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ABSTRACT

Predicting the future state of a random dynamic signal based on corrupted, distorted, and partial observations
is vital for proper real-time control of a system that includes time delay. Motivated by problems from Acoustic
Positioning Research Inc., we consider the continual automated illumination of an object moving within a
bounded domain, which requires object location prediction due to inherent mechanical and physical time lags
associated with robotic lighting. Quality computational predictions demand high �delity models for the coupled
moving object signal and observation equipment pair. In our current problem, the signal represents the vector
position, orientation, and velocity of a stage performer. Acoustic observations are formed by timing ultrasonic
waves traveling from four perimeter speakers to a microphone attached to the performer. The goal is to schedule
lighting movements that are coordinated with the performer by anticipating his/her future position based upon
these observations using �ltering theory.

Particle system based methods have experienced rapid development and have become an essential technique
of contemporary �ltering strategies. Hitherto, researchers have largely focused on continuous state particle
�lters, ranging from traditional weighted particle �lters to adaptive re�ning particle �lters, readily able to
perform path-space estimation and prediction. Herein, we compare the performance of a state-of-the-art re�ning
particle �lter to that of a novel discrete-space particle �lter on the acoustic positioning problem. By discrete
space particle �lter we mean a Markov chain that counts particles in discretized cells of the signal state space
in order to form an approximated unnormalized distribution of the signal state. For both �lters mentioned
above, we will examine issues like the mean time to localize a signal, the �delity of �lter estimates at various
signal to noise ratios, computational costs, and the e�ect of signal fading; furthermore, we will provide visual
demonstrations of �lter performance.
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1. INTRODUCTION

Tracking systems for real-time media control have existed for a number of years. Initially, these systems
centered about so-called \Virtual Reality" creation where movements within a small area of perhaps 3m x 3m,
were tracked and used to change point of view within computer-modelled 3D worlds. Video images of these
worlds were displayed via either video projector or head-mounted video display panels. These images changed
in real-time in response to the person's position and angular orientation - a total of six degrees of freedom (three
spatial axes plus three rotational angles). An alternate direction of media control exploration has recently arisen
in which wireless 3D tracking over areas of large extent (up to 20m x 20m) is used by performers or interactive
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environment participants. In these applications, only 3D (X, Y, Z) coordinates have the potential of being
observed in the presence of sensor noise; no angular orientations are directly measured.

A �ltering algorithm is used to \clean up" the corrupted measurements of the observed variables and to
estimate the components of the performers state that can not be measured, such as the orientation and forward
speed. These positional estimates, possibly detailed enough to include gestures, are used to control a variety
of media in real-time. The media consist of robotic lights, multi-channel sound systems, and real-time video
projections of computer generated images. APR's 3D tracking and media control products are at the forefront
of this exploration and their functioning is enhanced by real-time techniques of 3D position prediction. Because
of inherent mechanical and physical lags of the di�erent media, real-time tracking for a performer is actually a
real-time prediction problem. In this paper we compare two di�erent �ltering methods on the acoustic problem,
namely the hybrid particle based �lter and a Markov chain motivated discrete space �lter. Modern �ltering
theory involves smoothing, tracking, and predicting a signal, like our performer's state, based upon a sequence
of distorted, corrupted measurements of part of the signal state. Below, these observations will be comprised
of noisy distance measurements from perimeter speakers to the performer.

1.1. Background

We use the reference probability method to describe the solution to this �ltering problem in terms of a discrete{
time version of the Duncan{Mortensen{Zakai equation and then use particle Markov chain approximations to
produce implementable approximate solutions. The later approximations incorporate discretizations of both
space and amplitude directly into the unnormalized conditional distribution of the signal given the back obser-
vations. Both approximations converge to the actual �ltering conditional distribution as the number of particles
(and cells in the Markov chain case) increases.

