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Abstract

Molecular Recognition Feature (MoRF) regions amordiered binding sites that
become structured upon binding. MoRFs are implecateimportant biological

processes, including signaling and regulation. Haweonly a limited number of
experimentally validated MoRFs is known, which raates development of

computational methods that predict MoRFs from prot@ains.

We introduce a new MoRF predictor, MoRFpred, whidbntifies all MoRF
types &, b, coil, and complex). We develop a comprehensitasdd of annotated
MoRFs and use it to build and empirically comparg enethod. Empirical
evaluation shows that MoRFpred statistically sigaifitly outperforms existing
predictors by 0.07 in AUC and 10% in success ra& show that our predicted
MoRF regions have non-random sequence similaritii wative MoRFs. We use
this observation along with the fact that prediesiovith higher probability are
more accurate to identify putative MoRF regions. YWesent case studies to

analyze these putative MoRFs.
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1 Introduction

Protein is a polymer consisting of several dozenshbusands of amino acids.
Proteins, which are among the most important biokdgnolecules, implement a
diverse range of functions. They serve as structleanents that form muscles,
bones and nails, as enzymes that catalyze chemgiaations, and as hormones
that trigger biological events, to name just a fd@vtheir functions. Originally it
was thought that function of a protein arises friasnthree-dimensional (3D)
shape which has a well-defined structure that isoéed in its amino acid
sequence (Anfinsen, 1973). This paradigm was ahgdlé by the discovery of
unstructured proteins which lack a rigid 3D struetand are functional in their
extended form (Wright & Dyson, 1999). Since thecdigery of intrinsically
unstructured/disordered proteins (IDP) a coupldexfades ago, evidence of their
participation in a variety of biological processes/e been found. Many studies
agree on the role of disordered proteins in praessuch as transcription,
transcription regulation, and signal transducti®ur{ker & Kriwacki, 2011).
Disordered proteins are also implicated in sevelisbases such as cancer,
neurodegeneration and cardiovascular diseasesdMidil., 2009; Uversky et al.,

2009). The above motivates further studies on IDPs.

To have a better understanding of how IDPs func¢tie® need to understand the
nature of their interactions with other molecul&@enerally speaking, proteins
implement their functions through interaction/bimgli with other biological

molecules such as other proteins, nucleic acidd, smaller ligands such as

nucleotides, metals, etc. These interactions happepecific regions of protein
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structure called binding sites. The prevalent pgradsays that all binding sites
have a well-defined structure and would only biadatligand that complements
their structure; by analogy, by fitting of a keygénd) into a lock (protein) to
unlock its function. However, observation of IDPsows that some of the
disordered regions also act as binding sites bgggthrough a disorder to order
transition upon binding (coupled folding and birglito adapt their shape to the
ligand’'s binding site (Cheng et al., 2007); by aggl by adjusting the lock
mechanism/shape to fit certain keys. FlexibilityioPs, which is the hallmark of
the disorder, gains them an advantage over thelruddr counterparts by allowing
them to have highly specific but reversible bindaxgd by allowing diversity in
binding. This unique characteristic of disorder@ung sites is especially useful

in signaling and regulation processes (Oldfieldlgt2005).

To study disorder and disordered binding sites,nged a dataset of known
disordered proteins with the annotated native (empntally validated) disorder.
However, due to a relatively slow progress in ekpental determination of
disorder, only a small number of proteins with aated disorder is known. The
DispProt database (Sickmeier et al, 2007), whichyidar the largest database
concerning protein disorder, contains about 600otated proteins. This is a
small number compared to the much larger numbémofvn protein sequences
(in millions) that remain unannotated, which resul a wide annotation gap.
Abundance of known protein sequences motivated dexelopment of
computational methods that predict disorder frogquseces. These methods are a

viable alternative to reduce the annotation gaptaridvestigate the disorder (He



et al.,, 2009). So far several dozens methods haesm ldeveloped to predict
protein disorder from sequence. The best of thesthads are able to predict
disorder relatively accurately and their predictperformance is rising (Uverski

& Dunker, 2010; Monastyrskyy et al., 2011).

In spite of the progress in prediction of disord=rmputational determination of
disordered binding sites did not attract as mutdntibn. The first step towards
developing such prediction method was to identiggquence and structural
characteristics of these binding sites. Oldfietd al. characterized a specific
structural element which mediates many of disodi&iading events (Oldfield et
al., 2005). This short region in the protein seaeerfformed by 5 to 25
consecutive amino acids), which undergoes coupledirg and folding, is
referred to as Molecular Recognition Feature (MoRIAd is flanked by
(regular/non-binding) disordered segments. MoRkoregjare classified based on
the secondary structure they take upon binding hir tligand. Secondary
structure refers to local three-dimensional confarans of amino acid segments
in the protein chain which are established betwadjacent amino acids and are
categorized into three major states: helices, sheatd regions with irregular
secondary structure. Based on this categorizalmiRFs can be divided to three
subtypes: -MoRFs which take the shape of a helixMoRFs which take the

form of sheets, and MoRFs that do not have a regeleondary structure.

To date, three methods have been developed tocprdtbhRF regions from
protein sequence. The first two prediction methoedslorf-Pred (Oldfield et al.,
2005) and -Morf-Pred (Cheng et al., 2007), were designed to predicy onl
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MoRFs. The third approach, ANCHOR (Dosztanyi et 2009), predicts MoRF
regions regardless of their subtype. These metkads trained on a relatively
small datasets of annotated MoRF regions (14 regimm 12 proteins) (Cheng
et al., 2007). While these approaches succeecemtifging some MoRF regions,
there is a pressing need for new solutions. Firatlppredictions of the two alpha
MoRF methods are limited to only one MoRF subtypkile this subtype covers
minority of the MoRFs. Secondly, ANCHOR, which issijned to predict all
MoRF subtypes, was trained on a small dataset tngredictive quality is

relatively poor.

Our hypothesis is that it is possible to build avhoRF predictor that uses
protein sequence as input and which outperforms dheent methods in

prediction of disordered binding sites. We devied avaluate a new solution to
address this hypothesis. Our approach consistsvofsteps. First, the protein
sequence is converted into a numerical featureovdbiat represents different
attributes/characteristics of the input proteinxt\ehis vector is inputted into a
machine learning classifier that generates preafisti Three novel design and
development aspects contributed to the improventhatswere achieved by our
solution. First, we use a larger and more comprakendataset of annotated
MoRF regions to design our method and to empigcathmpare it with the

existing solutions. Second, we use a more compeerset of features which
encode previously unexplored characteristics ofptfagéein chain and we utilize a
modern and well-performing machine learning modalled Support Vector

Machine. Third, we extend our design by combinimg mnachine learning-based



predictions with predictions generated using seqaealignment, which exploits

similarity of the predicted sequence to a datakahnotated protein sequences.

The thesis is organized as follows. In Chapter 2 imteoduce background
information concerning protein structure and disoydorediction of disorder,
datasets, and evaluation protocols that are usextdess predictors. Chapter 3
explains the design of our predictor, which is aatééd and compared with the
existing solutions in Chapter 4. The latter chagptlso analyzes our predictions
and predictive model to provide interesting insiglthat characterize MoRF
regions and that help to interpret the predictid®isapter 5 concludes the thesis

and lists significant contributions.



2 Background and Materials

This chapter provides preliminary information reqdi to understand the nature
of protein function and interactions. We discusstate characteristics of
disordered regions and how they allow for developmef computational
methods that predict disordered regions. We inttedsome of the top disorder
prediction methods and their application in ideadifion of disordered binding
sites. Finally, we overview the available predistof disordered binding sites and
we explain protocols that are used to assess amghare predictive quality of

these methods.

2.1 Definitions

2.1.1 Amino acids

Proteins are biological polymers that consist @ksal dozen to several thousands
of amino acids (AAs). It is believed that the stuure of the protein is determined
by its sequence of AAs (Anfinsen 1973). There adestandard AA types as
shown in Table 1. An amino acid is defined as H2MHR)-COOH where the
amino group (H2N) in one AA connects to the carbaypup (COOH) of its
adjacent AA to form a sequence. Together, the amioap, carboxyl group and
the C atom that connects to the side chain (R) creatddlckbone of the protein
structure, i.e., a chain that folds in space tonftlhe 3D shape of this molecule. R
is the side chain of a given AA that protrudes fritra backbone and determines

the type of the AA. Physiochemical differenceshe side chains are responsible



for different properties of individual AAs and pide a comprehensive set of

building blocks to assemble unique protein struetur

AAs are attached to each other through a peptidel.b& sequence of connected
AAs is called a polypeptide. Attachment of an AAtte polypeptide always
happens in 1 direction where the amino group of duhattached amino acid
attaches to the carboxyl group of the polypeptittee amino group of the first
amino acid is called the N terminus, and the caybgroup of the last amino acid

is called the C terminus.

Distribution of charge in an AA side chain is a tdouting factor in AA
interactions. Some of the AAs have positively ogatesely charged side chains.
We refer to this group as charged AAs. In contrasytral AAs lack electric
charge. The latter group can be divided to poldrran-polar categories based on
the distribution of positive and negative chargesde the molecule. While polar
AAs have an imbalanced distribution of charge, an4polar amino acids charges
are distributed evenly. Since charged AAs have larwaed distribution of
charges, they also belong to the polar group. Aerotiontributing factor in AAs
interactions is the hydrogen bond. As we will explan the next section,
hydrogen bonds play an important role in shaping ftbrotein structure.
A hydrogen bond occurs between an electronegatora @and a hydrogen atom
that is bonded to another electronegative atomthéncase of AAs this bond

occurs between the hydrogen of the H-N group aaaitygen in the C=0.



AAs can be categorized to 2 groups based on thedency to interact with each

other and with water molecules.

Hydrophilic AAs are capable of attracting water gwlles. Side chains of
these AAs are polar. Due to the polarity of thalleschains these AAs are
capable of making hydrogen bonds with each othat waith water
molecules. Usually hydrogen bonds dominate theaant®ns of this type

of AAs.

Hydrophobic AAs are nonpolar and water “fearinghese molecules
repulse/escape from water molecules and tend to ggainst each other
in presence of water. In protein folding (i.e.tle process that converts a
polypeptide chain into a 3D protein molecule) tieisdency, which is
referred to as hydrophobic effect, is partly respole for the globular

shape of structured proteins (for more detailsrriefsectior2.1.2.3).

The categorization of AAs in hydrophobic and hydndp is shown in Table 1.
We note that various hydrophobicity scales arestsl/to quantify
hydrophobic/hydrophilic tendencies of AAs (Carolid@71), so this

categorization is somehow “flexible” for certairgrderline AAs.

AAs can also be characterized based on other iy chemical attributes. A
comprehensive list of amino acid indexes which ¢fias biophysical and
biochemical attributes of AAs such as their siz@ume, acidity, charge, polarity,

etc., is available in the AAindex database at Hitpvw.genome.jp/aaindex/



(Kawashima & Kanehisa, 2000). In secti82 we explain how this information

can be used to build a feature set for the prediaf disordered binding sites.

2.1.2 Protein structure

Protein structure is the three dimensional confoionaof AAs in a protein and
can be best described in the atomic level by aosatoordinates specifying
position of each atom in each AA in the structdieough highly informative, the
atomic representation of a protein does not allaw ¢haracterization and
classification of protein molecules. Thus, protsiructure is categorized in three

hierarchical levels: primary, secondary, and teytgructures.

