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Simple Summary: Lameness is prevalent in dairy cows and early diagnosis and timely
treatment of the disease can lower animal suffering, improve recovery rate, increase
longevity, and minimize cow loss. However, there are no indications of disease until it
appears clinically, and presently the only approach to deal with the sick cow is intensive
treatment or culling. The results suggest that lameness affected serum concentrations of the
several parameters related to innate immunity and carbohydrate metabolism that might be
used to monitor health status of transition dairy cows in the near future.

Abstract: The objectives of this study were to evaluate metabolic and innate immunity
alterations in the blood of transition dairy cows before, during, and after diagnosis of
lameness during periparturient period. Blood samples were collected from the coccygeal
vain once per week before morning feeding from 100 multiparous Holstein dairy cows
during ´8, ´4, disease diagnosis, and +4 weeks (wks) relative to parturition. Six healthy
cows (CON) and six cows that showed clinical signs of lameness were selected for intensive
serum analyses. Concentrations of interleukin-1 (IL-1), interleukin-6 (IL-6), tumor necrosis
factor (TNF), haptoglobin (Hp), serum amyloid A (SAA), lipopolysaccharide binding
protein (LBP), lactate, non-esterified fatty acids (NEFA), and β-hydroxybutyrate (BHBA)
were measured in serum by ELISA or colorimetric methods. Health status, DMI, rectal
temperature, milk yield, and milk composition also were monitored for each cow during
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the whole experimental period. Results showed that cows affected by lameness had greater
concentrations of lactate, IL-6, and SAA in the serum vs. CON cows. Concentrations of
TNF tended to be greater in cows with lameness compared with CON. In addition, there was
a health status (Hs) by time (week) interaction for IL-1, TNF, and Hp in lameness cows vs.
CON ones. Enhanced serum concentrations of lactate, IL-6, and SAA at ´8 and ´4 wks
before parturition were different in cows with lameness as compared with those of the CON
group. The disease was also associated with lowered overall milk production and DMI as
well as milk fat and fat-to-protein ratio. In conclusion, cows affected postpartum by lameness
had alterations in several serum variables related to innate immunity and carbohydrate
metabolism that give insights into the etiopathogenesis of the disease and might serve to
monitor health status of transition dairy cows in the near future.
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1. Introduction

Lameness is the third most prevalent disease in dairy herds after infertility and mastitis that contributes
to economic loss to dairy farmers [1]. Harmful effects of lameness include lower milk yield [2] and
reproductive performance [3], and increased involuntary culling rates [4]. Lameness is a very costly
disease that has been estimated to cost producers between $121 and $216 per case [5]. Lameness is
often difficult to detect before appearance of clinical signs of disease and by the time it is detected it is
often very difficult or too late to treat or even save the cow. Early detection and treatment can improve
the animal well-being, improve recovery rate, increase longevity, and minimize financial losses.

Lameness can be broadly categorized into two types: non-infectious lameness and infectious
lameness [5]. The etiopathology of different types of lameness is not fully understood and various
hypotheses have been suggested in the past. For example Bergsten et al. [6] indicates that feeding large
amounts of grains is highly associated with laminitis-related lameness. Elevated concentrations of starch
in the rumen initiate a state of ruminal acidosis. The latter is associated with death of both Gram-negative
and Gram-positive bacteria and the release of large amounts of lipopolysaccharide (LPS) and potentially
lipoteichoic acid (LTA), which might be involved in the etiology and pathogenesis of laminitis [7].

Various investigators have used pro-inflammatory cytokines and acute-phase proteins (APPs) as
biomarkers of lameness [8,9]. Cytokines are proteins produced mainly by macrophages, T-cells, Kupffer
cells, and natural killer cells [10–12]. One of the major functions of pro-inflammatory cytokines is
to stimulate production of acute-phase proteins like haptoglobin (Hp), serum amyloid A (SAA), and
lipopolysaccharide binding protein (LBP) [13,14]. Three cytokines including interleukin-1 (IL-1),
interleukin-6 (IL-6), and tumor necrosis factor (TNF) have been reported to be the main stimuli for
production of APP [12,15,16]. In addition, Hp, SAA, and LBP have been reported as useful variables
for assessing the overall health status of domestic animals [17,18].

Presently, there is little information about alterations related to innate immunity reactants or
carbohydrate and lipid metabolic profiles in the blood of transition dairy cows before appearance of
clinical signs of lameness. In this study, we hypothesized that by measuring selected blood metabolites,
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pro-inflammatory cytokines, and acute phase proteins (APPs) we would be able to identify blood
alterations that could be used to explain the etiopathology of lameness or as early biomarkers of disease
in transition dairy cows in the near future. Therefore, the objectives of this investigation were to screen
for changes in blood metabolites related to carbohydrate and lipid metabolism and innate immunity
starting at´8 or´4 weeks (wks) before the expected day of parturition by measuring the concentrations
of serum metabolites like lactate, non-esterified fatty acids (NEFA), β-hydroxybutyrate (BHBA) as well
as pro-inflammatory cytokines including IL-1, IL-6, and TNF and APPs like Hp, SAA, and LBP. The
same blood variables will be evaluated also during disease diagnosis and after diagnosis of lameness to
be used for differential diagnosis and recovery rates.

