
Optimal Utility-based Internal Congestion Control in a
Cluster-based Router

Qinghua Ye
Department of Computing Science

University of Alberta
Edmonton, AB, Canada, T6H 2E8

qinghua@cs.ualberta.ca

Mike H. MacGregor
Department of Computing Science

University of Alberta
Edmonton, AB, Canada, T6H 2E8

macg@cs.ualberta.ca

ABSTRACT
Optimal utility-based congestion control is an optimization
approach to congestion control problems where the objec-
tive is to maximize the aggregate source utility over their
transmission rates. It has been used to analyze Internet con-
gestion control schemes. In this paper, we develop a discrete
congestion control scheme to manage congestion internal to
a cluster-based router. We simulate our proposed scheme
with ns-3 and also evaluate this scheme in our cluster-based
router prototype. Our results show that it is a very effec-
tive approach to improve the overall forwarding rate of the
router by reducing the injection rate of traffic to the internal
network when the router is under heavy load.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Store and forward networks

General Terms
algorithms, measurement, performance

1. INTRODUCTION
Software routers based on commodity hardware and open-

source operating systems are gaining more and more in-
terest from both scientific researchers and business users.
They have advantages in terms of price-performance and
customizability compared to closed proprietary systems. For
small and medium enterprises the price-performance advan-
tage may be attractive. In a research setting, an open source
router provides an opportunity to explore new algorithms
and modify or extend router functions. However, in both
contexts scalability and congestion control are of concern.

In order to address scalability we have proposed and eval-
uated an extensible and scalable cluster-based router frame-
work[12]. Using this framework we have developed a proto-
type router based on a cluster of commodity processors in-
terconnected by an InfiniBand network. Our cluster-based

Tech Report 2009. Department of Computing Science. University of Al-
berta. Canada. All right reserved.

router performs very well and can be scaled as needed to
deliver higher packet forwarding rates.

As in any distributed system, congestion control is a crit-
ical design issue. Congestion can affect both the forwarding
rate and the latency of packets traveling through the router.
If packets are sent too quickly from multiple ingress nodes to
a single egress node, the egress node will become overloaded
and its forwarding capability will be reduced. At this point,
packets will be delayed and perhaps even dropped due to
queue overflow at the egress. The congestion control scheme
proposed here prevents the ingress nodes from overwhelm-
ing the egress nodes. It also reduces the waste of internal
network bandwidth and CPU cycles by dropping packets
as early as possible, so as to maximize the forwarding rate
under overload. This is especially important given the cor-
relation of components in commodity hardware[13].

Optimal utility-based congestion control is an optimiza-
tion approach to congestion control problems where the ob-
jective is to maximize the aggregate source utility over their
transmission rates. In this approach, the network links and
traffic sources are viewed as processors of a distributed com-
putation system to solve the maximization or optimization
problem given the constraints of network link capacities.
The traffic sources adjust transmission rates in order to max-
imize their own benefit, which is the utility minus bandwidth
cost, while the network links adjust bandwidth prices ac-
cording to their status to coordinate the sources’ decisions
on the evolution of transmission rates[10].

We apply this control approach to our cluster-based router,
combined with backward explicit congestion notification within
the router, from egress to ingress. We simulated the pro-
posed scheme in ns-3 and evaluated in our cluster-based
router prototype. Our measurements show an increase in
forwarding rate of nearly 90% with a concomitant reduction
in traffic in the internal network of up to 75%.

The rest of the paper is organized as follows. In section
2, we briefly introduce the architecture of our cluster-based
router. In section 3, we describe how and where congestion
occurs in our cluster-based router. The internal congestion
control scheme is explained in section 4 and the simulation
of this scheme is presented in section 5. We report the ex-
perimental evaluation in Section 6. We conclude our work
in section 7.

2. CLUSTER-BASED ROUTER ARCHITEC-
TURE

A cluster-based router [12] is composed of two main parts:
the processing nodes and the interconnection network. In



    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ethernet  
Card 

Internal 
Transmit 

Queue 
Schedule 

External 
Receive  

External 
Receive  

  … 
Queues 
   … 

Packet  
Classifier 

Click Process 

Ethernet 
Network 

Driver 

Queue 
Swtich 

Queues 

Internal 
Receive 

External 
Transmit  

External 
Transmit  

InfiniBand  
Network  
Stack 

HCA  

InfiniBand Switch 

IBUDCOM 

Posted 
Send 
Buffer 

Port 
Output 
Buffer 

Posted 
Recv 
Buffer 

Port 
Input 
Buffer 
 

Posted 
Send 
Buffer 

Port 
Output 
Buffer 

Posted 
Recv 
Buffer 

Port 
Input 
Buffer 
 

External Network 

Figure 1: IP Forwarding Path

our prototype, the processing nodes are commodity server
blades each equipped with one or more interface cards ter-
minating the links to the outside world. The server blades
also carry interfaces for terminating the links to the internal
interconnection network. Our prototype uses 1 Gbps Eth-
ernet links to the outside world. The internal interconnec-
tion network is a high throughput/low latency InfiniBand
fabric. For more information regarding the cluster-based
router, please refer to [12].

Fig. 1 gives the forwarding path in each processing node.
In the following we will discuss ”ingress” and ”egress” nodes
but it should be noted that these terms are relative to a given
flow. There are no dedicated ingress or egress nodes as such
- a particular processing node may function simultaneously
as an ingress node for some flows, and an egress node for
others.

An IP packet is received by the Ethernet driver at the
ingress node where it will be captured by the external re-
ceive element in a Click kernel thread [6]. The packet then
follows the processing path in the ingress node according
to the defined Click configuration. At the end of this pro-
cessing path, the internal interface passes the packet to the
IBUDCOM (InfiniBand Unreliable Datagram COMmunica-
tion) layer and the packet traverses the internal network to
the egress node. The packet is captured from the IBUDCOM
layer by the internal interface at the egress node, switched
to a specific outbound queue, and finally sent to the exter-
nal network by the external interface through the Ethernet
driver.

