ERA

Download the full-sized PDF of Characterizing the performance of ecosystem models across time scales: A spectral analysis of the North American Carbon Program site-level synthesisDownload the full-sized PDF

Analytics

Share

Permanent link (DOI): https://doi.org/10.7939/R38P5V88X

Download

Export to: EndNote  |  Zotero  |  Mendeley

Communities

This file is in the following communities:

Renewable Resources, Department of

Collections

This file is in the following collections:

Journal Articles (Renewable Resources)

Characterizing the performance of ecosystem models across time scales: A spectral analysis of the North American Carbon Program site-level synthesis Open Access

Descriptions

Author or creator
Dietze, M.C.
Vargas, R.
Richardson, A.D.
Stoy, P.C.
Barr, A.G.
Anderson, R.S.
Altaf Arain, M.
Baker, I.T.
Black, T.A.
Chen, J.M.
Ciais, P.
Flanagan, L.B.
Gough, C.M.
Grant, R.F.
Hollinger, D.
Izaurralde, R.C.
Kucharik, C.J.
Lafleur, P.
Liu, S.
Lokupitiya, E.
Luo, Y.
Munger, J.W.
Peng, C.
Poulter, B.
Price, D.T.
Ricciuto, D.M.
Riley, W.J.
Sahoo, A.K.
Schaefer, K.
Suyker, A.E.
Tian, H.
Tonitto, C.
Verbeeck, H.
Verma, S.B.
Wang, W.
Weng, E.
Additional contributors
Subject/Keyword
Temporal variability
Wavelet analysis
CO2
Exchange
Biosphere
Forest
Dioxide uptake
Uncertainty
Multiscale analysis
Vegetation
Type of item
Journal Article (Published)
Language
English
Place
Time
Description
Ecosystem models are important tools for diagnosing the carbon cycle and projecting its behavior across space and time. Despite the fact that ecosystems respond to drivers at multiple time scales, most assessments of model performance do not discriminate different time scales. Spectral methods, such as wavelet analyses, present an alternative approach that enables the identification of the dominant time scales contributing to model performance in the frequency domain. In this study we used wavelet analyses to synthesize the performance of 21 ecosystem models at 9 eddy covariance towers as part of the North American Carbon Program's site-level intercomparison. This study expands upon previous single-site and single-model analyses to determine what patterns of model error are consistent across a diverse range of models and sites. To assess the significance of model error at different time scales, a novel Monte Carlo approach was developed to incorporate flux observation error. Failing to account for observation error leads to a misidentification of the time scales that dominate model error. These analyses show that model error (1) is largest at the annual and 20-120 day scales, (2) has a clear peak at the diurnal scale, and (3) shows large variability among models in the 2-20 day scales. Errors at the annual scale were consistent across time, diurnal errors were predominantly during the growing season, and intermediate-scale errors were largely event driven. Breaking spectra into discrete temporal bands revealed a significant model-by-band effect but also a nonsignificant model-by-site effect, which together suggest that individual models show consistency in their error patterns. Differences among models were related to model time step, soil hydrology, and the representation of photosynthesis and phenology but not the soil carbon or nitrogen cycles. These factors had the greatest impact on diurnal errors, were less important at annual scales, and had the least impact at intermediate time scales.
Date created
2011
DOI
doi:10.7939/R38P5V88X
License information
Rights
© 2011 American Geophysical Union. This version of this article is open access and can be downloaded and shared. The original author(s) and source must be cited.
Citation for previous publication
Dietze, M.C, R. Vargas, A.D. Richardson, P. Stoy, A.G. Barr, R.S. Anderson, M.A. Arain, I.T. Baker, T.A. Black, J.M. Chen, P. Ciais, L.B. Flanagan, C. M. Gough, R.F. Grant, D. Hollinger, C. Izaurralde, C.J. Kucharik, P. Lafleur, S. Liu, E. Lokupitiya, Y. Luo, J.W. Munger, C. Peng, B. Poulter, D.T Price, D.M. Ricciuto, W.J. Riley, A.K. Sahoo, K. Schaefer, A.E. Suyker, H. Tian, C. Tonitto, H. Verbeeck, S.B. Verma, W. Wang, and E. Weng. (2011). Characterizing the performance of ecosystem models across time scales: A spectral analysis of the North American Carbon Program site-level synthesis. Journal of Geophysical Research - Biogeosciences, 116, G04029. doi.10: 1029/2011JG001661.
Source
Link to related item

File Details

Date Uploaded
Date Modified
2014-04-28T20:54:25.089+00:00
Audit Status
Audits have not yet been run on this file.
Characterization
File format: pdf (Portable Document Format)
Mime type: application/pdf
File size: 9146546
Last modified: 2015:10:12 10:24:12-06:00
Filename: JGRB_116_2011_G04029.pdf
Original checksum: 6a33aedd0c14f643b84ec734505304ac
Well formed: true
Valid: true
File title: Characterizing the performance of ecosystem models across time scales: A spectral analysis of the North American Carbon Program sitelevel synthesis
File author: Michael C. Dietze
Page count: 15
Activity of users you follow
User Activity Date