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Abstract

Computer-based interactive environments present a compelling platform for research in Artificial

Intelligence. Using games as its domains, this work has traditionally focused on building AI agents

that can play games well (e.g., Checkers, Go, or StarCraft). In more recent years, a parallel line of

research has aimed to achieve a different goal: to mimic the abilities of human game designers, ex-

tending their reach into the run time of the game. By building an AI agent to gather new information

and make decisions as their proxy, designers can ensure that their goals are pursued in a way that

adapts to each player automatically, while the game is underway.

In this dissertation, I present the Generalized Experience Management (GEM) framework, the

first mathematical formalization of modifying the dynamics of an interactive environment during

end-user play. Moving beyond traditional, ad hoc methods for creating AI agents that manage player

experiences, GEM is grounded in the theory of Markov Decision Processes while still remaining

practically applicable in both industry and academia. To evaluate the framework and demonstrate

its versatility, I present four adaptive systems as instances thereof: two that I designed and tested

through controlled user studies, one that was created independently in a commercial video game,

and one that was seminal in the domain of Interactive Drama. Finally, I propose and demonstrate

a detailed method for evaluating GEM systems, including a new way to distinguish between the

effects of player-specific and player-independent adaptation.

ii



Preface

This thesis is an original work by David Thue. The user studies described in this thesis received
research ethics approval from the University of Alberta Research Ethics Board under two projects:
(1) “Evaluating entertainment of recurring characters in adaptive interactive stories”, No. 1844
(CLG08-08-05), approved August 28, 2008, and (2) “Player Agency in Interactive Stories”, No.
Pro00017135, approved January 6, 2011.

iii



Acknowledgements

Contributors
While I led and organized the work that I present herein, much of it was done in collaboration
with others. My regular discussions with Vadim Bulitko both inspired and clarified many of the
ideas that form the basis of this work, and Marcia Spetch provided invaluable guidance and support
for the empirical evaluations that I performed. My discussions with Howard J. Hamilton and his
research group at the University of Regina also had a formative effect on the later part of my work.
Eric Wasylishen, Michael Webb, Trevon Romanuik, and Charles Crittenden were instrumental to the
development of my two empirical testbeds, into which they all invested long hours and incredible
amounts of energy. To all of these people: Thank you. I value our collaboration immensely, and this
work would have been greatly lessened without your thoughtful help.

General Thanks
My family and Lauren, for their unending and unmatched support of everything that I do –

– even when that involves moving away to live and work in Iceland.
Vadim, for his sound advice, understanding patience, and thoughtful supervision.

Marcia, for her reliable expertise, insightful comments,
and willingness to support our access to the Research Participation Pool.

Howard, for his carefully formed feedback and relentless support.
Eric, Mike, Trevon, and Charlie, for their tireless work

in bringing Annara’s Tale and Lord of the Borderlands to life.
Vadim’s research group, IRCL, for their helpful feedback and support of my work.

Howard’s research group, for engaging discussions and distractions alike.
Duane Szafron and Jonathan Schaeffer, for guiding this work

and serving on my supervisory committee.
Osmar Zaiane and Arnav Jhala, for serving on my examining committee.

Andrei Volodin, for his knowledge of statistics and the joy with which he shares it.
Sarah Beck, Andrea Budac, Teri Drummond,

for testing Lord of the Borderlands before the user studies began.
Sharon Randon and Tom Johnson,

for their selfless work in support of the Research Participation Pool.
All of the participants who helped to evaluate my work.

NSERC and iCORE, for funding my research.
Reykjavik University, for taking me in and keeping their faith

that we would see this dissertation done.

iv



Table of Contents

Glossary xii

1 Introduction 1
1.1 An Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Background: Interactive Environments & Experiences . . . . . . . . . . . . . . . . 4

1.2.1 Agency & Authorial Control . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Experience Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 AI Managers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Evaluation & Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Domain & Research Focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Thesis Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Problem Formulation 10
2.1 Experience Management with Markov Decision Processes . . . . . . . . . . . . . 10

2.1.1 Interactive Environments, Trajectories, and Histories . . . . . . . . . . . . 11
2.1.2 The Player’s Return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.3 A Formal Definition of Experience Management . . . . . . . . . . . . . . 12
2.1.4 Benefits of Changing the Transition Function . . . . . . . . . . . . . . . . 13
2.1.5 Implementation Complexity . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Domain Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Definition of Success . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Related Work 17
3.1 Drama Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 The Playwright . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.2 Moe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.3 Families of Story Managers . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Dynamic Difficulty Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Existing Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Generalized Experience Management 25
4.1 Foundation & Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 Block #1: Decision Constraints . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.2 Block #2: An Objective Function . . . . . . . . . . . . . . . . . . . . . . 28
4.1.3 Block #3: A Rollout Function . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1.4 Block #4: An Estimated Player Policy . . . . . . . . . . . . . . . . . . . . 32
4.1.5 Block #5: A Feature Vector . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Building a Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Case Studies 38
5.1 Moe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1.1 The Player’s Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.1.2 Moe’s Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.3 Moe’s Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.1.4 GEM Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Left 4 Dead’s AI Director . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2.1 The Player’s Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2.2 The AI Director’s Operations . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2.3 The AI Director’s Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2.4 GEM Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 PaSSAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

v



5.3.1 The Player’s Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.2 PaSSAGE’s Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3.3 PaSSAGE’s Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3.4 GEM Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4 PaSSAGE 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.4.1 The Player’s Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.4.2 PaSSAGE 2’s Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.4.3 PaSSAGE 2’s Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.4.4 GEM Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Evaluation 71
6.1 Gameplay-based Evaluation for Experience Managers . . . . . . . . . . . . . . . . 71

6.1.1 Groups of Players & Scores . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.1.2 Measuring Success & Complete Trajectories . . . . . . . . . . . . . . . . 73
6.1.3 Interpreting Success . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.1.4 Attributing Success: Player-Specific or Player-Independent Managers . . . 74
6.1.5 Analysis & Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 Case Study: Evaluating PaSSAGE & PaSSAGE 2 . . . . . . . . . . . . . . . . . . 79
6.2.1 Research Questions, Hypotheses, & Experimental Designs . . . . . . . . . 79
6.2.2 Testbed Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2.3 Measuring Scores: Survey Instruments . . . . . . . . . . . . . . . . . . . 83
6.2.4 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.2.5 Data Analysis Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.3 Experiments & Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3.1 PaSSAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3.2 PaSSAGE 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.3.3 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.4 Discussion of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7 Discussion 100
7.1 Generalized Experience Management . . . . . . . . . . . . . . . . . . . . . . . . 100

7.1.1 Benefits & Implications for Research and Practice . . . . . . . . . . . . . 100
7.1.2 Mathematical Affordances . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.1.3 Assumptions & Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.1.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.2 Evaluating Experience Managers . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.2.1 Implementation Challenges . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.2.2 Logistical Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.2.3 Challenges to Measuring Intended Effects . . . . . . . . . . . . . . . . . . 107

8 Conclusion 109

References 110

A User Study Materials 115
A.1 Survey 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
A.2 Survey 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
A.3 PaSSAGE Study Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
A.4 PaSSAGE 2 Study Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

B Related Publications 127

vi



List of Tables

3.1 A comparison of two approaches based on solving MDPs. . . . . . . . . . . . . . 20

4.1 A tabular representation of a decision constraint function for two potential histories. 27
4.2 A tabular representation of an objective function for two potential histories. For

a given history and transition function, this function estimates how much fun the
current player would have if the game’s transition function were to change to the
given one after the given history occurred. . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Possible rollouts for each of two given transition functions, starting from 〈st, at〉 =
〈Alone in Forest, Explore〉 in Figure 4.2. . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Part of a tabular representation of an estimated player policy. For a given history,
state, and action, the estimated player policy gives a probability that the player will
perform the action in that state, given that history ht has occurred earlier in the game. 33

4.5 Part of a tabular representation of a simple feature vector. For a given player his-
tory, the feature vector gives a vector of real numbers that contains a value for each
feature. Only two possible histories are shown. . . . . . . . . . . . . . . . . . . . 34

5.1 A summary of how each of Moe’s components can be represented using GEM. . . 46
5.2 A summary of how each of the AI Director’s components can be represented using

GEM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 Rollouts that PaSSAGE would generate for each to two available transition functions

at the decision point shown in Figure 5.12. The conditional fun vector for each
rollout is also shown. The symbols in column 2 facilitate cross-referencing rollouts
with Table 5.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4 Using the models of two different players to estimate their return for each of two can-
didate transition functions. Italics show the highest estimated return over all avail-
able transition functions. Bold values indicate the highest estimated return over all
possible rollouts. The symbols in the rollouts column (h+) can be cross-referenced
with Table 5.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5 A summary of how each of the PaSSAGE’s components can be represented using
GEM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.6 Intermediate and final values for calculating the desirability of outcome oR = 〈Near
Home (Rebel Favour),Enter〉, assuming that the player reached oR following a his-
tory ht such that κ(ht) = {τA, τB}. The highest overall desirability for oR that can
be obtained using any of the available transition functions is shown in bold. I use
w = 1 in Equation 5.11. The additional parameters of desL and desC are omitted for
brevity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.7 A summary of how each of PaSSAGE 2’s components can be represented using GEM. 69

6.1 Mapping from category to numerical value for two independent variables. . . . . . 86
6.2 A map showing the organization of my experiments in this chapter. H1 and H2

denote sections that discuss my tests of Hypotheses 1 and 2, respectively. For PaS-
SAGE, see Section 6.3.1. For PaSSAGE 2, see Section 6.3.2. . . . . . . . . . . . . 88

6.3 Results for testing Hypothesis 1 with respect to PaSSAGE (ψ), using survey 1’s
measure of Fun as the score being evaluated; βψ is PaSSAGE’s proportional random
variant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.4 Results for testing Hypothesis 2 with respect to PaSSAGE (ψ), using survey 1’s
measure of Fun as the score being evaluated; β is a uniform random manager. . . . 90

6.5 Results for testing Hypothesis 1 with respect to PaSSAGE (ψ), using survey 2’s
measure of Fun as the score being evaluated; βψ is PaSSAGE’s proportional random
variant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

vii



6.6 Results for testing Hypothesis 2 with respect to PaSSAGE (ψ), using survey 2’s
measure of Fun as the score being evaluated; β is a uniform random manager. . . . 91

6.7 Results for testing Hypothesis 1 with respect to PaSSAGE 2 (ψ2), using survey 1’s
measure of Agency as the score being evaluated; βψ2 is PaSSAGE 2’s proportional
random variant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.8 Results for testing Hypothesis 2 with respect to PaSSAGE 2 (ψ2), using survey 1’s
measure of Agency as the score being evaluated; β is a uniform random manager. . 92

6.9 Results for testing Hypothesis 1 with respect to PaSSAGE 2 (ψ2), using survey 2’s
measure of Agency as the score being evaluated; βψ2 is PaSSAGE 2’s proportional
random variant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.10 Results for testing Hypothesis 2 with respect to PaSSAGE 2 (ψ2), using survey 2’s
measure of Agency as the score being evaluated; β is a uniform random manager. . 93

6.11 A summary of my results for testing Hypotheses 1 and 2 with respect to PaSSAGE
(measuring Fun) and PaSSAGE 2 (measuring Agency). Confidence values indicate
that the corresponding hypothesis was supported or refuted at the given level (pos-
sible refutations are indicated by “Ref.”). . . . . . . . . . . . . . . . . . . . . . . 94

6.12 Abbreviations for each of my four experiments. In the first column, “A” denotes
PaSSAGE, “B” denotes PaSSAGE 2, “1” denotes survey 1, and “2” denotes survey 2. 95

6.13 Correlation coefficients for Fun and Agency scores across surveys 1 and 2. For each
coefficient, its associated p-value was less than 0.01. . . . . . . . . . . . . . . . . 95

viii



List of Figures

1.1 An opportunity to change the player’s experience in Annara’s Tale. Left pane: The
player chooses to fight the troll that blocks Annara’s path (thick straight arrow), and
the manager can choose how this action should connect to subsequent game content
(curved dashed arrows). Upper right pane: Annara meets a traveller who needs help
solving a riddle. Lower right pane: Annara sees someone from her village being
attacked by giant spiders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Four graphs showing how player experiences can vary under different conditions
(listed across the top). Each graph is an interactive environment, and each circle is
a state of the environment. Each double circle shows the player’s starting state, and
each arrow shows how the numbered player action leads to a new state (i.e., it shows
the environment’s dynamics). Thick outlines and arrows indicate the states/actions
that the player perceived/performed as part of their experience, which is summarized
below each graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Pseudocode for performing experience management in a given interactive environ-
ment using a given manager. Recall that the set of all possible transition functions
(T , from which the manager ultimately selects) is defined implicitly by S and A. . 13

4.1 An opportunity to change the player’s experience in Annara’s Tale, revisited. The
player chooses to fight the troll that blocks Annara’s path (thick straight arrow), and
the manager can choose whether the game’s transition function should be changed
to either τA (curved dashed arrows) or τB (angular dashed arrows). . . . . . . . . . 26

4.2 Part of Annara’s Tale represented as an MDP, showing the effects of choosing one of
two available transition functions (τA or τB) at the highlighted decision point. Ovals
are game states, arrows show the combined effect of a single player action and a
deterministic transition function. Top: The MDP if τA were selected. Bottom: The
MDP if τB were selected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Part of the MDP for Annara’s Tale. Ovals are game states, arrows show the com-
bined effect of a single player action and a deterministic transition function. The
symbol τA identifies the game’s current transition function. . . . . . . . . . . . . . 32

4.4 A diagram showing how GEM can be used to build a new manager. . . . . . . . . 36

5.1 A plot graph of player moves from Tea for Three, the interactive drama managed by
Moe. Source: (Weyhrauch 1997). Each player move at the tail of an arrow must
be performed by the player before the player move at the head of that arrow will
become legal to perform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Representing a Moe causer or hint as changing a transition function. Changing the
transition function from τ1 to τ2 could force the player to perform action 2 (the
desired result of a causer). The same change could force the player to observe a hint
in state C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3 Representing a Moe denier or delayer as changing a transition function. When the
transition function is changed from τ1 to τ2, none of the player’s actions can cause
the game to reach state C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.4 Representing a Moe move substitution or future hint as changing a transition func-
tion. When the transition function is changed from τ1 to τ2, the player will be forced
to observe a hint in state E (a future hint) after performing action 1, and must then
perform action 2 (a move substitution). . . . . . . . . . . . . . . . . . . . . . . . . 43

ix



5.5 Representing a change in which player moves are legal as a change to a transition
function. Left: a plot graph that requires action 1 to be performed before action 2.
Middle: an MDP with a transition function such that performing action 2 has no
effect. Right: an MDP with a transition function such that action 2 can have various
effects; this function could be activated after the player performs action 1. . . . . . 44

5.6 The four survivor characters in Left 4 Dead. Source: (Booth 2009). . . . . . . . . . 46
5.7 A plot of the estimated emotional intensity of one player over time while playing

Left 4 Dead. Source: (Booth 2009). The red areas show the times during which
either zero or minimal threat population is active; the black areas show times during
which full threat population is active. . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.8 Representing each of the AI Director’s three threat population methods as a (non-
deterministic) transition function. For simplicity, each circle shows the state of only
two rooms in the game (separated by a horizontal line), and only four potential
subsequent states are shown. Large white / small black stars indicate the presence
major/minor zombies. Dashed arrows show the transitions from the most recent
state and action (the thick-lined circle and arrow) to potential subsequent states.
Small black dots show the point at which the transition function is used to determine
the next state. Transitions to states with zero probability of occurring are not shown. 49

5.9 Screenshots from Annara’s Tale. Top left: the player’s character, Annara. Top right:
Maedorn Forest. Bottom left: dialogue with a non-player character. Bottom right:
combat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.10 An example showing part of my MDP representation of Annara’s Tale. The shaded
region shows a subgraph that makes up the encounter “Annara and the Troll”. . . . 53

5.11 A simplified example of learning PaSSAGE’s player model in Annara’s Tale. When
the player causes Annara to fight the Troll, the model’s value for the player’s in-
clination toward fighting (“F”) is increased. Only two play styles are shown here,
whereas PaSSAGE uses five. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.12 Part of Annara’s Tale represented as an MDP. The shaded area marks a decision
point. The solid-edged box shows the MDP for time step t − 1 and earlier (i.e.,
〈S,A, τA〉), and the dashed-edged box shows that a transition function must be se-
lected, to be used as τt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.13 Part of Annara’s Tale represented as an MDP, showing the effects of choosing one
of two available transition functions (τA or τB) with respect to which encounter will
occur next. Ovals are game states, arrows show the combined effect of a single
player action and a deterministic transition function. Each shaded area shows a
collection of states and actions that represents a unique encounter. Top: The MDP
if τA were selected. Bottom: The MDP if τB were selected. . . . . . . . . . . . . . 57

5.14 Screenshots from Lord of the Borderlands. Top left: the player’s avatar, Jaden. Top
right: Jaden’s village. Bottom left: dialogue with a non-player character. Bottom
right: combat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.15 Part of Lord of the Borderlands represented as an MDP. The shaded areas mark
decision points that are potential outcomes of the player choice “Rebel Uprising”.
The solid- and dashed-edged boxes are defined as in Figure 5.12. The outcome that
occurs will vary with the player’s choice to “Join” or “Oppose” the rebels. The
dashed arrows represent parts of the MDP that I have omitted to simplify the current
example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.16 Part of Lord of the Borderlands represented as an MDP, showing the effects of choos-
ing one of two available transition functions (τA or τB) at the highlighted outcome.
Left: the MDP if τA were selected. Right: the MDP if τB were selected. Dashed-
edge boxes denote encounters whose details I have omitted to simplify the example. 64

5.17 Part of Lord of the Borderlands represented as an MDP, showing the potential ex-
periences that could follow after the two highlighted outcomes, supposing that PaS-
SAGE 2 chooses τA at each outcome. The bold path shows the current player’s
history. Dashed-edge boxes denote encounters whose details I have omitted to sim-
plify the current example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.18 Part of Lord of the Borderlands represented as an MDP, showing the effects of choos-
ing one of two available transition functions (τA or τB) at the highlighted outcomes.
Top: The MDP if τA were selected. Bottom: The MDP if τB were selected. Bold
paths show the current player’s history. Circled values give each outcome’s local
desirability, given the indicated transition function. Dashed-edge boxes denote en-
counters whose details I have omitted to simplify the current example. . . . . . . . 67

5.19 Two encounters in Lord of the Borderlands. Top left: “Imprisoned”. Bottom left:
“Duel”. Top right: “Friendly Rebels”. Bottom right: “Hostile Rebels”. . . . . . . . 68

x



6.1 Pseudocode for using weighted bootstrapping to estimate the expected score of a
uniform random manager β from data collected from the proportional random vari-
ant βm of some managerm, where bold variables represent vectors, σi represents the
score that was measured for player pi, and qi represents the sequence of transition
functions that βm assigned to pi. . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.1 Representing a Moe future hint as changing a transition function (repeated from
Figure 5.4 for convenience). When the transition function is changed from τ1 to τ2,
the player will be forced to observe a hint in state E after performing action 1. While
the transition probabilities following state/action pair 〈B, 1〉 are different, the rest of
τ1 and τ2 are identical. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

xi



Glossary

Abstract States or Actions: states or actions that omit unnecessary details about the underlying

interactive environment, 10

Agency: an agent’s ability to influence the course of its experience in an interactive environment

by performing actions therein, 6

Baseline Manager: the basis of comparison when evaluating one manager by comparing it to

another, 73

Complete Trajectory: a trajectory that begins at time step 0 and contains exactly one game ending,

72

Decision Constraint Function, Balanced: a decision constraint function such that, regardless of

the player’s actions, (i) the same number of decision points occur for every player, (ii.a) all of

the decision points that can be reached first during gameplay (i.e., before any other decision

points) yield the same set of transition functions, and (ii.b) the same is true for every set of

decision points that can be reached second, third, etc. thereafter, 74

Decision Constraint Function: a function that maps from player histories to non-empty subsets

of the set of all transition functions (GEM Building Block #1), 25

Decision Constraints: the set of transition functions given by a decision constraint function, 25

Decision Point: any state/action pair after which more than one transition function is available for

selection following some history that ends with that pair, 26

Designer: a person who decides which effect a given environment should have on each player that

engages with it, 1

Environment: surroundings of an agent that change when it performs an action., 1

Estimated Player Policy: a function that maps from a given history, a state, and an action to an

estimate of the probability that the player will perform the given action in the given state,

given that the given history has occurred earlier in the game (GEMBuilding Block #4), 31

xii



Expected Score: the expected value of the score that would arise from a given manager managing

the experience of any player in a given population, in a given interactive experience, 76

Experience Management: the process of optimizing a player’s experience in an interactive envi-

ronment by changing that environment while the experience is underway, 6

Experience Manager: an agent outside of an MDP that: (a) observes all of the states and ac-

tions that occur therein, and (b) changes the MDP’s transition function while any player’s

experience in the MDP is underway, toward maximizing that player’s return, 10

Feature Vector: a vector of features, 32

Feature: a function that maps from a given trajectory to a real number, used to represent some

factor of the player’s experience that affects how successful it might be, 32

First Complete Trajectory: the first complete trajectory through a given interactive environment

that is experienced by a given player, 76

Fixed Manager: a player-independent manager with decision constraints such that only one tran-

sition function is available to select following every state/action pair, 73

Game Ending: a state from which any player action will only ever result in the same state occur-

ring again, 72

History: a trajectory that begins at time step 0 and ends with the most recent action that occurred,

11

Ideal Manager: a manager that identifies the set of transition function sequences for each player

that would cause them to give the highest score and selects transition functions according to

any sequence in that set, 71

Intended Effect: a designer-desired effect on the player that a manager attempts to achieve through

its operation (see: Designer), 1

Interactive Environment: an environment in which the agent can perform at least two different

actions, 5

Interactive Story: an interactive environment that allows players to influence the progression of a

story as it unfolds, 17

Manager’s Policy: a function that maps from a given interactive environment, a player’s history,

and optional other parameters to the single transition function that it selects for that environ-

ment to use at the next time step, 12

Manager’s Score: the average of many scores obtained from a group of players, 70

xiii



Manager: (see: Experience Manager), 10

Objective Function: a function that maps from a transition function, a history, and the current

interactive environment to a real number that estimates the player’s return (GEM Building

Block #2), 27

Optimal Experience: an experience such that no other experience in the same environment is

more successful at affecting that player in the intended way (see: Intended Effect), 1

Player-Independent Manager: a manager whose opportunities to select transition functions do

not depend on the player’s actions, 73

Player-Specific Manager: a manager whose opportunities to select transition functions depend on

the player’s actions, 73

Policy: a mapping from every state in an environment to an action that the agent will perform in

that state, 10

Proportional Random Variant (of some target manager): a player-independent manager that

gives sequences of transition function in the proportions that were observed for a target man-

ager, 75

Random Manager: a player-independent manager that samples randomly from a given probability

distribution over transition functions at each decision point that occurs in the game, 73

Return: a function of the rewards that an agent receives receive during the course of any experience

that it has in a given interactive environment; in GEM, it represents how successfully that

player was affected in the way that the designer intended, 11

Rollout Function: a function that maps from a decision point, a transition function, and an inter-

active environment to a set of trajectories that could potentially follow after the given point

occurs and the given transition function is selected by the manager (GEM Building Block #3),

29

Rollout: any trajectory in the set given by the rollout function, 29

Score Function: a function that gives a player’s score for some given trajectory; used to represent

a player for evaluation purposes, 71

Score: a measured value of how successfully a given player was affected by a trajectory that they

experienced in a given game, 70

Sequence of Transition Functions: the ordered sequence of transition functions that a manager

selected during some player’s experience in a given interactive environment, 71

xiv



Target Manager: the manager of interest when evaluating one manager by comparing it to another,

73

Trajectory: a rotating sequence of states, actions, and transition functions that occur during an

agent’s experience in an interactive environment, 11

Uniform Random Manager: a manager that gives sequences of transition functions randomly, as

drawn from a uniform distribution over the set of all possible sequences of transition functions

for a given interactive environment, 80

xv



Chapter 1

Introduction

Much research in Artificial Intelligence (AI) has focused on the task of optimizing the experience

of a given single agent. Traditionally, this task has been assigned to the agent itself: it must improve

its ability to choose between actions in a given environment, toward causing its own experience to

achieve some designer-specified goal (e.g., finding a shortest path, or collecting the most rewards).

The effectiveness of such an agent at run-time depends heavily on its ability to correctly estimate

which action is the most likely to lead to achieving the goal. What should be done, however, when

an agent is unable to form reliable estimates? In this work, I study the challenge of optimizing the

experience of an agent that is incapable of doing so itself. In my solution, I shift the optimization

problem over to a second, more capable agent (called a manager (Mateas 2002; Riedl et al. 2008))

that monitors and modifies the first agent’s experience while it is underway. I refer to the first agent

generally as a player henceforth.

Manager/player relationships are common in daily life, and in every such instance, the manager’s

goal can be expressed as a particular, intended effect on the player. This effect might be multi-

dimensional, and the manager might wish for it to occur either during a given experience or after it

has ended. For example, adults manage the experiences of young children to ensure their health and

safety, teachers manage the experiences of students to encourage them to learn, and medical doctors

manage the experiences of patients to maintain and improve their health. For a given environment

(i.e., a context in which player experiences can occur), some of the experiences that are possible

therein might be less successful than others at affecting the player as desired. For example, given

two potential medical treatments, one might be less well suited to a given patient’s lifestyle. From

the perspective of the manager, an experience is optimal for a given player if no other experience

is more successful at affecting that player in the intended way (e.g., a teacher might define their

student’s experience to be optimal if the student remains engaged throughout a lesson and learns a

given skill well enough to perform it easily afterward). A manager tries to dynamically optimize

each player’s experience by changing the environment: it first estimates how successful each of

several potential changes might be at affecting the player as desired, and then it carries out the

change that maximizes its estimated success.
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When implemented as an AI system, a manager’s goal comes from a designer – a person who

decides which effect a given environment should have on each player that engages with it. Any AI

manager can thus be thought of as a software system that dynamically pursues a designer’s goals,

where those goals describe the intended experience of each player in a particular environment.

In general, optimizing a player’s experience is a challenging problem to solve. Since interrupt-

ing the player’s experience (e.g., by pausing to administer a questionnaire) could prevent them from

being affected as desired, it is difficult for the manager to gather player feedback while the experi-

ence is underway. Furthermore, without a regular source of clear feedback regarding its decisions

(like the reward signal in Reinforcement Learning (RL) (Sutton and Barto 1998)), the manager has

no reliable way to learn the value of choosing one update to the environment over another. Addi-

tionally, given that the likelihood of a player returning for a second experience may depend heavily

on the success of the first one, it is important for the manager to succeed during every player’s first

experience in a given environment. As a result, the manager may have no chance to improve its

decisions over multiple iterations (as RL agents commonly do) before being required to perform

well. Finally, to preserve the generality of this work, I assume that players may not be aware that

their experience is being managed; thus, their cooperation cannot be guaranteed.

Optimizing a player’s experience using an AI system is an even more challenging problem. As

the variety of experiences that players can have in a given environment increases, the task of specify-

ing which changes to the environment will be optimal following each partial experience becomes in-

creasingly large. Furthermore, although several AI managers have been created to-date (Weyhrauch

1997; Mateas and Stern 2005; Aylett et al. 2005; Riedl and Stern 2006; Magerko 2006; Barber

and Kudenko 2007; Thue et al. 2007a; Valve Corporation 2008; Arinbjarnar and Kudenko 2008;

Figueiredo et al. 2008; Tomaszewski and Binsted 2009; Swartjes and Theune 2009; Thue et al. 2011;

Sullivan 2012; Yu and Riedl 2012; Ramirez and Bulitko 2014), the designs of such systems have

arisen most often from particular, specific domains (e.g., dramatic storytelling, computer games, or

education and training). As a result, the terminology for shared concepts is unstandardized, and

communicating the details of one manager to the creators of another often requires a substantial

initial negotiation to find some useful common ground (Barber et al. 2008; Koenitz et al. 2010;

Szilas et al. 2011; Koenitz et al. 2011; Szilas et al. 2012). Without a general, conceptual frame-

work in which to understand the operation and components of existing AI managers, it is difficult to

extend the capabilities of one manager using techniques that were designed for another.

In this dissertation, I present Generalized Experience Management (GEM): a formal specifica-

tion of experience management that unifies previously disparate approaches into a common mathe-

matical framework. When implemented, this framework produces an experience manager that auto-

matically performs three tasks; it: (i) gathers information about an experience’s current player, (ii)

uses that information to assess different possible changes to a given environment, and (iii) modifies

the environment toward optimizing the player’s experience with respect to a set of intended effects
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(e.g., that the player should have fun, feel influential, etc.). The GEM framework is the primary

contribution of this work; I outline two other contributions in the following paragraph.

The remainder of this dissertation is organized as follows. In the rest of this chapter, I give a

high-level example of experience management in the context of computer video games and introduce

the terms and concepts that are essential to understanding this work. In Chapter 2, I formulate the

problem of experience management using a common AI formalism (Markov Decision Processes),

and introduce the measures that I used to evaluate my work. Following my review of related re-

search (Chapter 3), I present Generalized Experience Management in three parts: a foundation, a

set of building blocks, and a description of how these can be combined to create a new manager

or represent one that already exists (Chapter 4; Contribution 1). To evaluate the framework and

demonstrate its versatility, I present four existing managers as instances thereof: two that were

created independently by other researchers, and two that I created using commercial video game

technology (Chapter 5). The last of these managers, PaSSAGE 2, is novel contribution of my Ph.D.

research (Section 5.4; Contribution 2). In Chapter 6, I present and demonstrate a novel methodology

for evaluating GEM managers (Contribution 3). I discuss the benefits and limitations of GEM and

offer ideas for future work in Chapter 7, and conclude the dissertation in Chapter 8. Appendix A

contains materials from the user studies that I conducted and Appendix B lists the publications that

have arisen from this work.

Present Time

"Let me by, troll, or 
I'll have your head!"

want, then?"

Figure 1.1: An opportunity to change the player’s experience in Annara’s Tale. Left pane: The

player chooses to fight the troll that blocks Annara’s path (thick straight arrow), and the manager

can choose how this action should connect to subsequent game content (curved dashed arrows).

Upper right pane: Annara meets a traveller who needs help solving a riddle. Lower right pane:

Annara sees someone from her village being attacked by giant spiders.
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1.1 An Illustrative Example

As an example of how an experience might be optimized by a manager, consider one of the manager

decisions in Annara’s Tale, an interactive adaptation of the story Little Red Riding Hood (Perrault

1697) that I created in prior work (Figure 1.1; (Thue et al. 2007a)). The player controls the story’s

protagonist (named “Annara”, instead of “Red” from the original story), and gets sent into the forest

on a mission soon after the story starts. Shortly after entering the forest, Annara meets a troll who

blocks her path (Figure 1.1: Left pane). Given options to either fight or speak with the troll, suppose

that the player chooses to fight (saying “Let me by, troll, or I’ll have your head!”).

Consider the point in time right after the player starts the fight (labelled “Present Time” in the

figure). Looking into the future, there are two updates to the environment that could be used to

continue the story, after the fight is over. One update involves placing a traveller in the forest who

has been perplexed by a riddle (upper right in the figure); he offers to help Annara in exchange for

her solving it, but the player might choose to ignore him instead. The other update involves placing

someone from Annara’s village in the forest and having them be attacked by giant spiders (lower

right); the player could fight off the spiders and obtain a reward, or they could continue along the

forest path as though nothing was amiss. Back at the present time (when the player has just started to

fight the troll), the manager must make a decision: of all of the available updates to the environment,

which one should be carried out? By observing the player’s choice to attack the troll, the manager

might learn that the player is more inclined toward combat than other kinds of gameplay. Given this

knowledge and the (designer-provided) goal of players having fun, the manager might choose the

update that leads to even more combat (in this case, the one that leads to the spider attack).

This example is intentionally small: it covers only a single informative player action, a single

manager decision, and two possibilities for what might happen next; it also does not consider how

the manager’s decision might influence subsequent parts of the experience. In general, a given

experience could involve a wide range of informative player actions and as many manager decisions

as the designer allows. Furthermore, those decisions could affect much larger sections of subsequent

gameplay, limited only by the remaining available length of the experience.

1.2 Background: Interactive Environments & Experiences

In general, an environment is defined by three components: a set of states that players can perceive,

a set of actions that players can perform, and dynamics that describe how player actions in each state

of the environment lead to new states occurring. An experience occurs whenever a player both (i)

perceives the different states of an environment as they change over time and (ii) performs actions

therein1. For example, daily life is an experience because we perceive the world around us from one

moment to the next and perform actions while doing so, and playing a video game is an experience

1I consider waiting to be an action like any other.
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because we perceive the states of a virtual world via the display screen of a computer and use an

input device to perform virtual actions in that world. I represent an experience as an alternating

sequence of states and actions.

Whenever an environment offers at least two actions for the player to perform, that environment

is said to be an interactive environment. For example, the simple interactive environment in Fig-

ure 1.2 Original has four states {A, B, C, D}, three player actions {1, 2, 3}, and dynamics such that

action 1 in state A leads to B, action 2 in state B leads to C, and action 3 in state B leads to D.

B

C D

A

1

2 3
B

C D

A

1

2 3
B

C D

A

1

2 3
B

C

A

1

2 3

D

B 3 D A 1 B 2 C A 1 B 3 CA 1 B 3 D

Original Different 
Starting State

Different 
Player Actions

Different 
Dynamics

Figure 1.2: Four graphs showing how player experiences can vary under different conditions (listed
across the top). Each graph is an interactive environment, and each circle is a state of the environ-
ment. Each double circle shows the player’s starting state, and each arrow shows how the numbered
player action leads to a new state (i.e., it shows the environment’s dynamics). Thick outlines and
arrows indicate the states/actions that the player perceived/performed as part of their experience,
which is summarized below each graph.

