-thinking

about the web-service interface. We could have used the existing SOAP based services

signature, but decided to use REST services for two reasons. First, we already are using

REST web services to interact with HBase (comes as a part of HBase), and secondly, we do

not need the SOAP specific advantage such as web security and transactions. Also, using

REST is much simpler programmatically.

We developed the TAPoR REST web services using Restlet, an open source Servlet

API based Rest service provider. It is a framework that provides a API supporting Rest

concepts[30], and a Restlet Engine that provides an implementation of the API. This can be

correlated to as having standard JDBC API and concrete JDBC drivers.

Restlet provides APIs to follow the Rest principle of Resources. In our case, we expose

text analysis recipes as resources. For example, we have created a ListResource class for the

List words functionality. Figure 4.4 shows an interesting code fragment, exposing a func-

tionality as a Restlet resource. One needs to extend the class org.restlet.resource.ServerResource

to expose an entity as a REST resource (as shown in line 5). Next, one should provide the

53

Figure 4.5: Main class of TAPoR Rest application

implementation of the HTTP request methods POST/GET/DELETE/PUT one wants to sup-

port. We design all TAPoR web services to accept POST requests. Annotation at line num-

ber 14 suggest that the framework will invoke the handleTopKWords method when a POST

request is submitted to a URI matching to the ListResource resource. Match a Resource

to a URI is done in the main class of the application, as shown in Figure 4.5. The figure

also shows an important line of code in order to define an application in Restlet. This driver

class should extends the class org.restlet.Application as shown in lines 1-3. The Resource to

URI mapping is done in the createInboundRoot method as shown in lines 20-25 where we

match a URI ”/listWords” to the ListWordResource resource class. The application context

and its port binding is done as shown in lines 8-12. In summary, a HTTP POST request

of the form ”http://hostname:9192/restapp/listWords” will be redirected towards the han-

dleTopKWords() method of ListWordResource class. We created 3 such resources for List

words, Concordance and Co-occurrence functionalities.

4.4.4 TAPoR APIs

Here we list the signature of the three Restful APIs that we implemented as part of TAPoR

migration on to HBase. The request and response are shared in JSON format.

1. List words. URI: /restapp/listWords/

54

The request payload should have the following parameters:

• docID of the document.

• resultSetSize: an int value, multiple of 100 (like 2 for top 200 words)

The response will be a JSON object, with following three fields

• status: 0 or 1. 0 for success, 1 for failure

• result list: sorted array of words with their frequency.

• message: Error message (in case of any error, else blank).

The following is a sample response object:

{ “status”:“0”, “list”:[“foo:100, bar:90, sacred: 25, remembered: 25”], “message”:“”

}

2. Concordance. URI: /restapp/concordance/

The request payload should have the following parameters:

• docID of the document.

• word: the target word whose concordance has to be computed

• resultSetSize: maximum number of instances (byte offsets) of the words are to

be send in the response.

The response will be a JSON object, with the following three fields

• status: 0 or 1. 0 for success, 1 for failure

• result list: an array containing the read concordance from the document.

• message: Error message (in case of any error, else blank).

The following is a sample response object:

{ “status”:“0”, “concordance”:[“ you; your enemies be silenced;”, “life;true the burn-

ing spirit of love eternity.”], “message”:“” }

3. FileUpload. URI: /restapp/fileUpload/

The request payload should have the following parameters:

• filePath: URI of the file where it is to be fetched and uploaded to HDFS

55

The response will be a JSON object, with following three fields

• status: 0 or 1. 0 for success, 1 for failure

• documentId: an int value which is equal to document Id in HBase as explained

in section 4.3.

• message: Error message (in case of any error, else blank).

The following is a sample response object:

{ “status”:“0”, “docID”:“12342343”, “message”:“” }

4.5 Summary

Data-intensive applications, such as social networking sites like Facebook, twitter, neces-

sitate the development of more scalable options than relational databases. NoSQL or Not

only SQL databases or so called Cloud databases, with their scalability, robustness and bet-

ter performance present a good alternative for some kind of workloads. These databases

do not include complex, multi-transaction oriented financial institutions; rather a more un-

structured, single row transaction workloads like the one mentioned at the beginning. These

cloud databases are more appropriate for applications that produce tremendous amount of

data at a high rate, like Facebook which was generating 60 terabytes every week [31] in

2009. Such workloads presents an exciting use case of these NoSQL databases. And one

can now leverage cloud computing to spin a cluster with in a matter of few minutes and at

an economical price.