Amino Acid Short Abbrev. Side chain Hydrophobic Polar Charge
Alanine A Ala -CH3 Hydrophobic Nonpolar Neutral
Cysteine C Cys -CH2SH Hydrophobic Polar Neutral
Asparticacid D Asp -CH2COOH Hydrophilic Polar Negative
Glutamic acid E Glu -CH2CH2COOH Hydrophilic Polar Negative
Phenylalanine F Phe -CH2C6H5 Hydrophobic Nonpolar  Neutral
Glycine G Gly -H Hydrophobic Nonpolar Neutral
Histidine H His -CH2-C3H3N2 Hydrophilic Polar Negative
Isoleucine | lle -CH(CH3)CH2CH3 Hydrophobic Nonpolar ~ Neutral
Lysine K Lys -(CH2)4NH2 Hydrophilic Polar Positive
Leucine L Leu -CH2CH(CH3)2 Hydrophobic Nonpolar  Neutral
Methionine M Met -CH2CH2SCH3 Hydrophobic Nonpolar  Neutral
Asparagine N Asn -CH2CONH2 Hydrophilic Polar Neutral
Proline P Pro -CH2CH2CH2- Hydrophobic Nonpolar  Neutral
Glutamine Q GIn -CH2CH2CONH2 Hydrophilic Polar Neutral
Arginine R Arg  -(CH2)3NH-C(NH)NH2 Hydrophilic Polar Positive
Serine S Ser -CH20H Hydrophilic Polar Neutral
Threonine T Thr -CH(OH)CH3 Hydrophilic Polar Neutral
Valine \Y Val -CH(CH3)2 Hydrophobic Nonpolar Neutral
Tryptophan w Trp -CH2C8H6N Hydrophobic Nonpolar ~ Neutral
Tyrosine Y Tyr -CH2-C6H40H Hydrophilic Polar Neutral

Table 1. The names, abbreviations, and side chaformulas for the 20 AAs. The last two columns
indicate hydrophobic and hydrophilic classes of AAdhis table was borrowed from
http://en.wikipedia.org/wiki/Proteinogenic_aminoid#Side_chain_properties.

2.1.2.1 Primary structure
The sequence of AAs in a polypeptide chain is reterto as the primary

structure. Primary structure shows the order of AAshe chain and is written

and read in the direction that a given proteinrgated: from N-terminus to C-



terminus. The primary structure of a protein deiaes how this protein folds

into the secondary and tertiary structures.

2.1.2.2 Secondary structure
Recurring patterns of local three dimensional canfdions in a protein chain are

referred to as secondary structure. They are est@ol through hydrogen bonds
between N-H and C=0 groups of adjacent (in spaée). Awo common forms of

secondary structures arehelices and -sheets.

An -helix is a cylindrical structure made by a peptutt@in where the carbonyl
oxygen atom of each AA forms a hydrogen bond with amide nitrogen four
residues (we use AA and residue as synonyms) fualbeg in the sequence. The
backbones of the AAs form the wall of the cylindenere the side chains are
protruded from the structure. Side chains are demeng factors of the
interactions that occur between the helix and thergparts of the protein. Figure

la depicts the structure of a helix.

A -sheet is a structure consisting of two or morargts of AAs that are taking
extended conformations and are bonded to each thtfmergh backbone hydrogen
bonds. If the two bonded strands are orientederstime direction they are called
parallel sheets. In contrast, strands that argposite directions form antiparallel

sheets. Figure 1b depicts the conformation of perahd antiparallel -sheets.

While these two types of secondary structure agentbbst common, other forms
of secondary structure such as other forms of bgeland strands (called bridges)

has also been observed. These structures will beussed in sectio2.1.3.
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Segments of the protein which lack a regular seapnsitructure are referred to as
coils, and they include turns, bends, and othes tegular shapes. These coils

serve as “connectors” between helices and strands.

2.1.2.3 Tertiary structure
Tertiary structure refers to the three-dimensidfal) conformation of a protein,

where secondary structure elements fold into a eminglobular molecule, see
Figure 2. This fold is the most energetically stabtate of the molecule and
(often) the only functional conformation. This stture is stabilized by weak
intermolecular interactions between polar and ntarpgroups. The structured
state of the protein is referred to as the natteaéesand the process of reaching
this state is called protein folding. Generally,emnithe term “protein structure” is

used, it refers to the tertiary structure.

(b)

Antiparallel

Parallel

Figure 1. -helix (panel a) and -sheet (panel b) structuresThe carbon atoms are depicted by gray circles,
oxygen atoms by red circles and nitrogen atomslbg bircles. Hydrogen atoms are depicted by smhitev
circles and hydrogen bonds are shown by red dalshesl (This figure was taken from the book “Protei
structure and function”, Petsko, G.A. & Ringe, 004, Sinauer Associates).

A protein is a combination of different AAs with [lpo and non-polar side chains.

The order and composition of AAs differ from onetgin to another. Here we
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discuss the effects of presence of different AAetyin protein folding. As we
mentioned earlier, polar and charged AAs tend ti&emlaydrogen bonds with
water molecules in their surrounding area. Thighat happens to polar residues
of a protein in an extended unstructured form. Hawethe presence of nonpolar
residues that cannot form hydrogen bonds wouldigishe network of hydrogen
bonded water molecules in the solution. This digsomp is energetically
unfavorable for the protein and would cause nonprdaidues to escape from
water molecules and aggregate together (the hydtmpheffect). Finally the
tendency of polar residues to make bonds with watelecules and non-polar
residues to cluster together would drive the proteifold into a compact globular

structure.

Protein structure is described in terms of atomaordinates and can be
determined using different methods. Among these hous, the X-ray
crystallography is the most common way to deterntiveestructure; this method
can provide high resolution information. It usestpm crystals to capture the
well-structured portions of proteins and providefimation about flexibility of
individual AAs. The Nuclear magnetic resonance spscopy (NMR) is the
other common way to find protein structure. Thipraach can capture changes
of protein structure on a time scale. This methoorka in (more) native
environment in solution (in contrast to a non-natorystallized state), but it can

only be used for relatively small proteins and [ideg a lower resolution.
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Figure 2. Tertiary structure of DHFR which is an important enzyme in nucleotide metabolismThe
structure is shown in cartoon format where hela@sin black, strands in green (dark gray), antsdéoilight

gray.

2.1.2.4 Sequence alignment
Sequence alignment arranges two or more sequege@ssteach other to find

similar regions/stretches of AAs. Sequence simiylacan be used to identify
structural and functional similarity across a dseesset of protein sequences. The
alignment is a valuable tool to find structural afodhctional annotations of a
protein sequence that lack annotations by infertimgm from the annotated
regions on the similar sequences. This method wdrst for unannotated
sequences for which we can find similar sequenassally with at least 30%
similarity) with known structure and function. llorae cases only parts of the
sequence are aligned (matched) and this could fecisnt to transfer the

annotations.

Alignment algorithms can be categorized into twougs: local and global, see
Figure 3. Global alignment tries to align everyidas in both sequences and is

useful when the sequences are highly similar andeafly the same size/length.

13



Local sequence alignment approaches are more kuftatsequences which have

similar regions but are not entirely similar andynhave different size.

Multiple sequence alignment is an approach to atigme than two sequences at
the same time. Multiple sequence alignment is cdatfnally expensive. These
methods usually use a heuristics approach ratfzer ttine global optimization to

find approximately best alignment in order to resltite computational cost.

Global INPut sequence  FTFTALILLAVAV
Aligned sequencé-- - TAL- LLA- AV

| Input sequence FTFTALILLA-VAV
Aligned sequence - FTAL- LLAAV - -

Loca

Figure 3. Results of global and local alignment whre aligning FTFTALILLAVAV sequence to
FTALLLAAYV sequence. In both cases inserting gap in the alignment isvad. Gaps are empty spaces
inserted between sequences to allow for a beftgraént and are represented-by

2.1.3 1D descriptors

The last few decades observed development of a @umnob lower-level

descriptors of protein structure that provide amerahtive and somehow
complementary way to describe, analyze, and pregiotein structure and
function when compared with the structure definsthg atomic coordinates.
These descriptors quantify certain structural pripe of AAs, such as secondary
structure, their position with respect to the piroteurface, and their flexibility.

We refer to these descriptors as 1-dimensional @d3griptors since they project
3D structural features onto 1D strings of residusewstructural assignments.
Among available descriptors, in this section wecdés secondary structure,
solvent accessibility and flexibility descriptomshich are utilized to design our

predictor of disordered binding sites.
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2.1.3.1 Secondary structure
Secondary structures are determined based on ttegrgaof hydrogen bonds in

protein structure and they are categorized inteelmajor states: helices, sheets,
and regions with irregular secondary structure. DI&8P method (Kabsch and
Sander, 1983) assigns one of the following eigltbsdary structure types for
each of the structured residues (residues that tmge-dimensional coordinates)

in the protein sequence:

G: 3-turn helix (also referred to agodelix). In this secondary structure
the carboxyl group of a given AA forms a hydrogemd with amid group
of the AA three positions down in the sequence fogra tight, right-
handed helical structure with three residues per. tu

H: 4-turn helix (also referred to ashelix). This structure is similar to the
3-turn helix, however, the hydrogen bonds are farmieetween
consecutive AAs that are four positions away inghatein chain. This is
the most prevalent helix type.

I: 5-turn helix (also referred to ashelix). In this type of the helix the
hydrogen bonding occurs between residues spacedpisitions away
from each other and which also results in a riginded helical structure;
left-handed -helices are relatively rare.

E: extended strand in parallel or anti-paralleethconformation. Two or
more strands are connected laterally by at least ywdrogen bonds

forming a pleated sheet.
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B: residue in an isolated beta-bridge, which @rayle residue pair sheet
formed based on the hydrogen bond.

T: hydrogen bonded turn. A turn in the protein ohai which a single
hydrogen bond is formed between residues spaceq 8¢ 5 positions
away in the protein chain.

S: bend, which denotes a fragment of protein clath high curvature
where the angle between the vector fromt€ Ci., (C atoms ai™ and
i+2" positions) and the vector from G to C; is < 70°; this is the only
non-hydrogen bond-based regular secondary strutytpee

— . irregular secondary structure (also referredcagsoloops and random
coils), which corresponds to the remaining confdroms.

The above eight types are often mapped into thegessas follows

H: -helix. This secondary structure state encompasgatsor left handed
cylindrical/helical conformations that include G, &hd | types.

E: -strand. This state corresponds to pleated sheettwstes and it
includes E and B secondary structure types.

C: coil. This state represent the remaining tydab® local confirmations

and it includes S, T, and — types.

