
Better Time Constrained Search via Randomization and Postprocessing

Fan Xie and Richard Valenzano and Martin Müller
Computing Science, University of Alberta

Edmonton, Canada
{fxie2, valenzan, mmueller}@ualberta.ca

Abstract

Most of the satisficing planners which are based on heuristic
search iteratively improve their solution quality through an
anytime approach. Typically, the lowest-cost solution found
so far is used to constrain the search. This avoids areas of
the state space which cannot directly lead to lower cost so-
lutions. However, in conjunction with a post-processing plan
improvement system such as ARAS, this bounding approach
can harm a planner’s performance.
The new anytime search framework of Diverse Any-Time
Search avoids this behaviour by taking advantage of the fact
that post-processing can often improve a lower quality input
plan to a superior final plan. The framework encourages di-
versity of “raw” plans by restarting and using randomization,
and does not use previous solutions for bounding. This gives
a post-processing system a more diverse set of plans to work
on, which improves performance. When adding both Diverse
Any-Time Search and the ARAS post-processor to LAMA-
2011, the winner of the most recent IPC planning competi-
tion, and AEES, the Anytime Explicit Estimation Algorithm,
the performance on the 550 IPC 2008 and IPC 2011 problems
is improved by almost 60 points according to the IPC metric,
from 511 to over 570 on LAMA-2011, and 73 points from
440 to over 513 on AEES.

Introduction
Since IPC-2008, the satisficing planning community has
been using the IPC scoring function to evaluate planners.
This function emphasizes both plan quality and coverage
simultaneously. Many satisficing planners such as LAMA
(Richter and Westphal 2010) and Fast Downward (Helmert
2006) use an anytime approach: they attempt to quickly find
an initial plan of possibly low quality, then use the remain-
ing time to improve upon this plan. Post-processing, as im-
plemented in the ARAS system (Nakhost and Müller 2010),
is another recent plan quality improvement technique. This
approach takes an existing valid plan as input and tries to
improve it by removing unnecessary actions and by finding
shortcuts with a local search. Another post-processing tech-
nique, discussed in (Chrpa, McCluskey, and Osborne 2012),
analyzes action dependencies and independencies in order
to identify redundant actions or non-optimal sub-plans.

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Since post-processing systems decouple plan improve-
ment from plan discovery, they can easily be applied to
any planner once it finds a solution. Originally, the ARAS
post-processor was applied as the final step of the plan-
ning process, after the planner had completed or was con-
sidered unlikely to find a better plan. However, it is also
possible to use a post-processor in anytime fashion, by run-
ning it with a relatively tight time or memory limit on ev-
ery plan produced by an anytime planner. This approach has
been used by several recent planners (Nakhost et al. 2011;
Valenzano et al. 2012; Xie, Nakhost, and Müller 2012). Ex-
perience shows that there is large variance in the amount of
improvement achieved by post-processing. A lower quality
input plan sometimes yields a higher quality final plan.

This observation has an impact on the design of planning
systems which use post-processing. Most anytime satisfic-
ing planners use the cost of the best incumbent solution to
bound their future search. This avoids wasting effort in ar-
eas of the state space that cannot directly lead to a better
solution. However, we will show below that it has a negative
impact on the effectiveness of post-processing. Such bound-
ing greatly decreases the number and variety of plans that an
anytime system finds, since it makes it much more difficult
to find such new plans.

The main contributions of this paper are as follows:
• We introduce the concept of unproductive time, which

measures the amount of time after the best solution is
found, to help explain this trade-off.

• We present evidence that bounding in an anytime sys-
tem is detrimental when used in conjunction with a post-
processing system.

• We develop the meta-algorithm Diverse Any-time Search
(DAS), which uses restarting to generate a more diverse
set of plans.

• We implement DAS on top of the Fast Downward code
base (Helmert 2006), and demonstrate significant plan
quality improvements for two recent planning algorithms:
the state-of-the-art planner LAMA-2011 (Richter and
Westphal 2010) and AEES (Thayer, Benton, and Helmert
2012).

• We show that the improvements from DAS and from
post-processing are independent, and can even be syn-
ergetic: With LAMA, the improvement from using both



techniques together is slightly larger than the sum of the
improvements when applied individually.

The remainder of this paper is organized as follows: af-
ter introducing the concept of unproductive time and mea-
suring it in LAMA for recent IPC planning problems, the
new meta-algorithm DAS (Diverse Any-time Search) is in-
troduced. DAS is tested both with and without the ARAS
post-processor on LAMA-2011 and AEES. The experimen-
tal results show strong improvements in plan quality on IPC-
2008 and IPC-2011 domains.

Unproductive Time in Any-time Satisficing
Planning

As mentioned above, most state-of-the-art planners use an
anytime strategy to improve solution quality over time. Max-
imizing the efficient usage of the available planning time is
important for plan quality. However, there has been little in-
vestigation into how much time is actually being used for
finding the final solution. Let unproductive time be defined
as the amount of time remaining, out of the total time given,
when the planner’s best solution is found. For example, if
an anytime planner A finds its best solution on a planning
instance B at 13 minutes given a 30 minutes time limit, and
A does not improve upon this plan in the remaining 17 min-
utes, then the unproductive time for planner A on problem
B is 17 minutes. The amount of unproductive time can be
used to evaluate how efficiently an anytime planner is using
the given search time, since that unproductive time could be
spent doing something useful, such as plan post-processing.
One of the consequences of using bounding in an anytime
system such as LAMA-2011 is that it often leads to huge
amounts of unproductive time.

