
 
 
 
 

Conditional Sentences in Belief Revision 
Systems 

 
by 

 

Ozkan Ozcevik 
 

 
 
 
 
 

A thesis submitted in partial fulfillment of the requirements for the degree of 
 
 

Master of Arts 
 

 
 

 
 
 
 
 

Department of Philosophy 
University of Alberta 

 
 
 

 
 
 

© Ozkan Ozcevik, 2015 



Abstract

The first chapter of the thesis presents Frank P. Ramsey [1960]’s seminal treat-

ment of “If ... , then ...” statements. We also explain how Stalnaker and Thomason

[1970] picked up on Ramsey’s idea and undertook the task of giving truth condi-

tions for counterfactual conditionals in contrast to Ramsey’s insistence on rational

acceptability conditions. The second chapter is concerned with technicalities related

to the proof theory of modern conditional logics. A Fitch-style natural deduction

system for the Stalnaker/Thomason sentential conditional logic FCS already exists

in the literature [Thomason, 1971]. Here we adjust FCS in a way to arrive at a

proof system for Lewis’s “official” conditional logic VC [Lewis, 1973]. We begin

with expositions of Stalnaker/Thomason’s CS/FCS and Lewis’s VC. Next, we ex-

plain why FCS in its original form is incompatible with VC. Interestingly, it turns

out that the strict reiteration rule corresponding to the Uniqueness Assumption

(“Stalnaker’s Assumption” in Lewis’s terminology) underlies the incompatibility

of FCS and VC. We observe that Stalnaker’s Uniqueness Assumption becomes a

very effective proof-theoretic device in natural deduction systems for conditional

logics by virtue of allowing us to make use of “indirect conditional proofs”. In

FCS, those indirect proofs allow us to derive the VC axioms of centering and ra-

tional monotony without need of additional strict reiteration rules. However, the

problem we face is that since the characteristic feature of VC is its rejection of

Stalnaker’s Assumption, we have no choice but to remove the conditional excluded

middle strict reiteration rule and add two new strict reiteration rules (one for cen-

tering and one for rational monotony). After making the necessary adjustments to

FCS, and thereby transforming it into FVC (that is, a Fitch-style natural deduction
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system for Lewis’s VC), we prove that FVC and VC are equivalent systems. We

remark that Stalnaker/Thomason/Lewis conditional connectives are to be treated

as multi-modal connectives (interpreted as “relativized necessity” in the style of

Chellas [1980]). We argue that our findings here suggest that int-elim style in-

ferentialism about logical connectives can be problematic in view of multi-modal

connectives; that is, introduction and elimination rules alone cannot uniquely

determine the “meanings” of such logical connectives. The results seem to show

that reiteration rules and restrictions on those reiteration rules also are extremely

important for determinations of “meanings” of multi-modal logical connectives.

The third chapter of the thesis is largely expository: we introduce the AGM theory

of belief change and point out the theory’s close connection with the analysis of

conditional statements and the Ramsey Test. The fourth chapter is concerned with

the question of whether an alternative doxastic semantics for VC is attainable. The

answer is negative: belief change models (called “belief update”) that can validate

Lewis’s VC are ontic models. Epistemic semantics for Stalnaker/Thomason/Lewis

counterfactual conditional logics seems unattainable. The fifth chapter brings the

thesis to a conclusion by summarizing our results.
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CHAPTER 1

Introduction: The Ramsey Test

1.1 Ramsey’s Insight

In this chapter we trace back the history of modern conditional logics

to Frank P. Ramsey’s original analysis of conditional idiom. Following

our examination of Ramsey, we will then give an exposition of Stalnaker’s

ontic reinterpretation of Ramsey’s analysis and explain to the reader in

what respect this analysis differs from the original one. We will argue that

Stalnaker’s reinterpretation changes the scene by leaping from an epis-

temic/doxastic analysis to an ontic analysis which, we claim, is committed

to a debatable analogy between a “belief set” and a “possible world” in
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doing so.

Ramsey’s analysis is simple but ingenius. In General Propositions and

Causality, Ramsey considers an event (say, a party) where a man believes

that if he eats a certain cake, he will get sick. Formalize this as p Ñ q

where p is the antecedent (protasis) and q is the consequent (apodosis) of the

conditional. Ramsey writes:

“ ... Before the event we do differ from him in a quite clear

way: it is not that he believes p, we p̄; but he has a different

degree of belief in q given p from ours; and we can obviously

try to convert him to our view. But after the event we both

know that he did not eat the cake and that he was not ill; the

difference between us is that he thinks that if he had eaten it

he would have been ill, whereas we think he would not. But

this is prima facie not a difference of degrees of belief in any

proposition, for we both agree as to all the facts.”

In order to understand what is at issue here two temporal segments

should be considered: (1) the conditional statement before the event and

(2) the conditional statement after the event. Before the event, what is in

question is an indicative conditional the antecedent of which is not contrary-

to-fact. After the event, what is in question is a counterfactual conditional

the antecedent of which is contrary-to-fact. Because the party is now over
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and the man did not (actually) eat the cake (in other words, after the party,

it is the case that not-p).

(1) For indicative conditionals we see Ramsey subscribing to what is now

called a probabilistic account of conditionals according to which the assert-

ibility of a conditional is identified with its subjective probability and its

subjective probability in turn is identified with the conditional probability

of the consequent given the antecedent. The probabilistic identification of

probability of a conditional with its related conditional probability can be

formalized as PpIf A, then Bq “ PpB|Aq. The probabilistic account gave rise

to a research programme of its own (see (Adams, 1965)) and has recent sup-

porters as well (see, for example, (McGee, 1994) and (Stalnaker and Jeffrey,

1994)). Despite its prima facie appeal, the probabilistic account of condi-

tionals faces serious difficulties due to a well-known result by David Lewis

(triviality theorems (Lewis, 1976)). For that reason, the probabilistic research

programme will be largely ignored throughout this thesis. We will instead

focus more on the qualitative and logical approaches to conditionals (as

opposed to the quantitative probabilistic approaches).

(2) After the event, what we have is a counterfactual conditional and

Ramsey seems to think that there is no propositional or factual disagree-

ment between us (who believe that it is not the case that if he had eaten the

cake, he would have been ill) and the man (who, in contrast, believes that
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if he had eaten it, he would have been ill). Therefore, for Ramsey, there

is no fact of the matter as to whether a counterfactual is true or false and

counterfactuals are not truth-bearers (i.e., they are not propositional). In a

footnote to the above quotation Ramsey writes:

“If two people are arguing ‘If p, then q?’ and are both in

doubt as to p, they are adding p hypothetically to their stock of

knowledge and arguing on that basis about q; so that in a sense

‘If p, q’ and ‘If p, q̄’ are contradictories. We can say that they

are fixing their degree of belief in q given p. If p turns out false,

these degrees of belief are rendered void. If either party believes

not-p for certain, the question ceases to mean anything to him except

as a question about what follows from certain laws or hypotheses.”

(emphasis mine)

The emphasized section of the quote suggests that for Ramsey counter-

factual idiom is concerned with argumentation and inference only and is

not related to matters of fact or reality. If both parties agree that p is false,

then the only disagreement that could exist between these two parties is

a disagreement over which one of the following arguments fare better. To

wit, Argument 1 goes something like this: “Assume p as a premise and

suppose others things are kept constant; from there we can infer that q;

Argument 2, on the other hand, goes along the following lines: “Assume p

as a premise and suppose other things are kept constant; from there it does
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not follow that q.1

The procedure given in the last quote came to be known as the Ramsey

Test and was picked up on by Robert Stalnaker (1968). The next section is

on Stalnaker’s reinterpretation.

1.2 Stalnaker’s Ontic Reinterpretation

Before we give an exposition of Stalnaker’s reinterpretation of the Ram-

sey Test, let’s reemphasize that the original Ramsey Test

• treats conditional statements as incapable of having truth values (i.e.,

treats them as non-propositional), and

• gives an epistemic/doxastic procedure for evaluating rational accept-

ability, but not truth, of conditional statements.

Stalnaker (1968) extends the original Ramsey Test by adding a consis-

tency preservation requirement specifically to deal with the contrary-to-

belief antecedents. Let’s note that the consistency preservation require-

ment is a principle of minimal change since it requires the epistemic agent

1This helps explain why If p had been the case, then q would have been the case and If p had
been the case, then not-q would have been the case are not real contradictories. Their surface
form gives an impression of contrariety, but that impression is lost once one realizes that
the type of conditional statements in question represent nothing more than abbreviated
arguments and hence is not propositional. It is impossible for two arguments to contradict
each other since contradiction is applicable to propositions only.
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to make only those adjustments that are necessary to maintain consistency of

her stock of beliefs. No change will be made in the stock of beliefs so long

as there is no inconsistency with the antecedent and only a minimal change

will be made in order to get rid of inconsistency if the added antecedent is

inconsistent with the stock of beliefs. In Stalnaker’s words:

First, add the antecedent (hypothetically) to your stock of be-

liefs; second, make whatever adjustments are required to main-

tain consistency (without modifying the hypothetical belief in

the antecedent), finally, consider whether or not the consequent

is then true.

So far this is very much in keeping with the original Ramsey Test because,

as we emphasized above, Ramsey thinks that the evaluation of condition-

als with contrary-to-belief antecedents is a question of “what follows from

certain laws and hypotheses”. Indeed, we find Stalnaker asking us to con-

sider whether or not the consequent follows after we make the necessary

changes in the stock of beliefs as required to maintain consistency; this is

a question of what follows from certain laws already present in the stock

of beliefs after hypothetically adding the antecedent alongside them.

However, we observe that Stalnaker (1968) departs from the spirit of

the original Ramsey Test when he insists on having truth conditions (as

opposed to rational acceptability conditions) for conditional statements.
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Remember that, if our reading of Ramsey is correct, conditional statements

lack truth value because Ramsey treats indicative conditionals probabilis-

tically, and counterfactual conditionals, he claims, have nothing to do with

matters of fact, but are abbreviated arguments concerned with “what fol-

lows from certain laws and hypotheses”. One may think that Stalnaker’s

departure rests on a questionable analogy between a stock of beliefs and

a possible world. Stalnaker writes: “The concept of possible world is just

what we need to make this transition, since a possible world is the ontolog-

ical analogue of a stock of hypothetical beliefs.” The “transition” Stalnaker

has in mind is the transition from rational acceptability conditions to truth

conditions. Let’s examine Stalnaker’s analogy.