Suppose the signal is described by an Itô stochastic di�erential equation (SDE) de�ned on some probability
space (
;F ;P), and living within a d-dimensional rectangular domain D = [0; L1]� [0; L2]�� � �� [0; Ld], where
Li; 1 � i � d are the lengths of all dimensions. A general stochastic signal motion model is de�ned by(

dxt = b(xt)dt+ g(xt)dvt

x0 = x ;
(1)

where xt is the signal state at time t and vt is a standard d-dimensional Brownian motion. We assume that b
and g have been chosen in a manner to ensure that xt stays in D. Let a(x) = g(x)g�(x) be the di�usion matrix.
The di�usion operator (L;D(L)) for the stochastic equation de�ned above is

L =
1

2

dX
i;j=1

ai;j(x)
@2

@xi@xj
+

dX
j=1

b(x)
@

@xj
(2)

and the associated adjoint operator is given by

L� =
1

2

dX
i;j=1

ai;j(x)
@2

@xi@xj
+

dX
j=1

�j(x)
@

@xj
+ �(x) (3)

where �j(x) =
Pd

i=1
@ai;j(x)
@xi

� bj(x) and �(x) = 1
2

Pd
i;j=1

@2ai;j(x)
@xi@xj

�
Pd

j=1
@bj(x)
@xj

.

Let " > 0; set tm := m" for m = 1; 2; : : : ; take h to be the sensor function, and let W be a standard R-valued
Brownian motion independent of fxtg. For h 2 C(D), we then de�ne

Ytm = h(xtm)�tm + ��Wtm (4)

to be a noisy observation sequence of the signal xtm at times tm with �Wtm = Wtm � Wtm�1 , and de�ne
Yt

:
= �fYtm ; tm � tg to be the information observed up to time t.

For all real measurable functions f on D such that Ejf(xt)j
2 <1 for all 0 � t � T , the �ltering problem is to

evaluate
�t(f) := E[f(xt)jYt]; t 2 [0; T ]; (5)
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which is the least square estimate of f(xt) given all the discrete observations up to time t. For each Borel
function f and t 2 [0; T ], we call any version of �t(f) in equation (5) an optimal �lter. We de�ne

�m := expfh(x)
Ytm
�2

�
"

2�2
h2(x)g (6)

and
�m = �m � 1: (7)

Using the convention that the product over zero elements is 1, we set �t := �
bt="c
m=1 �m(xtm). Hereafter, brc

denotes the greatest integer not more than a real number r. We de�ne a probability measure P0 on (
;F) by
dP0=dP := ��1T and let E0 denote the expectation with respect to P0. Under P0 the distribution of fxtg is
the same as under P and fYtm ; m = 1; 2; : : :g is a sequence of Gaussian random variables independent of fxtg
with mean zero and variance �2". Then, one has the Kallianpur-Striebel formula

�t(f) =
E0[f(xt)�tjYt]

E0[�tjYt]
:=

pyt (f)

pyt (1)
: (8)

For any f 2 D(L), we �nd, from integration by parts and independence, that

pyt (f) = py0(f) +

Z t

0

pys(Lf)ds+

bt="cX
m=1

E0[f(xt
m�

)�t
m�

�m(xtm )jYt]; a:s: P0: (9)

Under ellipticity and smoothness condition on a,b, one �nds that pyt has a density p(t; x) on (H; h � iH) :=
L2(D; dx), which is the path-wise unique solution to the random integral equation on H

hpt; fiH = hp0; fiH +

Z t

0

hps;LfiHds+

bt="cX
m=1

hpt
m�

; �mfiH ; 8f 2 D(L); t > 0; x 2 D; (10)

where p(0; x) = p0(x) for x 2 D, and the density function p0 of the distribution of x0 is assumed to be in H .