LAMA-2011 is a state-of-the-art planner that has been
shown to achieve both high coverage and strong solution
quality: it won the sequential satisficing track of the Inter-
national Planning Competition in 2011 (IPC 2011) after, in
its previous incarnation as LAMA-2008, winning IPC 2008.
LAMA’s high coverage is achieved through techniques such
as the use of multiple heuristics (Richter, Helmert, and
Westphal 2008), preferred operators (Richter and Helmert
2009), and greedy best-first search (Bonet and Geffner
2001). LAMA-2011 starts its search with two runs of greedy
best-first search, first with a distance-to-go heuristic and
then with cost-to-go. Next, LAMA improves the quality of
its solutions through the anytime procedure of Restarting
Weighted A∗ (RWA∗) (Richter, Thayer, and Ruml 2010).
This procedure starts a new WA∗ search with a lower weight
w whenever a new best solution is found. Only cost-to-go
heuristics are used in this phase.

Whenever a new best solution with cost C is found, this
cost is used to bound the rest of the search. Only nodes with
g-cost (cost of best known path to the node) less than C are
added to the open list. This prunes states that cannot lead
directly to an improving solution.

Figure 1 shows that this approach leads to a very large
fraction of unproductive time on IPC benchmarks. Among
the total of 244 problems solved in IPC-2011 with an 1800
second (30 minute) time limit, in more than 45% (111) of the

problems, LAMA-2011 is unproductive for more than 1700
seconds. Table 1 shows the amount of unproductive time
separately for each IPC-2011 domain. In the four domains of
2011-barman, 2011-elevators, 2011-parcprinter and 2011-
woodworking, unproductive time exceeds 90%. In these do-
mains, the planner quickly finds an initial solution, but fails
to improve it.

As a typical example, Table 2 shows the number of so-
lutions and the amount of unproductive time for all 20 in-
stances of the 2011-elevators domain. With the exception
of elevator04, LAMA-2011 finds only a single solution to
each problem. This does not at all imply that the first solu-
tion found by LAMA-2011 is optimal (better solutions can
be found after applying post-processors for these prob-
lems). It is simply much more difficult to find a second so-
lution when using cost-to-go heuristics and the bound from
the first solution, than it was to generate the initial solution
using distance-to-go heuristics and no bound.

7	  
5	  
3	  
6	  

3	  
3	  
5	  

2	  
6	  

3	  
7	  
11	  

4	  
5	  
8	  
11	  

21	  
111	  

0	   10	   20	   30	   40	   50	   60	   70	   80	   90	   100	   110	   120	  
(0,100]	  

(100,200]	  
(200,300]	  
(300,400]	  
(400,500]	  
(500,600]	  
(600,700]	  
(700,800]	  
(800,900]	  
(900,1000]	  

(1000,1100]	  
(1100,1200]	  
(1200,1300]	  
(1300,1400]	  
(1400,1500]	  
(1500,1600]	  
(1600,1700]	  
(1700,1800]	  

number	  of	  problem	  

un
pr
od

uc
.v

e	  
.m

e	  
in
	  se

co
nd

	  

LAMA-‐2011	  

Figure 1: Unproductive Time of LAMA-2011 on IPC-2011

Domain solved total time UT percentage
parcprinter 20 36000 35997 99.99%
barman 20 36000 35901 99.73%
woodworking 20 36000 35357 98.21%
elevators 20 36000 33890 94.14%
visitall 20 36000 31280 86.89%
pegsol 20 36000 31107 86.41%
scanalyzer 20 36000 29844 82.90%
nomystery 10 18000 14682 81.57%
transport 15 27000 20554 76.13%
openstacks 20 36000 24902 69.17%
floortile 6 10800 7032 65.11%
tidybot 16 28800 18099 62.84%
sokoban 19 34200 20377 59.58%
parking 18 32400 13948 43.05%

Table 1: Unproductive Time (UT) of LAMA-2011 on differ-
ent IPC-2011 domains.

Post-Processing with ARAS
Even a state-of-the-art planner such as LAMA-2011 spends
the large majority of its execution time being unproductive.



Instance #s UT Instance #s UT
01 1 1799 11 1 1760
02 1 1798 12 1 1704
03 1 1797 13 1 1679
04 3 1794 14 1 1725
05 1 1799 15 1 1659
06 1 1796 16 1 1649
07 1 1798 17 1 1576
08 1 1791 18 1 1510
09 1 1789 19 1 1152
10 1 1783 20 1 1531

Table 2: Number of solutions (#s) and Unproductive Time
(UT) of LAMA-2011 in the 20 instances of 2011-elevators.

How can we use this time more effectively?
One possibility is to feed the solutions found by a plan-

ner into a post-processing plan improvement system such as
ARAS (Nakhost and Müller 2010). ARAS consists of two
components. The first, Action Elimination (AE), examines
the plan for unnecessary actions. This involves scanning the
plan from front to back, removing each action and its depen-
dent actions in turn, and testing if the resulting plan is still
valid and reaches a goal. If so, all the unneccessary actions
are discarded and the scan continues on the resulting shorter
plan.