We worry that Stalnaker’s analogy between a stock of beliefs and a pos-

sible world may be misleading since a better candidate for the analogy

could be a set of possible worlds. Our reasoning is as follows. As is well

known, Stalnaker formulates a selection function semantics for his condi-

tional logic on the basis of the above-mentioned analogy between a stock of

beliefs and a possible world. Stalnaker’s selection function is binary; there

is one argument place for the world of evaluation and one argument place

for the antecedent of the conditional to be evaluated. The function “se-

lects” a unique world and if the consequent of the conditional in question

is true in the selected world, then the conditional is evaluated to be true;

otherwise the conditional is evaluated to be false. It seems that the analogy
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between a stock of beliefs and a possible world renders Stalnaker’s reinter-

pretation radically incompatible with the original insight of Ramsey. The

fact that Stalnaker’s selection function takes a single world of evaluation as an

argument shows that the ontic reinterpretation of the Ramsey Test is out of

touch with Ramsey’s original analysis. Accordingly, we have no reason to

think that the intuitive power of the original Ramsey Test is in any sense

conducive to the subsequent ontic analyses of conditional idiom. In partic-

ular, there is no reason to think that Ramsey’s original insight lends itself

to an analysis of truth conditions for conditional statements. The upshot

here is that ontic conditional logics are in fact in conflict with Ramsey’s

analysis.

In this section we gave an exposition of Stalnaker’s reinterpretation of

the Ramsey Test and observed that Stalnaker’s reinterpretation is in tension

with Ramsey’s ideas. Of course, it does not follow that Stalnaker’s ontic

analysis of conditional idiom is problematic; it is only indicated that the

ontic conditional logics pioneered by Stalnaker are in fact discontinuous

with Ramsey’s analysis. In the next section we will consider Gärdenfors’s

project and observe that it is more in line with Ramsey’s insight.
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1.3 Gärdenfors’s Project

In a moment we will introduce the epistemic approach to the semantic

analysis of conditional statements, which is due to Peter Gärdenfors (1978).

Before doing that, let’s try to explain to the reader why someone would

like to have an epistemic (rational acceptability conditions) account in

contrast to an ontic (truth conditions) account. The primary motivation

for the epistemic program comes from the intuitive force of the Ramsey

Test. Other motivations, in our view, include an empiricist tendency to

be sceptical of the metaphysically suspect “possible worlds” and of the

ontic “similarity” relation postulated across those “worlds”; as well as

some uneasy feelings about the intensional nature of counterfactual idiom.

Quine (1960), for instance, writes:

The subjunctive conditional depends, like indirect quota-

tion and more so, on a dramatic projection: we feign belief in

the antecedent and see how convincing we then find the con-

sequent. What traits of the real world to suppose preserved

in the feigned world of the contrary-to-fact antecedent can be

guessed only from a sympathetic sense of the fabulists likely

purpose in spinning his fable.

Another prominent philosopher expressing scepticism about the idea of

giving truth conditions for counterfactual conditionals is Bas van Fraassen.

After making explicit the extreme context-sensitivity of counterfactual con-
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ditional statements van Fraassen (1980) writes:

... we must conclude that there is nothing in science itself—

nothing in the objective description of nature that science pur-

ports to give us—that corresponds to these counterfactual con-

ditionals.

So much for vindicating Gärdenfors’s motivations for the epistemic

program. Now is the time to explain Gärdenfors’s formalization of the

Ramsey Test.

Gärdenfors formulates a formal version of the Ramsey Test on the basis

of which he attempts to give rational acceptability conditions for condi-

tional statements. First, the “stock of beliefs” of the original Ramsey Test

is formalized as a belief set. A belief set is defined as a logically closed set

of sentences. The logical closure indicates that we theorize in an idealized

setting: we abstract from logical defects of real-life epistemic agents by

assuming logical omniscience. Second, the requirement of making only a

minimal change in order to maintain consistency is formalized by means of

a revision operator ˚. The rational acceptability condition of a conditional

is then given by the Formalized Ramsey Test:

pφ� ψq P T iff ψ P pT ˚ φq

10



where T is the belief set of the agent and ˚ is the minimal revision

operator the details of which will be given in the Belief Change chapter. We

use Lewis’s connective � because Gärdenfors’s original project was to

give an epistemic semantics specifically for Lewis’s VC.

Gärdenfors’s project came to a halt when he discovered that it is im-

possible to have a nontrivial belief change system which contains �-

conditional sentences. More detail regarding the epistemic project and the

impossibility result can be found in Chapter 4.
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CHAPTER 2

A Fitch-Style Formulation of Conditional VC

In this chapter our goal is to build a Fitch-style natural deduction system

for David Lewis’s “official” conditional logic VC. To this end, we will first

examine Thomason’s FCS and show that there is no straightforward way

to employ FCS for VC. We will see that certain proof-theoretic complica-

tions arise in connection with Stalnaker’s much-debated assumption of

Uniqueness. In order to avoid those complications we will need to adjust

FCS by removing one reiteration rule and introducing two new reiteration

rules. We will call the resultant system FVC. We will prove that FVC and

VC are equivalent systems.
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A Fitch-style natural deduction proof system for sentential conditional

logic CS is given in (Thomason, 1971). The original axiomatic formulation

of CS can be found in (Stalnaker and Thomason, 1970). Natural deduc-

tion systems differ from axiomatic systems as they mimic actual reasoning

by allowing reasoning from arbitrary assumptions. This notable feature

endows natural deduction with great intuitive power. As a stylistic vari-

ant, “Fitch-style” natural deduction was originally developed in (Fitch,

1952). For the history of natural deduction proof systems and the details

of “the Fitch method” the reader is referred to (Pelletier and Hazen, 2012).

We favor a natural deduction formulation of Lewis’s VC because we be-

lieve that a formulation of that kind is the best candidate for an intuitive

formalization of counterfactual reasoning.

2.1 Thomason’s FCS

FCS has Ą, „, and the conditional connective ą as primitive connectives.

^, _, and ” are defined as usual. � and ^ are defined as follows:

�φ “d f „φ ą φ

^φ “d f „ � „ φ

Rules for Ą, „, and for reiteration into ordinary derivations are just as

usual Fitch-style natural deduction rules. In addition, FCS has an addi-

13



tional rule for strict derivation:

B φ

...

...

What is significant here is that, unlike ordinary derivations, strict deriva-

tions come with certain restrictions on reiteration rules. FCS has four re-

stricted reiteration rules:

Reit 1

φ ą ψ

B φ

...

ψ

14



Reit 2

�ψ

B φ

...

ψ

Reit 3

„ pφ ą ψq

B φ

...

„ ψ

Reit 4

φ ą ψ

ψ ą φ

ψ ą χ

15



B φ

...

χ

Here we assume that Thomason’s strict reiteration rules are to be taken

as “single-step” reiteration rules; i.e., they are only applicable into the

immediate strict subproof which is at most one subproof deeper than the

ą-conditional licensing it. This means that a “multi-step” application of

the strict reiteration rules is not allowed in Thomason’s system even though

his own formulation is not very explicit about this.

The introduction and elimination rules for the conditional connective ą

are as follows:

16



Conditional Introduction Rule

B φ

...

...

ψ

φ ą ψ

Conditional Elimination Rule

φ

φ ą ψ

...

...

ψ
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What follows is the original axiomatic formulation of CS (Stalnaker and

Thomason, 1970):

A1. �pφ Ą ψq Ą p�φ Ą �ψq

A2. �pφ Ą ψq Ą pφ ą ψq

A3. ˛φ Ą ppφ ą ψq Ą „pφ ą „ψqq

A4. pφ ą pψ_ χqq Ą ppφ ą ψq _ pφ ą χqq

A5. pφ ą ψq Ą pφ Ą ψq

A6. pφ ą ψq ^ pψ ą φq Ą ppφ ą χq Ą pψ ą χqq

Rules of Inference: Modus Ponens and Necessitation

Thomason proves that the axiomatic system CS and the natural deduc-

tion system FCS are equivalent systems (Thomason, 1971). In the next

section we will give an axiomatic formulation of Lewis’s VC along with a

brief explanation of each axiom.

2.2 Lewis’s VC

In his first formulation of VC, Lewis prefers to use 4 because he thinks

that 4-formulation is much simpler than the�-formulation (Lewis, 1973,

p. 123). Later on in the book he decides that he owes us an axiomatic

formulation using the primitive conditional connective � as well (p.

132). The main reason behind Lewis’s preference of 4-formulation to

18



the primitive �-formulation is the “embarrassing” Axiom 5 of the �-

formulation. The�-axiomatization of VC is as follows:

R1. Modus Ponens

R2. Deduction within Conditionals

$ pχ1 ^ . . .^ χnq Ą ψ

$ ppφ� χ1q ^ . . .^ pφ� χnqq Ą pφ� ψq

R3. Interchange of Logical Equivalents

A1. Truth-functional tautologies

A2. Definitions of nonprimitive operators

A3. φ� φ

A4. p„ φ� φq Ą pψ� φq

A5. pφ�„ψq _ pppφ^ ψq� χq ” pφ� pψ Ą χqqq

A6. pφ� ψq Ą pφ Ą ψq

A7. pφ^ ψq Ą pφ� ψq

� is interpreted as counterfactual-/would-conditional. The first axiom

ensures that VC contains classical propositional logic. The second axiom

takes care of the defined connectives employed by Lewis throughout the

book. Intuitively, the third axiom states that had something been the case,

it would have been indeed the case. The fourth axiom says that a necessary

truth obtains in every counterfactual situation. The fifth axiom represents

the principle of rational monotony; we will discuss it below in some detail.
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The sixth axiom states that the would-conditional implies the material

conditional, and hence is stronger. Finally, the seventh axiom says that if

two statements are actually true, then one of them counterfactually implies

the other.1

Note that � is stronger than Ą, but weaker than J.2 The idea is to

have a variably strict conditional (hence the name VC) as distinct from the

strict conditional. The invariably strict form φ J ψ says that it is logically

necessary that either φ is false or ψ is true3; model-theoretically, there is no

maximal-consistent set of sentences where φ is true and ψ is false. This is

way too strict for our purposes. In our reasoning about counterfactual sit-

uations we do not take into account every possible situation; this is neither

necessary nor feasible. We take into account only those situations which

are sufficiently similar to the actual situation and where the antecedent

of the counterfactual is imagined to be true.4 Variability of strictness be-

comes apparent as soon as we realize that our conditional statements do

not involve total logical strictness or strictness simpliciter, but involve what

one might call ceteris paribus strictness, a kind of strictness that varies in

1Note that this particular intuitive translation requires the Interchange of Logical Equiv-
alents rule R3.