In this area, there are many options such as HBase, Cassandra, MongoDB, VoltDB

to name a few. HBase is increasingly becoming more popular and its recent adoption by

Cassandra’s inventor Facebook for its inbox messages [18], yfrog as its image store[32] and

Twitter [33] has given it a major boost.

This chapter discussed HBase, its design, the extensions we developed for it and the

process of using it for a web based application. We discussed the use case of Coprocessor

Endpoint while creating the Frequency index of the document by reading the word index at

the server side. We can also extend the TAPoR functionality by analyzing multi documents

in one request. This can be done by using a Coprocessor Endpoint to process the document

at the server side (for example, finding common top K words in two documents). This

supports our claim about Coprocessors usability in HBase for many real world applications.

We believe that the lesson we learned will be useful in migration of other applications.

56

Chapter 5

Conclusion

We are seeing an unprecedented growth of data in the last decade, primarily unstructured.

This has led researchers and practitioners to look for new alternatives to traditional RDBMs.

Cloud databases (also called NoSQL databases) are designed to address the scalability is-

sues, as they can be configured to run on computational clusters in the order of 100s of

nodes. The fundamental shortcoming of these databases, however, is that they lack the sup-

port that software developers have grown accustomed to expect from traditional RDBMs,

such as a structured query language, stored procedures and active triggers, and support for

complex data types. This current limitation has motivated an active field of research focused

on exploring novel ways to improve software-development support around cloud databases.

In this dissertation, we focused on HBase and extended its newly developed Coprocessor

framework to improve the current query-execution mechanism.

5.1 Contributions

This thesis makes the following contributions.

• We have designed and implemented standard aggregate functions, such as row-count,

max, min and others, using existing Coprocessors infrastructure. These aggregates

are useful features and all existing relation database systems provide them as inbuilt

functions. In HBase, these functions provide a better alternative than the existing

approaches of running a sequential Scan or a MapReduce job. This work has been

accepted by HBase team and committed to the main trunk.

• We have designed a cursor framework that provides support for streaming results

from the Coprocessor endpoints. With the cursor framework, a coprocessor can pro-

cess a Region in an incremental way. It maintains the client request state (in a cursor)

57

and the client can invoke its next() API to incrementally receive results. We demon-

strated that it gives better response time when there is some big computation that can

be transferred to the server-side, as mentioned in Section 3.3. This work has been

submitted to the HBase team and is up for review.

• The cursor framework can also be used to create a parallel scanner infrastructure. The

idea is it can use the parallelism inherently provided by the Coprocessor framework,

and one can stream in results in parallel. We used its variation while executing Query

4 on the NGram dataset, where results from 12 Regions are fetched in parallel. This

is a much desired functionality in the current HBase [34].

• Finally, we investigated the issues around migrating an existing application to HBase.

We migrated TAPoR, a text analysis application which suffered from poor scalabil-

ity, onto HBase. We shared our experience and believe that lessons learnt such as

designing a schema, using HBase REST service (to utilize connection pooling) as

compared to creating a new connection per each request, can be used for migrating

other web-based applications.

Our experiments validate the streaming results extension for Coprocessors and demon-

strate that it can substantially improve performance in a variety of types of data-access

patterns such as TAPoR.

5.2 Future Work

The work of this thesis consists of two themes: at the systems’ level, it extends the HBase

Coprocessors framework; at the application level, with the TAPoR migration, it demon-

strates the relevance of the HBase technology to the task of migrating and scaling up exist-

ing web-based applications.

In the context of the first theme, we plan to continue working on the result-streaming

support in order to make it robust enough to be incorporated in Apache HBase. The Co-

processor framework will greatly enhance the next major HBase release (version 0.92) in

near future and we intend to make the result-streaming functionality an important part of

it. In addition to support a variety of data-access use cases, at the very least, it will help

eliminate the timeout exception in current aggregate functions for large table sets. We can

also use it for providing a parallel scanner functionality, where a Coprocessor can simply

return batch of raw rows from server, in parallel. This will be a useful feature as compared

58

to the existing sequential Scan API.