2.1.3.2 Solvent accessibility
Solvent-accessible area of a protein molecule st defined by Lee and

Richards in early 1970s (Lee and Richards, 1971thasarea traced out by the
center of a virtual probe sphere representing\eesbimolecule as it is rolled over

the protein surface. In the follow up definitioni¢Rards, 1977), the solvent-
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accessible area consists of the part of the VaWtbals surface of the atoms that
are accessible to the probe sphere. The accessitféees of atoms are connected
to each other by a network of concave and saddipeshsurfaces that smoothes
over the crevices and pits between the atoms. Thelescriptor of the solvent

accessibility (also referred to as the relativerst accessibility) is defined as the
ratio between the solvent exposed surface areagdiem residue observed in a
given protein structure (i.e., the corresponding pathe solvent-accessible area
of this protein) and the maximum obtainable valtithe solvent-exposed surface
area for this AA (Adamczak et al., 2004). The rasizused to normalize between
different AA types. The values for the accessihbidaxe area are often calculated
using the DSSP program. The maximum obtainableegatli the solvent exposed
surface area correspond to the surface exposedodreagiven residue type

observed in an extended tripeptide conformationkiéa with either glycine or

alanine residues. The relative solvent accessibidihges between 0%, for fully

buried residues, and 100%, for fully solvent acitdssesidues.

2.1.3.3 Flexibility
The B-factor (also called temperature-factor or y@elvaller factor) describes the

degree to which the electron density of a givemmafor a group of atoms) in the
X-ray scattering of the crystal structure of a pnotis spread out. The B-factor

values quantify mobility of an atom and they arepated as
Bractor = &Dzuiz

whereU;? is the mean square displacement ofithatom which is averaged over

the lattice. Since B-factors depend on several adteristics of the structure
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determination protocol, such as experimental réswlu crystal contacts, and
refinement procedures, they should be normalizealltov comparisons between
different structures. Following (Parthasarathy &hdthy, 1997), the B-factors of
a given AA are expressed using the B-factors gfams that are normalized

using average and standard deviation of the B-fadtoa given chain as follows
normalized_RBcio= (Btacto— Mmean_Byio) / Standard_deviation_of ;Bior

The values of the abovementioned 1D structural rggscs can be either
computed from the known protein structures or tedi from the knowledge of
the input protein sequence. An overview of the texgssequence-based predictors
of the 1D structural descriptors that compares csete secondary structure,
disorder, and solvent accessibility predictors barfound in (Kurgan & Disfani,

2011).

2.2 Protein disorder and its prediction

Disorder in a protein is characterized by lack afell-defined 3D structure in
parts or all of the protein. Disordered regions féarible polypeptides which do
not establish a stable conformation and can fluetubetween different
conformations. Proteins which include disorderedgnsents are called
intrinsically disordered proteins (IDP). From anpexkmental point of view, a
disordered region is defined as residues that ¢ackdinates in structures solved
by X-ray crystallography and as residues that ekhimgh variability within
structure ensemble or are annotated as disordaredREMARK 465 by

experimentalists for the structures solved by NMRRrgan & Disfani, 2011).
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Studies reveal that about 40% of all human protetnatain at least one
intrinsically disordered segment of 30 AAs or maed that some 25% are likely
to be disordered from beginning to end (Uverski &Rer, 2010). Disorder has
been observed to be involved in a variety of biadapprocesses, such as protein-
RNA and protein-DNA binding, transcription, trartsbm, regulation, and
signaling. Disorder also plays a part in processs®ciated with certain diseases
such as cancer, neurodegenerative diseases, atidccdisorders (Midic et al.,

2009; Uversky et al., 2009).

As we mentioned earlier, the structure of a protsirdetermined by its AA
sequence. This is also true for the disorderedeprst Studying sequences of the
disordered proteins reveals specific features/cianatics of these sequences.
Disordered sequences have low complexity (theybaik from a less diverse set
of AA types when compared with ordered chains) arelcharacterized by high
net charge due to inclusion of polar AAs and lomteot of hydrophobic AAs.
Both of these characteristics are contributingdecin disorder. Firstly, high net
charge in a sequence leads to same charge-chgugisioa. Secondly, due to
scarcity of hydrophobic residues one of the driviagees of protein folding, the
hydrophobic effect, is weakened. As we discuss i@eci2.2.2, these

characteristics can be used in prediction of tkerdiered segments.

2.2.1 Disordered binding sites and MoRF regions

Observation of disordered proteins defies the wmabksstructure-to-function
paradigm. This paradigm states that a unique 3Docaration of a given protein
determines its interactions with other moleculesil@/this paradigm is true for
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many (majority) proteins, disordered proteins cko anteract without having a

defined structure in isolation (before the intei@tioccurs).

There are several examples of protein—protein amdtejp—nucleic acid
interactions that involve coupled folding and bimgli{Uverski & Dunker, 2010).
The significance of these interactions is due to tactors: (1) these interactions
can be very specific due to the flexibility of tHesordered binding sites; and (2)
the transition from disorder to order results isubstantial loss in the system
entropy, which in turn affects the binding strengthese two factors are
especially beneficial in signaling and regulatiorhene highly specific yet

dispensable/weak interactions are needed.

Efforts to characterize the disordered bindingssiesulted in identification of a
specific structural element which mediates manydisbrdered binding events
(Oldfield et al., 2005). This short region (whigftiudes between 5 and 25 AAS)
is referred to as Molecular Recognition Feature R¥Ap and is placed between
two segments of disorder. MoRF regions can be oatag into three types
based on the secondary structure they take upalnigitio their ligand: -MoRFs
which take the shape of a helix;MoRFs which take the form of sheets, and

MoRFs that do not have a regular secondary streictur

Since disordered regions have an extended struatuopposed to globular shape
of structured proteins, disordered binding sitesratatively easy to locate in the
primary structure, i.e., they usually form longesthes of consecutive AAs. These

regions are observed to be enriched in hydrophasiclues compared to general
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disordered regions (Meszaros et al. 2009). Identjfyhese characteristics helped
researchers build computational methods to find MaoBsidues in sequences.

More details on these prediction methods are pealid the next section.

2.2.2 Prediction of disordered and MoRF regions

Identification of disorder as one of the definingriautes of MoRF regions is
essential to prediction of MoRFs. Therefore, irsthection we briefly discuss
disorder prediction methods and then we providaildeabout MoRF prediction

methods.

Several studies have shown that disordered regimnsharacterized by relatively
unique sequence signatures. As mentioned in theguesection, they often have
a low content of bulky hydrophobic AAs and a higlogmortion of polar and
charged AAs, a low content of (predicted) secondsrycture, low complexity,
and unique evolutionary and solvent accessibilififes (Mizianty et al., 2010).
This implies that disorder is predictable from tipeotein sequence. The
development of computational predictors was furtmetivated by the fact that
the disorder prediction was introduced into theti€al Assessment of protein

Structure Prediction CASP experiments since 200@n@4tyrskyy et al., 2011).

Predictors of disorder can be categorized into @dugs based on their design
(Mizianty et al., 2010). For each group we introgle (representative) method

that we used in prediction of MORF regions:

1. propensity-based methodsased on relative propensity of AAs to form

disorder/ordered regions: IUPred (Dosztanyi e2@05).
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2. machine learning-basegredictors that use machine learning classifiers t

perform predictions: DISOPRED2(Ward et al., 2004).

3. consensus-basethethods that combine predictions from multiple digo

predictors. MFDp (Mizianty et al. 2010).

4. structural models-basedpproaches that make use of predicted tertiary

structure models. DISOCLUST (McGuffin, 2008).

More detailed discussion of the disorder predictas be found in (He et al.,

2009)

The prediction of MoRF regions enjoys less interd&iely because it was
initiated recently and is more challenging. Curenonly two predictors are
available:a-MoRF-Predll (Cheng et al., 2007), which superseddoRF-Predl,

and ANCHOR (Dosztanyi et al., 2009).

a-MoRF-Predll is a neural network based predictat tises disorder predictions,
secondary structure predictions, and amino acidgc@sdas its input attributes.
Output of this method is a binary number specifywitether a residue is a MoRF
residue (1) or a non Morf residue (0). This metlbodcentrates on predicting

MoRFs that forms helical structures upon bindingicl limits its applications.

ANCHOR is developed to predict all classes of MoORHsis method uses three
guantities to identify a MoRF region: 1) tendenéyaesidue to be disordered; 2)
tendency of a residue to interact with its neigsband form structure; and 3)

tendency of a residue to form favorable interactianth other globular proteins.
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Using these three parameters this predictor cdkEsila score indicating the
probability of a residue to be in a disordered ligdsite. This score is a real
value in [0, 1] interval. To binarize the scomessidues with scores above 0.5 are
considered to be in a disordered binding site. AKDERt predictions are
characterized by a relatively weak predictive perfance, which is supported by

the empirical tests presented in this thesis.

2.3 Materials and Methods

2.3.1 Databases

Several online resources are available to researdoegather information on
structural and functional aspects of a protein. ©hthe comprehensive protein
related databases is UniProt (Jain, 2009) whichata® sequence information,
functional annotations, and cross references teropinotein related tools and
databases. We use this database to extract pestgeuences that are used to build

a dataset to develop and evaluate our predictor.

Another valuable resource is Protein Data Bank (R@B://www.wwpdb.org/ )
(Berman et al., 2007) which provides structurabinfation for ordered/structured
proteins. Each structure in PDB is representedroiDanumber and contains the
atomic coordinates of a protein. PDB files are ugedssign secondary structures
and solvent accessibility of a protein using proggasuch as DSSP. Segments
with missing coordinates in a PDB structure is tdeu as disordered segments.

This database served as a source to find MoORF sggme
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The Database of Protein Disorder (DisProt) (Siclamet al, 2007) is a manually
curated database of intrinsically disordered pnsteicontaining disorder
annotation of more than 600 proteins with aboutOl8&ordered segments. The
experimental data is acquired mostly from the migscoordinates in X-ray
crystallography derived structures or chemical tshifenerated with the NMR.
Some of the sequences in this database includetidnat and structural

annotations for the disordered segments.

2.3.2 Datasets

To prepare the dataset that is used to design aldate our method, we first
collected 4289 protein complexes (structures thelude protein interacting with
a ligand) from PDB on Mar 28, 2008. These complegescern interaction
between a protein and a small peptide (i.e., atsh@rchain). This peptide is a
putative MoRF (putative disordered binding site)oata sequence is between 5
and 25 residues. This size is consistent with tHated works that developed
MoRF predictors (Oldfield et al., 2005; Cheng et &007; Dosztanyi et al.,
2009). Next, we remove complexes for which theradon between the two AA
chains is not significant enough to be consideredialogically relevant. We
measure whether a biologically relevant interactamturs by calculating the
change of accessible surface areA%A) between unbound (two separate chains)
and bound (a complex with two chains) states. Wkzeitthe BALL library
(http://www.bioinf.uni-sb.de/OK/BALL/) to calculate ASA, and we considered
an interaction as spurious if itsASA < 400 & (Jones & Thornton, 1996; Vacic

et al., 2007). The cutoff is intended to be smathiegh to catch small interfaces
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between the two chains and, at the same time, kemgegh to remove spurious
contacts. As a result, 452 complexes were remadéthe remaining complexes,
3148 that include globular partners with > 70 AAsr{es, 1998) were kept. The
cutoff at 70 AAs was chosen to avoid discardingr&iofolded domains. The
remaining MoRFs were mapped to the UniProtKB/Swisst v56.8 and
UniProtKB/TrEMBL v39.8 databases using FASTA altjom
(http://fasta.bioch.virginia.edu/fasta_www?2/fastawth.shtml) with e-value set as
1000 (Pearson, 1988). 1805 MoRF segments were ssfallg mapped to their
parent sequences; in the remaining cases the MoRFes too short to uniquely
map to the UniProt or could not be found. 842 MoRese left after removing
duplicates and MoRFs that include ambiguous AAshsas X. We evaluated
whether the 842 MoRFs are disordered when unbolimel analysis based on the
protocol described in (Gunasekaran et al., 2004wshthat all MoRFs are
disordered in isolation, see Figure 4. The AAs tlmatn these MoRFs were
annotated in the parent sequences, and these segugare used to develop and
assess our predictor. As a result, each of the stfience in our dataset is

annotated with one MoRF segment, which length gabetween 5 and 25 AAs.