In any interactive environment, the occurrence of any particular experience depends on three

factors: (i) the state of the environment when the player’s experience begins, (ii) the actions that the

player performs, and (iii) the dynamics of the environment. Figure 1.2 shows an example of how a

player’s experience can vary when each of these factors is changed. Comparing the first and second

graphs in the figure shows how having a different starting state causes the player to miss the first

state (A) and action (1) of the original experience. Comparing the first and third graphs shows how

a different player action after state B (action 2 instead of 3) causes the player’s experience to end

with state C instead of D. Finally, comparing the first and last graphs shows how having different

environment dynamics (where action 3 in state B leads to state C instead of D) causes the player’s

experience to end with state C instead of D. In all four cases, the player’s experience is different.

In undertaking this work, I was particularly interested in the problem of managing experiences

that occur in environments where the manager can observe the states and actions that occur during

the player’s experience. Such managers have the opportunity to learn about each player, toward

improving their ability to optimize each player’s experience. For this reason, I assume that every

managed experience has three properties: (i) it occurs in an interactive environment, (ii), the manager
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can observe the states and actions that occur therein, and (iii) the manager can influence which

experience occurs (I discuss how it can do so in Section 1.3).

1.2.1 Agency & Authorial Control

Through their actions, each player exercises agency – the ability to influence the course of their

experience in an interactive environment by performing actions therein. Feeling influential is gener-

ally considered to be beneficial in daily life (Larson 1989), but the presence of agency complicates

the ways in which designers can affect players through their experiences. More specifically, while

traditional, non-interactive environments (e.g., books or movies) allow designers (such as authors or

film directors) to focus on affecting their audiences through a single experience that everyone will

have, the agency that players have in interactive environments makes it impossible to guarantee that

any particular experience will be had. As a result, ensuring that each player will be affected by their

experience as the designer intended becomes a much larger problem. Research in Experience Man-

agement aims to solve this problem by finding ways to automatically direct each player’s experience

while it is underway.

1.3 Experience Management

For a manager to attempt to optimize a player’s experience, it must be able to change either (i) the

player’s starting state, (ii) the player’s actions, or (iii) the environment in which their experience

occurs. Changing the starting state amounts to optimizing the player’s experience before any inter-

action has occurred, a point at which the manager would have had no opportunity to learn from its

observations of the player’s actions. To focus on the potential benefits of such learning, I do not

explore managers that change the player’s starting state in this work. To preserve the player’s auton-

omy, I assume that the manager cannot affect which actions the player performs. I therefore define

experience management as the process of optimizing a player’s experience in an interactive environ-

ment by changing that environment while the experience is underway. More specifically, managers

work by changing the environment’s dynamics – the ways in which player actions in any given state

lead to new states occurring. This focus on dynamics distinguishes Experience Management from

the related AI subfield of Procedural Content Generation (PCG) (Yannakakis and Togelius 2011);

while PCG focuses on creating new states or actions to allow a greater variety of player experiences,

Experience Management focuses on shaping the player’s experience of existing states and actions.

1.3.1 AI Managers

In the simplest case, an AI manager can update the environment’s dynamics after each player action,

and it does so toward ensuring that each player’s experience will affect them in the way that the

designer intended. For example, the AI manager in Façade dynamically defines a sequence of

dramatic interactions (called “beats”) among two virtual characters and the player, and each beat is
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associated with the designer’s estimate of how much tension it will add to the story (Mateas 2002;

Mateas and Stern 2003). Before any player experience begins, the designer provides the manager

with a desired curve of tension versus time. After each player action, the manager updates the

environment (e.g., by causing the player’s actions to trigger particular dramatic beats) in a way that

minimizes the difference between the given curve and an estimate of the amount of tension that is

currently in the story. The assumption underlying this design is that the more closely the estimated

progression of tension in each player’s story matches the designer’s curve, the more successfully the

experience will affect the player as the designer intended (e.g., players should feel catharsis).

1.3.2 Evaluation & Optimality

To accelerate progress toward creating AI experience managers, it is important to build, critically

evaluate, and compare complete, working prototypes (Mateas and Stern 2003). To date, however,

such efforts have only compared managers from within a single subfield of Experience Management

research (e.g., in Drama Management or Dynamic Difficulty Adjustment). An important step toward

comparing managers across subfields is the creation of a framework that allows managers from

different subfields to be represented in a unified way. As I show in Chapter 4, GEM can be used to

represent managers from the subfields of Drama Management and Dynamic Difficulty Adjustment.

Measuring the optimality of a player’s experience (i.e., its success at affecting the player as

intended) can be a daunting task, because measures of how much fun they had or how excited they

felt are often difficult to obtain in absolute terms. Throughout this work, I assume that the manager

is unable to directly observe how each of its changes to the environment affect its overall success at

affecting the player. For the experimental part of this work (Chapter 6), I mitigate the problem of

lacking absolute measures of optimality by comparing the relative success of different managers in

a given interactive environment. Specifically, by demonstrating that one manager is more successful

at achieving an intended effect in players than another manager (e.g., that it makes a video game

more fun), one can show progress toward creating managers that can provide each player with an

optimal experience (at least within that given environment).

Given the ability to perfectly predict the player’s actions and to accurately measure the success

of any given path through the game, an optimal manager could, in theory, be created. Until such

abilities are available, however, experience managers can still pursue optimality in practice, even if

achieving it remains out of reach.

1.4 Domain & Research Focus

Throughout this work, I frequently discuss experience management in the context of computer video

games. Such games are not only excellent contexts for concrete, detailed examples of experience

management, but they are also particularly useful as an evaluation domain when investigating AI

managers. There are several reasons why this is so. First, (human) game designers often aim for their
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games to have particular effects on their players (e.g., the feelings of fun, frustration, or excitement),

which makes them good models for AI managers. Second, the virtual nature of video games makes

it easier to pursue the designer’s goals with an AI-driven approach, since there is no need to create

interfaces to robotic arms, manual switches, or other devices in the “real world”; this helps simplify

the logistics of performing this kind of research. Finally, the potential benefits of applying AI

experience management in video games are worth pursuing from a commercial perspective, since

increasing the amount of fun that players have while playing could have a direct, positive impact on

a game’s reception, longevity, and sales.

Although several commercial video games include AI experience managers (e.g., “rubber-band-

ing” in Mario Kart 64 (Nintendo 1996), or the “AI Directors” in Left 4 Dead (Valve Corporation

2008) and DarkSpore (Maxis Software 2011)), the scope of such systems is often limited by at least

one of three factors: (i) a lack of ways to change the environment (which can be expensive to create),

(ii) a lack of useful information about the player (which can be difficult to acquire unobtrusively),

and (iii) the large amount of labour required to assign every combination of player information to

the best experience for that player. Although a lack of ways to change the environment (the so-called

“Authoring Bottleneck Problem” (Csinger et al. 1994)) is a serious concern, I focus my attention on

the latter two problems for the following reasons: the first factor holds the interest of several other

scholars (Riedl et al. 2008; Orkin and Roy 2009; Ontañón and Zhu 2011; Swanson and Gordon

2012; Li et al. 2013) while the latter two are comparatively less explored, and there already exist

several commercial video games which, while not lacking in content, might still benefit from having

their players’ experiences being managed (e.g., Skyrim (Bethesda Game Studios 2011), Grand Theft

Auto: V (Rockstar North 2013), or Red Dead Redemption (Rockstar San Diego 2010)). Looking

beyond the domain of video games, real-world experiences are often modifiable in a variety of ways

without any authoring effort, making the authoring bottleneck problem somewhat less of a concern.

For example, a parent can remove dangerous objects from a room before a child enters (thereby

managing the child’s safety), without any new objects needing to be created or acquired.

1.5 Thesis Statements

The thesis statements that govern this work are as follows, both of which concern Generalized

Experience Management (GEM), the framework that I propose in Chapter 4 (Contribution 1).

1. Generalized Experience Management unifies and supports the comparison of managers from

previously separate subfields of experience management research (e.g., Drama Management

and Dynamic Difficulty Adjustment);

2. Generalized Experience Management supports the creation of managers that are more suc-

cessful at affecting their players as intended than a baseline competitor.

8



I support the first claim by demonstrating how GEM can be used to represent four different

managers: Weyhrauch’s (1997) seminal Moe system (Drama Management), the AI Director (Booth

2009) from the video game Left 4 Dead (Dynamic Difficulty Adjustment), and two managers that

I created using commercial game engine technology; PaSSAGE (Drama Management; (Thue et al.

2007a; 2010a)), and PaSSAGE 2 (Drama Management; (Thue et al. 2010b; 2011); Contribution 2).

To support the second claim, I developed a new method for evaluating experience managers (Con-

tribution 3) and then applied it in several user studies of PaSSAGE and PaSSAGE 2.

Summary

In this chapter, I introduced experience management as the task of optimizing a player’s experience

in an interactive environment, while it is underway, by changing that environment’s dynamics. I de-

fined optimality in terms of the success that a manager has in ensuring that each player’s experience

affects them in a particular intended way, as specified by a designer. I then described how optimiz-

ing a player’s experience using AI systems is particularly challenging for two primary reasons: the

problem itself involves ambiguous feedback, no time for training, and a potentially uncooperative

player, and the process of creating such systems still suffers from a lack of standardization across the

variety of current approaches. I offered a high-level example of how experience management might

proceed, and then explained how agency complicates the problem of ensuring that each player’s

experience affects them in the intended way. I discussed the challenge of evaluating managers in the

face of subjective designer goals, which I approach by comparing the relative success of different

competing managers. I also emphasized that progress in this area of research can be accelerated by

comparing existing managers – not only within a given subfield, but across subfields as well. Finally,

I explained how video games offer a viable domain for studying experience management, because

game designers often express their goals in terms of intended effects on players (e.g., having fun),

virtual worlds offer simplified research logistics, and managing player experiences in video games

might improve their commercial value.
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Chapter 2

Problem Formulation

In this chapter, I formally define the task of experience management in terms of Markov Decision

Processes (Bellman 1957) and state the criteria for success of this work.

2.1 Experience Management with Markov Decision Processes

A Markov Decision Process (MDP) is a discrete-time, stochastic control process wherein an agent

alternately perceives states (s ∈ S) and performs actions (a ∈ A) that can influence which state

occurs next in the process. Both the states and the actions of an an MDP might be abstract, meaning

that they might omit unnecessary details about the underlying interactive environment (e.g., the

colour of a video game character’s hair). The process starts with time step t = 0, and t increases

by one immediately before each new state occurs. A transition function (τ ) governs the occurrence

of subsequent states (τ : S × A × S → [0, 1]), where τ(s, a, s′) gives the probability of state s′

occurring after the agent performs action a in state s. Each time the agent performs an action, they

receive a scalar reward (R : S×A×S → R) and a new state occurs as determined by the transition

function. I use subscripts to denote states and actions that occur at a given time step t (e.g., st or at).

Traditionally, MDPs have been used in Artificial Intelligence (AI) research to investigate AI

systems that act as agents therein (e.g., Reinforcement Learning (Sutton and Barto 1998)). Such

systems often attempt to create a policy (i.e., a mapping from every state in S to some action in

A that the agent will perform in that state) that maximizes some function of the rewards that the

agent receives over the course of their experience; the value given by this function is called the

agent’s return. In the context of experience management, the similarity between the dynamics of an

environment (recall Section 1.2) and the transition function of an MDP suggests that the player can

be thought of as an agent in an MDP, with their return serving as a measure of how successfully they

were affected by their experience therein. Under this formulation, a manager is an agent outside of

an MDP that: (a) observes all of the states and actions that occur therein, and (b) changes the MDP’s

transition function while any player’s experience in the MDP is underway, toward maximizing that

player’s return. It must do so, however, without any ability to control or compute the functions that
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give the player’s rewards or the player’s return. To the best of my knowledge, this representation of a

manager is a novel contribution, and it helps to unify previous research in both Drama Management

and Dynamic Difficulty Adjustment (as I explain in Chapter 5). To simplify my writing henceforth,

I refer to MDPs as “games” and player experiences therein as “gameplay” without loss of generality.

2.1.1 Interactive Environments, Trajectories, and Histories

Using MDP terminology, an interactive environment is a tuple e = 〈S,A, (τ0, . . . )〉 where S is

a set of states, A is a set of actions, and the sequence of transition functions (τ0, . . . ) shows that

the environment might be non-stationary – that is, its transition function might change from one

time step to the next1. If the environment’s transition function always remains constant (i.e., e =

〈S,A, (τ, τ, . . . , τ)〉 for some fixed transition function τ ), then I say that it is stationary and use the

abbreviated form e = 〈S,A, τ〉 to denote it.

Let T be the set of all possible transition functions that could be defined for S and A. For every

action at the player performs during gameplay, the manager receives st and at as observations and

chooses a transition function τ in T toward maximizing the player’s return (I describe the return

in more detail in Section 2.1.2). Once τ has been selected, the manager sets the environment’s

transition function to τ (i.e., τt+1 = τ ) and the environment uses it to generate st+1 (by sampling

from the probability distribution over S that is defined by τ(st, at, ·)). I use et = 〈S,A, τt〉 to denote

the configuration of e at time step t, where τt is the transition function that is used to generate st.

While e might be non-stationary over the course of any player’s experience therein (i.e., over the

course of multiple time steps), it is effectively stationary at every specific time step t that occurs

(i.e., every et = 〈S,A, τt〉 is stationary even if e = 〈S,A, (τ0, . . . )〉 is not).

Managing a player’s experience produces a rotating sequence of states, actions, and transition

functions that I call a trajectory. For example, when examined from time step t = 0 onward,

a trajectory takes the form: (τ0, s0, a0, τ1, s1, a1, τ2, s2, . . . ). Formally, a trajectory h ∈ H is a

sequence of the form (τ, s, a, τ ′, s′, a′, . . . ) such that for every general subsequence (s, a, τ ′, s′) in

h, the probability given by τ ′(s, a, s′) is greater than zero (i.e., h could be experienced by some

player of the game). A history (ht, at time t) is any trajectory that starts from time step 0 and ends

with action at (e.g., (τ0, s0, a0, . . . , τt−1, st−1, at−1, τt, st, at)). For notational convenience, I use

h−1 to represent an initial, empty history.

2.1.2 The Player’s Return

I define the player’s return as a function of the rewards that they receive during the course of any par-

ticular experience in a given interactive environment. Formally, the player receives a scalar reward

following each action at that they perform in the environment, as given by the reward function (i.e.,

rt+1 = R(st, at, st+1)); I assume that the manager is unable to observe these rewards. Over the

1In other work, an MDP is defined to be non-stationary if either its reward function (Sutton and Barto 1998) or its
transition function (da Silva et al. 2006) can change over time. In this work, I consider only the latter case.
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course of a player’s experience in the environment, they accumulate a sequence of rewards whose

length is equal to the number of time steps that have passed; for notational convenience, let the vector

rt represent this sequence of scalars at time step t (i.e., rt = 〈r1, r2, . . . , rt〉). I define the player’s

return (ξ) as a function that maps from any n + 1 step history through a given interactive environ-

ment2 (hn) and the n rewards that the player received therein (rn) to a real number representing how

successfully that player was affected in the way that the designer intended (ξ : H×Rn → R). In Re-

inforcement Learning, for example, the return is often defined as the sum of all of the accumulated

rewards: ξ(hn, rn) =
∑n
i=1 ri (Sutton and Barto 1998).

2.1.3 A Formal Definition of Experience Management

The task of experience management can now be formalized: given an interactive environment and

the ability to observe the states and player actions that occur therein, experience management is

the task of choosing, for each of the n + 1 actions that the player performs (at : t ∈ [0, n]), the

transition function τ ∈ T that will maximize the player’s return when used to determine the next

state3 (Equation 2.1), and then changing the environment’s transition function to the one that was

selected (Equation 2.2).

τt+1 = arg max
τ∈T

ξ(hn, rn) (2.1)

et+1 = 〈S,A, τt+1〉 (2.2)

Since both ξ and rn remain unknown and the number of possible transition functions (|T |) is

infinite, the right side of Equation 2.1 cannot be computed. As I discuss in Chapter 4, solutions to

this problem commonly rely on either constraining the set of transition functions that are available to

the manager via designer-defined rules (Section 4.1.1: A Decision Constraint Function), estimating

the player’s return algorithmically using a designer-defined function (Section 4.1.2: An Objective

Function), or both.

Manager & Manager Policy

The way that a manager selects transition functions can be described by its policy (χ), a function

that maps from an environment, a player history, and optional other parameters (which I denote by

“. . . ”) to a transition function (Definition 2.1). As I describe in Chapter 4, these optional parameters

can be functions that are used to compute the policy. I represent a manager formally as a tuple of

functions m = 〈χ, . . . 〉, as described in Definition 2.2.

Definition 2.1 (Manager Policy). A manager’s policy (χ) is a function that maps from a given

interactive environment (et = 〈S,A, τt〉), a player’s history (ht), and optional other parameters

to the single transition function that it selects for that environment to use at the next time step

(χ : E ×H × . . .→ T ).
2The symbol hn denotes a history that ends with the state and action that occurred at time step t = n (e.g., (. . . , sn, an)).
3If more than one τ ∈ T maximizes ξ, I assume that the argmax operator selects between them in an equiprobable

random fashion.
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Definition 2.2 (Experience Manager). An experience manager is a tuple m = 〈χ, . . . 〉, where χ is

the manager’s policy and the ellipsis (i.e., “. . . ”) represents other functions that the manager can use

to compute its policy.

Algorithmic Representation

Figure 2.1 represents experience management in algorithmic form. On line 2, the algorithm ob-

serves each state of the environment that occurs and the action that the player performs therein. Line

3 maintains the player’s history by updating it during each time step. Line 1 initializes the player’s

history to an empty sequence, which gets prepended to (τ0, s0, a0) the first time that line 3 is exe-

cuted (because the player’s experience starts at time step t = 0). Line 4 uses the given manager’s

policy (χ) to compute a new transition function to use, and line 5 changes the environment’s transi-

tion function (from τt) to use the one that the manager selected (τt+1). The environment then uses

τt+1 to determine its next state (st+1), and the time step advances when this state is presented to the

user (not shown in the algorithm). Line 2 executes again as soon as the player chooses an action to

perform in the most recently presented state; lines 2 to 5 execute once (in order) for each state/action

pair that occurs.

Input: e0 = 〈S,A, τ0〉: the interactive environment at time step 0
m = 〈χ, . . . 〉: an experience manager

Observable: t: the current time step of the environment
st: the state of the environment at each time step
at: the player’s action at each time step

1 h−1 = ()
2 for each 〈st, at〉 that occurs in the environment
3 ht = (ht−1, τt, st, at)
4 τt+1 = χ(et, ht, . . . )
5 et+1 = 〈S,A, τt+1〉

Figure 2.1: Pseudocode for performing experience management in a given interactive environment
using a given manager. Recall that the set of all possible transition functions (T , from which the
manager ultimately selects) is defined implicitly by S and A.

2.1.4 Benefits of Changing the Transition Function

Managing player experiences in a given MDP by changing its transition function is at least as ex-

pressive as giving players a stationary MDP (with respect the experiences that players can have

therein), since a manager could be defined that always selects the same transition function at every

time step, and e = 〈S,A, (τ, τ, . . . , τ)〉 is a stationary MDP.

The primary advantages of managing an experience by changing its transition function (instead

of defining a stationary MDP) come from the fact that it distinguishes clearly between defining

the way in which subsequent states are generated (i.e., “defining how the world works” via the

transition function) and the ways in which this generation process can be altered (i.e., “changing
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how the world works” via the manager’s policy). This factored representation affords flexibility: if

ever there are insufficient resources to compute the manager’s policy, the player’s experience can

continue uninterrupted by simply maintaining the current transition function until a new one can

be set. It also simplifies the conceptual design of new environments by keeping their state space

compact. For example, instead of conceptually duplicating every state of a video game to support an

“easy” mode and a “hard” mode (thereby doubling the size of the state space), one can instead define

two different transition functions over the original set of states (e.g., as alternate sets of parameters

that govern gameplay) and then allow the player or the manager to choose between them during play

to control the game’s difficulty.

2.1.5 Implementation Complexity

To implement an AI manager, the designer must specify which of the |T | possible transition func-

tions should be selected for every possible history that could occur in a given interactive environ-

ment. For simplicity (and without loss of generality in practice), suppose that the maximum length

of every player experience is finite (n time steps) and that the number of possible transition functions

(|T |) is finite as well. The number of possible histories (|H|) is then given by Equation 2.3:

|H| =
n∑
i=1

(|S||A||T |)i (2.3)

This number is enormous for even tiny domains. For example, with only 10 possible states, 5 player

actions, experiences with a maximum length of 10, and a restricted number of possible transition

functions such that |T | = |S||A||S|, the number of possible histories exceeds 1040. The rapid

growth of Equation 2.3 necessitates using an abstraction over player histories when specifying the

manager’s behaviour. I discuss two methods for performing this kind of abstraction in Chapter 4:

Decision Constraints in Section 4.1.1 and Features in Section 4.1.5.

2.2 Domain Restrictions

As I discussed in Chapter 1, video games offer a convenient domain for researching experience

management. I adopt this domain for the examples and experimental section of this work, and

further focus my attention on single-player video games. Managing a shared experience for multiple

players would be an even more difficult task, for it could end up trying to optimize the experiences of

players who are affected by the things that happen therein in drastically different ways. The fact that

many successful commercial games have primarily single player experiences (e.g., Skyrim, Super

Mario Galaxy 2, Portal 2, or Grand Theft Auto V) supports the relevance of my focus in this regard.
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2.3 Definition of Success

In Chapter 4, I propose the Generalized Experience Management (GEM) framework: a modular,

mathematical formalism for experience management. I created GEM for two reasons: to simplify

comparing existing managers and to support creating new managers that can affect their players in

the ways that the designer of an environment intended.

The utility of GEM as a comparative framework depends on it being simultaneously (i) general

enough to represent diverse managers in a unified way and (ii) specific enough to the problem of

experience management that it supports valuable comparisons between managers. In this instance,

I use “valuable” to mean “useful in the context of further research or practical applications”. A

framework that was very general but ignored the problem of experience management (e.g., “every

AI manager can be represented as a C++ program”) would have little utility, because the dimensions

along which managers could be compared (e.g., types of data structures or libraries used) would be

too distantly related to the larger problem of managing a player’s experience. Meanwhile, a frame-

work that was highly specific to experience management but lacked generality (e.g., the technical

description of a particular manager) would also have little utility, because it would be difficult to

understand how a variety of managers could be represented therein. I demonstrate how GEM can

be used to represent and unify diverse managers in Chapter 5, where I use it to represent managers

from two subfields of experience management research: Drama Management, and Dynamic Diffi-

culty Adjustment. In Chapter 7, I discuss how these representations also serve to demonstrate the

value of GEM-guided comparisons.

To evaluate whether or not managers created using GEM can successfully affect their players as

intended, it is convenient to measure a manager’s performance at doing so in comparison to some

baseline competitor. In Chapter 6, I discuss my application of an empirical way to do so: compare

players’ assessments of their experiences (via post-play questionnaires) across two sample groups.

In one group, each player’s experience is optimized by a GEM manager, while in the other group,

each manager decision that arises during the player’s experience is performed randomly4. After each

player’s assessment is converted to a numeric score, statistical analysis can be used to determine

whether there was a difference between the average scores of the two sample groups, and provide a

degree of confidence concerning whether or not that difference (if present) occurs in the population

from which the samples were drawn. If the average score obtained for the manager is higher than

that of the random baseline and the reported degree of confidence is high, one could deem that

manager to affect its players more successfully than its baseline competitor. In Chapter 6, I present

the results of applying this evaluation method to two GEM managers that I created in the context of

two interactive environments. PaSSAGE aims to maximize player fun in Annara’s Tale (Thue 2007;

Thue et al. 2007a; 2007b; 2010b), and PaSSAGE 2 aims to strengthen players’ beliefs that they have

agency in Lord of the Borderlands (Thue et al. 2010a; 2011).
4I describe the precise nature of this randomization in Chapter 6.
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Summary

In this chapter, I formally defined an experience manager as an agent that repeatedly changes the

transition function of an interactive environment, which I represent as a Markov Decision Process

(MDP) in which the player acts as an agent. Immediately following each player action, the man-

ager uses its policy to choose a new transition function for the MDP to adopt, toward maximizing

the player’s return (a function of the rewards that they receive over the course of their experience).

I explained the benefits of representing experience management as changing a transition function

(flexibility and conceptual simplification), and demonstrated that this representation sacrifices none

of the expressive power of a traditional (stationary) MDP. I described why implementing AI man-

agers is particularly challenging, because the number of histories that must be mapped to transition

functions grows rapidly with the size of the environment and the length of the experiences that

players can have therein. I restricted the focus of this work to single player experiences, leaving

multiplayer concerns for future work. Finally, I explained the two ways in which I will evaluate

my work on Generalized Experience Management (GEM): 1) by using GEM to represent managers

from the subfields of Drama Management and Dynamic Difficulty Adjustment, and 2) by conducting

controlled user studies with post-play surveys for two GEM managers that I created.
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Chapter 3

Related Work

The problem of experience management spans several areas of research, including both Drama

Management and Dynamic Difficulty Adjustment. In the following sections, I describe different,

pre-existing ways of formulating the problem of experience management in both of these areas, to

help motivate the need for a more general, unifying framework.

3.1 Drama Management

Drama Management is a subfield of experience management research that focuses on automatically

optimizing players’ experiences in interactive stories – interactive environments that allow players

to influence the progression of a story as it unfolds. Early investigations of AI for experience man-

agement in this context can be traced to work by Bates et al. on the OZ Project at Carnegie Melon

University (Bates 1992). Much of this work was first synthesized by Laurel (1986; 1991) from the

perspective of formal dramatic theory, which was later developed from a computational perspective

by Weyhrauch (1997).

3.1.1 The Playwright

In her work, Laurel envisioned an AI system (called “the PLAYWRIGHT”) that uses a designer-

provided knowledge base and the history of an interactive environment to produce a “script” – that is,

a temporally ordered sequence that describes the next few moments of the simulation that drives the

environment. The design of Laurel’s PLAYWRIGHT uses many of the components of experience

managers that I discuss in Chapter 4 (e.g., the abilities to simulate potential futures or vary what

happens based on observed player behaviour). However, its output is more restricted than that of

the general experience managers that I defined in Chapter 2. Specifically, while the PLAYWRIGHT

would produce a prescribed sequence of states that depict character actions and other occurrences in

the simulation, a more general manager would produce a transition function to govern the behaviour

of the entire simulation.
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3.1.2 Moe

Weyhrauch developed Laurel’s work on the PLAYWRIGHT by creating an AI experience manager

called Moe (Weyhrauch 1997). During this work, Weyhrauch extended Laurel’s formulation of a

manager in two important ways. First, he identified that experience management could be framed as

an optimization problem, where the manager estimates the optimality of any given story using one or

more designer-provided “features” – that is, measures of some particular aspect of optimality, such

as the player’s level of engagement. Second, he introduced the notion that a manager might need

to change not only the immediate, subsequent behaviour of the simulation, but also its behaviour

at some potential future states. For example, to ensure that the player would discover a piece of

evidence in an interactive detective story, Moe could assert a simulation rule of the form: “whenever

the player visits the balcony, highlight the footprints in the mud below”. This rule could be asserted

far in advance, long before the player ever decides to visit the balcony. Moe’s ability to broadly

influence the transitions of a simulation is consistent with my formulation of experience manage-

ment. However, Moe’s specification is both verbose (consisting of programmatic scripts, diagrams,

and associated documentation) and tightly integrated into its interactive detective domain, making it

difficult to use its underlying framework to analyze other managers. The framework for experience

management that I propose in Chapter 4 (GEM) is both concise and domain-independent. I describe

Moe in more detail in Section 5.1, where I use it as a case study in demonstrating GEM.

3.1.3 Families of Story Managers

Since Weyhrauch created Moe, many other experience managers have been created using a variety

of AI techniques. In some cases, a group of managers that all use the same technique can be thought

of as a family that subscribes to the same underlying framework. I discuss two such families in the

following sections: one that uses MDP solvers, and one that uses partial-order planners.

MDP Solvers

Following Weyhrauch’s optimization-based approach, the managers created by Nelson et al. (2006)

and Roberts et al. (2006) use Markov Decision Processes to estimate policies that are optimal with

respect to various properties of player experiences therein. However, instead of using an MDP to

describe the player’s experience in an interactive environment (as I do in Chapter 2), they viewed

the manager as an agent in an MDP that is distinct from the player’s environment. They defined this

MDP as follows. Each state represents a combined record of everything that the player has done in

their environment and every action that the manager has taken thus far. Each action represents an op-

portunity for the manager to change the behaviour of the player’s environment (as Moe could). The

transition function represents how the player decides what to do in their environment, given a record

of what they have done previously in their environment and the manager’s previous actions. Finally,

the MDP’s reward function measures properties of given state/action sequences through the MDP,
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such as how often players willfully follow hints that encourage particular player behaviours. Given

such an MDP, the manager’s policy is determined by solving the MDP using standard techniques

(i.e., each of the manager’s actions will maximize the expected value of the reward function, once

a solution has been found). Although this formulation of experience management allows the man-

ager’s policy to be generated by solving an MDP, it has two significant limitations. First, the solution

found for any player will only be optimal when the MDP’s transition function accurately represents

the player’s behaviour, but the formulation does nothing to ensure that an accurate representation is

obtained. Second, it does not concretely specify how the manager’s actions can affect the player’s

experience, referring only generally to the kinds of actions that Moe could perform. In addition

to formally specifying the effect that any manager has on the player’s experience, the framework

that I propose in Chapter 4 includes an estimated player policy as one of its components, thereby

addressing both limitations of the formulation used by this formulation of experience management.

More recently, Rowe and Lester (2013) proposed to represent experience management as a mod-

ular reinforcement learning problem, where each of a manager’s decisions is represented by a dis-

tinct MDP. Their manager can thus be thought of as a collection of coordinated agents, each of

which performs actions in an MDP that has relatively few states and actions. The initial state of

each MDP represents a proposition about some subset of the state of the player’s environment (e.g.,

“the player has asked a virtual character for their backstory” or “the player has stolen a character’s

wallet”). From each MDP’s initial state, the actions that can be performed by the manager represent

the its options for changing the environment’s behaviour (e.g., determining how a virtual charac-

ter should respond to the player). The transition function of each MDP represents the manager’s

uncertainty about how the player will behave following manager’s decision (e.g., it might lead to

a new state wherein the player has become afraid); this is similar to how Nelson et al. (2006) and

Roberts et al. (2006) used the transition function in their MDP representation, and different from the

formulation that I proposed in Chapter 2 (i.e., Rowe and Lester view the manager as an MDP agent

– not the player). The manager’s task is to learn a policy for selecting actions in each MDP, and the

policies that are learned over all of the MDPs (one for each manager decision) are then combined

through an arbitration procedure that handles any conflicts that might occur. For example, the player

might ask for a character’s backstory while also stealing their wallet, thus requiring two manager

decisions that involve the same character. To allow their manager to learn the needed policies, Rowe

and Lester used off-policy learning with a collection of gameplay traces and survey responses that

they gathered from real players using a manager that chose actions randomly. The primary require-

ment of Rowe and Lester’s modular approach is that all of the MDPs must be independent from one

another; specifically, two MDPs are independent if their states represent only propositions about

disjoint subsets of the states of the player’s environment (Rowe and Lester 2013). For example,

two MDPs cannot both have states that represent the proposition “the player has stolen a character’s

wallet”. In comparison to the framework that I propose in this work, this requirement is limiting be-
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cause it prevents the manager from conditioning its current behaviour on its prior behaviour, which

limits the potential variety of its operations. By including previously selected transition functions

in its representation of the player’s history (Chapter 2), my formulation of experience management

overcomes this limitation. Table 3.1 compares Rowe and Lester’s MDP formulations to that of

Nelson et al. and Roberts et al.

MDP Components
MDP-based Approach

(Nelson et al. 2006) (Rowe and Lester 2013)(Roberts et al. 2006)

States All prior player actions A proposition about the state
& manager actions of the player’s environment

Actions The manager’s actions

Transition Function Determines the next state (given states & actions)
and models uncertainty about player actions

Reward Function
Measures designer-desired Measures players’

experiential outcomes
(collected offline)

properties of state/action
sequences (collected online)

Table 3.1: A comparison of two approaches based on solving MDPs.

Partial-Order Planners

Several independent research efforts have investigated how partial order plans can be used to rep-

resent stories. A detailed description of AI-based planning is beyond the scope of this dissertation,

but having a high level understanding is important for the remainder of this section. A partial-order

plan is a directed, acyclic graph where nodes represent actions that could be performed in some

interactive environment, and edges represent constraints on the execution order of pairs of nodes. If

two nodes are connected by an edge, the action at the start of the edge must be performed prior to

the action at the end of the edge (thus defining a partial order over nodes). Each action (e.g., “lift

the block”) is associated with a set of preconditions and a set of effects. Preconditions and effects

are propositions about the state of the environment (e.g., “the block is on the table”). An action

can only be performed if all of its preconditions are true statements about the current state of the

environment. When an action is performed, the environment is modified (as necessary) to ensure

that all of the action’s effects will be true statements about the environment after the modifications

are complete. A planning problem is specified by a providing a set of actions, the current state of

the environment, and a desired goal state for the environment to be in. A planner is used to find a

partial order over nodes such that executing each node’s action once (while respecting the partial

order) will cause the environment to adopt the desired goal state by the time the execution ends. A

more detailed description of planning can be found in standard AI texts (Russel and Norvig 2010).