3. CONGESTION PROBLEM IN CLUSTER-
BASED ROUTER

In any network, when the total demand for a resource
is greater than the available capacity in any time interval,
the resource is said to be congested for that time interval.
The resources required in a cluster-based router include in-
ternal link bandwidth, switch buffer capacity, processor cy-
cles, external transmission capacity, etc. [7]. Congestion

control is a critical issue in the design of our cluster-based
router. Congestion can affect both the forwarding rate of
the router and the latency experienced by packets traveling
through the router. The internal communication between
processing nodes in our cluster-based router is based on the
IBUDCOM service. This determines the potential conges-
tion mechanisms on the path between the external interface
on the ingress node and the external interface on the egress
node.

Firstly, there is no packet dropping at the InfiniBand link
layer. The internal interfaces on the cluster-based router
nodes are called host connection adapters (HCAs). They
connect each node to the internal InfiniBand switch. Infini-
Band uses a link layer flow control scheme[3] to prevent an
HCA from transmitting packets when the downstream HCA
lacks sufficient buffer space to receive them. Specifically, In-
finiBand manages the HCA oncard virtual link buffer rather
than the host buffer. As a result no packets will be lost
on the InfiniBand link layer and there can be no congestion
between the HCA on the ingress node and the HCA on the
egress node. It is important to recall that these HCAs face
the internal network - they are not the external Ethernet
interfaces.

Although the InfiniBand architecture guarantees no con-
gestion between HCAs and thus across the internal switch,
congestion can still arise inside the ingress node upstream of
its HCA and inside the egress node downstream of its HCA.
If the ingress node transmits packets at a rate that the In-
finiBand link layer can service but faster than the egress
node can process them, the egress node will eventually run
out of posted receive buffers. At that point, packets will be
discarded by the HCA on the egress node because it cannot
place them in posted receive buffers for processing. Thus in
order to avoid buffer overrun on the egress node, a conges-
tion control scheme is required at or above the InfiniBand
link layer.

Congestion can also arise in the queues on both the ingress
and egress nodes. At an ingress node, incoming flows from
multiple Ethernet interfaces must be queued for the single
InfiniBand interface to the internal switch. As a result, the
input queue to the HCA on the ingress node may overflow.
At an egress node, due to the difference between the trans-
mission capabilities of the external Ethernet interface and
the reception capabilities of the InfiniBand HCA on that
node, packets from multiple ingress nodes may be queued in
the egress node or on the external Ethernet interface.

In conclusion there are two potential levels at which con-
gestion may occur in our system: the Click packet process-
ing layer and the IBUDCOM transport layer. In the first
case, congestion can be detected by monitoring the queues
on both ingress and egress nodes. The detection of conges-
tion in the IBUDCOM transport layer is much more com-
plex. Fortunately, we observed experimentally that conges-
tion in the transport layer is always preceded by congestion
in the egress queues if the scheduling weights are configured
properly. In this case, before any packets are dropped by the
transport layer due to the overrun of the egress InfiniBand
receive buffer, the egress queues are already overloaded. The
reason is that the receive buffer on the egress node is overrun
only when the egress node processes received packets more
slowly than the rate at which they arrive. If we give higher
weights to receiving internal packets than to the transmis-
sion of external packets, then the receiving of internal pack-



ets will be scheduled more often than the transmission of
external packets. As a result, if the receive buffer is over-
run the egress queue is congested. Given this observation,
we need to monitor only the status of the queues to detect
potential congestion.

A variety of mechanisms might be considered to deal with
congestion in these various locations. We start by consid-
ering the following: if the ingress nodes can be signalled to
reduce their transmission rates to specific overloaded egress
nodes then the drop rate of packets on those egress nodes
will be reduced. This improves overall router throughput
because it avoids wasting internal network bandwidth on
dropped packets and reduces the proportion of cycles in both
ingress and egress nodes which are spent on processing pack-
ets that will be dropped due to congestion. In this paper, we
apply an optimal utility-based congestion control scheme.

4. OPTIMAL UTILITY-BASED CONTROL
Optimal utility-based congestion control has been applied

in many ways. Based on the controlled objects, congestion
control schemes can be divided into three classes - primal
algorithms, dual algorithms and primal-dual algorithms[9].
In primal algorithms, users adapt their source rates dynam-
ically based on route prices, and links select a static law
to determine the link prices directly from the arrival rates
at the links[5]. An example of a primal algorithm is TCP
flow control[4]. In dual algorithms, on the other hand, links
adapt the link prices dynamically based on the link loads,
and users select a static law to determine the source rates di-
rectly from route prices and source parameters. REM[1] and
AVQ[8] are good examples of dual algorithms. In primal-
dual algorithms, both link prices and source rates are slowly
adjusted so that they asymptotically converge to the opti-
mal solution[9]. In today’s Internet, the combination of TCP
flow control algorithm and some active queue management
algorithms like REM[1], RED[2] and AVQ[8] are examples
of primal-dual algorithms.

In this section, we first present the network model of the
internal network in the cluster-based router, and then de-
velop the discrete congestion control scheme.

4.1 Internal Congestion Control As An Opti-
mization Problem

Different from previous work, in the cluster-based router,
instead of the links in a network, we focus on the state of
the egress node. The model can be simplified to a network
with only one egress node and can be described as follows.

Consider a network with unidirectional links. There is
a finite forwarding capacity C associated with the destina-
tion. The destination is shared by a set S of sources, where
source s ∈ S is characterized by a utility function Us(xs)
that is concave increasing in its transmission rate xs to the
destination.

