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Abstract

Most data mining and machine learning techniques rely on a single flat table and

assume balanced training data. However, most real-world applications comprise

databases having multiple tables and imbalanced data. It becomes further com-

plicated in the realm of Big Data where related information is spread over different

data repositories. This work focuses on the automatic construction of a mining table

by aggregating information from multiple local tables and additional data sources

as external tables in a multi-relational database.

Our work extends data aggregation techniques by exploring paths where a sin-

gle table is traversed multiple times. The existing techniques do not generate at-

tributes that exist on such paths or do not generate them efficiently. However, these

paths contain useful past information. Our framework for Generating Attributes

with Rolled Paths (GARP) also prevents leakage of the class information by avoid-

ing features built after the knowledge of the class label. While generating new

attributes, our system discovers certain patterns that provide useful insights for de-

cision making.

Experiments are performed on a transactional dataset from a U.S. consumer

electronics retailer to predict product returns and identify reasons behind those re-

turns. In addition, we augmented the retail dataset with Supplier information and

Reviews to show the value of data integration. This dataset has the class imbalance

problem, since product returns represent only 10% of the complete dataset. The

results show that our technique improves classification accuracy and discovers new

knowledge even in the presence of the class imbalance. Our scalability analysis

shows that our approach can handle an increasing load of data in a linear fashion.
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Chapter 1

Introduction

1.1 Motivation

In recent times, we have witnessed a substantial increase in our ability to collect data

from various sources like sensors in portable devices, web portals and social net-

working; in different formats, from independent and connected applications. These

sources are also changing the structure along with the size of data at a tremendous

pace. This continuous growth of data increases the need for efficiently managing

data. On the other hand, this huge scale production of data has created vast op-

portunities for enterprises, healthcare sector, and educational institutions [10]. It

can be foreseen that Internet of things (IoT) applications will raise the scale of data

to an unprecedented level [17, 53]. People and various devices (from their home

gadgets to cars, to buses, to airports) are all loosely connected with each other. This

generates a huge data ocean from which valuable information can be extracted and

discovered to help in making better decisions and improving the quality of life. It

also leads to a dramatic paradigm shift in our scientific research towards data-driven

discovery [42].

This is where the idea of Big Data mining [15] comes into play. It has the

capability of extracting useful information from a large amount of data available

through a variety of sources1. Big Data is commonly defined along the popular 4

V’s; Volume, Velocity, Variety and Veracity but often the focus is mainly on Vol-

ume. However, the value of data is in the integration of disparate data sources and

1Gartner says that Big data challenge is not only about volumes of data.

http://www.gartner.com/newsroom/id/1731916
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this integration is a major pillar of Big Data, yet very few tools exist to truly take

advantage of data integration in Big Data analytics [58]. Today, applications rely on

a data layer that stores information efficiently by spreading it over multiple tables.

Additionally, integration of external data sources provides a great opportunity to

harvest valuable knowledge. For example, Netflix employs a recommendation sys-

tem that utilizes extensive data to suggest movies to users according to their tastes

[1]. These recommendations can be further improved by incorporating publicly

available data from sources like IMDB [32].

In real world applications, data is distributed in multiple tables. However, most

of the data mining and machine learning techniques rely on a single table. Be-

fore applying these techniques, data available in multiple tables and additional data

sources as external tables in a multi-relational database, needs to be accumulated in

a single table. This flat mining table can be constructed manually by asking domain

experts to combine and aggregate attributes into known potential predictors. How-

ever, instead of handcrafted features, one might automatically generate discriminant

attributes from aggregated data which is the essence of our approach herein.

Along with the issue of data spread over multiple tables, the class imbalance is

yet another problem that exists in real world applications. But, most of the machine

learning techniques assume balanced training data. As classifiers become biased

towards the majority class to achieve better accuracy, instances belonging to the

minority class are mostly misclassified. However, correctly classifying the minority

class is important in several domains with imbalanced data like fraud detection,

credit assessment and medical diagnosis [41, 36, 33]. The class imbalance has been

identified as one of the most challenging problems in data mining research [57].

1.2 Problem Description

Figure 1.1 shows a generalized example of a mining table with related information

stored in other tables. The mining table (T) has a many-to-1 relationship with table

(S) and 1-to-many relationship with table (R). To utilize all the available data for

the learning tasks, information available in the related tables should be aggregated
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into the mining table. It is easy to aggregate information from the table (S) with

a simple join, as each row in the table (T) is related to a single row in the table

(S). However, capturing information from the table (R) requires the application of

aggregation operators to summarize the information from multiple rows related to

a single row from the table (T). Additionally, more expressive attributes can be

generated by combining information from both tables (R) and (S).

Figure 1.1: Mining table with associated information spread over a relational

database

Consider an example of a retail store database that contains information related

to product sales. Even the simplest structure of the database will have three different

tables for Customers, Products and Purchases. Assume that each purchase record

represents the sale of only one product purchased by a single customer. We can add

a class attribute ‘return’ to the Purchase table, which indicates whether the purchase

is returned back to the store.

Sometimes customers are not satisfied with their purchases due to several rea-

sons related to the product like quality, value or failure to meet their expectations.

This might eventually result in the return of the product. A study reveals that on

average the return percentage of a product can range from 10% to 25% [22]. In

the U.S. alone the cost incurred by product returns is approximately $100 billion

[49]. Therefore, it is important to identify the product returns and causes behind

3



them. As returned products represent a small subset of the whole dataset, the retail

domain suffers from the class imbalance problem as well.

The Purchase table in the retail store database is the mining table with the class

label ‘return’. In order to expand the Purchase table, Customer and Product infor-

mation should be aggregated from the related tables. In the absence of the automatic

generation techniques, domain experts would build these attributes manually based

on their knowledge and experience. Table 1.1 and 1.2 represent an example of the

mining table generated by manually adding these attributes.

Table 1.1: Mining Table (Purchase) without any information from other tables

purchase id online price quantity return

... ... ... ... ...

... ... ... ... ...

Table 1.2: Additional features created by an analyst by handpicking attributes

customer

return

proportion

product

return

proportion

amount spent

by the

customer

mean age of

the

customers

... ... ... ...

... ... ... ...

These additional attributes in Table 1.2 (from left to right) represent:

• returning behavior of customers

• market performance of products

• spending activity of customers

• age group of customers buying a same product

Although this example is fictional, it shows that analysts may build not only

those attributes that are readily available but also more complex ones that could

potentially be good predictors of the class. Furthermore, product reviews available

on forums can be utilized to predict returns. This publicly available information can

be very helpful when integrated with the Retail store database.
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However, the analysts need to manually design the database queries to build

these new attributes that can utilize the information from related tables and other

data sources. Some complex attributes may even require the application of data

warehousing techniques. This manual process is not efficient in terms of effort and

productivity. Moreover, if the real predictor of the class is something unexpected, it

will not be suggested, because all the generated attributes are based on the existing

domain knowledge of the experts.

We aim to automate this process of generating attributes and structuring them in

a single table. Our main focus is to generate attributes carrying useful information

about the past, like customer’s return history at a retail store. This pre-processing

step of aggregation before applying traditional learning techniques can help in uti-

lizing all the available data.

1.3 Importance of Data Integration and Big Data

The amount of data being produced and the ability to collect it from diverse sources

is increasing substantially. This tremendous growth of amount of data poses great

challenges to efficiently manage data. However, this also provides the opportunity

to extract value out of rich information. Big data has received a lot of attention these

days and several industries are already working on solutions for big data analytics

[58]. Enterprises believe that data-driven strategies are necessary to stay ahead in

the competition.

Big data is not just about the massive amounts of data, but it is the complexity of

the data that is huge. IBM describes this complexity in four dimensions: Volume,

Velocity, Variety and Veracity [24]. These dimensions are widely known as the

four V’s of big data. The most popular V is the Volume which represents the huge

amounts of data being produced. Big enterprises encompass a large amount of data

which can be utilized to extract useful information. Along with the Volume, Ve-

locity of the data being produced is also very high. Social networks, e-commerce

platforms, sensors, etc can produce tremendous amounts of data at an extremely

fast pace. Due to this fast pace, it is essential to analyze this data within consid-
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erable time limits. The third V for Variety represents different types of data like

text, images, audio, video as well as different sources from where the data can be

obtained. These data sources can be from different departments internal to an orga-

nization like accounting, marketing, etc and publicly available external data sources

like twitter, wikipedia, etc. The availability of data from different sources can give

insights that would not be possible otherwise. The fourth V for Veracity reflects

the uncertainty of the available data. A large amount of data and disparate sources

can also comprise unreliable information. In order to take proper decisions, it is

important to identify if the data being used is reliable. Recently, some other V’s

have been suggested by data scientists like Value, Visualization and Vulnerability

[58].

The value in data integration is often overshadowed by other dimensions. How-

ever, it is one of the most important aspects of big data analytics. The inclusion of

data from external sources provides greater insights compared to the locally avail-

able data. As mentioned earlier, Netflix has an extensive amount of data related

to the users like movies watched, ratings provided, movies browsed etc. Netflix

can use this data to build models to recommend movies to the users based on their

tastes and other available information. This data can be further enriched by adding

information from a publicly available external data source similar to IMDB. For

example, IMDB can be used to extract the information related to a movie rated by a

user at Netflix and recommendations can be provided based on that information like

the plot keywords, taglines, trivia etc. Hence, data integration plays a major role in

big data analytics. Our research focuses on big data integration with the extraction

of information from external data sources along with the information available in a

local multi-relational database.

1.4 Thesis Statements

In this work, we address the challenge of automatically aggregating information

from all the available data sources and summarizing it in a single flat table. The

goal is to address the following statements:
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• It is possible to generate discriminant attributes carrying past information by

aggregating information from all the related data sources, which can help in

improving the classification performance.

• The automatic attribute generation process can find unexpected patterns in

the datasets leading to the discovery of new knowledge.