A partial-order plan can be thought of as a collection of possible stories. Nodes represent the

ways in which the story can proceed from one state to the next (e.g., via non-player characters

performing actions in the environment), and edges represent constraints on the order in which actions
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can be performed. By executing the actions of nodes in different orders (among those that are

allowed by the edges), different state/action sequences can be obtained, each of which can be thought

of as a different story in the environment. As a formulation of experience management, creating a

partial-order plan is underspecified, because such plans do not distinguish between the actions that a

player might perform and the ways in which the manager can influence the player’s experience while

it is underway. If every node in the plan is thought of as a potential player action, then the manager’s

influence on the experience is lost, aside from the initial creation of the partial order. Alternatively,

if every node is thought of as a potential manager operation, then the environment would become

non-interactive (unless other actions were made available). To ensure that the environment remains

interactive while still allowing the manager to influence player experiences at runtime, the planning

formulation must be extended. I discuss two such extensions in the following subsections: narrative

mediation, and plan selection.

Narrative Mediation. The group of managers created by Young et al. (2004), Harris & Young (2005),

and Riedl & Stern (2006) all extend the planning formulation in the same way: they assume that all of

the actions in the plan will be carried out automatically by the manager (perhaps by controlling story

characters), but that the player may independently perform other actions in the environment that

might falsify the preconditions of actions in the plan. For example, the manager might need to exe-

cute an action (as part of the partial order plan) that causes an in-game character to “lift the block”,

but the player might destroy the block before this action can occur. When such a problem occurs,

the managers in this group change the current plan that is being pursued to account for the player’s

action, either by solving a new planning problem from that moment forward (Young et al. 2004;

Harris and Young 2005), or by switching to a new plan that was computed before the player’s expe-

rience began (Riedl and Stern 2006). This type of manager behaviour is called narrative mediation.

The manager by Harris & Young additionally attempts to detect such problems before they can influ-

ence the world state (e.g., after the player attempts to destroy the block, but before it gets destroyed)

and then temporarily modify the player’s action to ensure that its effect does not occur (e.g., the

player’s “destroy the block” action would fail). Although this method of extending the planning for-

mulation of experience management distinguishes between the player’s actions and the manager’s

influence over the experience, it does so by defining two kinds of manager operations: those that

occur as part of the partial-order plan, and those which switch to a different plan in response to

problematic player actions. Meanwhile, the formulation that I presented in Chapter 2 captures ev-

erything that a manager does in a single operation (changing the transition function of the player’s

environment), offering a more concise description. Furthermore, since the player’s actions only ever

influence the partial-order plan when they disrupt it by falsifying its preconditions, some players

might have no effect on the story at all (which defeats the purpose of an interactive story). In Chap-

ter 4, I describe how GEM managers can be created to ensure that every player’s actions have some

effect (via the manager) over the course of their experience in a given interactive environment.
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Plan Selection. The managers created by Ramirez & Bulitko (2014) and Poo Hernandez et al. (2014)

extend the planning formulation of experience management in a different way: they assume that all

of the actions in the plan will be carried out by the player, except when only one action can be

performed (due to the constraints imposed by the partial order plan); in this case, the action occurs

automatically. In addition to the actions in the plan, however, players are also allowed to perform

other actions in the environment that might falsify the preconditions of actions in the plan. When

this happens, an extension of Riedl & Stern’s (2006) manager is used to dynamically find a set of

partial order plans that all account for the player’s action. From this set, the plan whose actions

best match either a learned model of the player’s playing style (Ramirez and Bulitko 2014) or a

designer-specified curve of the player’s emotions over time (Poo Hernandez et al. 2014) is chosen

by the manager and the experience proceeds using that plan. To ensure that every player’s experience

will be affected by the manager while it is underway, both managers can occasionally force certain

player actions to invalidate the current story plan. That said, the managers that can be built in my

proposed framework are more flexible still: they can choose a new transition function after every

player action, without needing to monitor a set of plan step preconditions.

3.2 Dynamic Difficulty Adjustment

Dynamic Difficulty Adjustment (DDA) is a subfield of experience management that aims to optimize

player experiences in environments where players pursue a given goal (e.g., winning a race, rescuing

a character, or escaping from a group of enemies). The primary concern of such managers is to

prevent players from feeling either of two emotions: frustration from finding their goal too difficult

to achieve, or boredom from finding it to easy to achieve. By dynamically assessing the amount of

difficulty that the current player is experiencing and then modifying the game to influence this value

(e.g., by varying the speed of the player’s opponents in a race), DDA managers work to ensure that

the game’s difficulty is always well suited to the current player’s level of skill.

While dynamic difficulty adjustment has been used by commercial video games in an ad hoc

manner for at least two decades1, Hunicke & Chapman (2004) were among the first to study DDA

in a more general sense. In their approach, the player is an agent acting in an interactive environ-

ment, and an external manager repeatedly observes the state of the environment while the game is

underway. The manager uses an evaluation function to estimate the player’s performance (i.e., their

competence at pursuing in-game goals) and compares this value to a designer-specified curve of

performance over time. The manager’s policy then maps these values to a set of ways in which the

environment’s dynamics should be changed, toward causing the player’s performance to follow the

specified curve. As a formulation for experience management, Hunicke & Chapman’s approach is

similar to the formulation that I presented in Chapter 2 in that the manager changes the dynamics

1The game X-COM: UFO Defense (Mythos Games and MicroProse 1994) offers one example, where the difficulty of
overcoming an invasion is automatically varied based on the player’s performance at doing so.
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(i.e., the transition function) of the player’s environment. Unlike my formulation, however, their

manager only observes the current world state to make its decisions. This makes Hunicke & Chap-

man’s approach unsuitable to serve as a general framework for experience management, since some

managers need to additionally consider its own previous decisions, the player’s previous actions, or

the environment’s previous states. In addition to its ability to represent managers that consider entire

histories of the player’s experience (recall Section 2.1.1), the framework that I present in Chapter 4

contains components that support the evaluation function and designer-specified performance curve

that Hunicke & Chapman describe (an objective function and a feature vector, respectively).

More recently, Zook & Riedl (2012; 2014) have extended Hunicke & Chapman’s work by al-

lowing the manager to automatically construct a temporal model of the player’s performance – that

is, a model that aims to capture how a player’s performance changes over time as they learn better

ways to achieve their given goals. The manager then uses this model to predict the player’s fu-

ture performance, toward changing the environment pre-emptively to avoid them becoming bored or

frustrated. When considered as a formulation for experience management, Zook & Riedl’s approach

is more suitable than Hunicke & Chapman’s because it allows the manager’s decisions to depend

on observations of the player’s previous actions and the states of the environment in which they

were performed. However, the manager cannot base its decisions on its own prior behaviour (e.g.,

toward ensuring that it influences the environment in a varied way). The framework that I present in

Chapter 4 supports the creation of managers that can examine their prior decisions (as I described

in the previous paragraph), and it also contains components for building models of the player and

predicting future player actions (a feature vector and an estimated player policy, respectively).

3.3 Existing Frameworks

Roberts (2011) has proposed a framework for “fully-realized experience management” in which he

identifies seven considerations for an AI manager’s design. Four of the seven concern representing:

(i) the content of an interactive environment, (ii) the actions that the manager uses to change each

player’s experience, (iii) information about how players are likely to act in the given environment,

and (iv) the intended effects of the experience. The remaining three concern the computation that

the manager will perform, namely: (v) selecting short-term subgoals to pursue that make progress

toward achieving the intended effects of the experience, (vi) determining which of its available ac-

tions is the best for realizing its short-term goal, and (vii) ensuring that its actions will be narratively

consistent with respect to the current state of the environment. While all of these considerations are

important when designing an AI manager, Roberts has thus far only used them to describe managers

in the context of Drama Management, and has not shown whether or not they can also be applied

in the context of Dynamic Difficulty Adjustment. Furthermore, it remains unclear how the results

of addressing these concerns should then be combined to create a working manager. In Chapter 4,

I describe how all of GEM’s components can be used together to manage a player’s experience. In
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Chapter 5, I demonstrate how GEM can be used to represent managers from the subfields of both

Drama Management and Dynamic Difficulty Adjustment.

Summary

In this chapter, I discussed a variety of different formulations of experience management, each of

which have been used to develop one of two kinds of managers: those that aim to optimize the

player’s experience in an interactive story, and those that aim to optimize the amount of difficulty

that the player experiences while they play. For each different formulation, I described how its lack

of either generality (e.g., being tightly integrated to a domain) or specificity (e.g., not describing how

the manager can affect the player’s experience) makes it unsuitable to use as a general framework for

experience management. At the same time, I noted how the different components of the framework

that I propose in Chapter 4 can support the different abilities that the managers that I discussed could

perform, such as simulating potential futures, predicting the player’s behaviour, or building a model

of the player based on features of their experience thus far.
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Chapter 4

Generalized Experience
Management

In this chapter, I present Generalized Experience Management (GEM), the framework that I created

to simplify understanding the diverse approaches to experience management that have previously

been explored. I begin by describing GEM as an extension of the formulation of experience man-

agement that I presented in Chapter 2, and follow with a detailed example. I demonstrate GEM’s

versatility in Chapter 5 by using it to represent four different managers.

4.1 Foundation & Building Blocks

As I explained in Chapter 1, a manager is an agent that tries to optimize a player’s experience in an

interactive environment by modifying the dynamics of that environment. More formally, when an

interactive environment is represented as a Markov Decision Process (MDP; e = 〈S,A, (τ0, . . . )〉)
in which the player is an agent, experience management is the process of changing the MDP’s

transition function after each action that the player performs, toward maximizing that player’s return

(ξ) over the n+ 1 time steps of their experience:

τt+1 = arg max
τ∈T

ξ(hn, rn) (4.1)

As I explained in Chapter 2, this equation is not computable because neither the return function

(ξ) nor the vector of rewards that the player receives (rn) are ever known or controllable by the

manager, and the complete history of the player’s experience (hn) is also unknown at the time that

the computation is needed (time step t+ 1, where t < n).

τt+1 = χ(et, ht) (4.2)

While Equation 4.1 represents the fundamental goal of experience management, Equation 4.2

shows how little a manager might receive to perform this task: it could be required to choose a

transition function for the current time step (using its policy, χ) based on only the current interactive

environment (et = 〈S,A, τt〉) and a history of the player’s experience (ht). Equation 4.2 represents
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the core of GEM, serving as a minimal representation for an experience manager’s policy. Moving

beyond this minimum, GEM is a framework in the sense that it organizes the common concepts of

experience management into a well-defined, formal structure, providing both a foundation (Equa-

tion 4.1) and a set of conceptual “building blocks” (Sections 4.1.1 to 4.1.5) with which solutions

to the problem of experience management can be made. I describe five kinds of building blocks

in the following sections. Although all of them have been used in various forms in prior research,

their integration into a cohesive, mathematical framework for experience management (the GEM

framework) is a novel contribution of this work.

4.1.1 Block #1: Decision Constraints

Given an interactive environment e = 〈S,A, (τ0, . . . )〉 in which player experiences will be managed,

the designer might want to assert that only a reduced subset of the transition functions in T should be

available for selection following particular player histories. For example, in the scene from Annara’s

Tale that I introduced in Section 1.1 (now shown in Figure 4.1), the designer has asserted that, of all

the transition functions that could be used by the game after Annara begins to fight the Troll, only

two of them should be available for the manager to choose from: τA and τB. The designer has also

asserted that the same set should be available after Annara talks to the Troll instead.

Present Time

τA

τB

Fi
gh
t

Talk

Annara Meets Troll

Puzzled Traveller

Giant Spider Attack

Figure 4.1: An opportunity to change the player’s experience in Annara’s Tale, revisited. The player

chooses to fight the troll that blocks Annara’s path (thick straight arrow), and the manager can choose

whether the game’s transition function should be changed to either τA (curved dashed arrows) or τB

(angular dashed arrows).

I refer to such restrictions as decision constraints because they constrain the manager’s decisions.

They can be specified using a decision constraint function (κ) that maps from player histories to non-
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empty subsets of T (i.e., κ : H → 2T \ {∅}). Table 4.1 shows a partial decision constraint function

in the context of Annara’s Tale. Of all transition functions that could be used in this environment

(i.e., in T ), the manager can only choose between both τA and τB when the player chooses to either

fight or talk to the troll.

History (ht) Decision Constraints (κ(ht))
(. . . , Annara Meets Troll, Fight) {τA, τB}
(. . . , Annara Meets Troll, Talk) {τA, τB}

Table 4.1: A tabular representation of a decision constraint function for two potential histories.

The ellipses (. . . ) in Table 4.1 demonstrate a form of abstraction that can simplify specifying

the decision constraint function. Specifically, they are used in the table to denote that every history

ending with the state/action pair 〈Annara Meets Troll, Fight〉 should be mapped to the given set of

transition functions (and similarly for 〈Annara Meets Troll, Talk〉).

τt+1 = arg max
τ∈κ(ht)

ξ(hn, rn) (4.3)

Equation 4.3 shows how the goal of experience management (Equation 4.1) can be reframed using

a decision constraint function, where the set considered by the arg max operator has been changed

from T to κ(ht).

τt+1 = χ(et, ht, κ) : τt+1 ∈ κ(ht) (4.4)

Equation 4.4 shows how κ can be used to extend GEM’s foundation (Equation 4.2) with the con-

straint that the selected transition function τt+1 must be an element of the set given by κ(ht).

Decision Points

For convenience when discussing managers in later sections, I define a decision point as any state/

action pair 〈st, at〉 after which more than one transition function is available for selection following

some history ht ∈ H (i.e., where |κ(ht)| > 1). Let D ⊆ S × A be the set of all decision points

that exist for manager m in a given environment e. For example, two decision points are shown in

Figure 4.1: 〈Annara Meets Troll, Fight〉 and 〈Annara Meets Troll, Talk〉. When no explicit decision

constraints are used, every state/action pair 〈s, a〉 ∈ S ×A is a decision point, because the manager

selects from T at each time step and |T | > 1.

Discussion

Decision constraints can simplify the task of experience management by reducing the number of

transition functions that the manager needs to consider when trying to maximize the player’s return.

Furthermore, using decision constraints sacrifices no generality: when κ(ht) = T for every ht ∈ H ,

Equation 4.3 is equivalent to Equation 4.1 (the goal of experience management), and Equation 4.4

is equivalent to Equation 4.2 (the foundation for GEM).
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When specifying decision constraints in practice, the potentially infinite size ofH can be handled

by asserting that unless otherwise specified, the manager will keep the transition function constant

(i.e., κ(ht) = {τt}, where ht = (. . . , τt, st, at)).

Decision constraints also allow the designer to exercise complete control over each player’s ex-

perience by reducing the output of κ(ht) to a single-element set for any history ht.The only aspect

of a manager’s operation that cannot be controlled through decision constraints is how the manager

selects transition functions when the set given by κ(ht) contains more than one element; this pro-

cess depends on the manager’s policy. For example, while decision constraints can be used to force

a manager to choose between three particular transition functions (e.g., {τA, τB, τC}), they cannot

be used to control how the manager makes its selection (e.g., by a weighted random draw, an ex-

pansion of possible futures using each available function, or any other method). In general, decision

constraints provide a convenient way for designers to distinguish between transition functions that

should and should not be considered by the manager’s policy following certain player histories. Be-

ing able to make this distinction is useful because it allows the designer to eliminate any transition

functions that would always be detrimental to maximizing the player’s return (e.g., a transition func-

tion that maps every state/action pair of Pac-Man (Namco 1980) to one in which the player has zero

remaining lives). To move beyond this binary evaluation of each transition function, however, an

objective function is required.

4.1.2 Block #2: An Objective Function

Recall from Chapter 2 that a manager chooses transition functions in an attempt to dynamically max-

imize each player’s return. Given that the player’s reward function and return are both inaccessible,

some managers estimate the player’s return using a designer-provided objective function. Formally,

a manager’s objective function (φ) maps from a transition function (τ ∈ T ), a history (ht ∈ H), and

the current interactive environment (et ∈ E) to a real number (φ : T ×H ×E → R). Equation 4.5

shows how an objective function (φ) can be used to pursue the goal of experience management by

defining the manger’s policy (Equation 4.2) as an approximation of Equation 4.1, where the player’s

return (ξ) has been replaced by φ:

τt = χ(et, ht, φ) = arg max
τ∈T

φ(τ, ht, et) (4.5)

For example, suppose that the intended effect of Annara’s Tale is for players to have fun. To

pursue this effect using an experience manager in the scene from Figure 4.1, the designer could

create an objective function (φ) that estimates how much fun the player would have if et’s transition

function were to switch to each available τ following each history ht. Table 4.2 shows an example

of how part of this objective function might be specified. Reading across the top row of the table,

this objective function states that whenever the player’s history ends with the player meeting and

choosing to fight the Troll, selecting transition function τA is expected to result in an experience
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(i.e., an alternating sequence of states and actions) that yields 20 arbitrary “points” of fun, while

selecting τB is expected to yield 30 points.

History (ht) Transition Functions (τ ∈ T ) Estimated Fun (φ)

(. . . , Annara Meets Troll, Fight)
τA 20
τB 30

(. . . , Annara Meets Troll, Talk)
τA 40
τB 10

Table 4.2: A tabular representation of an objective function for two potential histories. For a given
history and transition function, this function estimates how much fun the current player would have
if the game’s transition function were to change to the given one after the given history occurred.

When the player chooses to fight the troll in the example from Figure 4.1 (triggering decision

point 〈Annara Meets Troll, Fight〉 in the table), the manager examines each of the available tran-

sition functions using its objective function, and chooses the one with the highest estimated value

(χ(et, ht, φ) = τB, according to the partial information shown in Table 4.2). The game’s transition

function is then set to the manager’s choice (τt+1 = τB), and this new transition function is used by

the environment to bring the game into its subsequent state.

Discussion

Maximizing an objective function (e.g., Equation 4.5) sacrifices no generality with respect to how

τt+1 is selected at each time step. To understand why, consider a function that is capable of rep-

resenting any method of selecting a single transition function τt+1 following history ht: namely,

let ζ be a function that maps from a set of transition functions, the player’s history, and the current

environment to a single transition function (ζ : 2T ×H × E → T ). By defining an objective func-

tion φ(τ, ht, et) as an indicator function over T that gives 1 when τ = ζ(T , ht, et) and 0 otherwise

(Equation 4.6), one can ensure that the transition function that ζ selects will always be the one that

maximizes φ in Equation 4.5, and thus gets selected by the manager’s policy (χ).

φ(τ, ht, et) = 1
(
τ = ζ(T , ht, et)

)
(4.6)

For example, this strategy could be used to select transition functions using the softmax operator

shown in Equation 4.7, which gives a transition function by sampling randomly from the probability

distribution over T that is shown in Equation 4.8 (Sutton and Barto 1998) (λ is an arbitrary, real-

valued function).

ζ(T , ht, et) = softmax
τ∈T

λ(τ, ht, et) (4.7)

Pr(τ |λ) =
eλ(τ,ht,et)∑

τ ′∈T (eλ(τ ′,ht,et))
(4.8)

Intuitively, the higher the value given by λ(τ, ht, et), the more likely it is that τ will be selected

by the softmax operator, and then subsequently be (uniquely) mapped to the value 1 when comput-

ing the objective function shown in Equation 4.6. The indicator function will map all other transition
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functions to the value 0, meaning that maximizing the objective function will result in the correct

transition function being selected by the manager’s policy (i.e., the one that was selected by the

softmax operator in Equation 4.7).

The objective function’s estimate of the player’s return for each transition function need not be

represented in an absolute sense; the policy’s arg max operator would be equally effective if the

objective function provided a reliable ranking over the available transition functions.

Although using an objective function gives a designer complete control1 over how each transi-

tion function will be selected following any player history, it is still conceptually convenient to use

decision constraints (Block #1) even when an objective function is also used. Specifically, using

both blocks allows the designer to clearly distinguish between the (reduced) domain of each man-

ager decision (as given by decision constraints) and the mapping from this domain to an estimate

of the player’s return (as given by the objective function). This distinction allows the designer to

focus their effort on distinguishing carefully only between the transition functions that rise above

a certain (intuitive) threshold with respect to maximizing the player’s return: decision constraints

eliminate every transition function that falls below the threshold, and the objective function ranks

the rest according to how will they will maximize the player’s return.

4.1.3 Block #3: A Rollout Function

As an estimate of the player’s return function (ξ in Equation 4.1), the objective function as stated in

Equation 4.5 can be improved: while the player’s return is based on the player’s entire history (i.e.,

hn, assuming an n + 1 time step experience) the objective function in Equation 4.5 only receives

information about the player’s history prior to the current time step t (i.e., ht) along with a candidate

transition function to use as τt+1. To improve the objective function’s estimates, some managers use

a rollout function to create a set of trajectories that extend from the current decision point (〈st, at〉)
forward into the future of the player’s experience, assuming that the transition function that is given

to the objective function will be used as τt+1.

Formally, a rollout function (ρ; “rho” for “rollout”) maps from a decision point (〈s, a〉 ∈ S×A),

a transition function (τ ∈ T ), and an interactive environment (et ∈ E) to a set of trajectories

that could potentially follow after the given point occurs and τ is selected as τt+1 (i.e., ρ : S ×
A × T × E → 2H ). I refer to each member of the set given by the rollout function as a rollout:

h+ ∈ ρ(st, at, τ, et).

For example, consider the decision point in Annara’s Tale where Annara is alone in the forest

and decides to explore (〈Alone in Forest, Explore〉; see Figure 4.2)2. Suppose that the manager

is using an exhaustive rollout function – that is, one that generates every possible trajectory that

could occur (for some player) following a given decision point. Looking into the future from the

1Modulo the random tie-breaking of the argmax operator.
2In this example, the transition functions τA and τB are deterministic (i.e., for each state/action pair 〈s, a〉, τA(s, a, s

′) =
1 for exactly one state s′, and 0 for all other states).
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Figure 4.2: Part of Annara’s Tale represented as an MDP, showing the effects of choosing one of

two available transition functions (τA or τB) at the highlighted decision point. Ovals are game states,

arrows show the combined effect of a single player action and a deterministic transition function.

Top: The MDP if τA were selected. Bottom: The MDP if τB were selected.

current decision point, the (exhaustive) set of possible futures that could occur depends on whether

the manager selects τA or τB as τt+1. Table 4.3 shows the result of the rollout function in both cases:

two trajectories could occur following τA, and two different trajectories could occur following τB.

τ Rollouts (h+ ∈ ρ(st, at, τ, et))

τA
(Puzzled Traveller,Help, τA,Magic Reward,Depart, τA,Game Ends)

(Puzzled Traveller, Ignore, τA,Game Ends)

τB
(Giant Spider Attack,Defend, τB, Item Reward,Depart, τB,Game Ends)

(Giant Spider Attack,Flee, τB,Game Ends)

Table 4.3: Possible rollouts for each of two given transition functions, starting from 〈st, at〉 =
〈Alone in Forest, Explore〉 in Figure 4.2.

Equation 4.9 demonstrates a simple way to use a rollout function to compute the result of an

objective function, where λ : H → R denotes an arbitrary function related to the player’s return:

φ(τ, ht, et, ρ) = max
h+∈ρ(st,at,τ,et)

λ((ht, h
+)) (4.9)

This objective function identifies the rollout which, when appended to the player’s history, cre-

ates the longer, hypothetical trajectory ((ht, h
+)) that maximizes the given function (λ); this maxi-

mum value is then returned as the value of the objective function.
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Discussion

While exhaustive rollout functions return a set containing every possible future (like the one in the

example above), such functions may not be tractable to compute. In general, any algorithm that

identifies different trajectories in an MDP can be used, including those which only expand possible

futures up to a finite horizon (which could make them more practical).

When computing any rollout function, transition functions must be determined along with states

and actions. The rollout function must determine how these choices should be made, which might

mean using the manager’s policy once for each decision point that is reached during the expansion

of possible futures.

4.1.4 Block #4: An Estimated Player Policy

In addition to retrieving a set of possible futures that could occur following a particular state/action

pair, it can be useful for the manager to predict the probability with which each possible future will

occur (toward computing the expected value of each future; see Section 4.2). While the transition

function at each time step allows the prediction of subsequent states, predicting subsequent actions

requires an additional function. An estimated player policy (π̃) is a function that maps from a given

history ht ∈ H , a state s ∈ S, and an action a ∈ A to an estimate of the probability that the player

will perform action a in state s given that ht has occurred earlier in the game (π̃ : H × S × A →
[0, 1]). Including the player’s history as a parameter allows the manager to vary its estimate of the

player’s policy based on their previous actions in the game (i.e., the player’s policy can be learned).

Annara Meets Troll

Fight

Talk Explore

Puzzled Traveller

Help

IgnoreDialogue

Combat

End

Kill

Present Time

Magic Reward

Game Ends

Depart

τA

Alone in Forest

τt = τA

Figure 4.3: Part of the MDP for Annara’s Tale. Ovals are game states, arrows show the combined

effect of a single player action and a deterministic transition function. The symbol τA identifies the

game’s current transition function.

Table 4.4 shows part of an estimated player policy for the section of Annara’s Tale that appears

in Figure 4.3. If the given history includes the player having chosen to fight the troll, then this policy

predicts a 10% chance that the player will help the puzzled traveller, and a 90% chance that they

will ignore him instead. On the other hand, if the history includes the player having chosen to talk

to the troll instead, then the policy predicts an 80% chance that the player will choose to help the

traveller, and a 20% chance that they will ignore him.
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History State Action Probability
(. . . , Annara Meets Troll, Fight, τA, Combat, Puzzled Traveller Help 0.1

Kill, τA, Alone in Forest, Explore) Ignore 0.9
(. . . , Annara Meets Troll, Talk, τA, Dialogue, Puzzled Traveller Help 0.8

End, τA, Alone in Forest, Explore) Ignore 0.2

Table 4.4: Part of a tabular representation of an estimated player policy. For a given history, state,
and action, the estimated player policy gives a probability that the player will perform the action in
that state, given that history ht has occurred earlier in the game.

This example demonstrates how π̃’s estimates of the player’s actions can depend on the player’s

history. Although this example shows only estimates for how the player will act in the immediately

subsequent state (i.e., st+1), an estimated player policy can generally be used to estimate the player’s

action in any given state.

χ(et, ht, φ, π̃) = arg max
τ∈T

φ(τ, ht, et, π̃) (4.10)

Equation 4.10 shows how an estimated player policy can be used as part of a manager policy,

where the estimated player policy (π̃) is given as an extra input to the objective function.

Discussion

In general, the probability of any given rollout occurring following a particular player history is

given by Equation 4.11. The second and third lines expand the right side of the first line using

Bayes’ Rule, and the fourth line simplifies each term (e.g., the occurrence of at+1 does not depend

on τt+1 or χ, so these terms can be dropped from the probability of at+1).

Pr(ht+1|ht, χ, et, π̃) = Pr(τt+1, st+1, at+1|ht, χ, et, π̃)

= Pr(st+1, at+1|τt+1, ht, χ, et, π̃) Pr(τt+1|ht, χ, et, π̃)

= Pr(at+1|st+1, τt+1, ht, χ, et, π̃) Pr(st+1|τt+1, ht, χ, et, π̃)

× Pr(τt+1|ht, χ, et, π̃)

= Pr(τt+1|ht, χ, et) Pr(st+1|τt+1, ht, et) Pr(at+1|st+1, ht, et, π̃)

= Pr(τt+1|χ, ht, et)τt+1(st, at, st+1)π̃(ht, st+1, at+1) (4.11)

In the last line of this equation, Pr(τt+1|χ, ht, et) denotes the probability of the manager’s policy

(χ) selecting the transition function that is being considered for time step t + 1 (i.e., τt+1), given

history ht and environment et.

4.1.5 Block #5: A Feature Vector

Instead of having an objective function or a decision constraint function depend directly on the

player’s history, it can be more convenient for the designer to define one or more features of the

player’s history for these functions to use.
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As I described in Section 4.1.2, an objective function estimates the player’s return (ξ), which

represents how successfully that player was affected by their experience in the way that the designer

intended (recall Section 2.1.2). For any given intended effect, there might be several factors of the

experience that influence this success (e.g., the believability of non-player characters, or the pacing

of exciting situations). Whenever the designer can identify factors of the player’s experience that

affect how successful it might be, the task of specifying the objective function can be simplified

by explicitly representing each factor as a feature. A feature is a function that maps from a given

trajectory to a real number (f : H → R), and a group of n such features can be represented

conveniently by a length n feature vector (f : H → Rn). By changing the total number of features

or the range of each feature, the designer can set the amount of abstraction with which each feature

vector represents its associated state/action history.

History Feature Values
Fighter Storyteller

(. . . , Annara Meets Troll, Fight, τA, Combat,
65 0

Kill, τA, Alone in Forest, Explore)
(. . . , Annara Meets Troll, Talk, τA, Dialogue,

0 40
End, τA, Alone in Forest, Explore)

Table 4.5: Part of a tabular representation of a simple feature vector. For a given player history,
the feature vector gives a vector of real numbers that contains a value for each feature. Only two
possible histories are shown.

Table 4.5 shows an example of a feature vector of length 2; one feature (fFighter) represents

the designer’s estimate of how inclined the player is toward performing fighting actions during the

game, while the other feature (fStoryteller) represents a similar estimate with regard to the player’s

inclination toward seeking more information about the game’s story. From the (partial) history where

the player has had Annara fight and kill the Troll, the designer estimates that the player’s inclination

toward fighting has a value of 65 points, while their inclination toward storytelling remains at zero;

a different history (with talking instead of fighting) results in a different estimate of the player’s

inclinations, and thus different feature values.

χ(et, ht, φ,f) = arg max
τ∈T

φ(τ, ht, et,f) (4.12)

φ(τ, ht, et,f) = λ(f(ht)) (4.13)

Equation 4.12 shows an example of how a feature vector can be used as part of a manager’s

policy, where the vector is passed along as an extra parameter to an objective function. Equation 4.13

shows how the objective function itself can then be defined as an arbitrary function (λ) of the output

of the feature vector (which is a vector of n real numbers): λ : Rn → R.

Feature vectors can also be used in conjunction with a decision constraint function (κ). For

example, κ could be defined for Annara’s Tale as follows: for every player history ht ending in
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〈Alone in Forest, Explore〉, if fFighter(ht) < fStoryteller(ht), then κ(ht) = {τA}; otherwise, κ(ht) =

{τB}. The effect of defining κ this way is that players who had demonstrated stronger inclinations

toward learning about the game world (“Storytellers”) would encounter the puzzled traveller, while

players inclined more toward combat (“Fighters”) would witness the spider attack instead (recall

Figure 4.2 and the example from Table 4.5); note that no objective function (Block #2) is needed.

Discussion

Although the example features that I presented in the previous section each mapped a player’s history

to a real number, features can generally be used to map any trajectory to a real number. They can

thus be combined with a rollout function (Block #3) and an objective function (Block #2) to simplify

estimating the player’s return from a combination of both the player’s history and any predicted

rollout. For example, Equation 4.14 shows an extension of Equation 4.9, where the arbitrary function

λ operates on the output of the feature vector as in Equation 4.13, and the feature vector now accepts

a concatenation of the player’s history (ht) and a rollout from the rollout function (h+ from ρ).

φ(τ, ht, et, ρ,f) = max
h+∈ρ(st,at,τ,et)

λ(f((ht, h
+))) (4.14)

When applied directly to a player history, feature vectors can simplify specifying a decision

constraint function, since any discrete or continuous variable (e.g., a counter or a binary flag) can be

represented by a single feature, and such variables can be useful when determining which transition

functions should be available for selection (e.g., reserving the hardest difficulty setting of a game

(τHard) until at least the tenth level of a video game (fLevel(ht) ≥ 10)).

4.2 Building a Manager

GEM’s building blocks are complementary, and can be used in conjunction with one another. Fig-

ure 4.4 demonstrates how these blocks can be used to create a new manager: start from the foun-

dation that I described in Chapter 2, choose to use at least one of Blocks #1 and #2, and then add

more blocks as desired to either further refine the manager’s estimates of the player’s return (e.g.,

by examining rollouts in the objective function) or to simplify the task of creating the manager itself

(e.g., by defining the objective function or decision constraints in terms of only the most important

features of the player’s experience).

Equations 4.15 and 4.16 demonstrate how a combination of all five blocks could be represented

using GEM, where the probability term in Equation 4.16 is defined by Equation 4.11, and λ repre-

sents an arbitrary, designer-defined function that maps the values in a feature vector to a real number

that estimates the player’s return (λ : Rn → R).

χ(et, ht, κ, φ, ρ, π̃,f) = arg max
τ∈κ(ht)

φ(τ, ht, et, ρ, π̃,f) (4.15)
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Figure 4.4: A diagram showing how GEM can be used to build a new manager.

φ(τ, ht, et, ρ, π̃,f) =
∑

h+∈ρ(st,at,τ,et)

Pr(h+|ht, χ, π̃)λ
(
f
(
(ht, h

+)
))

(4.16)

Taken together, these equations define a manager that chooses transition functions (from a set

constrained by κ) to maximize its objective function (φ). The objective function’s value is computed

by sampling possible future trajectories (h+) from the current decision point onward (via the rollout

function, ρ) and calculating the product of two values for each rollout. One value is the probability

of the rollout occurring (via an estimated player policy, π̃; recall Equation 4.11). The other value is

an estimate of what the player’s return would be if their combined experience ((ht, h+)) had certain

designer-defined features (f ); this estimate is computed according to the designer-defined function

λ. The result of this objective function is the expected value (in terms of λ) of selecting τ to continue

the player’s experience.
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Summary

In this chapter, I presented Generalized Experience Management (GEM), a novel framework for

representing experience managers. I explained GEM in terms of a foundation and building blocks,

where each of five blocks serves a particular role in defining a manager’s operation. Decision con-

straints (Block #1) allow a designer to restrict the set of transition functions that a manager can

choose from following certain player histories. An objective function (Block #2) lets a designer spec-

ify how one transition function should be preferred when more than one is available for the manager

to select, as an estimate of the player’s return. A rollout function (Block #3) defines the mechanism

that a manager uses to examine potential futures of the player’s experience, toward improving the

objective function’s estimate. An estimated player policy (Block #4) allows the manager to pre-

dict the probabilities with which the futures that it generates might occur, toward further improving

the objective function’s estimate. Finally, a feature vector (Block #5) simplifies the specification of

other blocks by allowing the designer to identify and compactly represent patterns in trajectories that

are of particular importance when computing any of the other functions. I concluded by describing

how the five blocks can be combined to create a new manager.
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Chapter 5

Case Studies

In this chapter, I demonstrate the utility of Generalized Experience Management by using it to

represent four different experience managers. The first two managers, Moe (Weyhrauch 1997) and

the AI Director in Left 4 Dead (Valve Corporation 2008), were created by others independently from

my work on GEM. For each of these managers, I first describe its operation using the terms of its

authors, and then explain how it can be represented using GEM (for Moe, see Section 5.1; for the

AI Director, see Section 5.2). I created the third manager, PaSSAGE (Thue 2007; Thue et al. 2007a;

2007b), during my prior work in this area, and I continued to study it during my development of

GEM (Thue et al. 2008b; 2008a; 2009; 2010b). I created the fourth manager, PaSSAGE 2 (Thue

et al. 2010a; 2011), during my development of GEM. For these two managers, I describe how each

of its components can be represented using GEM immediately after I introduce that component (for

PaSSAGE, see Section 5.3; for PaSSAGE 2, see Section 5.4).