The goal of congestion control is to calculate the source
rates that maximize the sum of the utilities

∑
s∈S Us(xs)

over xs subject to capacity constraints. The congestion
model can be written as:

P :
∑
s∈S

Us(xs) (1)

subject to ∑
s∈S

xs ≤ C (2)

Equation (2) means that the aggregate source rate at the
destination should not exceed the transmission capacity of
the node. Since the utility function U(x) is strictly concave
and continuous, the optimal solution exists. Solving this
problem centrally would require not only the knowledge of
all utility functions, but also the knowledge of all the source
rates and aggregate rate at destination, which makes it in-
flexible to changes in the numbers and/or types of sessions.

4.2 Decentralized Approach
From Equation (1), the objective function is separable in

xs. However, the source rates are coupled by the constraint
(2). Fortunately, the dual theory of optimization leads us to
a distributed and decentralized solution which applies the
coordination of all sources implicitly[10].

As we described in the previous subsection, the utility
function U(x) is a differentiable concave function, so we can
define the Lagrangian function of the original primal prob-
lem as:

L(x, p) =
∑
s∈S

Us(xs)− p(
∑
s∈S

xs − C)

=
∑
s∈S

Us(xs)−
∑
s∈S

xs ∗ p + p ∗ C
(3)

The objective function of the dual problem is:

D(p) = max
xs

L(x, p)

=
∑
s∈S

max(Us(xs)− xs ∗ p) + p ∗ C
(4)

and the dual problem is

D : min
p≥0

D(p) (5)

In this dual problem, if p is interpreted as the price per
unit bandwidth at the destination, then the first term of
the objective function D(p) is decomposed into S separable
subproblems which can be solved at each source s with some
information from the destination. Let

Bs(p) = max(Us(xs)− xs ∗ p) (6)

Hence, xs ∗ p represents the bandwidth cost to source s
when it transmits at rate xs, and Bs(p) represents the max-
imum benefit source s can achieve at the given price. Based
on the congestion information p from the destination, each
source s can solve the subproblem Bs(p) without coordinat-
ing with other sources. Let xs(p) be the local optimizer to
Bs(p) at source s. Then from Equation (4), xs(p) is the
local maximizer of the Lagrangian function (3).

In general, xs(p) may not be the primal optimal. However,
according to the Karush-Kuhn-Tucker theorem, if there is
minimizer p∗ which is the optimizer of dual problem (5), and
x∗ = xs(p∗), s ∈ S is the maximizer of Equation (4), then
(x∗, p∗) constitutes a saddle point for the function L(x, p),
and x∗ solves the primal optimization problem P .

If we can solve the dual problem (5) to obtain p∗ at the
destination locally, then the original maximization problem
P can be solved in a distributed manner using only the de-
centralized information available locally. In this case, p∗

serves as a coordination signal that aligns individual opti-
mality of (6) with social optimality of (1).

Based on the above theory, the congestion control prob-
lem can be generalized to tasks of finding distributed algo-
rithms that can make sources to adapt transmission rates



with respect to the destination price and make destinations
to adapt prices with respect to loads.

According to the analysis, the optimal solution to the dis-
tributed congestion control problem satisfies:

∂D(p)

∂xs
=

∂Us(xs)

∂xs
= U ′s(xs)− p = 0 (7)

∂D(p)

∂p
=

∑
s∈S

(−xs) + C = 0 (8)

These two equations can be solved in a distributed manner
at the sources and destination. To reduce the extra overhead
of transferring the link price, we only send the price from the
destination to the sources at the beginning of each control
interval, which results in a discrete control model.

Applying the gradient projection method where the source
rate and destination price are adjusted according to the gra-
dients (above two equations), we get the primal-dual algo-
rithm. Here we set the utility function as proportional fair-
ness utility function U(x) = W ∗ log x [11].

xs(k + 1) = [xs(k) + k ∗ xs(k) ∗ (U ′s(xs(k))− p(k))]+0

= [xs(k) + k ∗ (W − xs(k) ∗ p(k))]+0
(9)

p(k + 1) = [p(k) + R ∗ (
∑
s∈S

xs(k)− C)]+0 (10)

Here

[g(x)]+y = { g(x), y > 0
max(g(x), 0), y = 0

4.3 Stability Analysis
Lyapunov’s theorem gives a sufficient condition to check

for stability of non-linear systems.

Lyapunov Theorem[11]: Consider a continuously
differentiable functions V (x) such that

V (x) > 0, ∀x 6= 0

and V (0) = 0.

1. If V̇ (x) ≤ 0 ∀x, then the equilibrium point is
stable.

2. In addition, if V̇ (x) < 0,∀x 6= 0, then the equilib-
rium point is asymptotically stable.

3. In addition to the above two conditions, if V is
radially unbounded, i.e.,

V (x)→∞, when‖x‖ → ∞,

then the equilibrium point is globally asymptoti-
cally stable.

Lyapunov’s theorem can be used to prove stability of non-
linear systems, which makes it a good method to analyze sys-
tem stability. However, the design of a Lyapunov function
is not an easy task. Also, Lyapunov’s theorem only pro-
vides sufficient conditions for stability. Even if we cannot
find a Lyapunov function that satisfies the above theorem,
we cannot conclude that the system is unstable.

For discrete systems, i.e. x(k + 1) = f(x(k)), then we

can use V (x(k)) and ∆V (x(k)) instead of V (x) and V̇ (x).
As long as V (x(k)) and ∆V (x(k)) satisfy the conditions of
Lyapunov’s theorem, then the same conclusions regarding
stability stand.

Figure 2: Stability Region - by Simulation

In [9] Srikant simulates a real system with a continuous
model and designs a Lyapunov function for the primal-dual
algorithms. This leads to a proof that the primal-dual al-
gorithm is stable as long as U(x) is strictly concave on x
and k(x) > 0 for any x > 0 is a non-decreasing continuous
function.