• The discriminative attributes can help in learning better classification models

by rectifying class overlapping regions in data, even in the presence of the

class imbalance.

• It is possible to scale this extensive process of generating attributes to handle

a large amount of data.

1.5 Thesis Contributions

The closest work in comparison to our research is the Dataconda framework [45] for

automatically generating attributes in a relational database. However, we improved

upon Dataconda on few aspects. The main contributions of this thesis are:

• A framework for automatically generating attributes based on the approach

of aggregating past information. It summarizes information from all the data

sources and constructs a single table which can be used to apply learning

techniques. In contrast to Dataconda, the generated attributes utilize all the

available training data which helps in learning better classification models.

Additionally, they help in reducing the overlap of classes to achieve better

prediction accuracy even in the presence of the class imbalance.

• An efficient approach for generating attributes which can scale with the in-

creasing load of data. Our attribute generation process is significantly faster

than the existing exploration approach of Dataconda.

• Knowledge discovery by finding unexpected patterns associated with the class.

While constructing the mining table, we generate the description of attributes

which can be used to understand the good predictors.
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1.6 Organization of the Dissertation

The rest of the dissertation is organized as follows:

• In Chapter 2, we review the related work in the area of Multi-relational Data

Mining and discuss the most common techniques to handle the class imbal-

ance problem. We start with a brief introduction of the Multi-relational Data

Mining domain. Then, we discuss two different directions of research to-

wards feature discovery and classification in the context of relational data.

For the class imbalance, we first explain the problems associated with an im-

balanced dataset. Then, we present the two approaches to solve the class

imbalance problem: (1) data pre-processing methods of sampling; and (2)

handling imbalance during learning.

• In Chapter 3, we describe the process of constructing a mining table from

multiple tables in the database as well as external data sources. First, we have

a preliminary discussion to formulate the problem of generating attributes

which carry useful insights regarding the past. Then, we explain the algorithm

for Generating Attributes with Rolled Paths (GARP) based on the approach

of finding the past information.

• In Chapter 4, we evaluate our framework by conducting experiments to mea-

sure the classification performance and the ability to find discriminant at-

tributes. First, we describe the real dataset of a large US electronics retailer

‘Circuit City’ and synthetic external data sources of Suppliers and Reviews.

Then, we demonstrate the two sets of experiments to evaluate our technique:

(1) with the Retail database only; and (2) with the integration of external data

sources of Suppliers and Reviews. Finally, we evaluate the scalability of our

technique by varying the load of data.

• In Chapter 5, we conclude by summarizing the presented work and evalua-

tion results. We also provide some directions to continue this research in the

future.
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Chapter 2

Related Work

In this chapter, we review the related work in Multi-relational Data Mining (MRDM)

and some of the most prevalent techniques to handle the imbalance in the class dis-

tribution of data samples in the case of supervised learning.

2.1 Multi-relational Data Mining

Multi-relational Data Mining (MRDM) techniques help in finding patterns and ap-

plying learning techniques on databases which store information in multiple tables

[27]. In literature, MRDM is also referred as Relational Data Mining (RDM). The

need for MRDM arose with the widespread use of the relational model for handling

data in real world applications.

In a relational database, information is distributed in multiple tables to effi-

ciently store and retrieve complex structural data. This results in incompatibility

with Propositional Data Mining (PDM) techniques as they require data to be in a

single table. The research in the area of MRDM has introduced relational versions

of several propositional techniques including but not limited to multi-relational

association rule discovery, multi-relational decision trees and multi-relational dis-

tance based methods [14].

In real applications, a relational database can have tens if not hundreds of tables.

A simple example of a relational database with two tables (‘Purchase’ and ‘Cus-

tomer’) is shown in Table 2.1. In this scenario, propositional learning techniques

applied on the Purchase table cannot find any patterns related to the customer in-
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formation. Hence, MRDM is required to determine patterns like the relationship

of returns with income levels of customers. The income level of a customer could

indeed influence whether the purchased product would be returned.

Table 2.1: Relational database representing purchases made by customers

Purchase table

customer id online price quantity return

C1 Y $65 1 Y

C1 N $10 3 N

C2 N $45 1 Y

C3 Y $50 1 N

C3 N $15 5 N

Customer table

customer id age gender income level

C1 22 F 2

C2 25 M 3

C3 34 F 5

Thus finding the relationships scattered in the tables, that could have for in-

stance discriminant power in classification, is pertinent. The existing approaches to

feature discovery and classification in MRDM can be divided into two categories.

The first approach is based on Inductive Logic Programming (ILP) [31] to extend

learning techniques in a way that they can handle relational data. On the other hand,

the second approach called Propositionalization [29], focuses on aggregating data

from multiple tables in a single table so that traditional learning techniques can be

applied. In literature, Propositionalization is also referred as an alternate to MRDM

as the learning step is propositional [14]. However, the aggregation step looks for

patterns in the relational context which is the essence of MRDM.

2.1.1 Inductive Logic Programming (ILP)

ILP [31] treats tables as entities comprising of facts. For example, Customer(Bob,

M, 25) and Product(Laptop, HP, $900) represent facts. The approach works by
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using the induction engine to derive rules for the prediction of the class. A simple

starting rule for defining a purchase in the retail database would be:

Purchase(Bob, Laptop)← Customer(Bob), Product(Laptop)

A Relational decision tree (RDT) based on ILP is constructed with nodes cor-

responding to First Order Logic (FOL) clauses [14]. It is a binary tree, because a

conditional clause in an internal node can only result in true or false. The tree is

traversed based on these conditions and the leaf level predicts the class value.

An example RDT for the retail store is shown in Figure 2.1. The FOL clause

purchase(C,P) at the root node shows the purchase of the product ‘P’ by the cus-

tomer ‘C’ and the predicate isCheap(P) reports if the product ‘P’ is cheap or not

(based on the defined level of price). The subsequent clause pastReturn(C) deter-

mines if the customer ‘C’ has returned any purchased product in the past. The tree

predicts a purchase to be a return if the product is not cheap and the customer has

returned any purchase in the past.

Figure 2.1: ILP based Relational Decision Tree (RDT) for the retail store database

As ILP based approach is generally limited to the binary existence quantifier,

it can only tell if the row being predicted has a related instance in the other table

which satisfies the predicate. For example, pastReturn(C) determines whether the

customer has returned a purchase, however, it does not tell how many purchases
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made by the customer ended being a return. Additionally, the learning phase is

tightly coupled with the attribute generation phase which makes it incompatible

with most of the existing learning techniques.

2.1.2 Propositionalization

Propositionalization approaches divide the relational learning task into two steps.

The first step is to navigate associated tables in a database and summarize infor-

mation into a single table. The second step is to apply the traditional learning

techniques on the flat table generated in the first step.

The Propositionalization phase starts with the exploration of a database by de-

termining the possible paths to aggregate information. Figure 2.2 shows an example

of paths in a database with a search depth of 3. The table ‘T0’ is the target table

with a class label, where all the information has to be aggregated and becomes the

flat mining table. Each depth level shows the related tables that can be used to

aggregate information to the mining table.

Figure 2.2: The demonstration of paths in a database up to depth 3

After generating possible paths, aggregation is performed to summarize infor-

mation that exists on each path. The aggregation process starts from the table at the

end of the path and brings the information back to the target table. For example,

on the path T0 — T1 — T1.1, information is aggregated from T1.1 to T1 and then

from T1 to T0. In this way, information is aggregated from all the related tables and

summarized in a single flat table.
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In the second step, the single flat table generated at the end of the Proposi-

tionalization phase is directly used with traditional learning techniques. Hence,

Propositionalization can be complemented with different learning techniques like

classification, feature selection, etc.

One of the initial work related to the aggregation of complex information from

multiple tables in a single table is presented by Knobbe et al. [28]. The authors

introduce an algorithm, called Polka, based on the two-step model of the Proposi-

tionalization technique:

Polka (DB D; DM M; int r, p)

P := MRDM (D, M, r); /* propositionalization */

R := PDM (P, p); /* propositional data mining */

The input for their algorithm is a database ‘D’ and a data model ‘M’ along

with the integers ‘r’ and ‘p’ that specify the search extent. The Propositionalization

step defined as Multi-relational Data Mining (MRDM) is to transform the relational

dataset to a propositional one by summarizing the information from all the tables

into a single table ‘P’. This single flat table ‘P’ is then used to apply the proposi-

tional data mining (PDM) technique.

The main contribution of the Polka algorithm lies in the MRDM step to generate

a single table ‘P’. The authors introduce aggregate functions in the Propositional-

ization step to summarize information for 1-to-many relationships. The aggregate

functions like Count, Avg, Sum, Min and Max are useful to aggregate information

from a set of records related to a single record.

Consider a database with Customer and Purchase tables presented in Table 2.2.

In this example, the Customer table is the mining table with a class attribute ‘in-

come level’ and the Purchase table is related to the Customer table. The goal is to

predict the income level of a customer by aggregating information from the Pur-

chase table to the Customer table. However, attributes cannot be directly attached

to the Customer table as each customer can have more than one purchases. In this

situation, aggregate functions can help to summarize the information from multiple

purchases of a single customer. For example, the following two attributes can be

added to the Customer table by applying ‘Sum‘ and ‘Count‘ aggregations on ‘total’
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and ‘price‘ attributes in the Purchase table:

• a1: Total money spent by a customer

• a2: Maximum price of a product purchased by a customer

Table 2.2: Relational database representing 1-to-many association

Customer table

customer id age gender income level

C1 22 F 2

C2 25 M 3

C3 34 F 5

Purchase table

customer id online price quantity total

C1 Y $65 1 $65

C1 N $10 3 $30

C2 N $45 1 $45

C3 Y $50 1 $50

C3 N $15 5 $15

Mining table

customer id age gender ... a1 a2 ... income level

C1 22 F ... $95 $65 ... 2

C2 25 M ... $45 $45 ... 3

C3 34 F ... $125 $50 ... 5

The aggregation operators used by the Polka algorithm can generate deeper pat-

terns compared to the ILP approach, irrespective of the number of tables. It also

generates some specific patterns by adding refinements to the Count aggregation

operator. Figure 2.3 shows an example of a selection graph that can be used with

the Count operator to generate an attribute involving Purchase, Customer and Prod-

uct tables. In this case, the Count function will return the total number of purchases

made by customers where the price of a product is above $100.
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Figure 2.3: Selection graph for the retail store database

However, there is a limitation on the specific patterns produced by the Polka

algorithm because conditions to refine data are applied only with the ‘Count’ ag-

gregation operator. So, the Polka algorithm generates a specific pattern of ‘Count

the total number of purchases with price > $100’, but misses the patterns with other

operators like ‘(Average/Sum/Min/Max) of the amount spent on a purchase when

price > $100’.

