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Functional-diversity indices can be driven
by methodological choices and species richness

MARK S. POOS,1 STEVEN C. WALKER, AND DONALD A. JACKSON
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Abstract. Functional diversity is an important concept in community ecology because it
captures information on functional traits absent in measures of species diversity. One popular
method of measuring functional diversity is the dendrogram-based method, FD. To calculate
FD, a variety of methodological choices are required, and it has been debated about whether
biological conclusions are sensitive to such choices. We studied the probability that
conclusions regarding FD were sensitive, and that patterns in sensitivity were related to
alpha and beta components of species richness. We developed a randomization procedure that
iteratively calculated FD by assigning species into two assemblages and calculating the
probability that the community with higher FD varied across methods. We found evidence of
sensitivity in all five communities we examined, ranging from a probability of sensitivity of 0
(no sensitivity) to 0.976 (almost completely sensitive). Variations in these probabilities were
driven by differences in alpha diversity between assemblages and not by beta diversity.
Importantly, FD was most sensitive when it was most useful (i.e., when differences in alpha
diversity were low). We demonstrate that trends in functional-diversity analyses can be largely
driven by methodological choices or species richness, rather than functional trait information
alone.
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INTRODUCTION

Functional diversity is the amount of inter-specific

variation in functional traits in an ecological communi-

ty. The concept of functional diversity has received

considerable attention recently, largely because of the

following intuitive argument. Species-diversity indices

treat all species identically, whereas functional-diversity

indices do not. Therefore, it is reasonable to expect that

functional diversity is likely to be more ecologically

relevant because species differ from one another in

functionally important ways (Petchey and Gaston 2002).

For example, several studies have concluded that

measures of ecosystem function tend to correlate more

strongly with functional-diversity indices than with

species-diversity indices (Loreau et al. 2001). These

studies have spurred continued interest in developing

new and improved functional-diversity indices (Mouchet

et al. 2008, Villeger et al. 2008).

Despite the conceptual simplicity of functional

diversity, ecologists wishing to measure it must choose

from a number of approaches. Mason et al. (2005)

developed a typology of functional-diversity indices with

three types: functional richness, functional evenness, and

functional divergence. This typology is similar in spirit

to the distinction between species richness and evenness

in species-diversity studies. For example, functional-

richness indices measure the amount of trait space filled

by the species in a community, whereas functional-

evenness indices measure the evenness in the distribution

of abundance in trait space (Mason 2005, Villeger et al.

2008). Using rarefaction techniques, functional richness

and evenness can also be thought of as extremes along a

gradient of functional-diversity indices (Walker et al.

2008). Rarefaction also makes clear the close relation-

ship between species and functional richness. It is

therefore important to ensure that accepted indices of

functional richness provide information beyond that of

species richness, as data on functional traits can be

costly to obtain.

One approach to measuring functional richness,

which has shown promise as a predictor of ecosystem

function, is the dendrogram-based approach known as

‘‘FD’’ (functional diversity; Petchey and Gaston 2002).

This approach consists of measuring functional richness

as the total branch length of a dendrogram that clusters

species based on the similarity of their functional-trait

characteristics. There are numerous methods for con-

structing a dendrogram; in particular, both a resem-

blance measure, which measures the difference between

species in their functional-trait characteristics, and a

clustering algorithm, which specifies the manner in

which similar species are grouped together, must be

chosen. There is the possibility that ecological conclu-
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sions drawn from an analysis of dendrogram-based

functional diversity may be sensitive to the methodo-

logical choices that are required for producing a

dendrogram. This may be a serious issue given that

dendrogram topology may change considerably with

changes in the methods used (e.g., Sneath and Sokal

1973, Jackson et al. 1989).

There has been considerable recent debate about the

importance of the method of dendrogram construction

for the measurement of dendrogram-based functional

diversity (Petchey and Gaston 2006, 2007, Podani and

Schmera 2006, 2007, Mouchet et al. 2008). To facilitate

resolution, we conducted a detailed analysis of the

sensitivity of dendrogram-based functional-diversity

measures to differences in species richness and method-

ological choices. For this resolution, we need a

quantitative definition of sensitivity. Given a pair of

species assemblages and set of dendrogram-construction

methods, we make the following definition: conclusions

are insensitive if all construction methods result in the

same assemblage being identified as having higher

functional diversity; conclusions are sensitive if at least

one construction method identifies a different assem-

blage as having higher functional diversity.