1.2. Particle Filters

Particle-based nonlinear �lters are e�ective and versatile methods for computing approximations to �ltering
problems. The basic requirements for a particle method are simulation of particles with the same law as the
signal and the re-sampling of these particles to incorporate observation information e�ectively. Then, the
high-particle limit of an empirical measure for the resulting particle system can be anticipated to exist and
yield the conditional distribution of the signal at a particular time given the back observations. The weighted-

interacting hybrid particle method is thought to possess an excellent compromise between the unadaptive nature
of the weighted particle method and the overly random resampling in classical interactive particle methods;
furthermore, this method accepts the extent of resampling as a problem dependent parameter �. A particle in
the hybrid method simply runs as a weighted particle until such time as its weight di�ers signi�cantly from the
majority of the particle weights. In particular, after every observation a particle with a weight at least � times
larger than another is combined with the low weighted particle. The low weighted particle is moved to the
higher weighted particle's site with a high probability and, otherwise, the high weighted particle is moved to the
low one's site. In either case, the weights of both particles are reset to the average of the two original particle
weights. This process starts from the highest weighted particles in the system to the lowest. The resampling is
valid since the two particles, after recombination, being either at the site of the precombination lower or higher
weighted particle, have the same expected weight as before. This recombination procedure is repeated until all
weights are within � of each other, and then the conditional distribution approximations for particle �j with
weight fWm after the mth observation are

P (Xtm 2 AjYt1 ; : : : ; Ytm) �
1PMtm

j=1
fWm(�j)

MtmX
j=1

fWm(�
j)1�jtm2A : (11)
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where Mtm is the total number of particles at time tm. Equation (11) is a direct approximation to (equations
5 & 8).

In the aforementioned adaptive weighted particle method each particle is simulated independently according
to the law of the signal between observations. In particular, when the signal has a continuous state space, as in
the problem of current interest, so do the particles. All resampling calculations are done on a particle-by-particle
basis regardless of whether other nearby particles require entirely similar calculations. An alternative approach
is to group nearby particles into cells. This group treatment not only requires less extensive computer resources
but also reduces unwanted resampling noise. Ideally, the discrete space particle system would be constructed to
achieve the correct inter-cell ows and observation-dependent resampling with a minimal amount of calculation
and resampling noise. Below and in a later section we describe such a system that has already been shown5

to perform very well. Our discrete-space particle system is constructed by discretizing our basic �ltering
equation (10) directly (as opposed to discretizing the signal in more classical works) and then applying Poisson
process time change techniques. In particular, we assume a density for the conditional distribution of the signal
given the back observations and approximate this density via

bpN (t; x) = X
k2DN

nNk (t)1
N
k (x)=

X
k2DN

nNk (t) ; (12)

where nNk (t) is the number of particles in cell k at time t. Equation (10) is used to derive an initial equation
for nNk and time-change techniques are then used to turn nNk into a Markov chain. We carefully reduce rates by
subtracting in and out ows to yield an eÆcient birth-death only Markov chain technique. The net bene�t of all
our rate reduction is a typically fast, accurate approximation. In contrast to the hybrid method approximation
to Equations (8) & (9) (see Equation (11) above), the discrete space �lter does not store weights for each particle
or even distinguish between \nearby" particles, but rather bases its particle count adjustment decisions on all
particles in cells. The conditional distribution approximation in a discrete space �lter is calculated by

P (Xtm 2 AjYt1 ; : : : ; Ytm) �
1

Mtm

nNk (tk)1k2A: (13)

where Mtm is the total number of particles at time tm, and nNk (t) is the number of particles in cell k at time
tm.

The algorithm to implement our �lter is reduced to an algorithm to implement a speci�c time{inhomogeneous
Markov chain, which can be done using a single Poisson process and independent sequences of Bernoulli trials.
The inhomogeneity is due to the observations themselves. The discretization of amplitude results in particles

representing a small mass of the conditional distribution at particular grid points in the signal domain. These
particles di�use, drift, give birth, and die within the region similarly to those of continuous{state particle �lters
except we do not distinguish between particles in a cell and only worry about net ow of particles. The particle
locations include information from the observations through observation{dependent births and deaths.

