
Function Outlining

Peng Zhao, José Nelson Amaral

Department of Computing Science

University of Alberta, Edmonton, Canada

{pengzhao, amaral}@cs.ualberta.ca

Abstract

Large functions that are frequently executed, i.e. hot, are common in non-numeric applica-

tions. These functions present challenges to modern compilers not only because they require

more time and resources for compilation, but also because they might degrade runtime perfor-

mance by preventing optimizations such as function inlining. Fortunately, often large portions

of the code in hot functions are rarely executed, i.e. cold. This paper describes a function out-

lining technique to split cold regions out of the hot host function so that these functions become

smaller and more amenable for other optimizations. Unlike other work, our function outlining

occurs in the very early phase in a compiler backend. This early outlining will enable more

aggressive optimization in the down-stream phases of the compilation, such as inlining and code

placement. We describe challenges to function outlining transformations and our solutions. We

found that, with a carefully selected strategy, function outlining reduces the sizes of large hot

functions significantly (up to 97% and 39% in average) without hurting performance. This is a

very promising starting-point for potential client optimizations such as partial function inlining

and code placement.

1

1 Introduction

Algorithms used in optimizing compilers are often applied to the scope of a function. Many of these

algorithms have super-linear time and spatial complexity on their inputs. Thus compiling a program

with large functions demands large memory storage and is time-consuming. Large functions also

impose limitations on other optimizations such as function inlining and code placement. The

inlining heuristics used in most compilers avoid inlining call sites that target large callees. The goal

of such heuristics is to prevent excessive code growth, also referred to as the code bloat problem [5, 6,

7, 27]. For example, large functions are the most prominent cause that prevent the Open Research

Compiler (ORC) from eliminating frequent called, i.e. hot, sites. ORC only eliminates about 30%

of the runtime function invocations for gcc and 57% for perlbmk [27]. Moreover, more than 50%

of the hot call sites are not inlined because the callee is too large.

Large functions also undermine inter-procedural code layout algorithms. For instance, Pettis

and Hansen’s “closest is best” code layout algorithm tries to place a caller function next to its

most frequently invoked callee [18]. The intuition is that proximity between call site and callee in

memory enhances performance. However, if the caller itself is very large, its most frequently callee

may still be placed far away from the call site, defeating the code placement heuristic.

Fortunately, not every statement in a frequently called large function is equally important or

executed as often as its host function. There are many examples of large but infrequently executed,

i.e. cold, code in hot functions [14, 15]. For instance, only 8.1% of the code in the BSD version of

the TCP network protocol implementation is hot[15]. Another example is the function regmatch

in perlbmk. Regmatch contains a switch-case statement with about 900 lines of C code to handle

57 string matching scenarios. Although these 900 lines of code are evenly distributed through the

57 cases, only 12 cases occur frequently. Splitting cold code out of hot functions, i.e. outlining, is

a natural solution to overcome the negative impact of mixing codes with heterogeneous execution

frequency. The advantages of outlining cold regions of a hot function are at least three-fold:

Enabling Inlining. When a large cold region is outlined from a hot function, the hot function

2

might become small enough to enable its inlining.

Improving Cache Efficiency. Without outlining, the aggregation effect of large cache lines re-

duces spatial locality. Cold statements may be loaded into the cache when hot statements

are loaded. Segregating hot and cold regions into separate functions enables better code

placement to improve the cache utilization.

Improving Instruction Fetch Bandwidth. Modern superscalar and VLIW architectures de-

mand high instruction bandwidth of the memory hierarchy. A sufficient number of useful

instructions must be fetched into the cache for full utilization of the functional units in the

processors. For instance, Mosberger et al. found that limited instruction bandwidth results

in almost 70% of CPU cycles idle in some architectures [14]. Separating the hot code from

the cold code also improves the utilization of instruction fetch bandwidth.

A negative performance impact of outlining is that extra function calls are introduced to trans-

fer control between the outlined region and the other parts of the program unit. An efficient

implementation of outlining should minimize this performance penalty. This paper describes the

following contributions:

� An abstract syntax tree (ABS)-based region formation that efficiently exploit high level con-

trol flow structures and their associated feedback information. Compared to Hank’s region

formation algorithm [10], which is based on control flow graph (CFG), ABS-based region

formation is straightforward and results in less outlining performance penalty.

� An argument that the Optimal Outlining Problem (OOP) is NP-hard.

� An effective heuristic to analyze the benefit of outlining a region. This heuristic decision

weighs the benefit of reducing the host function size against the frequency of the extra function

calls introduced. We also describe how to patch the control flow and data flow to preserve

program semantics after outlining.

3

� A novel technique, alias agent, to disambiguate parameters created to pass to outlined func-

tions from their counterparts in the host function. Because outlining is an early code transfor-

mation, it may negatively impact existent downstream optimizations. Our experiments show

that more complex alias relationships created by these parameters causes the major impact

on downstream optimizations and result in the introduction of substantial memory spills.

� A study of two orthogonal function splitting strategies: (1) collective VS. independent split-

ting; and (2) splitting with VS. without alias agent. This study shows that selecting the

correct strategy is crucial. Independent splitting with alias agent reduces function sizes sig-

nificantly while minimizing the performance penalty of outlining.

Section 2 introduces the intermediate representation where outlining is implemented and the

concept of region. Section 3 describes the design and implementation of outlining. Section 4,

compares the different outlining strategies. Finally, we discuss about the related work in Section 5.