With this definition, we seek answers to the following

questions. First, through a systematic study of previ-

ously analyzed data from ecological communities

(Petchey and Gaston 2002, 2007, Podani and Schmera

2006): What is the probability that conclusions regard-

ing FD are sensitive to methodological choices? Second:

If sensitivity is found to be likely in many communities

analyzed, is the probability of sensitivity related to the

difference in local species richness (i.e., alpha diversity)

between the two assemblages? We hypothesize that the

probability of sensitivity should be low when differences

in alpha diversity are very high. Intuitively, we expect

species richness to drive functional-richness patterns in

these cases, no matter how it is measured. This is a null

hypothesis; it assumes that functional richness (as

measured by FD) does not provide information beyond

that provided by species richness. Failure to reject this

hypothesis would suggest that FD and alpha diversity

are largely redundant, provided that the most species-

rich assemblage also tends to have the highest FD.

Third: Is the probability of sensitivity related to the

amount of species turnover (i.e., beta diversity) between

assemblages? As species turnover can be measured in

numerous ways, hereafter we use the term ‘‘beta

diversity’’ to refer to Lande’s species turnover (Lande

1996). We hypothesize that the probability of sensitivity

should be high when beta diversity is low. Low beta

diversity indicates that assemblages have similar com-

position. Therefore, low beta diversity produces condi-

tions under which we intuitively expect small differences

in functional diversity. Small differences will presumably

be more sensitive to methodological choices. Fourth: Is

the probability of sensitivity related to certain types of

methodological choices? We hypothesize that conclu-

sions will be more sensitive to the choice of distance

measure than to the choice of clustering algorithm,

because the distance measure can completely change the

order of functional similarity among the species whereas

the clustering algorithm is more limited in that it can

only alter how groups of species relate to one another in

multivariate space. We note that there are reasons to

believe that FD will also be quite sensitive to the choice

of a clustering algorithm. Indeed, different clustering

algorithms can generate quite different tree topologies,

which may translate into FD sensitivity. We address

these questions by assessing the probability of sensitivity

of pairs of randomly drawn sub-assemblages from five

ecological communities.

METHODS

All of our analyses were based on data from

ecological communities obtained from the literature.

We used the same five data sets used in previous studies

of functional diversity (FD) (Petchey and Gaston 2002,

2007, Podani and Schmera 2006). These data sets

represent variation in the number (from 13 to 37 species)

and type of species, and the number and type of

functional traits (from 6 to 27 traits). For example, the

three vertebrate data sets use characteristics ranging

from foraging behavior to the consumption of prey

species as their functional traits (Holmes et al. 1979,

Jaksic and Medel 1990, Munoz and Ojeda 1997),

whereas the remaining two data sets rely on vegetative

characteristics, such as rooting depth and herbivore

palatability, of the plants being studied (Golluscio and

Sala 1993, Chapin et al. 1996).

Our general approach to assessing the sensitivity of

FD to methodological choices was as follows (see Fig. 1

for an example). For each community (i.e., data set), we

organized all of the species, c, into two groups, hereafter

referred to as ‘‘assemblages.’’ Let the average species

richness over the two assemblages be ā. Each species in

the community was included in either one of the

assemblages or in both. For a given level of beta

diversity, b ¼ c � ā, and difference in alpha diversity

between the assemblages, Da, the total number of

unique pairs of assemblages is

Da ¼ c!

½c� 2b�!½0:5ð2bþ DaÞ�!½0:5ð2b� DaÞ�! : ð1Þ

The numerator is the total number of ways that one can

order c species. The three factorials in the denominator

are, respectively, the total number of ways that (1) the

number of shared species can be ordered, (2) the species

that are unique to assemblage 1 (S1) can be ordered, (3)

the species that are unique to assemblage 2 (S2) can be

ordered (Appendix). In Fig. 1, we give two examples of

such orderings when c ¼ 11, Da ¼ 1, and b ¼ 4.5. Note

however, that assemblage pairs for which (2b – Da) is an
odd number are not possible given the inter-dependen-