2. PERFORMER TRACKING PROBLEM

APR Inc.'s wide-area 3D tracking and media control products track performers or interactive environment
participants as they move within areas of large extent (up to 20m x 20m). Performers are tracked in 3D via
a small ultrasonic microphone (typically carried in hand or worn on the shoulder or head) which senses pulses
emitted by four ultrasonic speakers arranged around the perimeter of the tracking area. Lag times resulting
from having to track over areas of large extent and from the mechanical delays inherent in devices such as
robotic lighting require predictive calculations to enhance the quality of media responsiveness to gestural data.
This problem is particularly acute in the case of robotic lighting \follow-spot" behavior where lights track
participants as they move around within an interactive space. Combined time lags can range up to half a
second depending on tracking area and light mechanics. Additionally, once the participant is initially found by
the system, the system must be robust in that it be able to function in the presence of signal \fading" due to
occlusion of tracking transducers by the participant, other humans present, or theater props contained within
the interactive space.
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Traditionally, Kalman �lters have been used to provide estimates of performer position at future times,
allowing lights to \lead" the performer as he/she moves about. This research was engendered as a result of
APR's dissatisfaction with Kalman �lters. They are problematic for a number of reasons: there are practical
problems such as matrix instability and brittleness; setting Kalman matrix coeÆcients can be a matter of
some trial and much error; there is normally no incorporation of additional information gained from the use
of performer motion models; and �nally, there is considerable diÆculty in extending Kalman �lters to more
complex representations of system functionality as embodied in performer motion models and tracking system
observation models.

Below we give a nonlinear motion model for the performer as well as a nonlinear observation model, both
unsuitable for the Kalman �lter, and develop nonlinear �ltering algorithms to predict future performer position
based upon real observation data.

2.1. Performer Motion Model

In modeling our performer's motion, there are considerations in constructing the drift and di�usion coeÆcients,
denoted b(Xt) and g(Xt) respectively in equation (1), to mimic not only a realistic performer on stage but also
a general one. The performer's state is a bounded 5-dimensional real-valued vector (x; y; z; f; �) where (x; y; z)
is the vector position of the performer with center stage oor being the origin (0; 0; 0). For simplicity, we
describe only the forward speed as fmin � f � fmax allowing the performer to walk backwards when fmin < 0.
The orientation of the performer is labeled �, where � = 0 rads when the performer is facing the audience.
The mathematical model for the performer's motion is described in equation (14) below. Evolution for the
x and y position is dependent on both the current forward speed and orientation. Equations for both the z
position and speed f are, in fact, Itô SDEs. The drifts are towards a constant parameter 2zmax+zmin

3 and favg ,
which correspond respectively to the height placement of a microphone on a performer, and to a natural stage
performer's walking speed. Randomness in z and f are \turned o�" at the lower and upper bounds by the
di�usive part of the equation. The square root function, versus a linear one, is used to ensure the noise is turned
o� slowly. Modeling for the performer's orientation involves considerations in simple stage concepts such as
a drift to face an audience and a pull back to the center stage when near the ends. Because of the periodic
nature of �� < � � � the model was �rst designed as a 2-dimensional di�usion on a circle. Then, converting
back to a scalar Itô formula, we have the equation for � (see below equation 14), which is good for � 2 (��; �).
For simplicity reasons, we omit the mathematical description involving local time for � 2 (��; �] and merely
mention that we force periodic boundary conditions such that � lives in the interval (��; �] by \resetting" � 2 R
to the equivalent angle in (��; �]
The complete model is given below

dxt = ft cos(�t)dt

dyt = ft sin(�t)dt

dzt = �z(
2zmax + zmin

3
� zt)dt+ �z

p
(zmax � zt)(zt � zmin)dB

z
t

dft = �f (favg � ft)dt+ �f
p
(fmax � ft)(ft � fmin)dB

f
t

d�t =
�
���1�t � ��2�(Xt)

s
(cos(�t) +

xtp
x2t + y2t

)2 + (sin(�t) +
ytp

x2t + y2t
)2
�
dt+ ��dB

�
t

(14)

where Bz
t , B

f
t and B�

t are independent standard Brownian motions, and

�(Xt) =

8>>>>>><>>>>>>:

if(arctan(xt; yt) � 0)