The second and main component of ARAS is Plan Neigh-
bourhood Graph Search (PNGS). This technique builds a
neighbourhood graph in the state space around the trajec-
tory of the input plan by performing a breadth-first search to
some depth d. Once this plan neighbourhood is constructed,
a lowest-cost plan from the start to a goal state is extracted
from this graph. Intuitively, the algorithm identifies local
shortcuts along the path.

In Anytime ARAS, AE and PNGS are alternated, starting
with AE, and running PNGS with an increasing depth bound
at each iteration until some time or memory limit is reached.

When ARAS was first introduced, it was used in a process-
once fashion. This involved splitting the available planning
time into two phases: plan finding and plan post-processing.
In the first phase, a planner is used to find some plan (or a
series of plans). When the plan finding phase is up, the best
plan found so far is handed to a post-processor which is then
allotted all of the remaining time.

Though ARAS was initially proposed for use in this
process-once fashion, several planners which competed in
IPC-2011 (Nakhost et al. 2011; Valenzano et al. 2012) used
this system in an anytime fashion. This involves interleav-
ing the plan finding and plan post-processing phase by using
the post-processor in between iterations of an anytime plan-
ner. Each new plan found is immediately post-processed by
ARAS. Once ARAS reaches some time or memory limit, it
returns the best solution it has found and allows the anytime
planner to continue looking for more plans.

There are two motivations for using ARAS in this way.
First, for most anytime satisficing planners, it is difficult
to determine if any new plans will be found during the re-
maining time or if the planner will be unproductive. Sec-

ond, even if the anytime planner can find a better plan with
more search, there is no guarantee that post-processing the
best plan found by an anytime planner will have a lower
cost than the post-processed version of a weaker plan found
earlier. The following experiment illustrates this. There are
151 problems from IPC-2011 for which LAMA-2011 gener-
ates more than one plan (without any assistance from a post-
processor). If ARAS is run with a 2 GB memory limit on all
these plans, then on 44 (29%) of these problems, the lowest
cost solution is generated by post-processing an earlier plan,
not from the final and best input plan found by LAMA-2011.
The instance 2011-transport07 is typical: here, LAMA-2011
generates two plans of cost 8396 and 7222. Post-processing
with ARAS improves the weaker input plan to 6379, and the
stronger one to 6402. The weaker initial plan leads to a better
final result.

For post-processing, though it is important to get high
quality input plans, when they are becoming very expen-
sive to find, we should change to find more lower qual-
ity input plans, which might also contribute to the final
quality improvement. If the anytime planner is only able
to generate a small number of similar plans, then ARAS can
only search within a very restricted set of neighbourhoods.
This likely means that all its output plans will be similar, and
of similar quality. When ARAS is handed a larger and more
diverse set of input plans, it has a greater chance of finding
significant improvements for at least one of them.

The Diverse Any-time Search Meta-Algorithm
The Diverse Any-time Search (DAS) meta-algorithm, shown
in Algorithm 1, uses restarts with no bounds and post-
processing in order to improve a given anytime planner.
DAS divides the given total planning time into N equal time
segments, where N is a user-supplied constant. In the first
segment, the anytime planner P is run normally, except that
ARAS is used to post-process each plan generated by P . At
any time during this first segment, P can use its best plan
found so far, excluding post-processing, to bound its search.

When time runs out on the first time segment, the best plan
found so far, including post-processing, is saved. The any-
time planner is restarted without any knowledge of previous
solutions, and with a planner-specific randomization which
will vary the planner’s search. At the end of each search seg-
ment, the best overall plan is updated, and P restarts from
scratch with a new random seed.

By restarting from scratch with the early, greedier itera-
tions of P , which typically find plans much more frequently,
DAS increases the number of plans available to the post-
processor, thereby increasing the number of opportunities
for finding a strong improvement.

If P cannot find any solution by the end of the first time
segment, then it is kept running, without restarts. In this
case, finding even a single solution is deemed to be hard, and
restarts may hurt the planner 1. Algorithm 2 shows details.

1By taking this approach, we are ensuring that the coverage
of the restarting planners is the same as the baseline planners.
As our focus is quality, it is easier to analyze the difference in
plan quality between planners by taking this approach.



The algorithm uses two time limits: a soft time limit t for
each segment, used for restarting if at least one solution was
found, and a hard time limit T for the whole search. If in the
first segment, P cannot find a solution within the soft time
limit t, then restarts are disabled. In Algorithm 2, in the as-
signment 〈p1, t1〉 ← P .search(conf , bound , rand , time),
conf is the current search configuration (such as the weight
for RWA*), bound is the plan quality bound, and rand is the
random seed. If the search finds a solution within time limit
time, it returns the plan p1 and time used t1. Otherwise, the
search terminates with p1 = NULL and t1 = time.

The expression 〈p2, t2〉 ← PP .process(p1 , time) indi-
cates a call to the post-processor PP with p1 as input plan.
The post-processor PP returns when it either reaches the
time limit time or a pre-set memory limit. When PP ter-
minates because of the time limit, it returns the best plan
found (could be the input plan p1) and t2 == time. When
it terminates because of the memory limit, it returns the best
plan found (also could be the input plan p1) and the time
used.