cies of these parameters. For each possible combination

of b and Da, we randomly selected 1000 pairs of
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assemblages using code programmed in MATLAB
version 7.1 (MathWorks 2005). For each of these
randomly selected assemblages, we calculated FD based

on several different dendrogram-construction methods.
FD was considered insensitive to methodological

choices for a particular pair of assemblages if the
assemblage with the higher FD was the same for all

construction methods; FD was otherwise considered
sensitive. We then calculated the proportion of the 1000

random iterations that were sensitive. We refer to this
proportion as the ‘‘probability of sensitivity.’’ When the
probability of sensitivity is high for a particular

combination of Da and b, it is very likely that the
conclusions drawn from an FD analysis in this context

will be dependent on methodological choices, rather
than on the data alone.

In order to calculate FD, two methodological choices
must be made. First, a distance (or resemblance)

measure must be chosen. Distance measures quantify
the difference between two entities based on their
characteristics (e.g., species based on their functional

traits). There are a large number of resemblance
measures from which to choose (Jackson et al. 1989,

Legendre and Legendre 1998). We used three distance
measures: Euclidean distance as suggested by Holmes et

al. (1979); cosine distance; and Gower’s distance, as it
allows mixed and missing data types (Gower 1971,

Podani 1999, Podani and Schmera 2006, 2007). For
Euclidean distance we standardized all trait matrices so
that all traits have a mean ¼ 0 and variance ¼ 1 (i.e., z

scores; Holmes et al. 1979, Petchey and Gaston 2002).
We used cosine distance because it more accurately

reflects proportional changes in traits whereas the
Euclidean distance emphasizes absolute differences.

For the Patagonian forb and Arctic vegetation data sets
we used only Gower’s distance because these data sets

contained missing values and mixed data types; the
Euclidean and cosine distances were not appropriate for
such data sets (e.g., Podani and Schmera 2006). Second,

a clustering algorithm must be chosen. We used three
clustering algorithms in our analysis: (1) unweighted

pair-group method with arithmetic mean (UPGMA); (2)
single linkage (i.e., nearest neighbor); and (3) complete

linkage (i.e., maximum or farthest neighbor). These

algorithms represent natural endpoints across a meth-
odological continuum of dendrogram-construction
methods, where single linkage lies on one end, complete

linkage on the other, and UPGMA lies somewhere in the
middle (Podani and Schmera 2006).

We considered several different collections of con-
struction methods because the sensitivity of FD is

defined in terms of a particular set of construction
methods. For cases where multiple comparisons could

be made (e.g., several distance measures), we calculated
four separate probabilities of sensitivity: (1) sensitivity

with respect to all nine construction methods; (2)
sensitivity with respect to the three distance measures
with UPGMA clustering (i.e., clustering algorithm is

held constant); and (3) sensitivity with respect to the
three clustering algorithms with Gower’s distance

measure (i.e., distance measure is held constant). In
cases where data were deficient and only Gower’s

distance could be used, only overall probabilities of
sensitivity were calculated. The sensitivity when the
clustering algorithm is held constant could be calculat-

ed, but these results would be identical to the overall
values. Finally, we also calculated probabilities of

sensitivity holding other distance measures and cluster-
ing algorithms constant and consider pairs of assem-

blages that do not contain all of the species in the
complete data sets. However, we do not present these

additional results because they do not alter any of our
conclusions.

There is an ongoing debate regarding a standard

procedure for calculating FD. Petchey and Gaston
(2002) based their measure of FD on a dendrogram

derived from a data set that included all species that
were of interest (i.e., the entire community). For an

assemblage that does not contain all of the species in the
entire community, FD is measured as the total branch

length of the dendrogram minus the branch lengths of
the species that are not included in the assemblage (see
Petchey and Gaston [2002, 2007] for more details). We

refer to this approach as the ‘‘Petchey-Gaston (PG)
method.’’ Alternatively, Podani and Schmera (2006)

suggested that FD should be calculated as the total
branch length of a dendrogram that is unique to each

assemblage, i.e., recalculated from the reduced data set.