(
�1 arctan(xt; yt) < �t � arctan(xt; yt) + �

1 otherwise

if(arctan(xt; yt) > 0)

(
1 arctan(xt; yt)� � < �t � arctan(xt; yt)

�1 otherwise
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describes which direction the performer will turn. �(Xt) = �1 signi�es a drift in a counter clock-wise direction.
Some constant performer parameters that are used for our simulation runs are given in the table below.

Performer Parameters Value Performer Parameters Value

zmin 0.0 fmin -0.4
zmax 1.0 favg 1.5
�z 0.15 fmax 2.9
�z 0.9 �f 0.75
�� 0.5 �f 0.75
��1 0.2
��2 0.4

2.2. Acoustic Observation Model

Modeling of the ultrasonic tracking process must be based on the physical functionality of the tracking system
itself. APR's 3D ultrasonic tracking technology involves four speakers which are placed in an approximate
rectangle around the perimeter of the desired interactive area. The speakers are calibrated so that their 3D
position (X, Y, Z) coordinates are known relative to a user-de�ned frame of reference in the center of the
interactive area. The speakers emit ultrasonic pulses with a duration of about 1 millisecond at a frequency
around 20 kHz. Firing of the four speakers is time multiplexed with each speaker waiting long enough for
a pulse to clear the interactive area before another speaker is �red. These pulses arrive at the ultrasonic
microphone carried by a performer and are radio telemetered back to a PC computer where they are digitized
and processed by a DSP chip to extract their timing information i.e. the elapsed \time of ight" between when
the pulse was emitted and when it was received at the microphone. There is an appreciable but �xed delay
introduced by the telemetry and digitization process. Noise is superimposed upon this signal due to phasing of
the ultrasonic carrier frequency with the digitization rate plus the fading of signals due to the presence of low
level pulse reections from previous pulses which are still bouncing about the tracking area. These reections,
while not of high enough amplitude to be counted as pulses, a�ect the rise-time of the current ultrasonic
pulse's arrival via phase cancellation. The reections, of course, change in relation to room position and the
positions of people/objects within the room. While in theory it is possible to model these reections, it is not
practically possible to gather enough information about room geometry and wall surface composition to do
so. Furthermore, the chance of a very poor reading increases as the performer's orientation tends away from a
particular speaker, with the poorest chance of a valid reading when the performer's back intrudes between the
speaker's line of �re and the microphone. We have found it possible to treat the errors as random Gaussian
noise, with an orientation dependent probability of missed observations. The distance measurements between
one of four speakers and the performer's ultrasonic microphone is given by the sensor function

h(Xtm ; S
l) =

r�
(Slx � x)2 + (Sly � y)2 + (Slz � z)2

�
(15)

where l = f0; 1; 2; 3g is an integer index for the four speakers. Typically these radial position measurements are
accurate to within about �10 cm. To further contrast di�erences between our two test �lters, our simulations
are run with a range of observation noises. An observation at time tm is either constructed by adding zero-
mean independent Gaussian random variable f�Wtm ; m = 1; 2; � � � g whereW is a standard R-valued Brownian
motion, or declared invalid according to the formula

Ytm =

(
h(Xtm ; S

l) + ��Wtm ; if Um(0; 1) < p

�1 ; otherwise
(16)

where l = m mod 4 represents the last speaker number �red, fUm(0; 1); m = 1; 2; � � � g is an independent

sequence of [0; 1]-Uniform random variable, and p = 0:97 � 0:67 j�j� is the probability of a valid observation
reading with � being the angle between the performer orientation and speaker l.
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2.3. Stage Model

The tracking area of the performer's stage is constrained by our four perimeter speakers, and has dimensions
10.0m x 10.0m x 7.0m. With center stage being (0,0,0), the four speakers' coordinates used in equation (15) are

Stage Parameters Sx Sy Sz

S0 -5.0 -5.0 7.0
S1 -5.0 5.0 7.0
S2 5.0 -5.0 7.0
S3 5.0 5.0 7.0

2.4. Objective

The problem is to estimate the conditional distribution of the performer's 3 dimensional position, � time units
into the future, based on the noisy back observations.