2. Materials and Methods

2.1. Animals and Diets

One hundred pregnant Holstein dairy cows at the Dairy Research and Technology Centre, University
of Alberta (Edmonton, AB, Canada), were used in a longitudinal study. Six pregnant multiparous
(parity: 3.0 ˘ 0.6, mean ˘ SEM) Holstein dairy cows were diagnosed with lameness (diagnosed at
wk +1, +2, +2, +3, +3, and +3, respectively) and six healthy control cows (CON) that were similar in
parity (3.3˘ 0.6), age, and body condition score (BCS), were selected for this nested case-control study.
All experimental procedures were approved by the University of Alberta Animal Policy and Welfare
Committee for Livestock, and animals were cared for in accordance with the guidelines of the Canadian
Council on Animal Care [19].

The experimental period lasted for 17 wks from ´8 wks before parturition to +8 wks postpartum
(i.e., ´8 wks to +8 wks, 0 wk means the week of calving) for each cow. Cows were housed in individual
tie stalls bedded with sawdust and with free access to water throughout the experiment. Shortly before
calving cows were transferred to the maternity barn and returned to their stalls on the following day of
parturition. Diets were offered as TMR for ad libitum intake once daily at 0800 h to allow approximately
5% orts (Tables 1 and 2). All TMR were formulated to meet or exceed the nutrient requirements of dry
and early 680 kg lactating cows as per National Research Council guidelines (2001) [20]. Individual
dry matter intake (DMI) was recorded daily throughout the 17 wks period by calculating the difference
between the total daily diets given to each cow with the orts on the next morning. Since the onset
day of lactation, cows were milked in their stalls twice per day at 0500 and 1600 h, and individual
milk yield (MY) was recorded electronically. Milk compositions like crude protein (CP), milk fat,
lactose, somatic cell count (SCC), milk urea nitrogen (MUN), and total solids (TS) were analyzed by
mid-infrared spectroscopy (MilkoScan 605; A/S Foss Electric, Hillerød, Denmark) at the DHI Central
Milk Testing Laboratory in Edmonton, Alberta.
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Table 1. Prepartum diet for dry cows.

Close-Up
Item diet (CUD)

Ingredient %, DM
Alfalfa hay 10.0
Barley silage 60.0
CUD grain 30.0
Nutrient composition of CUD grain mix % amount per kg
Ruminant TM Pak 1 0.2775
Selenium 1000 mg/kg (UNscr FineCr) 0.2
Custom TM Complex Premix 2 0.33
Vitamin A/D3-1000-200 3 0.006
Barley grain, rolled 39.5815
Flo-bond mycotoxin binder 0.5
Limestone 3.7
Magnesium chloride 1.645
Mag Ox-56% 4 0.54
Scale Molasses (60:40) 2.5
Canola meal 17.0
Vitamin E 50% Ads 5 0.18
Soybean hulls, ground 33.0
Salt 0.54

1 Ruminant TM Pak: a premix containing cobalt, copper, iodine, manganese, and zinc. 2 Custom TM complex
premix: a custom product supplying organic sources of cobalt, copper, manganese, and zinc. 3 Vitamin
A/D3-1000-2003: Vitamin A acetate (retinyl acetate) and Vitamin D3 (cholecalciferol). 4 Mag Ox 56%:
56% magnesium guarantee. 5 Vitamin E 50% Ads contains 226800 IU of Vitamin E per pound.

Table 2. Ingredients of high grain ration fed to cows during early lactation.

Early
Item Lactation Diet

Ingredient % of DM %, DM
Alfalfa Hay 9.59
Barley Silage 30.24
Alfalfa Silage 9.64
High 16% dairy ration 50.5
Nutrient composition of dairy ration % amount per kg
ADE Vit Pak-30 Natural E 1 0.05
Ruminant TM Pak 2 0.11
Selenium, 1,000 mg/kg (UNscr FineCr) 0.07
Custom TM Complex premix 3 0.07
AminoShure-L 4 0.33
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Table 2. Cont.

Early
Item Lactation Diet

Blood meal 3.50
Barley grain, rolled 39.91
Barley grain, ground 27.50
Di-calcium phosphate 21% 1.00
Vit D-10,000 KIU/kg 0.02
Diamond V XPC 5 0.13
Dairy Xtract 0.02
Energizer RP10 2.75
Limestone 1.70
Mag Ox-56% 6 0.43
Scale Molasses (60:40) 1.25
Nutri A-Z C Dry 0.10
Amino Plus (High bypass soy) 7 8.00
Vitamin E 50% Ads 8 0.01
Soy bean meal-47.5% 1.25
Sodium bicarbonate 0.80
Salt 0.51
Poultry-Tallow 0.50
Biotin 2%-Rovimix H-2 9 0.01
Wheat distillers grain (50:50) 10.00

1 ADE Vit Pak-30 Natural E: a premix containing vitamins A, D3, and E. 2 Ruminant TM Pak: a premix
containing cobalt, copper, iodine, manganese, and zinc. 3 Custom TM complex premix: a custom product
supplying organic sources of cobalt, copper, manganese, and zinc. 4 AminoShure-L: hydrogenated vegetable
oil, and L-lysine monohydrochloride (Halchemix, Port Perry, ON, Canada). 5 Diamond V XPC: concentrated
yeast (Diamond V Mills, Cedar Rapids, IA, USA). 6 Mag Ox 56%: 56% magnesium guarantee. 7 Amino Plus:
a high by-pass soy meal. 8 Vitamin E 50% Ads contains 226800 IU of Vitamin E per pound. 9 DSM Nutritional
Products (Parsippany, NJ, USA).