FIG. 1. Measuring the sensitivity of FD (functional diversity) in a hypothetical 11-species community. The procedure consists
of randomly dividing the community into two assemblages (S1, with seven species, and S2 with six), noting how FD orders the two
assemblages, and assessing the effect of the methodological choices on this order. Each species is represented as a letter, and the
assemblages are represented as overlapping rectangles that contain the letters associated with their component species. A new
random division can be obtained by leaving the rectangles fixed and permuting the order of species.
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We refer to this measure as the ‘‘PS (Podani-Schmera)

method.’’ As this debate remains unresolved, we tested

whether FD was sensitive using both methods. To

calculate FD using the PG method, we calculated a

species-by-branch matrix and a vector of branch lengths

for the complete community using the code of Petchey

and Gaston (2002) for the R programming language (R

2.7.0; R Development Core Team 2008). We then used

this code to calculate FD using the PG method for each

assemblage (see Petchey and Gaston [2002] for more

details). We repeated this approach for each of the nine

construction methods (i.e., three distance measures for

each of the three clustering algorthms). To calculate

dendrograms using the PS method, we calculated unique

dendrograms for all assemblages and construction

methods. We used MATLAB version 7.1 (MathWorks

2005) to calculate the sum of dendrogram lengths for

each assemblage and construction method.

To display all of these results, we constructed image

plots with the R programming language. Image plots

can be used to show how a variable changes over a two-

dimensional grid. The shading of each square on the grid

represents the value of the variable at that grid location.

In our case, the variable of interest is the probability of

sensitivity and the grid is defined by beta diversity, b,
and the difference in alpha diversity, Da, between the

two assemblages. However, only certain combinations

of b and Da are possible. For example, for an11-species

community it is not possible to create two assemblages

such that b ¼ 6, Da ¼ 3, and all of the species are in at

least one of the two assemblages. Therefore, for

identification purposes, these impossible grid locations

are plotted in white whereas all other levels of sensitivity

are some shade of grey. Higher levels of sensitivity are

represented by darker shades of grey. This results in a

checkerboard pattern. However, it is important to keep

in mind that the checkerboard pattern is solely an

artifact of the impossibility of certain combinations of b
and Da.

RESULTS

We identified numerous cases for which FD (func-

tional diversity) had a high probability of sensitivity

across all communities; that is, it is easy to find cases for

which conclusions derived from FD analyses will be

driven primarily by methodological choices. In the

worst-case scenario, FD sensitivity reached probabilities

of 0.976 using the PS (Podani-Schmera) method and

0.594 using the PG (Petchey-Gaston) method (Table 1).

Variation in the probabilities of sensitivity was largely

driven by variation in alpha diversity, with the highest

probabilities of sensitivity found when assemblages were

similar in alpha diversity (Figs. 2 and 3). In every case

where the probability of sensitivity was 0, FD was larger

for the assemblage with more species; this result

indicates that FD and alpha diversity lead to identical

conclusions about the diversity of assemblages in these

cases. Therefore, our hypothesis concerning the rela-

tionship between alpha diversity and probability of

sensitivity is consistent with our results. Contrary to our

hypothesis, there were no consistent patterns in the

relationship between beta diversity and probability of

sensitivity (Figs. 2 and 3).

Decisions about distance measures were more impor-

tant than decisions about clustering algorithms. For

example, when UPGMA clustering was kept constant

and only distance measures were compared, FD was

more sensitive than when Gower’s distance was held

constant and clustering methods were compared (Figs. 2

and 3). These results were not altered by the distance

measure held constant (e.g., Euclidean, cosine or

Gower’s) or by the clustering algorithm held constant

(e.g., UPGMA, single linkage and complete linkage),

and so we only present the results for holding constant

Gower’s distance and UPGMA, respectively (Fig. 2).

There are some additional trends worth mentioning.

The PG method of FD calculation led to lower

probabilities of sensitivity than the PS method in all

cases (Figs. 2 and 3, Table 1). Also, where greater

numbers of dendrogram-construction methods are

compared, the probabilities of sensitivity increase. For

example, compare the overall probabilities (nine con-

struction methods) with the probabilities obtained by

holding the clustering method at UPGMA (three

construction methods) (Fig. 2). This difference makes

intuitive sense because as one considers more construc-

tion methods, it becomes more likely to find a method

that leads to different conclusions regarding the ranking

of the assemblages in terms of FD.

TABLE 1. The maximum probability of FD (functional diversity) sensitivity for five communities previously used to examine FD
(Podani and Schmera [PS] 2006, Petchey and Gaston [PG] 2007), together with the number of species and the number of
combinations of Da and b.