In the context of the TAPoR application, we plan to add more functionality such as

comparing a collection of documents in one request. This require a TAPoR specific Copro-

cessor to perform the computation at the server side and send the intermediate results to the

client. This way, users will be able to process large documents without transferring them to

the client.

59

Bibliography

[1] (2011). [Online]. Available: http://ngrams.googlelabs.com/datasets

[2] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large clusters,”
Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[3] (2011). [Online]. Available: http://hadoop.apache.org/common/docs/current/hdfs
design.html/

[4] (2010). [Online]. Available: http://gigaom.com/cloud/sensor-networks-top-social-
networks-for-big-data-2/

[5] (2011). [Online]. Available: http://wiki.apache.org/hadoop/Hbase/PoweredBy

[6] (2011). [Online]. Available: http://aws.amazon.com/ec2/

[7] (2011). [Online]. Available: http://wiki.apache.org/hadoop/

[8] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Burrows, T. Chandra,
A. Fikes, and R. Gruber, “Bigtable: A distributed storage system for structured data,”
ACM Transactions on Computer Systems (TOCS), vol. 26, no. 2, pp. 1–26, 2008.

[9] S. Ghemawat, H. Gobioff, and S. Leung, “The google file system,” in ACM SIGOPS
Operating Systems Review, vol. 37, no. 5. ACM, 2003, pp. 29–43.

[10] (2011). [Online]. Available: www.odbms.org/download/dean-keynote-ladis2009.pdf

[11] A. Pavlo, E. Paulson, A. Rasin, D. Abadi, D. DeWitt, S. Madden, and M. Stonebraker,
“A comparison of approaches to large-scale data analysis,” in Proceedings of the 35th
SIGMOD international conference on Management of data. ACM, 2009, pp. 165–
178.

[12] (2011). [Online]. Available: http://www.cs.yale.edu/people/abadi.html

[13] (2011). [Online]. Available: http://www.hadapt.com/

[14] M. Stonebraker and R. Cattell, “10 rules for scalable performance in’simple opera-
tion’datastores,” Communications of the ACM, vol. 54, no. 6, pp. 72–80, 2011.

[15] (2011). [Online]. Available: http://www.linuxjournal.com/content/the-large-hadron-
collider

[16] (2011). [Online]. Available: http://www.mendeley.com/

[17] A. Lakshman and P. Malik, “Cassandra: a decentralized structured storage system,”
ACM SIGOPS Operating Systems Review, vol. 44, no. 2, pp. 35–40, 2010.

[18] (2011). [Online]. Available: http://www.facebook.com/note.php?note id=
454991608919

60

http://ngrams.googlelabs.com/datasets
http://hadoop.apache.org/common/docs/current/hdfs_design.html/
http://hadoop.apache.org/common/docs/current/hdfs_design.html/
http://gigaom.com/cloud/sensor-networks-top-social-networks-for-big-data-2/
http://gigaom.com/cloud/sensor-networks-top-social-networks-for-big-data-2/
http://wiki.apache.org/hadoop/Hbase/PoweredBy
http://aws.amazon.com/ec2/
http://wiki.apache.org/hadoop/
www.odbms.org/download/dean-keynote-ladis2009.pdf
http://www.cs.yale.edu/people/abadi.html
http://www.hadapt.com/
http://www.linuxjournal.com/content/the-large-hadron-collider
http://www.linuxjournal.com/content/the-large-hadron-collider
http://www.mendeley.com/
http://www.facebook.com/note.php?note_id=454991608919
http://www.facebook.com/note.php?note_id=454991608919

[19] B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Benchmarking
cloud serving systems with ycsb,” in Proceedings of the 1st ACM symposium on Cloud
computing. ACM, 2010, pp. 143–154.

[20] Y. Shi, X. Meng, J. Zhao, X. Hu, B. Liu, and H. Wang, “Benchmarking cloud-based
data management systems,” in Proceedings of the second international workshop on
Cloud data management. ACM, 2010, pp. 47–54.

[21] C. Zhang and H. De Sterck, “Supporting multi-row distributed transactions with
global snapshot isolation using bare-bones hbase,” Proc. of Grid2010, 2010.