2 Background

An important motivation for function outlining is to enable more aggressive inlining, which is a

major component of inter-procedural optimization (IPO) in ORC. ORC performs IPO very early to

enable aggressive function-level compilation. It is thus natural to also implement outlining early in

this compiler. The outlining analysis and transformation described in this paper is a transformation

of the abstract syntax tree, called WHIRL in ORC, of the function affected.

2.1 WHIRL Tree Introduction

ORC’s intermediate representation has five levels, from very high WHIRL to very low WHIRL [20].

At the higher levels the WHIRL representation of a function is close the original source code. We

implemented outlining on very high WHIRL where high level hierarchical control flow constructs —

such as if , loop and switch — have not been transformed to flat constructs —- such as conditional

4

branches and gotos1. Thus outlining can take advantage of these hierarchical constructs and their

associated frequency information to identify the cold code segments in a single pass through the

WHIRL tree.

A contrived function, HotPU shown in Figure 1, illustrates the WHIRL tree representation.

Statements are annotated with their execution frequency obtained from runtime profiling. Assume

that HotPU is frequently invoked. The shaded code segments or nodes are the cold parts of

HotPU .

In very high WHIRL, three control flow constructs may lead to infrequently executed code in a

hot function:

if statement. An if node in a WHIRL tree has two children: a THEN block and an ELSE

block. The feedback information contains the execution frequency of each branch. For exam-

ple, in Figure 1 both if statements have skewed execution frequency.

switch statement. In Figure 1, each CG node corresponds to an enumerated case in a switch

statement. If the switch expression (or key) equals to n, CGn node is executed and the

program jumps to An node (the corresponding action code for case n). If the switch expression

doesn’t equal to any of the enumerated cases, program jumps to the Ad node (the default

action) by the DG node. Feedback information associated switch statement indicates the

execution frequency of each case. Studies have shown that many switch statements have

skewed execution frequency distribution [28]. In Figure 1, only two of the cases in the switch

statement are hot.

Early return. Early return occurs when the return statement or an exit function call appears

early in a function. Each return statement is annotated with its execution frequency. A hot

early return implies that the rest of the function is cold. In Figure 1, there are three early

returns at line 12, 15 and 18 (or the node return0, return1 and return2 in the WHIRL tree).

However, only return2 (at line 18) is hot.
1Programming with gotos is a heavily criticized and very infrequent practice.

5

HotPU //1000

1. switch (key)

2. case 1: ... break; // 500

3. case 2: ... break; // 0

4. case 3: ... break; // 500

5. case 4: ... break; // 0

6. default: ... // 0

7. endswitch

8. if (i > 100) // 1, if1

9. while (1) // 2

10. ... // loop body

11. endwhile

12. return 0; // 1, ER(Early Return)

13. else // 999

14. if (i == 101) // 0, if2

15. return 1; // ER

16. else // 999

17. i - -;

18. return 2; //999, frequent ER

19. endif

20.

21. printf(”1. not touched”); // 0

22. endif

23.

24. printf(”2. not touched”); // 0

25. printf(”3. not touched”); // 0

FUNC_REGION�

if1�

region1�

switch�

DG�CG1�

CG4�
CG3�
CG2�

A1� Ad�

A4�

A3�

A2�

region3�

while� return 0� if2� printf1�

printf2�

Loop�
body�

printf3�

CG: case goto�

DG: default goto�
Ad: default action�

An: action for n�th� case�

500�

0�

1, 2�

500�

500�

0�

0�

500�

0�0�

0�

2�

999�

1�

0�0�

0�

1000�

1000�

1000�

999�

region5�region4�
999�0�

 return 2�
999�

 return 1�
0�

i - -�

region2�

Figure 1: Example Source Code & WHIRL Tree

Analyzing high level control flow constructs and their corresponding frequency annotation makes

spotting the cold code in a hot function very straightforward.

6

2.2 Region

In this paper, region is a sequence of code in the program that is guarded by a high level control

flow construct such as if and loop statements. For instance, for an if-then-else statement, the code

executed under the then branch consists of a region and the code executed under the else branch

forms another region. Likewise, the loop body of a while statement is a region.

A region is represented in WHIRL by a subtree with a BLOCK node as the root. This node

has an arbitrary number of children representing the content of the region. The order of a child c

in a region R, order(c, R) is the one from the source code. In Figure 1, order(while, region1) = 1

and order(return0, region1) = 2. A WHIRL node w has a parent, parent(w), and a set of ances-

tors, ancestors(w). In Figure 1, parent(while) = region1 and ancestors(while) = {region1, if1,

FUNC region}. If s ∈ R, R must be an ancestor of s. The position of s in R, Pos(s, R), is given

by:

Pos(s, R) =




order(s, R) if parent(s) = R

order(sA, R) if (sA ∈ ancestors(s)) ∧ (parent(sA) = R)

Thus, if an ancestor of s is a child of R, the position of s in R is the order of that ancestor.

In Figure 1, Pos(return2, region5) = order(return2, region5) = 2 and Pos(return2, region3) =

order(if2, region3) = 1.

Given a node z in a WHIRL tree W , the level of z in W , Level(z, W) is the number of edges

that have to be traversed from the root of W to reach z. The root of W is at level 0.