2.2. Monitoring the Clinical Health Status of the Cows

Health status (HS) of cows was monitored daily based on clinical signs of disease by trained
individuals and on a weekly basis by a veterinary practitioner. All periparturient diseases and veterinary
treatments were recorded for each cow throughout the entire experimental period. Diagnosis of
pregnancy was performed routinely by a veterinary practitioner at 60–70 days post-insemination. Based
on the artificial insemination (AI) data supported with the information of pregnancy diagnosis, the
expected date of parturition was fixed by adding 280 days from the day of AI. All cows were monitored
daily starting at ´8 wks prior to the expected date of calving and continuing up to +8 wks postpartum.
The various external symptoms observed were gait, general appearance, appetite, alertness, rectal
temperature, ease of calving, body condition score (BCS), vaginal discharges (color and consistency),
udder edema, and pain in the legs.
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In this study, lameness was diagnosed by trained staff based on a locomotion score system according
to the farm standard operating procedure [21]. All six lameness cows used in this experiment had a
score of 5, which showed severe lameness with pronounced arching of the back, reluctant to move, and
complete weight transfer off the affected limb. The 6 healthy cows had a lameness score of 1. Cows with
lameness were treated by trimming and medication [22]. Lame cows were administered either Excenelr

RTU (Zoetis Canada, Kirkland, QC, Canada) at 1 mL per 50 kg IM, once a day for 3 days, or Procaine
Penicillin Gr (Dominion Veterinary Laboratories Ltd., Winnipeg, MB, Canada) at 2 mL per 45 kg IM
twice a day for 3 days.

2.3. Sample Collection

Blood samples were obtained from the coccygeal vein once per week at 0700 before feeding from
´8 wks before parturition to +8 wks postpartum. All blood samples were collected into 10 mL vacutainer
tubes (Becton Dickinson, Franklin Lakes, NJ, USA) and allowed to clot and kept at 4 ˝C until separation
of serum. Clotted blood was centrifuged at 2090ˆ g at 4 ˝C for 20 min (Rotanta 460 R centrifuge,
Hettich Zentrifugan, Tuttlingen, Germany). The separated serum was aspirated from the supernatant
gradually by transfer pipets (Fisher Scientific, Toronto, ON, Canada) without disturbing the sediment.
The separated serum was transferred to a sterile 10 mL plastic test tube (Fisher Scientific, Toronto,
ON, Canada). All serum samples were stored at ´80 ˝C until analysis to avoid loss of bioactivity and
contamination and were thawed on ice for approximately 2 h before use.

Cows were milked twice per day at 0500 and 1600 h, and milk samples collected on day 0, 14, 21,
35, and 49 relative to parturition (day 0 means the day of calving), were used for the analysis of milk
composition including crude protein (CP), milk fat, lactose, somatic cell count (SCC), milk urea nitrogen
(MUN), and total solids (TS).

2.4. Sample Analyses

2.4.1. Serum Metabolites

Quantitative determination of serum lactate, beta-hydroxy butyric acid (BHBA), and non-esterified
fatty acids (NEFA) were measured by an enzymatic colorimetric method using commercially available
kits provided by Stanbio Laboratory (Boerne, TX, USA) and Wako Chemicals (Richmond, VA, USA),
respectively. The detailed methods have been described previously by Ametaj et al. [23]. Briefly,
according to the manufacturers’ instructions, the lower detection limits of the kits were 0.06 mg/dL,
0.125 µmol/L, and 0.50 µEq/L, respectively. The principle of the lactate assay involves reduction in
the colorless tetrazolium salt by an NADH-coupled enzymatic reaction to formazan, which develops
a red color change proportional to the lactate concentration. BHBA test involves the basic principle
of conversion of serum BHBA to acetoacetate and NADH by BHBA dehydrogenase in presence of
NAD. Then, the NADH reacts with 2-p-iodophenyl-3-p-nitrophenyl-5-phenyltetrazolium chloride (INT)
in the presence of diaphorase to form a pink colored adduct proportional to the concentration of BHBA
in the serum. The principle of NEFA kit involves acylation of coenzyme A (CoA) by fatty acids
in the serum in the presence of acyl-CoA synthetase and production of hydrogen peroxide in the
presence of acyl-CoA oxidase. Hydrogen peroxide, together with peroxidase, permits the oxidative
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condensation of 3-methyl-N-ethyl-N-β-hydroxy ethyl-O-aniline with 4-aminoantipyrine to produce a
purple color change, which is proportional to the serum NEFA concentration. All samples were tested
in duplicate and absorbance of standards and samples vs. a blank for lactate, BHBA, and NEFA were
read at 492, 505 and 550 nm, respectively, in a microplate reader (Spectramax 190, Molecular Devices
Corporation, Sunnyvale, CA, USA). The intra-assay variation of all the three assays was controlled by
CV limits <10%.