2J was introduced by C. I. Lewis, who was dissatisfied with the truth-functional
material conditional of Principia Mathematica. One can includeJ as a defined connective:
φ J ψ “d f �pφ Ą ψq.

3Note that, in the object language, we have φ J ψ ” �p„ φ_ ψq
4Those theories of conditionals in which counterfactual reasoning is conceived as

reasoning about a minimally different situation where the antecedent is entertained to be
true are sometimes called minimal change theories.
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accordance with the extent of the ceteris paribus enthymeme (see (Priest,

2008) for the enthymematic interpretation).

It can readily be seen that some of these axioms are very obviously

derivable in FCS. The derivability of the first three axioms are evident.

The fourth axiom is handled by FCS’s reit 2. The fifth axiom of rational

monotony is derivable in FCS using reit 3. The sixth axiom can be proved

using reit 1 and Ą-introduction. The seventh axiom is derivable in FCS

again by means of reit 3. Now notice that the difference between Lewis’s

VC and Stalnaker & Thomason’s CS is the Conditional Excluded Middle

axiom:

A3. ˛φ Ą ppφ ą ψq Ą „pφ ą „ψqq

or alternatively,

S. pφ ą ψq _ pφ ą„ ψq

So, with the addition of the Conditional Excluded Middle, one arrives at

a system that is equivalent to CS, a system Lewis calls VCS (“S” for “Stal-

naker’s Assumption”). Since our goal here is to adapt Thomason’s natural

deduction system for Lewis’s VC, our immediate task now is to remove

the reiteration rule representing the undesired principle of Conditional

Excluded Middle. Rejection of the Conditional Excluded Middle is the

characteristic feature of Lewis’s conditional logic. It is easy to see that the

rule that needs to be removed from FCS is reit 3. One might be deceived
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to think what needs to be done is just to remove the Conditional Excluded

Middle rule (reit 3) from FCS, and we are good to go. Alas, things are not

so simple: it turns out that Axiom 5 and Axiom 7 of VC are not derivable

without reit 3. Since we know that reit 3 must go at all costs (otherwise

what we get cannot be VC), we now have no choice but to replace reit 3

with an appropriate reiteration rule that can successfully handle Axiom 5

and (hopefully) Axiom 7 of VC.

2.3 Formulating FVC

2.3.1 Underivability of Axiom 5 and Axiom 7: The Proof-

theoretic Method

First let’s show that without reit 3, Axiom 5 and Axiom 7 of VC becomes

underivable (i.e., FCS without reit 3 is semantically incomplete with respect

to the Lewisean system of spheres models for VC).

Theorem 2.3.1. If reit 3 is removed, Axiom 5 of VC becomes underivable in FCS.

Now assume for reductio that reit 3 is removed from FCS but Axiom 5 is

still derivable. If Axiom 5 is derivable, then there are subderivations in FCS

of ppφ^ψq� χq Ą pφ� pψ Ą χqq and pφ� pψ Ą χqq Ą ppφ^ψq� χq

under the assumption „ pφ�„ ψq. These subderivations are either in-

direct proofs, or not. If they are indirect proofs, then we should be able

to derive a contradiction from ppφ ^ ψq � χq^ „ pφ� pψ Ą χqq and
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pφ� pψ Ą χqq^ „ ppφ^ ψq� χq. If a contradiction is derived from the

former, then we are able to derive „ ppφ^ψq� χq or pφ� pψ Ą χqq; but

such a derivation would have to involve reit 3 provided that the derivation

in question is not a “devious” derivation. If contradiction is derived from

the latter, then we are able to derive „ pφ� pψ Ą χqq or ppφ^ ψq� χq;

again, such a derivation would have to involve reit 3 as long as it is not

a “devious” derivation. Admittedly, what we offer here is not a rigorous

underivability proof, but only a plausibility consideration, because we are

unable to rule out the possibility that there is some devious and compli-

cated way of getting such derivations even without reit 35:

5A rigorous proof-theoretic proof here would depend on a normalization theorem for
FCS and FVC. We leave the normalization theorem to future work.
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„ pφ�„ ψq

pφ^ ψq� χ

...

B φ

...

pψ Ą χq

pφ� pψ Ą χq

...

B φ^ ψ

...

χ

We need only examine one of the two inner-most subderivations. Take

the latter innermost subproof: χ cannot have been reiterated by reit 1

since there exists no superordinate occurrence of any�-formula with the

antecedentφ^ψ. Further, χ cannot have come from an application of reit 2

since, by hypothesis, there is neither a superordinate categorical derivation
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of χ nor an occurence of the �-connective. Likewise, χ cannot have been

reiterated by virtue of reit 4 since there is no superordinate occurence of

such formulas as φ� D and D � φ. The only alternative left is that χ

came by an application of reit 3. But this contradicts our initial assumption.

Theorem 2.3.2. If reit 3 is removed, Axiom 7 becomes underivable in FCS.

Again, what we offer here is a plausibility consideration, not a rigorous

proof. Assume for reductio that reit 3 is removed but Axiom 7 is still

derivable in FCS. If Axiom 7 is derivable, then there will be derivations of

the following form (where A Ą B is not a theorem):

φ^ ψ

...

B φ

...

ψ

We need examine where ψ comes from. ψ cannot have been classically

derived from φ, since, ex hypothesi, φ Ą ψ is not a theorem. ψ cannot have

come by reit 1 because φ� ψ does not occur superordinately. ψ cannot

have come by reit 2, because our hypothesis that φ Ą ψ is not a theorem

implies that ψ is not a theorem, and hence, it cannot be the case that �ψ.
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Reit 4 is not applicable because there is no superordinate occurrence of any

third schematic letter χ. The only alternative source for ψ of the innermost

supproof is then reit 3. But this contradicts our initial assumption given

that the derivation in question is not a “devious” derivation.

2.3.2 Underivability of Axiom 5 and Axiom 7: The Model-

theoretic Method

Since we have been unable to provide a rigorous proof, but only a plausi-

bility consideration, using the proof-theoretic method, we now attempt to

give a model-theoretic proof for the underivability of Axiom 5 and Axiom

7 without reit 3. We will make use of a “deviant” model: suppose that the

model contains three worlds w0, w1, w2, and is a two-sphere model. The

first sphere is {w0, w1}, and the second one is {w0, w2}. The spheres are not

nested, but this is not a problem since we are using the model merely as a

technical device, not as real semantics. The truth conditions for� is then

given as follows:

• If w1 |ù φ, then w0 |ù φ� ψ iff φ Ą ψ is true at all worlds of the first

sphere (i.e., iff w0 |ù φ Ą ψ and w1 |ù φ Ą ψ).

• If w1 |ù „ φ, then w0 |ù φ� ψ iff φ Ą ψ is true at all worlds of the

second sphere (i.e., iff w0 |ù φ Ą ψ and w2 |ù φ Ą ψ).

We are only insterested in truth values at w0.

(1) Axiom 7 of VC is not valid in this model because neither sphere is a
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singleton (i.e., the system of spheres is not centered).

(2) Axiom 5 of VC is not valid in this model.

Proof: Either w0 |ù φ� „ ψ or w0 |ù „ pφ� „ ψq. Suppose the latter

holds. Then if Axiom 5 is true at w0, ppφ ^ ψq � χq ” pφ� pψ Ą χqq

must also be true at w0. Suppose w0 |ù pφ^ψq� χ. Then it must be that

either (a) w1 |ù φ ^ ψ and w0 |ù φ Ą ψ and w1 |ù φ Ą ψ or (b) w1 6|ù φ ^ ψ

and w0 |ù φ Ą ψ and w2 |ù φ Ą ψ. Suppose (a) is true. By definition of ”,

it must be the case that w0 |ù φ� pψ Ą χq; by the truth conditions of�

this means that if w1 |ù φ, then w0 |ù φ Ą pψ Ą χq and w1 |ù φ Ą pψ Ą χq.

By (a), we have w1 |ù φ, so it must be the case that w1 |ù ψ Ą χ. Again by

(a), we have w1 |ù ψ. For a counterexample, it will be sufficient to suppose

w1 6|ù χ.

�

The “deviant” model here is devised to be a model of FCS without reit 3.

Accordingly, we have shown that reit 3 axioms Axiom 5 and Axiom 7 are

not validated by this model. Reit 1, the main form of strict reiteration, is

validated because if w0 |ù φ� ψ, then by definition of truth-conditions

of� it follows that w0 |ù φ Ą ψ. But how about reit 2 and reit 4? Reit 2

is concerned with strict reiteration of �-formulas; reit 4 is concerned with

strict reiteration of “counterfactual equivalents”. These two reiteration

rules are closely related to the defined connective �. As we explained

before, we can choose to formulate � as a primitive connective of the proof
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system, which, we believe, is more in line with its intended meaning. Here

we argue that � means logical necessity and is to be analyzed as truth at

all possible worlds (even in “deviant” models!). In FCS, we can observe

that �-introduction always depends on some categorical derivation of the

relevant formula inside some strict subderivation; therefore, we believe

that we are justified in taking � as a primitive logical necessity connective.

Similarly, reit 4 will be reinterpreted in terms of “logical equivalence”. Reit

2 and reit 4 should not create any problems after this modification.

2.3.3 Derivation of Axiom 5

In order to handle Axiom 5 of VC we need to replace reit 3 with a new

reiteration rule suitable for VC. The reiteration rule we

propose is as follows:

φ� χ

φ� ψ

28



B φ^ ψ

...

...

χ

Note that we are free to choose whether�will be taken as a defined con-

nective or a primitive connective of VC:φ� ψ “d f „pφ�„ψq. In terms

of its model theory, φ� ψ states that all φ-permitting spheres are φ^ ψ-

permitting. We believe that� presents an intuitive advantage of Lewis’s

conditional logic VC over the Stalnaker/Thomason conditional logic CS.

For this reason, we are inclined to suggest� as a primitive connective.

The natural language interpretation of� is the might-conditional; that is,

it is intended to capture natural language constructions of the form “If φ

had been the case, ψ might have been the case”. The new reiteration rule

allows that we can reiterate χ in a strict derivation with antecedent φ^ψ if

the strict derivation is subordinate to occurrences of φ� χ and φ� ψ.