The ACORA framework [39] for Automatic Construction of Relational At-

tributes allows refinements with all types of aggregation operators. Additionally,

it introduces novel distribution-based aggregations which perform well with high

dimensional categorical attributes. The main idea is to construct features that uti-

lize the information provided by object identifiers that are usually dropped to build

more generalized models. Such attributes can capture important information about

specific subsets of objects.

For example, patterns related to a specific retail location can reflect if there are

any problems associated with that particular location. Consider a product that is

being sold at multiple locations in Canada. The frequent returns of the product

in ‘Calgary’ and ‘Vancouver’ for instance can reveal problems associated with the

stores, product stock, staff, etc. in these cities.

Table 2.3 illustrates an example of the retail store with the number of returns (out

of 10) for each location. The ACORA framework generates attributes by finding

the class distribution for purchase locations and generating distance-based features

so that an object of a particular class has a smaller distance from its own class

distribution. The distribution-based features generated by ACORA would have a

smaller distance from the class value ‘return = 1’ for purchases made at ‘Calgary’
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and ‘Vancouver’. However, these distribution-based features are not interpretable.

Table 2.3: Class (return) distribution based on the purchase locations

Purchase Location Returns (Out of 10)

Calgary 6

Edmonton 2

Montreal 3

Ottawa 1

Toronto 2

Vancouver 7

The ACORA framework targets the learning task in a relational database by

following these steps:

• Exploring the database,

• Constructing new features,

• Selecting good predictors,

• Estimating the model for prediction.

Although ACORA introduces novel distribution-based aggregators, it misses

several important features which can capture the past information. This limitation

arises because ACORA avoids generating attributes which need a table to be joined

multiple times (like Purchase 1 Customer 1 Purchase).

The randomized propositionalization approach [46] does not restrict the gener-

ation of attributes with such table joins. However, allowing these attributes in the

proposed approach would result in leakage of the class information [44]. Leakage

of the class occurs by using data that has the information of the class itself. This

problem can arise when the training set contains data that is part of the test set or

the data used for prediction contains the future information. Hence, it is not legit-

imate to use those features for prediction that are built with the knowledge of the

class. For example, attribute with the reasons for product return should not be used

for the prediction of a product return. Leakage results in less generalized models
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and overestimation of the performance. Along with additional paths, the authors

also introduce comparison refinements where attributes can be compared to other

attributes with the same type and dimension.

Dataconda [45] introduces a framework to generate attributes by joining a table

multiple times without using any future information. Our approach for Generating

Attributes with Rolled Paths (GARP) is based on the methodology proposed by

Dataconda. Our technique resolves the scalability issue with the extensive attribute

generation process in Dataconda to cope up with a large amount of data. We provide

a detailed discussion in Chapter 3.

2.2 Class Imbalance

The class imbalance arises when one of the classes dominates the other in the

dataset. In some cases, this problem can occur due to the limitations in the data

collection process, however, several domains intrinsically suffer from imbalance

because examples of one class (mostly positive one) are rare [9]. Examples of this

include product returns prediction in retail, detection of fraudulent calls, cancer di-

agnosis, credit assessment, etc. In all these cases, a minority class, typically the

class to predict, is overshadowed by a majority class. The class imbalance varies

in levels and ratio of the minority to the majority class can be as drastic as 1 to

10,000 [9]. Other than the number of samples, the class imbalance can also occur

due to the cost of making mistakes. In some cases, the cost of misclassifying the

samples of one class can be significantly higher than the other class. The class im-

balance can also occur in the case of multi-class classification problems [55]. In

multi-class datasets, imbalance happens when some of the classes are dominated

by other classes.

The class imbalance can be divided into two categories based on its impact on

classifiers [20]. The first category of imbalance is created by quantity, where the

majority class outnumbers the minority class. However, the minority class still has

a good representative population so that the classifiers are not necessarily affected.

The second type of imbalance is absolute where the minority class is rare in its
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own. Class imbalance problems of this nature have been shown to be the more

challenging due to the lack of representative data. Moreover, these classification

problems are further exacerbated by the complexity of the target domain, which

amongst other things is effected by the class overlap [20]. Class overlap occurs

when the features cannot differentiate the two classes well. Thus, one way to assist

the problem of class imbalance is to utilize more discriminative features to reduce

the overlap problem.

The class imbalance problem can be solved by: (1) data pre-processing meth-

ods of sampling; and (2) handling imbalance in classification. In the following sub-

sections, we discuss two of the most common sampling techniques called random

undersampling and oversampling with SMOTE. Then, we discuss the cost-sensitive

classification and one-class classification.

Figure 2.4: A representation of a dataset ‘DB’ with the Class Imbalance

Majority(x) = 30, Minority(.) = 9

2.2.1 Random Undersampling

The undersampling approach solves the class imbalance problem by removing sam-

ples representing the majority class. The number of discarded samples depends on

the overall class distribution. In order to achieve an equal distribution, samples will

be drawn from the majority class until they equalize the minority class in number.
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In random undersampling, there is no systematic approach and each instance has an

equal probability of being removed.

The simple technique of random undersampling is effective as it removes bias

from the induced model [54]. However, the elimination process can remove im-

portant information from the majority class. The classification performance can go

down if representative examples are discarded from the majority class [23]. Sev-

eral heuristic-based methods have been proposed to solve this problem [19, 20, 52].

Although these methods have produced good results on certain domains, in general

their results have been mixed [2].

Figure 2.5: ‘DB’ after Random Undersampling to achieve a uniform distribution

Majority(x) = 9, Minority(.) = 9

2.2.2 Oversampling with SMOTE

In contrast to undersampling, oversampling increases the number of samples of the

minority class. However, the random approach is not much effective as it only

duplicates the existing examples of the minority class which results in the induction

of an overfitted model [30].

Chawla et al. proposed a solution by introducing a systematic approach of

oversampling known as Synthetic Minority Oversampling Technique (SMOTE) [8].

They solve the overfitting problem by generating new synthetic instances instead of
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replicating the existing ones. The idea works by looking at k-nearest neighbors of

an example from the minority class and generating a new instance by interpolating

among them. In this way, SMOTE generates synthetic points that reduce the risk of

overfitting by learning a more generalized classifier.

The advantage of oversampling with SMOTE is that it utilizes all the available

information by not removing any samples from data. However, SMOTE can suffer

from performance degradation in high-dimensional space [54].

Figure 2.6: ‘DB’ after applying SMOTE to increase the minority class by 100%

Majority(x) = 30, Minority(.) = 18

2.2.3 Cost Sensitive Classification

Cost-sensitive learning takes into account the misclassification cost for each class

so that the performance in an unbalanced dataset can be improved. The idea is to

maintain a balance by increasing the cost of misclassifying the minority class and

optimizing the objective function to reduce the overall cost [34]. For example, the

cost of classifying positive cancer as negative (false negative) can be increased so

that positive cases can be given more weight in a huge set of negative cases.

The main challenge in cost-sensitive classification is to find an optimal cost for

each class. One study suggests a relationship between class distribution and cost
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thresholds [6], however, the exact relationship is difficult to determine. Conse-

quently, different costs are often tried to find the optimal point.

Some studies have shown that cost-sensitive classifiers produce similar results

as sampling [6, 37]. Another research specifically suggests undersampling over

cost-sensitive classifiers in the case of high-dimensionality [54]. The main advan-

tage of using sampling techniques is that all the existing classifiers can be used

directly without any modifications to incorporate the cost factor.

Table 2.4: Cost matrix with Cp and Cn as assigned costs for incorrectly classifying

positive and negative samples respectively

Positive prediction Negative Prediction

Positive Class 0 Cp

Negative Class Cn 0

2.2.4 One-class Classification

One-class classification is used to identify the objects belonging to a single class

known as the target class. It learns by looking at the samples from the target class

only without any information about the other class. The induction of a one-class

classifier involves learning a representation of, or a boundary around, the target

class. This is typically applied in connection with the threshold to differentiate the

target objects from outliers [50].

This approach of classification is helpful when most or all of the samples in

the training data represent the target class. The lack of availability of the other

class can be due to an expensive or difficult collection process [11]. One-class

classification is ideal for problems such as machine failure detection or prediction,

typist recognition and radiation detection [50, 25, 21, 48]. In the domain of machine

failure, for example, there is plenty of data for normal operation of the machine

whereas training examples for the machine failure class are much more rare and

difficult to come by.

One-class classification is useful in domains suffering from extreme class im-

balance. However, a study suggests that one-class classification becomes less ben-
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eficial with increasing number of samples from the minority class [3]. In that case,

sampling is a better approach to solve the class imbalance.

Figure 2.7: A representation of a decision boundary learned by a one-class classifier

to identify targets
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level three and table T5 exists on level four. In real applications, databases can have

tens if not hundreds of tables which can exist on even deeper levels. Additionally,

multiple external data sources can be available with similar complex association

levels. Hence, it becomes challenging to manually aggregate all the available infor-

mation in a single table. The automatic aggregation of attributes from all the related

tables to a single mining table makes the process efficient and can result in features

that might be missed while handcrafting attributes.