Each MoRF was classified into one of the four type@helix), (strand), (coil),

or complex based on the largest percentage valubenf secondary structure
types assigned by DSSP (Kabsch & Sander, 1988)c & given MoRF there was
no clear preponderance of any secondary strucypee (at least 1% greater than
the other two types), we categorized it as a compleRF. Only the residues in

the interface were counted in the secondary streatiassification. Among the

25



842 MoRFs, there are 181 helical, 34 strand, 59batal 28 complex MoRF

regions and two annotations with unspecified seapnstructure.
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Figure 4. Gunasekaran-Tsai-Nussinov (Gunasekaran etl., 2004) graph for the 842 MoRFsThe plot
provides a scale that measures confidence withhwime can say whether a protein is ordered or désed.
The farther the point, which corresponds to a gigkain, is from the dividing black line (boundarihe
greater the confidence with which a protein carclassified into either of the classes. Points alibeeline
correspond to disordered chains.

We also annotated the MoRF segments as thosed¢@ienmune response and
others. We used text mining of HEADER, TITLE andY&EDS records in each
PDB entry (each complex that was used to identily MoRFs) to look for
keywords such as histocompatibility, MHC, IgG, gefi, antibody, HLA, T cell,
B cell, heavy chain, light chain, FAB fragment, angtophilin. As a result, we

identified 120 immune-related MoRFs.

The annotated MoRF regions were used to selectchalins in the UniProt and
the remaining AAs in these chains (all AAs excdyet tesidues that compose the
MoRF) were by default assumed to be non MoRFs. Wiipate that some of

the (default) non MoRF residues could in fact cgpond to MoRFs, i.e., our
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MoRF annotations are incomplete. We address tBiseisvhen we design and

evaluate our method.

We divided the dataset into two parts: training aest sets. This division was
performed to assure that chains in the training st set share low sequence
similarity. This means that a simple sequence anityl (sequence alignment)
cannot accurately identify MoRF regions in the test based on the MoRF
annotations in the training set. We used CD-Hitdhiy et al. 2010) to cluster
sequences in the entire dataset with identity > .30Bts resulted in 427 clusters
with 274 of them that included only 1 sequence.tWén assigned each cluster to
either training or test set at random. This asstirastraining and test sets have
similar number of chains and that similarity betwesequences in these two
datasets is below 30%. The training dataset wad teseevelop the method (to
perform feature selection and parameterize theigired algorithm) and test

dataset was used to evaluate and compare it Wil ekisting methods.

2.3.3 Test and evaluation protocols

2.3.3.1 Evaluation measures
We compare a prediction for a given sequence wghnative/true annotation

using two types of assessment: (1) per residuessissmt which evaluates
predictions for individual AAs; and (2) per sequerassessment which looks at
the sequence as a whole. The prediction of MoRIpeliformed for each AA in
the input protein sequence. Each prediction cangibta numerical scorp that
guantifies propensity (probability) of this residieeform a MoRF segment and a

binary score that categorizes the AA as MoRF orMoRF residue.
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The first per sequence measure is success rateofUbes measure is motivated
by the fact that there might be some un-annotate®RMregions in our dataset
which, if predicted, would count as false predicfo This success rate was
originally used to evaluate predictions of B-cqditepes and was designed to deal
with the incompleteness of their annotations (Rsiaim, 2009). To calculate this
measure, we compare the average predicted praggiitipensity of residues in
the native MoRF region to the average probabilitthe whole sequence, and we
assign a score to each sequenceiffesequence in a dataset, the successréage

calculated as follows:

PMoRF A _ I:)nonMoRF
' VemnMoRF -
MoRF nonMoRF

AVEore =

AVE o > AVE oavorr S=1
Oo.w. S =0

Total success rat8 is calculated by averaging the per sequence sawesall

sequences in a given dataset:

n

sequences

Since probabilities of the predicted MoRFs showdchigher than the non MoRFs,
a correctly predicted sequence should Hawel. After averaging over all chains,
the success rate is a real value in the [0,1] ramigere 0 and 1 mean that all
proteins were predicted incorrectly and correatbgpectively. Higher value @&

indicates a better prediction quality.
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For the per residue evaluations, we use three rieritthat assess binary

predictions:

Accuracy = (TP+TN)/(TP+FP+TN+FN)

True positive rate = TPREP / (TP + FN) = TP / Niorr

False Negative rate = FPRT™/ (TN + FP) = TN/ NnonmorF

where TP is the number of true positives (correptbdicted MoRF residues), FP
denotes false positives (non MoRF residues thae wweedicted as MoRF), TN
denotes true negatives (correctly predicted non Mo&sidues), FN stands for
false negatives (MoRF residues that were predictedMoRF), respectively. The
accuracy values range between 0 and 1 and it ial @pe when all residues are

predicted correctly.

Another per residue prediction assessment methiasisd on calculating the area
under the receiver operating characteristic (RO@2ye The ROC curve is used
to examine the predicted probabilities/propensitidse values of probabilities
(between 0 and 1) generated by a given predictiethod are binarized such that
all residues with probability equal or greater thamiven threshold are set as
MoRFs and all other residues are set as non MoRf&s.thresholds are varied
between 0 and 1 (they are set to each of the valy®sand for each threshold the
TPR and the FPR are calculated. We use the area timel corresponding curve
(AUC), i.e., curve created by adjacent TPR vs. Fidits, to quantify the

predictive quality.
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We calculate the abovementioned criteria (succatss accuracy, TPR, FPR, and
AUC) using full protein chain. However, we also fpem the same evaluation on
a specific fragment of the sequence, which is nadéid by the incompleteness of
the MoRF annotations. We evaluate using the regwinish are less likely to

contain unannotated MoRF residues. Since MoRF nsgare defined as small
segments in a larger segment of disorder, we agateithat the sequence
surrounding a given MoRF region is less likely tim@in unannotated MoRFs
when compared to the remaining part of the chalis Theans that annotations of
non MoRFs are possibly more accurate in this a@msequently, we perform
“second” evaluation using a fragment of proteinussge that consists of the

MoRF region withn AAs andn flanking AAs on each side of this region.

2.3.3.2 Biserial and correlations
Biserial correlation is used to measure correlabbtwo quantities where one is

binary and the other is continuous. Given binamyjalde X, we divide values of
the continuous variabl¥ to two groups: 0 and 1, based on their correspandi
values ofX. The biserial correlation is calculated as:

- Ml nyn,
S n?

n

corr(x,y) = M,

whereS§ is the standard deviation ¥fandMy andM; are mean values for group 0
and group 1 with sizeg andn; respectively.
We use biserial correlation when designing our metho perform feature

selection i.e. to quantify the correlation of aeagivinput feature with the native
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(binary) annotation of MoRFs. We perform this bycoating an average biserial
correlation over 5 training folds using the tramidataset. We use this average to

sort the features in the descending order.

For binary input features we usecoefficient (Ernest, 1991), which quantifies
correlation when both variables are binary. Usingotation from

Figure 5 we define coefficient as follows:

- PooFi1 - PioPos

V PZI.Ql P2 QZ

We scale to[-1,1] range as/ maxWhere naxis defined as

P
J max =L forPZ 3 Pl
VQP
Variable 1
1
I:)00 I:)01 Q&

Variable 2

Figure 5. Matrix that defines combinations of valus of two binary variables. In case of the MoRF
prediction, variable 1 corresponds to the nativeRA@nnotations and variable 2 could be an inputifeaor
a binary MoRF prediction.
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2.3.3.3 Test protocols
To guarantee an unbiased evaluation of our metbgdhe fact that we use a

training dataset), we divide the original datade84? chains into a training set,
which is used to develop the method, and an indig@nset (that includes
sequences that are dissimilar to sequences imdiméniy dataset), which is used to
evaluate the final design of our method and compavéh existing methods. The
design, which includes feature selection, paranzstéon of the Support Vector
Machine (SVM) and selection of the final methodgauthe training set with the 5-
fold cross validation protocol. This is performedassure that our method does
not overfit the training dataset, and thus it caovle equally good predictions
on the test set. To perform 5-fold cross validatiendivide the training set into 5
equal-sized subsets of protein chains. We use dbuhese subsets to form a
training dataset that is utilized to compute thedeloand the fifth subset
constitutes a test set that is used to performetraduation. This procedure is
repeated five times, each time choosing a diffefeldt as the test set. Finally, to
estimate the performance, the results from thesbftdds are averaged. We note
that sequence in that training set are clustereskdan their similarity, as
explained in sectio.3.2. When selecting the five fold, the sequemtélse same
cluster are kept together. This assures that seqadretween the folds share low
similarity below 30%, which is also true when compg@ training and test

datasets.

2.3.3.4 Significance Test
A test of statistical significance is performedwerify whether or not a given

result occurred by chance. The significance levep-walue that is given by a
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significance test represents the probability ofemlasg the result by chance.
Therefore, lower values gf-value correspond to the results that have higher

significance.

To evaluate the statistical significance of the rowements offered by our
methods (when compared with other methods), we eoen0 paired results
guantified using success rate and AUC that areirddausing the bootstrapping
with 50% of randomly selected test chains. We deitee normality of a given
measurement with Anderson-Darling test at the Gigificance. For normal
measurements, we use paired t-test, and otherwesese Wilcoxon rank-sum
test. We use thresholds of 0.5 and 0.01 for theltreg p-value, i.e., results with

thep-value lower than these thresholds are assumee sgghificant.
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3 Sequence-based MoRF prediction

3.1 Overall architecture

Figure 6 shows the overall architecture of our radfhwhich is called MoRFpred.
The first step is to calculate a feature set thptesents each residue in the input
sequence using a sliding window, i.e., the calautabf the features is based on a
segment of residues centered over the predictéduesThe use of the window is
a popular approach in the design of similar segedrased predictors (Kurgan
and Disfani, 2011). In the second step, the featactor is fed into a linear SVM
to calculate propensity of a given input residuéoton a MoRF region. We do not
describe SVM in this thesis as this is out of scopehis work; the reader is
referred to (Fan et al. 2008) for the details. Fynan the third step, these
propensities are merged with the results of alignneéthe input protein against a
set of MoRF annotated proteins in a training datase produce the final

propensities. Following we describe the detalils.