Similarly, in our optimal utility-based internal congestion
control, if we use the continuous model

ẋs = [k ∗ (W − xs ∗ p)]+x

ṗ = [R ∗ (
∑
s∈S

xs − C)]+p

and set

V (x, p) =
∑
s∈S

∫ xs

x∗s

u− x∗s
k ∗ u

du +

∫ p

p∗

v − p∗

R
dv

then our optimal utility-based internal congestion control
scheme is stable since w∗log(x) is a strictly concave function
on x and K(x) = k ∗ x > 0 for any x > 0 is non-decreasing
continuous function (See appendix for proof).

However, in a discrete system, the stability condition is
different from the continuous case. We demonstrate this
via numeric simulation by running our discrete model and
plotting the phase space of stable points in Fig.2. In this
simulation, we set the maximum bandwidth C to be 764500
packets per second. We also set the allowed error ratio to
0.001 which means that the system with certain k and R is
said to be stable if the source rates converge to the optimal
allocated bandwidth with error ratio less than 0.1%. For
the discrete system, the stable region starts at around k =
25000 and R = 3 ∗ 1011. Note that we only simulate with
k < 255000 and R < 2.8 ∗ 1012. Whereas the continuous
system is stable for any k and R, the discrete system is only
stable for values of k and R in the black region of the phase
plot.

5. SIMULATION WITH NS-3
To study the behavior of our congestion control algorithm,

we simulated it using the ns-3 network simulator. ns-3 is a
discrete-event network simulator that is targeted primarily
for research and education use. The network components in
ns-3 are easily implemented and extended.



ns-3 implements most key network components, from net-
work devices to socket APIs and applications. However, it
limits itself to the standard network stack or Internet pro-
tocol suites. To simulate novel network stacks, extra work
is necessary to extend existing network components.

In terms of router components, ns-3 implements the stan-
dard IP forwarding path in the Ipv4L3Protocol class. To
simulate the internal congestion control scheme in the cluster-
based router, we extended the Ipv4L3Protocol class to in-
clude the packet classifier, queue management and schedul-
ing, and backward explicit congestion notification (BECN)
functionalities. With the extended Ipv4L3Protocol instances
installed in the ns-3 nodes, we can simulate the behaviors of
processing nodes in the cluster-based router and study the
effects of different congestion control schemes in the cluster-
based router.

In this section, we first introduce the IP forwarding path
implemented in our simulation, then we describe the simula-
tion setup, and lastly we present and analyze the simulation
results.

5.1 IP Forwarding Path
In ns-3, the IP forwarding path is implemented in a class

called Ipv4L3Protocol. To make use of an Ipv4L3Protocol
object, network devices should be attached to a node config-
ured with an Ipv4L3Protocol instance. The Ipv4L3Protocol
class provides the interface to add network interfaces with
given network devices. The Ipv4L3Protocol instance regis-
ters the Receive callback method with the network devices.
In this way, any IP packet received by the network devices
will be forwarded to the Ipv4L3Protocol instance by the Re-
ceive callback method. Once the Ipv4L3Protocol instance
gets the packet, the packet will go through the IP forward-
ing path as implemented.

The cluster-based router is composed of several routing
nodes which we called processing nodes which can be ingress
or egress nodes in terms of an individual flow. However, a
network interface can only be an external interface or an
internal interface. By external interface we mean a network
interface that connects to the external network, while by in-
ternal interface we mean a network interface that connects
to the internal network which connects all the processing
nodes together. Therefore, we extended the Ipv4L3Protocol
class implemented in ns-3 to distinguish these two different
kinds of network interfaces. A method called SetInternalDe-
vice sets a network device to be internal. Otherwise, the
network device is considered as external by default. Once
a network device is marked as internal, its Ipv4L3Protocol
instance will register with it to receive BECN type packets
in addition to the general IP packets.

Figure 3 describes the IP forwarding path in our simula-
tion. Once a packet is received in the network device, the
Receive method is called by the network device. According
to the network device from which the packet is received, we
can classify the packet to be an external traffic packet or an
internal traffic packet.

If the packet belongs to the external traffic flow, after be-
ing looked up in the routing table with the destination IP,
the packet will be pushed to a classifier if the next hop of
the packet is another processing node in the cluster-based
router. There it is switched to different queues according
to the preset classification rules. Packets in these queues
will be scheduled to be sent from the internal network in-

 

 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IP Packet BECN 

Adjust 
Scheduler 
Parameters 

Receive 

IP Header Check 

Internal 
Transmit 

External  

IP Lookup 

Check 
Queue 
Status 

and 
Generate 
BECN 

Get MAC of Internal 
Network Device 

Packet 
Classifier 
 

 
... 

Packet 
Scheduler 
 

Get Mac of External 
Network Device 

Internal  

Packet 
Classifier 
 

To 
External 

To 
Internal 

Local 

Forward To 
Up Layer 

External 
Transmit  

External 
Transmit  

Figure 3: IP Forwarding Path in Simulation

terface. The scheduler controls the pace of putting packets
into the output queue of the internal network device. If the
output queue is available, the scheduler schedules a packet
from upstream queues and puts the packet into the output
queue. Whenever the internal device is not busy, a packet
will be dequeued from the output queue for transmission.
A packet being dequeued for transmission from the output
queue will not be dropped by the network device since the
packet is forwarded to the internal network device only when
the internal network device is not busy. Without the output
queue in the original implementation of Ipv4L3Protocol and
without checking the status of the network device, a packet
forwarded to the network device may be dropped due to the
network device being busy.

If a packet belongs to the internal traffic flow which is re-
ceived by the internal network device, or a packet belongs to
the external traffic flow but will be transmitted out through
the same processing node, the packet is switched to the out-
put queue of the external network device where it will be
transmitted out to the external network. A global moni-
toring process is scheduled periodically to check the status
of the output queues of external network devices and send
BECN packets to the other processing nodes if necessary.

If a BECN packet (only from internal network device) is
received by a processing node, the parameters in the sched-
uler are adjusted, which updates the rate of packets being
scheduled from each queue.