Algorithm 1 Diverse Any-time Search
Input Initial State I , goal condition G given search
time T , planner P , post-processor PP
Parameter N
Output A solution plan

t← T/N
〈planbest, costbest〉 ← 〈[],∞〉
for i from 1 to N do
rand← generate_random_seed()
isSolved← i == 1
plan← AnytimeSearchWithPostprocessing
(I,G, T, t, rand, P, PP, isSolved)
if cost(plan) < costbest then
〈planbest, costbest〉 ← 〈plan, cost(plan)〉

end if
end for
return planbest

Experiments
Experiments include tests on all 550 problems from IPC-
2008 and IPC-2011, and were run on an 8 core 2.8 GHz
machine with a time limit of 30 minutes and memory limit
of 4 GB per problem. Results for planners which use ran-
domization are averaged over 5 runs. All planners are im-
plemented on the same version of the Fast Downward code
base (Helmert 2006). The translation from PDDL to SAS+
was preprocessed by Fast Downward, and that time is not
included here. The scores shown use the IPC metric with
LAMA-2011 as a baseline. If L is the plan computed by
LAMA-2011, then the score of a given plan P is calculated
by cost(L)/cost(P ). We use the ARAS system as the post-
processor in our experiments. ARAS is given a memory limit
of 2 GB, and the time limit of running ARAS is controlled
by the DAS meta-algorithm as explained in last section.

Algorithm 2 Anytime Search with Post-processing
Input Initial State I , goal condition G, hard timelimit T ,
soft timelimit t, random seed rand, planner P ,
post-processor PP , first solution found flag solved
Parameter N
Output A solution plan

conf ← P .GetFirstConf ()
bound←∞
planbest ← []
isSolved← solved
totalT ime← 0
restart← true
while have time do

if not isSolved or not restart then
time← T − totalT ime
〈p1, t1〉 ← P .search(conf , bound , rand , time)
if not isSolved and t1 > t then

restart← false
end if

else
time← t− totalT ime
〈p1, t1〉 ← P .search(conf , bound , rand , time)

end if
if p1 == [] then

return []
end if
isSolved ← true
totalTime ← totalT ime+ t1
conf ← P .nextConf (conf )
bound← cost(p1)
if restart then
time← t− totalT ime

else
time← T − totalT ime

end if
〈p2, t2〉 ← PP.process(p1, time)
totalT ime← totalT ime+ t2
if cost(p2) < cost(planbest) then
planbest ← p2

end if
end while
return planbest

Experiment 1: Evaluating Anytime ARAS and
Bounding with LAMA
Table 3 compares three planners on IPC-2011 domains:

• LAMA-2011 is the IPC-2011 version of LAMA.

• LAMA-Aras is an implementation of Diverse Any-time
Search (DAS) with the input planner LAMA-2011, the in-
put post-processor Any-time ARAS and Parameter N=1 .
The improved plans by Any-time ARAS are not used for
bounding the following search, but LAMA-2011 still does
its own bounding internally. Any-time ARAS is given 2
GB of memory.

• LAMA-Aras-B is like LAMA-Aras. However, all plans,



Domain LAMA-2011 LAMA-Aras LAMA-Aras-B
barman 20 23.99 23.99
elevators 20 26.01 25.87
floortile 6 6.77 6.77
nomystery 10 10.00 9.83
openstacks 20 19.98 19.89
parcprinter 20 20.10 19.78
parking 18 18.93 17.46
pegsol 20 20.00 20.00
scanalyzer 20 23.35 21.26
sokoban 19 20.23 19.05
tidybot 16 16.77 16.77
transport 15 17.70 16.38
visitall 20 20.45 20.37
woodworking 20 20.96 20.85
Total 244 265.24 258.27

Table 3: Plan Quality of LAMA-2011, LAMA-Aras and
LAMA-Aras-B on IPC-2011.

including the improved plans found by Any-time ARAS ,
are used to bound subsequent LAMA searches.

Table 3 demonstrates that not using Aras-improved plans
for bounding LAMA is clearly the better choice, since
LAMA-Aras dominates LAMA-Aras-B in almost all do-
mains. Among the three planners, LAMA-Aras almost al-
ways gets the best score, except by a small margin in open-
stacks and tidybot. ARAS is not useful in the openstacks do-
main (Nakhost and Müller 2010), and the time wasted run-
ning it leads causes a slight decrease in plan quality there.

Experiment 2: Evaluating Diverse Any-Time
Search with no Postprocessing
This section examines the impact of using Diverse Any-time
Search in terms of unproductive time and the number of so-
lutions it generates when added to LAMA-2011. These tests
do not use any post-processing system. They show that the
new meta-algorithm increases the number of plans found
and even improves solution quality in a number of domains.

When Diverse Any-time Search is added to LAMA-2011,
RWA∗ is being used within each time segment (as is bound-
ing), though the algorithm begins from scratch with a greedy
best-first search iteration at the beginning of each time seg-
ment, without any bounding from previous time segments.
The source of diversity is random operator ordering (Valen-
zano et al. 2012). This involves randomly shuffling the order
of the generated set of successors of an expanded node be-
fore they are added to the open list. Random operator order-
ing affects the search by changing the way that ties are bro-
ken. However, so as to maintain the same coverage between
competing algorithms, we use the default operator ordering
during the first time segment.