5.1 Moe

Moe (Weyhrauch 1997) is one of the earliest examples of experience managers in the context of

Drama Management. Designed to support the thesis that “interactive drama is possible”, Weyhrauch

created Moe to manage the experience of a single player in the context of the interactive drama Tea

for Three (a murder mystery). Weyhrauch created Tea for Three based on a part of the interactive

fiction Deadline (Blank 1982).

5.1.1 The Player’s Experience

Moe represents each player’s experience as a sequence that consists of two kinds of moves: Moe

moves represent operations that the manager is able to perform, and player moves1 represent par-

ticular player actions that are important to the progression of the experience. Examples of Moe

moves include removing particular non-player characters (NPCs) from the game, causing NPCs to

1Weyhrauch used the phrase “user moves” to describe player actions, but I have changed their name to “player moves”
to avoid any confusion that could arise from using multiple terms to discuss the same concept. Weyhrauch’s “user” and the
“player” that I describe in this work are the same entity.
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travel from one game location to another, and changing what story information is revealed by certain

player actions. Examples of player moves include discovering evidence, learning important story

information, and confronting characters about the mystery (the player’s role in the story is that of

a police detective). The experience is generated by Moe and the user taking turns, and during their

respective turns, both Moe and the user are free to perform any number of the moves that are legal at

the point at which they are considered. For example, five player moves might be followed by three

Moe moves, followed by one player move, followed by two Moe moves, and so on.

Determinations of which moves are legal at a given point in the experience are made differently

for Moe moves and player moves. For each Moe move, a function called LegalWhen accepts the

sequence of Moe and player moves that have occurred thus far and gives whether or not that move

is legal. The set of legal player moves is determined by referring to a plot graph: a directed, acyclic

graph whose nodes are player actions, and whose edges encode temporal precedence relationships

that must be enforced between the connected actions. For example, according to the plot graph

shown in Figure 5.1, the player move “Catch George” can only be performed after the player has

confronted George in an earlier move, but the move “Mud” can be performed at any time. Moe can

make further restrictions to the set of legal player moves by performing certain Moe moves (as I

describe in the following section).

Figure 5.1: A plot graph of player moves from Tea for Three, the interactive drama managed by
Moe. Source: (Weyhrauch 1997). Each player move at the tail of an arrow must be performed by
the player before the player move at the head of that arrow will become legal to perform.

5.1.2 Moe’s Operations

Whenever the player performs a player move during the experience, Moe is given an opportunity

to select any number of legal Moe moves to occur. Weyhrauch grouped Moe’s moves into six

categories:

• causers, which force the player into performing a certain player move;

• deniers, which prevent the player from performing a certain player move;

• hints, which attempt to bias the player toward performing a certain player move;
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• move substitutions, which force the player into performing one player move as a result of

performing another (the player is also prevented from performing the former move directly);

• delayers, which (also) prevent the player from performing a certain player move2; and

• future hints, which attempt to bias the player toward performing a certain player move that

will only become legal later on in the experience.

Each kind of move represents a relatively small change to the interactive environment.

5.1.3 Moe’s Policy

The intended effect of Tea for Three is that each of its players should have a “dramatic, story-

like experience” (Weyhrauch 1997; pg. 92); Moe’s goal is to ensure that each player’s experience

in Tea for Three is maximally successful at affecting them in this intended way. Whenever Moe

is required to choose a Moe move to occur, it receives as input the sequence of Moe moves and

player moves that has occurred thus far, as well as a compact representation of the plot graph that

determines which player moves are legal. Using this information, Moe simulates potential futures of

the player’s experience using a search that expands depth-first to every possible ending (an ending

occurs when all player moves have been performed once each). More specifically, for each of the

legal Moe moves that it has to choose from, Moe considers every complete future that could occur

if it made that move. Moe uses a simple player policy to predict player actions (e.g., the user always

follows hints) and it generates each future according to two assumptions: (i) that it will always be

able to choose new Moe moves as needed (until the experience ends), and (ii) that its estimate of the

player’s policy should be updated as each new step of the (hypothetical) future is generated.

For each complete future, Moe estimates the amount of success that the player’s experience as

a whole would have, if it were to end with that future after having begun with the sequence of Moe

moves and player moves that actually occurred in the game. Moe computes this estimate using

an evaluation function, which calculates a weighted combination of a set of features: functions

that examine the sequence of moves that has occurred thus far and each return a number between

zero and ten. The value of each feature is computed from the given sequence using a collection of

expert knowledge that is specific to that feature. For example, the thought flow feature examines the

sequence of player moves that occurred in an experience, and considers which of five, predefined

story topics each player move is related to (every player move is related to at least one topic). The

value of thought flow for that experience is then computed as the number of consecutive pairs of

player moves in the experience that share at least one related topic. In total, Weyhrauch defined

seven features:

• thought flow estimates whether the given progression of player moves would seem logical;
2I suspect that Weyhrauch’s distinction between deniers and delayers is due to his intention for every delayer to have a

corresponding causer that re-enables the player move that it “delayed”, while the player moves that deniers disable are never
re-enabled. Functionally, the moves have identical effects.
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• activity flow estimates the player’s level of engagement with the story;

• options estimates how much freedom the player perceives;

• motivation estimates how well the player moves are motivated by the player’s goals;

• momentum gives a bonus for certain player moves occurring soon after others;

• intensity estimates the player’s excitement; and

• manipulation estimates the player’s feeling of having been manipulated by the given sequence

of Moe moves.

The first six of these features are computed from the sequence of player moves that appears in

the given complete experience, while the manipulation feature is computed from the sequence of

Moe moves. Once the value of each feature has been computed, the evaluation function calculates a

weighted sum of the results using a set of designer-specified weights.

It is important to note that Moe’s evaluation function only estimates how successful a com-

plete experience might be (i.e., one in which every move has been used once). However, while the

player’s experience is underway, the sequence of Moe moves and player moves that will comprise

their complete experience is not yet known. To estimate how much success will result from a partial

experience (e.g., of the player’s experience thus far plus one candidate Moe move), Moe examines

possible futures of the experience to compute a backed-up estimate using a recursive “avg-max”

approach, as follows. If adding one move to the current partial experience results in a complete

experience, then its value is estimated using the evaluation function (no backup is required). Other-

wise, the next possible move (following the current partial experience) will be either a Moe move

or a User move. If it is a player move, then the value of the current partial experience is estimated

as the expected value of the player performing a legal player move at that point in the experience;

this is the “avg” (averaging) part of the approach. The weights for the expected value come from

an estimated player policy. If the next possible move is a Moe move, then the value of the current

partial experience value is estimated as the maximum of the estimated values of performing a legal

Moe move following that partial experience; this is the “max” (maximizing) part of the approach.

5.1.4 GEM Representation

To demonstrate how Moe can be represented in terms of Generalized Experience Management, I

consider each of Moe’s components in turn.

Player Moves

In addition to describing the actions that players can perform (i.e., player actions in GEM (a ∈ A)),

player moves define the points at which Moe gets activated to choose a Moe move. This activation
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occurs immediately following the performance of any player move, which is consistent with how

each player action can be followed by a manager decision in GEM.

Moe Moves

Moe moves are very similar to the transition functions that are available in GEM’s set of transition

functions (i.e., τ ∈ T ). However, while Weyhrauch’s framework allows multiple Moe moves to

occur in immediate succession, GEM always gives the player at least one opportunity to act after

each transition function is selected and applied to the game. This difference can be reconciled with

the help of two facts: (i) that each of the six categories of Moe moves can be represented as a change

to a transition function (see Figures 5.2 to 5.4), and (ii) that changing a transition function multiple

times still results in a single function. In each of the figures, circles show game states, solid arrows

show player actions, and dashed arrows show how the current transition function (which is indicated

in the upper left) maps each action from its originating state to a new state. The shaded areas show

how the transition function can be changed from τ1 to τ2 to implement a Moe move. Thick edges

show the states and actions that have occurred in the game thus far.
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τ1 τ2
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Figure 5.2: Representing a Moe causer or hint as changing a transition function. Changing the
transition function from τ1 to τ2 could force the player to perform action 2 (the desired result of a
causer). The same change could force the player to observe a hint in state C.

In Figure 5.2, a Moe causer that forces the player to perform action 2 can be implemented

by changing the transition function from τ1 to τ2. Similarly, a Moe hint that forces the player to

experience state C (which could deliver the desired hint) can be accomplished by the same change.
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Figure 5.3: Representing a Moe denier or delayer as changing a transition function. When the
transition function is changed from τ1 to τ2, none of the player’s actions can cause the game to
reach state C.

In Figure 5.3, a Moe denier or delayer that prevents the player from performing action 2 can be

42



implemented by changing the transition function to ensure that the game will only transition among

states in which action 2 cannot be performed (e.g., state C is avoided by switching from τ1 to τ2).
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Figure 5.4: Representing a Moe move substitution or future hint as changing a transition function.
When the transition function is changed from τ1 to τ2, the player will be forced to observe a hint in
state E (a future hint) after performing action 1, and must then perform action 2 (a move substitution).

In Figure 5.4, a Moe move substitution that forces the player to perform action 2 after performing

action 1 can be implemented by changing the transition function from τ1 to τ2. Similarly, a Moe

future hint that forces the player to experience state E (which could deliver the desired hint) can be

accomplished by the same change.

Whenever Moe performs multiple moves in immediate succession, their effects on the game

are applied incrementally before the next player move can be performed. In terms of GEM, if

we consider each Moe move to represent a particular, incremental change to the game’s previous

transition function (τt), then applying a given sequence of Moe moves as changes to τt will result in

a new transition function whose activation in the game would have the same effect on the player’s

experience as the given sequence of Moe moves. Therefore, every sequence of Moe moves can be

represented by a unique GEM transition function, τ .

The Player’s Experience

GEM histories (h ∈ H) subsume Moe’s representation of the player’s experience (a sequence of

Moe moves and player moves), because every history contains an ordered sequence of the states, ac-

tions (i.e., player moves), and transition functions (i.e., sequences of Moe moves) that have occurred

in the player’s experience thus far.

Legal Player Moves

Whenever Moe needs to simulate a player move while generating potential futures, it retrieves a set

of player moves that are legal at the time. This set is constrained by both the plot graph in Figure 5.1

and the sequence of previous Moe moves (deniers and delayers) that have either occurred during

the player’s experience or been simulated during a prior step of the generation process. Just as Moe

deniers and delayers make certain player moves illegal by changing the game’s transition function,
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the constraints imposed by a plot graph can be maintained by changing the transition function as

well.
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Figure 5.5: Representing a change in which player moves are legal as a change to a transition
function. Left: a plot graph that requires action 1 to be performed before action 2. Middle: an
MDP with a transition function such that performing action 2 has no effect. Right: an MDP with a
transition function such that action 2 can have various effects; this function could be activated after
the player performs action 1.

Figure 5.5 shows an example where a plot graph has constrained the player’s actions such that

action 1 must happen before action 2 (actions 3 and 4 are unconstrained). The transition function

τ1 shows how this constraint can be represented by ensuring that every instance of action 2 always

leaves the game’s state unchanged3. However, as soon as action 1 is performed (say, from state A

like in the figure), the manager can change the transition function to τ2 (or one like it) and thereby

allow action 2 to affect the game’s state. To ensure that a given action will become available for

the player to perform as soon as another action has been performed, the transition functions that are

available for selection following the latter action must be constrained such that only those that allow

the former action to affect the game’s state as desired will be available for selection. I discuss the

use of GEM decision constraints below.

The Estimated Player Policy

Moe’s estimated player policy (which it uses to compute its objective function) is designed to vary

depending on whether or not Moe hints or future hints have occurred previously in the experience.

Given that GEM’s estimated player policy is a function of the player’s history (which includes

transition functions – GEM’s analogue to sequences of Moe moves), its output can vary depending

on which transition functions have been selected, as Moe requires.

Legal Moe Moves

Before Moe can choose a move to perform, it must determine which of its moves are legal, given

the sequence of Moe moves and player moves that have occurred thus far in the experience. Be-

cause every sequence of Moe moves can be represented as a single change to a transition function,

any legal sequence of Moe moves (i.e., where every move is legal with respect to some previous

3Ordinarily, I omit such self-edges to reduce clutter when I represent an MDP as a graph, but I show them for action 2 in
Figure 5.5 to clarify the present example.
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move sequence) can be represented as a single change to a transition function τ that is (implicitly)

designer-approved for a given player history. GEM’s decision constraint function (κ(ht)) is intended

to represent precisely this information. To ensure that κ will enforce Weyhrauch’s constraints on le-

gal Moe moves, for every history ht, the set given by κ(ht) can be defined by starting with an empty

set and adding one new transition function for every sequence of contiguous Moe moves that can be

legally performed following that history.

The Evaluation Function

Moe’s evaluation function estimates how successful a given, complete experience will be as a

weighted average of several features, each of which is defined in terms of the sequence of Moe

moves and player moves that make up the given experience. Moe’s features are equivalent to defin-

ing a vector of GEM features (f ) that will only ever be evaluated for complete player histories,

and computing its evaluation function amounts to an intermediate step of computing an objective

function (φ) in GEM. More specifically, Moe’s recursive backup procedure for estimating how suc-

cessful the player’s experience will be following a given sequence of Moe moves is a GEM objective

function: it computes a real number (based on backed-up estimates from the evaluation function)

given a sequence of Moe moves (i.e., a transition function) and a sequence of prior moves (i.e., a

history), and that number is an estimate of how successful the player’s experience will be if those

moves are performed following the given sequence of prior moves.

Manager & Policy

Moe’s policy considers every complete player experience that could occur as the result of a legal

sequence of contiguous Moe moves, and performs the sequence that it expects to yield the most

successful experience, given the moves that have already occurred. In terms of GEM, it considers

every possible experience that could occur as a result of each of the available, designer-approved

transition functions (τ ∈ κ(ht)), and returns the τ that maximizes its objective function, given

the history of the player’s experience thus far. Since its operation depends on a set of decision

constraints, an objective function, a rollout function, an estimated player policy, and a vector of

features (i.e., Blocks #1 through #5), Moe’s manager and policy can be represented by Equations 5.1

and 5.2, respectively, where each parameter has been defined in the preceding text:

mMoe = 〈χ, κ, φ, ρ, π̃,f〉 (5.1)

χ(ht, et, φ, κ, π̃,f) = arg max
τ∈κ(ht)

φ(τ, ht, et, κ, ρ, π̃,f) (5.2)

Table 5.1 summarizes how Moe can be represented using GEM.
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Moe Component GEM Representation
Player Moves Player Actions
Moe Moves Changing Transition Functions (both single moves and sequences)

The Player’s Experience Histories
Legal Player Moves Transition Function & Decision Constraint Function

Estimated Player Policy Estimated Player Policy
Legal Moe Moves Decision Constraint Function

Evaluation Function Features & Objective Function
Manager Policy Manager Policy (Equation 5.2)

Table 5.1: A summary of how each of Moe’s components can be represented using GEM.

5.2 Left 4 Dead’s AI Director

Released by Valve Corp. in 2008, Left 4 Dead is a commercial, first-person shooter video game

in which a team of four survivors (see Figure 5.6) must battle through and ultimately escape from

large numbers of zombies (AI-controlled opponents). The player controls the actions of one of the

survivors, with the other three being controlled either by other (human) players or by collaborative

AI agents. Some of Left 4 Dead’s gameplay is managed by an experience manager called “the AI

Director” (Booth 2009), which was created to improve the replay value of the game by varying the

emotional intensity of the player’s experience in a controlled, yet unpredictable way.
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Figure 5.6: The four survivor characters in Left 4 Dead. Source: (Booth 2009).

5.2.1 The Player’s Experience

In Left 4 Dead, the player’s experience is an alternating sequence of game states and player actions.

Examples of actions that players can perform in Left 4 Dead include moving among a group of

connected rooms, shooting zombies, and gathering items. Since players are not expected to perform

one of these actions at every possible opportunity, a timer is used to automatically move the game

to a new state if no player action has been taken.

46



5.2.2 The AI Director’s Operations

During gameplay, the AI Director can perform two kinds of operations. First, it can change the

current method of threat population (i.e., strategies for controlling the composition and creation rate

of additional groups of zombies). When full threat population is being performed, various kinds of

zombies (both minor threats and major threats) are created continually outside of the player’s view.

When minimal threat population is being performed, only minor zombies are created. When zero

threat population is being performed, no new zombies are created. Regardless of which method is

being performed, certain pre-scripted encounters with challenging “boss” zombies may still occur.

Second, it can set a delay timer to a given value, to delay changing the current threat population

method until the given amount of time has elapsed.

5.2.3 The AI Director’s Policy

The AI Director was created to support a “powerfully compelling and replayable experience” by

causing the player to go through “unpredictable peaks and valleys of intensity” while playing (Booth

2009; pg. 78). To accomplish this task, it repeatedly switches between its available methods of threat

population (full, minimal, and none) based on estimates of the intensity of each survivor’s emotions.

Specifically, for each survivor, the AI Director monitors their experience for particular events that

are expected to cause player stress, and thereby increase their emotional intensity. Examples of

such events include being injured, being incapacitated, or being pulled off a ledge by enemies.

Whenever one of these events happens to a survivor, their estimated emotional intensity (represented

by a non-negative real number) is increased in proportion to the severity of the event (e.g., being

heavily injured results in a larger increase than being lightly injured). Whenever a survivor is not

currently fighting an enemy, their estimated emotional intensity is decreased by a small amount

(lower-bounded at zero).

When the game begins, the estimated emotional intensity for each survivor is set to zero, and

the full threat population method is enabled by default. If at any point the survivor team is closer

than a given threshold distance to the nearest unvisited safe area, the threat population method is

set to full. Otherwise, the following behaviour occurs. Whenever the estimated emotional intensity

for any of the four survivors rises (due to combat with in-game enemies) above a pre-set peak

threshold, the AI Director arranges for the threat population method to be set to zero following a 3

to 5 second delay. The peak threshold is meant to represent a level of intensity above which players

will begin to feel overwhelmed, while the delay is meant to ensure that the active method of threat

population remains at full for a minimum amount of time (representing one of the desired “peaks”

of emotional intensity). The purpose behind changing the method to zero (and thereby drastically

reducing the number of enemies being generated in the area) is to help ensure that players will never

end up feeling persistently overwhelmed. Somewhat later in the game, the estimated emotional

intensity of every survivor will have decayed below the peak threshold (because the survivors have
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destroyed their enemies). As soon as this occurs, the AI Director arranges for the full method of

threat population to become active following a 30 to 45 second delay. The purpose of this delay

period is to ensure that players will have some time to relax before the next wave of zombies attacks

(representing one of the desired “valleys” of emotional intensity). In the meantime, if the estimated

emotional intensity of every survivor decays below a pre-set calm threshold, then the AI director

immediately changes the threat population method to minimal. I assume that this change occurs

to avoid having the survivor team become bored before full threat population resumes, while still

allowing them some time to relax; Booth gives no explicit reasons for this change (Booth 2009).

The net result of the AI Director’s policy is that the estimated emotional intensity of each survivor

follows a roughly sinusoidal curve over time, as shown in Figure 5.7.
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Figure 5.7: A plot of the estimated emotional intensity of one player over time while playing Left
4 Dead. Source: (Booth 2009). The red areas show the times during which either zero or minimal
threat population is active; the black areas show times during which full threat population is active.

5.2.4 GEM Representation

To demonstrate how the AI Director can be represented in terms of GEM, I will consider each of the

AI Director’s components in turn.

Player Actions

Player actions in Left 4 Dead can be represented directly by GEM actions, provided that an explicit

no-op action (short for “no operation”) occurs whenever the player performs no active action (e.g.,

as initiated by pushing a button on a game controller) within a certain amount of time.

Threat Population Methods

In terms of GEM, each of the three threat population methods can be well thought of as variants of

the game’s transition function; that is, while they would vary from one another with respect to how

enemies are added into the game, they would be identical with respect to how the rest of the game’s

dynamics operate (e.g., calculating bullet trajectories, simulating zombie behaviours, or causing

survivors to incur damage when they are attacked). The purpose of each threat population method

is to give definitive answers two questions:

• “Given the current game state and the player’s most recent action, should a new group of

zombies be created in the next game state that occurs?”, and, if so:

48



• “Which zombies should comprise this group and where in the environment should they be

created?”

τzero τmin τfull

Figure 5.8: Representing each of the AI Director’s three threat population methods as a (non-
deterministic) transition function. For simplicity, each circle shows the state of only two rooms
in the game (separated by a horizontal line), and only four potential subsequent states are shown.
Large white / small black stars indicate the presence major/minor zombies. Dashed arrows show the
transitions from the most recent state and action (the thick-lined circle and arrow) to potential sub-
sequent states. Small black dots show the point at which the transition function is used to determine
the next state. Transitions to states with zero probability of occurring are not shown.

For the zero method of threat population, the answer to the first question is always “no”: for every

possible combination of zombie group composition and placement, the probability of it happening

in the next state of the game is zero. Therefore, zero threat population can be represented by a

transition function where the probability of transitioning to a new state in which new zombies have

been created remains at zero (e.g., τzero in Figure 5.8). Similarly, minimal threat population can be

represented by a transition function that only assigns positive probabilities to two kinds of states:

those in which minor zombies are created, and those in which no new zombies are created (e.g.,

τmin in Figure 5.8). A transition function representing full threat population would be similar to the

one for minimal, except that positive probabilities would also be assigned to states in which major

zombies are created (e.g., τfull in Figure 5.8).

The Player’s Experience

The stream of states and actions that makes up the player’s experience in Left 4 Dead can be repre-

sented directly by a GEM history ht (which includes states, actions, and transition functions).

Estimated Emotional Intensity

Given that the AI Director’s estimate of each survivor’s emotional intensity is a function of their

experience thus far, the maximum of these estimates (which is what the AI Director tracks to change

the threat population method) can be well thought of as a GEM feature (fMaxIntensity), as computed

from the sequence of states in the game’s history.
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Distance to Safety

The distance of the survivor team to the nearest unvisited safe area can also be calculated by ex-

amining the player’s history, meaning that it can also be represented compactly as a GEM feature

(fSafetyDistance). The foregoing GEM features are shown as a feature vector in Equation 5.3.

f = 〈fMaxIntensity, fSafetyDistance〉 (5.3)

Manager & Policy

Using the feature vector given in Equation 5.3, the AI Director’s policy can be represented as a GEM

manager’s policy using a decision constraint function. To define the decision constraint function (κ),

consider the following algorithm.

1. If the survivor team is close enough to the nearest unvisited safe area (fSafetyDistance),

set κ(ht,f) = {τfull}.

2. If fMaxIntensity rose past the peak threshold between 3 and 5 seconds ago and only τfull has been

used since that happened, then set κ(ht,f) = {τfull, τzero}.

3. If fMaxIntensity rose past the peak threshold 5 or more seconds ago and only τfull has been used

since that happened, then set κ(ht,f) = {τzero}.

4. If fMaxIntensity fell past the calm threshold in the last time step and τt = τzero, then

set κ(ht,f) = {τmin}.

5. If fMaxIntensity fell past the peak threshold between 30 and 45 seconds ago and only τzero or τmin

have been used since that happened, then set κ(ht,f) = {τt, τfull}.

6. If fMaxIntensity fell past the peak threshold 45 or more seconds ago and only τzero or τmin have

been used since that happened, then set κ(ht,f) = {τfull}.

7. otherwise; set κ(ht,f) = {τt}.

Each of the seven lines contains two parts: a statement about the player’s history (ht) and a de-

scription of the set of transition functions that the decision constraint function should give whenever

a history matching the given statement has occurred (i.e., the set that should be given by κ(ht,f) if

the given statement about ht is true). To compute κ(ht,f), each line can be visited in order (starting

from line 1). If the statement about ht is true, set κ(ht,f) as given on the line. Otherwise, visit

the next line. The seven statements provide a complete definition of κ because the sets of histories

specified by the given statements have no intersection, and their union is equal to H . Given this

definition of κ, the AI Director’s policy can be defined as a function that, at each time step, draws

a transition function from a designer-defined probability distribution over κ(ht,f).4 This sampling

4These distributions were not described in Booth’s presentation (2009).
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process could be defined as part of an objective function (φ), similarly to the example of the softmax

operator that I presented in Section 4.1.2. Since the AI Director’s policy depends on a set of deci-

sion constraints, an objective function, and a vector of features, the AI Director and its policy can

be represented by Equations 5.4 and 5.5, respectively, where each parameter has been defined in the

preceding text:

mAI Director = 〈χ, κ,f〉 (5.4)

χ(ht, et, κ, φ,f) = arg max
τ∈κ(ht,f)

φ(τ, ht, et, κ,f) (5.5)

Table 5.2 summarizes how Left 4 Dead’s AI Director can be represented using GEM.

AI Director Component GEM Representation
Player Actions Player Actions

Threat Population Transition Functions (one per method)
The Player’s Experience Histories

Emotional Intensity Feature
Distance to Safety Feature
Manager Policy Manager Policy, Decision Constraints, & Objective Function

Table 5.2: A summary of how each of the AI Director’s components can be represented using GEM.

5.3 PaSSAGE

I designed PaSSAGE with the goal of making story-based video games more fun, and as a test of my

hypothesis that player fun can be increased by dynamically tailoring the content of a game to suit

the player’s preferences (Thue 2007; Thue et al. 2007a; 2007b; 2008b; 2009; 2010b). PaSSAGE

stands for “Player-Specific Stories via Automatically Generated Events”.

5.3.1 The Player’s Experience

PaSSAGE manages player experiences in the context of single player, story-based video games,

where the player controls a story character situated in a virtual environment (this character is often

called the player’s avatar). The player uses their avatar to explore the environment and interact with

objects and non-player story characters that they find therein. Figure 5.9 shows screenshots from

one such environment, called Annara’s Tale, which I created as a testbed for PaSSAGE.

The top left image in Figure 5.9 shows the player’s avatar: a young woman named Annara.

Annara’s Tale is based loosely on the story of Little Red Riding Hood (Perrault 1697), with Annara

replacing the main character of that story (a girl named Red). The top right image in the figure

shows part of the environment that players of Annara’s Tale can explore: Maedorn Forest. Annara’s

Tale contains five areas in total: Annara’s home, her village, a tavern in the village, the forest, and

a house in the forest where an important story character resides. Every player trajectory through

Annara’s Tale involves Annara travelling to this house to complete an important delivery (similar to
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Figure 5.9: Screenshots from Annara’s Tale. Top left: the player’s character, Annara. Top right:
Maedorn Forest. Bottom left: dialogue with a non-player character. Bottom right: combat.

Red’s delivery to her grandmother’s house in Little Red Riding Hood). The bottom left image in the

figure shows dialogue – one way in which the player can interact with non-player characters. After

reading what the story character says (white text at the top of the image), the player is presented

with one or more lines of dialogue for Annara to say as her response (three options are shown in

the image), and then the character says a new line or the conversation ends. The bottom right image

in the figure shows one of the game’s non-player characters: a troll that plays a role similar to the

wolf in Little Red Riding Hood. Depending on PaSSAGE’s operation, the troll will either attempt

to distract Annara from her mission by sending her off the path through the forest, or it will solicit

Annara’s help in capturing a local wizard (a character similar to the huntsman in Little Red) in

exchange for a large sum of money. The bottom right image also demonstrates combat – another

one of the ways in which the player can interact with story characters. Choosing to fight the troll

(which is analogous to Red fighting the wolf) is one of several deviations from the plot of Little Red

Riding Hood that are possible in Annara’s Tale.
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5.3.2 PaSSAGE’s Operations

PaSSAGE operates by dynamically choosing between different groups of potential gameplay expe-

riences (i.e., alternating sequences of states and actions that can occur following the player’s current

history) and then presenting its choice to the player by determining the game’s subsequent state.

Encounters

Each group of experiences that PaSSAGE considers is defined by a common story context called an

encounter. For example, Annara’s meeting of the troll and the subsequent combat or dialogue are

all part of a single encounter that includes two potential experiences: fighting and killing the troll,

or starting and ending a conversation with him.

Annara Meets Troll

Fight

Talk Dialogue

Combat

End

Kill

Alone in Forest

Figure 5.10: An example showing part of my MDP representation of Annara’s Tale. The shaded
region shows a subgraph that makes up the encounter “Annara and the Troll”.

In terms of GEM, each encounter can be represented as a collection of the states and actions that

the interactive environment (i.e., 〈S,A, τ〉, for any τ ∈ T ). For example, the highlighted region

in Figure 5.10 shows the collection of states and actions that represents Annara’s encounter with

the troll. I say that a transition function τ “causes an encounter to occur” when, given τ , every

possible future of the player’s current experience will traverse some of the states in the collection

that represents that encounter. PaSSAGE’s selection of encounters can thus be represented in GEM

as changing the transition function of an MDP.

5.3.3 PaSSAGE’s Policy

PaSSAGE’s objective when choosing encounters is to give the player opportunities to play in whichever

styles of play they seem to be inclined toward, under the hypothesis that the game will be more fun

for them to play as a result. The five styles that PaSSAGE considers are “Fighter” (for players

who enjoy combat), “Method Actor” (for players who enjoy complex decisions), “Storyteller” (for

players enjoy complex plots), “Tactician” (for players who enjoy thinking creatively), and “Power

Gamer” (for players who enjoy finding loot and improving their in-game character). These types

were initially proposed by Laws in the context of pen-and-paper Role-Playing Games (Laws 2001),

which are similar to many story-based video games.
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The Player Model

By observing the player’s in-game actions, PaSSAGE automatically estimates a model of their pref-

erences toward playing in one the five different styles of play. In the model, the player’s inclination

toward (or away from) playing in each particular style is represented by a single scalar value; the

larger the value, the stronger the inclination.

To allow PaSSAGE to estimate the player model, the story author annotates a subset of the

game’s state/action pairs with increments that should be applied to the values in the player model,

in the event that one of those pairs occurred during the game. The size of the increment represents

the author’s estimate of how strongly the occurrence of that state/action pair indicates that the player

is inclined toward the incremented style of play. For example, I (as the author of Annara’s Tale)

annotated the state/action pair 〈Annara Meets Troll, Fight〉 with an increment of 40 for the model’s

Fighter value. Whenever PaSSAGE observes that state/action pair, it increases its estimate of the

player’s inclination toward combat (i.e., the Fighter value in the model) by 40 points, representing a

“medium” strength indication of the player being a Fighter (e.g., see Figure 5.11).

Annara Meets Troll

Fight

Talk Dialogue

Combat

End

Kill

Alone in Forest

Kill
Increase
Fighter

F

S

}

Figure 5.11: A simplified example of learning PaSSAGE’s player model in Annara’s Tale. When the
player causes Annara to fight the Troll, the model’s value for the player’s inclination toward fighting
(“F”) is increased. Only two play styles are shown here, whereas PaSSAGE uses five.

In terms of GEM, learning the player model can be represented by a vector of five features: fm =

〈fm
Fighter, f

m
Method Actor, f

m
Storyteller, f

m
Tactician, f

m
Power Gamer〉. Each feature examines all of the state/action

pairs in a given history and sums up any increments that the author has annotated for the feature’s

associated play style. For example, computing fm
Fighter(ht) with history ht = (Annara Meets Troll,

Fight, Combat, Kill) would involve summing author annotations for the Fighter play style for each

of the two state action pairs that occur in that history: 〈Annara Meets Troll, Fight〉 : 40 (as described

above), and 〈Combat, Kill〉 : (no annotation5), resulting in a final value of 40 for fm
Fighter(ht). PaS-

SAGE’s player model vector (fm) would thus provide a vector of five scalar values (one for each

style of play) representing the player’s inclinations toward (or away from) those styles following any

given history ht.

5Although it is a fighting-based action, the Kill action in Figure 5.11 is not annotated in Annara’s Tale because the player
has no choice but to kill the Troll once combat begins. Whenever the player is forced to perform an action, no play-style
preference information can be learned.
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Experience Annotations

To successfully match each player’s play-style inclinations to different encounters (and the potential

experiences therein), PaSSAGE requires another collection of annotations from the story’s author.

Specifically, each potential experience must be annotated with a vector of five values (one value per

play style), where each value represents the author’s estimate of how much a player who is inclined

toward its corresponding play style will enjoy the activity that is being annotated. For example, I

annotated the activity that represents Annara talking with the troll (i.e., (Annara Meets Troll, Fight,

Combat, Kill) in Figure 5.11) with the vector 〈F:8, M:0, S:0, T:0, P:0〉. This vector represented

my expectation that players who were inclined toward fighting would greatly enjoy fighting the troll

(value: 8), and that inclinations toward other play styles would not affect the player’s enjoyment of

this activity (value: 0).