Let’s call the new rule reit RM. Reit RM allows us to accommodate the prin-

ciple of rational monotony. The would-conditional shows monotonicity

with a “rationality” constraint, in the sense that so long as what is being

(conjunctively) added to the antecedent does not counterfactually imply

the negation of what had already been contained within the antecedent, the
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truth value of the conditional does not decrease. This is in contrast with the

material conditional since the material conditional has total monotonicity

in the sense that its truth value never decreases whenever something new

is added to its antecedent.

An extremely important point is that the addition of reit RM to the proof

system makes it necessary to tweak the conditions for application of reit

1. As we noted before, Thomason’s exposition of reit 1 is perhaps not as

explicit as it should be; it is unclear whether “multi-step” applications of

reit 1 are sanctioned or not. For Thomason’s FCS we charitably assumed

that only “single-step” applications of reit 1 are allowed because FCS does

not need any “multi-step” application of reit 1 in order to be a complete

proof system. In FVC, however, we need some “multi-step” applications

of reit 1, and we formulate the condition for such “multi-step” applications

as follows:
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Reit 1*

φ� ψ

φ^ ψ� χ

B φ

...

B φ^ ψ

...

χ

So the “multi-step” application of reit 1 is possible if and only if the

sentences are “counterfactually compatible”. Again, we believe that this

encapsulates the intuitive idea of rational monotony.

Rational monotony makes it possible to interpret the�-conditional as

an object language counterpart of a default rule of (Reiter, 1980)’s default

logic (see (Delgrande, 1988) for this interpretation). Reit RM accords well

with the default rule interpretation of the�-conditional. In case we have

31



the default rule By default if A, then C and we do not have the default rule

By default if A, then „ B, we can infer the default rule By default if A and B,

then C. To make this more intuitive consider the following example: It is

reasonable to assume that an intelligent agent should have the following

two default rules: By default if something is a bird, it flies. By default, if

something is a bird, it is not a penguin. Hence according to reit RM we cannot

infer By default if something is a bird and a penguin, then it flies. However,

since we have no default rule to the effect that By default if something is

a bird, then it is not a mockingbird, we can infer By default if something is a

bird and a mockingbird, then it flies. The default rule interpretation of the

� allows us to reason about default rules. There are numerous technical

problems in the area of default reasoning and most researchers believe

that rational monotonicity is too permissive. So it is widely believed that

a less permissive kind of monotonicity (suchs as cautious monotonicity) is

required in order to appropriately handle default rules. We won’t get into

further details regarding the default rule interpretation of the � in this

thesis.
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Now let’s see reit RM in action:

1 φ� ψ (hyp)

2 φ� pψ Ą χq (hyp)

3 B φ^ ψ (hyp)

4 ψ Ą χ (1-2, reit RM)

5 ψ (3-4, ^-elim, MP)

6 χ (4-5, MP)

7 pφ� ψq Ą ppφ� pψ Ą χqq Ą ppφ^ ψq� χqq (1-6,�-int, Ą-int)

8 φ� ψ (hyp)

9 pφ^ ψq� χ (hyp)

10 B φ (hyp)

11 ψ (hyp)

12 φ (10, reit)

13 φ^ ψ (11-12, ^-int)

14 B φ^ ψ (hyp)

15 χ (8-9, reit 1*)

16 pφ^ ψq� χ (14-15,�-int)

17 χ (13-16, MP)

18 ψ Ą χ (11-17, Ą-int)

19 φ� pψ Ą χq (10-18,�-int)

20 ppφ^ ψq� χq Ą pφ� pψ Ą χqq (9-19, Ą-int)

21 pφ� ψq Ą pppφ^ ψq� χq Ą pφ� pψ Ą χqqq (8-20, Ą-int)

22 φ� ψ (hyp)

23 pφ� ψq Ą ppφ� pψ Ą χqq Ą ppφ^ ψq� χqq (7, reit)

24 pφ� ψq Ą pppφ^ ψq� χq Ą pφ� pψ Ą χqqq (21, reit)

25 ppφ^ ψq� χq Ą pφ� pψ Ą χqq (22-24, MP)

26 pφ� pψ Ą χqq Ą ppφ^ ψq� χq (22-23, MP)

27 pφ� pψ Ą χqq ” ppφ^ ψq� χq (25-26, ”-int)

28 pφ� ψq Ą ppφ� pψ Ą χqq ” ppφ^ ψq� χqq (22-27, Ą-int)
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2.3.4 Derivation of Axiom 7

Thus we have shown that Axiom 5 of VC is provable in the natural de-

duction system we propose. We can now move on to the other troublesome

axiom, Axiom 7. Remember that Axiom 7 also required an application of

the undesirable reit 3 of FCS. Since we removed reit 3 of FCS and intro-

duced reit RM instead, our hope is that reit RM alone will be sufficient to

provide a derivation of Axiom 7. Axiom 7 is linked to the strong centering

condition on the system of spheres. The strong centering condition repre-

sents the metaphysically convincing idea that the actual world is the most

similar world to itself. In terms of Lewis’s sphere semantics, this translates

to there being a smallest singleton sphere to which only the actual world

belongs as a member. The weak centering condition on the other hand is

weaker because it does not require that the smallest sphere be a singleton.

In a system of spheres with only the weak centering condition, the actual

world is one of those worlds which are equally most similar to the actual

world.6 Unfortunately, the new reiteration rule we have introduced can-

not accommodate Axiom 7. In order to handle Axiom 7 we propose the

following new reiteration rule (call it reit C):

6Strange though it may be from an ontic-conditional perspective, systems of spheres
with weak centering condition are utilized in constructive models of belief revision sys-
tems.
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A ^ B

B A

...

B

It is obvious that reit C handles Axiom 7. Call this modified system

FVC.7 Since Modus Ponens and Interchange of Logical Equivalents belong to

Fitch-style natural deduction systems by default, we need only to show

that Deduction within Conditionals is admissible in FVC:

Deduction within Conditionals:

If $ pχ1 ^ . . .^ χnq Ą ψ, then $ pφ� χ ^ . . .^ φ� χnq Ą pφ� ψq.

In order to prove the admissiblity of this rule of inference, we will uti-

lize the fact that the Rule of Necessitation is admissible in FCS.8 Let’s first

show that Necessitation is admissible in FVC. Ex hypothesi,ψ is categorically

derivable (i.e., a theorem), what we need then is to simply derive ψ inside

7In brief, FVC = FCS - reit 3 + reit RM + reit C.
8Note that � can be taken as a defined connective: �φ “d f „ φ� φ.
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the following strict subproof:

...

B „ ψ

...

ψ

�ψ

Now let’s suppose that we already have a categorical derivation of the

antecedent pχ1 ^ . . . ^ χnq Ą ψ. The following then is a proof of the

admissibility of the Deduction within Conditionals rule of inference in FVC:
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B „ ppχ1 ^ . . .^ χnq Ą ψq
...

pχ1 ^ . . .^ χnq Ą ψ

� ppχ1 ^ . . .^ χnq Ą ψq

pφ� χ1q ^ . . .^ pφ� χnq

φ� χ1

...

φ� χn

B φ

χ1

...

χn

χ1 ^ . . .^ χn

pχ1 ^ . . .^ χnq Ą ψ

ψ

φ� ψ

pφ� χ ^ . . .^ φ� χnq Ą pφ� ψq

This amounts to showing that the following theorem holds.

Theorem 2.3.3. Everything provable in VC is derivable in FVC.

Now what remains to be done is to prove that everything derivable in

FVC is provable in VC. To do that, we need to show that every derivation

of ψ from φ in FVC can be turned into a deduction from φ to ψ in VC.
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Theorem 2.3.4. If a formula is derivable in FVC, then there exists a deduction of

that formula in VC.

Proof : We will adapt (Thomason, 1971)’s method. Let’s begin with a

definition of VC-derivation: A VC-derivation is an array-like derivation

in which the axioms of VC can be freely introduced anywhere in it. It

is obvious that any VC-derivable formula is deducible in the axiomatic

VC. In order to prove the theorem we must show that any strict subproof

in FVC can be transformed into a VC-derivation. Let φ and ψ be two

arbitrary formulas (including J and K, where a derivation from J is to be

seen as a categorical derivation). Case 1: The derivation of ψ from φ is a

pure classical derivation (i.e., no strict subproof is present): All classical

derivations in FCV can be handled by VC in the style of (Thomason, 1970)

since VC includes all classical tautologies as an axiom (Axiom 1) in addition

to the rules Interchange of Logical Equivalents and Modus Ponens. Case 2: The

derivation of ψ from φ involves a strict subproof: In this case we need to

show that the FVC strict subproof can be transformed into a VC-derivation.

The first step is to erase the line of the subproof to be eliminated and prefix

C1 to each item of the eliminated strict subproof.
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...

B C1

C2

...

...

Cn

...

...

C1 � C1

C1 � C2

...

C1 � Cn

...

Now let’s show that C1 � Cn is deducible in the VC-derivation without

use of any strict subproofs. For this, let’s examine the exhaustive set of

possibilities for C1 � Ci (1 ď i ď n) by considering the following cases: If

Ci is the assumption C1 of the strict subproof, we insert a proof of C1 � C1

in VC. If Ci comes from D and D Ą Ci by Modus Ponens, then we insert

a deduction of C1 � Ci from C1 � D and C1 � pD Ą Ciq. If Ci is

an axiom of VC, then we insert Ci and simply deduce C1 � Ci using

Necessitation and Axiom 4 of VC. If Ci comes by negation elimination, we

deduce C1 � Ci from C1 � „„ Ci by R3 of VC. If reit 1 was used to get
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Ci from C1 � Ci, we need only reiterate C1 � Ci by ordinary reiteration.

If Ci comes from �Ci by reit 2, we insert a deduction of C1 � Ci from

�Ci using Axiom 2 and Axiom 4 of VC. If reit RM was used to get Ci from

A � Ci and B � Ci, we deduce A ^ B � Ci in VC from A � Ci and

B � Ci (where C1 ” A ^ B). If reit C was used to get Ci, we deduce

C1 � Ci from C1 ^ Ci. If Ci comes from D� C1, C1 � D, and D� Ci

by reit 4, then we deduce in VC C1 � Ci from D � C1, C1 � D, and

D� Ci. If Ci comes by conditional elimination from D and D� Ci, then

we deduce C1 � Ci from C1 � D and C1 � pD� Ciq.