We refer to the new planner as Diverse-LAMA(N) where
N is the parameter which affects the length of the time seg-
ments. Table 4 shows that this planner generates many more
plans2 and has much less unproductive time than the regu-

2here we only show one run result instead of the average results

lar version of LAMA-2011 on the 2011-elevators domain.
In particular:

• The average number of plans increases from 1.1 to 4.3.
On 17 of the problems, we see an increase from 1
plan with standard LAMA-2011 to 4 plans with Diverse-
LAMA(4), since Diverse-LAMA(4) finds one plan per
segment. In the cases of elev02 and elev03, Diverse-
LAMA(4) sometimes finds more than 1 plan per segment,
depending on the random seed, whereas there is a segment
in which no plans are found on elev05.

• The amount of unproductive time decreases in all but one
instance (elev11), often drastically. The problem elev11
is the only exception as Diverse-LAMA(4) is unable to
improve the plan it finds during the first segment when
it finds the same plan as LAMA-2011. However, in all
other problems there was at least one plan found in a later
segment that was better than the initial plan found in the
first plan.

Due to LAMA-2011’s high amount of unproductive time
in this domain, Diverse-LAMA(4) is also able to find better
solutions in this domain. This is because LAMA-2011 rarely
finds a new solution after the first 1800/4 = 450 seconds.
In contrast, Diverse-LAMA(4) continues to find solutions
by restarting and returning to a greedier search. Sometimes,
these are better than the best solution found in the first 450
seconds.

Table 5 compares the plan quality of LAMA-2011 and
Diverse-LAMA(4) on IPC-2011 domains and shows that
this behaviour is also not limited to the elevators domain.
In total, Diverse-LAMA(4) improves by a score of 6.1
though this improvement is not uniform over all domains.
Instead, Diverse-LAMA(4) improves its solution quality
over LAMA-2011 in 8 domains, while it is worse in 5 do-
mains. These improvements are mainly made in domains in
which LAMA-2011 has a high percentage of unproductive
time as was explained for the elevators domain. In contrast,
in those domains in which LAMA-2011 is more produc-
tive later in the search, the restarts are preventing Diverse-
LAMA(4) following through on one search long enough in
order to find the best solutions. This is more apparent in
Table 6, which shows the number of problems on which
each of LAMA-2011 and Diverse-LAMA(4) found the best
plan. In those domains in which LAMA-2011 is mostly un-
productive, Diverse-LAMA(4) rarely generates worse final
solutions, while for those domains in which LAMA-2011
is more productive later on — such as Floortile, Tidybot,
Sokoban and Parking — Diverse-LAMA(4) will occasion-
ally find weaker plans.

Experiment 3: Combining Diverse Any-time
Search with ARAS

This section tests the DAS meta-algorithm with LAMA and
ARAS. The system is named Diverse-LAMA-Aras(N). The
four planners LAMA-2011, LAMA-2011-Aras, Diverse-
LAMA(4), and Diverse-LAMA-Aras(4) are tested on all

in 5 runs.



Problem N(LAMA) UT(LAMA) N(DL(4)) UT(DL(4))
elev01 1 1799 4 1350
elev02 1 1798 6 330
elev03 1 1797 4 1349
elev04 3 1794 9 835
elev05 1 1799 3 900
elev06 1 1796 4 446
elev07 1 1798 4 448
elev08 1 1791 4 895
elev09 1 1789 4 1342
elev10 1 1783 4 440
elev11 1 1760 4 1762
elev12 1 1704 4 863
elev13 1 1679 4 354
elev14 1 1725 4 793
elev15 1 1659 4 713
elev16 1 1649 4 795
elev17 1 1576 4 1262
elev18 1 1510 4 294
elev19 1 1152 4 1009
elev20 1 1531 4 296

Table 4: Number of solutions (N()) and Unproductive Time
(UT()) of planners LAMA-2011 (LAMA) and Diverse-
LAMA(4) (DL(4)).

domain UT LAMA-2011 Diverse-LAMA(4)
2011-parcprinter 99.99% 20 20.08
2011-barman 99.73% 20 21.76
2011-woodworking 98.21% 20 20.48
2011-elevators 94.14% 20 25.20
2011-visitall 86.89% 20 20.10
2011-pegsol 86.41% 20 19.79
2011-scanalyzer 82.90% 20 20.75
2011-nomystery 81.57% 10 10
2011-transport 76.13% 15 15.69
2011-openstacks 69.17% 20 20.22
2011-floortile 65.11% 6 5.05
2011-tidybot 62.84% 16 15.30
2011-sokoban 59.58% 19 18.59
2011-parking 43.05% 18 17.21
total 244 250.10

Table 5: Plan Quality of LAMA-2011, Diverse-LAMA(4)
on IPC-2011. Domains are sorted by decreasing fraction of
Unproductive time (UT) shown in Table 1.

550 problems from IPC-2008 and IPC-2011, the two IPC
competitions which emphasize plan quality.

Table 7 shows the plan quality comparison of the 4
planners in each domain. Diverse-LAMA-Aras(4) achieves
the highest overall score, improving the baseline planner
LAMA-2011 by 59 units, and is best in 18 out of 23 do-
mains.