In the first step, we use the protein sequence regigt the following 1D

descriptors from the sequence: (1) disorder; (A)estd accessibility; and (3) b-
factor. These descriptors are used to calculatéetitere set. To predict disorder,
we utilize IUPredL and IUPredS (Dosztanyi et ab02), DISOPRED2 (Ward et
al., 2004), DISOclust (McGuffin, 2008) and MFDp (&nty et al. 2010). These
predictors represent the four major classes ofrdeopredictors, see section
2.2.2. The Real-SPINE3 (Farragi et al., 2009) iedufor the prediction of the

relative solvent accessibility and PROFbval (Sdhiteger et al., 2006) is used for
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the B-factor prediction. The choice of the disorgeedictors is based on the
evaluation in CASP8 where we picked top availab&hods (Kurgan & Disfani,
2011). For all of the methods we acquired the stlm# version. We also
calculate Position Specific Scoring Matrix (PSSMdfges generated with PSI-
BLAST (Altschul et al., 1997) which summarizes imf@tion from multiple
sequence alignment. Finally, we represent varidophysical properties AAs
with the amino acid indices from AAindex databasall predictors were run
using default parameters. The PSSM profiles wemeigded using the non-
redundant (nr) database from NCBI, which was #teusing PFILT (Jones &
Swindells, 2002) to remove low-complexity regiotransmembrane regions, and

coiled-coil segments.

The acquired information is used to build a feaget A sliding window of size
25 is used on each residue to generate featuresrpeg to that residue. The size
of the window is determined based on the average sf the MoRF regions
which is 12. We initially calculate a large numimérfeatures using a relatively
wide window to later filter them out. We keep threatures which improve the
quality of MoRF predictions. These features areduse the input to the SVM.
Choice of SVM is motivated by its successful apgien in prediction of
disordered regions (Ishida & Kinoshita, 2008; Mi#haet al. 2010) and B-factors

(Chen et al., 2007).

Due to a large number of samples (amino acids ikatl to be predicted), we
decided to use a fast SVM implementation. Theeefoe chose liblinear (Fan et
al. 2008) that was previously utilized in MFDp (Néimty et al. 2010), which is
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one of the top methods to predict disorder. Thigwuof our method is a real
value that quantifies the probability of a givemsideie to form a MoRF region.
These values are binarized using a threshold gfi@5 amino acids predicted
with probability > 0.5 are assumed to form MoRMsnally, we use PSI-BLAST
to align the input protein against proteins in th@ning set. We transfer the
annotations of MoRF regions from the aligned pretento the input protein and

merge them with the predictions from SVM to getfihal results.
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Figure 6. Architecture of the MoRFpred method.
3.2 Feature based sequence representation

Using predictions mentioned in the previous sectwa build 5 types of features
that are based on the alignment, amino acid indexed predicted disorder,
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solvent accessibility, and flexibility. For eaclpgyof features we calculate several
per residue and aggregated features as explainew.b&he total number of

features is 1764.

Each residue in a given input protein chain israfga which is described by a set
of features. For each residue, we include inforomatibout the residue itself and
its neighbors. To do so, we create a sliding winddwize 25 that is centered on
the predicted residue and we extract informati@amfithis window to calculate
the feature set. For the residues on both ternendg) of the sequence where
there are no neighboring residues on the righefbiside, we fill these positions in
the window with default values. Calculations of fieatures for each position in
the window was motivated by the previous methodshia field, including -
MoRF-Predl and -MoRF-Predll, which used attributes such as predict
disorder and secondary structure. When calculatiireg features, we used the
predictions in two forms: the probabilities (propiies) and the corresponding

binary values.

We also generate another, novel group of featureshwvprovide information
about a segment in the sequence rather than avidodi residue (a position in
the window). These features are created by aggnggatw values over a window
of a certain size. Simple aggregations include ayieg a quantity over the
window for real valued data or calculating the eontfor binary valued
predictions. We also aggregate by calculating &ewrihce between an average
value in a smaller (inner) window and a larger ¢alg¢) window; see Figure 7.
We utilize this aggregation to contrast the valoakulated using amino acids
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that are close to the being predicted residue apdime values associated with
residues in a wider neighborhood in a sequence iShinotivated by the fact that
MoRF segments are usually surrounded by largerdiksed segments. While size

of the entire/sliding window is fixed at 25, thezesiof the inner window is

adjusted.
Inner window of size w
[T T T T T T T T T TT M TTTTTTTITTITT]
S~ _
—

Outer window of size 25

Figure 7. Sliding window used to create feature sef sliding window of size 25 centered on the target
residue (dark red) is used to create per residatifes. The inner window of size is shown in red. The
flanking area, which corresponds to the outsidedeam is shown in green.

Table 2 describes details abqér residue(calculated for each position in the
sliding window) andaggregatedfeatures for each feature type. Note that we

calculate the disorder-based features for eacheob tdisorder predictors.

Our dataset is heavily unbalanced, i.e., the nusmioérMoRF and nonMoRF
residues are very different. To be more exact.etlieronly 1 MoRF residue for
every 46 non MoRF residues. This imbalance isyikelbias a prediction method
to under-predict or completely ignore the MoRF oeg. To avoid this, we
undersample the non MoRF residues. We test thrge wa undersample. As
motivated in the last paragraph in sect®®.3.1, in the first sampling strategy we
use the non MoRF residues that are the flankinglwes of the MoRF residues
(local sampling; this results in 2:1 ratio between non MoRF anoR% residues.
We also useandom samplingvith the same 2:1 ratio (two nonMoRFs for each

MoRF) and higher 3:1 ratio.
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Number

Feature type Input type Description Window size of
features
Per residue For each prediction method, we include
binary values and probabilities in a
Disorder, RSA, B-factor window. 7 (methods: 5 disorder + RSA w=25 350

+ B-factor) * 25 (window size) * 2
(binary and probability) = 350 features.
For each residue a matrix of size 7*20 =
140 is included in the features where

S(-:‘Iach row is a window of size 7 centered
on the main residue and each column
contains values corresponding to
different amino acids.

PSSM generated with PSI-BLA! w=7 140

Aggregated Average probability Average of probability over the windc w={2*n+1p=2,...12}
of sizew.
Content C_ontent of_blnary prediction over t W ={2*n+1n=2,..,12}
window of sizew.
Disorder Difference ofprobability averages in ¢ 170

Average difference inside window of sizev and an outsid w ={2*n+1p=2,..,7}
window of size 25.
Difference of minimum average in
MinMax average inside window of sizev from maximun w ={2*n+1p=2,..,7}
average in an outside window of size 25.
Average of RSA valuesver the window
of sizew.
Relati Standard deviation Standard deviation of RSA values over
elative (stdv) the window of sizev.

Sl Content of binary prediction over the 24
accessibilityContent ; inary prediction ov w={2*n+1p=2,..,7}
(RSA) window of sizew.

Difference of standard deviation in an
Stdv difference inside window of sizev and an outside w ={2*n+1p=2,..,7}
window of size 25.
Minimum of normalized B-factor over
the window of sizev.
Content C_ontent of bmary prediction over the
B-values window of sizew.
Difference of content in an inside
Content difference window of sizew and an outside w ={2*n+1p=2,..,7}
window of size 25.
Average of amino acid index over a
window of sizew.
AA Indices Difference of averages in an inside 1062
Average difference window of sizew and outside window of w=15
size 25.

Average RSA w ={2*n+1p=2,..,7}

w={2*n+1p=2,..,7}

Minimal B-factor w ={2*n+1p=2,..,7}

w={2*n+1p=2,. 7} o

Average w=15

Table 2. Description of features considered in builing the proposed MoRFpred. We describe per
residue and aggregated features and categorizelthsed on the type of information they utilize. Wiefly
describe each feature type and specify window gshzasused to calculate them. For features whidtutzte
the difference between the outside and inner wirsddiae size of the inner window is specified byapaeter
w and size of the outside window = 26-The difference is calculated by subtracting thki& for the inner
window from the value for the outside window.

3.3 Feature selection and parameterization of SVM

Feature selection methods are used to select aetsabgselevant features to
improve the performance of machine learning-badasisification methods. We

perform feature selection in 3 steps. First, aisgofunction is used to rank the
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features based on their relevance/relation to MaR#otations in training dataset.
Second, features with lower ranks (below a cetfaieshold) are removed. Third,
a best first search is implemented to pick feattines improve predictive results

based on cross validation on the training dataset.

We repeat feature selection 9 times, consideringethanking functions executed

for the three sampling strategies. We rank theufeatbased on

Their average (over 5 training folds) biserial etations with annotation
of MoRFs using the complete training set, i.e.ngsall residues in the

training set (referred to @wmplete correlation ranking

Their average (over 5 training folds) biserial etations with annotation
of MoRFs for the MoRF residues and the flankingdess, i.e., using the

same residues as in the local samplingd] correlation ranking

Their average success rate calculated when usisqgie feature on
training set to predict the annotation of MoRFSifold cross validation
(success rate rankingThe predictions are performed using a linean&er
SVM classifier with the default complexity paranre@ = 5 (Fan et al.

2008).

We sort the features in the descending order foln e&athe three rankings and we
remove features with correlation < 0.05 for the ptete and local correlation
rankings and with success rate < 0.5 in case ofstlegess rate ranking. We

selected the thresholds to remove only the irrel#paorly performing features.
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Whole Sequence

Flanking Region

Average (whole
and flanking)

Sampling Feature selection ~ ACC TPR FPR “UC®SSauc acc TPR  FPR  SUCC®Siayc auc Success
rate rate rate
local  omplete ranking  0.948 0183 0034 0665 0642 0682 0.183 0.063 370.80.6160.629 0.651
Local ranking 0788 0391 0203 0748 0632 0650 0.391 0.218 960.8.6320.632 0.722
Success rate ranking 0.503 0596 0499 0720 0.564 0566 0596 0.450 050.0.5980.581 0.713
Combined 0920 0245 0064 0703 0654 0.686 0.245 0.088 030.0.6650.660 0.703
random Complete ranking  0.929 0.205 0.055 0.696 0.664 0.660 0.205 0.106 320.8).5840.624 0.664
31 Local ranking 0503 0637 0500 0722 0599 0559 0.637 0.481 940.8.6200.609 0.708
Success rate ranking 0.740 0428 0253 0751 0.630 0.614 0428 0.291 630.8.5790.604 0.707
Combined 0931 0225 0053 0696 0674 0679 0225 0.088 910.8.6110.643 0.694
random Complete ranking  0.456 0.767 0551 0.774 0.672 0.447 0.767 0.716 79.8.5700.621 0.727
21 Local ranking 0504 0599 0498 0698 0572 0577 0599 0.434 980.8.6140.593 0.698
Success rate ranking 0.178  0.947 0.839 0765 0.636 0.378 0947 0.914 150.8.5480.592 0.690
Combined 0454 0768 0553 0762 0653 0442 0.768 0.725010.8.5390.596 0.682

Table 3. Comparison of results of MoRF prediction ging different feature selection methods and
different sampling strategies.The results are based on the cross validation ®tréming dataset. Rows list
individual setups, which consider three samplimgtegies and 3 feature selection approaches. Weauatsa
combined feature set which implements a union efféatures selected by the three selection appesach
The columns list results when evaluation is perfstrasing the whole chain, using only the flankiagion
(see Section 2.2 in the main text), and the avepagiee two.