�

Theorems 2.3.3 and 2.3.4 together imply the following equivalence the-

orem.

Theorem 2.3.5. VC and FVC are equivalent systems.

Everything deducible in VC are derivable in FVC and everything deriv-

able in FVC are deducible in VC.

2.4 Some Remarks on the Proof Theory of Con-

ditional Logics

It is well known that the main difference between the Stalnaker/Thomason

conditional logic CS and Lewis’s conditional logic VC is the much-debated
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Limit and Uniqueness assumptions. The Limit Assumption requires that

there always exist at least one closest world in the models. As an even

stronger assumption, the Uniqueness Assumption requires that there al-

ways exist exactly one closest world in the models. In Lewisean systems

of spheres the Limit and the Uniqueness assumptions happen to be satis-

fied only in certain peculiar models where the evaluated�-conditional

is not in effect a counterfactual conditional. For example, evaluations of

conditionals with factual (true) antecedents as in such cases as the evalu-

ation of whether @ |ù φ� ψ holds where @ |ù φ holds.9 In such cases,

where the antecedent is actually true, the Limit and the Uniqueness as-

sumptions happen to be satisfied; that is, there happens to be exactly one

closest world (namely, the actual world @) in a degenerate sense, due to

the strong centering condition on the system of spheres.

Prima facie, it is tempting to think that what needs to be done in order to

give a natural deduction formulation of Lewis’s VC is to simply remove

from FCS the reiteration rule corresponding to the Limit and Uniqueness

assumptions, and that we are done. We have shown that this is not the

case. Our finding that there is in fact no uncomplicated way of adapting

Thomason’s Fitch-style proof system FCS for Lewis’s VC is interesting

because a surprising ramification of Stalnaker’s assumptions is discovered.

In FCS, Stalnaker’s assumptions give us a very powerful proof-theoretic

9Here @ stands for the actual world, i.e., the index on which the system of spheres is
centered.
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tool by allowing us to incorporate a special sort of reductio ad absurdum

in the proofs. Given Stalnaker’s assumptions (represented by reit 3 of

FCS), whenever a conditional φ� ψ leads us into contradiction, we can

proceed to derive the conditional with the contrary consequent but with

the same antecedent, which is, according to our example, φ�„ ψ. In

FVC, however, things are not so simple. �-conditional (or, equivalently,

„pφ�„ ψq) must be utilized in order to deal with Axiom 5. Besides,

Axiom 7 needs an additional reiteration rule of its own (reit C).

All this perhaps suggests that something might be wrong with intelim-

style inferentialism about logical connectives. Our examination of the

proof theory of the two most popular conditional logics can be taken

to provide evidence to the effect that the introduction and elimination

rules alone fall short of uniquely determining the meanings of at least

some logical connectives. Even though the introduction/elimination rules

for the Thomason/Stalnaker conditional connective ą, and the introduc-

tion/elimination rules for the Lewisean conditional� connective are ex-

actly the same, we have seen that (and immense literature concerning the

Limit Assumption testifies to this) those two connectives and the related

logics are significantly different from each other. The point being made

here may be generalized to all kinds of multi-modal logics. In such log-

ics, reiteration rules seem extremely relevant to the determination of the

meanings of their associated logical connectives.
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CHAPTER 3

Belief Change

3.1 The AGM Theory of Belief Revision

The study of belief revision began in the 1980s with the seminal work

by Alchourrón, Gärdenfors and Makinson (Alchourron et al., 1985). The

framework given in that paper has come to be known as the AGM paradigm

of belief revision and is still relevant after years of subsequent research in

knowledge representation. Our exposition of the AGM theory will be

based on van Harmelen et al. (2008, pp. 317-329). Let’s begin with defining

the language and logic of belief revision.
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Definition 3.1.1. The Language and The Logic of Belief Revision: Let L be

the formal language of belief revision. L is governed by a logic $L. The

following holds for $L:

(a) $L contains all classical tautologies.

(b) $L has Modus Ponens as a rule of inference.

(c) $L is consistent.

(d) $L is compact.

By CnL(Γ) we denote the set of all $L-consequences of Γ where Γ is an

arbitrary set of sentences of the language L. We call a set of sentences T of

the language L a theory iff T “ CnLpTq. T is a complete theory iff for any

sentenceϕ eitherϕ P T or „ ϕ P T. We denote by JϕK the set of all complete

theories of L to which ϕ belongs as a member. For a theory T and a set of

sentences Γ we denote by T ` Γ the $L-closure of T Y Γ, i.e., CnpT Y Γq. By

T ` ϕ we abbreviate T ` tϕu.

Definition 3.1.2. AGM Belief Revision Function: We represent beliefs as sen-

tences of the language L, and belief sets as theories of L. Let ˚ be a binary

function TL ˆ L ÞÑ TL, where TL is the set of all theories in L. We say that

˚ is an AGM revision function iff the following holds:

(˚ 1) T ˚ϕ P T.

(˚ 2) ϕ P T ˚ϕ
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(˚ 3) T ˚ϕ Ď T ` ϕ

(˚ 4) If „ ϕ < T, then T ` ϕ Ď T ˚ϕ

(˚ 5) If φ is consistent, then T ˚φ is consistent.

(˚ 6) If $ ϕ Ø ψ, then T ˚ϕ “ T ˚ψ.

(˚ 7) T ˚pϕ^ ψq Ď pT ˚ϕq ` ψ.

(˚ 8) If „ ψ < T ˚ϕ, then T ˚ϕ` ψ Ď T ˚pϕ^ ψq.

(˚ 1) says thatTL is closed under ˚. (˚ 2) says that ˚ is always successful.

(˚ 3) and (˚ 4) represent the principle of minimal change: There is no need

to remove any beliefs if there is no inconsistency, and the posterior belief

set will contain T and new belief ϕ, together with the logical consequences

of these, and nothing more. (˚ 5) says that consistency will be preserved

as long as the newly acquired belief is consistent; otherwise inconsistency

will occur due to (˚ 2). (˚ 6) is called the irrelevance of syntax postulate;

logically equivalent sentences ϕ and ψ are equivalent from the point of

view of AGM belief revision. (˚ 7) and (˚ 8) again represent the principle

of minimal change: Revision by pϕ^ψq will not contract a smaller number

of beliefs than revision by just ϕ does; and when inconsistency is not

present, ˚ behaves in the same way as `.

It is important to notice that AGM postulates (1-8) do not characterize

a unique revision function, but instead characterize a set of those. That
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is to say, the belief set T ˚ϕ which results from the revision of T by ϕ

is not uniquely determined. This is not to be seen as a weakness of the

AGM paradigm as it can be taken to be a useful feature which captures the

subjectivity of the belief revision process. Different epistemic agents may

revise their belief sets in different ways due to certain extra-logical factors.

The AGM postulates then are not all there is to represent the particular

revision process of a certain agent. These extra-logical factors will be a

central theme throughout this thesis.

Another interesting point is that (˚ 2) (the success postulate) is extremely

strong. Even in the most radical case of incoming inconsistent informa-

tion, the success postulate prevails and as a result the belief set of the agent

lapses into inconsistency (i.e., it becomes the case that T “ L “ TK). So, ac-

cording to the AGM postulates, any incoming information, be it consistent

or inconsistent, will be treated as though it comes with absolute reliability.

But how could some new piece of information that is inconsistent (and

thereby absurd) be treated as totally reliable by an ideal epistemic agent?

A fundamental assumption of the AGM theory is that more recent informa-

tion is always treated as more reliable than earlier information. The strict

success postulate is perhaps not very plausible in the limit case of most re-

cent incoming information itself being contradictory. But we should keep

in mind that incoming inconsistent information is highly unlikely; it might

only happen in marginal cases, say, due to some faulty sensor or a sensory
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defect.

We will now go on with the second class of functions postulated by

the AGM theory, AGM contraction functions. AGM contraction postulates

are concerned with the question of how a rational epistemic agent should

contract her prior belief set when she decides to give up some of her beliefs.

Definition 3.1.3. AGM Belief Contraction: We represent beliefs as sentences

of the language L, and belief sets as theories of L. Let ˜ be a binary function

TL ˆ L ÞÑ TL, where TL is the set of all theories in L. We say that ˜ is an

AGM contraction function iff the following holds:

(˜ 1) T ˜ ϕ P T.

(˜ 2) T ˜ ϕ Ď T.

(˜ 3) If ϕ < T, then T ˜ ϕ “ T

(˜ 4) If 0 ϕ, then ϕ < T ˜ ϕ.

(˜ 5) If ϕ P T, then T Ď pT ˜ ϕq ` ϕ.

(˜ 6) If $ ϕ Ø ψ, then T ˜ ϕ “ T ˜ ψ.

(˜ 7) pT ˜ ϕq X pT ˜ ψq Ď T ˜ pϕ^ ψq.

(˜ 8) If ϕ < T, then T ˜ pϕ^ ψq Ď T ˜ ϕ.
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(˜ 1) says that TL is closed under ˜. (˜ 2) says that the contraction

function never expands the belief set. (˜ 3) says that if the belief decided

to be given up is not originally in the belief set, then the contraction function

does nothing. (˜ 4) is the success postulate which says that ˜ is successful

as long as what is to be removed is not a theorem; only if it is a theorem the

contraction function fails. (˜ 5) (the recovery postulate) says that contracting

and expanding by the same belief gives us back the original belief set T.

(˜ 6) is the contraction version of the irrelevance of syntax postulate; what

matters is not the syntactic form of the belief, but is its content. (˜ 7) says

that any belief not removed as a result of contraction byϕ and as a result of

contraction byψ should not be removed by contraction by pϕ^ψq. Finally,

(˜ 8) says that if contraction by pϕ^ψq was not processed by removing only

ψ, then contraction by pϕ^ψq cannot result in a larger set than contraction

by only ϕ does.

As should be obvious, AGM contraction functions are definable in terms

of AGM revision functions, and vice versa. This was formulated by Levi

(1977) and therefore is called the Levi Identity:

• T ˚ϕ “ pT˜ „ ϕq ` ϕ.

This should not be surprising because what we do when we revise a belief

set T by a particular belief ϕ is just first remove the beliefs in the belief set

which are contradictory to ϕ and then add ϕ into T by simple expansion.

The interdefinability of ˚ and ˜ and the significant parallel between the
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revision postulates and the contraction postulates give additional intuitive

support to the AGM paradigm. Another identity defines the contraction

function in terms of the revision function. It is called the Harper Identity

(Gardenfors, 1988):

• T ˜ ϕ “ pT ˚ „ ϕq X T.