The aggregation step is performed by joining related tables on a path and adding

newly generated attributes to the mining table. The existing aggregation techniques,

except Dataconda, do not generate attributes that exist on a ‘rolled’ path. A path

is ‘rolled’ if it requires a table to be joined multiple times. In other words, a table

appears more than once in the series of joins to perform the aggregation. However,

the approach adopted by Dataconda suffers from a scalability issue which makes

it difficult to explore an extensive number of attributes for a large amount of data.

Our technique introduces an efficient pre-processing method in the aggregation step

which can help to generate multiple attributes, while at the same time reducing the

load significantly.

The graph in Figure 3.2 shows paths that can be taken to aggregate information

from other tables to the Purchase table in the retail store database used as example

in Chapter 2. The information available at each depth level is as follows:

• The depth level of ‘1’ represents only Purchase table without any information

from the related tables.

• At depth ‘2’, Purchase table can be expanded to include related information

by joining Customer and Product tables.

• The paths with depth ‘3’ can generate attributes related to purchase history

of customers (Purchase — Customer — Purchase) and products (Purchase —

Product — Purchase).

The ‘rolled’ paths shown at depth ‘3’ visit the Purchase table twice. The claim

of the opponent of the rolled path is that such paths result in duplicate information
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available at shorter paths [39]. However, this problem arises because of joining

all the tables at once (Purchase 1 Customer 1 Purchase). Such a path provides

information on historical purchases of the product ‘P’ by the customer ‘C’ who just

purchased ‘P’.

Figure 3.2: Graph representing the paths for data aggregation in the retail store

database

Our technique, Generating Attributes with Rolled Paths (GARP), avoids this

problem by performing step-wise joins. The aggregation operator is first applied

for Customer 1 Purchase (e.g. Total amount spent by a customer in the past) which

results in a single row for each customer. Then, Purchase 1 Aggregation(Customer

1 Purchase) adds this attribute to the Purchase table. In this way, GARP gener-

ates attributes carrying useful information about the past. Our method aggregates

information from external data sources in a similar manner. Hence,

A 1 B 1 C = R

A — B — C 6= R

i.e., aggregation on a path A — B — C is not equivalent to A 1 B 1 C.

We also avoid leakage [44] of the class information like Dataconda by consid-

ering dates to avoid future information. The generation of attributes carrying the

class information leads to overestimation of the classification accuracy. Hence, it

is not appropriate to use the return information of the purchase, however, including

the past information of returns is legitimate and provides some useful insights. For

example, at the time of predicting a return, a customer’s return history before that
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point can be used for prediction. However, in contrast to Dataconda, we use dates

to avoid future information only in the test data and the training set can benefit from

all the available training data resulting in better predictive accuracy. Hence, GARP

collects useful information about the past without leakage of the class information.

GARP extends Dataconda with:

• an efficient attribute generation process that can handle large amounts of data.

• the generation of features that utilize all the available training data without

leakage of the class, resulting in better classification performance.

3.1 Preliminaries

To introduce a running example, we present the complete database structure of our

retail store example with external data sources in Figure 3.3. The main characteris-

tics of the dataset are described as follows:

• Purchase table is the target table, i.e., the table where all new attributes will

be attached and becomes the flat mining table we seek. It has a binary class

attribute called ‘return’.

• Each table is characterized by a name and a set of attributes. Each attribute

has a type which is used to identify the applicable aggregation operators and

refinements.

• While aggregating information from the related tables to the mining table, we

deal with 1-to-many and many-to-1 relationships.

• Suppliers information and Reviews are the two external data sources con-

nected to the retail database. The inclusion of these sources helps to utilize

the information available from other sources and shows the value in data in-

tegration. Customers often review products on social media and other forums

which provide useful feedback and information about the acceptance of prod-

ucts by customers. Hence, it is beneficial to use this information to predict

product returns. We assume that reviews are extracted from a public forum
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where users have rated products with stars and left comments about them.

Star ratings from users can be used directly as a numeric attribute. For com-

ments, we assume that an opinion mining technique [35] has been applied

to label them as a positive, negative or neutral rating. Additionally, product

related information available with the supplier can be used along with the

customer transactions to identify causes of returns that might not be obvious

without that information, like returns due to the material used by the supplier.

Figure 3.3: Retail Database with external sources of Suppliers & Reviews

3.2 Methodology

In this section, we present our methodology for constructing a flat mining table

by generating new attributes. The next section presents an improvement in the

aggregation step to scale the attribute generation process.

Our framework starts with reading the schema of the available data sources

to determine the relationships between tables. In our example, we have a Retail

database and two external data sources of Suppliers and Reviews. The Product table

in the Retail database is the link to external databases. In this work, we assume that

the supplier and review information is already mapped to the Product table in the

retail database. Our goal is to attach new attributes to the Purchase table, generated
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by navigating the Retail, Supplier and Review databases. Our attribute generation

approach is illustrated in Algorithm 1, 2 and 3.

We follow the same two-step approach as the previous work on Propositional-

ization [28, 39, 45], by generating paths that can be taken and then aggregating the

information present on those paths.

3.2.1 Path Generation

We first generate the possible paths to find out the potential attributes in the database.

Each path starts from the target table which contains the class attribute and ends at

a table based on a specified depth level. The depth level reflects the number of ta-

bles used to aggregate information. It also determines the complexity of generated

attributes. The aggregation starts from the table at the end of the path and brings

the information to the target table.

For the retail database presented in Figure 3.2, we start with the Purchase table

(target table) at depth = 1. To find the paths that exist at depth = 2, we look at the

tables associated with the Purchase table. The tables related to the Purchase table

are ‘Location’, ‘Customer’ and ‘Product’. So, the possible paths at depth = 2 are:

1. Purchase — Location

2. Purchase — Customer

3. Purchase — Product

For depth = 3, we add more paths by joining the related tables for each of the

paths generated at depth = 2. The subscript is used to represent the addition of a

table that already exists on the path.

4. Purchase — Location — Purchase2

5. Purchase — Customer — Purchase2

6. Purchase — Product — Purchase2

7. Purchase — Product — Brand

8. Purchase — Product — Category
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When we attach the external data sources of Suppliers and Reviews, two addi-

tional paths can be found at depth = 3:

9. Purchase — Product — Supplier

10. Purchase — Product — Review

In this way, we generate paths by attaching the tables up to a specified depth

level. However, we restrict subpaths with a structure ‘A—B—A’, where the rela-

tionship between A to B is 1-to-many and the foreign key identifier joining A—B

and B—A is same, as such paths cannot result in any additional information. For

example, the following paths at depth 4 repeat the information available at depth 2:

1. Purchase — Customer — Purchase2 — Customer2

2. Purchase — Location — Purchase2 — Location2

3. Purchase — Product — Purchase2 — Product2

Consider the path ‘Purchase — Customer — Purchase2 — Customer2’. The

aggregation starts by bringing the information from ‘Customer2’ to ‘Purchase2’.

For each of the purchase, customer information is attached, by using customer id,

which results in additional attributes shown in Table 3.1.

Table 3.1: Additional attributes generated by bringing information from Customer2
to Purchase2

purchase id age income gender hasChildren

... ... ... ... ...

... ... ... ... ...

Then, aggregation operators like average, sum, min or max are applied on these

attributes to include this information in the table ‘Customer’ as the relationship

between ‘Customer’ and ‘Purchase’ is 1-to-many. It results in useless attributes like

average(income) of a customer which in turn is the same as income and available

at depth = 2 itself. Hence, we avoid paths of a structure ‘A—B—A’, where the

relationship between A to B is 1-to-many and the foreign keys joining A—B and

B—A are same. The path generation procedure is illustrated in Algorithm 1.
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Algorithm 1 Generating Rolled Paths

Input: Target table T0, Table Relationships R, max depth level L

Output: Possible Paths P

1: paths = [T0]

2: level paths = [T0]

3: current level = 1

4: for i = 1 to L do

5: new paths = []

6: for each p in level paths do

7: last table = p[length(p)-1]

8: if L >1 then

9: previous table = p[length(p)-2]

10: else

11: previous table = empty

12: end if

13: for each r in R[last table] do

14: if previous table != r or

relation(previous table, last table) != 1-to-many then

15: new paths.add(p + r)

16: end if

17: end for

18: end for

19: level paths = new paths

20: paths.add(new paths)

21: end for

3.2.2 Attribute Generation

After completing the path generation process, we aggregate the information avail-

able at each path and add new attributes to the target table. For each path, aggrega-

tion starts from the end of the path and information is rolled back to the first table

in the path i.e. the target table. Consider a path T0 — T1 — T2 — ... — Tl−1, where

l is the length of the path. For Ti — Ti+1 with i ranging from l-2 to 0, an attribute

is added to Ti by aggregating information from Ti+1. The generated attribute is vir-

tual to these intermediate tables i.e. not materialized in the intermediate tables and

appears as an actual attribute directly in the target table T0.

The process of generating an attribute differs on the basis of the relationship

between Ti and Ti+1. For a many-to-1 or 1-to-1 relationship between Ti — Ti+1,

an attribute from the table Ti+1 can be directly attached to the table Ti. For exam-
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ple, Purchase — Customer has a many-to-1 relationship, so we can directly add

attributes from ‘Customer’ to ‘Purchase’. However, if Ti+1 is not the last table in

the path then only virtual attributes from Ti+1 should be attached to Ti because

attributes that belong to Ti+1 are already attached to the target table on a shorter

path.