5.2 Simulation
Having all the functional components of a processing node

in the cluster-based router ready, we can set up the simulator
to simulate the internal congestion control scheme in the
cluster-based router.



5.2.1 Cluster-based Router
First of all, we set up the cluster-based router. We ex-

tended the Ipv4L3Protocol class in ns-3 to include all of
the basic functional components of processing nodes in the
cluster-based router. We configured the nodes installed with
the extended Ipv4L3Protocol instance to make them behave
like processing nodes. Then we set up a CSMA link with
10G data rate and 1ns delay to connect all the processing
nodes together to simulate the InfiniBand internal network.
The network interfaces of this CSMA link on the processing
nodes are configured to be internal interfaces.

Simulating the InfiniBand internal network of our real pro-
totype with a CSMA link is an approximate, but very useful
choice. Firstly, due to the capacity difference between the
external network and internal network, the internal network
will never be a bottleneck in our simulation. Secondly, in
the real system, there are statistical factors which can not
be captured by simulating a deterministic switch fabric, and
we have not as yet characterized the Infiniband fabric. The
collision detection and exponential backoff algorithms imple-
mented in CSMA bring a statistical flavor to the behavior
of the fabric that makes the simulation more realistic.

The processing nodes also connect to the external network
via Ethernet interfaces. We configured one external interface
for each processing node.

After setting up the network interfaces and devices, we
configured the extended components in the Ipv4L3protocol
instance: we initialize the queues for each class of traffic,
configure the classification rules, set the global time interval
to schedule packets from output queues of network devices
for transmission, set the congestion control interval, set the
congestion control scheme and corresponding control param-
eters, and set the nodes to be processing nodes.

5.2.2 Simulation Environment
Now we have a cluster-based router ready for processing

packets. To study its behavior, traffic sources and destina-
tions are needed. The goal of this simulation is to study the
behavior of congestion control, so we configured three traffic
sources and one traffic destination.

Four general nodes installed with TCP/IP network stack
are created and connected to the cluster-based router pro-
cessing nodes, with one general ns-3 node connecting to one
processing node. On three of them, we install ns-3 on/off
traffic generator applications to generate traffic flow with
specified traffic pattern, and the other node is installed with
ns-3 traffic sink application.

The patterns of the traffic flows generated on the three
traffic source nodes are configured with the traffic sink node
as destination. In this setup, three processing nodes of the
cluster-based router receive packets from external networks
and forward the packets to the other processing node, which
forwards the packets to the traffic sink node in the external
network. By configuring the traffic rates and patterns on the
traffic sources, we are able to simulate different congestion
states and study the behaviors of different congestion control
schemes.

Since small packets stress the router more than large pack-
ets at the same aggregate bit rate because more packets have
to be handled per second, we use 64B packets in our sim-
ulation. Previously [13], we measured the maximum trans-
mission rate of the Intel E1000 Ethernet network port on
PCI-X64/100 bus as 764500 packets/second for 64B pack-

 680000
 690000
 700000
 710000
 720000
 730000
 740000
 750000
 760000
 770000

 0  2e+11 4e+11 6e+11 8e+11 1e+12 1.2e+12 1.4e+12 1.6e+12 1.8e+12 2e+12 0

 50000

 100000

 150000

 200000

 250000

 680000

 690000

 700000

 710000

 720000

 730000

 740000

 750000

 760000

 770000

Transmission Rate(P/S)

Transmission Rate Behavior - Different k and R

R

k

Transmission Rate(P/S)

Figure 4: Transmission Rate on the Egress Node

 0

 200

 400

 600

 800

 1000

 1200

 0  2e+11 4e+11 6e+11 8e+11 1e+12 1.2e+12 1.4e+12 1.6e+12 1.8e+12 2e+12 0

 50000

 100000

 150000

 200000

 250000

 0

 200

 400

 600

 800

 1000

 1200

Queue Length

Queue Behavior - Different k and R

R

k

Queue Length

Figure 5: Average Output Queue Length

ets. So we set the capacity of the transmission rate on the
destination node to this value.

5.2.3 Simulation Data Collection
To study different congestion control schemes including

the throughput and convergence of the system, detailed sys-
tem state information is required to facilitate the analysis
process. In the implementation of the processing nodes, we
added many status logging plugins to collect the status of the
system during simulation. These include queue length, re-
ceiving and transmitting rate of network devices, and source
distribution of received and transmitted packets.

5.3 Simulation Results and Analysis
In our simulation, we run a set of simulations given differ-

ent k and R, which are factors used to calculate the propor-
tional fairness utility and the congestion price. We measure
the average transmission rate of the external network inter-
face and the average length of the external queue which is
used to buffer the packets that will be transmitted from the
external network interface. In our simulation, the ingress
nodes are all offered the same amount of traffic unless oth-
erwise noted.

5.3.1 Stability Phase Space
As shown by the plot in Fig.2, the proposed algorithm is

stable only in some specific region, although the continuous



 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0  50  100  150  200

T
r
a
n
s
m
i
s
s
i
o
n
 
R
a
t
e

Time

Transmission Rate Behavior - (k:100000, R:500000000000)

Transmission Rate
Reception Rate

Reception Rate from Ingress 1
Reception Rate from Ingress 2
Reception Rate from Ingress 3

Figure 6: Transmission Rate Convergence

model can be proved to be stable for any given k and R.
By ”stable” we mean the transmission rate on the destina-
tion and the sum of source transmission rates are close to
each other and are also close to the destination transmission
capacity, and the transmission output queue length on the
destination node is relatively low. Due to the discrete con-
trol accuracy on the source transmission rates and the price
calculation on the destination, a small variance of the trans-
mission rates and the queue length should be acceptable.

Fig.4 shows average transmission rates on the destination
node given different k and R after 500 iterations. We can
see that for most values of k and R, the transmission rate is
close to the transmission capacity of the destination node.