Intuitively, the Harper Identity states that whenever we contract a belief

set T by a belief ϕ, what we do is equivalent to first revising T by „ ϕ

and then cut off all the consequences that are not contained in the original

belief set T. The reason for this cut-off should be clear if we emphasize that

T is defined as a theory and is not a complete theory. A complete theory

is identical to a maximally consistent set of sentences built through Lin-

denbaum construction and can be seen as a complete theory of a possible

world. An incomplete theory such as T on the other hand should be seen

merely as a partial representation.

3.2 Constructive Models for AGM Functions

As we mentioned above the AGM postulates determine not a unique

revision function and a unique contraction function but instead classes of

such functions, and extra-logical factors come into play when we need

to decide which particular function is appropriate. Through constructive

models one can accommodate those extra-logical factors and successfully
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determine a unique AGM function for each particular doxastic agent sub-

ject to the belief revision process. The most well-known constructions

for AGM contraction functions are called partial meet contractions and we

would like to begin with them.

Definition 3.2.1. Remainder Set, AGM Selection Function: Call any maximal

subset of T that does not entail ϕ a ϕ-remainder. We denote the set of all

ϕ-remainders of T as T 9ϕ. An AGM Selection Function is a function γ from

X Ď P pTq to X1 such that ∅ , X1 Ď X.

Intuitively, the selection function γ selects the “best” ϕ-remainders; that

is, γpT 9 ϕq is the set of ”best” ϕ-remainders of T. “Best” here is of

course used in an epistemic sense. ”Best” subsets are those subsets that are

given epistemic priority by the agent when extra-logical factors are taken

into consideration. The selection function defined therefore is a formal

tool to represent the influence on the contraction process of those extra-

logical factors. For each epistemic agent there must be a unique selection

function γ which represents the extra-logical factors contributing to the

belief change process. Once this unique γ is given, we are in a position to

formally determine the contracted belief set T ˜ ϕ:

• T ˜ ϕ “
Ş

γpT 9 ϕq.

This equation says that the contracted belief set T ˜ ϕ is the intersection

of the collection of all ”best” ϕ-remainders. However, it turns out that

this equation does not satisfy all of the AGM postulates (Darwiche and
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Pearl, 1997). In order to satisfy all of the AGM postulates for contraction,

the selection function must be restricted to a transitively relational selection

function. This is what we will do next.

Definition 3.2.2. Transitively Relational Selection Function: A selection func-

tion γ is a transitively relational selection function iff it can be defined in

terms of a transitive binary relation " on P pTq.

It is helpful to think of a transitive binary relation " on the powerset

of T as an epistemic entrenchment ordering on the set of all contraction-

candidate beliefs sets that are members of the powerset of T. Accordingly,

K2 " K1 means that K1 is at least as epistemically ”valuable” as K1. A

transitively relational selection function then selects exactly the ”best” or

”most valuable” remainders in accordance with the associated epistemic

entrenchment ordering.

Theorem 3.2.1. (Alchourron et al., 1985) Let T be a theory of the language L and

˜ be a functionTL ˆ L ÞÑ TL. ˜ is a transitive relational partial meet contraction

function iff it satisfies all of the AGM contraction postulates.

Theorem 3.2.1 indicates that an AGM constructive model for AGM

contraction functions should be given in terms of a transitively relational

selection function based on a transitive binary relation " on P pTq, where

T P TL. Before going into the next section we should emphasize that

the distinction between the axiomatic approach to belief revision (which

is formulated in terms of postulates) and the constructive approach to
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belief revision (which is given in terms of selection functions, systems of

spheres (Grove, 1988), and so on) are importantly different. As we saw

above, the constructive approach has the advantage of being capable of

accommodating easily the extra-logical factors that any satisfactory theory

of belief revision needs to accommodate. The advantage of the axiomatic

approach on the other hand lies in its intuitive strength and clarity. It

is indeed difficult to reject any of the AGM postulates for revision or

contraction; and any constructive theory of belief revision should answer

to the AGM postulates if it purports to be a satisfactory theory of belief

revision. In the next section we will compare the syntactical and semantical

approaches to belief revision, and try to decide which one fares better.

3.3 (Ir)relevance of Syntax?

Recall that (˚ 6) and (˜ 6) of the AGM paradigm state that the syntactic

form of the sentences of the language L is irrelevant for the purposes of

the belief revision process. This means that the AGM theory either as-

sumes that syntactical variation in the incoming information is irrelevant,

or tries to abstract away from the influence of those factors in the theory’s

idealized setting. Nevertheless, we should note that strong empirical ev-

idence has been given showing that the syntactic form of the information

has significant impact on the real-life revision processes of real epistemic

agents. Humans are much better at using Modus Ponens as opposed to
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their typical failure in Modus Tollens, although both are objectively valid

(Pelletier and Elio, 2005). If actual people make different revisions in view

of syntactically different but semantically same information, can we afford

to ignore syntactic form in theories of belief revision?

First, we need to explain the distinction between psychologism and

objectivity in logic. Psychologism about logic refers to the view that prin-

ciples of correct logic should answer to psychological facts about human

reasoning. As we noted above, humans are very good at using Modus Po-

nens as a rule of inference in real-life situations whereas they fail badly at

using Modus Tollens. A thoroughgoing psychologist about logic is perhaps

committed to the position that Modus Tollens is not in fact a valid rule of

inference since according to psychologism the principles of logic must be

in accordance with the real-life reasoning of human beings. This means

that the psychologist conceives of logic merely as a descriptive enterprise.

Objective normativity of logical thinking is absent in this conception. How-

ever, we can observe that it is difficult to find psychologists about classical

logic. It is widely held that the principles of classical logic hold regardless

of whether human beings think in accordance with them or not, and that

rational human beings ought to think in accordance with them. Classi-

cal logic is objectively valid and possesses normative power because it is

not intended merely as a description of actual human reasoning. It is no

wonder classical logic has been very successful in the realm of mathemat-
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ics, especially when one realizes that mathematical truth seems to be the

paradigm case of objective truth.

This is not to say that psychologism fails in all domains. It can be

argued that psychologism about defeasible or common sense reasoning

looks like a plausible position. When we, human beings, make defeasible

inferences we do not thereby commit ourselves to the absolute certainty

of the inference, or to the objective truth of the conclusion. What goes

on is much more modest than that. Common sense reasoning involves

extra logical factors such as our preferences, in addition to the every day

necessity of dealing with uncertainty. We rarely find ourselves in situations

in which we can secure absolute certainty. If we see that something looks

like a dog, barks like dog, behaves like a dog etc., we will naturally infer

that what we see is a dog. But this does not hold in the same manner as does

a statement of mathematics. The difference is so fundamental that it looks

as though we operate in a different fashion when we reason in common

sense contexts. Therefore, the criteria for a theory of defeasible reasoning

may be different from the objective criteria of classical logic. Perhaps we

can start with recognizing that building a defeasible logic and a theory of

belief revision is a descriptive enterprise. Our purpose is not to formulate

the objective laws of logic, but we are instead interested in modeling the

reasoning patterns of mortal humans in common sense contexts. Objective

normativity, then, is out of the question; when we built defeasible logics
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or belief revision systems, we do not prescribe that a rational epistemic

agent ought to infer this and that, or that she ought to give up a certain

belief and endorse a certain other, and so on. At least part of the criteria in

the context of defeasible reasoning seems to be descriptive and empirical,

and can only be gathered through empirical/psychological experiments on

human beings.

We think it is extremely important to notice that the postulate of irrele-

vance of syntax meant that the AGM theory was a semantic theory right

from the beginning (Rott, 2011). Under the semantic interpretation of the

AGM theory, AGM revision functions should take propositions, not sen-

tences, as arguments. Yet another good reason for thinking that the AGM

theory was a semantic theory right from the start is the indispensibility

of extra-logical factors (in the form of an epistemic enthrenchment or oth-

erwise). Semantic interpretation of the AGM theory should lead us to

put more emphasis on the constructive model approach as opposed to the

syntactic (postulate) approach. Accordingly, we will focus more on the

constructive models in the remainder of this thesis.

3.4 The Problem of Iterated Revision

Let’s briefly explain a well-known problem in belief change research

called the problem of iterated revision. The original AGM theory comes with

55



AGM revision functions the values (outputs) of which are belief sets. No-

tice that the output belief sets are devoid of the extra-logical information

that was contained in the input belief set. The result of this loss of extra-

logical information is that the original AGM theory cannot handle iterated

revisions. The output belief set does not contain the extra-logical infor-

mation necessary for a repeated application of the revision function. The

original AGM revision functions revise the belief sets but do not tell us

anything as to what happens to the epistemic enthrenchment relation that

was initially supplied with the input belief set of the agent. In order to

handle iterated revisions, we need to extend the original AGM theory so

that we can model and revise not only the belief set, but also the entire

belief state of the idealized doxastic agent. By a belief state, we mean the

entire doxastic content of the idealized agent, that is, the belief set, the

doxastic entrenchment relation over the elements of that belief set, and the

general doxastic outlook of the agent which will guide future revisions. A

good way to model an entire doxastic state is to use constructive models.

There are various ways to achieve such modeling, but our preference will

be to use a variant of Lewisean system of spheres because, in our view,

these systems of spheres provide a very intuitive representation of doxastic

states.
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CHAPTER 4

Alternative Semantics for Conditional Logic

4.1 Gärdenfors’s Triviality Result

It is an open problem whether Stalnaker/Thomason/Lewis condition-

als can be adequately handled within belief revision systems (Hansson,

2014). The motivation for including conditional statements in belief sets,

of course, stems from the Ramsey Test (see Chapter 1 of this thesis). Also,

it is obvious that we do possess some beliefs of the form A � B which

indicate that in the event that we acquired the belief A, we would have

inferred the belief B.
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Gärdenfors (1986) proves that inclusion of Stalnaker/Thomason/Lewis

conditionals is problematic for belief revision systems. The problems aris-

ing from the inclusion of such conditionals, Gärdenfors thinks, are related

to a conflict between two otherwise desired principles: Formalized Ramsey

Test (R) and Preservation (P).