The 0.05 threshold removes features that havealiytio correlation with the

outcomes. Similarly, the 0.5 value for the sucaass ranking removes features

that provide predictions equivalent to a randomdjgter. We then execute the

best first search algorithm on the sorted list leé temaining features. In this

algorithm we start with the top ranked feature avel continue by adding one

(next-ranked) feature at a time. A given featuradded into the current feature

set if it results in improved prediction quality & compared with the methods

that uses the current feature set. The predicaoadpased on a linear kernel SVM

classifier with the default paramet€r= 5 and a modified version of the 5 fold

cross validation. The modification of the crossidation is meant to prevent

overfitting (due to the large number of featuress#tat are considered) and

simulate predictions on the independent dataset.ud&e 4 of the 5 folds to

implement the 4 fold cross validation and we keep 3" fold as an independent
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test set; we refer to this as 4+1 cross validatidfe calculate the success rates for
both the cross validation and the independentstetsand compare these with the
currently best success rates. If the newly addatlife improves the success rate
by at least 0.01 on both tests then we add theralf the success rate improves
in only one or none of the tests we discard théufeaand move on to the next

ranked feature.

Table 3 shows the results of the cross validationthe training set for the 9
feature selection setups; 3 (sampling strategi€sjranking methods) = 9 setups.
For each sampling, the last row of the table prssessults of a model that uses a
feature set that combines the features selectedllbthree feature selection
methods. For each setup, we present evaluatiortieowhole sequence and on
the flanking regions. We select the best performsegup by considering
predictive performance on both the flanking regemd the whole sequence.
Considering the average (over the flanking regiot the whole sequence) AUCs
and success rates (the last two columns in Tablee3bbserve that the model
based on the local sampling and combined featuaes the highest average AUC
and a reasonably high success rate. We selects#tigpp to implement our

prediction method.

Next, the selected feature set is used to parammetdre SVM model, i.e., to
optimize value of paramet&, utilizing the 4+1 cross validation on the tramin
dataset. We consid€r= 2, wherex = -13, -12, ..., 8, 9, and sele€t= 2° which

has the highest success rate on the independerioligisssee Figure 8. We also
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observe that the SVM generates similarly good tedat a relatively wide range

of values ofC, between 2 and 3.

0.85

0.80
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Parameter C

Figure 8. Results of parameterization of parametelC for the SVM classifier that uses the combined
feature set selected based on the local samplirihe vertical axis represent success rate and hdakaxis
shows log® .

3.4 Alignment-based MoRF prediction

We align proteins in the test set against chaimsnfitraining set which are
annotated with MoRF regions using PSI-BLAST withfaddt parameters. For
each sequence in the test set then we get a nwhb@atching/similar sequences
in the training set; this number depends on thaleevthat quantifies similarity.
These matches indicate sequences in the traintrihateare (partly) aligned with
our target sequence, i.e., the sequence from sheee If the amino acids that are
aligned between the target and the training sequeowtain a MoRF region, then
we annotate these amino acids in the target sequascMoRFs. We tested
different thresholds for the e-value using thenireg dataset, by merging the
results of the SVM with the annotations transfertisdugh the alignment. We
picked e-value = 0.5 which provides the best AU@ auccess rate. We use the

sequences with e-val#e0.5 and discard the remaining matches.
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We add the annotations acquired from the alignn@nbhe SVM predictions by
updating the probabilities generated by the SVMr Hee residues that are
predicted as MoRFs by alignment and as non MoRFS\OM (SVM generates
probability < 0.5), we add 1 to the probabilitiesngrated by SVM and divide the
result by 2; as a result these residues will belipted as MoRF residues. We use

the probability generated by the SVM for the renragresidues.

3.5 Prediction of MoRF regions by merging SVM and aligment

We compute the SVM model on the locally sampledniing set using the
combined feature set witB=2"° and test it on the independent test set. Table 4
presents results of prediction before and after gmgr alignment-based
predictions. The results are slightly improved afteerging the alignment—based
annotations; the AUC is improved by 1% and TPR % 8Ve also evaluate the
alignment only-based results in the last row. Wgeoke that although alignment
helps to improve the predictive performance of $hWM, it cannot be used alone

as an accurate predictor of the MoRF regions.

Whole Sequence Flanking Regions
Predictor ACC TPR FPR Success ratetAUC ACC TPR FPR Success rateAUC
SVM 0.9370.2260.0480.714 0.6630.7060.2260.0590.752 0.678
SVM + Alignment0.9370.2540.0490.718 0.6730.7110.2540.0650.754 0.684
Alignment 0.9800.0390.0010.043 NA 0.679.0390.0080.038 NA

Table 4. Comparison of performance of MoRFpred befte and after the addition of the alignment-
based predictions.We use the best selected (using training datadét) Bodel and we train it on the
training dataset. The alignment is performed agdaihe training dataset. The results are based en th
independent test dataset. Alignment generatestonéyy predictions and thus its AUC cannot be dated.
The two main columns list results when evaluati®mpérformed using the whole chain and using ondy th
flanking region (see Section 2.2 in the main text).
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4 Results

4.1 Comparison with existing methods

We empirically compare our MoRFpred method with theee available MoRF
predictors, namely-MoRF-Pred, -MoRF-Pred, and ANCHOR. We evaluate
results on the independent test set on both whetpences and the area
containing MoRF and its flanking region, see Tahl@he -MoRF-Pred and -
MoRF-Pred predictors provide only the binary values, whickam that AUC

cannot be calculated for these methods.

We observe a relatively large gap between the ssaeges of -MoRF-Predl and
-MoRF-Predll predictors and the results generated ANCHOR and
MoRFpred. This is due to the fact that the fornves predictors were developed
to identify MoRF regions that form only the alphalikes upon binding. In

contrast, ANCHOR and MoRFpred are designed to ifyeatl types of MoRF

regions. Thus, we focus on comparing results of Mamed and ANCHOR.

Table 5 shows that MoRFpred outperforms ANCHOReirmts of both AUC and
success rate by 7 and 10%, respectively. We naie thie improvements are
consistent for the evaluations with the whole saegae and the flanking regions.
The differences in accuracies between the wholaesexes and flaking region are
due to different ratios of non-MoRF to MoRF resisu&he binary predictions
generated by our method are characterized by loR &R relatively high TPR.
To compare the binary predictions side by side whthother methods, we added

two last rows in Table 5 where we match MoRFpretRR and FPR to the
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highest TPR and lowest FPR of the other methodpertively We match these
by adjusting the thresholds on the predicted pritkiab and we perform that
separately for the evaluations on the whole sequama the flanking regions.
These results demonstrate that MoRFpred outperfdrensompeting solutions by
providing substantially higher TPRs given similaPAs and lower FPRs for

comparable TPRs.

Whole Sequence Flanking Region

Predictor ACC TPR FPR SUC8SS  auc  acc  TPR FPR SUCCSS  auc
rate rate

-MoRF-Pred 0.946 0.123 0.037.158 ++ NA 0.668  0.123 0.06.129 ++ NA
-MoRF-Pred 0.889 0.258 0.0980.303 ++ NA 0.673  0.258 0.120.263 ++ NA
ANCHOR 0740 0389 0.253.611 ++ 0.600 ++ 0.640  0.389 0.230.659 ++ 0590 ++
MoRFpred (SVM + 0937 0254 0.049.718  0.673 0711 0254 006®.754  0.684
alignment)
MoRFpred (to match
the highest TPR) 0854 0389 0.13M.718  0.673 0.696 0389 0.15D.754  0.684
MoRFpred (to match 0.948 0222 0.03M.718 0673 0711 0254 006®.754  0.684

the lowest FPR)

Table 5. Comparison of prediction results on the ®& dataset. The last two rows show results for
MoRFpred where the binary predictions were caledlgby adjusting the threshold on the probabiljities
match the highest TRP and FPR generated by thérnexisethods. The two main columns list results mhe
evaluation is performed using the whole chain asidgionly the flanking region (see Section 2.2details).

-MorfPred and -MorfPred| generate only binary predictions and thus thdifCAcannot be calculated.
Statistical significance of the differences in guecess rates and AUC between the MoRFpred anatliee
three methods is shown next to the success rateAdid values, where ++ and + denote that the
improvement is significant at thevalue < 0.01 and < 0.05, respectively.

Figure 9 presents the ROC curves for MoRFpred ad@AOR. The ROC curves
zoom on the low FPR values below 0.1, which is waaéd by the imbalanced
nature of our dataset. Higher FPRs would lead s$muificant over-prediction of
the MoRF residues. We observe a large separatitweba MoRFpred and
ANCHOR across the entire range of the FPR valuesaldb note that addition of

the alignment into MoRFpred also results in improeats for all values of FPRs.
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Figure 9. Comparison of ROCs for MoRFpred and ANCHQR on the test datasetPanel A compares
ROCs for when evaluations is performed using thela/isequences and panel B when using the flanking
region. The ROC curves are provided for the FPRL< 0

4.1.1 Evaluation for different MORF types

In section2.2.1, we discuss the fact that MoRFs often foltb ia specific

secondary structure upon binding and therefore #teygrouped as helix, sheet,
and coil types. MoRF regions that include two typéshe secondary structures
are referred to as complex regions. We evaluate ahesidered methods

separately for each MoRF type, see Table 6.
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Table 6 shows that MoRFpred outperforms the othieet methods with respect
to the success rates for each MoRF type. UsingAth€ measure, MoRFpred
again improves over ANCHOR in all cases. The evalnson the -MoRF type
shows a visible improvement of theMoRF-Predl and -MoRF-Predll when
compared to their predictions on the other MoRFesypThis improvement is
expected since these methods were designed fqurdagction of the helix-type
MoRFs. However, ANCHOR and MoRFpred are still bettan -MoRF-Pred
methods for all MORF type. The success rates of MoRBd are higher by 4%,
12%, and over 5% than ANCHOR for the prediction eé¥loRFs, coil-MoRFs,
and complex-MoRFs, respectively. Results also shmav all methods perform
relatively poorly for the predictions of tHeMoRFs, although MoRFpred still
outperforms the other solutions. However, we netatively low numbers of the

b- and complex-MoRFs which could affect validityafr conclusions.