Diverse-LAMA(4) and Diverse-LAMA-Aras(4) mainly
restart based on elapsed time. Figure 2 shows the normal-
ized score curve over 30 minutes of the 4 tested planners
over all IPC-2008 and IPC-2011 domains. The three vertical
lines indicate the restart points for Diverse-LAMA(4) and

domain UP better worse total
2011-parcprinter 99.99% 2 0 20
2011-barman 99.73% 19 0 20
2011-woodworking 98.21% 8 0 20
2011-elevators 94.14% 19 0 20
2011-visitall 86.89% 6 3 20
2011-pegsol 86.41% 0 1 20
2011-scanalyzer 82.90% 6 2 20
2011-nomystery 81.57% 0 0 10
2011-transport 76.13% 6 0 15
2011-openstacks 69.17% 4 4 20
2011-floortile 65.11% 0 2 6
2011-tidybot 62.84% 2 7 16
2011-sokoban 59.58% 1 4 19
2011-parking 43.05% 7 4 18

Table 6: Plan Comparison between Diverse-LAMA(4) (one
run result) and LAMA-2011 on different domains. The
columns better indicates in how many problems Diverse-
LAMA(4) generates better plans than LAMA-2011 (worse
means how many worse). Domains are ordered according to
the percentages of Unproductive time (UP) shown in Table
1.

Diverse-LAMA-Aras(4) at 450, 900 and 1350 seconds.
Before the first restart, DAS and non-DAS versions of the

same planner are nearly the same3. Immediately after the
first restart, the DAS planners show a quick jump in so-
lution quality. For many problems, restarting quickly finds
new, better solutions. The second restart provides a less pro-
nounced but still visible gain.

By producing more plans, Diverse-LAMA-Aras(4) also
provides more input plans for ARAS. Compared to Diverse-
LAMA-Aras(4), the improvement from the first restart
is more pronounced in Diverse-LAMA(4). Using ARAS
smoothes out some of the variance in solution quality be-
tween different runs.

As shown by the previous two experiments, using either
ARAS or DAS improves plan quality. The next experiment
shows that these improvements are independent, and even
synergetic, in the case of LAMA. Table 8 contains details
of experiments to support this claim. The score of each sys-
tem is split into two components: the raw scores of the best
plans produced by the baseline planner as part of the com-
bined system, and the improvement achieved through run-
ning Aras. For comparison, the baseline planner’s scores
are also shown. The raw scores are a little worse than the
baseline scores, since the planner has less time when used
in conjunction with Aras. The improvement of Aras over
Diverse-LAMA(4) is even slightly larger than the improve-
ment of Aras over LAMA-2011. This demonstrates that the
improvements due to the DAS enhancement, from Diverse-
LAMA(4) finding substantially different overall plans seems
to be largely independent from the local plan improvements

3To fully utilize our computational resources, we run several
processes simultaneously on a multi-core machine. While all ver-
sions use the same memory limit, the restarts cause DAS to use less
memory. The resulting decrease in memory contention accounts for
the small differences in planner performance.



found by Aras. The following two examples illustrate this
point:

• ARAS can help DAS in cases where restarting prevents the
search from running long enough to find a good plan. In
2011-floortile 05, the best raw plan generated by Diverse-
LAMA(4) has cost 132, while LAMA-2011 can find a
cost 63 plan. ARAS can improve the cost 132 plan to a
cost of 63 as well.

• Diverse Search provides more input plans for ARAS. In
2011-woodworking 01, plans of cost 1600, 1630 and 1620
are produced in time segments 1, 3 and 4, while LAMA-
2011 only finds one solution of cost 1600. ARAS im-
proves the three solutions as follows: 1600 → 1460,
1630 → 1290 and 1620 → 1380. The worst input plan
is easiest to improve, while the best input plan is poorest
after post-processing. Out of the 244 problem instances
solved by LAMA-2011, in 44 cases the best final plan
produced from Anytime Aras does not come from Lama’s
best plan. In Diverse-LAMA-Aras(4), this ratio increases
dramatically, to 86/244 problems.

domain LAMA DL(4) LAMA-Aras DL-Aras(4)
08-cybersec 30 30.00 30.00 30.00
08-elevators 30 35.82 38.50 43.34
08-openstacks 30 30.25 29.97 30.35
08-parcprinter 30 30.00 30.09 30.10
08-pegsol 30 29.78 30.00 30.00
08-scanalyzer 30 31.35 34.00 34.18
08-sokoban 28 27.15 27.66 27.48
08-transport 29 31.51 35.14 36.73
08-woodworking 30 30.92 33.10 34.28
11-barman 20 21.76 23.99 24.20
11-elevators 20 25.20 26.01 31.16
11-floortile 6 5.01 6.77 6.77
11-nomystery 10 10.00 10.00 9.89
11-openstacks 20 20.22 19.98 20.11
11-parcprinter 20 20.08 20.10 20.05
11-parking 18 17.21 18.93 19.54
11-pegsol 20 19.79 20.00 20.01
11-scanalyzer 20 20.75 23.35 23.46
11-sokoban 19 18.59 20.23 20.54
11-tidybot 16 15.21 16.77 16.17
11-transport 15 15.69 17.70 19.68
11-visitall 20 20.10 20.45 20.53
11-woodworking 20 20.48 20.96 21.78
total 511 526.89 553.69 570.35

Table 7: Plan Quality of LAMA-2011 (LAMA), LAMA-
2011-Aras (LAMA-Aras), Diverse-LAMA(4) (DL(4)) and
Diverse-LAMA-Aras(4) (DL-Aras(4)) on all 550 problems
from IPC-2008 and IPC-2011.