• pRq ψ P T ˚ φ iff φ� ψ P T

• pPq If „ φ < T and ψ P T, then ψ P T ˚ φ

The left-to-right direction of (R) states that for every possible revision

T ˚φ of T to which ψ belongs as a member, we must have in the belief set T

the conditional φ� ψ. This implication requires too many conditionals

in T, and is in general problematic. However, there is in fact a more serious

problem since it turns out that the principles (R) and (P) are incompatible.

Definition 4.1.1. Trivial Belief Revision System: A belief revision system

pT, ˚,`q is trivial if and only if there is no T P T such that T is consistent

with three pair-wise disjoint beliefs A,B, and C.

Theorem 4.1.1. Gärdenfors’s Theorem: There is no non-trivial belief revision

system that satisfies the principles (R) and (P).

Gärdenfors (1986) gives a proof of the theorem using the derived prin-

ciple of monotonicity. We believe, as Rott (2011) notes, that using the mono-

tonicity principle has been unproductive from the start because it distracted
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subsequent researchers from the fact that what is really salient here is the

Ramsey Test and the behavior of conditionals. Instead of writing a formal

proof we find it more intuitive to instantiate the problem with a relatively

simple example: Let T be the belief set of a certain agent. Suppose „ P < T

and Q P T. Suppose the agent learns a scientific law Q� „ P, that is, by

revision, it becomes the case that Q� „ P P T1. It follows, by deductive

closure, that „ P P T1. Now let’s consider the revision of T1 by P, i.e., T1

P.

In T1

P one cannot keep both Q and Q �„ P because Postulate 1 of AGM

(success postulate) states that P P T1

P , leading us into P P T1

P and „ P P T1

P,

which would result in a contradiction. Considering that Q �„ P is a

scientific law, we might wish to retract Q. In that case, Q P TP but Q < T1

P,

which means that TP * T1

P even though T Ď T1. That is to say, there must be

an R such that P� R P T but pQ�„ Pq� pP� Rq < T even though

for all S, if S P T, then pQ �„ Pq � S P T. Substitute S for P � R

in the former: Contradiction. Suppose, alternatively, that we choose to

retract Q �„ P. Then, Q P T1

P, Q �„ P < T1

P, but Q �„ P P T1.

However, since T1 was defined as the output of the revision operation of T

by Q�„ P, the statement Q�„ P < T1

P (where T1

P stands for the output

of the revision of TP by Q�„ P) is in obvious conflict with the principle

of success, i.e., the principle which states that for all A, A P TA.

Gärdenfors (1986) believes that we should part with Ramsey’s principle

(R). Ramsey’s principle, Gärdenfors thinks, is a correct principle for the
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analysis of conditionals, but falls short of being an appropriate principle

for belief revision systems, because its conflict with (P) reveals that (R) is

not in fact a principle of minimal change. Any principle that purports to be a

principle of minimal change must, on Gärdenfors’ view, satisfy the preser-

vation principle (P). He then considers a number of proposed solutions,

the most promising of which appears to be (Levi, 1977)’s. Levi proposes

that we treat conditional assertions not as object-language sentences, but

as meta-linguistic assertions which are not themselves truth-bearers, and

which can be seen as possibly accepted or rejected beliefs about the belief

sets and their revisions.

We value highly Ramsey’s insight so we reject the claim that the problem

lies with the Ramsey Test. The Ramsey Test, we think, is the single most

important idea for a correct analysis of conditional statements. The culprit,

in our view, is the preservation principle. With the inclusion of Ramsey-

conditionals in belief sets, the preservation principle, we argue, becomes

obsolete. Of course, we allow that the factual (indicative, boolean) seg-

ment of belief sets should obey the preservation principle. But it seems

obvious to us preservation becomes undesirable when our theory permits

conditional beliefs. Consider the following. The factual segment of my

belief set contains A _ B. It is evident that the conditional segment of my

belief set should contain „ A � B. Assume that I learn that B; so my

belief set is revised by B. The AGM preservation postulate rules that noth-
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ing will be contracted from my belief set since no inconsistency is present (i.e.,

since „B < T). So, if preservation is applied to belief sets with conditional

segments, my new belief set will be:

{ A _ B, B, A�„ B }

This is of course unacceptable. Therefore, we defend that preservation is

simply inapplicable when conditionals are included in belief sets. Rott

(2011) seems to defend a similar position.

The main problem here, we believe, is an underappreciation of the fact

that Ramsey conditionals belong in a different level and are to be distin-

guished from the indicative/factual beliefs of the epistemic agent. Ramsey

conditionals, in our view, are meta-beliefs; i.e., they are beliefs of the agent

about what she would infer had she believed the antecedent of the given

Ramsey conditional. We think this analysis is favorable especially because

it explains the extreme context-sensitivity (see (van Fraassen, 1980)) of

some conditional idiom. What we do, in effect, is to try to formalize (at

least some of) the context using the content of the belief set of the agent.

We think this is in line with Levi (1977)’s position.

This meta-level conception of Ramsey conditionals leads us to treat the

AGM theory as a potential model theory for conditional logics. In the

next section we look into the task of formulating an alternative semantics
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for Lewis’s conditional logic VC. We will investigate whether or not an

epistemic/doxastic semantics is available for VC.

4.2 Can We Have an Epistemic/Doxastic Seman-

tics for VC?

In order to address this question let’s try to formulate a system of spheres

model for the doxastic state of an agent with the belief set T. In contrast to

the ontic system of spheres models, our doxastic system of spheres models

will not have singleton innermost spheres. The innermost sphere will

be used to represent the initial belief set T of the agent. In the doxastic

context, the innermost sphere should not be a singleton because a singleton

innermost sphere would misleadingly represent a dogmatic belief set where

the doxastic agent always has a belief about the truth and falsity of every

single proposition there is. In a nontrivial doxastic modeling we prefer to

ascribe nondogmatic belief sets to the agents because we know that a realistic

doxastic agent should never be completely opinionated about all matters of

fact. An innermost sphere with more than one index provides, by contrast,

a set of epistemically possible complete descriptions of the world relative

to the agent’s belief set. Given a belief set T, all indices will be T-indices

where an index i is a T-index if and only if it is a model for T (i.e. i |ù T).

From the point of view of the agent, all indices within the innermost sphere

are equally most plausible candidates for being the correct and complete
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description of “reality” since all of them satisfy the elements of her belief

set equally, no more and no less. The second innermost sphere (in addition

to containing the indices of the first sphere since the system of spheres

is nested) contains slightly less plausible candidates for being the correct

and complete description of reality because the indices which are members

of the second innermost sphere but which do not belong to the innermost

sphere represent alternative complete descriptions that are in slight conflict

with the belief set T of the doxastic agent. An outer sphere will contain

indices that represent less plausible candidates for being the correct and

complete description of reality from the epistemic standpoint of the agent

in question. Those “implausible” indices will contain varying amounts of

conflicting content with respect to the belief set T. Note that whenever

the belief set T of the agent is revised by a consistent belief, the innermost

sphere $0 will shrink in size. This is intuitive because a consistent revision

is nothing more than a belief expansion, and it makes the belief state of

the agent more opinionated by reducing the number of the equally plausible

candidates for being the complete and correct description of reality. The

smaller the number of equally most plausible candidates, the smaller the

size of the innermost sphere gets.

Let’s formalize our intuitive characterization of doxastic states.

Definition 4.2.1. Doxastic State: The doxastic state E of an agent with a

belief set T is a structure xI,ăTy where I is the set of all indices and ăT is
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a total preorder (i.e., a reflexive and transitive binary relation) over I, and

for all i P I and i0 P JTK, i0 ăT i.

Definition 4.2.2. Doxastic System of Spheres: A doxastic system of spheres is

an assignment $T Ď PpIq to each belief set (theory) T of the belief revision

system where the innermost (minimal) sphere is JTK “ $0 P $T = {i0 P I |

@i P I pi0 ă iq}. $T is nested and closed under unions and (nonempty)

intersections.

Intuitively, the ă-relation is the “at least as plausible” relation over

the set of all indices. The assignment $T on the other hand is structurally

equivalent to xI,ăTy and gives a system of spheres over the set of all indices.

In light of these formulations, it is possible to define the interesting notion

of consistency with a belief set.

Definition 4.2.3. Consistency with a Belief State: An input belief a is consis-

tent with a given belief state T if and only if there is some index i0 P $0 such

that i0 P JaK.

Finally, we can attempt to define alternative models for conditional logic

VC.

Definition 4.2.4. Update Models for VC: An update model for VC is a triple

xT, ˚,`y where T is a set of (conditional) theories, ˚ is a revision function

and ` is an update function. ˚ obeys the following constraints (Costa and

Levi, 1996):
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(�-1) For every sentence a P L�, and every conditional theory T, T ˚ a is a

conditional theory.

(�-2) a P pT ˚ aq.

(�-3) If a P T, then T ˚ a “ T.

(�-4) If a P T ˚ b and b P T ˚ a, then T ˚ a “ T ˚ b.

(�-5) T ˚ pa ^ bq Ď pT ˚ aq ` b.

(�-6) If T is a dogmatic and consistent (maximal-consistent) conditional

belief set and „b < T ˚ a, then pT ˚ aq ` b Ď T ˚ pa ^ bq.

(�-7) T ˚ a “
Ş

{W ˚ a | T Ď W, and W is maximal-consistent}.

(�-1) ensures that T is closed under ˚. (�-2) represents the principle

of success for ˚. (�-3) states that ˚ does nothing when input belief is

already in the belief set. (�-4) says that for any belief set T and for

arbitrary beliefs a and b, if the output of revision by a contains b and

the output of revision by b contains a, then a and b are different syntactic

representations of the same belief (proposition). (�-5) says that the output

of T’s revision by a^b cannot contain anything more than what is contained

in the output of pT ˚ aq’s expansion by b because either „ b P pT ˚ aq or

„ b < pT ˚ aq. If „ b P pT ˚ aq, the output will be the absurd belief set

TK, which contains every belief. Otherwise, ˚ will behave exactly like `.

For (�-6), suppose that a dogmatic belief set T’s revision by an arbitrary
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belief a does not rule out some belief b. By definition of dogmatic belief

sets, T contains either b or „ b. Then revision by a either removes „ b

from T, or it must be the case that b P T. If revision by a removes „ b

from T, then pa^ „ bq ” K, that is to say, a Ą b. Else, b P T. If the former

alternative is true, then T ˚ pa ^ bq “ pT ˚ aq and pT ˚ aq ` b “ pT ˚ aq; so

(�-6) is obviously satisfied. If the latter alternative is true, any expansion

by b is simply effectless. (�-7) states that in order to get the output of the

revision of T by a, we revise each $0-index by a and take the intersection of

the outputs of those revisions.