Given a WHIRL tree W and two nodes y ∈ W and z ∈ W , the nearest common ancestor of y

and z, NCA(w, v) is a WHIRL tree node s ∈ W such that all the following conditions are true:

1. s ∈ ancestors(y) ∧ s ∈ ancestors(z)

2. � ∃ t ∈ W, (t �= s) ∧ (t ∈ ancestors(y)) ∧ (t ∈ ancestors(z)) ∧ (Level(t, W) > Level(s, W))

An early return statement short-circuits the rest of the current function. However, the short-

circuited code might reside in different levels and different regions in the whirl tree. For example,

return2 leads to three unexecuted print statement: printf1 in region3; printf2 and printf3 in

7

FUNC Region. The code short-circuited by an early return er in region R, SC(er, R) is defined

by:

SC(er, R) =
{

s
∣∣∣

(
A = NCA(er, s)) ∧

(
Pos(s, A) > Pos(er, A)

)}

In the example, SC(return2, region3) includes printf1 and SC(return2, FUNC region) includes

printf2 and printf3.

3 Function Outlining

There are three phases in function outlining optimization: region reorganization transforms the

WHIRL tree so that the cold code is in separated regions from hot code; candidate identification

identifies regions for which outlining is beneficial; function splitting generates a new function from

a candidate region and replaces the region with a call to the new function.

3.1 Region Reorganization

In biased if statements, the hot code and the cold code are well structured in two separate sub-

regions. However, for switch statements and early returns, hot and cold codes are mixed with

each other. A depth-first pass on the WHIRL tree reorganizes these codes into different regions for

convenient splitting.

3.1.1 Partitioning a Switch Statement

Unlike if and loop constructs, the abstract syntax tree representation of a switch statement is

not well structured. Consider the WHIRL representation of a 4-case switch shown in Figure 2(a).

Assume that cases 1 and 3 are hot and the other cases are cold. Both the case selection and

the case actions of the hot and cold cases are mixed together. Switch-case partitioning splits the

switch statement into two nested switch statements, as shown in Figure 2(b). The parent switch

contains only hot cases and their corresponding action code. The cold cases and their action code

are placed into the nested switch statement. The advantage of this re-organization is three fold:

8

region

action1

action2

action3

action4

actionD

casegotos

default goto

switch
action1 action3

action2 action4

region

casegotos

D1(default goto)

casegotos

D2(default goto)

actionD1

actionD2

region

switch1

switch2

(a) Before Partition (b) After Partition

Figure 2: Partition a switch statement

(1) the cold switch statement is in an independent region and can be easily split into a separate

function; (2) the case selection phase for the hot cases may be faster because now the cold cases

are out of the way; (3) code layout can be improved by placing the cold switch away from the hot

actions. The only disadvantage is that the case selection for cold cases is delayed. However, this

will not hurt the performance as long as cases classified as cold by profiling feedback are indeed

cold.

The depiction of switch splitting in Figure 2 is conceptual and assumes that the default case is

cold and can be moved into the cold switch statement. When the default case is also hot, switch

splitting should behave differently: the case selection must remain in the original switch statement

and the cold case selection must be duplicated in the cold switch [28].

3.1.2 Handling Frequent Early Returns (ER)

The algorithm HandleER, shown in Figure 3, handles early returns. HandleER is called when an

early return Ser is encountered during the depth-first traversing of the WHIRL tree. ReturnFreq

accumulates the execution frequency of early returns (step 1). Its value is reset to zero before

the scan of a function starts, and is preserved between calls to HandleER. Unless Ser resides

in a loop body, when the ratio between the accumulated frequency and the frequency of the host

function reaches the ERThreshold, the code after Ser is cold. If Ser is inside a loop body Sloop, it

9

is possible that the code in SC(Ser, Sloop) is still hot and we avoid outlining it. We use an upward

traversal from the early return Ser to find its uppermost loop ancestor Sloop (step 6-9). If there is

no loop ancestor, Sloop is set to be Ser itself. The cold code resulted from frequent early return

is SC(Sloop, FUNC BODY). The cold code might spread into different levels of the WHIRL tree

(e.g. the three printf statements in our example). To preserve program correctness, they cannot

simply be put together in a single region. Instead, an upward traversal from Ser (step 11- 15)

extracts the cold code of every region that it encounters into a new region (step 14).

HandleER (Ser)
1. ReturnFreq ← ReturnFreq + GetFreq(Ser)

2. if
(

ReturnFreq
GetFreq(HostFunc)

� ERThreshold
)

3. return
4. Sloop ← Ser

5. CurrentParent ← GetParent(Ser)
6. while (CurrentParent �= ROOT) // ROOT is the root of the WHIRL tree.
7. if (CurrentParent is a loop construct)
8. Sloop ← CurrentParent
9. CurrentParent ← GetParent(CurrentParent)
10. CurrentNode ← Sloop

11. while (CurrentNode �= ROOT)
12. CurrentParent ← GetParent(CurrentNode)
13. if (CurrentParent is a region)

14. call ExtractColdCodeIntoRegion
(
SC(CurrentNode, CurrentParent)

)

15. CurrentNode ← CurrentParent

Figure 3: Handling Early Exits.

3.2 Outlining Candidate Identification

After region reorganization, every cold code snippet is placed in an independent region and anno-

tated with (frequency, size). The size of a region is the number of WHIRL nodes in that region.

Next the compiler identifies cold regions that are suitable for outlining.

3.2.1 Hazardous program units for outlining

Some program units are not outlined to prevent performance degradation or to preserve program

correctness. Besides trivial functions that are rarely executed, the following are not outlined.

Small regions. Outlining replaces a region in a host function, fhost, with a function call to a

10

new function, fout. Code patches are often required, before and after the call to fout, to preserve

correctness. If a region is too small, these patches might be larger than the outlined region. This

kind of outlining is strictly avoided because it fails to reduce the size of the original program unit.