2.4.2. Serum Cytokines

Concentration of IL-1 in the serum was assayed by a commercially available bovine ELISA kit
(Cusabio Biotech Co. Ltd., Wuhan, China) with mAB specific for IL-1 coated on the walls of the
microplate strips provided. The procedure involves the basic principle of a competitive inhibition enzyme
immunoassay between biotin-conjugated IL-1 and IL-1 with the pre-coated antibody. All samples
(50 µL) were tested in duplicate in microtitration wells with biotin-conjugated IL-1 according to the
manufacturer’s instructions. The plates were washed with wash buffer after the incubation for 60 min at
37 ˝C, followed by addition of 50 µL of horseradish peroxidase (HRP)-avidin. Samples were incubated
for 30 min at 37 ˝C. Then, they were washed three times with buffer, and 50 µL substrate A and 50 µL
of substrate B reagent were added to each well. After incubation at 37 ˝C for 15 min, the resulting color
reaction was read at 450 nm by a microplate reader (Spectramax 190, Molecular Devices Corporation,
Sunnyvale, CA, USA) within 10 min, and the final IL-1 concentration was calculated using a 4-parameter
logistic curve fit. The sensitivity of this assay was 250 pg/mL, and the intra-assay coefficient of variation
(CV) was <10%.

Concentration of IL-6 in the serum was measured with a bovine ELISA kit provided by Uscnk Life
Science Inc. (Wuhan, China) as described by the manufacturer. The detection limit of the assay was
7.8 pg/mL and the intra-assay variation of all IL-6 assays was controlled by CV limits <10%. The
principle of the IL-6 test involves a sandwich enzyme immunoassay, which exhibits a yellow color
change proportional to IL-6 concentration. Samples or standards were added to the microtiter plate
wells with a biotin-conjugated antibody specific for IL-6 with all samples in duplicate. Then, HRP-avidin
were added and incubated. After 3, 31, 5, 51-tetramethylbenzidine (TMB) substrate and sulphuric acid
solution were added, the color change was measured spectrophotometrically at a wave length of 450 nm
(Spectramax 190, Molecular Devices Corporation, Sunnyvale, CA, USA).

Concentration of TNF in the serum was determined by a commercially available bovine ELISA
kit (Bethyl Laboratories, Inc., Montgomery, TX, USA) using the method described previously [24].
Briefly, all samples were tested in duplicate and the optical density values were read at 450 nm on
a microplate spectrophotometer (Spectramax 190, Molecular Devices Corporation, Sunnyvale, CA,
USA). The detection range of TNF assay was between 0.078 and 5 ng/mL, and the intra-assay CV
was controlled <10%.

2.4.3. Serum Acute Phase Proteins (APPs)

Methods used for the measurement of concentrations of Hp (Tridelta Development Ltd., Co., Kildare,
Ireland), SAA (Tridelta Development Ltd.), and LBP (Hycult Biotech, Uden, the Netherlands) in the
serum were described previously in detail [25]. In brief, serum samples for LBP and SAA analyses were
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initially diluted 1:100 and 1:500, respectively. Samples for Hp were not diluted. The minimum detection
limits for Hp, SAA, and LBP assays were 2.5 mg/mL, 18.8 ng/mL, and 1.6 ng/mL, respectively. All
samples were tested in duplicate and the optical densities were measured at 600 nm for Hp and 450 nm
for both SAA and LBP. The intra-assay variations of all three APP assays was controlled by CV limits
no more than 10% and for those greater than 10% samples were reanalyzed.

2.5. Statistical Analyses

Multivariate analysis was performed using MetaboAnalyst [26]. Recommended statistical procedures
for principle component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were
followed according to previously published protocols [26]. To perform a standard cross-sectional
two-group study, we compared healthy cows’ group and lameness cows’ group at each time point
(´8, ´4, disease diagnosis, and +4 wks).

For parametric analysis of the data ANOVA was used by MIXED procedure of SAS (SAS Institute
Inc., Cary, NC, USA, Version 9.2) according to the following model:

Yijk “ µ` Si ` Wj ` pSWqij ` eijk

where Yijk is the observations for dependent variables, µ represents the population mean, Si is the fixed
effect of health status i (i = 1–2, sick cows compared with healthy control separately), Wj is the fixed
effect of measurement week j (j = 1–4 or 1–17), SWij is the fixed effect of health status by week
interaction, and eijk is the residual error.

Measurements taken at different weeks on the same cow were considered as repeated measures
in the ANOVA. The variance–covariance structure of the repeated measures was modeled separately
for each response variable according to the lowest values of the fit statistics based on the Akaike
Information Criteria (AIC), AIC corrected (AICC), and Bayesian information criteria (BIC), and
an appropriate structure was fitted. Degrees of freedom were approximated by the method of
Kenward-Roger (ddfm = kr).

In order to identify early indicators of lameness, average serum concentrations in the week of
diagnosis, ´8 and ´4 wks before the expected day of parturition were compared using t-test of SAS
9.2 between health controls and cows with lameness. Data are exhibited as least-squares means (LSM)
and the respective standard error of the mean (SEM). All statistical tests were two-sided. Significance
was declared at P < 0.05, and tendency was defined at 0.05 < P < 0.10.