Algorithm 2 Generating Attributes with Rolled Paths

Input: Target table T0, max depth level L

Output: Mining table

1: P = Paths generated by Algorithm 1 up to level L

2: for l = 1 to L do

3: for each path p = (T0, ..., Tl−1) in P do

4: for i = l – 2 down to 0 do

5: attributes[Ti+1] has non-id attributes [a1, a2, ..., an]

6: virtual attributes[Ti+1] has non-id attributes [v1, v2, ..., vn]

7: if virtual attributes[Ti+1] is not empty then

8: candidate attributes = virtual attributes[Ti+1]

9: else

10: candidate attributes = attributes[Ti+1]

11: end if

12: if Ti — Ti+1 is many-to-1 or 1-to-1 then

13: for each aj in candidate attributes[Ti+1] do

14: virtual attributes[Ti].add(aj)

15: end for

16: else if Ti — Ti+1 is 1-to-many then

17: for each aj in attributes[Ti+1]] + virtual attributes[Ti+1] do

18: for each Agg compatible with aj do

19: /* Algorithm 3 returns list of virtual attributes for Ti */

20: Vi = Aggregation(Agg, aj , Ti, Ti+1)

21: virtual attributes[Ti] += Vi

22: end for

23: end for

24: end if

25: end for

26: end for

27: end for

28: Mining table = attributes[T0] + virtual attributes[T0]

For a 1-to-many relationship between Ti — Ti+1, multiple rows from Ti+1 are

associated with each row in Ti. So for each attribute in Ti+1, we need to apply

an aggregation operator which can summarize the information from multiple rows
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related to a single row in Ti. We explain the aggregation process in greater detail in

the following subsection.

Aggregations and Refinements

It is essential to apply aggregation operators for 1-to-many relationships to avoid

information loss while generating attributes for the mining table. In addition, ag-

gregation operators can be complemented with refinement operators to generate

specific patterns. The procedure to apply aggregation and refinements is shown in

Algorithm 3. The aggregation process can be understood by the following query:

SELECT Agg(T2.aj) FROM T1

JOIN T2 on T1.pk = T2.fk

GROUP BY T1.pk

In Customer — Purchase relationship, the above query can have:

aj = online, price, quantity, return

Agg = Average, Sum, Min, Max; for numeric attributes

= Count, Count Distinct; for categorical attributes

GARP applies all the compatible aggregations with each of the attributes. Table

3.2 shows some example attributes attached to the Customer table based on the

choice of aggregation operator applied on each attribute in the Purchase table. As

all the attributes (shown as aj above) are defined as numeric, each of them can be

aggregated with four possible aggregation operators (shown as Agg above).

Table 3.2: Some example attributes generated by aggregation operators for the path

Customer — Purchase

attribute description

Sum (online) Total number of online purchases

Max (price) Maximum amount spent on a purchase

Min (quantity) Minimum number of items in a purchase

Avg(return) Average number of returned purchases

In addition, it is possible to define custom aggregation functions that, given a

list of values, return a single value. In other words, we are not restricted to the
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aggregation operators of SQL.

The attributes shown above are generated by aggregation operators without any

refinements. The refinements can be used to filter data so that they can represent

specific patterns. The refinement can be introduced as a where clause in the query:

WHERE ak Ref c

The suitable Ref operators based on the type of the attribute ak are:

Ref: >, ≤, =, 6=; for numeric

: =, 6=; for categorical

Like Dataconda [45], the two possible types of refinements based on the value

of ‘c’, in the above clause are:

• toValue refinements; where c is a constant

• comparison refinements; where c is an attribute

Table 3.3 shows some the examples of toValue refinements for the aggregation

Avg(P2.return) on the path Purchase (P) — Customer — Purchase (P2). Each at-

tribute summarizes the return history of customers based on a specific condition.

These attributes are helpful to determine specific patterns.

Table 3.3: Some example attributes generated with toValue refinements for aggre-

gation Avg(P2.return) on the path Purchase (P) — Customer — Purchase (P2)

attribute description

where online = 0 Return history for purchases that are not online

where online = 1 Return history for online purchases

where price < $500 Return history for purchases below $500

where price < $1000 Return history for purchases below $1000

The values of the constant ‘c’ for toValue refinements applied on an attribute

can be determined by using:

1. all possible values of the attribute

2. values determined by equal-width binning (other discretization ways can be

possible, like equal-frequency binning)
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The first option is better for attributes that contain categorical data. For example,

the two possible values for online are ‘0’ and ‘1’, so the toValue refinements can

have conditions like online = 0 or online = 1. The second option, binning, is suitable

for numeric attributes. For example, binning the price range of $1500 into equal-

width bins with 3 intervals gives $500, $1000 and $1500. The toValue refinements

can have conditions price < $500 or price < $1000.

The comparison refinements can be used to compare an attribute with another

attribute of the same type and dimension. An example attribute generated with a

comparison refinement on the path Purchase (P) — Customer — Purchase (P2) is:

Avg (P2.return) where P.online = P2.online

For each record in Purchase (P), this new attribute represents customer’s return

history only for those purchases that were conducted via the same medium. For

instance, when the current purchase is made online, this attribute represents the

average of return for online purchases only. However, if the current purchase is not

online, the same attribute represents the average of return for purchases that were

not online.

However, as mentioned earlier, attributes that are built using the class leak future

information. Such attributes inject the class information in the generated attributes

which leads to overestimation of the classification accuracy. This issue is resolved

by allowing information only from the past by adding date refinements. We add

dates while generating attributes for the test data so that the purchase being pre-

dicted does not use any information from the future. Consider one of the example

attributes mentioned earlier on the path Purchase (P) — Customer — Purchase (P2),

we can add date refinement as follows:

Avg (P2.return) where online = 1 and P2.date < P.date

In this way, we generate attributes for the target table without using any future

information.
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Algorithm 3 Aggregation Procedure

Input: Aggregation Operator Agg, attribute aj , Tables Ti and Ti+1

Output: Returns a list of virtual attributes Vi, based on aj , to Algorithm 1

1: Vi = []

2: if virtual attributes[Ti+1] is not empty then

3: if aj is in virtual attributes[Ti+1] then

4: candidate ref attributes = attributes[Ti+1]

5: else

6: candidate ref attributes = virtual attributes[Ti+1]

7: end if

8: else

9: candidate ref attributes = attributes[Ti+1]

10: end if

11: if both T0 and Ti+1 have a date then

12: date refinement = Ti+1.date < T0.date

13: end if

14: /* Aggregation without refinement */

15: if virtual attributes[Ti+1] is empty then

16: for each x in Ti do

17: R = records in Ti+1 associated to x

18: vi(x) = Agg(R.aj) from R

[and R.date < T0.date]
19: end for

20: Vi.add(vi)

21: end if

22: /* Aggregation with refinement */

23: for each ak in candidate ref attributes do

24: for each Ref compatible with ak do

25: for each c in refinement values do

26: for each x in Ti do

27: R = records in Ti+1 associated to x

28: vi(x) = Agg(R.aj) from R where R.ak Ref c

[and R.date < T0.date]
29: end for

30: Vi.add(vi)

31: end for

32: end for

33: end for

34: return Vi
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3.3 Scaling the Attribute Generation Process

The attribute generation phase results in a very high number of attributes based

on different selections of aggregation operators and refinements. This extensive

process becomes very time-consuming for large datasets. In order to scale the algo-

rithm, we analyzed the algorithm to reduce its time complexity. We focused on the

aggregation and refinements step of the algorithm as it is the most expensive stage

in the whole process.

In Figures 3.4 and 3.5, we present the internal details of the complete execution

process of generating an attribute with aggregation and refinement steps. The Agg

and Agg + Ref blocks in the figures provide details for aggregating information on

the path Ti — Ti+1 with a 1-to-many relationship. The aggregation step needs to

structure data based on the joined table before applying the aggregation operator to

summarize data. The inclusion of the refinement adds one more step to filter this

data before the final aggregation. This pre-processing time in the aggregation and

refinements step grows with increasing load of data.

Consider the path Customer — Purchase in the retail database to aggregate in-

formation related to purchasing history of each customer. The attributes in the

Purchase table are:

attributes (4) = online, price, quantity, return

As all these attributes are numeric, aggregation operators used for each of the at-

tributes are:

Agg (4) = avg, sum, min, max

The total number of possible aggregations are:

Total aggregations =
n∑

i=1

Number of Aggi;

where n = number of attributes

= 16

(3.1)
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Figure 3.4: Aggregating attribute vi from Ti+1 to Ti on path (Ti — Ti+1) without

Refinement

Figure 3.5: Aggregating attribute vi from Ti+1 to Ti on path (Ti — Ti+1) with

Refinement
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Assume that refinement values and operators for each attribute are:

online(2): 0, 1; based on all possible values

operators : [=]

price(4): p1, p2, p3, p4; based on 5 equal-width bins

operators : [<]

quantity(4): q1, q2, q3, q4; based on 5 equal-width bins

operators : [<]

return(2): 0, 1; based on all possible values

operators : [=]

The total number of possible refinements are:

Total refinements =
n∑

i=1

Number of valuesi * Number of operatorsi;

where n = number of attributes

= (2 ∗ 1) + (4 ∗ 1) + (4 ∗ 1) + (2 ∗ 1)

= 12

(3.2)

The total number of possible attributes are:

Total attributes = Total aggregations * (Total refinements + 1);

+1 for aggregations without refinements

= 16 ∗ (12 + 1)

= 208

(3.3)

In this scenario, a total of 208 attributes are generated for Customer — Purchase

aggregation only. This means that the aggregation process has to go through the

structuring, filtering and aggregation phases (shown earlier) 208 times.

However, we can make this process efficient by separating the structuring and

filtering phases from the aggregation phase as shown in Figures 3.6 and 3.7. The

temporary result generated by the pre-processing step can be reused to compute

several attributes, that rely on the same structured and filtered data, by directly

applying the aggregation. For example, all the (16) aggregations are performed in

conjunction with the refinement ‘price < p1’, shown in Table 3.4. A temporary
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result can be generated for the refinement ‘price < p1’ and all these aggregations

can be applied together.