Experiment 4: Parameter Test for Number of DAS
Phases
Figure 3 shows the performance of DAS when varying the
parameter N , the number of phases. N = 1 corresponds
to LAMA-ARAS, and N = 4 to the algorithm used in the

Figure 2: Normalized Score Curve of the 4 tested planner

previous experiments. The graph shows results of Diverse-
LAMA-ARAS(N) on the IPC-2011 domains, varying N in
the range from 1 to 120. Overall, the score differences are
small, with the best results for N from 3 to 6. For N ≤ 3,
plan quality increases with N , taking advantage of the diver-
sity and number of plans generated. For N > 6, the solution
quality slowly decreases as the runtime for both Lama and
ARAS becomes ever shorter.4 It also raises the trade-off
we discussed before in selecting a good N: 1), a too big
N causes that planners don’t have enough search time to
find high quality input plans; 2), a too small N causes that
planners are not able to generate more diverse plans.

Figure 3: Plan Quality of Diverse-LAMA-Aras(N) with dif-
ferent N values.

Experiment 5: Applying DAS to Anytime Explicit
Estimation Search
Anytime explicit estimation search (AEES) is an any-
time search algorithm introduced by (Thayer, Benton, and
Helmert 2012). AEES uses explicit estimation search (EES)

4The time of each time segment equals to T/N , where T is the
total time (30 mins).



domain LAMA DL(4) LAMA-Aras DL-ARAS(4)
rawLAMA ∆ARAS Final rawDL ∆ARAS Final

2011-barman 20.00 21.76 20.00 3.99 23.99 21.70 2.51 24.20
2011-elevators 20.00 25.20 20.21 5.80 26.01 24.82 6.35 31.16
2011-floortile 6.00 5.01 5.21 1.55 6.77 4.67 2.10 6.77
2011-nomystery 10.00 10.00 10.00 0.00 10.00 9.86 0.03 9.89
2011-openstacks 20.00 20.22 19.98 0.00 19.98 19.94 0.17 20.11
2011-parcprinter 20.00 20.08 20.00 0.10 20.10 20.00 0.05 20.05
2011-parking 18.00 17.21 16.84 2.09 18.93 16.33 3.21 19.54
2011-pegsol 20.00 19.79 19.57 0.43 20.00 17.65 2.36 20.01
2011-scanalyzer 20.00 20.75 18.89 4.46 23.35 20.39 3.07 23.46
2011-sokoban 19.00 18.59 16.58 3.65 20.23 16.10 4.44 20.54
2011-tidybot 16.00 15.21 15.15 1.62 16.77 14.75 1.42 16.17
2011-transport 15.00 15.69 14.00 3.70 17.70 16.32 3.37 19.68
2011-visitall 20.00 20.10 20.00 0.45 20.45 20.06 0.47 20.53
2011-woodworking 20.00 20.48 20.00 0.96 20.96 20.48 1.30 21.78
Total 244.00 250.10 236.44 28.80 265.24 243.06 30.84 273.90

Table 8: Combined effect of DAS and post-processing.

(Thayer and Ruml 2011) as its main search component. EES
is a bounded sub-optimal best first search algorithm. EES
only expands nodes whose cost is at most the sub-optimality
bound. It expands these nodes in best-first order according to
first the inadmissible distance-to-go and then the inadmissi-
ble cost-to-go heuristic. Therefore, EES can take advantage
of both cost-to-go and distance-to-go heuristics. AEES is an
anytime version of EES, which lowers the sub-optimality
bound whenever a new best solution is found, and keeps
searching with this bound.

The AEES algorithm’s goal is to minimize the time be-
tween solutions, and generate more solutions. This makes it
a good test case for DAS.

We repeat the same set of IPC experiments, running DAS
with AEES configured as follows: it uses the two planning-
specific enhancements of deferred evaluation and preferred
operators, and the three heuristics Landmark-cut (admis-
sible cost-to-go heuristic) (Helmert and Domshlak 2009),
FF-cost (inadmissible cost-to-go heuristic) and FF-distance
(distance-to-go heuristic) (Hoffmann and Nebel 2001). The
scores shown use the IPC metric with AEES as a baseline. If
L is the plan computed by AEES, then the score of a given
plan P is calculated by cost(L)/cost(P ). The experimental
results are shown in Table 9. Similar to the LAMA-2011 ex-
periments, Diverse-AEES-ARAS(4) gets the highest score,
improving the baseline planner AEES by 73.7 units from
440 to 513.7, and achieving the best score in 14/23 domains.