Community
No.

species

Maximum probability of sensitivity Number of
combinations of

Da and b Data sources�PS PG

Insectivorous birds 22 0.818 0.497 134 (A) Holmes et al. (1979)
Intertidal fish 13 0.976 0.366 46 (B) Munoz and Ojeda (1997)
Predatory vertebrates 11 0.610 0.594 32 (C) Jaksic and Medel (1990)
Patagonian forbs 24 0.364 0.196 159 (D) Golluscio and Sala (1993)
Arctic vegetation 37 0.244 0.142 370 (E) Chapin et al. (1996)

� Parenthetical capital letters are used to identify which data sources are used in Figs. 2 and 3.
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DISCUSSION

Our results demonstrate that FD (functional diversi-

ty) is sensitive to choices of distance measure and

clustering algorithm in many cases. The major factor

contributing to a high probability of sensitivity is low

variation in alpha diversity between the assemblages

being compared. By contrast, beta diversity between

assemblages was a very poor predictor of sensitivity.

This did not support our initial hypothesis that lower

beta diversity (i.e., higher redundancy between traits

across assemblages) would lead to a higher probability

of sensitivity. The consistency and severity of our results

suggest that this sensitivity is not likely to be unique to

the examples we present. Indeed, we did not actively

search for atypical data to support our position; we

merely used the same data that have been used

consistently by investigators when evaluating FD

(Petchey and Gaston 2002, 2007, Podani and Schmera

2006).

If our results are so clear, why did others (e.g.,

Petchey and Gaston 2007) conclude that decisions

regarding methodological choices have only a minor

effect on FD, especially given that they used the same

data that we use here? There are two possible reasons for
this discrepancy. First, to evaluate sensitivity, previous

studies have shown that FD calculated using Gower’s
distance was strongly collinear with FD calculated using
the Euclidean distance across many functional-trait

matrices (Petchey and Gaston 2007). However, these
trait matrices differed widely in number of species. In
our analysis, we demonstrate that FD becomes more

sensitive as variation in alpha diversity becomes small.
Therefore, in the light of our new work, it is not
surprising that others have found low sensitivity to

methodological choices; in their case, our results
strongly suggest that variation in FD was being driven
largely by differences in alpha diversity, no matter what

methodological choices were made. Second, we com-
pared more distance measures than previously investi-
gated (Petchey and Gaston 2007, Podani and Schmera

2007). We feel this is a more appropriate comparison as
there are a large number of distance measures in the
multivariate literature deemed to be appropriate. Addi-

tionally, when we restricted our analysis to comparing
only Gower’s distance and Euclidean distance (with PG
dendrogram construction and UPGMA held constant),

we found that rates of sensitivity remained high when

FIG. 2. The effect of alpha and beta diversity on the probability that FD is sensitive to dendrogram construction methods for
three communities crossed with four sets of construction methods. Darker shading represents a higher probability of sensitivity.
Data sources are given in Table 1. Each column is for a different set of construction methods. For the first two left-hand columns,
overall PS and PG, all nine methods of dendrogram construction (three distance measures times three clustering algorithms) were
used with the PS (Podani-Schmera) and PG (Pechey-Gaston) methods, respectively. For the right-hand two columns, all three
clustering algorithms with the PS method were used with Gower’s distance and UPGMA (unweighted pair-group method with
arithmetic mean) held constant, respectively.
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differences in alpha diversity were low (maximum

probability of sensitivity: 0.260 for the bird data, 0.162

for the fish data, and 0.319 for the mammal data). Thus,

FD did not provide much additional information in this

case, beyond that provided by alpha diversity.

The preceding discussion leads to the following

important conclusion regarding FD. FD is most

sensitive to methodological choices when it genuinely

provides new information beyond that provided by

alpha diversity. This is because conditions under which

FD is sensitive coincide with relatively little variation in

alpha diversity between assemblages. Thus, in these

cases FD could potentially provide useful information

about the differences between the assemblages and

ecosystem function. Unfortunately it is precisely in these

cases, where FD would genuinely be useful, that it is

expected to be highly sensitive to the choice of a distance

measure or clustering algorithm. On the other hand, FD

is not sensitive to methodological choices, in those cases

when it provides very little information beyond that

already provided by species richness (alpha diversity).