Table 3.4: all the (16) aggregations performed with refinement price < p1

avg sum min max

online agg1 agg2 agg3 agg4

price agg5 agg6 agg7 agg8

quantity agg9 agg10 agg11 agg12

return agg13 agg14 agg15 agg16

Based on Equation 3.3, the structuring and filtering steps would be reduced to:

Total preprocessing steps = 1 * (Total refinements + 1);

= 1 ∗ (12 + 1)

= 13

(3.4)

Hence, in Customer — Purchase relationship, the number of times this structur-

ing and filtering process has to be performed is reduced from 208 to 13. This helps

in reducing the time complexity significantly with increasing load of data.

We also looked into Hadoop [56] to parallelize our technique with a MapRe-

duce [12] based solution. MapReduce is highly scalable and handles inter-machine

communication and machine failures within the framework. It’s model works in

two phases: the map phase divides the work on multiple machines to produce an

intermediate result and the reduce phase merges this result. As our technique gen-

erates attributes by following different paths, we tried to divide the load among map

tasks where each map task can work on generating attributes for a subset of paths.

However, several paths navigate through the same tables and dividing the paths into

disjoint sets is difficult. We did not succeed to express our solution in a MapReduce

model and suggest a future study to investigate the possibility of a parallel solution

for our technique.
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Figure 3.6: Aggregating vi1, vi2, ... vin from Ti+1 to Ti on path (Ti — Ti+1) without

Refinement

Figure 3.7: Aggregating vi1, vi2, ... vin from Ti+1 to Ti on path (Ti — Ti+1) with

Refinement

40



3.4 Attribute Selection

The attribute generation process results in a huge feature space for the mining table.

A feature selection technique can help to reduce the dimensionality and assist the

knowledge discovery process by finding the best predictors. For example, to find the

causes of returns in the retail database, feature selection helps to limit the attributes

to only real causes of returns.

We use lasso (least absolute shrinkage and selection operator) [51] to select the

features that are highly related to the class. Lasso works by applying regression

and forcing the coefficients of attributes to be less than a specified value. In this

process, coefficients of some attributes are set to zero and these attributes can be

removed from the feature space. Hence, Lasso results in sparse models [26, 13]

which are interpretable like subset selection and widely used in the sciences and

social sciences [59].

The benefit of using lasso is that it selects attributes that are highly correlated

with the class but do not have a high correlation among themselves. In our feature

generation process, several attributes are generated that are very similar to each

other. For example, our technique generates an attribute ‘average of return for a

customer’ with several refinements like ‘price < $500’, ‘price < $1000’, ‘price <

$1500’, etc. As these attributes are highly correlated with each other, lasso will try

to pick the best from them. In this way, diverse attributes are selected and different

reasons behind product returns can be determined.
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Chapter 4

Experiments

In this section, we evaluate our technique of Generating Attributes with Rolled

Paths (GARP) in terms of improvement in predictive accuracy by exploring ‘rolled

paths’ and generation of discriminant attributes from the knowledge discovery as-

pect. We compare the classification performance of GARP with existing Proposi-

tionalization techniques which do not explore rolled paths. We also evaluate the

scalability of our technique to generate attributes with an increasing load of data.

4.1 Experimental Design

To determine the predictive accuracy, we conducted experiments with the following

classification techniques in Weka [18]:

1. Ripper (JRip) [18]

2. C4.5 (J48) [43]

3. Bayesian Network [16]

4. Random Forest [5]

5. Support Vector Machines (LibSVM) [7]

6. Multilayer Perceptron [47]

We perform our experiments with the Retail database as well as the external

data sources of Suppliers and Reviews. The retail database has the class imbalance
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problem as the number of returned purchases is comparatively smaller than the

number of purchases that are not returned. In this case, the classification accuracy

measure is not useful as the classifiers predict most or all of the purchases as ‘not

returned’ to achieve better overall accuracy. However, it is important to correctly

classify the purchases that are returned. Hence, we use a different measure: Area

under the Receiver Operating Characteristic (ROC) curve known as AUC [4]. It

represents the probability that a randomly chosen positive instance will be ranked

higher than a randomly chosen negative instance. AUC is a good metric to measure

classification performance in imbalanced datasets. ROC curve is plotted with the

true positive rate and the false positive rate by varying the threshold of probability to

assign an instance to a particular class. A random classifier will have AUC around

0.5 and AUC for a perfect classifier would be 1.

We also apply data-preprocessing techniques of undersampling and SMOTE [8]

to resolve the class imbalance and compare them with our technique to validate the

ability of our approach to handle the class imbalance.

We divided the dataset into training and test set rather than dividing into folds.

We take this approach to avoid leakage of the class information as our technique

generates attributes in the presence of the class labels of the past information. For

example, the mining table generated for purchases in the retail database contains an

attribute ‘Sum(return) for the past purchases’ which is built on the class information

of the purchases made before that point. In the 10 fold cross validation, if the

selected testing set has purchases made prior to the purchases in the training set

then the class information is being leaked. Hence, we need to separate the training

and test set to make sure that the testing set does not have any attributes built on the

purchases that were performed after that point.

4.2 Dataset and Setup

We conduct experiments on a real transactional dataset from Circuit City, which was

a large US electronics retailer. The data is available at the INFORMS Marketing
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Science Society1 [38]. It contains around 115K purchases of around 20K products

made by 20K customers. Each transaction in the database contains information

about:

• Purchase: price, quantity, returned or not, etc.

• Customer: age, gender, etc.

• Product: category, brand, etc.

We normalized this data as a Retail database presented in Figure 3.2. Since the

available data from the retailer has a ratio of around 6:1 for purchase:customer and

purchase:product in the complete dataset, it does not have enough representation of

the purchasing behavior of several customers and products. Therefore, we sampled

the dataset around products to generate an information-rich subset to evaluate the

full potential of our technique. We generated a subset that is also a good represen-

tative of the complete dataset in terms of returns.

We divide the dataset into three groups based on the percentage of returns and

randomly select products from these groups ensuring that the percentage of returns

is similar to the percentage of returns in the complete dataset (around 10%). In

this way, we try to select products with varying chances of return. Three groups

have products with: high return percentage (>40%), medium return percentage (10-

30%) and low percentage(<10%). Next, we retrieve all the purchases and customer

records corresponding to these products. Our selection results in 18,182 purchases

with 1,868 returns and we take 75% as the training set (13,500).

To show the applicability of our framework for Big Data, we generated synthetic

external datasets to simulate the information from Suppliers and Reviews. We gen-

erated reviews to simulate a realistic situation where good products usually have

good ratings and returned products are more likely to get bad reviews and some

products might not have ratings at all. The Supplier dataset has some generic infor-

mation that suppliers can easily share with retailers. We simulated this database in a

way that if manufacturing location is from a specific country it has a high chance of

1https://www.informs.org/Community/ISMS/ISMS-Research-Datasets
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return. The reason behind keeping this pattern is to evaluate whether our technique

can automatically detect it.

Let us briefly discuss some settings used. We enable only those aggregate func-

tions and refinements that are ‘logically compatible’ with each attribute. For ex-

ample, for the attribute Customer.age, we enable max, min, and avg, but disable

sum, as the sum of ages of a group of customers does not make sense. We defined

two categorical attributes Purchase.return and Purchase.online as numeric with two

possible values 0 and 1, so as to enable numeric aggregation functions of min, max

and avg. The values of the attribute Purchase.price were binned into 5 partitions in

order to create the refinements on the price. In the Customer table, the attributes

income and age were also binned into 5 partitions. The bins were built using the

equal-width criterion.

4.3 Evaluation with Retail Database only

In this section, we evaluate our technique with the Retail database only without

considering any external data sources. For classification, we run three sets of ex-

periments on the Purchase table:

1. without aggregated information from other tables,

2. with aggregated information without rolled paths,

3. with aggregations applied using our GARP technique with depth 3 and 4.

For each set of experiments, we first apply the classification techniques on the

Purchase table with the class imbalance. Then, we use undersampling and SMOTE

to resolve the class imbalance and measure the classification performance in a bal-

anced dataset.

Table 4.1 to 4.6 show the classification results (AUC values) for our experi-

ments with the Retail database. For a baseline, we classified Purchase table with-

out applying any aggregations, so maximum depth = 1 with only three non-id at-

tributes. Then for Propositionalization baseline, we aggregated information from

the database without rolled paths, with a depth level of 2 as all the paths beyond
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level 2 are rolled paths. It resulted in only 7 attributes (additional 4 from Customer

table). Finally, we generated attributes using our technique at the depth level of 3

and 4 which resulted in 514 and 846 attributes respectively. These attributes carry

useful information related to the past purchases.

Table 4.1: AUC for the Retail Database with C4.5 (J48)

Method (Depth) No sampling Undersampling SMOTE

No Aggregations (1) 0.51 0.57 0.57

No Rolled Paths (2) 0.51 0.56 0.51

GARP (3) 0.68 0.66 0.68

GARP (4) 0.68 0.65 0.67

Table 4.2: AUC for the Retail Database with Random Forest

Method (Depth) No sampling Undersampling SMOTE

No Aggregations (1) 0.58 0.57 0.58

No Rolled Paths (2) 0.57 0.60 0.55

GARP (3) 0.75 0.73 0.73

GARP (4) 0.78 0.76 0.76

Table 4.3: AUC for the Retail Database with Bayesian Network

Method (Depth) No sampling Undersampling SMOTE

No Aggregations (1) 0.61 0.59 0.62

No Rolled Paths (2) 0.61 0.59 0.56

GARP (3) 0.77 0.77 0.55

GARP (4) 0.76 0.77 0.56
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Table 4.4: AUC for the Retail Database with Ripper (JRip)

Method (Depth) No sampling Undersampling SMOTE

No Aggregations (1) 0.50 0.57 0.58

No Rolled Paths (2) 0.50 0.55 0.50

GARP (3) 0.61 0.60 0.61

GARP (4) 0.60 0.58 0.59

Table 4.5: AUC for the Retail Database with Support Vector Machines (SVM)

Method (Depth) No sampling Undersampling SMOTE

No Aggregations (1) 0.50 0.51 0.52

No Rolled Paths (2) 0.50 0.52 0.50

GARP (3) 0.76 0.70 0.61

GARP (4) 0.72 0.70 0.67

Table 4.6: AUC for the Retail Database with Multilayer Perceptron

Method (Depth) No sampling Undersampling SMOTE

No Aggregations (1) 0.64 0.64 0.64

No Rolled Paths (2) 0.54 0.55 0.50

GARP (3) 0.77 0.72 0.77

GARP (4) 0.74 0.67 0.71

The experimental results show that resolving the class imbalance with under-

sampling and SMOTE without aggregating information gives an improvement of

at most 8%. Both the techniques give similar results and the improvement is not

significant because the attributes do not have enough discrimination power. Even

the aggregations without rolled paths do not make much difference and sometimes

even drop the performance. However, our technique shows significant improvement

in prediction accuracy with all the classifiers, even with the imbalanced dataset, due

to the fact that discriminant patterns have been generated. However, depth 4 does
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not always outperform depth 3. At depth = 4, patterns in the current database can

result in over-fitting for some models.