Regions with escaped alloca-allocated memory. Alloca allocates memory space in the stack

frame of a function. This memory is automatically freed when the function returns. When a

function uses alloca to allocate memory in a region and references the allocated memory outside of

the region, the region should not be outlined. This is because fout would allocate a memory block

with alloca and pass this block to fhost. It would be difficult to maintain the original semantics

of the program because the memory allocated in fout would be automatically freed at its exit and

would be no longer valid in fhost.

3.2.2 Optimal Outlining Problem is NP-hard

Cold regions are not always beneficial for outlining. The major benefit of outlining is the size

reduction of the host function that enables more aggressive inlining and improves code layout.

Splitting a segment of code out of a function has several costs. First, necessary code patches may

eliminate the size reduction benefit. Second, because the original cold region in fhost is replaced

by a function call to fout, there is a performance penalty to execute the cold region. It is a hazard

to outline hot code because it will result in many runtime function calls. Therefore, an Optimal

Outlining Problem (OOP) can be formulated as a constrained optimization problem: fhost is formed

by a set of regions. Assume precise frequency Fi and size Si information for each region Ri in fhost,

and a given budget of extra runtime calls K, find a set of regions that, when outlined, minimizes

the size of fhost without exceeding K. The 0-1 knapsack problem [9] can be reduced to OOP. Given

N items 〈vi, wi〉, each item with value vi > 0 and weight wi > 0. The 0-1 knapsack problem is the

problem of finding a vector with N binary elements di that satisfy the following condition:

Maximize(
N∑

i=1

(di ∗ vi)) such that
N∑

i=1

(di ∗ wi) � K and di ∈ {0, 1} (1)

11

Given a knapsack with capacity K and N items in the 0-1 knapsack problem, we construct an OOP

function as follows. Each item 〈vi, wi〉 represents a region with size vi and outlining cost wi. Let

K be the extra runtime call budget. The conversion complexity is linear to the number of items

N . Therefore, the 0-1 knapsack problem can be reduced to OOP in linear time. The 0-1 knapsack

problem is a well-known NP-hard problem, therefore OOP is also NP-hard. Thus, a reasonable

heuristic to find approximate solutions to OOP is necessary.

3.2.3 Engineering Approach to Selective Outlining

Given a region Ri in a function fhost with frequency Fi and size Si, we define the frequency ratio

of Ri and the size ratio of Ri as:

size ratio(Ri) =
Si

size(fhost)
(2)

freq ratio(Ri) =
Fi

frequency(fhost)
(3)

We adopt a popular knapsack problem greedy algorithm to estimate the benefits of splitting

a region Ri out of fhost. The greedy algorithm has tight time and space bounds and has been

proved effective in many cases. The idea is to calculate the profit density for each region. In this

framework the profit density of a region is called benefit:

benefit(Ri) =
size ratio(Ri)
freq ratio(Ri)

(4)

The regions are then sorted in decreasing order of their benefit value. Regions are selected for

outlining, equivalent to placing items into a knapsack, until the constraint in equation 1 is violated,

i.e. the knapsack cannot hold any more items.

Essentially, size ratio(Ri) and freq ratio(Ri) estimate the contribution of Ri to the total size

and execution frequency of fhost. Therefore, this heuristics favors large cold regions. Intuitively,

larger regions that are not executed frequently should produce the most benefit from outlining and

incur in the least runtime penalty.

12

Also, a FreqRatioThreshold ensures that the number of invocations of fout does not exceed a

small percentage of the invocations of fhost:

Fi ≤ FreqRatioThreshold × frequency(fhost) (5)

In our implementation, FreqRatioThreshold = 0.01.

3.3 Function Splitting

This section discusses the most important aspects of the function splitting process. A complete

description is available in [28].

3.3.1 Splitting and Patching

A region Rout is selected to be outlined from a host function fhost. The leftover code remaining in

fhost forms Rleftover. An outside caller, fcaller, is a function that contains a call to fhost. The newly

generated outlined function, fout, contains Rout. A leftover function, fleftover, is a new version of

fhost where Rout is replaced by a call to fout plus code patches. After outlining (Figure 4.b), fcaller

calls fleftover, and fleftover calls fout. fleftover inherits all the original resources of fhost including

the function name, patched WHIRL tree and symbol table. To preserve program semantics, the

following patches are required.

Patching Data Flow. To maintain data flow integrity, local variables accessed in Rout are passed

as parameter to fout. If all references to a variable x in Rout are uses, the value of x is passed to

fout. If x is ever defined in Rout, the address of x is passed as a parameter, and all references to x

in fout are changed correspondingly.

Patching Control Flow. Three kinds of inter-region control flow need to be handled with care:

side-entrances, side-exits and return statements. If fhost enters Rout via several entries, then

fleftover must inform, in each invocation of fout, which entry should be taken. If Rout jumps to

an arbitrary label in Rleftover, fleftover must be informed at which label execution should restart

after returning from fout. If Rout contains a return statement, fleftover must return to fcaller

13

outlined
 region

leftover
 region

 caller
outsider

host function = outlined region + leftover region

call
return

goto

 caller
outsider

 leftover function.

1. The leftover function replaces the host function.
2. The outlined function becomes the callee of the

leftover
function

patch

call

goto?

call
patch

outlined
function

return?