P (Xtm+� 2 dxj�
�
Ytq ; 0 � q � m

	
): (17)

3. FILTER TECHNIQUES

Considerations such as the data structure used greatly a�ect both hybrid and discrete space �lter �delity and
eÆciency. Although the implementations for the two methods have important computer science component we
do not clutter the descriptions of the algorithms with all practical programming eÆciencies. Simulations were
developed and run on a DEC-ALPHA UP1500 833 MHz system.

3.1. Hybrid Update Algorithm

The basic re�ning hybrid algorithm proceeds as follows:

1. Initialize particles
�
�10 ; �

2
0 ; : : : ; �

M
0

	
uniformly over the domain [0; L1]� [0; L2]�� � �� [0; Ld], thus yielding

1
M

PM
j=1 Æ�jt

as a good approximation to the assumed uniform distribution of X0. Set fW0(�
j) = 1; 8j =

1; : : : ;M .

2. Repeat for m = 1; 2; : : :

(a) Evolve all particles over time interval � using, for example, Euler approximations. Call the new

particles just prior to an observation
n
�1t
m�

; �2t
m�

; : : : ; �Mt
m�

o
.

(b) Upon receiving the mth observation, Ytm , calculate the weight for all
n
�1t
m�

; �2t
m�

; : : : ; �Mt
m�

o
accord-

ing to fWm(�
j) =Wm(�

j)fWm�1(�
j), where Wm(�

j) = expf
h(�jtm )Ytm� "

2
h2(�jtm )

�2 g.

(c) Resample two particles at a time �i and �j while fWm(�
i) < �fWm(�

j), 8i; j = 1; : : : ;M ..

(d) Relabel the resulting particles
�
�1tm ; �

2
tm ; : : : ; �

M
tm

	
.

(e) The conditional distribution for the signal location is approximated by

P (Xtm 2 Aj Yt1 ; : : : ; Ytm) �
1PM

j=1
fWm(�j)

MX
j=1

fWm(�
j)1�jtm2A

.

(f) Predictions are then made for tm + � by evolving all the particles over the time � to yield the
conditional estimate for equation (17)

(g) The empirical estimate for the signal is calculated as the conditional expectation

E[Xtm j Ytl ; 1 � l � m] � 1P
M
j=1
fWm(�j)

PM
j=1

fWm(�
j)�jtm .
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3.2. Discrete Space Update Algorithm

The Markov chain approximation discussed in this paper is motivated by the stochastic particle models of chem-
ical reaction with di�usion. We �rst de�ne the mesh or grid via a vector of integers N := (N1; N2; N3; � � � ; Nd),
where each Ni 2 N, we let DN := fk = (k1; : : : ; kd) 2 N

d : 1 � ki � LiNi for each 1 � i � dg and divide
[0; L1)� � � � � [0; Ld) into L1N1 � � � � � LdNd cells of size

1
N1�N2�����Nd

:

INk :=

�
k1 � 1

N1
;
k1
N1

�
� � � � �

�
kd � 1

Nd
;
kd
Nd

�
; k 2 DN : (18)

We denote �(x) := 1
2

Pd
i;j=1

@2ai;j(x)
@xi@xj

�
Pd

j=1
@bj(x)
@xj

. For k 2 DN , we de�ne h
N
k := (N1�N2�� � ��Nd)

R
IN
k

h(x)dx,

�Nk := (N1 �N2 � � � � �Nd)
R
IN
k

�(x)dx , �Nk;j := (N1 �N2 � � � � �Nd)
R
IN
k

�j(x)dx, and aNij (k) := (N1 �N2 �

� � � �Nd)
R
IN
k

aij(x)dx for 1 � i; j � d.