The paths beyond depth level of 4 would generate attributes by applying aggre-

gations upon aggregation operators. For example, ‘Sum(Average of return for the

past purchases of a product) for the past purchases of a customer’ lies on the path

‘Purchase — Product — Purchase — Customer — Purchase’ at depth 5. Such com-

plex attributes are less interpretable i.e. difficult to read, understand and transform

into actionable knowledge. Hence, levels of relationships in a database can be used

to identify the maximum depth level for the attribute generation process.

Additionally, the undersampling and SMOTE results with our technique do not

show any improvement, as the generated features have good discrimination power

which can help to reduce the class overlap [20]. A comparison of the classification

performance with the Retail database is presented from Figure 4.1 to 4.6.

Figure 4.1: AUC comparison in the Retail database with C4.5 (J48)
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Figure 4.2: AUC comparison in the Retail database with Random Forest

Figure 4.3: AUC comparison in the Retail database with Bayesian Network
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Figure 4.4: AUC comparison in the Retail database with Ripper (JRip)

Figure 4.5: AUC comparison in the Retail database with Support Vector Machines

(SVM)
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Figure 4.6: AUC comparison in the Retail database with Multilayer Perceptron

Moreover, we look at some of the automatically generated attributes that help us

uncover reasons behind product returns. Our default attribute selection procedure

selects 10 most discriminant attributes from the whole set generated by our tech-

nique. We discuss five of them, reported in Table 4.7, to show that our technique

facilitates knowledge discovery. Figure 4.7 to 4.11 show the return percentage of

purchases, based on different possible values for these attributes.

Table 4.7: Discriminant predictors within the Retail Database

Attributes
Depth

1. Avg(return) where online = 0, among past purchases of

customers
3

2. Sum(quantity) where return = 0, among past purchases of

products
3

3. Avg(return) where price < $1230, among past purchases of

products
3

4. CountDistinct(gender of customers), among past purchases

of products
4

5. Max(age of customers), among past purchases of products 4
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The first discriminant attribute represents a customer’s history of returns. This

attribute was found at depth 3 on path Purchase — Customer — Purchase. A cus-

tomer with high ‘Avg(return) where online = 0, among past purchases’ is more

likely to return products. This fact is verified by analyzing our dataset (shown in

Figure 4.7). Additionally, this trend of the customer’s buying and return behaviour

is suggested by empirical studies in the literature [40]. It shows that customers who

tend to buy more products in a sale season often buy undesired items which end

up as a return. Similarly, buying unfamiliar products can lead to purchases that do

not meet expectations. The ‘online = 0’ refinement captures information about our

dataset where most of the purchases are not performed online.

The second discriminant attribute is related to the return history of products,

with a refinement ‘return = 0’, found on path Purchase — Product — Purchase.

This attribute shows the product’s reception by customers as ‘the total number of

purchases of a product without a return’. Our dataset verifies that product’s return

history is important by showing that products with a higher number of purchases

without a return in the past are less likely to be returned, as presented in Figure 4.8.

FINDING: Return history - Products & Customers

A product can see high returns for several reasons that are particularly re-

lated to a product, like quality, value for the price, advertised in a way that

product is not meant to be etc. On the other hand, the product may be re-

turned because of the customer related reasons like less careful purchasing

behavior or buying products for trial. Hence, past records can help to iden-

tify if there is some problem related to a product or customer that may result

in future returns.

The third attribute is also related to the return history of products but with a price

‘below $1230’. The previous attribute already shows that products returned in the

past are more likely to be returned. However, our technique found this attribute with

a refinement ‘where price < $1230’. The value ‘$1230’ is set during the binning

process, where the price attribute is binned into 5 partitions.
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FINDING: the $1230 threshold

This provides information related to the products that are expensive and rep-

resent the best available quality. These products are purchased by customers

who can spend a big sum of money for the best available product. On the

other hand, customers who are more careful while spending will look for a

good enough product in a lesser range. These customers are more likely to

return products that are not a good fit compared to the customers who can

spend money on the most expensive products.

Another significant attribute represents information found at depth 4, gender

of the customers buying the product. This attribute lies on the path Purchase —

Product — Purchase — Customer. Figure 4.10 shows that the return percentage of

the products that are used by a particular gender are more likely to be returned.

Finally, the last attribute in Table 4.7 suggests that returns can be predicted by

looking at the maximum age group of customers previously buying that product.

There is a significant difference in returns for different age groups. The data sug-

gests that products that are being bought by younger people are returned often.

All these patterns exist on rolled paths, where Purchase table is navigated twice.

Our technique found these patterns automatically from real customer transactions

data. The selection of the last two attributes related to the age and gender of the

customers shows the ability of our methodology to find non-trivial attributes that

can be used to further investigate the domain.

Figure 4.7: Attribute 1: Return percentage based on Avg(return) where ‘online =

0’, among past purchases of Customers
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Figure 4.8: Attribute 2: Return percentage based on Sum(quantity) where ‘return =

0’, among past purchases of Products

Figure 4.9: Attribute 3: Return percentage based on Avg(return) where ‘price <

1230’, among past purchases of Products
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Figure 4.10: Attribute 4: Return percentage based on CountDistinct(gender of cus-

tomers), among past purchases of Products

Figure 4.11: Attribute 5: Return percentage based on Max(age of customers),

among past purchases of Products
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4.4 Evaluation with the integration of External Data

Sources

In the second phase of our experiments, we combine our two external data sources

of supplier information and reviews. We generate new attributes with the integration

of data from:

1. Supplier only,

2. Review only,

3. Both Supplier and Review.

The classification results for the mining table generated along with the external

data sources are shown from Table 4.8 to 4.13. The predictive accuracy increases

with the integration of external data sources in almost all the cases. Figure 4.12 -

4.17 compare the accuracy achieved with external sources, at a maximum depth of

3 and 4.

Table 4.8: AUC for integrated datasets with C4.5 (J48)

Method (Depth) No sampling Undersampling SMOTE

No Aggregations

Retail (1) 0.51 0.57 0.57

Aggregations using GARP

Supplier (3) 0.68 0.66 0.68

Supplier (4) 0.68 0.65 0.68

Review (3) 0.70 0.69 0.68

Review (4) 0.71 0.69 0.68

Supplier & Review (3) 0.70 0.69 0.69

Supplier & Review (4) 0.70 0.69 0.67
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Table 4.9: AUC for integrated datasets with Random Forest

Method (Depth) No sampling Undersampling SMOTE

No Aggregations

Retail (1) 0.58 0.57 0.58

Aggregations using GARP

Supplier (3) 0.77 0.73 0.73

Supplier (4) 0.79 0.76 0.76

Review (3) 0.81 0.75 0.74

Review (4) 0.82 0.78 0.78

Supplier & Review (3) 0.80 0.76 0.75

Supplier & Review (4) 0.82 0.78 0.78

Table 4.10: AUC for integrated datasets with Bayesian Network

Method (Depth) No sampling Undersampling SMOTE

No Aggregations

Retail (1) 0.61 0.59 0.62

Aggregations using GARP

Supplier (3) 0.79 0.79 0.55

Supplier (4) 0.77 0.78 0.56

Review (3) 0.82 0.80 0.55

Review (4) 0.79 0.79 0.58

Supplier & Review (3) 0.83 0.81 0.56

Supplier & Review (4) 0.80 0.80 0.56
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Table 4.11: AUC for integrated datasets with Ripper (JRip)

Method (Depth) No sampling Undersampling SMOTE

No Aggregations

Retail (1) 0.50 0.57 0.58

Aggregations using GARP

Supplier (3) 0.61 0.61 0.60

Supplier (4) 0.60 0.59 0.60

Review (3) 0.60 0.59 0.61

Review (4) 0.61 0.59 0.61

Supplier & Review (3) 0.61 0.59 0.60

Supplier & Review (4) 0.61 0.61 0.60

Table 4.12: AUC for integrated datasets with Support Vector Machines (SVM)

Method (Depth) No sampling Undersampling SMOTE

No Aggregations

Retail (1) 0.50 0.51 0.52

Aggregations using GARP

Supplier (3) 0.76 0.70 0.72

Supplier (4) 0.72 0.70 0.73

Review (3) 0.87 0.70 0.79

Review (4) 0.88 0.70 0.79

Supplier & Review (3) 0.87 0.70 0.78

Supplier & Review (4) 0.88 0.70 0.79
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Table 4.13: AUC for integrated datasets with Multilayer Perceptron

Method (Depth) No sampling Undersampling SMOTE

No Aggregations

Retail (1) 0.64 0.64 0.64

Aggregations using GARP

Supplier (3) 0.77 0.73 0.76

Supplier (4) 0.77 0.73 0.74

Review (3) 0.82 0.75 0.80

Review (4) 0.82 0.75 0.83

Supplier & Review (3) 0.82 0.75 0.82

Supplier & Review (4) 0.82 0.75 0.82

The integration of external data sources also improves the classification accu-

racy significantly. The Review data source performs better than the Supplier source,

because reviews are simulated in a way that the discriminant pattern of bad reviews

for returned products is followed by most of the returned products; however, only

two manufacturing locations have a specific pattern of returns, one with high re-

turns and one with low returns. In the case of aggregating information from both

the databases, accuracy is around the level of Review database. Still there is a ben-

efit in using both datasets which is obvious by looking at best predictors in Table

4.14. Figure 4.12-4.17 and 4.18-4.23 give the comparison of the classification per-

formance with the integration of external data sources at depth 3 and 4 respectively.