Fig.5 shows the average output queue length on the desti-
nation node. From this figure, we can see that, for a certain
range of k and R (when R > 3∗1011 and k > 50000), the out-
put queue size remains small, which means that the recep-
tion rate on the destination node is not exceeding the trans-
mission capacity. Combined with the fact that the transmis-
sion rate is close to the transmission capacity (Fig.4), we can
conclude that the reception rate and the transmission rate
converge to the transmission rate and the control scheme is
stable while k and R are in this range.

5.3.2 Convergence given different k and R
Fig.4 and Fig.5 give the range of k and R over which the

proposed internal congestion control is likely to be conver-
gent. Now we study the behavior of our internal conges-
tion control with given k and R. Picking k = 100000 and
R = 5 ∗ 1011, where the average output queue length is
small, we plot the behavior of the internal congestion con-
trol in Fig.6 when the three sources offer traffic at the same
rates. We collect the reception and transmission rates of the
destination node, and the transmission rates of the source
nodes at an interval which equals the control interval. We
can see that after 20 intervals, the rates start to be conver-
gent and the reception and transmission rates of the desti-
nations nodes stabilize near the transmission capacity of the
destination node.

Given different values for R with the same k, the conges-
tion control scheme behaves differently. With smaller R, the
response time becomes shorter and the control step becomes
bigger, which may result in the system not converging, or

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0  50  100  150  200

T
r
a
n
s
m
i
s
s
i
o
n
 
R
a
t
e

Time

Transmission Rate Behavior - (k:100000, R:150000000000)

Transmission Rate
Reception Rate

Reception Rate from Source 1
Reception Rate from Source 2
Reception Rate from Source 3

Figure 7: Transmission Rate Convergence

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0  50  100  150  200

T
r
a
n
s
m
i
s
s
i
o
n
 
R
a
t
e

Time

Transmission Rate Behavior - (k:100000, R:1000000000000)

Transmission Rate
Reception Rate

Reception Rate from Ingress 1
Reception Rate from Ingress 2
Reception Rate from Ingress 3

Figure 8: Transmission Rate Convergence

worse yet becoming unstable. Fig.7 plots one unstable case
with R = 1.5 ∗ 1011. With larger R, the response time be-
comes longer and the control step becomes smaller, and the
system reacts slowly. Fig.8 gives the behavior of our control
scheme at R = 1012.

Given different values for k with the same R, the conges-
tion control scheme again behaves differently. With smaller
k, the response time is longer while the response time is
shorter with bigger k. Fig.9 and Fig.10 give the behav-
iors of our congestion control scheme with k = 20000 and
k = 150000 when R is set to 5 ∗ 1011.

5.3.3 Fairness
In the above figures all sources offer traffic at the same

rates and all sources are serviced at the same pace. So the
proposed congestion control scheme is fair to all sources.
Given varied source traffic rates, we find that the congestion
control is also stable and fair to all sources. Fig.11 presents
the behavior of our control scheme with k = 100000, R =
5 ∗ 1011 when source 1 is given 500Mbits/second traffic,
source 2 is given 50Mbits/second traffic, and source 3 is
given 5Mbits/second traffic. We can see that source 3 is
100% satisfied since it requests less than 1/3 of bandwidth
and source 2 and 3 are given same bandwidth since they



 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0  50  100  150  200

T
r
a
n
s
m
i
s
s
i
o
n
 
R
a
t
e

Time

Transmission Rate Behavior - (k:20000, R:500000000000)

Transmission Rate
Reception Rate

Reception Rate from Ingress 1
Reception Rate from Ingress 2
Reception Rate from Ingress 3

Figure 9: Transmission Rate Convergence

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0  50  100  150  200

T
r
a
n
s
m
i
s
s
i
o
n
 
R
a
t
e

Time

Transmission Rate Behavior - (k:200000, R:500000000000)

Transmission Rate
Reception Rate

Reception Rate from Ingress 1
Reception Rate from Ingress 2
Reception Rate from Ingress 3

Figure 10: Transmission Rate Convergence

both request more than the system can service (overlapped
in Fig.11).

6. EVALUATIONS IN THE REAL SYSTEM
In this section, we evaluate our optimal utility-based con-

gestion control scheme on our cluster-based router proto-
type. We implemented the scheme as described in Fig.3.
and in Section 5.2.

6.1 Experiment
Our prototype router is composed of a cluster of four Sun-

Fire X4100 nodes interconnected by a Mellanox InfiniBand
switch. Each SunFire node has two AMD Opteron 254 pro-
cessors operating at 2.8GHz, 4 GB of registered DDR-400
SDRAM, four Intel E1000 Ethernet ports connected to a
100MHz PCI-X bus, and one Voltaire InfiniBand 4x PCI-X
HCA installed in a 133MHz 64-bit PCI-X slot. A Mellanox
MTS2400 24-port Modular InfiniBand Switch System that
can support 10 Gbps switching rate at each port is con-
nected to the HCA on each node. Packets are generated by
a commercial traffic analyzer and sent to the router external
Ethernet ports for forwarding. Packets that are successfully
forwarded through the router return to the traffic analyzer
via the router Ethernet ports.