To analyze correlations between milk SCC at diseased week and serum parameters in specimens
collected at the same time and ´8, ´4, and +4 wks around calving Pearson correlation coefficient and
corresponding P-values were calculated using the CORR procedure of SAS 9.2 based on a two-tailed test.

3. Results

3.1. Serum Metabolites

Combined mean concentrations of lactate in the serum were greater in cows affected by lameness
versus CON cows (4550 and 2254 ˘ 399 µmol/L, respectively; P < 0.01; 3). No sampling time effect
or health status (Hs) by week (wk) interaction was obtained regarding serum lactate. Interestingly,
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concentrations of lactate in the serum of cows with lameness were greater than those in the CON cows at
all the time points in the experiment (Table 4; Figure 1A), with differences at´8 wks (P = 0.04; Table 4)
and ´4 wks (P = 0.04; Table 4) before parturition.

After parturition, both concentrations of NEFA and BHBA in the serum were greater at the week of
disease diagnosis in both groups of cows when compared with prepartum means (Figure 1B,C). Sampling
week had a pronounced effect on serum concentrations of both NEFA and BHBA (P < 0.01; Table 3;
Figure 1B,C). At ´4 wks before parturition, cows affected by lameness showed a tendency for lower
NEFA (P = 0.07; Table 4) and greater BHBA (P = 0.06; Table 4). But overall serum NEFA and BHBA
did not differ between the two groups (P > 0.10; Table 3).

Table 3. Data of Dry Matter Intake (DMI), milk production, milk composition as well
as metabolites, cytokines and APPs in the serum of dairy cows with (n = 6) and without
lameness (LAM) during the periparturient period.

Group 1 Effect,2 P-Value
Item LAM CON SEM Hs Wk Hs ˆ Wk

DMI 3 (kg/d) 17.19 18.64 0.58 0.13 <0.01 <0.01
Milk production 4 (kg/d) 36.79 42.16 2.58 0.05 <0.01 0.09
Milk composition 5 (g/kg, unless otherwise stated)
Fat 3.15 3.90 0.14 <0.01 0.04 0.35
Protein 2.86 2.87 0.06 0.94 <0.01 0.45
Fat-to-protein ratio 1.10 1.38 0.09 0.05 0.17 0.63
Lactose 4.55 4.56 0.04 0.84 0.02 0.47
SCC (103 cells/mL) 57.90 30.0 5.37 <0.01 0.10 0.28
Milk urea N (mg/dL) 15.47 15.56 0.96 0.95 0.01 <0.01
TS 12.00 12.19 0.25 0.30 0.03 0.50
Serum parameters 6

Lactate (µmol/L) 4550.67 2254.08 399.21 <0.01 0.20 0.62
NEFA (mmol/L) 261.85 397.16 78.05 0.26 <0.01 0.92
BHBA (µmol/L) 509.38 595.84 66.49 0.39 <0.01 0.35
IL-1 (pg/mL) 287.98 296.66 4.58 0.21 <0.01 0.02
IL-6 (pg/mL) 175.78 26.67 35.51 0.02 0.21 0.34
TNF (ng/mL) 0.40 0.19 0.08 0.09 <0.01 0.03
Haptoglobin (mg/mL) 0.21 0.15 0.03 0.14 0.24 0.03
SAA (ug/mL) 19628 8548.38 2440.73 <0.01 0.02 0.39

1 CON = cows without lameness (health control); LAM = cows with lameness. 2 Effect of health status (Hs),
sampling week (Wk), and health status by sampling week interaction (Hs ˆ Wk). 3 DMI was calculated
from week ´8 to +8 relative to parturition. 4 Milk production was calculated from week +1 to +8 relative
to parturition. 5 Milk compositions were determined on week +2, +3, +5, +7 relative to parturition. 6 Serum
parameters were calculated from week ´8, ´4, disease and +4 relative to parturition.
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Table 4. Data of DMI, milk production, milk composition and serum parameters at the diagnosis week, and concentrations of serum
indicators prior to the diagnosis of lameness (LAM).