Now, we let fXk;y
+;N(t); X

k;y
�;N (t);X

k
+;N (t); X

k
�;N (t); k 2 DNg be independent Poisson processes on some proba-

bility space (
;F ;P) for each N 2 Nd . We de�ne from (
;F ;P0) and (
;F ;P) the product probability space
(
0;F0;P0) = (
�
;F 
F ;P0 �P). Let Mt(N) denote the total number of particles at time t and be such
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Moreover the \number of particles" in cell k at time t will be denoted by nk(t). Collectively fnk(t)gk2DN
form

a Markov chain that using time change methods can be described as follows:
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(20)

Equation (20) provides a very explicit and powerful construction of a Markov chain used in equation (21) below
to approximate equation (8), and can be implemented directly on a computer. The basic construction of the
discrete space particle �lter proceeds as follow:

1. Initialize the initial (N1 �N2 � � � � �Nd) cells by injecting all n
N
k (0) particles in cell k.

2. Evolve the Markov chain system over the time interval � using the time changed independent Poisson
processes as in equation (20).
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3. Upon receiving the mth observation, at time tm� resample using the observation processes described in
equation (20).

4. Predictions are then made for tk + � by evolving the system over the time � to yield the conditional
estimate for equation (17)

To obtain the density in each cell, we divide nNk (t) by Mt and consequently the description of the stochastic
particle model can be given by

p̂l;N (t; x) =
X
k2DN

nNk (t)

Mt
1Nk (x); (21)

where 1Nk (�) denotes the indicator function on INk . In Kouritzin, Long, and Sun,4 it is shown that similar
approximations converge to the actual unnormalized �ltering conditional distribution as the discretization mesh
is re�ned. More precisely, the law of large numbers holds for each �xed ! 2 
.

4. FILTER COMPARISONS

4.1. The Simulation

A graphical presentation of the simulations have been constructed, as depicted in Fig. 1. This is one frame of an
animation that follows the observation sequence. The top left panel indicates the simulated performer position
and orientation in red. The top right panel is the 2-dimensional graphical representation of our observation
sequence where an arc is the noisy cross-section of the spherical distance between a speaker and microphone.
The bottom two panels display a �lter's current estimate of the conditional distribution of the signal's position.
The hybrid �lter is at left and the discrete space �lter is at the right. Below the discrete space �lter label is a
panel with the current N (partition of the dimensions in the following order : partition for x; y; z; f; �).

4.2. Problem Setup

We run both the re�ning hybrid and the discrete space �lter against a simulated signal-observation model as
described above (Sect.2). For our simulations, the total number of particles, M , used in each of the �lters, the
observation noise, �observation from equation (16), the starting and ending grid size N for the discrete space
�lter (see Sect. (3.2), and the parameter � for the re�ning hybrid �lter (see Sect. (3.1)), are listed in the table
below. The total particle count is approximately maintained at the constant M0 throughout the use of each
�lter. For the simulations, both �lters assume no a priori knowledge of the signal state, so that the initial signal
density p0(x) is taken to be uniform. Here are the parameters for the two di�erent acoustic tracking/predicting
problem scenarios (labeled A and B). We simulate over a time period of 50 or 100 observation arrivals with
valid or invalid (see equation (16)) observations arriving every " = 0:02 time units. Predictions are made by
both �lters � = 0:2 time units into the future.