Similarly to the player model, the author’s annotations on potential experiences can be rep-

resented as a vector of GEM features: f c = 〈f c
Fighter, f

c
Method Actor, f

c
Storyteller, f

c
Tactician, f

c
Power Gamer〉;

I refer to the vector that results from computing these functions for a given trajectory (i.e., from

f c(h)) as PaSSAGE’s conditional fun vector.6 For any given trajectory h (which represents a po-

tential experience), f c(h) retrieves the annotation vector that the author created for that trajectory

(if any); if no vector was defined, f c(h) returns a zero vector (i.e., 〈0, 0, 0, 0, 0〉).

Encounter Selection

Whenever an opportunity arises to choose which encounter should happen next (and thereby which

set of activities will become available), PaSSAGE examines each encounter as follows. For each

activity in the encounter, it retrieves that activity’s annotation vector and computes its inner product

with a vector representation of the player model (the same order of play styles is used for both

vectors); the computed value represents how much fun that activity is expected to be. The activity

that corresponds to the highest expected fun value over all of the available encounters is identified

as the best available activity, and the encounter that contains it is then chosen to occur next in the

story (ties are broken randomly). The set of encounters that become available for PaSSAGE to select

changes as the player’s experience proceeds, as decided by the author of the game being managed.

5.3.4 GEM Representation

In terms of GEM, encounter selection (i.e., changing the game’s transition function to cause encoun-

ters to occur) is performed by PaSSAGE’s policy (χ). Experience management can be performed

6I use the term “conditional” when describing this vector’s fun values for the following reason. For each play style that is
represented in the vector, the author estimates how much fun the player would derive from playing through a given experience
under the assumption that the player generally enjoys playing in that style. For example, f c

Fighter(h) only estimates the degree
to which a player who is inclined toward fighting will enjoy playing through history h – it does not estimate the enjoyment
of players who have other inclinations.
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with PaSSAGE using all five GEM building blocks, as shown in Equation 5.6:

χ(ht, et, κ, φ, ρ, π̃,f) = argmax
τ∈κ(ht)

φ(τ, ht, et, ρ, π̃,f) (5.6)

Annara Meets Troll

Fight

Talk ExploreDialogue

Combat

End

Kill

Present Time

τA

Alone in Forest

?τt =

Figure 5.12: Part of Annara’s Tale represented as an MDP. The shaded area marks a decision point.

The solid-edged box shows the MDP for time step t−1 and earlier (i.e., 〈S,A, τA〉), and the dashed-

edged box shows that a transition function must be selected, to be used as τt.

Using a decision constraint function (κ; Block #1), the author can ensure that only certain en-

counters are available for selection following particular player histories. This guarantee can be

achieved by constraining the sets of transition functions that are available in such a way that only

those that each cause a desired encounter to occur are available for the manager to select. For ex-

ample, following the decision point 〈Alone in Forest, Explore〉 shown in Figure 5.12, I (as author

of Annara’s Tale) specified that only two transition functions should be available for the manager

to select: one that causes an encounter where Annara meets a puzzled traveller (τA), and one that

causes an encounter where giant spiders attack (τB); that is, κ(ht) = {τA, τB} for every history ht

that ends in 〈Alone in Forest, Explore〉. Figure 5.13 shows each of these encounters in the context

of the MDP that would be created if τA or τB were selected, respectively.

For each available transition function, an objective function (φ; Block #2) can be used to estimate

the player’s return. Given my goal for PaSSAGE, the player’s return is how much fun the player

will derive from their experience in the game. PaSSAGE’s objective function estimates this value as

shown in Equation 5.7.

φ(τ, ht, et, ρ, π̃,f) =
∑

h+∈ρ(st,at,τ,et)
Pr(h+|ht, χ, et, π̃)

(
fm(ht) · f c(h+)

)
(5.7)

The objective function begins by performing rollouts of the game’s future (using a rollout func-

tion, ρ; Block #3) from the current decision point (〈st, at〉) onward. PaSSAGE’s rollout function

collects bounded rollouts – that is, rollouts that do not necessarily extend to an ending of the game.

PaSSAGE’s rollouts are bounded by decision points; if extending a trajectory h+ during rollout

generation would cause it to include a decision point or an ending of the game, then that trajec-

tory is extended no further. The result is that each rollout h+ ∈ ρ(st, at, τt, et) stops with the first

transition function that immediately precedes either a decision point or an ending of the game. PaS-

SAGE’s rollouts are restricted in this way because the potential for player preferences to change
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Annara Meets Troll

Fight

Talk Explore
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Annara Meets Troll
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Giant Spider Attack
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Figure 5.13: Part of Annara’s Tale represented as an MDP, showing the effects of choosing one

of two available transition functions (τA or τB) with respect to which encounter will occur next.

Ovals are game states, arrows show the combined effect of a single player action and a deterministic

transition function. Each shaded area shows a collection of states and actions that represents a unique

encounter. Top: The MDP if τA were selected. Bottom: The MDP if τB were selected.

during the game decreases the value of any long-term planning. Formally, for every state/action pair

〈st, at〉 ∈ S × A, if 〈st, at〉 is not a decision point, then for all histories ht ∈ H that end with

〈st, at〉, κ(ht) = {τt}.

The feature vector (f ; Block #5) in Equation 5.7 is obtained by concatenating fm and f c. For

each generated rollout h+, PaSSAGE computes an inner product between the conditional fun vector

of that rollout (f c(h+)) and the current player model vector (fm(ht)). Intuitively, the better the

match between the player model and the conditional fun of the given rollout, the more fun the

player will derive from playing through that rollout. PaSSAGE approximates the probability term in

Equation 5.7 (which includes an estimated player’s policy, π̃; Block #4) by assigning a probability

of 1 to the single rollout that maximizes the inner product between fm(ht) and f c(h+). As a result

of this approximation, Equation 5.7 becomes Equation 5.8:

φ(τ, ht, et, ρ, π̃,f) = max
h+∈ρ(st,at,τ,et)

(
fm(ht) · f c(h+)

)
(5.8)

This approximation is the result of assuming that the player will always perform whichever

actions seem to be the most fun to them at the time. The rollout that maximizes the inner product in

Equation 5.8 represents PaSSAGE’s best guess at what those actions might be.

Example

The following example demonstrates how PaSSAGE would choose between two transition functions

in Annara’s Tale. Figure 5.12 shows one of the game’s decision points (〈st, at〉 = 〈Alone in Forest,
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Explore〉) and two player histories that could lead to its occurrence in-game (one where Annara fights

a troll, and one where she talks to it instead). As indicated by the term τt in the figure, PaSSAGE

must select a transition function to use from the current time step (t) until either a new decision point

is reached or the game ends. In this example, I demonstrate what PaSSAGE would do following the

given decision point for two different players: one who fought and killed the troll (P1), and one

who talked to it instead (P2).7 Player 1’s history is thus: ht,P1 = (Annara Meets Troll, Fight, τA,

Combat, Kill, τA, Alone in Forest, Explore) while player 2’s history is ht,P2 = (Annara Meets Troll,

Talk, τA, Dialogue, End, τA, Alone in Forest, Explore).

When given either of these histories, the decision constraint function for Annara’s Tale (κ) gives

the same set of two transition functions for a manager to choose from (i.e., κ(ht,P1) = κ(ht,P2) =

{τA, τB}). Figure 5.13 shows how the MDP would look if either τA (top) or τB (bottom) were chosen;

τA leads to Annara encountering a puzzled traveller who will give her a magical reward if she helps,

and τB leads to Annara witnessing an attack by giant spiders, whose victim will give her an item

if she comes to their defense. To decide which of these transition functions to select, PaSSAGE

uses each one to generate a set of bounded rollouts from 〈st, at〉; each rollout stops with the first

transition function that immediately precedes either a decision point or an ending of the game. The

third column of Table 5.3 shows the four rollouts that PaSSAGE would generate using τA and τB

following the decision point 〈Alone in Forest,Explore〉. The second column of Table 5.3 gives a

short label to each rollout in the second column, to simplify cross-referencing Tables 5.3 and 5.4.

τ Rollout (h+) Cond. Fun (f c(h+))

τA
A1 (Puzzled Traveller,Help, τA,Magic Reward,Depart) 〈F:0, M:0, S:4, T:8, P:2〉
A2 (Puzzled Traveller, Ignore) 〈F:0, M:0, S:2, T:0, P:0〉

τB
B1 (Giant Spider Attack,Defend, τB, Item Reward,Depart) 〈F:8, M:4, S:2, T:0, P:2〉
B2 (Giant Spider Attack,Flee) 〈F:0, M:4, S:0, T:0, P:0〉

Table 5.3: Rollouts that PaSSAGE would generate for each to two available transition functions at
the decision point shown in Figure 5.12. The conditional fun vector for each rollout is also shown.
The symbols in column 2 facilitate cross-referencing rollouts with Table 5.4.

For each generated rollout h+, PaSSAGE computes the inner product shown in Equation 5.8.

Values for the conditional fun vector of each rollout (f c(h+)) are given in the fourth column of

Table 5.3, and repeated for convenience in the third column of Table 5.4. Assumed models for

players 1 and 2 (fm(ht,P1) and fm(ht,P2), respectively) are shown at the top of the last two columns

of Table 5.4. To simplify this example, I have assumed that each player’s history has lead PaSSAGE

to estimate (via fm) that player 1 plays like a Fighter (F:100) and a Tactician (T:40), and that player

2 plays like a Method Actor (M:40) and a Storyteller (S:100).

Columns 4 and 5 show the value of the inner product that PaSSAGE calculates for each rollout

(for players 1 and 2, respectively). Italic values indicate the rollout that maximizes the inner product

7To simplify this example, I ignore the details of earlier parts of Annara’s Tale and instead assume that each player’s
history was such that it would have resulted in the model vector that is shown for that player in Table 5.4.
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Player 1 (P1) Player 2 (P2)
Model (fm(ht,P1)) Model (fm(ht,P2))

〈F:100, M:0, S:0, T:40, P:0〉 〈F:0, M:40, S:100, T:0, P:0〉
τ h+ Cond. Fun (f c(h+)) Inner Product Inner Product

τA
A1 〈F:0, M:0, S:4, T:8, P:2〉 320 400
A2 〈F:0, M:0, S:2, T:0, P:0〉 0 200

τB
B1 〈F:8, M:4, S:2, T:0, P:2〉 800 360
B2 〈F:0, M:4, S:0, T:0, P:0〉 0 160

Table 5.4: Using the models of two different players to estimate their return for each of two candidate
transition functions. Italics show the highest estimated return over all available transition functions.
Bold values indicate the highest estimated return over all possible rollouts. The symbols in the
rollouts column (h+) can be cross-referenced with Table 5.3.

calculation for each transition function, and the maximums of these values across both of the avail-

able transition functions are shown in bold. The bold value for each player indicates which transition

function PaSSAGE would expect to maximize their return (i.e., τB for player 1, and τA for player 2).

Equations 5.6 and 5.8 would thus lead PaSSAGE to select τB if player 1 was playing (leading to the

spider attack), and τA if player 2 was playing instead (leading to the puzzled traveller).

Table 5.5 summarizes how PaSSAGE can be represented using GEM.

PaSSAGE Component GEM Representation
Player Actions Player Actions

Probability of Player Actions Estimated Player Policy (Block #4)
The Player’s Experience Histories

Gameplay Activities Trajectories
Encounters Groups of Trajectories

Player Model Features (Block #5)
Gameplay Activity Annotations Features (Block #5)

Bounded Rollouts Rollout Function (Block #3)

Encounter Selection Manager Policy, Decision Constraints (Block #1),
& Objective Function (Block #2)

Table 5.5: A summary of how each of the PaSSAGE’s components can be represented using GEM.

5.4 PaSSAGE 2

I created PaSSAGE 2 (Thue et al. 2010a; 2011) to investigate whether the dynamically learned

model of gameplay styles that we developed for PaSSAGE could be used to strengthen players’

beliefs that they have control over their experience in a game. This type of control is commonly

referred to as agency (Wardrip-Fruin et al. 2009).

The belief that one’s actions have an effect on the world (i.e., that one has agency) is a fundamen-

tal craving of human nature, having been linked to emotional well-being, improved performance, and

good health (Bandura 2001; Thompson and Spacapan 1991). While many commercial video games
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attempt to instil and strengthen this belief in players by giving them many opportunities to affect the

game’s world (e.g., Grand Theft Auto V (Rockstar North 2013) or Skyrim (Bethesda Game Studios

2011)), Thompson et al. found that people’s judgements of their own agency depend on other fac-

tors as well (Thompson et al. 1998). More specifically, they identified two primary factors: (a)

the connection that one perceives between their action and the outcome that occurred as a result,

and (b) one’s intention to achieve that outcome. They further divided intentionality into three sub-

factors: (i) one’s ability to cause an outcome to occur, (ii) how easy the outcome was to foresee, and

(iii) the outcome’s desirability. They called this work “The Control Heuristic”. Based on Thomp-

son et al.’s (1998) finding that lowering any one of these factors could weaken one’s belief that they

have agency, I hypothesized that such beliefs might be strengthened in video games by ensuring that

particular player choices in-game always result in desirable outcomes (factor b.iii).

5.4.1 The Player’s Experience

Like PaSSAGE, PaSSAGE 2 manages player experiences in the context of single player, story-based

video games. Figure 5.14 shows some screenshots from Lord of the Borderlands, the game that I

created as a testbed for PaSSAGE 2.

Figure 5.14: Screenshots from Lord of the Borderlands. Top left: the player’s avatar, Jaden. Top
right: Jaden’s village. Bottom left: dialogue with a non-player character. Bottom right: combat.
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The top left image in Figure 5.14 shows the player’s avatar: a young man named Jaden. Lord of

the Borderlands is an original interactive story (co-written by me, Charles Crittenden, and Trevon

Romanuik) in which Jaden progresses from being a student at a military training academy to gaining

authority over the lands in which he lives (the Borderlands). Although every player’s story follows

this general progression, the means by which Jaden gains his authority and the state of the story’s

world when the game ends can vary substantially from one play-through to the next. For example,

the top right image in the figure shows a scene from one of the game’s 16 different endings, where

the player is running as a candidate for leadership over the Borderlands in a democratic election.

This image also shows Jaden’s village – one of the six areas that players can explore in Lord of the

Borderlands. The others areas were: a military academy, the road between the academy and Jaden’s

village, Jaden’s family manor near the village, shipping docks near the village, a camp held by the

military, and a remote site with ancient, underground ruins. The bottom left image shows a scene

just prior to two endings that can happen in the ancient ruins: the player has discovered information

that could topple the empire that controls the Borderlands, and must choose to either release it in

support of a rebellion against the empire, or destroy it in exchange for an empire-granted position

as Lord of the Borderlands. This image also shows Jaden in conversation with an important story

character: an ex-Imperial wizard who works to expose corruption within the empire. The bottom

right image shows an example of combat that can occur outside the ancient ruins, where the player

(having previously supported the rebels) must fight through a group of of the empire’s soldiers to

gain access to the ruins.

Player Choices

In the context of this work, a player choice is any state c ∈ C ⊆ S from which some of the player’s

actions, if performed, would prevent them from ever reaching one or more of the game’s decision

points. Intuitively, player choices are similar to the so-called “branching points” of interactive sto-

ries, where any state from which the player’s actions could lead to different future trajectories is

thought of as starting new “branches” in a graph tree representation of the story. I define player

choices in terms of decision points (rather than general trajectories) to distinguish them from the

player’s opportunities to influence PaSSAGE 2’s player model; actions that influence the model

always lead to different future trajectories, but they might not always lead to different sets of deci-

sion points. For example, the beginning of Lord of the Borderlands requires the player to choose

between several actions that help PaSSAGE 2 estimate the player’s model, but every resulting tra-

jectory leads to the state “Rebel Uprising” in Figure 5.15. The state “Rebel Uprising”, on the other

hand, is a player choice: depending on whether the player decides to join or oppose the rebels, it

will only be possible for one of two decision points (shaded in the figure) to occur in the future of

that player’s experience: either Jaden will return home having gained the favour of the rebels, or he

will return home having gained the favour of the empire instead.
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Rebel Uprising

Join

Oppose

Present Time

τA τt = ?

Near Home
(Rebel Favour)

Near Home
(Empire Favour)

Enter

Enter

Figure 5.15: Part of Lord of the Borderlands represented as an MDP. The shaded areas mark decision

points that are potential outcomes of the player choice “Rebel Uprising”. The solid- and dashed-

edged boxes are defined as in Figure 5.12. The outcome that occurs will vary with the player’s

choice to “Join” or “Oppose” the rebels. The dashed arrows represent parts of the MDP that I have

omitted to simplify the current example.

5.4.2 PaSSAGE 2’s Operations

PaSSAGE 2 operates by dynamically determining which potential experiences will be available

immediately after the outcome of every player choice.

Outcomes

Given any player choice c, there are some decision points in the game whose occurrence depends

on the player’s action at that choice. For example, the decision point 〈Near Home (Rebel Favour)〉
can only occur if the player chooses to join the rebels at the choice shown in Figure 5.15 (“Rebel

Uprising”). I refer to these decision points as the potential outcomes of that choice. Formally, an

outcome o ∈ O ⊆ D is a decision point that can only be reached following exactly one player action

at some player choice c (regardless of which transition functions might be selected by the manager).

Figure 5.15 shows two outcomes of the player choice “Rebel Uprising”: the outcome 〈Near Home

(Rebel Favour), Enter〉 is a result of the Join action, and the outcome 〈Near Home (Empire Favour),

Enter〉 is a result of the Oppose action.

Encounters

Similarly to PaSSAGE, PaSSAGE 2 assumes that every decision point will always be followed by

an opportunity to select between different groups of potential experiences called encounters (recall

Figure 5.10 for an example of an encounter in Annara’s Tale). Since outcomes are decision points,

this means that PaSSAGE 2 operates as follows: after the player chooses an action to perform at a

given player choice (e.g., choosing to Join the rebels in Figure 5.15), an outcome of that choice will

eventually occur (e.g., 〈Near Home (Rebel Favour), Enter〉 in the figure) and PaSSAGE 2 will then

be invoked to decide which encounter should immediately follow that outcome.
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5.4.3 PaSSAGE 2’s Policy

PaSSAGE 2 assumes that the desirability of a video game’s content is positively correlated with how

much fun it is to play. Under this assumption, the Control Heuristic suggests a way to use the player

modelling technique from PaSSAGE to try to strengthen the player’s belief that they have agency.

Specifically, since the outcomes of player choices are represented as decision points, the player

model and potential experience annotations from PaSSAGE can be used to estimate how much fun

the player will derive from each of the encounters that can follow any given outcome. Given these

estimates, PaSSAGE 2 can then construct an estimate of the desirability of each outcome/encounter

pair, toward ensuring that every player choice results in an outcome (and subsequent encounter) that

is maximally desirable among those that can occur. According to the Control Heuristic, the player’s

belief in having agency should then be strengthened as a result.

PaSSAGE 2’s use of choices and their outcomes highlights an important distinction between it

and PaSSAGE concerning how their intended effects and the techniques that they use affect their

decision constraints. With PaSSAGE, decision constraints are unrestricted; any state/action pair

that can occur in a given game can be used as a decision point. PaSSAGE can be flexible in this

regard because it aims to maximize player fun, and its method for doing so (matching play-styles)

does not require players to recognize the connection between their actions and the experiences that

occur thereafter (i.e., no connections between choices and outcomes are required). Furthermore,

since PaSSAGE’s player model is not ordinarily visible to players8, there is no practical way for

players be sure that one of their model-updating actions was also the cause of some later part of their

experience (even though it could have been). Unlike PaSSAGE’s decision constraints, PaSSAGE

2’s decision constraints must be such that every decision point is an outcome of some prior player

choice. This restriction is necessary for two reasons: because (i) PaSSAGE 2 uses the Control

Heuristic to strengthen players’ beliefs in their own agency, and because (ii) the notion of an outcome

in the Control Heuristic requires that it be at least practically possible for players to recognize a

connection between their actions (player choices) and the experiences that occur thereafter (which

follow outcomes). Without this perceivable connection, one would have little reason to believe that

maximizing the desirability of the encounter that follows an “outcome” (i.e., a decision point with

no connected player choice) would strengthen the player’s beliefs that they have agency.

5.4.4 GEM Representation

Similarly to PaSSAGE, managing experiences with PaSSAGE 2 can be represented as changing

the transition function of an MDP where all five GEM building blocks are used. Except for the

differences that I explain in this section, identical representations can be assumed for PaSSAGE and

PaSSAGE 2.

Whenever an outcome ot = 〈st, at〉 is reached during gameplay, PaSSAGE 2 uses an objective

8A model viewer can be enabled for demonstration purposes.
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function (Block #2) to estimate the the player’s return (i.e., the strength of their belief in having

agency) with respect to each transition function τ that is available for selection (i.e., for each τ ∈
κ(ht); recall that every outcome o ∈ O is a decision point). Following any given outcome, each

available transition function causes a different encounter to occur. For example, Figure 5.16 shows

the two encounters that could occur following the outcome 〈Near Home (Rebel Favour), Enter〉 in

Lord of the Borderlands. In one encounter (“Imprisoned”, in the figure), a party is being held by

Jaden’s uncle to welcome Jaden home, but when the uncle (who supports the empire) learns that

Jaden joined in the rebellion at the academy, he throws Jaden in prison; the player then controls

Jaden during his escape. In the other encounter (“Friendly Rebels”, in the figure), no party is being

held – instead, rebels have taken over Jaden’s manor, and welcome him warmly in recognition of

his helping them at the academy; the player is then invited to help the rebels defend against an

approaching imperial army.

τA

Present Time

Near Home
(Rebel Favour) Enter

Imprisoned

Present Time

Near Home
(Rebel Favour) Enter

τB

Friendly Rebels

Figure 5.16: Part of Lord of the Borderlands represented as an MDP, showing the effects of choosing

one of two available transition functions (τA or τB) at the highlighted outcome. Left: the MDP if τA

were selected. Right: the MDP if τB were selected. Dashed-edge boxes denote encounters whose

details I have omitted to simplify the example.

To choose between transition functions, PaSSAGE 2 computes its objective function as a linear

combination of two estimates of desirability: the outcome’s local desirability and its contextual

desirability.

Local Desirability

For each available transition function τ at a given outcome o, PaSSAGE 2 estimates the outcome’s

local desirability (desL) similarly to how PaSSAGE estimates the player’s return (which represents

how much fun the player will have) following a given player history (desL : O × T × H × E →
R). Equation 5.9 shows this calculation as a modified version of PaSSAGE’s objective function

(Equation 5.8), where the first two terms of the rollout function ρ have been changed from st, at (the

current state and action) to o (any given outcome):

desL(o, τ, ht, et, ρ, π̃,f) = max
h+∈ρ(o,τ,et)

(
fm(ht) · f c(h+)

)
(5.9)
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Contextual Desirability

PaSSAGE 2 uses the contextual desirability (desC) of an outcome o to model how the player might

consider the outcomes that could have happened instead of o, if had they chosen a different action in

response to a prior player choice (e.g., if the player had chosen to help the rebels instead of opposing

them in Figure 5.15). Specifically, if the player happened to realize that an alternative to o would

have had a higher (local) desirability than o, then the contextual desirability of o would be negative

to model a sense of regret. Similarly, it would be positive if the player realized that an alternative to

o would have been substantially less desirable than o (to model a sense of relief).

To estimate the contextual desirability of an outcome o, PaSSAGE 2 requires an awareness func-

tion (ατ ). This function estimates the probability that the player will realize, given the trajectories

that they could experience following o using transition function τ , that they could have reached a

different outcome o′ if they had acted differently at a prior player choice (i.e., ατ (o
′|o) ∈ [0, 1] ⊂ R).

τA

Rebel Uprising

Join

Oppose

Present Time

τA

Near Home
(Rebel Favour)

Near Home
(Empire Favour)

Enter

Enter

Imprisoned

Duel

Figure 5.17: Part of Lord of the Borderlands represented as an MDP, showing the potential expe-

riences that could follow after the two highlighted outcomes, supposing that PaSSAGE 2 chooses

τA at each outcome. The bold path shows the current player’s history. Dashed-edge boxes denote

encounters whose details I have omitted to simplify the current example.

For example, consider the trajectories that the player could experience following player choice

“Rebel Uprising” (Figure 5.17). If the player chooses to join the rebels and PaSSAGE 2 selects

τA when the outcome oR = 〈Near Home (Rebel Favour), Enter〉 is reached, then every following

trajectory will involve Jaden being thrown into prison for having helped the rebels at the academy

(“Imprisoned” in the figure). In prison, he meets a rebel who says that he had been expecting to fight

Jaden in a duel. If the player had instead chosen to oppose the rebel uprising, and PaSSAGE 2 had

still selected τA following the outcome oE = 〈Near Home (Empire Favour), Enter〉, then every fol-

lowing trajectory would have involved Jaden actually fighting in the aforementioned duel (“Duel” in

the figure). Because the imprisoned rebel (after outcome oR) directly describes the trajectories that

could follow oE (fighting the duel), the awareness function for Lord of the Borderlands gives a high

probability that the player would be aware of oE if they experienced oR (ατA
(oE|oR) = 0.8). For no-

tational convenience, let Ao,τ ⊆ O describe the set of all outcomes o′ �= o for which ατ (o
′|o) > 0;
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Ao,τ then contains all of the alternative outcomes of o given τ . Equation 5.10 shows how PaS-

SAGE 2 uses the awareness function to estimate the contextual desirability of a given outcome o.

For clarity, I use ellipses to abbreviate the required parameters of the local desirability function

(desL).

desC(o, τ, ht, et, ρ, π̃,f) =
∑

o′∈Ao,τ

ατ (o′|o)
|Ao,τ |

(
desL(o, . . . )− desL(o′, . . . )

)
(5.10)

In terms of GEM, PaSSAGE 2’s awareness function (ατ (o′|o)) can represented by a vector of

features that contains one feature for each outcome o′ ∈ O. Each feature fαo′ in this awareness vector

(fα) is a function that accepts a trajectory h built from o = 〈s, a〉 and τ (i.e., h = (s, a, τ)) and gives

the probability of the player being aware of o′ if they experienced o, assuming that transition function

τ was chosen by the manager following both outcomes (i.e., ∀o′ ∈ O, fαo′ : H → R ∈ [0, 1]).

Objective Function & Policy

To balance between its estimates of local and contextual desirability, PaSSAGE 2’s objective func-

tion is defined as shown in Equation 5.11, where w ∈ R+ is a weight that allows the designer

to prefer either local or contextual desirability as being more important to computing the overall

desirability.9

φ(o, τ, ht, et, ρ, π̃,f) = desL(o, . . . ) + wdesC(o, . . . ) (5.11)

PaSSAGE 2’s policy is thus given by Equation 5.12, where ot is the last state/action pair in ht.

χ(ht, et, κ, φ, ρ, π̃,f) = arg max
τ∈κ(ht)

φ(ot, τ, ht, et, ρ, π̃,f) (5.12)

As I described in Section 5.4.3, PaSSAGE 2’s decision constraints ensure that every decision

point 〈s, a〉 in the given environment is an outcome of a prior player choice (i.e., O = D).

Example

Figure 5.18 demonstrates how the partial MDP from Figure 5.15 could be extended using two dif-

ferent transition functions (τA, and τB). Figure 5.19 shows screenshots of the encounters described

in Figure 5.18. If the player arrives home with the rebels’ favour, selecting τA will result in Jaden

being imprisoned by his uncle and trying to escape (“Imprisoned” in the figures); selecting τB will

result in him finding that rebels have seized his home and need his help to defend it from the empire

(“Friendly Rebels” in the figures). Alternatively, if the player arrives home with the empire’s favour

(because they opposed the rebels during the uprising), selecting τA will result in Jaden fighting a duel

against a captured rebel (“Duel” in the figures); selecting τB will result in him having to remove a

group of rebels that has seized his home (“Hostile Rebels” in the figures). Because PaSSAGE 2

9For all of my tests of PaSSAGE 2 using Lord of the Borderlands, I set w = 1 to balance evenly between local and
contextual desirability.
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τA
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Oppose

Present Time

τA

Near Home
(Rebel Favour)

Near Home
(Empire Favour)

Enter

Enter

Imprisoned

Rebel Uprising

Join

Oppose

Present Time

τA

Near Home
(Rebel Favour)

Near Home
(Empire Favour)

Enter

Enter

τB

Duel

Hostile Rebels

Friendly Rebels
340

310

140

70

Figure 5.18: Part of Lord of the Borderlands represented as an MDP, showing the effects of choosing

one of two available transition functions (τA or τB) at the highlighted outcomes. Top: The MDP

if τA were selected. Bottom: The MDP if τB were selected. Bold paths show the current player’s

history. Circled values give each outcome’s local desirability, given the indicated transition function.

Dashed-edge boxes denote encounters whose details I have omitted to simplify the current example.

computes the local desirability of each outcome in the same way that PaSSAGE computes its ob-

jective function (i.e., using a player model and a conditional fun function; recall Table 5.4), I omit

those parts of PaSSAGE 2’s operation in the current example. Instead, I begin with assumed values

for the local desirability of each outcome (one value for each available transition function – see the

circled values in Figure 5.18) and demonstrate PaSSAGE 2’s operation from there forward.

o τ Local (desL(o)) Ao,τ ατ (oE|oR) Contextual (desC(o)) Obj. Func. (φ)

oR
τA 310 {oE} 0.80 192 502
τB 340 {oE} 0.30 60 400

oE
τA 70
τB 140

Table 5.6: Intermediate and final values for calculating the desirability of outcome oR = 〈Near

Home (Rebel Favour),Enter〉, assuming that the player reached oR following a history ht such that

κ(ht) = {τA, τB}. The highest overall desirability for oR that can be obtained using any of the

available transition functions is shown in bold. I use w = 1 in Equation 5.11. The additional

parameters of desL and desC are omitted for brevity.

Referring to Figure 5.18, suppose that the player decided to join the rebels, resulting in Jaden

arriving home with the favour of the rebels (outcome oR). The third column of Table 5.6 shows how

selecting either τA or τB following this outcome would affect its local desirability (desL); 310 for
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Figure 5.19: Two encounters in Lord of the Borderlands. Top left: “Imprisoned”. Bottom left:
“Duel”. Top right: “Friendly Rebels”. Bottom right: “Hostile Rebels”.

τA, and 340 for τB. Regardless of which transition function PaSSAGE 2 selects, the only alternative

outcome to oR is oE = 〈Near Home (Empire Favour),Enter〉, as shown in the fourth column (Ao,τ ).

To compute the contextual desirability of the current outcome (desC(oR)), PaSSAGE 2 requires two

more pairs of values. First, it needs the local desirability of oE with respect to both τA (70) and

τB (140), as shown in the bottom two rows of the table and the circles in Figure 5.18. Second, it

needs the probability ατ (oE|oR) that the events following oR (given each transition function) would

make the player aware of what could happen following oE if the same transition functions were

selected (fifth column: 0.80 for τA, and 0.30 for τB). Given all of the foregoing values, PaSSAGE 2

computes the contextual desirability of o with respect to both available transition functions (sixth

column; Equation 5.10: e.g., desC(oR, τA) = 0.80
1 (310−70) = 192), and then it finally computes its

objective function using Equation 5.11 (seventh column). Following these calculations, PaSSAGE 2

would select the transition function that maximizes its objective function for oR (i.e., τA).

Comparing PaSSAGE 2 to PaSSAGE. This example highlights how PaSSAGE and PaSSAGE 2

operate differently to pursue different objectives: while PaSSAGE 2 would select τA to maximize its

objective function (toward strengthening the player’s belief that they have agency), PaSSAGE would
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instead select τB to maximize its objective function (toward maximizing the amount of fun that the

player had). PaSSAGE would choose τB because PaSSAGE 2’s computation of local desirability

(desL) is equivalent to PaSSAGE’s objective function, and 340 > 310 in column 3 of Table 5.6).

The different behaviour between PaSSAGE and PaSSAGE 2 arises from the effect of contextual

desirability (desC) on PaSSAGE 2’s objective function. Since choosing τA leads to both a fairly

low local desirability for oE (70) and a fairly high probability that the player would be aware of oE

(0.80), the contextual desirability computation for τA results in a fairly high value (192), modelling

the player’s relief at avoiding the less desirable oE (70 < 310). By comparison, the contextual

desirability computation for τB still models relief at having avoided oE (since 140 < 340), but the

resulting value is lower because the estimate of the player’s awareness of oE is fairly low (0.30).

When PaSSAGE 2 computes its objective function, τA’s higher contextual desirability (versus τB) is

enough to overcome its lower local desirability, which results in it being selected instead of τB.

Table 5.7 summarizes how PaSSAGE 2 can be represented using GEM.

PaSSAGE Component GEM Representation
Player Actions Player Actions

Probability of Player Actions Estimated Player Policy (Block #4)
The Player’s Experience Histories

Gameplay Activities Trajectories
Encounters Groups of Trajectories

Player Model Features (Block #5)
Gameplay Activity Annotations Features (Block #5)

Bounded Rollouts Rollout Function (Block #3)
Awareness Function Features (Block #5)

Encounter Selection Manager Policy, Decision Constraints (Block #1),
& Objective Function (Block #2)

Table 5.7: A summary of how each of PaSSAGE 2’s components can be represented using GEM.