8 Week before Parturition 4 Week before Parturition LAM Diagnosis Week 1

Item CON LAM P-value CON LAM P-value CON LAM P-value

DMI (kg/d) 14.91 ˘ 0.90 16.49 ˘ 1.01 0.28 15.90 ˘ 0.14 15.95 ˘ 0.67 0.96 20.26 ˘ 0.89 13.25 ˘ 1.11 <0.01
Milk production (kg/d) 43.01 ˘ 1.62 29.78 ˘ 4.01 0.01
Milk composition (g/kg, unless otherwise stated)
Fat 5.08 ˘ 0.45 3.39 ˘ 0.41 0.02
Protein 3.00 ˘ 0.10 2.85 ˘ 0.07 0.25
Fat-to-Protein ratio 1.69 ˘ 0.12 1.20 ˘ 0.15 0.03
Lactose 4.54 ˘ 0.05 4.43 ˘ 0.13 0.42
SCC (103 cells/mL) 28.33 ˘ 5.63 66.50 ˘ 15.31 0.03
Milk urea N (mg/dL) 15.39 ˘ 0.76 14.08 ˘ 1.22 0.37
TS 12.21 ˘ 0.31 13.47 ˘ 1.21 0.37
Serum parameters
Lactate (µmol/L) 2455.49 ˘ 348.63 5427.91 ˘ 1095.28 0.04 2162.31 ˘ 184.52 4232.93 ˘ 748.08 0.04 2227.61 ˘ 320.68 4760.82 ˘ 519.38 <0.01
NEFA (mmol/L) 140.79 ˘ 32.77 107.34 ˘ 20.88 0.41 193.97 ˘ 47.17 82.89 ˘ 6.96 0.07 756.51 ˘ 232.01 594.63 ˘ 206.20 0.61
BHBA (µmol/L) 351.93 ˘ 37.71 374.48 ˘ 31.14 0.65 311.98 ˘ 18.50 366.32 ˘ 17.12 0.06 826.91 ˘ 151.50 586.69 ˘ 93.88 0.23
IL-1 (pg/mL) 316.79 ˘ 6.04 293.92 ˘ 9.23 0.07 320.96 ˘ 1.59 302.73 ˘ 7.26 0.05 277.13 ˘ 5.42 281.30 ˘ 7.70 0.67
IL-6 (pg/mL) 19.23 ˘ 5.67 85.37 ˘ 52.96 0.30 48.24 ˘ 17.51 250.81 ˘ 87.08 0.03 23.17 ˘ 5.18 113.41 ˘ 21.96 0.02
TNF (ng/mL) 0.34 ˘ 0.03 0.39 ˘ 0.12 0.80 0.27 ˘ 0.05 0.51 ˘ 0.11 0.10 0.06 ˘ 0.03 0.48 ˘ 0.13 0.02
Haptoglobin (mg/mL) 0.19 ˘ 0.03 0.17 ˘ 0.01 0.54 0.15 ˘ 0.01 0.20 ˘ 0.02 0.05 0.12 ˘ 0.01 0.36 ˘ 0.10 0.05
SAA (ug/mL) 8447.67 ˘ 3373.28 19799.92 ˘ 4373.22 0.07 3461.25 ˘ 341.92 9732.1 ˘ 2625.98 0.03 10401 ˘ 1722.57 29300.17 ˘ 8108.13 0.05

1 Cows were diagnosed with lameness (n = 6) ranging from week +1 to +3. CON = cows without lameness (healthy control); LAM = cows with lameness.
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Figure 1. Concentration of (A) lactate, (B) non-esterified fatty acids (NEFA),
(C) β-hydroxybutyrate (BHBA) in the serum of periparturient dairy cows with (�, n = 6)
or without (♦; n = 6) lameness (LSM ˘ SEM; Hs = effect of health status; Wk = effect of
sampling week; Hs ˆWk = effect of health status by sampling week interaction).
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3.2. Cytokines

Cows with lameness had greater concentrations of serum IL-6 throughout the experimental
measurements versus CON cows (176 vs. 27 pg/mL; P = 0.02; Table 3). There was a pronounced
difference regarding serum IL-6 during disease week (P = 0.02; Table 4), and also at ´4 wks before
calving (250 vs. 48 pg/mL; P = 0.03; Table 4). There was also a notable decrease in the concentrations
of serum IL-6 in both lameness and CON group cows during diagnosis week, where lameness cows
showed the lowest concentration of IL-6 in the serum (P = 0.02; Figure 2B). No effect of week or the
Hs ˆWk interaction was evidenced with respect to serum concentration of IL-6.

There was also a tendency of greater concentrations of TNF in the serum in lameness cows compared
with the CON ones (0.40 and 0.19, respectively; P = 0.09; Table 3). In addition, both Wk (P < 0.01;
Table 3) and Hs ˆ Wk (P = 0.03; Table 3) interaction affected concentrations of TNF in the serum.
Particularly, serum TNF decreased at the week of disease diagnosis and concentration continued to
decrease to reach the lowest value at +4 wks postpartum in cows with lameness (Figure 2C).
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Figure 2. Concentration of (A) interleukin (IL)-1, (B) interleukin (IL)-6, (C) tumor necrosis
factor (TNF) in the serum of periparturient dairy cows with (�, n = 6) or without (♦; n = 6)
lameness (LSM ˘ SEM; Hs = effect of health status; Wk = effect of sampling week;
Hs ˆWk = effect of health status by sampling week interaction).