The alignment only-based predictions have low TRBspled with very low
(close to zero) FPRs for all MoRF types. This shdwe alignment predicts only
a few MoRFs but with high quality. The alignmenttidoutes 3 to 6% to the TPR

of the MoRFpred for the helix, sheet, and coil Madigpes.
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MoRF type Whole Sequence Flanking Region

# (%) of Predictor

MoRF ACC TPR FPR Success rateAUC ACC TPR FPR Success RateAUC
segments
-MorfPred  0.930 0.176 0.056 0.320 ++ NA 0.648 0176 0115 0258 ++ NA
Helix -MorfPred  0.847 0.403 0.144 0598 ++ NA 0.677 0.403 0186 0546 ++ NA
97 (23%) ANCHOR 0.623 0.545 0.376 0.866 + 0.635++ 0.657 0.545 0.286 0.876 = 0.662 ++
MoRFpred 0.9370.357 0.052 0.907 0.747 0741 0.357 0.066 0.907 0.763
Alignment only 0.982 0.063 0 0.093 NA 0.68 0.063 0.010 0.093 NA
-MorfPred  0.961 0.099 0.018 0.067 ++ NA 0.697 0.099 0.009 0.067 ++ NA
-MorfPred  0.936 0.224 0.046 0.200 ++ NA 0.706 0.224 0.058 0.200 ++ NA
fgij‘t%) ANCHOR 0.866 0.168 0.117 0.333 ++ 0.506+ 0.681 0.168 0.067 0.600 ++ 0.554 ++
MoRFpred 0.9340.149 0.047 0.600 0.654  0.685 0.149 0.052 0.733 0.698
Alignment only 0.974 0.043 0.004 0.067 NA 0.681 0.043 0.006 0.067 NA
MorfPred  0.954 0.084 0.027 0.094 ++ NA 0.677 0.084 0039 008 ++ NA
, -MorfPred  0.912 0.175 0.073 0.198 ++ NA 0.667 0175 0096 0156 ++ NA
ggg (60%) ANCHOR 0.811 0.308 0.178 0.528 ++ 0.595++ 0.630 0.308 0.216 0.583 ++ 0.555 ++
MoRFpred 0.9370.206 0.048 0.653 0.634  0.697 0.206 0.067 0.701 0.638
Alignment only 0.978 0.029 0.002 0.028 NA 0.68 0.029 0.008 0.021 NA
-MorfPred  0.946 0.332 0.043 0.389 ++ NA 0.663 0.332 0157 0278 ++ NA
-MorfPred  0.860 0.467 0.133 0.500 ++ NA 0.708 0.467 0.162 0500 ++ NA
Complex  ANCHOR 0.590 0.640 0.411 0.833 ++ 0.658+ 0.645 0.640 0.352 0.722 ++ 0692 ++
19 (4%)  MmoRFpred 0.9400.369 0.050 0.889 0760 0736 0.369 0.066 0.833 0.767
Alignmentonly 0.982 0 0.001 0 NA 0.649 0 0 0 NA

Table 6. Comparison of prediction results for diffeent MORF types on the test datasetComparison of
prediction results for different MoRF types on tlest dataset. The two main columns list resultsnwhe
evaluation is performed using the whole chain asidgionly the flanking region (see Section 2.2hia inain
text). -MorfPred and -MorfPred! generate only binary predictions and thus theWCA cannot be
calculated. Statistical significance of the diffezes in the success rates and AUC between the MeRFp
and the other three methods is shown next to theess rate and AUC values, where ++, +, and = denot
that the improvement is significant at thevalue < 0.01, ap-value < 0.05, and that the difference is not
significant, respectively.

MoRFpred produces the most accurate results for 4MeRFs, as evidenced by
high AUC and success rate values. This could aatgifirom the fact that helixes
are local (in the sequence) structures and thusaheyeasier to capture using a
window-based approach that is implemented by ouhatk In contrasth-sheets
can span over large stretches of the sequencethasdhe window may not be

sufficient to find them.
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MoRF type Whole Sequence Flanking Region

# (%) of Predictor
MoRF ACC TPR FPR Success rateAUC ACC TPR FPR Success rateAUC
segments
Immune -MORF-Pred  0.958 0 0.019 0 ++ NA 0.691 0 0 0 ++ NA
response- -MoRF-Pred 0.921 0.016 0.057 0.027 ++ NA 0.6810.016 0.021 0.014 ++ NA
related  ANCHOR 0.8240.214 0161 0.5 = 0.573++ 0.654 0.214 0.149 0.635 = 0.569+
74 (18%) MoRFpred 0.9320.156 0.049 0.581 0568  0.716 0.156 0.033 0.662 0.583
Alignment Only 0.976 0 0 0 NA 0.6910 0 0 NA
-MORF-Pred  0.945 0.143 0.039 0.191 ++ NA 0.6640.143 0.077 0.157 ++ NA
Other -MORF-Pred  0.885 0.298 0.104 0.362 ++ NA 0.6720.298 0.143 0.316 ++ NA
345 (820) ANCHOR 0.729 0.419 0.265 0.635 ++ 0.608++ 0.638 0.419 0.253 0.664 ++ 0.595++
MoRFpred 0.9370.273 0.049 0.748 0.692  0.711 0.273 0.072 0.774 0.701
Alignment Only 0.98 0.0450.001 0.052 NA 0.6770.045 0.009 0.046 NA

Table 7. Comparison of prediction results for immure function-related and other proteins on the test
datasetThe two main columns list results when evaluatisrpérformed using the whole chain and using
only the flanking region (see Section 2.2 in thenmaxt). -MorfPred and -MorfPred| generate only
binary predictions and thus their AUC cannot bewalted. Statistical significance of the differende the
success rates and AUC between the MoRFpred anattibe three methods is shown next to the succéss ra
and AUC values, where ++, +, and = denote thairtfpgovement is significant at thevalue < 0.01, ap-
value < 0.05, and that the difference is not sigaift, respectively.

Table 7 shows evaluations for the immune functelated MoRFs vs. the
remaining MoRFs. Our method outperforms the othmpr@aches for the non-
immune MoRFs. However, for the immune functiondeda MoRFs, the

improvements offered by our MoRFpred are smallet, about 3-8% in success
rate and about 1% in AUC when compared with thenemiup ANCHOR. We

note that all considered method perform relatiyagrly for these MoRFs, which
motivates further research in this area. We hymotieethat the immune function-
related MoRFs are distinct from other MoRF typed #ius their prediction may

need a dedicated method.

4.2 Similarity analysis

In this section we investigate the hypothesis MaRF regions have non-random

similarity to each other. If true, this could beedgo validate our claim that some
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of our false positive MoRF predictions might copesd to true MoRF regions.
To this end, we create 4 different sets of proagments which are used to

investigate the similarity:

Set of the native MoRFs in the test set.

Set of random segments generated from test sehdivatthe same length

distribution and number when compared to the settiffe MoORFs.

Set of predicted MoRF segments that have at |62t &dverlap with the

native MoRFs in the test set.

The predicted MoRF segments that have no overlap tie native

MoRFs (predicted “false positive” MoRFs).

We use the native MoRFs in the training set asref@rence population against
which we align the four abovementioned sets. Wesmeathe similarity using
EMBOSS needle (Rice et al. 2000)

(http://www.ebi.ac.uk/Tools/psa/emboss_needle/hwfault parameters.

Each random segment, native/true, and predictedAVisRligned against the 421
native MoRFs in the reference population and wetheemaximum score from
the 421 similarities. We obtain four sets of scdmsthe native test set, random
set, predicted overlapping MoRFs, and predictedoarlapping MoRFs. Using
these scores, we generate distributions which igte=l finto the data using the

EasyFit software (http://www.mathwave.com/prodweask/fit.ntml).
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Figure 10. Similarity comparison of native MoRF andpredicted MoRF. Similarity between the native
MoRFs in the test set (test group), the random segsrin the test set (random group), the MoRFsigteti

in the test set by MoRFpred which overlap with tia¢ive MoRFs (overlapping predictions), and the MeR
predicted in the test set by MoRFpred which do ow¢rlap with the native MoRFs (non-overlapping
predictions that correspond to false positive préaiis) and the native MoRFs in the training datake
distributions, which are based on the Pearson Btifum were fitted using EasyFit. Theaxis shows the
similarity between the segments measured with EM8®@8edle ang-axis shows the relative number of
segments.

We tried 6 commonly used types of distributionsludeag normal, log-normal,
gamma, beta, Pearson 5, and Pearson 6 distribufitvesr fit into the data was
evaluated using the Kolmogorov-Smirnov goodnessfitoftest. We use the
Pearson 5 distribution which provided the best ramien considering the four

sets of similarities.

Figure 10 depicts the distributions of the fouss#tsimilarities. We observe that
the distribution of the similarities for the natitest group (using native MoRFs)
has a higher and longer right tail when compareth whe distribution of the

random group (for random segments). This meansth®tative MoRF have

higher similarity to each other when compared wrtkimilarity with randomly
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selected segments. This motivated the use of tigmnaént in our predictor.
Moreover, both distributions for the predicted MaR#&re also characterized by
higher than random similarity. The shift to thehtigof the distribution for the
overlapping (with native MoRFs) predicted MoRFs wheompared with the
distribution for the native test group means that @verlapping predictions tend
to focus on the MoRF segments that are similahéoMoRFs in the training set.
However, this bias is relatively minor, considerithgit the two distributions are
shifted by only 0.05. Most importantly, the distriton for the predicted non-
overlapping MoRFs (predicted false positives) idteti toward higher similarity
when compared with the random group, which suggists some of our false

positives (putative MoRFs) may correspond to naltihdRFs.

4.3 Probability scores identify high quality predictions

We demonstrate that probabilities that are gengiayeMoRFpred can be used to
select predictions that have higher quality. Figlife plots positive predictive
value (PPV) for MoRF predictions (probability > P.&nd negative predictive
value (NPV) for non MoRF predictions (probability <5) against the binned
prediction probabilities generated by MoRFpred lom test dataset. The PPV and
NPV values quantify the predictive performance adRFpred when it predicts
MoRF and non MoRF residues, respectively. The nonoRM (negative)
predictions for the low probabilities between 0 &85, which account for 20%
of all predictions, have substantially higher NP\hem compared with the
predictions with higher probabilities, e.g. in ®40.5 range. The same is true for

the MoRF (positive) predictions. We observe thatHgh probabilities between
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0.7 and 1, our method provides a much higher PP¥nwtompared with the
predictions for probabilities closer to 0.5 (betwe@5 and 0.6). To sum up,
Figure 11 demonstrates that predictions with proibti@s farther away from the
0.5, which is the threshold to differentiate betwedoRF and non MoRF
residues, are characterized by higher predictivaityu This means that a user
should be more confident with the predictions asded with either low or high

probabilities.
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Figure 11 . Relation between predictive quality andhe magnitute of the probabilities generated by
MoRFpred on the test dataset.Values of probabilities are binned and shown onxthgis. The lefty-axis
shows the percentage of correctly predicted non Magsidues (NPV), which quantifies predictive qtyali
when probabilities are below 0.5. The rigkaixis corresponds to the percentage of correctidipted MoRF
residues (PPV), which evaluates predictive qualiben probabilities are above 0.5. The bars inditiae
fraction of residues for a given range of the philis.

4.4 Analysis of selected features

We describe a few potential sequence-derived markeMOoRF residues based
on the features that were selected to implementvtbBFpred. The MoRFpred
uses 24 features which were selected using thrHeradit feature selection

methods. To analyze the selected features, wetlsem in the ascending order
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based on their average ranking for the rankingeigdaed by the three selection
protocols; see sectio®3 for details. We calculate the average valuetheftop
ranked features for the native MoRF and non MoRdittees (in flanking region),
respectively. These averages for the five top-rdnteatures are compared in
Figure 12. The values of these features have oggpsgjns for the native MoRF
and non MoRF residues. However, the large and appihg standard deviations
(denoted by the error bars) show that they could be used individually to
accurately identifies MoRFs. This is why we employltiple features in our

prediction model.

The three left-most sets of bars in Figure 12 regmethe same type of features,
which is based on the average difference of digqudzbabilities (refer to Table 2
for definition) calculated using predictions frofwPred withw = 15 and
DISOPRED?2 withw = 5 and w=15, respectively. These features weseyded to
contrast the value of the predicted disorder prepies in a MoRF region (inner
window) and the sequence segments that flank #gsom (outside window).
According to the study by Oldfielet al. (2005), MoRF regions are short ordered
segments inside a larger disordered segment. Terefve expect a higher
average of predicted disorder propensities in thtside window when compared
to inner window, which should result in a positiva@ue for our features for the
native MoRF residues. This is confirmed in Figug& Where the three features
have, on average, positive values for the MoRFu=s and negative (near zero)

values for the non MoRF residues.