[22] I. Konstantinou, E. Angelou, D. Tsoumakos, and N. Koziris, “Distributed indexing of
web scale datasets for the cloud,” in Proceedings of the 2010 Workshop on Massive
Data Analytics on the Cloud. ACM, 2010, pp. 1–6.

[23] N. Li, J. Rao, E. Shekita, and S. Tata, “Leveraging a scalable row store to build a
distributed text index,” in Proceeding of the first international workshop on Cloud
data management. ACM, 2009, pp. 29–36.

[24] (2011). [Online]. Available: http://berlinbuzzwords.de/

[25] (2011). [Online]. Available: http://www.slideshare.net/ghelmling/new-hbase-
features-coprocessors-and-security

[26] H. Vashishtha and E. Stroulia, “Enhancing query support in hbase via an extended
coprocessors framework,” ServicesWave, 2011, “To appear”.

[27] J. Michel, Y. Shen, A. Aiden, A. Veres, M. Gray, J. Pickett, D. Hoiberg, D. Clancy,
P. Norvig, J. Orwant et al., “Quantitative analysis of culture using millions of digitized
books,” Science, vol. 331, no. 6014, p. 176, 2011.

[28] H. Vashishtha, M. Smit, and E. Stroulia, “Moving text analysis tools to the cloud,” in
2010 6th World Congress on Services. IEEE, 2010, pp. 107–114.

[29] (2011). [Online]. Available: http://taporware.mcmaster.ca/∼taporware/textTools/

[30] R. Fielding, “Architectural styles and the design of network-based software architec-
tures,” Ph.D. dissertation, Citeseer, 2000.

[31] D. Beaver, S. Kumar, H. Li, J. Sobel, and P. Vajgel, “Finding a needle in haystack:
Facebooks photo storage,” in Proceedings of the 9th USENIX conference on Operating
systems design and implementation. USENIX Association, 2010, pp. 1–8.

[32] (2011). [Online]. Available: http://nosql.mypopescu.com/post/7794033125/hbase-at-
yfrog

[33] (2011). [Online]. Available: http://blog.muehlburger.at/2010/05/06/twitters-use-of-
cassandra-pig-and-hbase-for-highly-distributed-data-processing-and-analysis/

[34] (2011). [Online]. Available: https://issues.apache.org/jira/browse/Hbase-1935

61

http://berlinbuzzwords.de/
http://www.slideshare.net/ghelmling/new-hbase-features-coprocessors-and-security
http://www.slideshare.net/ghelmling/new-hbase-features-coprocessors-and-security
http://taporware.mcmaster.ca/~taporware/textTools/
http://nosql.mypopescu.com/post/7794033125/hbase-at-yfrog
http://nosql.mypopescu.com/post/7794033125/hbase-at-yfrog
http://blog.muehlburger.at/2010/05/06/twitters-use-of-cassandra-pig-and-hbase-for-highly-distributed-data-processing-and-analysis/
http://blog.muehlburger.at/2010/05/06/twitters-use-of-cassandra-pig-and-hbase-for-highly-distributed-data-processing-and-analysis/
https://issues.apache.org/jira/browse/Hbase-1935

	Introduction
	Contributions
	Thesis organization

	Background and Related Research
	Hadoop, HDFS and HBase
	Hadoop
	HDFS
	HBase

	Relevance of this work
	Related Research

	Enhancing Query Support using Coprocessor Endpoints
	Extending HBase Endpoints
	Endpoint Queries
	Aggregate functions using Coprocessor Endpoints
	Streaming Results from Coprocessor Endpoints

	Experiment Setup
	Datasets
	Sample Queries
	Schema Design
	Cluster Setup
	Experiment Results

	Evaluation
	Aggregate Functions Benchmarking and Future Work
	Summary

	Migrating TAPoR to HBase
	TAPoR
	Schema design
	Possible schema options

	Workflow Design and Overall Architecture
	Design Discussion of individual components
	Inverted Index with MapReduce
	Frequency index with Coprocessor Endpoint
	TAPoR middleman: Restlet based Webservices
	TAPoR APIs

	Summary

	Conclusion
	Contributions
	Future Work

	Bibliography