Simulation Parameters Scenario A Scenario B

Simulated Time Units 1.0 2.0
M0 5000 5000
�observation 0.20 0.40
Discrete Space Filter's Starting N0 = (8,8,128,4,32) (4,4,128,4,32)
Discrete Space Filter's Max Nt = (32,32,128,32,32) (32,32,128,32,32)
Hybrid Filter's � 75.0 200.0

For both scenarios we compare the processing time and �delity in mean square error for both tracking and
prediction of our simulated performer (see section (2.1)). For both �lters we compute the mean-square error for
the position estimates of the performer

MSE(t) = d(xt;E
n[xtjY

t]) (22)
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from the estimated distribution of the �lters and from the true signal value at the time of each observation. The
function d here is Euclidean distance and En[xtjY

t] denotes the approximate empirical conditional expectation
of xt given Yt as calculated by either the hybrid or Markov chain algorithm. For calculating the prediction
MSE we use the �lters' estimates from time t and the true signal value at time t+ �

MSE(t) = d(xt+�;E
n[xt+�jY

t]) (23)

The data are averaged over a hundred simulation runs for each problem scenario.

4.3. Comparison Data

Graphs of the average mean square error in the position estimate over the simulated time are provided for the
two scenarios (Sect. 4.2), averaged over 100 runs, in �gures 2 - 3.

For both problem scenarios the continuous space particle method outperforms the discrete space counter-
part in mean square error for both tracking and prediction estimates by approximately 77-80% (see �gures (2

Figure 1. Sample frame from a performer tracking problem animation.
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- 3 for graphs of MSE for problem scenario A; similar results follow for problem scenario B). There is an ob-
vious correlation with the error in estimates and the error in predictions; this is expected since we use the
most current estimated distribution to construct predictions. The lesser performance of the discrete space
�lter is because of a constraint on the maximum value for N (see table in Sect.4.2) used in our simula-
tions. The corresponding �nest possible grid sizes for each dimension are, in the dimension order x; y; z; f; �
: 0:3125m; 0:3125m; 0:0078125m; 0:103125ms ; 0:19635rads. The reason for a maximum grid partition is due to
limiting computational resources when dealing with a �ve-dimensional signal state. As mentioned before in
section (3), the implementation for the discrete space �lter is heavily computer science oriented, and thus may
be improved in the future.

Results for computation times in both scenarios (graphs in �gures (4 - 5)) on average tend to favor the
discrete space �lter. The jumps in computation time seen in the graph for problem scenario A occur when
the discrete space �lter increases a Ni to further \zoom in" on that particular dimension i; 1 � i � d.
Modi�cations in the implementation parameters controlling how and when the �lter \zooms in" will determine
the smoothness in these jumps (see graph for problem scenario B in �gure (5) depicting smoother transitions
of N). In general, the computation time for resampling in the discrete space method will be less than that of a
particle method's individual particle-by-particle treatment, because of the grouping of nearby particles in cells.
This e�ect is accentuated as the number of particles increases. In problem scenario A the discrete space �lter
is approximately 33% faster then the hybrid �lter, and in scenario B approximately 66% faster.

Figure 2. Average mean square error in performer's state estimate for Scenario A.
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Figure 3. Average mean square error in prediction (� = 0:2 time units) of performer's state for Scenario A.

Figure 4. Average mean computation time for Scenario A.
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Figure 5. Average mean computation time for Scenario B.

5. CONCLUSIONS

For both simulated scenarios, the re�ning hybrid method exhibits superior performance in �delity. Although
this method required greater computation time then the discrete space �lter in our tests, the requirement for
the acoustic predicting problem is real-time performance, and this can be met using modern computers, under
conditions similar to those in our simulations (see Sect. (4.2)). Improvements in speed can be achieved with the
hybrid �lter, by reducing the starting number of particles, with little loss in accuracy, because the observations
in this problem are relatively accurate. Our simulated discrete space �lter's crude grid is not suÆcient to
compete against the hybrid's continuous space particles when very accurate predictions are needed. As a future
goal, the discrete space method's implementation should be improved to accommodate dynamically re�ning the
grid partition N in high dimensions with little additional computational costs. For now, the discrete space �lter
will fully accommodate fast, relatively low �delity tracking and prediction. APR's applications demand high
�delity predictions in real-time, and for this we choose the hybrid method over the discrete space method.
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