In addition data indicated that Hs did not affect concentration of IL-1 in the serum (P = 0.21; Table 3).
However, sampling week (P < 0.01; Table 4) and Hs by Wk interaction (P = 0.02; Table 4) affected
concentration of IL-1 in the serum. In addition concentrations of IL-1 were greater before parturition
compared with the postpartum values in both groups of cows (P = 0.05). There was no pronounced
difference between the two groups during the disease diagnosis week (P = 0.67; Table 4; Figure 2A).
But the results showed that concentrations of serum IL-1 were pronouncedly lower at´4 wks prepartum
(P = 0.05; Table 4; Figure 2A) and tended to be lower at´8 wks prepartum (P = 0.07; Table 4; Figure 2A)
in cows with lameness versus CON cows.
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3.3. Acute Phase Proteins

Statistical processing of the data showed that Hs did not affect the overall mean concentration of Hp
in the serum between lameness cows and CON cows (P = 0.14; Table 3). Results also demonstrated that
there was no effect of Wk on serum Hp (P = 0.24; Table 3). However, there was an Hs ˆWk interaction
effect on the Hp concentration in the serum (P = 0.03; Table 3). In particular, concentrations of Hp
increased in cows with lameness at the disease diagnosis week, which was almost three times greater
than CON cows (0.36 vs. 0.12 mg/mL; P = 0.05; Table 4; Figure 3A). In addition, this marked difference
also was present at ´4 wks before calving (P = 0.05; Table 4; Figure 3A).
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Figure 3. Concentration of (A) haptoglobin (Hp), (B) serum amyloid A (SAA) in the serum
of periparturient dairy cows with (�, n = 6) or without (♦; n = 6) lameness (LSM ˘ SEM;
Hs = effect of health status; Wk = effect of sampling week; HsˆWk = effect of health status
by sampling week interaction).
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Concentrations of SAA in the serum were greater in cows with lameness versus CON ones at all the
time points reported (P < 0.01; Table 3; Figure 3B). There was also a sampling time effect on SAA in
the serum (P = 0.02; Figure 3B). The trend of changes of SAA in the serum was almost similar in both
groups of cows. More specifically, serum SAA decreased from ´8 wks before parturition until ´4 wk
prepartum. Thereafter, concentrations of SAA increased dramatically when the disease diagnosis was
determined after parturition (P = 0.05; Table 4; Figure 3B). In Figure 3B, concentrations of SAA in cows
with lameness were almost three times greater than CON cows.

3.4. DMI, Milk Production and Composition

Cows with lameness tended to have overall less DMI than CON cows (17.19 and 18.64 kg/d,
respectively; P = 0.13; Table 3; Figure 4). DMI also was affected by the health Hs ˆ Wk interaction
(P < 0.01; Table 3; Figure 4A). Specifically, DMI was lower for the group of cows with lameness
(13.25 ˘ 1.11 kg/d) compared with those of CON group (20.26 ˘ 0.89 kg/d; P < 0.01; Table 4) in the
week when the disease was diagnosed. However, there were no distinctions of DMI between the two
groups at ´8 and ´4 wks prepartum.
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Figure 4. (A) DMI, and (B) milk production of periparturient dairy cows with (�, n = 6)
or without (♦; n = 6) lameness (LSM ˘ SEM; Hs = effect of health status; Wk = effect of
sampling week; Hs ˆWk = effect of health status by sampling week interaction).

Milk yield also was affected by Hs of the cows (P = 0.05; Table 3; Figure 4B). The average
daily milk yield in the group of cows with lameness (36.79 ˘ 2.58 kg/d) was lower than CON cows
(42.16 ˘ 2.58 kg/d). Experimental week affected total daily milk production (P < 0.01; Table 3;
Figure 4B). Moreover, Hs ˆ Wk interaction had a tendency to influence milk yield (P = 0.09; Table 3).
Daily milk production in cows with lameness was lower compared with CON cows during the disease
week (29.78 ˘ 4.01 and 43.01 ˘ 1.62 kg/d, respectively; P = 0.01; Table 4).

The effect of Hs, Wk, and Hs x Wk interaction on milk composition are presented in Tables 3 and 4
and Figure 5 and section 3.4. Milk fat yield and its ratio with milk protein were lower in cows with
lameness than those of the CON group (P < 0.01 and P = 0.05, respectively) and SCC was greater for
cows with lameness compared with CON ones (P < 0.01). During the diagnosis week, there was also a
difference with respect to milk fat (P = 0.02), fat-to-protein ratio (P = 0.03), and SCC (P = 0.03). There
was a tendency for Hs ˆ Wk interaction for MUN (P = 0.09). Health status did not affect the amounts
of milk protein, lactose, MUN, and TS in this study (P > 0.10). However, all tested milk variables were
affected (or had tendencies) in relation with the experimental week (P < 0.10).
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Figure 5. Concentration of (A) fat, (B) protein, and (C) fat-to-protein ratio in the milk of
periparturient dairy cows with (�, n = 6) or without (♦; n = 6) lameness (LSM ˘ SEM;
Hs = effect of health status; Wk = effect of sampling week; Hs ˆ Wk = effect of health
status by sampling week interaction).
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Figure 6. Concentration of (A) somatic cell count (SCC), (B) milk urea N (MUN), (C) total
solid (TS), and (D) lactose in the milk of periparturient dairy cows with (�, n = 6) or without
(♦; n = 6) lameness (LSM ˘ SEM; Hs = effect of health status; Wk = effect of sampling
week; Hs ˆWk = effect of health status by sampling week interaction).
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3.5. Multivariate Analysis on Serum Variables

When CON cows were compared with lameness cows at ´8 and ´4 wk, by PCA and PLS-DA
analyses, two clear separated clusters could be seen in both analyses (Figures 7A,B and 8A,B). The
results indicated that serum innate immunity reactants and carbohydrate and lipid metabolites profiles
between healthy cows and not-yet-lameness cows were already different at ´8 and ´4 wks before the
expected day of parturition.
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Figure 7. (A) Principle component analysis (PCA) and (B) Partial least squares-discriminant
analysis of six control and six lameness cows at 8 wks before parturition showing two
separated clusters for two groups.
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Figure 8. (A) PCA and (B) PLS-DA of six control and six lameness cows at 4 wks before
parturition showing two separated clusters for two groups.