Summary

In this chapter, I began by using GEM to represent two managers from traditionally disjoint sub-

fields of AI: Weyhrauch’s Moe from the sub-field of Drama Management, and Left 4 Dead’s AI

Director from the sub-field of Dynamic Difficulty Adjustment. The fact that both of these managers

can be fully represented in the GEM framework demonstrates its ability to unify existing work across

these two sub-fields. I then continued to demonstrate GEM’s versatility by using it to represent two

managers that I created to manage story-based video games: PaSSAGE and PaSSAGE 2. Both

PaSSAGE and PaSSAGE 2 can be implemented using all five GEM building blocks, with each

manager using its own objective function to pursue its unique, intended effect (increasing fun for

PaSSAGE, and strengthening beliefs in agency for PaSSAGE 2). Both managers use their decision

constraint function in the same way (i.e., to retrieve a restricted set of transition functions that can be
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selected from), but the specific constraints used by each manager vary from one environment to the

next. The rollout function and estimated player policy are shared across both managers. Rollouts

are bounded in the sense that they only extend into the future up to the next decision point (or a

game ending), and the player’s policy is estimated to be such that the player will always perform

the actions that seem to be the most fun to them at the time. The same feature vector is used

across both managers, although the specific values that are returned depend on the environment

being used and what trajectories are possible therein. Both managers use their feature vectors to

automatically estimate a model of the player’s preferences over different kinds of gameplay, toward

maximizing the similarity between this model and the kinds of gameplay that could be used to

continue the players experience. While PaSSAGE’s objective function uses this similarity directly

as an estimate of player fun, PaSSAGE 2’s objective function uses it to model gameplay desirability,

and then combines it with an estimate of the player’s awareness of alternative sections of gameplay.

It uses this combined information to model how players might feel regret or relief from having

(respectively) missed a section of desirable gameplay or avoided a section of undesirable gameplay,

and then estimates each player’s feelings of agency as a linear combination of both models.
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Chapter 6

Evaluation

In this chapter, I describe and demonstrate a general method for evaluating managers through con-

trolled experimentation in human user studies. I say that this kind of evaluation is “gameplay-based”

because it relies on having a group of players play through a given, managed game.

6.1 Gameplay-based Evaluation for Experience Managers

In this section, I discuss evaluation as the task of determining how well a given manager works –

that is, how successful it is at affecting its players in the way that the designer intended. Answering

this question involves three steps: (i) having a group of players experience trajectories in a given in-

teractive environment, (ii) measuring and interpreting how successful the manager was at achieving

its intended effect for trajectories that players played through, and (iii) analyzing the resulting data

to determine how well one or more statistics of interest will generalize to a larger group of players

(e.g., the amount of fun that players had, on average). In the subsections that follow, I discuss each

of the foregoing steps and define several related concepts.

6.1.1 Groups of Players & Scores

Henceforth, a score is a measured value of how successfully a given player was affected by a trajec-

tory that they experienced in a given game. Since gameplay is interactive, the player may have more

influence than the manager has over the occurrence of any particular trajectory. As a result, it can

be difficult to attribute any score that is measured for a trajectory to only the manager’s operations.

This problem can be alleviated by using the manager to manage the experiences of a group of play-

ers, measuring a score for each player, and then computing the average of the scores. I refer to this

average as the manager’s score. Ideally, any individual variations in player behaviour (which affects

scores by influencing which trajectory occurs) will only have small influences on a manager’s score

in comparison to the manager’s consistent behaviour across all players (assuming that its policy

remains fixed).
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Manager Scores & Sequences of Transition Functions

Every manager’s score depends on the way in which it generates a sequence of transition functions

(by selecting them at decision points during gameplay) given any stream of actions that a player per-

forms. The order of the transition functions in this sequence is determined by the order in which they

appear in the trajectory that describes the player’s experience (Definition 6.1). Selecting sequences

of transition functions is the only way for a manager to influence the scores that players give. As-

suming that selecting different sequences for any player can result in them giving different scores,

an ideal manager could maximize its score by (i) identifying the set of sequences for each player

that would cause them to give the highest score and (ii) selecting transition functions according to

any sequence in that set.

Definition 6.1 (Sequence of Transition Functions). Given a trajectory h ∈ H , let q be a sequence of

transition functions that describes, for each decision point in h, the transition function that immedi-

ately follows that point in h. The order of the sequence is given by the order in which the decision

points appear in h.

Real versus Simulated Players

Previous evaluations of experience managers have used either real players (Barber and Kudenko

2007; Thue et al. 2007a; Sharma et al. 2007; Thue 2007; Ramirez and Bulitko 2014) or simulated

players (Weyhrauch 1997; Magerko 2006; Nelson et al. 2006; Roberts et al. 2006) – that is, AI

agents that perceive and act in the interactive environment in a way that (ideally) mimics the way

that real players would behave in their place. Simulated players are more convenient to use than

real players for logistical reasons (e.g., one need not schedule hundreds of real players to attend

gameplay sessions), but the generalizability of the data that can be obtained from them relies heavily

on how accurately they represent a real group of players. Using real players can simplify this aspect

of generalization by drawing a sample of players from the experimenter’s target group of players

(i.e., the group to which the experimenter would like to generalize any results of the experiment).

However, real players can also introduce noise into the gathered data from factors that are beyond

the experimenter’s control (e.g., someone might rate a manager as being very successful because

they feel generous at the time, regardless of how the manager actually performed). Since obtaining

and validating an accurate model of player behaviour for a novel game (to create reliable simulated

players) would require gathering data from human players anyway (Yannakakis et al. 2006), the

method for gameplay-based evaluation that I consider in this chapter uses human players directly

(i.e., it does not create or use simulated players).

From the perspective of evaluating experience managers, a player p can be summarized as a

tuple of two functions: a score function (σp), which gives their score for a given trajectory h, and a

policy (πp), which, given a history h, a state s, and an action a, gives the probability of the player
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performing action a in state s following history h. Definition 6.2 defines this tuple explicitly. The

only way to compute these functions is have the player play the game and measure their score.

Definition 6.2 (Player). A player is a tuple p = 〈σp, πp〉, where σp(h) gives the player’s score

for any given trajectory h (i.e., σp : H → R), and πp(h, s, a) gives the probability of the player

performing action a in state s following history h (i.e., πp : H,S,A→ [0, 1] ∈ R).

6.1.2 Measuring Success & Complete Trajectories

The score that arises from a given player experiencing a given trajectory can be measured in sev-

eral ways, including (i) gathering player self-reports (e.g., responses to survey questionnaires (Ver-

meulen et al. 2010)), (ii) directly observing the player (e.g., via biometric sensors (McQuiggan et

al. 2006)), or (iii) indirectly observing the player through their in-game actions (e.g., making their

avatar cheer after an in-game fight). Yannakakis and Togelius discussed the benefits and limitations

of these methods in a survey paper (2011). In brief, they noted that player self-reports can provide

rich information, but can suffer from experimental noise and can intrude on the player’s experience

in a way that disrupts the effect being measured (e.g., by pausing the game to administer a ques-

tionnaire). Direct observations can be less prone to player-generated noise, but may suffer from

sensor-generated noise (e.g., inaccurate readings of skin conductivity) as well as habitation – the ef-

fect where a player’s physiological response to the same stimuli diminishes with repeated exposure.

Some sensors can also intrude on the player’s experience by being inconvenient or unwieldy to use

(e.g., electroencephalographic sensors). Indirectly observing the player (i.e., observing in-game ac-

tions) is the least intrusive method of measuring a trajectory’s score, but doing so must assume that

both (i) there exists a relationship between the player’s in-game actions and how they were affected

by the trajectory, and (ii) the experimenter can either access it directly or estimate it in some way.

Complete Trajectories

While gameplay-based evaluation does not depend on the method of measurement that is used,

some methods require the experimenter to assume that every player’s experience in that game will

eventually end (e.g., post-game questionnaires). Formally, I define a game ending as a state from

which any player action will only ever result in the same state occurring again (Definition 6.3).

Whenever a trajectory h begins at time step t = 0 and contains exactly one ending of the game, I say

that that trajectory is complete (Definition 6.4). Let Hc ⊆ H be the set of all complete trajectories

that can occur in a given interactive environment e.

Definition 6.3 (Game Ending). Given an interactive environment e = 〈S,A, (τ0, . . . )〉, a state s is

said to be ending of the game iff the game can transition to no other state after s is reached (i.e.,

∀τ ∈ κ(ht), ∀a ∈ A,∀s′ ∈ S\{s} [ τ(s, a, s) = 1 and τ(s, a, s′) = 0 ]).
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Definition 6.4 (Complete Trajectory). Given an interactive environment e = 〈S,A, (τ0, . . . )〉, a

trajectory h ∈ H through e is said to be complete iff h begins at time step t = 0 and contains exactly

one game ending.

6.1.3 Interpreting Success

To sidestep the difficulty of interpreting a manager’s score in absolute terms (recall Section 1.3.2),

one can instead interpret it relative to the score of a different manager, toward ideally claiming

positive progress in the development of new managers. Throughout this chapter, I refer to the former

manager as a target manager and the latter as a baseline manager. For example, one might wish to

determine whether a modified version of Left 4 Dead’s AI Director (the target) was better than the

original version (the baseline) at manipulating the emotional intensity of its players.

Random Baseline Managers

I focus on the use of random baseline managers in this chapter. The general argument for doing

so is as follows: if, given the same task, an AI system was shown to reliably outperform a system

that operated randomly, then one could claim that the AI system demonstrates intelligence more

convincingly than the random system does. In the context of experience management and gameplay-

based evaluation, an experimenter can use a random baseline manager to test different hypotheses

about a target manager’s behaviour. Specifically, by selectively randomizing any of the target’s

building blocks (i.e., χ, κ, φ, ρ, π̃, or f ), a random baseline manager can be created that differs from

the target manager in specific, experimenter-intended ways. For example, to test the hypothesis

that a target manager’s objective function (φ) contributes positively to its score, a random baseline

manager could be created in two steps: (i) copy the target’s policy and all building blocks except its

objective function, and (ii) define a new objective function (for the random baseline to use) that gives

pseudo-random values. Creating random baseline managers in this way helps to ensure the condition

that the two competing systems being evaluated (AI-based vs. random, as above) are evaluated with

respect to the same task. To determine whether or not one of them can reliably outperform the other,

scores must be collected from players and compared via statistical analyses (Section 6.1.5).

6.1.4 Attributing Success: Player-Specific or Player-Independent Managers

Beyond the immediate effects of player actions, another concern with attributing success can arise

when a particular kind of manager is evaluated in comparison to a random baseline manager; namely,

a player-specific manager. Whenever the player’s actions in a given game can influence which

transition functions a given manager selects during gameplay, I say that the manager is player-

specific. For example, all of the managers that I presented in Chapter 5 are player-specific, because

the values given by either their decision constraint function or their objective function depend on the

player’s actions. If a manager is not player-specific, I say that it is player-independent. A player-
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independent manager can be thought of generally as a manager that samples randomly from a given

probability distribution over transition functions at each decision point that occurs in the game. For

example, the dynamic appearance of useful items in a First Person Shooter (e.g., medical kits or

ammunition) could be driven by a player-independent manager that causes ammunition to appear

80% of the time and medical kits to appear 20% of the time (regardless of any player actions). If

a player-independent manager’s decision constraints are such that only one transition function is

available to select following every state/action pair, I call that manager a fixed manager. Otherwise,

I call it a random manager.

Every player-independent manager is either a fixed manager or a random manager, but not every

random manager is player-independent. For example, the random baseline manager that I described

in Section 6.1.3 might not be player-independent, because even though its objective function gives

pseudo-random values, its decision constraint function (κ) might still restrict which transition func-

tions can be selected in a way that depends on the player’s actions.

For any manager to be player-independent, it must use a decision constraint function that is

balanced. Intuitively, a decision constraint function is balanced if, regardless of the player’s actions,

(i) the same number of decision points occur for every player, (ii.a) all of the decision points that

can be reached first during gameplay (i.e., before any other decision points) yield the same set of

transition functions, and (ii.b) the same is true for every set of decision points that can be reached

second, third, etc. thereafter. Definition 6.5 formalizes this concept.

Definition 6.5 (Balanced Decision Constraint Function). A decision constraint function (κ) is said

to be balanced iff:

1. every complete trajectory h ∈ Hc contains the same number of decision points (i.e., ∀h, h′ ∈
Hc : δ(h) = δ(h′)), and

2. given any two complete trajectories h, h′ ∈ Hc, the decision constraints at every ith decision

point in both h and h′ provide the same set of transition functions for the manager to choose

from (i.e., ∀h, h′ ∈ Hc : ∀i ∈ [1, δ(h)] : κ(hi) = κ(h′i)).

where δ(h) gives the number of decision points in h (i.e., δ : H → Z+) and hi denotes the prefix of

h that ends at h’s ith decision point.

Two Sources of Success for Player-Specific Managers

Given two player-independent managers, the only way that they could obtain different scores is by

giving sequences of transition functions to players in different proportions. For example, if one of

the managers gave sequences according to {qA : 60%, qB : 40%} and the other gave them according

to {qA : 10%, qB : 90%}, then which manager scored higher would depend on whether players

who were given qA generally gave higher or lower scores than players who were given qB. Since

every manager gives sequences to players in some proportions, some part of the success (or failure)
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of every player-specific manager can be attributed to those proportions. A player-specific manager

might also score differently than another manger for a second reason: because it selects transition

functions similarly to how an ideal manager would (recall Section 6.1.1), toward ensuring that each

player receives a sequence of transition functions that yields the highest available score. Every

player-specific manager thus has two sources of success: one from being player-specific, and one

from giving generally high-scoring sequences to players more often than sequences that generally

score poorly.

Proportional Random Variants

A particular kind of player-independent baseline manager can help the experimenter distinguish be-

tween a player-specific manager’s two sources of success. Namely, by observing the proportions in

which the player-specific manager gives sequences of transition functions to its players, a player-

independent manager can be defined in such a way that it gives sequences in the proportions that

were observed. I refer to such a manager as the proportional random variant of a given player-

specific manager. For example, given a player-specific manager that gives one of two available

sequences 60% of the time (e.g., {qA : 60%, qB : 40%}), a proportional random variant would ran-

domly give sequences to players such that 60% of players received qA and 40% of players received

qB. In general, when sequences are given to players in the same proportions across a target man-

ager and a baseline manager, the effect of these proportions on the scores of both managers should

be equal (within experimental noise). As a result, the only aspect of the two managers that could

differentiate between their scores is the success that arises from their player-specific behaviour (if

any). More concretely, by comparing a player-specific manager to its proportional random variant as

a baseline, the experimenter can isolate the former manager’s player-specific behaviour as the only

only way that it could have influenced the difference between its score and that of the baseline. By

doing so, the experimenter can answer the question: “Is the target manager’s success affected by its

player-specific behaviour?” The foregoing ideas about proportional random variants and their use

in evaluating managers are novel contributions of this work.

Limitations. To preserve the utility of comparing a player-specific manager to its proportional ran-

dom variant, the effect of giving any particular sequence of transition functions to a player must

be the same across both managers. That is, the player’s trajectory cannot depend on which man-

ager gave them any particular sequence of transition functions. To ensure that this restriction is

maintained, the player must not be able to identify which manager was used to manage their expe-

rience, and the proportional random variant’s decision constraint function must itself satisfy certain

restrictions. Specifically:

1. it must be balanced (recall Definition 6.5), and

2. it must define a set of decision points that is identical to the set of decision points that is
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defined by the player-specific manager.

When combined, the foregoing restrictions place additional requirements on part of the player-

specific manager. Since the same number of decision points must occur along every possible com-

plete trajectory (because the proportional random variant’s κ must be balanced; restriction 1) and

both managers must share the same set of decision points (restriction 2), the player-specific manager

must also ensure that every possible trajectory will include the same number of decision points. If

this restriction were not enforced, it would be possible for the player-specific trajectory to give a

sequence of transition functions to a player that could never be given by the proportional random

manager (e.g., one that contained one too many transition functions), thereby preventing the man-

agers from giving sequences to players in equal proportions. Thus, a proportional random variant

can only be created for managers whose decision constraints ensure that the same number of decision

points will occur in every complete trajectory.

6.1.5 Analysis & Generalization

Given a target manager, a baseline manager, a game to be managed, and a group of potential players,

one can use the two managers to manage player experiences in the game, measure the scores that

those players give as a result, and then compute each manager’s score. To determine the extent

to which any observed differences between the managers’ scores can be generalized to a larger

population of players, the gathered data can be used to estimate the expected value of each manager’s

score and obtain a degree of confidence that any difference between the two values exceeds a given

amount (e.g., 0, to show a difference between the two expected values).

Expected Score

The expected score of a manager m is the expected value of the score σ that would arise from it

managing the experience of any player in a given population P in interactive experience e (Equa-

tion 6.1):

EVP (σ|m, e) =
∑
h∈Hc

∑
p∈P

Pr(h, p|m, e)σp(h) (6.1)

Using Bayes’ Rule, Equation 6.1 becomes:

EVP (σ|m, e) =
∑
h∈Hc

∑
p∈P

Pr(h|p,m, e) Pr(p|m, e)σp(h) (6.2)

Computing EVP (σ|m, e) using Equation 6.2 is not practically feasible, since one would need

to measure σp(h) for each complete trajectory in Hc, for every player in P . Even if the players in

P varied their actions over multiple plays widely enough to experience every complete trajectory

in Hc, the scores that they would give for all but their very first trajectory would be biased by their

memories of the previous trajectories that they had experienced. Instead of measuring the score

of every possible trajectory exhaustively, a sampling-based approximation to EVP (σ|m, e) can be
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obtained instead. Specifically, by measuring the manager’s score for only the first complete tra-

jectory (h1p ∈ Hc) through et that is experienced by each player p ∈ P , each player can be used

to draw a sample from the distribution of scores that would be obtained from an exhaustive mea-

surement process. In terms of Equation 6.2, this sampling-based approximation can be represented

mathematically by setting the first probability term (Pr(h|p,m, e)) to one when h = h1p, and zero

otherwise. Equation 6.3 shows the result of this operation, where ẼVP (i.e., EVP with a ˜ symbol

above) represents an approximate expected score.

ẼVP (σ|m, e) =
∑
p∈P

Pr(p|m, e)σp(h1p) (6.3)

Assuming that every player in P is equally likely to play through an experience in e managed

by m, Pr(p|m, e) = Pr(p) = 1/|P |. With respect to players’ first complete trajectories through a

given environment e, a manager’s expected score can thus be approximated by the arithmetic mean

of the scores given by each player following their first complete trajectory h1p through e:

ẼVP (σ|m, e) =
∑
p∈P

σp(h
1
p)

|P | . (6.4)

Hypothesis Testing via Linear Regression

To obtain a confidence value for an observed difference between the approximate expected scores

of two managers, the scores that players gave can be analyzed using linear regression. Although

a detailed discussion of using linear regression for hypothesis testing is beyond the scope of this

dissertation, the general idea is to measure how much one or more independent variables (e.g.,

X1,X2, . . . ) influence the value of a particular dependent variable of interest (e.g., Y), under the

assumption that the dependent variable is a linear function of the independent variables1. To test the

hypothesis that a target manager’s score differs from that of a baseline manager one would measure

how much using one or the other (henceforth, the “manager variable”, M) influences the score that

players provide (S). To estimate the amount of influence that a given independent variable (e.g.,

M) has over the dependent variable (S), each variable in the analysis is mapped to one dimension

of a multidimensional space, and a best-fit line through the data points is projected into the two-

dimensional space given by S and M; the slope of this projection then describes the difference

between the variables (e.g., between the average values of each manager’s score). Finding a positive

slope would indicate that the target manager’s score was higher (on average) than that of the baseline

manager, at least for the players in the group that participated in the experiment.

In addition to estimating a slope BX for each independent variable X, linear regression can

also provide a real number in [0, 1] (called a p-value) for each X. In this context, a p-value is the

probability of drawing a particular false conclusion: that the expected value of BX is at least as

1Additional assumptions are also required, descriptions of which are readily available both on the Internet and in statistics
textbooks (e.g., see (Cohen et al. 2002)). I describe how I checked these assumptions in Section 6.2.5.
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extreme as the slope that was estimated from the experiment’s data, when in fact X has no linear

relationship with the dependent variable Y (i.e., BX = 0). To use linear regression to test the

hypothesis that a particular X does have an effect on Y (e.g., that the expected value of the target

manager’s score will be higher than that of the baseline), one examines its associated slope and

p-value. The lower the p-value, the more confidence one can have in the claim that there is a

linear relationship between X and Y, and thus that the scores of the two managers differ not only

in the context of the experiment that was performed, but in more general contexts as well (e.g., all

undergraduate students at a certain university). Seeing both a positive slope and a low p-value for

the manager variable would offer support for the claim that the target manager yields higher scores;

the lower the p-value, the stronger the support.

6.2 Case Study: Evaluating PaSSAGE & PaSSAGE 2

In the remainder of this chapter, I demonstrate the method of gameplay-based evaluation that I

proposed in Section 6.1 by describing how I used it to evaluate both PaSSAGE (in Annara’s Tale) and

PaSSAGE 2 (in Lord of the Borderlands). Henceforth, whenever my discussion applies equally to

both PaSSAGE and PaSSAGE 2, I will refer to them generally as “PaSSAGE”, and make distinctions

between them only when necessary.

At a high level, I evaluated PaSSAGE using the following procedure. First, I created an inter-

active environment and implemented the target manager using commercial video game technology.

Second, I implemented a random baseline manager as a point of comparison. Third, I obtained

and adapted survey instruments (i.e., questionnaires) that both collect demographic data (e.g., age,

or gender) and measure the manager’s success at achieving its intended effect (e.g., “Fun” on a

scale of 1 to 5). Fourth, I recruited over one hundred participants to play through the target’s testbed

game, some with the target manager managing their experience, and some with the baseline manager

managing their experience instead. Finally, I analyzed the resulting data using common statistical

techniques, toward determining whether or not the target manager was more successful at achieving

its intended effect than the baseline.

6.2.1 Research Questions, Hypotheses, & Experimental Designs

My evaluations of PaSSAGE explored two research questions: one that concerns the value of learn-

ing a model of each player, and one that concerns PaSSAGE’s performance overall. After present-

ing each question, I state my hypothesis about its answer and then describe the experiment that I

designed to test that hypothesis.

Research Question #1

Does assigning sequences of transition functions in a player-specific way contribute

positively, negatively, or not at all to PaSSAGE’s expected score?
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This question seeks to determine whether PaSSAGE being player-specific has a positive, neutral,

or negative effect on its ability to assign high-scoring transition function sequences to its players. I

hypothesized that PaSSAGE’s player-specific operations contribute positively to its expected score

(Hypothesis 1).

Experimental Design. Because Hypothesis 1 involves the player-specific aspects of PaSSAGE, it can

be tested by comparing PaSSAGE to its proportional random variant. Before creating this baseline

manager, however, I ensured that PaSSAGE’s decision constraints caused every player trajectory

to include the same number of decision points (and thereby met the restriction that I noted in Sec-

tion 6.1.4).

Hypothesis 1 can be expressed as given in Equation 6.5, where ψ denotes PaSSAGE and βψ

is its proportional random variant, and where the approximate expected scores being compared are

defined as in Inequality 6.4:

EVP (σ|ψ, e) > EVP (σ|βψ, e). (6.5)

Let Q be the set of all sequences of transition functions that could be selected by a given target

manager (in my case, PaSSAGE) in a given interactive environment. To create βψ , I estimated

the probabilities with which PaSSAGE assigns sequences of transition functions to players (i.e.,

Pr(q|ψ),∀q ∈ Q)) by randomly sampling a group of players from the population (Pψ ⊂ P ) and

having PaSSAGE manage each player’s experience. By counting the number of times that PaSSAGE

assigned each sequence q to a player and dividing by the total number of players (|Pψ|), I obtained

an estimate of Pr(q|ψ) for every q ∈ Q. I then created βψ so that it would assign transition function

sequences randomly according to the estimated distribution.

Experiment Overview. To estimate the expected values of ψ and βψ’s scores, I drew two sample

groups of players from the population (Pψ and Pβψ ) and had them play through a given interactive

environment e. In all of my experiments, my population was a group of first year undergraduate

Psychology majors at the University of Alberta who were required to participate in user studies for

course credit (see Section 6.2.4 for more detail). As I described in the previous paragraph, players in

Pψ had their experience in emanaged by PaSSAGE. Meanwhile, players in Pβψ had their experience

managed by βψ . After playing, each player filled out a survey questionnaire, which I describe along

with other details of my experimental procedure in Section 6.2.3.

To help avoid any bias that could have been caused by having all of the players in Pψ com-

plete their participation before any of the players in Pβψ (e.g., due to the first sessions occurring

during the university’s mid-term exam period), I created software to facilitate interleaving the par-

ticipation of the two groups while still ensuring that Pr(q|ψ) and Pr(q|βψ) would remain equal

for every sequence q (with slight variations due to occasional participant absences and technical

faults). Specifically, for each player that was randomly selected to participate in Pψ , my software

recorded the sequence of transition functions that PaSSAGE assigned to them, and then assigned
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that sequence to the next player that was randomly selected to participate in Pβψ . As a result of this

(automated) procedure, the distributions over the sequences that were assigned by PaSSAGE and by

βψ remained approximately equal throughout each experiment.

Research Question #2

For a given population of players, is PaSSAGE’s expected score higher, lower, or no

different than the expected score of a uniform random manager?

This is a question that a practitioner (e.g., a video game developer) might ask. Many com-

mercial video games feature a large amount of content that players effectively discover at random

while they explore the world (e.g., Skyrim (Bethesda Game Studios 2011) or Grand Theft Auto

V (Rockstar North 2013)). Would using a manager to guide each player’s experience result in them

having more fun? I hypothesized that in the context of a story-based video game, PaSSAGE’s

expected score would be higher than that of a uniform random manager (Hypothesis 2). Mathemat-

ically, this hypothesis is given by Inequality 6.6, where β denotes a uniform random manager (see

Definition 6.6):

EVP (σ|ψ) > EVP (σ|β). (6.6)

Definition 6.6. Let a uniform random manager β be an experience manager that gives sequences of

transition functions q ∈ Q randomly, as drawn from a uniform distribution over Q.

Experimental Design. Testing Hypothesis 2 amounts to comparing the expected scores of ψ and β.

Although these values could be compared by sampling players from the population as I explained

for Hypothesis 1, the similarity between PaSSAGE’s proportional random variant (βψ) and the uni-

form random manager (β) allows for a more efficient approach. Specifically, given a set of data that

was collected from an experiment that tested Hypothesis 1 (i.e., scores for players in both Pψ and

Pβψ ), the data that is required to test Hypothesis 2 can be automatically estimated using bootstrap-

ping (Efron 1979), thereby avoiding the significant expense of collecting new data using a traditional

experimental design. I explain my use of bootstrapping in the following section.

Bootstrapping Procedure. Bootstrapping is a data resampling technique that facilitates estimating

population statistics (e.g., the expected population mean) from a set of data sampled from the pop-

ulation (Efron 1979). By repeatedly generating new samples (i.e., drawing data with replacement)

from a given sample and calculating the desired statistic for each one, a confidence interval can be

obtained that includes the true value of the statistic in the population, with a given probability. Im-

portantly for this work, the resampling process can be weighted, toward ensuring that some cases in

the original sample will be selected more frequently than others during each resampling step.

Managers βψ and β both assign transition function sequences to players in a random fashion, and

they are both player-independent managers. The only difference between them is the proportions
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in which they assign each of the available sequences of transition functions to a group of players:

βψ’s proportions come from PaSSAGE, while β’s proportions are all equal to one another (1/|Q|).
Therefore, weighted bootstrapping can be used to estimate the expected score of a uniform random

manager, given a collection of scores that were measured for the proportional random variant (βm)

of any manager m. Although I used MATLAB’s “bootci” function (The MathWorks Inc. 2013)

to estimate both β’s expected score and a confidence interval around it, I describe how weighted

bootstrapping can be performed in Figure 6.1.

Input: [σ, q] = [〈σi, qi〉 : 1 ≤ i ≤ |Pβm |] : a matrix of the score given by each player
pi ∈ Pβm (column 1) and the sequence of
transition functions that was assigned to
them by βm (column 2)

n : the number of players in the sample (i.e., |Pβm |)
Q : the set of all possible transition function sequences
∀q ∈ Q,Pr(q|βm) : the probability of each sequence being given by βm
b : the number of bootstrap replicates to generate

Output: ẼVP (σ|β, e) : the estimated expected score of a uniform random manager, β

1 w = 〈
(
|Q|Pr(qi|βm)

)−1
: 1 ≤ i ≤ n〉

2 σ̄ = 〈〉
3 for i ∈ [1, b]
4 σ′ = sample(σ, n,w)
5 σ̄i = 1

n

∑n
j=1 σ

′
j

6 end for
7 ẼVP (σ|β, e) = (1/b)

∑b
i=1 σ̄i

Figure 6.1: Pseudocode for using weighted bootstrapping to estimate the expected score of a uniform
random manager β from data collected from the proportional random variant βm of some manager
m, where bold variables represent vectors, σi represents the score that was measured for player pi,
and qi represents the sequence of transition functions that βm assigned to pi.

In the pseudocode, I use [σ, q] = [〈σi, qi〉 : 1 ≤ i ≤ |Pψ|] to represent the matrix of data that

could be collected for βm from a group of players Pβm ⊆ P . On line 1, a weight vector (w) is

defined that will be used when generating new bootstrap samples; this vector describes a probability

distribution over the rows in the data matrix. This probability distribution defines, for each data

point, the probability of that data point being included in the sample that is generated on line 4.

Intuitively, the more frequently any sequence q appears in the data matrix, the lower the weight of

every data point that contains that sequence. Assigning weights according to line 1 ensures that the

probability of including a data point with sequence q in the generated sample will be equal over all

q ∈ Q. The probability of each sequence being given by the proportional random manager, βm,

can be estimated as I described in my experiment for answering Research Question #1. On line

2, a vector of average scores (σ̄) is defined to store the value of each bootstrap replicate – that

is, the value of the statistic being estimated (in this case, the expected score) as calculated from

the bootstrapped sample. Lines 3 to 6 perform the bootstrapping procedure b times. Each time,
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line 4 draws a random sample of size n from the vector of scores that were measured from βm

(i.e., σ), according to the probability distribution defined by the weight vector (w). The result is a

bootstrapped sample of n scores (σ′) that is then used in line 5 to calculate the bootstrap replicate

for this iteration (σ̄i). On line 7, the expected score of the uniform random manager is then estimated

as the mean of all b bootstrap replicates.

Using bootstrapping with weighted resampling according to the weights in w allowed me to

estimate the data needed to test Hypothesis 2 from the data that I collected to test Hypothesis 1.

6.2.2 Testbed Implementation

Toward answering the questions that I posed in Section 6.2.1 through a set of controlled experiments,

I implemented PaSSAGE and PaSSAGE 2 each in the context of a short, story-based video game

(Annara’s Tale for PaSSAGE, and Lord of the Borderlands for PaSSAGE 2)2. I created Annara’s

Tale using the Aurora Neverwinter Toolset (BioWare Corp. 2002) during my prior work (Thue

2007), and Lord of the Borderlands using the Dragon Age: Origins Toolset (BioWare Corp. 2011);

BioWare Corp. created both tools as part of the development of commercial video games. I de-

scribed Annara’s Tale and Lord of the Borderlands in detail in Chapter 5, but as a brief review,

both of them allowed the player to: (i) control a character in a virtual, 3-dimensional world, (ii)

converse with computer-controlled, non-player characters (by choosing from lists of pre-authored

responses), and (iii) interact with objects in the virtual environment (e.g., searching containers or

repairing broken items). Every possible trajectory in Annara’s Tale contains three opportunities for

a manager to make decisions (i.e., three decision points), while every possible trajectory in Lord of

the Borderlands contains two. In both games, every decision point offers the the manager two tran-

sition functions to choose from, meaning that 23 = 8 transition function sequences can be assigned

to players by managers of Annara’s Tale, while 22 = 4 sequences can be assigned by managers of

Lord of the Borderlands. Both games take between 30 and 45 minutes to play.

6.2.3 Measuring Scores: Survey Instruments

Conducting the experiments that I described in Section 6.2.1 requires measuring the score that a

manager achieves as a result of managing a given player’s experience. To do so, I asked each

player to complete a Likert-like survey (Likert 1932) after their experience was complete, on which

they were asked to state their agreement with several statements on a discrete scale ranging from

“Strongly Disagree” to “Strongly Agree”. I used two such surveys during the course of this work:

one that I used during my prior research (Thue 2007; Thue et al. 2007a; 2007b), and one that I

adapted from more recent work by Vermeulen et al. (Vermeulen et al. 2010; Thue et al. 2011). Both

surveys provided real-valued measures of a manager’s score with respect to PaSSAGE’s particular

intended effects (i.e., how much fun the player had for PaSSAGE, and how strongly they believed

2Annara’s Tale is an extension of my prior work (Thue et al. 2007a; Thue 2007), while Lord of the Borderlands is new.
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that they had agency for PaSSAGE 2; recall Sections 5.3 and 5.4). Each survey also provided some

demographic information about each player (e.g., age, gender, and familiarity with playing video

games). I present these surveys in more detail in Appendix A.

6.2.4 Experimental Procedure

I conducted each of my experiments as follows. To begin, I recruited a group of participants from

the Research Participation Pool that is administered by the Department of Psychology at the Univer-

sity of Alberta; these participants consisted of undergraduate university students who were enrolled

in an introductory-level psychology course at the time, and they received partial course credit in

exchange for their participation. I introduced all of the participants to the study both verbally (from

a rehearsed script) and textually (from a prepared handout). Because having an AI experience man-

ager guiding a game could be perceived to be novel (and thus bias the scores that players reported), I

phrased the introductory material so that experience management was never mentioned; participants

were instead given the impression that the study was simply investigating how different types of

gameplay would affect their feelings of fun and agency in the context of a story-based video game.

After giving their consent to participate in the experiment, every participant played through a brief

tutorial that I created to help players become familiar with the controls for the game3. All of the

participants were encouraged to ask for help if they encountered any problems. After successfully

completing the tutorial, every participant played through a game (either Annara’s Tale, or Lord of

the Borderlands, depending on the experiment) with either PaSSAGE (ψ) or the proportional ran-

dom variant (βψ) managing their experience. The manager that was used for each participant was

determined randomly, thereby creating the player groups Pψ and Pβψ that I needed to test my hy-

potheses (recall Section 6.2.1). After they finished playing, each participant completed a survey

(Section 6.2.3) and received a debriefing that explained the true nature of the study (i.e., evaluating

an AI experience manager) and why deceiving them was necessary4. The documents that I created

for this study (including the introduction and consent forms, the survey forms, and the debriefings)

can be found in Appendix A.