(a) Before outlining (b) After outlining

Figure 4: Outlining transformation

immediately upon the return of fout. To achieve this hand-shaking, we introduce two new local

variables in fleftover, Flag and ReturnV alue. The addresses of Flag and ReturnV alue are both

passed to fout. Before invoking fout, Flag is initialized to tell which entry should be taken. At the

return of fout, Flag specifies control flow dispatching as explained in Table 1. If Flag equals 0,

the fleftover returns to its caller immediately upon return from fout. If Flag is 1, the statement

immediately following Rout is executed after fout returns. Otherwise, the control should flow to a

specific label in fleftover. If Flag ≥ 2, the value of Flag is used to index a jump table containing

the addresses for a computed goto statement.2 ReturnV alue has the same type as the return type

of fleftover. When fout needs to return a value, it saves the value to be returned in ReturnV alue

and sets Flag = 1. When Flag is 1 on fout’s return, fleftover immediately returns the value stored

in ReturnV alue to fcaller.

Flag Action
0 return Return V alue
1 fall through

≥ 2 computed goto (Flag - 2, JUMPTABLE)

Table 1: Semantics of Flag and Return V alue on the return of fout

2To be precise, it is the value of Flag − 2 that is used to index the table.

14

3.3.2 Performance Tuning

This section describes important performance tuning for the outlining optimization. The motivation

of outlining is to enable more aggressive inlining. However, as we have discussed, outlining itself

has several negative impacts on performance. As section 4 shows, the impact of outlining strategy

selection on performance is dramatic. This section, describes these strategies.

Independent outlining VS. Collective outlining. Regions to be outlined may be scattered

throughout fhost. Two possible outlining strategies are independent outlining and collective out-

lining. In independent outlining, each cold region is split into a separate function as shown in

Figure 5(a). In collective outlining a single fout function contains all outlined regions (Figure

5(b)). In this case the Flag parameter is used to dispatch control to the correct region whenever

fout is invoked. Each outlined region in fleftover is replaced with an assignment to Flag, a call site

to fout and control flow patching code after the call site. A drawback of collective outlining is a

more complex CFG in fleftover which may be difficult for downstream compiler analysis.

E�

C�B�

A�

D�

H�G�

F�

I�

(a) Independent

E�

B�

A�

D�

H�C�

S1�

S2�

G�

F�

I�

(b) Collective

V'= V�
cold_pu (&V')�

V = V'��

A�

B�

(c) Alias Agent

Figure 5: Different Strategies (Shaded code is cold)

Alias Agent When the address of a variable x is passed as a parameter to fout, imprecise alias

analysis will conservatively assume that x can now be aliased to any other variable that fout has

access to. This conservative assumption may prevent downstream optimizations and result in

serious performance penalty. For instance variables that were kept exclusively into registers might

15

be spilled after outlining is implemented because of imprecise alias information. This situation

occurs often in ORC 2.1 and constitutes a performance hazard. Our solution is to introduce an

alias agent technique to eliminate this serious side-effect. Each variable v whose address is passed

to fout has a corresponding alias agent v′. An alias agent is a new local variable introduced in

fhost. Just before the invocation of fout, the value of v is copied into v′. Then the address of v′ is

passed to fout. Upon return from fout, the value of v′ is copied into v as shown in Figure 5(c). Both

copies occur in the same cold basic block that contains an invocation to fout. Without alias agent,

we found that ORC often places memory spills in hot paths (e.g. into block A instead of B in

Figure 5(c)), degrading runtime performance significantly.

4 Results

The results of our experimental investigation of outlining on SPEC2000 integer benchmarks may

be summarized as follows:

� Outlining can reduce the size of hot functions by up to 97%. This impressive size reduction

makes these hot functions more amenable to later inlining.

� Independent splitting significantly outperforms collective splitting. When combined with alias

agents, independent splitting results in outlining with practically no performance penalty.

� Alias agents are crucial to minimize the performance penalty of outlining. Without alias agent,

memory spills may be placed in hot paths, resulting in significant performance degradation

(ranges from 0.6% to 11.3%).

� Although outlining increased retired instructions and function calls, sometimes it may slightly

improve performance. In our experiments, outlining improves perlbmk by about 1.7%.

Experimental Framework: This research uses the Open Research Compiler 2.1 (ORC) as an

experimental platform. ORC is an open-source compiler that evolved from the SGI’s MIPSPro

compiler, which implements a rich set of optimizations including Inter-Procedural Optimizations

16

(IPO) and complete program analysis support. ORC generates binaries for Intel’s 64-bit Itanium

processors.

Experiment Configuration: Experimental results were obtained on an HP ZX6000 workstation

with a 1.3GHz Itanium-2 processor, 1 GB of main memory, 32KB of L1 cache, 256KB of L2 Cache,

and 1.5MB of on-die L3 cache. The operating system is Red Hat Linux 7.2 with a 2.4.18 kernel.

This experimental study is based on SPEC2000 integer benchmarks that have large hot functions:

crafty, gap, perlbmk, vortex, vpr. Time is measured by the Linux time command and micro-

architectural benchmarking is obtained with pfmon. All reported run-times are the average of 5

consecutive identical runs.

4.1 Statistics for Outlining Transformation

Table 2 presents a study of outlining in each benchmark. In this framework, outlining occurs only

on hot functions that cannot be inlined because of their large sizes. The first row of Table 2 contains

a static count of the number of regions split. The Control Flow Construct rows show the frequency

of each type of control flow constructs where cold regions are found. The major source of cold

regions in crafty, gap and vpr are if statements. Benchmarks perlbmk and vortex have large

switch-case statements in which a small portions of cases dominates the execution. Early returns

are not frequent. The Function Size Reduction row shows that outlining can drastically reduce the

size of large functions: size reduction ranged from 1% to 97%. Except for crafty, the average

function size reduction is greater than 39%. The Parameter Pass row reports that the number

of parameters required for outlined functions ranges from 2 to 18 in the benchmarks. Finally, the

Runtime Call Increase reports that the increase in the number of runtime calls never exceeds 0.15%.