55



The right-most two sets of bars in Figure 12 showrage difference-based
features (features based on the differences iresddetween the inner and outside
windows) calculated using two AAindexes, which gifgnstability (Zhou &
Zhou 2004) and hydrophobicity (Nozaki & Tanford,719, respectively. The
stability scale is a quantity used to charactetize contributions of individual
residues to stability of a protein fold where higkralues mean higher stability.
We observe that the average difference for residuttge native MoRF region for
the stability-based feature is negative. That mdaas residues in the MoRF
region have higher stability when compared to theasinding residues. This
agrees with the underlying biology, since MoRFdasi should be more stable to
transition into the structured state when compépdtie flanking residues that are
likely to be (more) disordered. The last featurdased on hydrophobicity. The
negative value of this feature for the native MoRBidues indicates that these

residues are, on average, more hydrophobic thasuttieunding residues.
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Figure 12. Analysis of the top-ranked features thatan be used to characterize MoRFsThe average
values of the top 5 ranked features used by MoRFEprhich are shown on theaxis, for the native MoRF
residues (light gray bars) and native non MoRFdress (dark gray bars) are compared. The correspgndi
standard deviations are shown using the error Béues selected five features represent an averdfgeatice
of a given quantity, which is described in TabldN2gative values mean that average in the innedavinof
size w was higher than the average of the flankiegs.

Our features reveal a few interesting sequencexeibrimarkers of MoRF
residues. These residues are less disordered, stabykle and more hydrophobic
when compared to the disordered residues thatsuwirthem in a protein chain.
This is in line with the observations in (Meszaktsal., 2007) that the local
increase in the hydrophobicity in a disordered sagms a characteristic of
binding sites in IDPs. Bastollat al. (2005) show a strong positive correlation
between a hydrophobicity profile and a contact mdire., the residue-residue
contacts that quantify stability), which descrilsgbility of the protein structure.
This supports our result that also shows that asmein both stability and
hydrophobicity are indicative of MORF residues. bripntly, our model shows

that these markers can be derived directly from shquence, based on the
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predicted (with IlUPred and DISOPRED?2) disorder #ratwo AA scales (Zhou

& Zhou 2004; Nozaki & Tanford, 1971)

45 Case studies

4.5.1 Case studies for true positive predictions

Two case studies are used to demonstrate the MeRFpedictions. They were
selected to represent two situations, when the Magion are overpredicted and
where they are underpredicted. Moreover, the tieste concerns a long MoRF

segment, while the second concerns a short segment.

The first case study is theanscriptional intermediary factor-2 isoformotein
which was collected from UniProt, and for which tdeRF was extracted using
the PDB complexilm2z_B This protein has 1394 residues and contains la coi

MoRF region which is 21 residues long.

Figure 13 visualizes predictions for this proteioni all considered predictors:
MoRF-Predl, -MoRF-Predll, ANCHOR, and MoRFpred. We observe tatht
methods were able to (partially) identify the natMoRF region. However this is
not the only predicted MoRF and the ammount of MekRFoverpredicted by all
methods. MoRFpred has the least predicted MoRHFgrégicting 89 residues as
MoRFs when compared toMoRF-Predl with 171 MoRF predictions;MoRF-

PredIl with 306 MoRF predictions, and ANCHOR withéBMoRF predictions.

The second case study is a 89 residues Hi2dy class histon@rotein for which
MoRF region was extracted from tlHgdp_P complex from PDB. The native

MoRF region in this protein folds into a coil, whics located near the C-termini
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and is 9 residues long. Figure 14, shows thtorf-Pred and -Morf-Pred did
not predict any MoRF residues in this sequencechviis correct since these

methods are designed to predieMoRFs.
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Figure 13. Prediction of MoRF residues for the trascriptional intermediary factor-2 isoform 2 protein. ANCHOR (blue lines), MoRFpred (orange lines)MoRF-Predl
(thick red line), and -MoRF-Predll (thick green line) predictors. Probipivalues are only available for ANCHOR and MoRé&g and are shown by thin blue and orange lines,
respectively, at the top of the figure. The origioat-off of 0.5 for both ANCHOR and MoRFpred atewn using a brown line. The native MoRF regions amnotated using
black horizontal line. The binary predictions frétiCHOR, -MoRF-Predl, -MoRF-Predll and MoRFpred are denoted using hotadimes at the bottom of the figure in blue
(at the -0.1 point on theaxis), red (at the -0.2), green (at the -0.3), arahge (at the -0.4), respectively.
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Figure 14. Prediction of MoRF residues in the Histoe H2A protein. ANCHOR (blue lines), MoRFpred (orange lines)MoRF-PredI (thick red line), and-MoRF-Predll
(thick green line) predictors. Probability valuee anly available for ANCHOR and MoRFpred and dreven by thin blue and orange lines respectivelye dhginal cut-off of
0.5 for both ANCHOR and MoRFpred are shown usifigaavn line. The native MoRF regions are annotat@dgublack horizontal line. The binary predictidnem ANCHOR,

-MoRF-Predl, -MoRF-Predll and MoRFpred are denoted using blué-0.1 point on the y-axis), red (at the -Og2gen (at the -0.3), and orange (at the -0.4¢baotal lines.
No red and green lines means thatMoRF-Predl and -MoRF-Predll predictors did not predict any of tiesidues as MoRF.
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MoRFpred predicted the native MoRF region and arothlse positive MoRF
region, which was also predicted by ANCHOR. We ntttat the probability
profiles of ANCHOR and MoRFpred are very similaicegt for the C-terminus
where the native MoRF is located. The ANCHOR owgputobabilities that are
higher than the 0.5 threshold in a vicinity of"5position, but these predictions
were removed through post-processing applied bg thethod. MoRFpred

generated probabilities < 0.5 in that region.

We note that the MoRFpred predictions in these ¢age studies were generated
by SVM (i.e., alignment did not find any MoRF regg), which confirms that the
machine learning classifier can contribute beyorthtwcan be found based on

sequence similarity.

4.5.2 Case studies for false positive predictions

In section2.3.2 we argue that our dataset may contain unatetbiMoRFs and

thus some of the false positive MoORF predictionsegated by MoRFpred might
correspond to true/native MoRF regions. In sectidh we demonstrate that the
predicted MoRF regions that have no overlap with tlative MoRFs (false

positive predictions) have above-random similatidythe native MoRFs. This

lead us to investigate the strongest false positi@RF predictions, i.e.,

predictions with the highest probability (see sat#.3). We use average (over all
residues in the predicted segment) probability geed by MoRFpred to rank the
false positive MoRFs. We used UniProt to find aatiohs of binding sites in

these predicted regions. The following two casealistl (among others) have
binding regions in the predicted MoRF segments.
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The first case i$-selectin glycoprotein ligand (PSGL-1) protein (UniProt ID
Q14242) for which the predicted false positive MoRdS average probability of
0.85. The AA sequence of this region (residues 89302) is DDLTLHSFLP.
This region is predicted by the SVM, and was nainfb by alignment. It

implements a few interaction sites:

A part of the MAPK docking motif (REDREGDDLTL, rekies 387-397)
that helps to regulate a specific interaction im BMAPK cascade overlaps

with the predicted MoRF region.

The predicted MoRF region includes a site phosghtegl by Polo-like

kinase (DDLTLHS, residues 393-399).

Our prediction is also close to the TRAF6 bindintgg §PEPREDREG,
residues 384-392), that acts as intracellular adageicruited to different

receptors through its C-terminal TRAF domain.

We note that ANCHOR overpredicts half of this pnotes MoRF, which includes

this region as well. The-MoRF-Predll predicts this region as MoRF without
overpredicting the remainder of the chain. Thisiagegvas also predicted to be
disordered by MFDp and IUPredS, and parts of thigon were predicted by the

other disorder predictors.

The second case putative uncharacterized protein DKFZp459P01@&mhiProt
ID Q5RDR1) for which the false positive MoRF wasegicted with average
probability of 0.65. The AA sequence for this regi@residues 212 to 222) is

SPAVPNKEVTP, and it is associated with the follagribinding sites:
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This region covers the subtilisin/kexin isozymeS8K(1) cleavage site

(KEVTP, residues 218-222)

The PAVPNK sub-segment (residues 213-218) is pet§ntrecognized
by class Il SH3 domains and is involved in proteiotein interaction

mediated by SH3 domains.

In contrast to the first case, this region is peetl by alignment and none of the
existing predictors were able to (fully) predictsthregion. ANCHOR, which

predicts about 1/3 of this protein as MoRF, predartly parts of this region. The
considered disorder predictors predict this regasnbeing disordered, which

provides further support for our claim that thisistrong putative MoRF.

These two case studies demonstrate that some ddldeepositives generated by
MoRFpred may implement important binding eventst ttemuire a structured

conformation.

64



5 Summary, discussion and contributions

We introduce a new sequence-based method to pMdiRE segments, including
all of their types. Our solution is based on selveoxel aspects. First, we utilize
an updated, larger and more comprehensive datasdiuld and validate
MoRFpred. Second, we combine SVM-based predictwitis alignment, which
leads to improved predictive quality. Third, MoRE@r predictions are
accompanied by probability scores which can be tsaddicate more accurate
predictions. Last, we use a more comprehensiveofsgredictive inputs when
compared to existing methods: Specifically, we izgil multiple disorder
predictions, predicted B-factors and RSA, evoluignprofiles based on the
PSSM, and amino acid indexes to encode our inpgdésalso designed a new and
successful class of features to contrast the ptiegerin the immediate
neighborhood of the predicted residues with italkiag regions. Analysis of our
input features shows that MoRFs are characteriyetigs in disorder predictions
and certain hydrophobicity- and stability-basedfipgs, i.e., MORF residues have

higher hydrophobicity and stability when comparedhe adjacent residues.

We also hypothesize that our method can be uselbtdify putative MoRFs. We
investigate our false positives and we show thatesof them could potentially be
native MoRFs. Similarity analysis shows that falgesitive MoRF regions
predicted by MoRFpred are characterized by abondenra similarity with the

native MoRF regions. We used this observation, glaith the fact that higher

probability generated by MoRFpred corresponds toena@curate predictions, to

65



identify and discuss a couple of interesting caseliss. Finally, the similarity
analysis also led us to incorporate alignment th#® proposed predictor, which

improved the AUC by 1%.

The following is a list of significant contributisnn this work:

We designed and developed a new sequence-basedct@rethat

outperforms existing MoRF prediction methods.

We adopted a new measure, success rate, whichohgseaviously been

previously used in this field, to evaluate the MgBtEdictions.

We devised a new evaluation and test method todawerfitting during
feature selection and parameterization. This methaédferred to as 4+1

cross validation.

We provided an empirical comparison with the ergtMoRF predictors.

We identified and explained several sequence-d@émaarkers of MoRF
regions. These markers are based on hydrophobst#tlpility and disorder

profiles.

We show that MORF segments have an above-randoitasiynto each
other, and thus it is possible to use alignmendémtify some (a limited

number) of the MoRF regions.
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