6.2.5 Data Analysis Techniques

The result of each experiment was a set of data that contained information about each player and the

experience that they had in the game. For each player, this data contained:

• survey information consisting of:

– the manager’s score for that player (as reported by the player),

3Every participant had the option to complete a written assignment instead of playing the game, but none chose to do so.
4A small number of players were unable to complete the game during the hour that was allotted. These players completed

the survey and were debriefed like any other player (to meet the guidelines of the Research Participation Pool), but I discarded
their survey data to avoid any bias caused by having an incomplete experience.
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– their age,

– their gender,

– their general familiarity with playing video games (either “none at all”, “less than one

hour per week”, “between 1 and 3 hours per week”, “between 3 and 7 hours per week”,

and “more than 7 hours per week”),

• gameplay information consisting of:

– the sequence of transition functions that the manager assigned them to, and

– the values in PaSSAGE’s player model at every time that it changed during the game.

Linear Regression

To test Hypothesis 1, I analyzed the data that I collected from each experiment using linear regres-

sion, as I described in Section 6.1.5.

Controlling for Gaming Familiarity. During my prior work on PaSSAGE, I found that players’ gen-

eral familiarity with playing video games can affect how much fun and agency they report having

felt after playing through a given game (Thue et al. 2007b). To control for this effect when testing

my hypotheses, I included an additional independent variable in my linear regression analysis, which

I created from the self-reported familiarity with video games (henceforth “gaming familiarity”, G)

that I collected on each player’s survey. More specifically, I reduced the five categories that were

available to select from on the survey down to only two: “unfamiliar” players were all those who

reported that they played no video games at all in an average week, and “familiar” players were all

those who reported that they spent at least some time playing video games in an average week. Pool-

ing the data in this way was necessary because the general lack of players with gaming familiarity

in the Research Participation Pool made it impractical to perform a more detailed analysis.

A Linear Model. The linear regression model that I used to test my hypotheses is shown in Equa-

tion 6.7, where I represents the intercept of the line, and the third variable (V) models any interaction

that might occur between manager and gaming familiarity (e.g., in my prior work, I found that PaS-

SAGE was more effective for players with low gaming familiarity than it was for highly familiar

players (Thue et al. 2007b)). Recall that the independent variable S represents the score that each

player provided after playing.

S = I + BMM + BGG + BVV (6.7)

Since the data that I collected concerning which manager was used and how familiar each player

was with playing video games was categorical in nature, I translated each category into a number for

use in Equation 6.7 as given in Table 6.1. The variable V is computed as the product of the numbers

that represent the values of M and G. The specific values in the table ensure that the coefficients that
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are calculated for Equation 6.7 will represent the quantities that I wish to test (i.e., so that BM will

represent the difference between the average values of PaSSAGE’s and βψ’s scores) and also help

to minimize co-linearity between V and the other independent variables (see Cohen’s et al. (2002)

work on “coding” for details).

Manager Gaming Familiarity
Category M Category G
PaSSAGE 0.5 Familiar 0.5

Proportional Random −0.5 Unfamiliar −0.5

Table 6.1: Mapping from category to numerical value for two independent variables.

Bootstrapping

To test Hypothesis 2, I used bootstrapping to generate 8000 new samples5 from the data that I origi-

nally collected for the proportional random variant in each of my experiments that tested Hypothesis

1. As I described in Section 6.2.1, I weighted the bootstrap selection probabilities of the original

data points to ensure that every sequence of transition functions would have an equal probability of

being represented by a data point in the new sample. Thus, each new sample simulated collecting

data from a uniform random manager, as needed to test Hypothesis 2. For each sample, I used linear

regression to compare its data to the data that I originally collected for PaSSAGE, thereby generat-

ing: (i) 8000 bootstrap replicates of the slope for the manager variable in Equation 6.7 (BM), and (ii)

a Studentized, x% confidence interval (Efron and Tibshirani 1993) around that slope as well. The

confidence interval and the mean of each set of the bootstrap replicates allow Hypothesis 2 to be

tested. The wider the confidence interval, the higher the confidence value, x, indicating that one can

be more confident in claiming that the (true) value of BM is in that interval. Testing Hypothesis 2

amounts to finding the widest confidence interval around BM that does not include 0. The confidence

value for this interval will indicate the degree of confidence that one can have in asserting that BM
is non-zero. If the estimate of BM is positive, then Hypothesis 2 will be supported; the wider the

interval, the stronger the support.

Data Cleaning

When conducting experiments that involve both human participants and complex computer software

(such as commercial video game engines), a variety of problems can occur that can invalidate the

data that was collected from one or more participants. For example, some players got their avatar

permanently stuck on the roof of one of the houses in Annara’s Tale, while others turned off their

computer during the experiment. In other cases, players discovered that they could effectively skip

past most of the in-game dialogue by rapidly clicking on their mouse. Doing so allowed them to

5I chose the number 8000 to balance computation time against the accuracy of the results; the results varied by approxi-
mately 0.005% in successive runs.
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finish their participation more quickly, but it left them with very little knowledge about what had

happened in the game, and that in turn may have had a detrimental effect on their enjoyment or

how strongly they felt their agency. To identify such problematic data points, I noted any problems

that occurred while the experiment was underway (through direct observation and automated log

analysis), and then examined each player’s gameplay logs after they had finished playing to verify

that a problem had indeed occurred. I “cleaned” the data by omitting all verified, problematic data

points from my analyses.

Outlier Detection

For the purposes of this work, an outlier is one of a set of data points (each point representing the

data that was collected from one participant) that is abnormal with respect to the true relationship (if

any) that exists between the variables in a linear regression. Identifying outliers is an important part

of preparing to analyze data from an experiment that examines experience managers, because the

personal circumstances of each participant can influence the scores that they report, and analyzing

data that contains unusually extreme scores (in comparison to other players) can lead to erroneous

inferences about the managers being studied. Given the occasionally low motivation and attention

levels among participants from the Research Participation Pool (as demonstrated by, for example,

their checking cell phones while playing, or rushing to finish the game as quickly as possible), I

decided to remove any detected outliers from the data before performing the regression analysis.

I used Tukey’s outlier labelling rule to identify cases that were extreme with respect to the inde-

pendent variable in my experiment (score) (Tukey 1977). Compared to other methods of identifying

extreme points in data, Tukey’s method has the advantage of having a relatively high breakdown

point (Huber 2004) of approximately 25%, that is, at least 25% of the data set must be outliers be-

fore the method will risk identifying arbitrary cases as outliers or non-outliers. In contrast, methods

that are based on the mean and standard deviation have a breakdown point of 0% (i.e., a single

outlier can cause arbitrary identifications).

For a given set of data, I applied Tukey’s rule four times – once for each pairing of the pos-

sible values of the variables for manager and gaming familiarity (i.e., 〈PaSSAGE, unfamiliar〉,
〈PaSSAGE, familiar〉, 〈βψ , unfamiliar〉, and 〈βψ , familiar〉). Each of these pairings represents a

particular subset of the participants in the experiment (e.g., everyone unfamiliar with gaming who

played a game managed by PaSSAGE), and applying Tukey’s rule to them independently assumes

that each of these subsets is a random sample of an equivalent subset of the population. I removed

any identified outliers from the data set before proceeding with my analyses; in the experimental re-

sults that follow (Section 6.3), I describe any data points that were removed from each experiment.
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Assumption Checking

After removing any detected outliers from the data, I checked for violations of the assumptions

of linear regression using the methods recommended by Cohen et al. (2002). Briefly, these meth-

ods include: (i) visually examining scatter plots of each independent variable against the regression

residuals6 to verify that the relationship between the dependent and independent variables is approx-

imately linear, (ii) using Levene’s test to verify that the variance of the residuals remains constant

across the values of each variable in the experiment (e.g., from unfamiliar to familiar for gaming fa-

miliarity), and (iii) visually examining normal q-q plots to verify that the residuals follow a normal

distribution. In Section 6.3, I describe the results of these tests for each experiment that I conducted.

6.3 Experiments & Results

In this section, I continue my case study of PaSSAGE and PaSSAGE 2 by presenting the results of

four experiments that I ran to test my hypotheses about them. More specifically, I performed two ex-

periments for each manager: one using the survey instrument that I used in my prior research (Thue

2007), and one using an instrument that I adapted from Vermeulen et al.’s work (2010) (recall Sec-

tion 6.2.3). Henceforth, I will refer to these surveys as “survey 1” and “survey 2”, respectively.

Since these surveys measure scores along different ranges of values (a 7-point Likert-like scale for

survey 1 versus a 5-point Likert-like scale for survey 2), I present all of the scores in this section

using a normalized, real-valued scale from zero (lowest score) to ten (highest score).

To simplify comparing my results across Hypotheses 1 and 2, I express how confident one can

be in an experiment’s support for its hypothesis as a confidence value between 0% and 100%. For

experiments that test Hypothesis 1, the confidence value is equal to 1 less the p-value that is given by

the linear regression that I performed. For experiments that test Hypothesis 2, I report the confidence

value of the widest confidence interval around the estimated slope of the manager variable (BM) that

did not include zero (because bootstrapping yields confidence intervals instead of p-values).

PaSSAGE PaSSAGE 2
Survey 1 Survey 2 Survey 1 Survey 2
H1 H2 H1 H2 H1 H2 H1 H2

Table 6.2: A map showing the organization of my experiments in this chapter. H1 and H2 denote
sections that discuss my tests of Hypotheses 1 and 2, respectively. For PaSSAGE, see Section 6.3.1.
For PaSSAGE 2, see Section 6.3.2.

Table 6.2 shows the organization of the following sections, in order from left to right. I begin by

presenting my results for PaSSAGE, and follow with my results for PaSSAGE 2. For each manager,

6For each player in an experiment, a residual is computed as the difference between the value of the dependent variable
that was observed for that player and the value that is predicted by the linear model (i.e., by evaluating the right hand side of
Equation 6.7).
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I first consider data collected using survey 1, and then consider data collected using survey 2. For

each data set, I report the results of testing Hypotheses 1 and 2.

Holm-Bonferonni Adjustment

To avoid the biased p-values and resulting errors of inference that can arise from performing multiple

statistical tests on a single set of data, I have adjusted the confidence values that I present in the

following sections using the Holm-Bonferonni procedure (Holm 1979). Specifically, since my tests

of Hypotheses 1 and 2 both use the same set of data for each pairing of manager and survey (e.g.,

the data from PaSSAGE, Survey 1), a correction for having performed two tests is required for each

pairing. The Holm-Bonferonni adjustment for two tests proceeds as follows: A p-value is obtained

(or can be computed7) from each of the two tests; let x be the lowest of the two p-values, and let y be

the other p-value. The adjusted p-value for x is then 2x, and the adjusted p-value for y is max(y, 2x).

Each adjusted confidence level is then equal to 1 less the corresponding adjusted p-value.

6.3.1 PaSSAGE

In the context of evaluating PaSSAGE (ψ), Hypothesis 1 can be stated as follows: PaSSAGE’s

player-specific operations contribute positively to PaSSAGE’s expected score as measured in terms

of self-reported player fun. Similarly, Hypothesis 2 can be stated as follows: PaSSAGE’s expected

score will be higher than that of a uniform random manager, in terms of self-reported player fun.

Results for Survey 1

Using survey 1, I conducted an experiment following the experimental design that I presented in

Section 6.2.1. Specifically, 186 participants from the Research Participation Pool played through

Annara’s Tale. Half of the players had their experience managed by PaSSAGE, and half had it

managed by the proportional random variant for PaSSAGE. For each participant, I obtained a data

point as described in Section 6.2.5. After cleaning the data as I described in Section 6.2.5, data points

from 133 participants remained: 75 for PaSSAGE, and 58 for the proportional random variant. The

average age of the participants was 19.4 years; 40 were male, 90 were female, and 3 chose to not

specify their gender. Tukey’s outlier labelling rule identified no outliers, and the assumptions of

linear regression were met.

Hypothesis 1. Table 6.3 shows the results of testing Hypothesis 1 using the linear regression analysis

that I described in Section 6.2.5, with the Fun score from survey 1 serving as the dependent variable.

The first three columns show the number of players that were present in each of the subgroups

of the experiment. The fourth column gives the mean score for each manager (out of 10), adjusted

7Given a confidence interval obtained from bootstrapping, its corresponding p-value can be computed as: p-value =
1− confidence.
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Gaming Familiarity Estimated Estimated
p-value Adjusted

Confidence
Manager (Number of Players) Marginal Slope

Familiar Unfam. Mean (BM)
ψ 36 39 5.23

0.52 0.221 77.9%
βψ 33 25 4.71

Table 6.3: Results for testing Hypothesis 1 with respect to PaSSAGE (ψ), using survey 1’s measure
of Fun as the score being evaluated; βψ is PaSSAGE’s proportional random variant.

for the fact that the numbers of high versus low familiarity players in the sample data were not

perfectly balanced8. The fifth column gives the estimated slope for the manager variable in the

linear model from Equation 6.7 (BM), and the sixth column reports a two-tailed p-value for testing

Hypothesis 1. Since the estimated slope is positive (indicating a higher score for PaSSAGE than

the proportional random variant), the results of this experiment support Hypothesis 1 with 77.9%

confidence (1− 0.221).

Hypothesis 2. To test Hypothesis 2, I generated 8000 random samples of the data that I collected

in my experiment that tested Hypothesis 1, with sampling weights set such that each sample would

approximate a set of data collected from a uniform random manager (β). Table 6.4 shows the results

of testing Hypothesis 2 using this bootstrapping analysis (see Section 6.2.5 for details), with the Fun

score from survey 1 serving as the dependent variable.

Manager Number Estimated Confidence Confidence Adjusted
of Players Slope (BM) Interval Confidence

ψ 75
0.77 [0.01, 1.04] 97% 94%

β 58

Table 6.4: Results for testing Hypothesis 2 with respect to PaSSAGE (ψ), using survey 1’s measure
of Fun as the score being evaluated; β is a uniform random manager.

In the second column of the table, the value 58 does not indicate that 58 players had their experi-

ence managed by the uniform random manager; in this and all later tables that presents results from

testing Hypothesis 2, the number of players that is listed for the uniform random manager actually

describes the number of players whose experiences were managed by the proportional random man-

ager (βψ), and whose data were used as the input to the bootstrapping process that I described in

Sections 6.2.1 and 6.2.5. The third column gives the estimated slope for the manager variable as in

Table 6.3. The fourth and fifth columns gives the range and adjusted confidence level of the widest

confidence interval around the estimated slope that does not include zero. The given level thus states

my confidence in stating that the true slope is different from zero, and thus that PaSSAGE’s expected

score is different from that of a uniform random manager. To reduce computation time, I restricted

my search for this interval to integer-valued confidence level.

8This adjustment occurs during linear regression because gaming familiarity is a variable in the linear model (G), and the
results are the estimated marginal means in column 4 of Table 6.3.
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Since the estimated slope is positive and a 94% confidence interval does not include zero, the

results of this experiment support Hypothesis 2 with 94% confidence.

Results for Survey 2

Similarly to how I conducted my experiment that tested Hypothesis 1 using survey 1, I recruited

another group of players from the Research Participation Pool (104 in total) and had them play

through Annara’s Tale. After cleaning the data, 77 data points remained: 33 for PaSSAGE, and 44

for the proportional random variant. Tukey’s outlier labelling rule indicated one outlying data point

in the proportional random variant / familiar subgroup (score: 0.23 out of 10). The average age

of the participants was 19.2 years; 18 were male, and 58 were female. The assumptions of linear

regression were met.

Hypothesis 1. Table 6.5 shows the results of testing Hypothesis 1. Since the estimated slope is

negative, the results of this experiment do not support Hypothesis 1. On the contrary, these results

provide some evidence for refuting Hypothesis 1 with 90.2% confidence (1− 0.098); I will discuss

this result along with the others in Chapter 7.

Gaming Familiarity Estimated Estimated
p-value Adjusted

Confidence
Manager (Number of Players) Marginal Slope

Familiar Unfam. Mean (BM)
ψ 16 17 4.40 −0.90 0.098 90.2%
βψ 13 30 5.30

Table 6.5: Results for testing Hypothesis 1 with respect to PaSSAGE (ψ), using survey 2’s measure
of Fun as the score being evaluated; βψ is PaSSAGE’s proportional random variant.

Hypothesis 2. Table 6.6 shows the results of testing Hypothesis 2 with respect to the Fun score

from survey 2. Since the estimated slope is negative, the results of this experiment do not support

Hypothesis 2, and instead refute it with 96% confidence.

Manager Number Estimated Confidence Confidence Adjusted
of Players Slope (BM) Interval Confidence

ψ 33 −0.78 [−1.46,−0.03] 98% 96%
β 43

Table 6.6: Results for testing Hypothesis 2 with respect to PaSSAGE (ψ), using survey 2’s measure
of Fun as the score being evaluated; β is a uniform random manager.

6.3.2 PaSSAGE 2

In the context of evaluating PaSSAGE 2 (ψ2), Hypothesis 1 can be stated as follows: PaSSAGE 2’s

player-specific operations contribute positively to PaSSAGE 2’s expected score as measured in terms
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of self-reported player perceptions of agency9. Similarly, Hypothesis 2 can be stated as follows:

PaSSAGE 2’s expected score will be higher than that of a uniform random manager, in terms of

self-reported player perceptions of agency.

Results for Survey 1

I recruited 97 participants from the Research Participation Pool and had them play through Lord

of the Borderlands; PaSSAGE 2 managed the experience for approximately half of the players,

while the remaining players’ experiences were managed by the proportional random variant. After

cleaning the data, 94 data points remained: 50 for PaSSAGE 2, and 44 for the proportional random

variant. Tukey’s outlier labelling rule identified three outlying data points in the proportional random

variant / familiar subgroup (all with score 3.33 out of 10). The average age of the participants

described by the remaining 91 data points was 21 years; 63 were female and 28 were male. The

assumptions of linear regression were met.

Hypothesis 1. Table 6.7 shows the results of testing Hypothesis 1 with respect to the Agency score

from survey 1. Since the estimated slope is negative, the results of this experiment do not support

Hypothesis 1, and instead refute it with 89.3% confidence (1− 0.107).

Gaming Familiarity Estimated Estimated
p-value Adjusted

Confidence
Manager (Number of Players) Marginal Slope

Familiar Unfam. Mean (BM)
ψ2 30 20 6.82 −0.82 0.107 89.3%
βψ2

19 22 7.64

Table 6.7: Results for testing Hypothesis 1 with respect to PaSSAGE 2 (ψ2), using survey 1’s mea-
sure of Agency as the score being evaluated; βψ2 is PaSSAGE 2’s proportional random variant.

Hypothesis 2. Table 6.8 shows the results of testing Hypothesis 2 with respect to the Agency score

of survey 1, where PaSSAGE 2 is compared to a Uniform Random manager. Since the estimated

slope is negative, the results of this experiment do not support Hypothesis 2, and instead refute it

with 98% confidence.

Manager Number Estimated Confidence Confidence Adjusted
of Players Slope (BM) Interval Confidence

ψ2 50 −0.76 [−1.61,−0.001] 99% 98%
β 41

Table 6.8: Results for testing Hypothesis 2 with respect to PaSSAGE 2 (ψ2), using survey 1’s mea-
sure of Agency as the score being evaluated; β is a uniform random manager.

9Recall that PaSSAGE 2 targeted agency, while PaSSAGE targeted enjoyment (“fun”).
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Results for Survey 2

To test my hypotheses for PaSSAGE 2 using survey 2, I had 342 participants from the Research

Participation Pool play through Lord of the Borderlands – PaSSAGE 2 managed the experience of

approximately half of the players, while its proportional random variant managed the experiences

of the rest. After cleaning the data, 323 data points remained: 172 for PaSSAGE 2, and 151 for the

proportional random variant. Tukey’s outlier labelling rule identified 12 outlying points: four in the

PaSSAGE 2 / Familiar subgroup (with scores 0, 0.42, 1.25, and 2.08 out of 10, respectively), three in

the PaSSAGE 2 / Unfamiliar subgroup (scores: 0.83, 1.67, and 2.08), two in the Proportional Ran-

dom / Familiar subgroup (scores: 1.67 and 2.92), and three in the Proportional Random / Unfamiliar

subgroup (scores: 0.83, 1.25, and 1.25). After these outliers were removed, data points from 323

participants remained (mean age: 19.1 years; 95 male & 228 female), and the assumptions of linear

regression were met.

Hypothesis 1. Table 6.9 shows the results of testing Hypothesis 1 for PaSSAGE 2 using the Agency

score from survey 2. Since the estimated slope is positive, the results of this experiment support

Hypothesis 1 with 60% confidence (after adjustment, given the result of testing Hypothesis 2).

Gaming Familiarity Estimated Estimated
p-value Adjusted

Confidence
Manager (Number of Players) Marginal Slope

Familiar Unfam. Mean (BM)
ψ2 93 71 7.52

0.22 0.262 60%
βψ2 82 65 7.30

Table 6.9: Results for testing Hypothesis 1 with respect to PaSSAGE 2 (ψ2), using survey 2’s mea-
sure of Agency as the score being evaluated; βψ2

is PaSSAGE 2’s proportional random variant.

Hypothesis 2. Table 6.6 shows the results of testing Hypothesis 2 with respect to the Agency score

from survey 2, based on 8000 weighted bootstrapping samples of the data that I originally collected

for testing Hypothesis 1. Since the estimated slope is positive, the results of this experiment support

Hypothesis 2 with 60% confidence.

Manager Number Estimated Confidence Confidence Adjusted
of Players Slope (BM) Interval Confidence

ψ2 164
0.20 [0.01, 0.39] 80% 60%

β 147

Table 6.10: Results for testing Hypothesis 2 with respect to PaSSAGE 2 (ψ2), using survey 2’s
measure of Agency as the score being evaluated; β is a uniform random manager.

6.3.3 Summary of Results

Table 6.11 summarizes the results of the experiments that I ran to test my hypotheses.
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Total
Measured

Score
Adjusted

Confidence
Manager Survey Number of Hypothesis

Players

PaSSAGE (ψ)
1 133 1 Fun 77.9%

2 Fun 94%

2 76 1 Fun Ref. (90.2%)
2 Fun Ref. (98%)

PaSSAGE 2 (ψ2)
1 91 1 Agency Ref. (89.3%)

2 Agency Ref. (96%)

2 311 1 Agency 60%
2 Agency 60%

Table 6.11: A summary of my results for testing Hypotheses 1 and 2 with respect to PaSSAGE
(measuring Fun) and PaSSAGE 2 (measuring Agency). Confidence values indicate that the corre-
sponding hypothesis was supported or refuted at the given level (possible refutations are indicated
by “Ref.”).

The first column shows which manager I evaluated, compared to its proportional random variant

for Hypothesis 1, and a uniform random manager for Hypothesis 2. The second column shows which

survey instrument I used, and the third column shows the total number of players that participated

in each experiment. The fourth, fifth, and sixth columns indicate whether or not the results of each

experiment support the given hypothesis; if so, the given confidence value states how confident

one can be in asserting that the hypothesis is true with respect to the measured score (or false, as

indicated by “Ref.” for “refutation”).

6.3.4 Discussion of Results

The empirical results for my evaluations of PaSSAGE and PaSSAGE 2 were mixed. When the

amount of fun that players had was measured using survey 1, PaSSAGE succeeded at increasing

player fun. However, when fun was measured using survey 2, PaSSAGE failed to increase player fun

and actually decreased it instead. Similarly, when the strength of players’ beliefs in their own agency

was measured using survey 2, PaSSAGE 2 succeeded at strengthening those beliefs. However, when

this strength was measured using survey 1, PaSSAGE 2 failed to increase it and decreased it instead.

Potential Sources of Bias

In the following sections, I discuss several possible explanations for the mixed nature of the results

that I obtained. In each section, I support or deny the stated explanation with either arguments or

empirical evidence. To simplify my writing, I will refer to each of my four experiments using the

abbreviations shown in Table 6.12.

Differences between Surveys. As can be seen in Appendix A, the two surveys that I used during

my experiments differ in how they measure both how much fun players had and how strongly they

believed that they had agency while they played. One possible explanation for the apparent conflict
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Experiment
Abbreviation Manager Survey

A1 PaSSAGE 1
A2 PaSSAGE 2
B1 PaSSAGE 2 1
B2 PaSSAGE 2 2

Table 6.12: Abbreviations for each of my four experiments. In the first column, “A” denotes PaS-
SAGE, “B” denotes PaSSAGE 2, “1” denotes survey 1, and “2” denotes survey 2.

among my results is that the two surveys actually measure different concepts from one another

(i.e., perhaps the kind of fun that survey 1 measures is different from the kind of fun that survey 2

measures, and likewise for agency). If this hypothesis were true, the results would no longer be in

conflict with one another10. One observation that lends support to this hypothesis is that survey 1

asked for ratings of enjoyment relative to “an average video game of similar length that [the player

had] played in the past” (or the player’s expectation of one), while survey 2 asked for ratings of

enjoyment that could be interpreted in a more absolute sense (e.g., requiring the player to agree or

disagree with statements such as “my story experience was gratifying”, without explicitly prompting

them to compare their experience with any other).

To investigate whether surveys 1 and 2 measure different concepts from one another, I had 182

of the players in my sample group for experiment B2 complete both surveys while measuring both

fun and agency on each survey. As a result, I obtained 182 four-tuples of data that had the following

form: 〈Fun score from survey 1, Agency score from survey 1, Fun score from survey 2, Agency

score from survey 2〉. Using this data, I computed both continuous (Pearson) and ranked (Spearman)

correlation coefficients between two pairs of score distributions: the Fun scores from survey 1 versus

the Fun scores from survey 2, and the Agency scores from survey 1 versus the Agency scores from

survey 2. The resulting coefficients are given in Table 6.13.

Measured Score Pearson Correlation Spearman Correlation
Fun 0.60 0.56

Agency 0.70 0.70

Table 6.13: Correlation coefficients for Fun and Agency scores across surveys 1 and 2. For each
coefficient, its associated p-value was less than 0.01.

Using terminology from Cohen (1988), the correlation between the surveys’ scores for both Fun

and Agency was strong to very strong (> 0.5). The strength and positive sign of these correlations

(along with their p-values < 0.01, as computed using SPSS (IBM Corp. 2013)) provides evidence

that the scores from both surveys represented similar interpretations of both fun and agency, and

thus that the two surveys did not differ substantially in this regard.

The foregoing evidence should be considered preliminary, since the order in which all players
10One could still not interpret the results without first understanding the differences between the different concepts.
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completed the surveys was the same: all players completed survey 2 first and survey 1 thereafter11.

Thus, players’ responses to survey 1 may have been biased by having just responded to survey 2.

A future experiment could evaluate the similarity between the surveys’ interpretations of fun and

agency by having one group of players (group X) complete survey 1 before survey 2, and another

group of players (group Y) complete survey 2 before survey 1. Doing so would result in four data

sets: X1, X2, Y1, and Y2 (e.g., X1 indicates the data obtained from group X via survey 1). Finding

strong correlations between all pairs of these data sets (i.e., X1 versus Y1, X1 versus X2, etc.) would

provide stronger evidence that the surveys capture similar notions of fun and agency.

Differences in Player Group Composition. Although differences in players’ prior familiarity with

gaming was controlled for by the statistical model that I used for my analyses (i.e., in Equation 6.7),

other differences between the player groups for each experiment could have affected the measured

scores. More specifically, the greater the difference between the compositions of the player groups

across two experiments (e.g., from A1 to A2), the higher the likelihood that the measured scores

could differ for reasons other than the planned differences between the experimental and control

groups (e.g., comparing PaSSAGE to its proportional random manager). For example, if the group

of players obtained for A1 contained few males but the group obtained for A2 contained mostly

males, then a gender-specific effect of PaSSAGE (e.g., “PaSSAGE increases the amount of fun that

men report, but decreases the amount of fun that women report”) could bias the computation of the

slopes and confidence values during linear regression.

Using the demographic data that was recorded on the surveys and the gameplay logs from each

experiment, I verified that the distributions of the player groups obtained for A1 and A2 did not

differ significantly with respect to player gender (equal within 10%)12, nor with respect to the se-

quences of transition functions that the managers assigned (equal within 10%). Comparing the same

distributions of player groups from B1 and B2 yielded similar results (genders equal within 2%; se-

quences equal within 3%). The similarity of these distributions across the two surveys (1 and 2) for

both managers (A: PaSSAGE, and B: PaSSAGE 2) suggests that the results of my experiments were

not biased by differing distributions of either player gender or the sequences of transition functions

that occurred during gameplay.

To test whether some other difference between the player groups in each experiment (beyond

gender or sequence distributions) might have biased the results of my experiments, I performed a

meta-analysis of each manager’s scores as follows. First, I linearly mapped the scores for fun and

agency that were recorded on survey 1’s scale (range: 1 to 7) to fit survey 2’s scale (range: 1 to 5)

using the following function: (f(x) = (x − 1) ∗ 4/6) + 1. The appropriateness of using a linear

function for this mapping depends on two assumptions: 1) that the two surveys measure the same

11My priority was to obtain as much unbiased data as possible for testing PaSSAGE 2 using survey 2, and switching
the order in which the surveys were presented (to have players complete survey 1 first) could have biased the scores that I
collected for survey 2.

12For example, the proportion of males was 30.1% in A1, while in A2 it was 23.7%, and 30.1% −23.7% < 10%. I
computed these values using the CrossTabulations feature in SPSS (IBM Corp. 2013).
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notions of fun and agency, and 2) that the minimum and maximum values of fun and agency on

one survey are analogous to the minimum and maximum values on the other survey. I discussed the

first assumption in Section 6.3.4, but whether or not the second assumption holds remains an open

question. Next, I combined the data points that I obtained using survey 1 (with remapped scores)

with the data points that I obtained using survey 2 to create a pooled data set (e.g., I combined the

data points from A1 and A2). I then expanded my statistical model (from Equation 6.7) to include

the experiment (e.g., A1 versus A2) as an independent variable, E. Equation 6.8 shows this model,

where M× E is a variable that represents an interaction between manager and experiment. Finally,

I performed a linear regression analysis (following the procedure that I described in Chapter 6)

to estimate slopes and p-values for this new model, using the pooled data from each version of

PaSSAGE and its proportional random manager.

S = I + BMM + BGG + BVV + BEE + BM×E(M× E) (6.8)

When comparing the two experiments that I ran using PaSSAGE (i.e., A1 and A2), the p-value

for BM×E was 0.084. When comparing the two experiments that I ran using PaSSAGE 2 (i.e., B1

and B2), the p-value for BM×E was 0.018. These low p-values provide strong evidence that the

results that I obtained were biased by at least one, as-yet-unknown difference between the player

groups across the pair of experiments that I conducted for each manager. Furthermore, the fact that

the p-values were low for BM×E (and not BE; p > 0.25) shows that the combined effect of these

unknown differences between groups substantially alters how experiences managed by PaSSAGE

and PaSSAGE 2 are scored in comparison to those selected by their proportional random managers.

Extensions & Limitations. It would be very valuable to identify the source(s) of bias that I described

in Section 6.3.4. Doing so with high confidence will require either good experimenter intuitions or

a very large amount of data, as I describe in the following two paragraphs.

Given good intuitions, an experimenter could selectively test each of a few potential sources of

bias with roughly similar numbers of participants as I had in each of my two meta-analyses (209

for A1 vs. A2, and 402 for B1 vs. B2). For PaSSAGE 2, a potential source of bias is how much

players in each experimental group were motivated to feel control (i.e., agency) at the time that they

participated in my experiments. Specifically, Burger (1986) found empirical evidence that people

who have a higher desire for control over a given situation are more likely to overestimate the amount

of control that they actually have. If the distributions (across experimental groups) of players’ desire

for control differed for experiments B1 and B2, then my results could have been biased in a way that

produced the values that I observed.

Alternatively, a wide range of demographic and situational data could be gathered from every

player in an experiment, and each element of data could be represented as a variable in an expanded

statistical model. Each of the new variables could then be tested for interactions between the man-

ager variable from my analyses. Unfortunately, such an approach would require a very large number
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of players to identify any potential source of bias. For example, with only ten new binary variables

being investigated, data from at least 4096 players would be required to have at least one data point

for each of the 212 combinations of manager, gaming familiarity, and the ten new elements of data;

this number would increase with the dimensionality of the data elements being tested. Although this

scale of data collection may be out of reach for Annara’s Tale and Lord of the Borderlands (due to

practical limitations on how they can be deployed), it might be feasible for published interactive en-

vironments (such as commercial video games) that capture statistics from thousands or more players

every week. For example, according to publicly available statistics from the digital distribution ser-

vice Steam (Valve Corporation 2014), Left 4 Dead 2 (the sequel to Left 4 Dead, which I described in

Section 5.2) had more than 5000 simultaneous players on July 18, 2014. It would be very interesting

to evaluate the AI Director of Left 4 Dead 2 using controlled experiments similar to the ones that I

described in Section 6.2.1, toward better understanding how player reports of fun and agency can be

biased by different external factors.

General Findings & Limitations

The mixed nature of the results of my experiments limits the extent to which they can be generalized

beyond the groups of players that participated in each study. Specifically, the current data cannot

support any general claim that PaSSAGE or PaSSAGE 2 will yield higher scores than their propor-

tional random managers or uniform random managers. At best, the results show that these managers

have some effect in comparison to the baselines that I compared them to (with confidences values

as stated below), but whether or not these effects are generally beneficial or detrimental remains an

open question. Overall, my data supports the following claims with regard to the general population

of undergraduate students at the University of Alberta:

• With at least 77.9% confidence (Table 6.11, row 1), PaSSAGE has an effect on player reports

of fun that differs from that of its proportional random manager.

• With at least 94% confidence (Table 6.11, row 2), PaSSAGE has an effect on player reports

of fun that differs from that of a uniform random manager.