4.2 Performance Analysis

This section compares the runtime performance of the four outlining strategies listed in Table 3.

The four strategies result from two orthogonal decisions: (i) whether the alias agent technique is

used to prevent false aliases; (ii) whether collective or independent splitting is used.

17

crafty gap perlbmk vortex vpr
−12

−10

−8

−6

−4

−2

0

2

Benchmarks

P
er

fo
rm

an
ce

 In
cr

ea
se

 (
%

)

A−I
N−I
A−C
N−C

(a) Runtime Performance.

crafty gap perlbmk vortex vpr
−5

0

5

10

15

20

Benchmarks

R
et

ire
d

In
st

ru
ct

io
n

In
cr

ea
se

 (
%

)

A−I
N−I
A−C
N−C

(b) Retired Instructions.

crafty gap perlbmk vortex vpr
0

2

4

6

8

10

12

14

16

18

20

Benchmarks

S
ta

ll
In

cr
ea

se
 (

%
)

A−I
N−I
A−C
N−C

(c) Processor Stalls.

crafty gap perlbmk vortex vpr
−8

−6

−4

−2

0

2

4

6

8

10

12

Benchmarks

IP
C

 c
om

pa
ris

on

A−I
N−I
A−C
N−C

(d) Instructions/Cycle.

Figure 6: Execution time and microarchitecure performance of outlining.

18

Benchmarks crafty gap perlbmk vortex vpr
Number of Regions Split 18 4 12 16 5
Control if 18 3 6 8 5
Flow switch 0 0 6 7 0

Construct early return 0 1 0 1 0
Function min-max(%) 1-24 7-97 40-66 8-71 24-69

Size reduction average(%) 11.6 39.4 49.8 36.9 46.4
Parameter min-max 2-5 3-6 2-16 2-18 5-9

Pass average 3.2 5.0 7.5 10.4 7.0
Runtime Call Increase (%) 0.15 6.85 ∗ 10−6 9.50 ∗ 10−3 0.05 0.08

Table 2: Statistics of Outlining

Short Explanation
A-I Alias agent and independent splitting.
N-I No alias agent and independent splitting.
A-C Alias agent and collective splitting.
N-C No alias agent and collective splitting.

Table 3: Strategy Combinations

Figure 6(a) shows the performance changes caused by these different strategies. Strategy selec-

tion has significant impact on performance, here are some important observations.

� Independent splitting with alias agent (A-I) always out-performs the other versions. Con-

sidering that outlining introduces extra function calls and extra instructions, the fact that

A-I delivers outlining with no practical performance penalty is impressive: the performance

difference is negligible for crafty, gap, vortex and vpr. For perlbmk A-I outlining even

improves performance by about 1.7% (see Section 4.3).

� Without the alias agent (N-I and N-C strategies) outlining significantly degrades performance

(see results for crafty, gap and perlbmk). This is a consequence of ORC’s imprecise inter-

procedural alias analysis.

� Collective splitting outlining results in higher performance penalty and thus should be avoided.

19

4.3 Micro-architecture Level Benchmarking

This section investigates how different outlining strategies change the micro-architectural behavior

of the benchmarks and therefore the runtime performance.

Figure 6(b) shows the number of instructions executed.3 The A-I strategy always executes

the least instructions. This is evidence that the region selection algorithm is indeed selecting cold

regions. If the alias agent technique is not used (i.e. N-I and N-C), many additional instructions

are executed in crafty, gap and perlbmk. This increase is specially dramatic in perlbmk where

it reaches 17.2% for N-I. Collective splitting executes from 0.7% to 3.3% more instructions than

independent splitting.

Figure 6(c) presents a comparison of processor stalls under the four strategies. While the

number of stalls always increases, A-I produces the least number of extra stalls (0.1% to 1.5%).

Outlining without alias agent increases stalls in the range of 0.4% to 18.8%.

It may be surprising that although A-I outlining increases the number of retired instructions

(by about 0.5%), and the number of processor stalls (by about 1.3%), it still improves the runtime

performance (by about 1.7%) for perlbmk. A study of the average number of instructions per cycle

(IPC), shown in Figure 6(d), offers an explanation. A-I outlining improves the IPC of perlbmk by

2.6%. Thus, it seems that the compiler does a better job, in later optimizations, of improving the

processor’s functional unit utilization. Although the improvements on IPC for perlbmk in the other

strategies is even higher, the benefit is dwarfed by the the number of additional retired instructions

and stalls in those strategies.

5 Related Work

There is previous work related to several aspects of the design and implementation of the outlining

presented in this paper.
3The numbers reported reflect the number of instructions retired.

20

5.1 Function Splitting

Several researchers have studied function splitting [4, 14, 15, 18, 21, 22, 23, 24]. In their well-known

code positioning paper, Pettis and Hansen split a function and put the hot and cold code far apart

in the address space [18]. They don’t generate new functions for the split code. Control transition

between hot and cold code is by explicit jump instructions. When the two parts are located too

far away from each other, code stubs are needed for relaying jumps. Their motivation is to reduce

the size of the primary function, which contains the hot code, to allow important related code to

co-exist in the instruction cache or to be placed in the same memory page. Their function splitting

is only intended for code placement, therefore it is implemented at the link phase. Their control

flow patching method breaks the address integrity of a function and is difficult to implement and

maintain in high level optimizations.