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 0  50  100  150  200

T
r
a
n
s
m
i
s
s
i
o
n
 
R
a
t
e

Time

Transmission Rate Behavior - (k:100000, R:500000000000)

Transmission Rate
Reception Rate

Reception Rate from Ingress 1
Reception Rate from Ingress 2
Reception Rate from Ingress 3

Figure 11: Faireness Given Varied Source Traffic

 0

 1000

 2000

 3000

 4000

 5000

 10  20  30  40  50  60  70  80  90  100

P
a
c
k
e
t
 
R
a
t
e
 
-
 
K
 
P
a
c
k
e
t
 
P
e
r
 
S
e
c
o
n
d

Input Rate at Ingress Nodes(Percentage of Wire Rate)

Optimization Utility-based Congestion Control VS. Original

Reception Rates at Ingress Nodes - optimization
Injection Rates at Ingress Nodes - optimization

Transmission Rate at Egress Node - optimization
Reception Rates at Ingress Nodes - original

Injection Rates at Ingress Nodes - original
Transmission Rate at Egress Node - original

Figure 12: Optimal Utility-based Congestion Con-
trol vs. Original

In order to evaluate the effectiveness of our proposed con-
gestion control scheme we compare the behaviors of the
cluster-based router first with, and then without, internal
congestion control. The traffic analyzer (with four ports) is
configured to offer Ethernet traffic to three of the nodes (one
port each) with the destination being a subnet reached via
the fourth node. We increase the offered load until the egress
port is heavily overloaded - the offered load is over 300%
more than the maximum load the egress port can forward.
As well as acting as a traffic source and sink, the network
analyzer is used to monitor the rate at which Ethernet pack-
ets are sent to each ingress port and the rate at which the
egress port returns packets to the traffic analyzer. As in the
simulation we use 64B packets in our tests. Also different
from the simulation, due to the correlation between differ-
ent components on the PCI bus [13], we set the transmission
capacity of the egress port to 700K packets/second which is
less than the transmission capacity of the port (760K pack-
ets/second) measured when there is no other traffic on the
system.

6.2 Measurements
We first compare the transmission rates on the egress



-200

 0

 200

 400

 600

 800

 1000

 1200

 10  20  30  40  50  60  70  80  90  100

O
u
t
p
u
t
 
Q
u
e
u
e
 
L
e
n
g
t
h

Input Rate at Ingress Nodes (Percentage of Wire Rate)

Queue Length With Increasing Offered Traffic

output queue length - original
output queue length - optimized

Figure 13: Optimal Utility-based Congestion Con-
trol vs. Original

 0

 200

 400

 600

 800

 1000

149
149
149

298
298
298

298
298
224

298
298
149

298
298
75

P
a
c
k
e
t
 
R
a
t
e
 
-
 
K
 
P
a
c
k
e
t
s
 
P
e
r
 
S
e
c
o
n
d

Offered Rate at Ingress Nodes(K Packets Per Second)

Optimization Utility-based Congestion Control 
 Fairness Among Different Ingress Nodes

Reception Rate at Ingress Node 1 - optiization
Reception Rate at Ingress Node 2 - optimization
Reception Rate at Ingress Node 3 - optimization

Injection Rate at Ingress Node 1 - optimization
Injection Rate at Ingress Node 2 - optimization
Injection Rate at Ingress Node 3 - optimization

Transmission Rate at Egress Node - optimization

Figure 14: Fairness in Optimal Utility-based Con-
gestion Control

node with and without the congestion control scheme ap-
plied when all the ingress nodes are fed at the same rates.
As plotted in Fig.12, in the original situation, with increas-
ing offered traffic on the ingress nodes, the ingress nodes in-
ject more traffic into the internal network, which causes the
transmission rate on the egress nodes to decrease after the
offered load exceeds the point of ”congestion collapse”. With
our congestion control scheme, the ingress nodes only inject
the packets which can be processed on the egress node to
avoid overwhelming the internal network, the internal net-
work port and the external port on the egress node, which
results in a stable transmission rate on the egress node. The
injection rate overlaps with the egress transmission rate line.

Fig. 13 presents the average queue length and standard
deviations of queue length on the egress node with and with-
out our congestion control scheme. It shows that our pro-
posed scheme is effective in reducing the congestion on the
egress node which helps to keep the output queue small.

We also plot the fairness between ingress nodes when they
are offered different traffic loads in the case that the conges-
tion control scheme is in place. Fig. 14 gives the packet
reception and injection rates at each ingress node as a func-

 0

 200

 400

 600

 800

 1000

k=100000
R=100000000000

k=100000
R=150000000000

k=200000
R=500000000000

k=100000
R=500000000000

k=20000
R=500000000000

P
a
c
k
e
t
 
R
a
t
e
 
-
 
K
 
P
a
c
k
e
t
s
 
P
e
r
 
S
e
c
o
n
d

 Different k and R

Optimization Utility-based Congestion Control 
 Behavior of Different k & R

Reception Rate at Egress Node
Transmission Rate at Egress Node

Figure 15: Behavior of Optimal Utility-based Con-
gestion Control With Different k&R

tion of offered load. If all ingress nodes are offered the same
load, then they inject packets into the internal network at
the same rate and get the same share of the transmission on
the egress node. If one ingress node is offered less load than
the other two, the more heavily loaded nodes are punished
more than the lighter loaded node and all overloaded ingress
nodes still get an equal share until the more lightly loaded
source is 100% serviced.

The different behaviors of our congestion scheme with dif-
ferent k and R are also presented in Fig.15. We measure
the average transmission rates of the egress port when the
ingress nodes are offered traffic at the same rates. These
results are for the case where our congestion control scheme
applied. For most settings (as shown in Fig.6,8,9,10), the
transmission rate is close to the set transmission capacity
of the egress port, while in the case shown in Fig.7, the
transmission rate is much less. Note that for all 5 cases, the
injection rates are same as the set transmission capacity of
the egress port. The larger fluctuation of the injection rate
as shown in Fig.7 causes overflow of the egress queue, which
results in packet drops and low average transmission rate on
the egress nodes. For all other cases, because the fluctuation
of the injection rate is small and the set transmission rate of
the egress port is less than the actual transmission capacity,
the fluctuation is absorbed by the difference between the
set and actual transmission capacity, which results in less
dropping of packets.

Given the above real system experiments and the ns-3
simulations presented in section 5.3, we can conclude that
our discrete optimal utility-based internal congestion control
model is effective with certain range of parameters, and the
ns-3 simulations can be used to study the behavior of the
scheme and predict the range of parameters which make the
control scheme efficient and the system stable.