• With at least 60% confidence (Table 6.11, row 7), PaSSAGE 2 has an effect on player reports

of agency that differs from that of its proportional random manager.

• With at least 60% confidence (Table 6.11, row 8), PaSSAGE 2 has an effect on player reports

of agency that differs from that of a uniform random manager.

As I argued in Section 6.3.4, the direction of the effects that PaSSAGE and PaSSAGE 2 have

on their respective scores (either positive or negative) depends on at least one external factor that

remains to be identified. As a result of this dependence, support for Hypotheses 1 and 2 remains

unclear for both managers.
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Summary

In this chapter, I presented a general, gameplay-based method for evaluating experience managers,

wherein players play through a given game in two groups. In one group, a target manager manages

each player’s experience, and in another group, a baseline manager is used instead. A score is mea-

sured for each player (capturing how successful each manager was at achieving the target manager’s

intended effect), and the scores for each manager are averaged to calculate that manager’s score.

By applying statistical techniques to the gathered data, the probability of observing similar manager

scores from larger groups of players can be assessed, toward generalizing the evaluation’s findings

to a wider population. I distinguished between managers that are player-specific and those that are

player-independent, and noted that player-specific managers might obtain higher (or lower) scores

than a player-independent manager for two reasons: because they give sequences of transition func-

tions to players in a player-specific way, or because they give generally high-scoring sequences to

players more often than those that score poorly. I introduced the proportional random manager as a

baseline that can be used to distinguish between these two effects, and demonstrated its use across

four user studies spanning hundreds of human players (two of PaSSAGE, and two of PaSSAGE 2).

Although the results of these studies were inconclusive, I described how future gameplay-based

evaluations might help to clarify our understanding of both PaSSAGE and PaSSAGE 2.
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Chapter 7

Discussion

In this chapter, I discuss the benefits and limitations of Generalized Experience Management (GEM)

and offer ideas for future work. I begin by considering GEM overall, and then follow with some

specific lessons that I have learned from implementing and evaluating PaSSAGE and PaSSAGE 2.

7.1 Generalized Experience Management

To the best of my knowledge, GEM is the first mathematically defined framework for experience

management that spans both drama management and dynamic difficulty adjustment. As such, it

supports the first thesis statement of this work (recall Section 1.5). As I demonstrated in Chapter 5,

the building blocks of GEM provide a common set of mathematical terms with which such man-

agers can be represented. This is an important step toward better understanding the similarities and

differences between managers, and ultimately integrating the diverse techniques that are developed

by researchers across the field. Recent work by Ramirez and Bulitko (2014) supports this claim, for

GEM helped them to identify how the building blocks of two existing managers could be usefully

combined: the decision constraints that are generated by Riedl & Stern’s (2006) Automated Story

Director (Block #1), and the feature vector and objective function that PaSSAGE uses to maximize

player fun (Blocks #2 and #5). Their resulting manager, PAST, showed promising performance in

user study evaluations (Ramirez et al. 2013; Ramirez and Bulitko 2014). Following this work, Poo

Hernandez and Bulitko (2014) developed a new manager, PACE, that extended PAST’s feature vec-

tor with an appraisal-based model of player emotions, and aimed to influence the player’s emotions

in a designer-specified way.

7.1.1 Benefits & Implications for Research and Practice

The core idea of GEM is that for any given game, a manager’s influence on the experiences that

players have in that game can be represented as changing the game’s transition function. This

representation is flexible in several important ways:

• First, since changing a game’s transition function subsumes changing that game’s state, GEM
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allows for a unified representation of both drama managers (which often focus on changing

the game’s state) and systems that dynamically adjust the game’s difficulty (which often focus

on changing the game’s dynamics).

• Second, GEM does not depend on the details of how a game’s transition function is imple-

mented, and so allows a variety of different implementation techniques (e.g., behaviour trees

or programmatic scripts) to be thought of and represented in a unified way.

• Third, since GEM is grounded in the theory of MDPs, GEM managers have the opportunity

to benefit from the body of existing research that studies MDPs (see Section 7.1.4).

• Fourth, because the designer can control precisely which transition functions can be selected

by the manager at any point in the game (via decision constraints), they can retain as much

control over each player’s experience as they desire. I suspect that this opportunity for control

will be particularly important for bridging experience management research to more industry-

focused projects, since it allows the designer to rely on a manager’s objective function as

lightly or as heavily as they see fit.

• Fifth, even if the results of a GEM manager’s policy cannot be obtained at some point during

the game (e.g., due to a lack of computing resources or a communication failure), the player’s

experience can still continue uninterrupted using the transition function from the previous time

step. Such a constraint on real-time performance is likely to be important in many commercial

video games, where pausing to wait for the manager’s computation would work counter to the

game’s intended effect (e.g., player excitement, or fun).

• Sixth, changing a game’s transition function (instead of only its subsequent state) can simplify

the creation of a manager’s policy (as I discussed in Section 2.1.4), and using a feature vector

(GEM Block #5) to handle player histories in aggregate can simplify this process even further.

For the foregoing reasons, I expect GEM to be a useful tool for academics and industry professionals,

both for exploring new ways to manage player experiences and for putting research into practice in

improving real-world interactive environments.

7.1.2 Mathematical Affordances

As a mathematical framework, GEM offers several affordances beyond its ability to generalize

across managers from different domains. First, it is both precise and concise, allowing a manager’s

operation to be clearly and compactly specified using mathematical notation (as I demonstrated in

Chapter 5). Second, GEM offers the ability to analyze and predict the behaviour of new man-

agers; by examining the building blocks of existing managers and imagining different combinations

thereof, the potential benefits of new managers can be estimated prior to their construction. This

process led Ramirez et al. (2012) to combine of blocks from PaSSAGE (Thue et al. 2007a) and the
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Automated Story Director (Riedl and Stern 2006), toward mixing PaSSAGE’s pursuit of player fun

with the re-planning capabilities of ASD. Finally, given a collection of building blocks that have

been described in GEM’s function-based notation (i.e., κ, φ, ρ, π̃,f ), GEM describes how a man-

ager policy that uses the given blocks can be derived from the simple manager policy that serves as

GEM’s foundation (i.e., from Equation 7.1). Specifically, the desired policy can be obtained by eval-

uating the given functions in the context of Equation 7.2 for each state/action pair that is observed

during the game (as I described in Section 4.2). Taken together, these affordances have the potential

to simplify and accelerate future collaborations between groups that study and build new managers.

τt+1 = χ(et, ht, κ, φ, ρ, π̃,f) (7.1)

χ(et, ht, κ, φ, ρ, π̃,f) = arg max
τ∈κ(ht,ρ,π̃,f)

φ(τ, ht, et, ρ, π̃,f) (7.2)

7.1.3 Assumptions & Limitations

For a given interactive environment, GEM relies on four key assumptions: (i) that the manager’s

success at affecting players as the designer intended depends on which history each player expe-

riences, (ii), that there is only one player, (iii) that the manager can observe the states and actions

that occur in the environment (i.e., the player’s history) and, (iv) that the potential increase in how

successfully the environment affects its players is large enough1 to make management worthwhile.

History-dependent Effects

When using GEM, the designer must ensure that the intended effect of an interactive environment

can actually be achieved by experiencing histories therein. Put differently, the set of trajectories

that can occur in a GEM-managed environment must be effective for at least some potential players.

GEM assumes that such content is given (as it would be in any traditionally-created environment),

and supports the creation of managers that can shape each player’s experiences of the given con-

tent while the game is underway. As I stated in Chapter 1, several other ongoing research efforts

are exploring the challenge of procedural content generation (see Yannakakis & Togelius’s (2011)

survey), and I view their work as being complementary to GEM.

Single Player Experiences

I assumed that each managed game has only a single player to simplify my presentation of GEM,

but extending it to multiplayer settings is conceptually straightforward, requiring only a redefinition

of trajectories to use joint player actions (e.g., as composed from every player’s individual action

at each time step)2. Practically, however, implementing a GEM manager that effectively manages

1Both the magnitude of the increase and the final level of success are important, since even a large increase from “terrible”
to “bad” might still make management seem not worthwhile.

2Left 4 Dead supports multiple players without this step, since it only considers the states in any given trajectory.
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multiplayer games could be difficult, since a sequence of transition functions that successfully af-

fects one player might be unsuccessful at affecting another. Finding the best way to balance this

optimization process over multiple players simultaneously is a candidate for future work. Video

game company CCP Games has expressed interest in pursuing this research in the context of their

massively-multiplayer game Eve Online (CCP Games 2003).

Observable Player Histories

This assumption should be straightforward to meet in virtual interactive environments (e.g., video

games or training simulators), provided that the software that implements the game’s transition

function is capable of recognizing when the (potentially abstract) states and actions of a player’s

history occur and then communicating that information to the manager. In Annara’s Tale and Lord

of the Borderlands, I accomplished this recognition with a set of simple scripts that would execute

whenever certain events were captured by the game engine in which each game was built (the Aurora

and Eclipse engines, respectively). For example, the state “Alone in Forest” was recognized in

Annara’s Tale by a script that executed when the player entered part of the game’s forest.

For interactive environments that are situated in the real world (e.g., assisted living scenarios,

augmented reality games, or amusement parks (Mehta et al. 2010)), the observability of the player’s

history will depend on both the availability of sufficiently reliable and accurate sensors, and the

efficacy of the software that recognizes states and actions of the game given this raw sensor data. For

example, the guitar-teaching software Rocksmith 2014 (Ubisoft 2013) depends on custom hardware

(a “RealTone cable”) to convert an analogue audio signal from a standard guitar into a digital signal

that is suitable for identifying the pitch and volume of every musical note that the student plays.

Bonardi attributed the success of Rocksmith 2014 as an interactive teaching tool to its ability to

accurately recognize the player’s actions on any standard guitar (Bonardi 2014).

Sufficient Opportunities for Success

In some interactive environments, it might impossible for a GEM manager to score higher than a

given baseline manager, simply because the effects of the histories that are possible in that envi-

ronment are too similar to one another for experience management to yield any difference in the

player’s score. For example, in the extreme case of no variation among the effects of the environ-

ment’s histories, there would be no value in switching from any baseline approach to any GEM

manager. Furthermore, if a given baseline approach was particularly successful, then the amount of

possible improvement could be too small to be worth the effort of implementing a GEM manager.

It might be possible to measure the success of a baseline approach through evaluations similar to

those that I described in Chapter 6. If multiple histories could be evaluated by each player (with

corrections for bias from previous plays), then the variance of the scores over histories could give

some indication of how much improvement could be gained by switching to a GEM-based approach.
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For example, if most players tended to give scores that varied between 4 and 8 (on a 10-point scale)

and a baseline approach obtained an average score of 6, then a GEM manager could aim to provide

players with the histories that they chose to score at 8 (instead of histories that score lower).

7.1.4 Future Work

When devising a framework that is meant to be general (like GEM), it is important to balance the

tradeoff that exists between the framework’s representational scope and its representational depth.

A wide scope (i.e., encompassing many managers) can be achieved easily with a trivially shallow

depth (e.g., simply stating that “every manager is an agent”), but a framework with such shallow

depth would be of little use as an aid in analyzing or creating different managers. Similarly, great

depth (where many fine details are captured) can be obtained by restricting a framework’s scope to

a single manager, but such a framework could be very difficult to apply when analyzing any other

manager. Three ways in which GEM could be extended relate to (i) assessing the width of its scope,

(ii) increasing the depth to which it can represent each manager, and (iii) exploring how it might

inform and leverage existing research into Markov Decision Processes.

Assessing Representational Power

I have used GEM to represent four managers (Weyhrauch’s Moe, the AI Director from Left 4 Dead,

PaSSAGE, and PaSSAGE 2), but whether or not it can be used to represent other managers re-

mains an open question. GEM’s ability to represent Moe suggests that managers that arose from

follow-up research may be representable as well, including Façade’s drama manager (Mateas and

Stern 2003), Declarative Optimization-based Drama Management (DODM) (2006), and Targeted-

Trajectory-Distribution MDPs (TTD-MDPs) (Roberts et al. 2006). Similarly, GEM’s ability to

represent Left 4 Dead’s AI Director suggests that the related directors in Left 4 Dead 2 and Alien

Swarm may be representable as well. Finally, GEM’s ability to represent PaSSAGE suggests that

PaSSAGE 2 (as I have already demonstrated), PAST (Ramirez et al. 2013; Ramirez and Bulitko

2014), and PACE (Poo Hernandez et al. 2014) might also be representable. Because of their similar-

ity to the managers that I have already represented, I suspect that the foregoing managers constitute

“low hanging fruit” in terms of being easily representable using GEM. Other potential candidates

to investigate from academia include Young et al.’s Mimesis (2004), Magerko’s Interactive Drama

Architecture (IDA) (2006), Barber & Kudenko’s Generator of Adaptive, Dillema-based Interactive

Narratives (GADIN) (2007), Riedl et al.’s Automated Story Director (ASD) (2008), Swartjes et al.’s

Virtual Storyteller (2009), Yu & Riedl’s Prefix-Based Collaborative Filtering system (PBCF) (2012),

and the managers in Arinbjarnar & Kudenko’s Directed Emergent Drama (DED) (2008) and Weal-

lans et al.’s Distributed Drama Management (DDM) (2012). Potential candidates from the video

games industry include the managers from SiN Episodes: Emergence (Ritual Entertainment 2006;

Kazemi 2008) and Darkspore (Maxis Software 2011).
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Looking beyond domains that are related to games, it would be valuable to investigate whether

GEM could be used to represent intelligent tutoring systems in the domain of education (Nwana

1990) or recommender systems in the domain of marketing (Graves et al. 1995). Existing research

that explores experience management in the context of education (Rowe et al. 2010) and that applies

collaborative-filtering techniques to drama management (Yu and Riedl 2012) offer promise for this

avenue of future work.

Greater Representational Depth

One way in which the depth of GEM’s representation of managers could be extended relates to the

differences among the transition functions that managers consider during gameplay. In the current

version of GEM, managers can compare transition functions by examining the trajectories that they

might cause the player to experience. When two transition functions are largely identical, this ex-

amination can be made more efficient with higher-level knowledge about the difference between the

two functions. A categorization of differences between transition functions similar to the “moves” of

Weyhrauch’s Moe could provide this knowledge (recall Section 5.1), while simultaneously allowing

each GEM manager’s operations to be represented in more detail. For example, Moe’s future hints

(Figure 7.1) make only a very localized change to the game’s transition function while leaving the

rest of the transition function unchanged (e.g., redirecting action 1 from state B to state E).
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Figure 7.1: Representing a Moe future hint as changing a transition function (repeated from Fig-
ure 5.4 for convenience). When the transition function is changed from τ1 to τ2, the player will
be forced to observe a hint in state E after performing action 1. While the transition probabilities
following state/action pair 〈B, 1〉 are different, the rest of τ1 and τ2 are identical.

As I presented GEM in Chapter 4, this change would be represented by switching between two

complete (and mostly identical) transition functions. Of all of the ways that the game’s transition

function could change after the first function is selected, it seems likely that these changes would

be fairly minor, since the current transition function was (hopefully) chosen well by the manager

at some earlier point in the player’s experience (e.g., based on decision constraints or an objective

function). By formally representing the differences between transition functions as first-class entities

in GEM, one could potential build a library of transition modifiers as a generalization of Moe’s

moves, and further simply comparing different managers.
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It might also be possible to combine GEM with frameworks that extend beyond the task of

experience management, such as Tychsen’s framework for multiplayer, pen-and-paper role-playing

games (Tychsen 2008).

Integrating MDP Research

GEM’s grounding in the theory of MDPs enables the application of existing research to benefit

experience management, and doing so remains as future work. One direction that could be promising

is to leverage Ng and Russell’s (2000) or Syed et al.’s (2008) work on automatically learning a user’s

reward function and policy from observations of their actions in the context of MDPs. Having access

to models of a player’s reward function and policy could allow new interactive environments and

managers to be evaluated (in a preliminary sense) based on only a symbolic representation of their

states, actions, and transition functions, by using the player’s policy to generate actions and the

reward function to measure a score for each simulated player. This ability to explore the success of a

manager without fully implementing a testbed could be very valuable in both industry and academia,

allowing new ideas to be tested and improved at a faster pace than human subject testing allows. In

particular, such a method might help designers manage the tradeoff that exists between reaching a

wider audience and having to create more game content to do so, by identifying the smallest set of

transition functions that would be needed to reach a given range of players.

7.2 Evaluating Experience Managers

Throughout the course of this work, I learned that evaluating experience managers can be challeng-

ing for several reasons. Some of these reasons are general to all kinds of evaluations, while others

are specific to evaluations that seek to determine how successful a manager was at achieving the

designer’s intended effect.

7.2.1 Implementation Challenges

Implementing an interactive environment to use as a testbed can require an enormous amount of

work, both in learning new technological tools and developing enough game content to support a

manager’s operation. For example, the single PaSSAGE 2 decision that I demonstrated in Sec-

tion 5.4.4 required ten diverse segments of gameplay: one for each of the player’s alternatives of

opposing or joining the rebels (2 total), and one for each of the different ways that the player could

react to each of the four potential outcomes of that decision (4 outcomes with 2 reactions per out-

come). Each of these segments involved roughly 10 to 15 minutes of exploring 3D areas, collecting

items, and interacting with non-player characters. In total, Lord of the Borderlands had 27 such seg-

ments, and took approximately 13 person months to develop (two undergraduate students – Trevon

Romanuik and Charles Crittenden – helped me with this work). Even with this amount of effort,
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each player’s experience only included two decision points (i.e., two opportunities to choose a tran-

sition function); expanding to allow more decision points would have required even more segments

of gameplay. Riedl et al. (2008) and Ramirez & Bulitko (2014) mitigated the problem of content

creation by reducing the complexity of each segment of gameplay (e.g., Ramirez & Bulitko used

only text descriptions of story scenes and player actions), but such simplifications (particularly text

descriptions) may only be appropriate for managers that focus more heavily on storytelling and

narrative, with no need for the graphical and real-time components of typical video games. Since

the player model used by PaSSAGE and PaSSAGE 2 relies heavily on the kinds of gameplay that

are common in role-playing games, it was important to include similar kinds of gameplay in both

Annara’s Tale and Lord of the Borderlands.

7.2.2 Logistical Challenges

It can be difficult to acquire a sufficiently large sample of a particular population of interest without

introducing bias. The Participant Research Pool at the University of Alberta partially mitigates

this problem through a combination of single-blind, advance questionnaires (i.e., participants are

unaware of which experiment is associated with each question) and double-blind assignments of

participants to experiments based on the questionnaire data (e.g., participants who liked baseball

were preferentially assigned to experiments run by Lee et al. (2014), toward testing their automated

sports commentary system). Unfortunately, the use of advance questionnaires can severely limit the

number of participants that are available (e.g., perhaps only 30% of participants in the pool enjoy

watching baseball). Furthermore, the typical demographics of this group (roughly 19 years old and

roughly two thirds female, as observed in my experiments) may have limited generalizability to

other demographics of interest (e.g., children aged 10 to 15). Obtaining participants from other

demographics requires recruiting from outside of the participant pool, which typically introduces

self-selection bias by allowing participants to choose whether or not they will participate based on

some initial description of the experiment. While self-selection may be desirable in some cases

(e.g., a video game company might want testers who are already excited about their game), it is less

desirable in others (e.g., when trying to assess whether a manager can improve the experiences of

atypical players).

7.2.3 Challenges to Measuring Intended Effects

Once a group of players has been obtained to evaluate a given manager, it may be difficult to de-

termine how successfully a particular aspect of that manager’s operation affects its players (e.g.,

PaSSAGE’s player-specific adaptations). When constructing a baseline manager to perform this

kind of measurement, it is important to carefully consider what it means for the targeted aspect

of the manager to be “switched off”, and how doing so will affect each player’s experience. The

method of gameplay-based evaluation that I presented in Chapter 6 offers guidance with respect to
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how baselines managers can be defined and constructed, which I demonstrated in my evaluations of

PaSSAGE and PaSSAGE 2. Poo Hernandez et al. (2014) intend to use this method to evaluate their

manager (PACE) in a forthcoming study.

Given a manager to evaluate and a baseline manager to compare it to, reliably measuring how

successfully each manager affected its players as the designer intended can be very challenging. As

I learned from my evaluations of PaSSAGE and PaSSAGE 2, external factors can have substantial

effects on the results obtained from survey questionnaires, and I suspect that identifying these factors

will require extensive investigations. As a result of this influence, the second thesis statement of this

work remains unsupported (Section 1.5); determining whether GEM can be used to build successful

managers remains as future work. Furthermore, it is not clear that a single measurement captured

once at the end of the player’s experience (as I did in my evaluations) is the best way to evaluate a

player’s experience as a whole. For example, players may forget the earlier parts of a particularly

long experience by the time it finally ends, even though those earlier parts were particularly effective

(e.g., fun for the player) at the time. On the other hand, a player’s likelihood of returning to a

game after their first experience (which could be very important for commercial applications) could

depend heavily on how they (would have) evaluated it after the end of that experience. Future work

can explore these and other aspects of measurement and player behaviour.
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Chapter 8

Conclusion

This work has been a multidisciplinary investigation of AI experience managers – computational

systems that monitor and modify an interactive environment toward affecting a player therein in

some designer-intended way. Focusing on the domain of computer video games, it has involved

the creation, analysis, and evaluation of a variety of different managers, including one that co-

founded its field of study, one from a successful commercial game, and two that I designed and

implemented in original, story-based adventures. Along the way, I have combined formalism from

computer science (the GEM framework), the creative work of game design (as testbeds for given

managers), and the tools of applied statistics (for controlled evaluation), toward better understanding

how managers can perform a task that is more often analyzed from a psychologist’s point of view.

As a result of this investigation, I have made several contributions to the field. First, I presented

Generalized Experience Management, the first mathematical framework for experience management

that is simultaneously general enough to represent a variety of different managers (as I demonstrated

in Chapter 5), and specific enough to suggest how the building blocks of existing managers might

be fruitfully combined (as Ramirez & Bulitko combined components from both PaSSAGE and the

Automated Story Director to create a new manager, PAST). By formulating experience management

as the process of changing an MDP’s transition function, GEM highlights the similarity between

Drama Management and Dynamic Difficulty Adjustment, connecting a manager’s actions in the

former to changing a game’s dynamics in the latter. Second, I devised and demonstrated a new

way to evaluate player-specific managers (by comparing them to proportional random managers),

allowing experimenters to more accurately attribute a manager’s scores to the part of its behaviour

that depended on its players. Finally, I designed and developed Lord of the Borderlands as a testbed

for PaSSAGE 2, demonstrating that experience managers can be successfully integrated with tools

that were built to create commercial video games.

Looking forward, a variety of opportunities for future work await, from mixing parts of existing

managers to reducing experimental noise. Some of these efforts are already underway, and all of

them can benefit from the work described herein.
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gies. In Mei Si, David Thue, Elisabeth André, JamesC. Lester, Joshua Tanenbaum, and Veronica
Zammitto, editors, Interactive Storytelling, volume 7069 of Lecture Notes in Computer Science,
pages 366–367. Springer Berlin Heidelberg, 2011.
Nicolas Szilas, Stefan Rank, Paolo Petta, and Wolfgang Müller. Sharing interactive digital sto-
rytelling technologies II. In David Oyarzun, Federico Peinado, R. Michael Young, Ane Elizalde,
and Gonzalo Méndez, editors, Interactive Storytelling, volume 7648 of Lecture Notes in Computer
Science, pages 216–216. Springer Berlin Heidelberg, 2012.
Suzanne C. Thompson and Shirlynn Spacapan. Perceptions of control in vulnerable populations.
Journal of Social Issues, 47(4):1–21, 1991.
Suzanne C. Thompson, Craig Thomas, and Wade Armstrong. Illusions of control, underestimations,
and accuracy: A control heuristic explanation. Psychological Bulletin, 123(2):143–161, 1998.
David Thue, Vadim Bulitko, Marcia Spetch, and Eric Wasylishen. Interactive storytelling: A player
modelling approach. In Proceedings of the AAAI Conference on Artificial Intelligence and Inter-
active Digital Entertainment (AIIDE), pages 43–48, Palo Alto, California, June 6-8 2007. AAAI
Press.
David Thue, Vadim Bulitko, Marcia Spetch, and Eric Wasylishen. Learning player preferences
to inform delayed authoring. In Papers from the AAAI Fall Symposium on Intelligent Narrative
Technologies, volume FS-07-05, pages 158–161. AAAI Press, Arlington, Virginia, November 2007.
David Thue, Vadim Bulitko, and Marcia Spetch. PaSSAGE: A demonstration of player modelling
in interactive storytelling. In Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment (AIIDE), pages 227–228. AAAI Press, 2008.
David Thue, Vadim Bulitko, and Marcia Spetch. Player Modeling for Interactive Storytelling: A
Practical Approach. In Steve Rabin, editor, AI Game Programming Wisdom, volume IV, chapter 7,
pages 633–646. Charles River Media, Boston, MA, 02/2008 2008.
David Thue, Vadim Bulitko, Marcia Spetch, and Michael Webb. Exaggerated claims for interactive
stories. In The Second Joint International Conference on Interactive Digital Storytelling, pages
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Appendix A

User Study Materials

A.1 Survey 1

See pages 116 to 117.

A.2 Survey 2

See pages 118 to 121.

A.3 PaSSAGE Study Materials

See pages 122 to 124.

A.4 PaSSAGE 2 Study Materials

See pages 125 to 126.
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Storytelling User Study

Please provide some general information about yourself. 
When finished, click the "Continue" button below.

Gender

 Male

 Female

Age (in years)

 

In an average week, the number of hours that I spend playing video games is:

 None at all

 Less than 1 hour

 Between 1 and 3 hours

 Between 3 and 7 hours

 More than 7 hours

Continue »

Powered by Google Docs

Report Abuse - Terms of Service - Additional Terms

Storytelling User Study https://spreadsheets.google.com/viewform?hl=en&formkey=dD...

1 of 1 10-12-22 9:40 AM
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Storytelling User Study

* Required

For each of the following statements, use the scale below it to show how much you agree or disagree 
with what it says. When finished, click the "Continue" button below.

My story experience was pleasant. *

1 2 3 4 5

Strongly Disagree Strongly Agree

My story experience was gratifying. *

1 2 3 4 5

Strongly Disagree Strongly Agree

My story experience was rewarding. *

1 2 3 4 5

Strongly Disagree Strongly Agree

My story experience was amusing. *

1 2 3 4 5

Strongly Disagree Strongly Agree

My story experience was exhilarating. *

1 2 3 4 5

Strongly Disagree Strongly Agree

My story experience was thrilling. *

1 2 3 4 5

Strongly Disagree Strongly Agree

My story experience was exciting. *

Storytelling User Study https://spreadsheets.google.com/formResponse?formkey=dDlL...

1 of 2 10-12-22 9:42 AM
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1 2 3 4 5

Strongly Disagree Strongly Agree

My story experience was melancholy. *

1 2 3 4 5

Strongly Disagree Strongly Agree

My story experience was appealing. *

1 2 3 4 5

Strongly Disagree Strongly Agree

My story experience was pleasing to the senses. *

1 2 3 4 5

Strongly Disagree Strongly Agree

My story experience made me feel proud. *

1 2 3 4 5

Strongly Disagree Strongly Agree

My story experience made me feel competent. *

1 2 3 4 5

Strongly Disagree Strongly Agree

« Back  Continue »

Powered by Google Docs

Report Abuse - Terms of Service - Additional Terms

Storytelling User Study https://spreadsheets.google.com/formResponse?formkey=dDlL...

2 of 2 10-12-22 9:42 AM
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Storytelling User Study

* Required

For each of the following statements, use the scale below it to show how much you agree or disagree 
with what it says. When finished, click the "Submit" button below.

My inputs had considerable impact on the events in the story. *

1 2 3 4 5

Strongly Disagree Strongly Agree

I had the feeling that I could affect directly something on the screen. *

1 2 3 4 5

Strongly Disagree Strongly Agree

The consequences of my inputs were clearly visible. *

1 2 3 4 5

Strongly Disagree Strongly Agree

I could recognize which events in the story I have caused with my inputs. *

1 2 3 4 5

Strongly Disagree Strongly Agree

My decisions clearly influenced how the story went on. *

1 2 3 4 5

Strongly Disagree Strongly Agree

I discovered how my earlier actions influenced what happened later in the story. *

1 2 3 4 5

Strongly Disagree Strongly Agree

« Back  Submit

Storytelling User Study https://spreadsheets.google.com/formResponse?formkey=dDlL...

1 of 2 10-12-22 9:41 AM
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Introduction and Participants’ Consent Form
 

Introduction.  Welcome! You are invited to participate in a research study being conducted by David Thue 
and Dr. Vadim Bulitko of the Department of Computing Science and Dr. Marcia Spetch of the Department 
of Psychology, from the University of Alberta.  The purpose of this study is to evaluate the quality and 
entertainment value of several interactive stories (video game experiences in which the player chooses the 
actions of the story's main character, thereby adjusting the course of the story). Each session of this study will 
last for at most one hour and fifty minutes.
 
Your participation.   Your participation in this study involves experiencing a short interactive story by playing 
a computer video game for about 90 minutes.  The events that form the story may include animated violence 
with minimal blood. Before beginning the story, you will be presented with a short set of instructions for 
interacting with the game environment, and given the opportunity to practice for 5 to 10 minutes.  Following your 
completion of the story, you will be asked to fill out a survey ranking the game across several measures.  Your 
participation in this study is worth 4% toward your course mark.
 
Your rights. Your decision to participate in this study is entirely voluntary and you may decide at any time to 
withdraw. If you choose not to participate or withdraw after you have begun, but would like your 4% credit for 
participation, you may complete an alternative educational activity. In this case, you will be given a short article 
to read on the decisions that storytellers make while telling a story. You will be asked to answer on paper a 
few questions about the article. The time it takes to complete this assignment will take no longer than the time 
it takes to participate in this study. Your decision not to participate will not affect access to services from the 
University of Alberta. Your survey responses will remain confidential and anonymous, and our data file will 
NOT contain any personal identifiers (i.e., names or student ID numbers). Survey forms will be identified only 
by a researcher-assigned code number, for the purpose of associating them with the particular story that the 
participant experienced. Only researchers associated with the project will have access to the questionnaires. 
The results of this study may be presented at scholarly conferences, published in professional journals or books, 
or presented in class lectures. All data presented will be anonymous. The data will be securely stored by (David 
Thue) for a minimum of five years.
 
Benefits and risks. There are no foreseeable risks to this study, but if any risks should arise, the researcher will 
inform the participants immediately.  If you should experience any adverse effects, please contact David Thue 
and/or Dr. Vadim Bulitko immediately.
 
Contact information.  If you have any questions or comments on the study, or if you wish a clarification of rights 
as a research participant, you can contact David Thue or the Human Research Ethics Committee at the number 
and address below.
 
David Thue
Ph.D. Candidate
Department of Computing Science
University of Alberta
Edmonton, AB  T6G 2E8
(780) 492-2821
dthue@cs.ualberta.ca

Vadim Bulitko, Ph.D.
Associate Professor
Department of Computing Science
University of Alberta
Edmonton, AB  T6G 2E8
(780) 492-3854
bulitko@ualberta.ca

Chair
Arts, Science, and Law Research 
Ethics Board
Faculty of Arts
University of Alberta
(780) 492-4224
ASLREBAdministrator@ualberta.ca

 
Signatures.  Please sign below to indicate that you have read and understood the nature and purpose of 
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Debriefing
Evaluating Personal Agency in Adaptive Interactive Stories

  

Thank you for participating in this study! Your time and effort have been very valuable to us. Video 

games are an increasingly popular form of entertainment, but little is known about why people play video 

games and what gratifications they receive from them. 

 

Our research in this study investigates personal agency and enjoyment in the context of a dynamically 

managed interactive story.  Specifically, we wonder if customizing the outcomes of players’ decisions 

on an individual basis can increase the feelings of agency and enjoyment that they derive from playing.  

Previous research by Seligman has shown that a lack of personal control over aversive events is stressful, 

and Thompson has proposed that feelings of control are stronger when one’s decisions lead to desirable 

outcomes (versus undesirable outcomes).  To test Thompson’s proposal, we created an automated 

storytelling system in which the story could automatically change depending on your actions and 

decisions in the game environment.

  

Our hypothesis is that players who experience the automatically-adapting story will rate both the 

game’s entertainment value and their feelings of agency while playing more highly than players who 

experience a story that does not adapt.  It was necessary to withhold the information that the game may 

adapt its story based on your actions because your ratings might have been biased by believing that an 

adaptive, "intelligent" system was enabled (the placebo effect).

  

To test our hypothesis, our independent variable is the presence or absence of adaptive learning by the 

game. If you were in the control condition, the automatic adaptive system was turned off, and story 

events were chosen to be the same as those that were seen by a random previous player. If you were in the 

experimental condition, the game automatically observed the actions that you took, and tried to learn your 

preferred way of playing; based on this learned model, the game then chose which story events would 

occur, trying to dynamically make your decisions lead to situations that were desirable for you.  Thus, 

the experimental condition provided desirable outcomes for player decisions in the game whereas the 

control condition did not. Our primary dependent variables were your ratings on the questionnaire of how 

enjoyable the game was, as well as how much agency you felt.

 

The results of this research will further understanding of the importance and causes of personal agency, 

and will provide knowledge about the factors that influence gratification and enjoyment of storytelling 

games. This information will be of theoretical interest to researchers in both psychology and computer 

science, and will have applied value for researchers in computer science as well.

  

Thanks very much for participating. Without the help of people like you, we couldn't answer most 

important scientific questions in psychology. You've been a great help. Do you have any questions that 

I can answer right now? If you have any questions, later on, about the study, please contact David Thue 

via either phone (492-2821) or e-mail (dthue@cs.ualberta.ca) or if you have general questions, contact 

Sharon Randon (Research Participation Coordinator) at rescred@ualberta.ca or 492-5689. Please don't 

tell others about what we had you do here because other students in the class may participate in this study.
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