Castelluccia et al. and Mosberger et al. use outlining to increase the code density of network

protocol code[4, 14]. However, they only handle if statements. Our experimental work shows that

switch statements and early returns are also important causes for unbalanced execution frequency

in standard benchmarks. Thus our outlining framework includes outlining of these constructs.

Muth et al. proposed the implementation of partial inlining in a link-time optimizer called

ALTO [15]. They generate a new program unit to hold all the split code. Once control is transfered

to the program unit containing the cold code, it cannot return to the unit containing the hot code.

As a consequence, the cold program unit has to clone any portion of the hot code that is reachable

from the cold region, making the code bloat problem worse. In ORC, duplicating all the code that

can be reached from the cold WHIRL tree would likely increase the parameter passing overhead.

While we share Muth’s motivation, we think that their outlining and partial inlining occur too

late in the compilation process to allow other optimizations to benefit from partial inlining. Very

few optimizations occur after linking. In contrast, our outlining occurs in the very beginning

of the backend. Early outlining enables aggressive inlining and potentially benefits all the later

optimizations.

21

Way et al. experimented with partial inlining on high level intermediate representation[22, 23,

24]. Their inlining is an enabling technique to build inter-procedural regions and reduce optimiza-

tion costs. As a by-product of their CFG-based inter-procedural formation work, they manually

find cold portions of a program. Then they manually partially clone the cold code into a new func-

tion and replace the cold code with a call to the new function. While the concepts that they study

are similar to the ones presented in this paper, their hand manipulation of code is not suitable for

commercial compilers. In contrast, our tree-based outlining and enabling pre-processing techniques

make partial inlining suitable for production-strong compilers.

Suganuma et al. propose partial inlining for a Java just-in-time compiler. Their work takes

advantage of the on-stack-replacement technique [11] supported by their JVM and therefore they

do not need to worry about control flow patching during outlining.

5.2 Handling Unstructured Control Flows

Many approaches to handle unstructured control flow have been described [1, 2, 3, 8, 17, 19, 25, 26].

The common idea is to eliminate unstructured control flow, such as gotos and irreducible loops, to

make programs more amenable to optimization. We do not need to eliminate unstructured control

flow, instead we focus on unstructured flow that results in cold code inside a hot function. Our

transformation only tries to group code with similar execution frequency together.

5.3 Region Formation Algorithm

Hank’s intra-procedural region formation method [10] is a generalization of the IMPACT compiler

runtime feedback-based trace selection algorithm [16]. Hank analyzes the CFG of a function to

identify a hot region that includes the entry and exit of the function. Using the most frequent basic

block as a seed for the hot region, Hank’s algorithm first traverses upward and downward in the CFG

to find a most desirable path as the seed path. During this seed path generation process, Hank

determines the desirability according to the frequency relevance of the successor or predecessor

basic blocks. Once the seed path is selected, the algorithm tries to use similar frequency heuristics

to include more relevant basic blocks to generate the hot region. Hank’s region formation occurs

22

after aggressive inlining. Very large functions generated by aggressive inlining may significantly

increase compilation time. Hank’s motivation is to repartition a large function into small regions to

control the compilation time while exposing important optimization opportunities. Way et al. later

contended that aggressive inlining itself might be expensive. Instead they propose an extension to

Hank’s algorithm that integrates inlining with inter-procedural region formation [22, 23].

The CFG-based region formation of Suganuma et al. tries to identify cold regions in a hot

function [21]. They first select some seed basic blocks as rare or non-rare according to some pre-

defined heuristic. Then this information is propagated along backward data flow until it converges.

Then the CFG is traversed again to decide the regions and the transitions between them.

All these region formation methods, including ours, try to separate code segments with hetero-

geneous execution frequency. We take advantage of frequency-annotated high-level intermediate

representation to implement our region formation. Our transformation is closer to the source code

and done without CFG formation. We claim that our implementation is more straightforward and

easier to debug. When CFG is used to form regions high-level control flow information is lost. For

instance, the absence of this information might lead to collective outlining, which we found to be

not efficient in Section 4.

5.4 Preservation of Semantics in Splitting

Komondoor et al. use function splitting to abstract repetitive code segments to a new function so

that the program becomes easier to understand and maintain [12, 13]. We have a different goal: to

separate the cold code from a hot function. However, their semantics-preserving methods handle

problems that are similar to the ones that we met in our study: some statements, known as exiting

jumps in their work, such as returns in the outlined region and gotos from the outlined region to the

leftover region should simply not be included in the outlined function. Their splitting candidates

are limited to single-entry regions while our splitting framework can handle side-entries to a region.

Thus our control flow patching work can be seen as a superset of their techniques.

23

6 Conclusion

The abstract syntax tree-based function outlining described in this paper features (1) a novel

region formation approach that takes full advantage of high level control flow constructs, (2) a

set of outlining candidate identification heuristics and (3) a solid patching method to maintain

the correct semantics of a program. With proper strategy, this function outlining can significantly

reduce the size of large hot functions without performance penalty.

This encouraging result motivates the future study of the performance potential of client op-

timizations such as inlining the leftover hot function after outlining, i.e. partial inlining, and

outlining-enhanced code placement. Given that we were able to implement outlining without per-

formance penalty, we expect that these client optimizations should produce significant performance

improvements.