The lesson is that we should always try to integrate relevant external data sources

rather than limiting our analysis to the available internal database, hence the advan-

tage ot big data.
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Figure 4.12: AUC comparison for integrated datasets at ‘depth=3’ with C4.5 (J48)

Figure 4.13: AUC comparison for integrated datasets at ‘depth=3’ with Random

Forest

60



Figure 4.14: AUC comparison for integrated datasets at ‘depth=3’ with Bayesian

Network

Figure 4.15: AUC comparison for integrated datasets at ‘depth=3’ with Ripper

(JRip)
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Figure 4.16: AUC comparison for integrated datasets at ‘depth=3’ with Support

Vector Machines (SVM)

Figure 4.17: AUC comparison for integrated datasets at ‘depth=3’ with Multilayer

Perceptron
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Figure 4.18: AUC comparison for integrated datasets at ‘depth=4’ with C4.5 (J48)

Figure 4.19: AUC comparison for integrated datasets at ‘depth=4’ with Random

Forest
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Figure 4.20: AUC comparison for integrated datasets at ‘depth=4’ with Bayesian

Network

Figure 4.21: AUC comparison for integrated datasets at ‘depth=4’ with Ripper

(JRip)
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Figure 4.22: AUC comparison for integrated datasets at ‘depth=4’ with Support

Vector Machines (SVM)

Figure 4.23: AUC comparison for integrated datasets at ‘depth=4’ with Multilayer

Perceptron
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Table 4.14: Discriminant predictors from External Data Sources

Attributes
Depth

1. Location of supplier (Thailand) 3

2. Avg (stars) among reviews of products 3

From the knowledge discovery perspective, we are interested in additional dis-

criminant predictors generated with the integration of external data sources. Our

technique successfully discovers patterns from both datasets automatically. The

first attribute in Table 4.14 represents the pattern that was intentionally created

while generating synthetic data for the Supplier database. It was automatically

rediscovered by GARP which validates our approach. A supplier can have multiple

manufacturing locations for their products. In our dataset, products manufactured in

‘Thailand’ have a high proportion of returns (hypothetical: injected synthetically).

Our method not only found the ‘location’ attribute, but also the value that makes it

discriminant. This strength of our technique can be very helpful in finding different

patterns like a problem with a specific facility of a supplier, defects in the material

used for production, issues with the specific version of the product, etc. This is defi-

nitely helpful for the stores and retailers as it could help them to deal with suppliers

and mutually identify the problems with products.

The second attribute in Table 4.14 comes from the Review database and shows

that average star rating of a product can determine whether the product will be re-

turned or not. The synthetic data generated to simulate reviews follow a pattern that

products with an average rating around ‘1–2’ stars have high return rates, products

with ‘3’ stars can fall on either side and star ratings of ‘4–5’ are given to products

with low returns or no returns at all. For some products, we might not have any

user ratings. This pattern was created with an intention to simulate a real world

situation. Hence, the star rating is a ‘true predictor’ in our simulated data and our

technique found an interpretable attribute for this pattern.

Both attributes were selected among the top ten discriminant predictors when

we integrated our Retail database with Supplier and Review data sources. This
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shows the strong correlation of both the attributes with our class label return. Along

with the prediction, the attribute from Supplier database provides information about

the cause of return, which is related to the manufacturing location. On the other

hand, the attribute from the Review table suggests that bad ratings are associated

with product returns. The reason for bad ratings might be clear from user comments

like the product has a short life span, quality is not up to the mark, better alternatives

are available in the market, etc. However, sometimes a reason is not explicitly

mentioned in the accompanying user comment. In this case, finding the root cause

of return needs further analysis based on this attribute.

Data integration can determine complex patterns without explicit feedbacks.

Consider an example of a new product launched in the market. The product per-

forms well with a large number of sales throughout the year and receives good

feedback from customers. The next year, the manufacturer decides to change the

material of a specific part for the new version of this product from metal to plas-

tic. This results in unsatisfied customers with negative feedback and high product

returns. This pattern can be detected with negative user ratings in that specific year

and change in manufacturing material. This example shows the value of bringing

the pieces together to see the big picture [58].

4.5 Scalability

To evaluate the scalability of our GARP technique, we executed the attribute gen-

eration procedure by varying the sample size of the Retail database. We generated

four samples of the dataset with about 25%, 50%, 75%, and 100% of the available

data. All the experiments were conducted on a laptop with Intel Core i7-6700HQ

processor (6M Cache, 2.6GHz) and 12GB RAM.

We run our technique up to depth levels 3 and 4. Figure 4.24 reports the time

taken to generate new attributes for the flat mining table. The results presented in

Figure 4.24 show that increasing the size of the database increases the execution

time of GARP in a linear fashion at both depth levels of 3 and 4. The depth level

4 takes more time than depth 3 as it involves an additional table in the joins. We
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also compare our technique with Dataconda’s attribute generation approach at depth

level 3. We only show the comparison at depth 3 as Dataconda takes too long for

depth 4. Figure 4.25 shows that our suggested improvement to Dataconda performs

significantly better than the existing approach.

Figure 4.24: Execution times for GARP at depth 3 and 4 by varying the size of the

dataset

Figure 4.25: Execution times for GARP and Dataconda by varying the size of the

dataset at depth 3
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Chapter 5

Conclusions and Future Work

5.1 Summary

In this study, we investigate the problem of applying data mining and machine

learning techniques on relational datasets. Most of these learning techniques rely

on a single table and assume that training data has a balanced class distribution.

However, this is rarely true in real applications where data is distributed in multiple

tables and often available from additional data sources that can be thought of as

external tables in a multi-relational database. Additionally, the class imbalance is

also very common in such applications.

In order to resolve the compatibility issues of existing learning techniques and

multi-relational datasets, data needs to be aggregated in a single table from all the

available sources. This flat mining table can be constructed, based on the knowl-

edge of domain experts, by generating attributes that represent potential predictors.

However, the manual process of building a mining table is not very efficient and

the attributes are generated based on the existing domain knowledge. On the other

hand, automatic generation of attributes by aggregating information from all the

available data results in a large feature space which can contain predictors that are

unexpected and cannot be determined during the manual process. The generation

of discriminative features can also help to reduce the class imbalance problem by

differentiating the classes well.

The existing work in Multi-relational Data Mining (MRDM) provides two dif-

ferent alternatives for feature discovery and classification in the relational context.
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One approach is to extend the existing learning techniques to handle relational data

based on Inductive Logic Programming (ILP). The other approach, as mentioned

earlier, is to generate a single table from all the available sources, known as Propo-

sitionalization, before applying traditional learning techniques. The Propositional-

ization approaches generate more rich and specific patterns compared to the ILP

approach, especially in the case of numeric data. Our work extends the Propo-

sitionalization approach by efficiently generating attributes that represent the past

information. All the existing Propositionalization techniques either do not generate

such attributes or do not generate them efficiently.

Our technique of Generating Attributes with Rolled Paths (GARP) generates

attributes on paths in which a table appears more than one time in a series of joins

to aggregate information. The exploration of ‘rolled paths’ results in attributes that

contain useful information from the past. While generating these attributes for the

test data, we add dates to assure that attributes are built without using any future

information. We also scale this extensive attribute generation process to handle

very large amounts of data by introducing a pre-processing step that can help to

apply multiple aggregations for similar attributes at a same time.

We empirically demonstrate the effectiveness of our technique, GARP, in im-

proving the classification performance and facilitating the knowledge discovery

process with an imbalanced dataset. Our results show that GARP performed better

than other approaches without having to alter the data distribution by undersampling

or oversampling. In addition, the inclusion of external data sources of Suppliers and

Reviews also improves the predictive accuracy and results in detection of additional

patterns.

5.2 Conclusions

With our research on automatically constructing a mining table by aggregating in-

formation from multiple tables and external data sources, we conclude that:

• The attributes generated by utilizing the past information can help to improve

the classification performance.
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• The automatic framework for generating attributes facilitates the knowledge

discovery process by finding unexpected patterns.

• The discriminant attributes generated by aggregating information from multi-

ple tables and data sources can help in differentiating the classes by reducing

the overlap in classes, even in the presence of class imbalance.

• The extensive process of generating attributes from the dataset can be scaled

to cope with a large amount of data.

5.3 Future Work

Future research can focus in the following directions:

• GARP generates a large number of attributes by exploring all possible paths

in the database. This extensive process also generates some attributes that

are not very useful. A future study can focus on pruning some less beneficial

paths based on some heuristics to reduce the overall computation overhead of

generating attributes.

• A future study can be conducted to deal with changes in the database and

external data sources. Such changes can occur due to the modification of data

or structural revision of the underlying data sources. In such a study, the main

focus should be on propagating changes to the mining table without repeating

the whole process.

• Another study can be focused on parallelizing the attribute generation pro-

cess. Our scalability analysis shows that the time complexity of our approach

is linear. The overall computation time can be further reduced with an ef-

ficient approach to distribute the work on several machines. It might seem

straightforward to dedicate each machine to generate attributes for a subset

of paths. However, it is not trivial to divide the workload without replicating

data on different machines as several paths go through the same tables.
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