Conclusions and Future Work
The search performance of the current state of the art plan-
ner LAMA-2011 suffers from a large amount of unproduc-
tive time. These time can be safely used for improving plan
quality. the new meta-algorithm of DAS (Diverse Any-time
Search) tries to utilize this unproductive time with random-
ized restarts. This generates more, and more diverse, plans
that post-processing systems such as ARAS can improve
upon. Experimental results show significant improvements
over the state of the art on IPC-2008 and IPC-2011 domains
for both LAMA-2011 and the AEES algorithm.

domain AEES DE(4) AEES-Aras DE-Aras(4)
08-cybersec 29 31.20 29.00 32.36
08-elevators 30 33.80 41.67 45.20
08-openstacks 30 31.35 30.00 31.15
08-parcprinter 25 25.16 25.70 25.82
08-pegsol 30 29.96 30.11 30.05
08-scanalyzer 30 30.53 34.35 34.16
08-sokoban 27 26.47 26.71 26.73
08-transport 28 31.09 38.43 40.86
08-woodworking 20 20.25 21.14 21.32
11-barman 20 20.88 22.74 22.85
11-elevators 19 23.03 25.03 28.06
11-floortile 6 5.50 6.00 6.00
11-nomystery 10 9.94 10.00 9.91
11-openstacks 20 20.92 20.00 21.00
11-parcprinter 11 11.14 11.88 11.92
11-parking 15 15.15 16.61 18.40
11-pegsol 20 19.92 20.11 20.04
11-scanalyzer 20 21.00 24.73 24.43
11-sokoban 17 16.73 16.60 16.96
11-tidybot 13 13.56 16.21 15.41
11-transport 13 14.60 18.22 19.51
11-visitall 3 3.32 7.30 7.39
11-woodworking 4 3.98 4.12 4.13
total 440 459.50 496.67 513.67

Table 9: Plan Quality of AEES (AEES), Diverse-AEES(4)
(DE(4)), AEES-Aras (AEES-Aras) and Diverse-AEES-
Aras(4) (DE-Aras(4)) on all 550 problems from IPC-2008
and IPC-2011.

The best parameter N for DAS depends on factors such
as the planning domain, randomizing method and search al-
gorithm. However, in the experiments the performance was
robust for small values of N between 3 and 6. One interest-
ing future work is to automatically tune N using information
on the search so far.



References
Bonet, B., and Geffner, H. 2001. Heuristic search planner
2.0. AI Magazine 22(3):77–80.
Brafman, R. I.; Geffner, H.; Hoffmann, J.; and Kautz, H. A.,
eds. 2010. Proceedings of the 20th International Confer-
ence on Automated Planning and Scheduling, ICAPS 2010,
Toronto, Ontario, Canada, May 12-16, 2010. AAAI.
Chrpa, L.; McCluskey, T.; and Osborne, H. 2012. Opti-
mizing plans through analysis of action dependencies and
independencies. In McCluskey et al. (2012), 338–342.
Gerevini, A.; Howe, A. E.; Cesta, A.; and Refanidis, I., eds.
2009. Proceedings of the 19th International Conference on
Automated Planning and Scheduling, ICAPS 2009, Thessa-
loniki, Greece, September 19-23, 2009. AAAI.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Gerevini et al. (2009), 162–169.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
McCluskey, L.; Williams, B.; Silva, J. R.; and Bonet, B.,
eds. 2012. Proceedings of the Twenty-Second International
Conference on Automated Planning and Scheduling, ICAPS
2012, Atibaia, São Paulo, Brazil, June 25-19, 2012. AAAI.
Nakhost, H., and Müller, M. 2010. Action elimination and
plan neighborhood graph search: Two algorithms for plan
improvement. In Brafman et al. (2010), 121–128.
Nakhost, H.; Müller, M.; Valenzano, R.; and Xie, F. 2011.
Arvand: the art of random walks. In García-Olaya, A.;
Jiménez, S.; and Linares López, C., eds., The 2011 Inter-
national Planning Competition, 15–16. Universidad Carlos
III de Madrid.
Richter, S., and Helmert, M. 2009. Preferred operators and
deferred evaluation in satisficing planning. In Gerevini et al.
(2009), 273–280.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39:127–177.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks revisited. In Fox, D., and Gomes, C. P., eds., AAAI,
975–982. AAAI Press.
Richter, S.; Thayer, J.; and Ruml, W. 2010. The joy of
forgetting: Faster anytime search via restarting. In Brafman
et al. (2010), 137–144.
Thayer, J., and Ruml, W. 2011. Bounded suboptimal search:
A direct approach using inadmissible estimates. In Walsh,
T., ed., IJCAI, 674–679. IJCAI/AAAI.
Thayer, J.; Benton, J.; and Helmert, M. 2012. Better
parameter-free anytime search by minimizing time between
solutions. In Borrajo, D.; Felner, A.; Korf, R. E.; Likhachev,
M.; López, C. L.; Ruml, W.; and Sturtevant, N. R., eds.,
SOCS, 120–128. AAAI Press.

Valenzano, R.; Nakhost, H.; Müller, M.; Schaeffer, J.; and
Sturtevant, N. 2012. Arvandherd: Parallel planning with
a portfolio. In Raedt, L. D.; Bessière, C.; Dubois, D.; Do-
herty, P.; Frasconi, P.; Heintz, F.; and Lucas, P. J. F., eds.,
ECAI, volume 242 of Frontiers in Artificial Intelligence and
Applications, 786–791. IOS Press.
Xie, F.; Nakhost, H.; and Müller, M. 2012. Planning via ran-
dom walk-driven local search. In McCluskey et al. (2012),
315–322.