7 Acknowledgements

We had a lot of help to perform this work. We thank the SGI team for making the code that

originated ORC open source. We thank the ICRC and the ORC team in the Institute of Computing

Technology, Chinese Academy of Sciences for building the ORC research infrastructure. Sincere

thanks to Sun C. Chan and Shin-Ming Liu for their help and discussion. Thanks also go to people

who answered a lot of questions in the ORC and Open64 mailing lists. This research is supported by

the Natural Science and Engineering Research Council of Canada (NSERC) and by the Canadian

Foundation for Innovation (CFI).

References

[1] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren. Conversion of control dependence to

data dependence. In Proceedings of the ACM SIGPLAN-SIGACT on Principles of Program-

ming Languages, pages 177–189, Austin, January 1983.

24

[2] Z. Ammarguellat. A control-flow normalization algorithm and its complexity. IEEE Transac-

tions on Software Engineering, 18(3):237–251, March 1992.

[3] B. S. Baker. An algorithm for structuring flowgraphs. Journal of the ACM, 24(1):98–120,

January 1977.

[4] C. Castelluccia, W. Dabbous, and S. O’Malley. Generating efficient protocol code from an

abstract specification. In Conference proceedings on Applications, technologies, architectures,

and protocols for computer communications, pages 60–72, Palo Alto, CA, USA, 1996.

[5] J. W. Davidson and A. M. Holler. A model of subprogram inlining. Technical report, Computer

Science Technical Report TR-89-04, Department of Computer Science, University of Virginia,

July 1989.

[6] J. W. Davidson and A. M. Holler. A study of a C function inliner. Software - Practice and

Experience (SPE), 18(8):775–790, 1989.

[7] J. W. Davidson and A. M. Holler. Subprogram inlining: A study of its effects on program

execution time. IEEE Transactions on Software Engineering (TSE), 18(2):89–102, 1992.

[8] A. Erosa and L. J. Hendren. Taming control flow: A structured approach to eliminating goto

statements. In International Conference on Computer Languages (ICCL), pages 229–240, May

1994.

[9] M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to the Theory of

NP-Completeness. W. H. Freeman, 1979.

[10] R. E. Hank, W. W. Hwu, and B. R. Rau. Region-based compilation: An introduction and

motivation. In the 28th Annual ACM/IEEE International Symposium on Microarchitecture,

Dec 1995.

[11] U. Hölzle. Adaptive Optimization for Self: Reconciling High Performance with Exploratory

Programming. PhD thesis, Stanford University, 1994.

25

[12] R. Komondoor and S. Horwitz. Semantics-preserving procedure extraction. In Proceedings of

the 27th ACM SIGPLAN-SIGACT on Principles of Programming Languages (POPL), pages

155–169, Boston, USA, Jan 2000.

[13] R. Komondoor and S. Horwitz. Effective, automatic procedure extraction. In 11th Inter-

national Workshop on Program Comprehension (IWPC), pages 33–43, Portland, USA, May

2003.

[14] D. Mosberger, L. Peterson, and S. O’Malley. Protocol latency: Mips and reality. Technical

report, TR-95-02, Dept. of Computer Science, Univ. of Arizona, 1995.

[15] R. Muth and S. Debray. Partial inlining. Technical report, Dept. of Computer Science, Univ.

of Arizona, U. S. A., 1997.

[16] P. P. Chang and W. W. Hwu. Trace selection for compiling large C application programs

to microcode. In Proceedings of the 21st International Workshop on Microprogramming and

Microarchitecture, pages 188–198, Nov 1988.

[17] W. W. Peterson, T. Kasami, and N. Tokura. On the capabilities of while, repeat, and exit

statements. Communications of the ACM, 16(8):503–512, Aug 1973.

[18] K. Pettis and R. C. Hansen. Profile guided code positioning. In ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI), pages 16–27, 1990.

[19] L. Ramshaw. Eliminating go to’s while preserving program structure. Journal of the ACM,

35(4):893–920, October 1988.

[20] SGI. Whirl intermediate language specification, 2000.

[21] T. Suganuma, T. Yasue, and T. Nakatani. A region-based compilation technique for a java

just-in-time compiler. In ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI), pages 312–323, 2003.

26

[22] T. Way. Procedure Restructuring for Ambitious Optimization. PhD thesis, University of

Delaware, May 2002.

[23] T. Way, B. Breech, and L. L. Pollock. Region formation analysis with demand-driven inlining

for region-based optimization. In The 2000 International Conference on Parallel Architectures

and Compilation Techniques (PACT’00), pages 24–36, 2000.

[24] T. Way and L. L. Pollock. A region-based partial inlining algorithm for an ilp optimizing com-

piler. In The 2002 International Conference on Parallel and Distributed Processing Techniques

and Applications, pages 552–556, 2002.

[25] M. H. Williams. Generating structured flow diagrams: the nature of unstructuredness. The

Computer Journal, 20(1):45–50, 1977.

[26] M. H. Williams and H. L. Ossher. Conversion of unstructured flow diagrams to structured

form. The Computer Journal, 21(2):161–167, 1978.

[27] P. Zhao and J. N. Amaral. To inline or not to inline, enhanced inlining decisions. In 16th

Workshop on Languages and Compilers for Parallel Computing, pages 405–419, College Sta-

tion, TX, Oct 2003.

[28] P. Zhao and J. N. Amaral. Splitting functions. Technical Report TR04-18, Dept. of Computing

Sciences, Univ. of Alberta, Edmonton, Canada, 2004.

27