This is because, when FD is insensitive, our results show

that alpha diversity is largely redundant with FD no

matter what methodological choices are made. Newer

approaches to measuring functional richness (e.g.,

convex hull volume or consensus dendrograms) have

been proposed that may reduce the subjectivity of

multivariate decisions (Cornwell et al. 2006, Mouchet et

al. 2008, Villeger et al. 2008); however, decisions are still

required that may alter results (e.g., trait scaling and

transformations or what to include in the consensus).

Further research into understanding these methodolog-

ical choices will likely enhance our ability to measure

functional richness. Here we wish to raise awareness

about the importance of species richness and method-

ological choices for calculating functional richness, and

identify cases for which sensitivity is likely to be an issue.

What can be done to minimize the impact of

sensitivity? One simple approach could be to analyze

data from ecological communities using several different

construction methods to ensure that sensitivity is not an

issue. However, if sensitivity is an issue, a decision must

be made. Our results suggest potential approaches for

reducing the probability of sensitivity. First, we found

that probabilities of sensitivity were systematically lower

for the PG (Pechey-Gaston) method of FD calculation

than for the PS (Podani-Schmera) method. Therefore,

one might be tempted to recommend the PG method for

general use. There is an important issue with this

recommendation however. The PG method assumes

that the entire community is known, whereas the PS

method does not. In a recent paper (Walker et al. 2008),

we emphasized the importance of assuming that there

may be species in the community that are undiscovered

or undetected in the study area when estimating FD

from field data. In some cases, this might not be a

problem. For example, Barnett et al. (2007) have

recently published a list of species to be used in studies

of FD in zooplankton communities. However, in the

vast majority of cases, there will typically be a high

degree of uncertainty about the composition of the

entire community. The PG method does not provide the

same estimate as the PS method for a subset of the

community. Given that the PS method provides the

correct dendrogram length for that particular subset, as

it is based on a distance matrix constructed from this

subset, such differences between the methods remain a

concern. Therefore, even though the PS method is more

sensitive than the PG method, we recommend the PS

method for general use and the PG method when the

species list for the entire community is known.

Second, we found that FD is much more sensitive to

the choice of a distance measure than to the choice of a

clustering algorithm. Therefore, one might be tempted

to simply adopt a particular distance measure as a

standard. However, FD is not completely insensitive to

the choice of clustering algorithm (e.g., range in

maximum probability of sensitivity across communities:

0.137 to 0.260 for PG method and 0.248 to 0.364 for PS

method). Furthermore, the choice of a distance measure

must be made very carefully. We are skeptical that a

single distance measure can be found that is justifiable in

all situations; indeed, the history of multivariate

statistics teaches us that there is no distance measure

FIG. 3. The effect of alpha and beta diversity on the
probability that FD is sensitive to dendrogram-construction
methods for two communities crossed with two methods of FD
calculation. Darker shading represents a higher probability of
sensitivity. Data sources are as given in Table 1. For these
communities, only Gower’s distance could be calculated, and so
only three construction methods could be compared, corre-
sponding to the three clustering algorithms. Each column is for
a different method of FD calculation. The first is for the PS
method, and the second is for the PG method.
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that can be uniformly recommended in all cases (Sneath
and Sokal 1973, Legendre and Legendre 1998).

To calculate functional richness, a method for
quantifying inter-specific differences in functional traits
is required. In cases where there is only one trait of

interest, simple approaches such as the weighted-trait
variation (FDVar; Mason et al. 2005) may be appro-
priate. However, the flexibility to use more than one

trait is often required to understand even simple natural
systems (Villeger et al. 2008). Unfortunately in these
multivariate situations, complications arise as research-

ers have to make several key decisions during data
analysis (e.g., choice of a distance measure, clustering
algorithm, data transformations, scaling). Ideally, these
decisions should have minimal impact on scientific

conclusions. Here we demonstrate that, in the case of
the popular index of functional richness, FD, decisions
inherent in multivariate analyses can drastically alter

conclusions of functional diversity and that sensitivity in
FD is highest when differences in alpha diversity are
low. These results suggest that, in cases where informa-

tion captured by dendrogram-based functional diversity
would be most useful, it is redundant with alpha
diversity.
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APPENDIX

Derivation of Equation 1 (Ecological Archives E090-025-A1).
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