We need to say more about (�-7). (�-7) means that the output of the

revision function is given by the following procedure. Revise every single

index that is compatible with the belief set T. Take the intersection of all

of those revised indices. This intersection is the output of T’s revision.

Notice that, according to (�-7), the output of the revision of the belief

set T depends solely on the revisions of individual indices, which are

maximal-consistent sets of sentences or “possible worlds”. The revision

of an individual index (or “possible world”), in turn, depends on the

extra-logical entrenchment relation defined for that particular index. The

extra-logical entrenchment relation defined for a maximal-consistent set

of sentences or a “possible world” is nothing less than an ontic similarity

relation postulated over the set of possible worlds. That is, update functions

give us ontic semantics. The notion of belief change appropriate to validate
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Lewis’s VC, therefore, is ontic.

4.2.1 Soundness Results

Now we show that the class of all update models is sufficient to validate

Lewis’s VC. Evaluation of a �-formula relative to a belief set T in an

update model is given by the formalized Ramsey Test:

• Ramsey Test: pA� Bq P T iff B P T ˚ A

Hence, A � B is believed in a belief set T if and only if revision of

T by A contains B. A very intuitive test can also be formulated for the

Ą-conditional:

• Ą-conditional Test: A Ą B P T iff B P T ` A

So a material conditional A Ą B is believed in a belief set if and only if the

expansion of that belief set by A contains B.

We say that a formula is valid in an update model if and only if it is believed

in all belief sets of that model. We say that a formula is valid if and only if

it is valid in all update models. We say that a formula is credible if and only

if it is believed in some belief set in some update model. For a soundness

proof for VC with respect to its update semantics, we need to show that all

axioms of VC are valid in all update models, and that the rules of inference

of VC are soundness-preserving. Let’s go step by step:
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(A1) Truth-functional tautologies

All truth-functional tautologies are contained within all belief sets

in all update models because the consequence relation governing all

belief sets is classical.

(A2) Definitions of nonprimitive operators

The only nonprimitive connective we would like to use is�, which

is defined as� “d f „ pφ�„ ψq. It will suffice to add the meta-

clause: φ� ψ P T iff not pφ�„ ψq P T.

(A3) φ� φ

Since φ� φ P T iff φ P T ˚φ, and since (�-2) states that for any

belief set T in all update models a P T ˚ a, it follows that for any belief

set T in any update model φ� φ P T.

(A4) p„ φ� φq Ą pψ� φq

Assume for reductio that for some belief set T, p„φ� φq P T, but

pψ� φq < T. By the Ramsey Test, φ P pT˚„φq and φ < T ˚ ψ. From

φ P pT˚ „ φq, we infer (by (�-2)) pT˚ „ φq “ TK. From φ < T ˚ ψ,

we infer T ˚ ψ , TK. From pT˚ „φq “ TK and T ˚ ψ , TK, it follows

that T , TK and „φ ” K. Equivalently, φ ” J. Since J is contained

in all belief sets (by closure under classical consequence), this result

contradicts our initial assumption.

(A5) pφ�„ψq _ pppφ^ ψq� χq ” pφ� pψ Ą χqqq

This is equivalent to p„pφ�„ψq Ą pppφ^ ψq� χq ” pφ� pψ Ą
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χqqqq P T for any belief set T of any update model M. Assume for

reductio „pφ�„ψq P T, but pppφ^ ψq� χq ” pφ� pψ Ą χqqq <

T (where T is an arbitrary belief set). The former implies „ψ < T ˚φ.

The latter implies either (1) χ P T ˚ pφ ^ ψq and ψ Ą χ < T ˚ φ or

(2) χ < T ˚ pφ ^ ψq and ψ Ą χ P T ˚ φ. If (1), χ < pT ˚ φq ` ψ;

by (�-5), this contradicts χ P T ˚ pφ ^ ψq. Alternatively if (2),

χ P pT ˚ φq ` ψ but χ < T ˚ pφ ^ ψq. So it can’t be the case that

$CL pφ ^ ψq Ą χ. I.e., φ ^ ψ is consistent. By (�-3), it can’t be

the case that T is inconsistent. However, if T is consistent, and since

we know that φ ^ ψ is also consistent, from the properties of AGM

expansion functions it follows that pT ˚ φq ` ψ “ T ˚ pφ ^ ψq, which

is in contradiction with (2).

(A6) pφ� ψq Ą pφ Ą ψq

Assume for reductio that there is an update model where a belief

set T satisfies the antecedent but not the consequent. Then by the

Ramsey Test we have ψ P T ˚ φ, and by the Ą-conditional Test we

have ψ < T ` φ. This is in obvious contradiction with property (* 3)

of AGM revision functions.

(A7) pφ^ ψq Ą pφ� ψq

Again let’s suppose for reductio that there is an update model where

a belief set T satisfies the antecedent but not the consequent. Then

the following holds: φ ^ ψ P T and ψ < T ˚ φ. From φ ^ ψ P T and
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(�-3) it follows that T ˚ φ “ T. Then ψ P T ˚ φ. Contradiction.

(R1) Modus Ponens

In order to show that Modus Ponens preserves soundness with respect

to the update semantics for VC, let’s consider the following: Assume

that φ Ą ψ and φ are believed in a belief set T in an update model

M ; that is, φ P T and φ Ą ψ P T. Since, by definition, belief sets

are closed under classical consequence, it immediately follows that

ψ P T.

(R2) Deduction within Conditionals

$ pχ1 ^ . . .^ χnq Ą ψ

$ ppφ� χ1q ^ . . .^ pφ� χnqq Ą pφ� ψq

This rule of inference is intended to preserve theoremhood so we will

concern ourselves with preservation of update validity here. Let’s

assume that pχ1 ^ . . .^ χnq Ą ψ is update-valid. That is to say, for all

models and for all belief sets T, we assume ppχ1 ^ . . .^ χnq Ą ψq P T.

From the Ą-conditional Test we immediately have ψ P T ` pχ1 ^ . . .^

χnq for all T. Now assume for reductio that the conclusion of the rule

of inference is invalid; i.e., in some model there is a belief set T1 such

that T1 contains ppφ� χ1q ^ . . . ^ pφ� χnqq, but does not contain

φ� ψ. By the Ramsey Test, this means that pχ1 ^ . . .^ χnq P T1 ˚ φ,

but ψ < T1 ˚ φ. But ex hypothesi, ppχ1 ^ . . . ^ χnq Ą ψq P T for all T in
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all update models. By universal instantiation, ppχ1 ^ . . .^ χnq Ą ψq P

T1 ˚ φ. Since, by definition, all belief sets are closed under classical

consequence relation, it follows that ψ P T1 ˚ φ. Contradiction.

(R3) Replacement o f Classical Equivalents

Due to the closure under classical consequence property of all belief

sets, replacement of classical equivalents obviously holds.
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CHAPTER 5

Conclusion

In this thesis, (1) we had a look at the history of conditional logics, (2)

formulated a natural deduction system for David Lewis’s conditional VC,

(3) gave an exposition of the closely-related AGM theory of belief change,

and (4) investigated whether an epistemic/doxastic semantics based on the

AGM theory is attainable for VC.

As regards (1), we note that Frank P. Ramsey’s test gives us a proce-

dure for evaluation of rational acceptability of conditional statements. Ac-

cording to Ramsey, conditional statements do not get truth values because

indicative conditionals, Ramsey thinks, should be handled in terms of sub-
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jective probability; whereas counterfactual statements are not concerned

with matters of fact and are only related to what follows from given hypo-

thetical assumptions along with certain laws the agent already endorses.

We also remarked that Stalnaker’s reinterpretation of Ramsey changed the

scene significantly by presupposing that conditionals (be they indicative

or counterfactual) are truth-bearers.

As regards (2), we note that the rejection of Stalnaker’s assumption in VC

creates certain complications in its proof theory. Stalnaker’s assumption

turns out to be a useful proof-theoretic device by permitting the use of

“indirect conditional proofs” in the natural deduction system. Once we

remove reit 3 of Thomason’s system, we lose this useful device and it

becomes necessary to introduce two new reiteration rules in order to ensure

the semantic completeness of the proof system we propose. We name

this system FVC. We also speculate that our results could suggest that

intelim-style inferentialism about (at least some) logical connectives can be

problematic.

Although (3) is by and large expository, we defended the position that

the AGM theory of belief change was a semantic theory right from the

start. We base this claim on the postulate of irrelevance of syntax.

For (4), let’s emphasize that the only notion of belief change available

to validate Lewis’s VC is the notion of belief update (also called dynamic
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belief revision). We think that “belief update” and “dynamic belief revi-

sion” are misnomers. A more appropriate name would be “imaging”, a

term which is due to Lewis. We observe that imaging semantics involves

an ontic similarity relation postulated over the set of possible worlds, and

therefore, is ontic. It is remarkable that VC does not seem to admit of any

epistemic treatment. This indicates that a genuine epistemic conditional

logic should have a different axiomatics.

What can we make of the apparent indispensability in VC’s semantics

of the ontic similarity relation defined over the set of possible worlds?

One way is to take the metaphysics seriously. Let’s assume for a moment

that Quine-Putnam indispensability thesis is applicable to the analysis of

conditional idiom as well; indeed, one could make a strong case to the

effect that conditional idiom (both indicative and counterfactual) plays an

indispensable role in scientific theorizing. If, for all we know, the only

adequate analysis of conditional idiom is committed to an ontic similarity

relation over the set of possible worlds, then we should perhaps be pre-

pared to endorse realism about possible worlds. This line of thinking is

tenable only if the Quinean idea of “ontological commitment” is tenable.

At any rate, it is tempting to become more “credulous” towards modal

realism in view of the results in (4).
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Another way would be to reject the axiomatics of VC on the basis of the

claim that it depends on pre-theoretic intuitions such as the presupposition

that counterfactual statements must have truth values. For my part, I think

it is very difficult to say if a rational acceptability account is more intuitive

than a truth-theoretic account, or vice versa.

In any event, research in the logic of conditionals has proved to be a

significant success as a highly technical interdisciplinary programme with

some actual and many potential “real-world” applications. I am of the

persuasion that this appealing success has largely been due to a rigorous

utilization of formal/mathematical methods. Study of conditionals will

likely continue to be a central theme for future scientific philosophy.
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