7. CONCLUSION
Congestion control is a universal problem in distributed

systems. The specific characteristics of the forwarding path
through our cluster-based router make the detailed features
of the congestion problem unique. In particular, the link-
layer flow control implemented as part of the InfiniBand
standard pushes congestion outward from the internal net-



work to the dependent ingress and egress nodes.
In this paper, we propose a congestion control scheme

which uses BECN notification internal to the router along
with optimal utility-based control scheme. We prove the
stability of the continuous model of the proposed congestion
control scheme and also check the stability of the model via
simulation of the discrete system. The application of the
scheme to our cluster-based router prototype shows that the
stability of the real system follows the results predicted by
the simulation.

Both the simulation and experimental evaluation of the
scheme show that our proposed congestion control scheme
is effective, efficient and fair if we set the parameters to
keep the router in its stable range. The control scheme is ef-
fective in preventing offered traffic from causing congestion
collapse, achieves efficiency by reducing the waste of internal
network bandwidth and CPU cycles by dropping overloaded
packets early, and allocates throughput fairly among differ-
ent sources. With this congestion control scheme in place,
the forwarding rate of our router is increased by up to 90%
under overload while the traffic in the internal network is
reduced by up to 75%.

8. REFERENCES
[1] S. Athuraliya, V. H. Li, S. H. Low, and Q. Yin. REM:

active queue management. IEEE Network, 15:48–53,
2001.

[2] S. Floyd and V. Jacobson. Random early detection
gateways for congestion avoidance. IEEE/ACM
Transactions on Networking, 1(4):397–413, 1993.

[3] IBTA. InfiniBand Architecture Specification.
InfiniBand Trade Association.

[4] V. Jacobson. Congestion avoidance and control. In
Proceedings of SIGCOMM ’88, pages 314–329,
Stanford, CA, August 1988. ACM.

[5] F. P. kelly, A. Maulloo, and D. Tan. Rate control in
communication networks: Shadow prices, proportional
fairness and stability. Journal of the Operational
Research Society, 49:237–252, 1998.

[6] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click modular router. ACM
Transactions on Computer Systems, 18(3):263–297,
2000.

[7] A. Kumar, A. Maniar, and A. S. Elmaghraby. A fair
backward explicit congestion control scheme for ATM
network. In ISCC ’99: Proceedings of the The Fourth
IEEE Symposium on Computers and
Communications, pages 452–457, Washington, DC,
USA, 1999. IEEE Computer Society.

[8] S. S. Kunniyur and R. Srikant. An adaptive virtual
queue (AVQ) algorithm for active queue management.
IEEE/ACM Transactions on Networking, 12:286–299,
2004.

[9] S. Liu, T. Basar, and R. Srikant. Controlling the
Internet: a survey and some new results. In
Proceedings of the 43nd IEEE Conference on Decision
and Control, pages 3048–3057, Maui, Hawaii USA,
December 2003.

[10] S. H. Low and D. E. Lapsley. Optimization flow
control - I: Basic algorithm and convergence.
IEEE/ACM Transactions on Networking,
7(6):861–874, December 1999.

[11] R.Srikant. The Mathematics of Internet Congestion
Control. Birkhauser, 2003.

[12] Q. Ye and M. H. MacGregor. Cluster-based IP router:
Implementation and evaluation. In IEEE International
Conference on Cluster Computing, pages 1–10,
Barcelona, Spain, September 2006.

[13] Q. Ye and M. H. MacGregor. Hardware bottleneck
evaluation and analysis of a software PC-based router.
In International Symposium on Performance
Evaluation of Computer and Telecommunication
Systerms, pages 480–487, Edinburgh, UK, June 2008.

9. APPENDIX

V (x, p) =
∑
s∈S

∫ xs

x∗s

u− x∗s
k ∗ u

du +

∫ p

p∗

v − p∗

R
dv

is a qualified Lyanpunov function so that the internal con-
gestion control algorithm

ẋs = [k ∗ (W − xs ∗ p)]+x

ṗ = [R ∗ (
∑
s∈S

xs − C)]+p

is globally, asymptotically stable.
Proof:

V̇ =
∑
s∈S

xs − x∗s
k ∗ xs

∗ ẋs +
p− p∗

R
∗ ṗ

≤
∑
s∈S

xs − x∗s
k ∗ xs

∗ k(w − xs ∗ p) +
p− p∗

R
∗R(

∑
s∈S

xs − C)

=
∑
s∈S

xs − x∗s
xs

∗ (w − xs ∗ p) + (p− p∗) ∗ (
∑
s∈S

xs − C)

=
∑
s∈S

xs − x∗s
xs

∗ (w − xs ∗ (p− p∗ + p∗)

+ (p− p∗) ∗ (
∑
s∈S

xs − x∗s + x∗s − C)

=
∑
s∈S

(−xs + x∗s) ∗ (p− p∗) + (p− p∗) ∗
∑
s∈S

(xs − x∗s)

+
∑
s∈S

xs − x∗s
xs

∗ (w − xs ∗ p∗) + (p− p∗) ∗ (
∑
s∈S

x∗s − C)

=
∑
s∈S

xs − x∗s
xs

∗ (w − xs ∗ p∗) + (p− p∗) ∗ (
∑
s∈S

x∗s − C)

≤ 0

(11)

Since
∑

s∈S

xs−x∗s
xs
∗ (w − xs ∗ p∗) = 0 when xr = x∗r , and

w
xr

decreases as xr increases,
∑

s∈S

xs−x∗s
xs
∗ (w − xs ∗ p∗) ≤

0. On the other hand,
∑

s∈S x∗s ≤ Cand p∗ = 0if
∑

s∈S x∗s <
C, so (p− p∗) ∗ (

∑
s∈S x∗s − C) ≤ 0.