When CON cows were compared with lameness cows at disease diagnosis week, both PCA and
PLS-DA analysis revealed a notable and consistent separation between the two groups (Figure 9A,B).
Moreover, PCA and PLS-DA also showed a clear separation between healthy cows and cows with
lameness at +4 wks after parturition (Figure 10A,B).
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Figure 9. (A) PCA and (B) PLS-DA of six control and six lameness cows at disease wk 
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Figure 9. (A) PCA and (B) PLS-DA of six control and six lameness cows at disease wk
showing two separated clusters for two groups.
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Figure 10. (A) PCA and (B) PLS-DA of six control and six lameness cows at +4 wk after 

parturition showing two separated clusters for two groups. 
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Figure 10. (A) PCA and (B) PLS-DA of six control and six lameness cows at +4 wk after
parturition showing two separated clusters for two groups.

3.6. Correlation Analysis between Milk SCC and Serum Parameters

Correlations among serum variables and milk SCC are presented in Table 5. Milk SCC showed a
positive correlation with lactate, IL-6, and SAA in the serum at all four time points tested with correlation
coefficients ranging from +0.70 to +0.92 (Table 5). Furthermore, SCC correlated with serum TNF at
´4 wk and at the week of diagnosis of disease (0.80 and 0.84, respectively; Table 5), although the
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correlations were slightly lower at ´8 and +4 wk around calving. In addition, there was a correlation
tendency between SCC and serum Hp at´4 wk and disease diagnosis week (0.55 and 0.56, respectively;
Table 5). No significant correlations between SCC and serum Hp at ´8 and +4 wk was obtained. A
negative correlation (´0.76; Table 5) was observed between SCC and IL-1 in the serum at ´4 wks
prepartum and at ´8 wks (´0.53; Table 5) before calving. In contrast, milk SAA did not correlate with
serum NEFA or BHBA at all four time points considered (Table 5).

Table 5. Pearson’s correlations between milk SCC and serum parameters.

Item
´8 week before

parturition 1
´4 week before

parturition 2
LAM diagnosis

week 3
+4 week after
parturition 4

Milk Serum r P-value r P-value r P-value r P-value

SCC 5

Lactate 0.82 <0.01 0.85 <0.01 0.91 <0.01 0.92 <0.01

NEFA ´0.04 0.93 ´0.33 0.36 ´0.11 0.75 ´0.36 0.30

BHBA ´0.11 0.75 0.59 0.10 ´0.18 0.62 0.24 0.50

IL-1 ´0.53 0.09 ´0.76 0.01 ´0.11 0.76 0.11 0.76

IL-6 0.73 <0.01 0.77 <0.01 0.78 <0.01 0.79 0.01

TNF 0.47 0.14 0.80 <0.01 0.84 <0.01 0.55 0.12

Hp ´0.13 0.71 0.55 0.08 0.56 0.09 0.34 0.40

SAA 0.86 <0.01 0.81 <0.01 0.83 <0.01 0.70 0.02

1 Concentrations of serum variables were used from both healthy and lameness cows at ´8 wks relative to
parturition. 2 Concentrations serum variables were used from both healthy and lameness cows at ´4 wks
relative to parturition. 3 Concentrations of serum variables were used from lameness cows at the week of
diagnosis of disease and at the same week for healthy cows. 4 Concentrations of serum variables were used
from both healthy and lameness cows at +4 wks relative to parturition. 5 Milk SCC values were used from both
lameness and healthy cows at diagnosis week.

4. Discussion

We hypothesized that multiple serum biomarkers of lameness could be identified in the transition
dairy cows starting at ´8 and ´4 wks before the expected day of parturition as well as during the week
of diagnosis of disease and even during +4 wks after calving. Indeed, results of this study showed
alterations in serum concentrations of multiple metabolites as well as proinflammatory cytokines and
APPs in cows affected by lameness several weeks before the clinical signs of the disease appeared.

4.1. Alterations of Blood Metabolites

One of the most important finding of this study was that concentrations of lactate in the serum
were greater in the serum of lameness cows starting at ´8 and ´4 wks prepartum and became more
pronounced at the week when lameness was diagnosed. Lactate has been extensively investigated in
veterinary medicine and has been suggested as a useful and practical metabolite to assess severity of
illness [27,28]. Previous work has indicated that laminitis-related lameness is highly associated with
feeding of diets rich in rapidly fermentable carbohydrates (i.e., high-grain diets) and development of
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rumen acidosis (i.e., lactic acidosis syndrome) [29,30]; however, this was not the case for cows at
´8 and ´4 wks before parturition.

Although a remarkable difference of serum lactate between cows with lameness and healthy control
started at ´8 wks prepartum, DMI between the two groups were not different at ´8 and ´4 wks before
parturition, which suggests that DMI and composition of feed alone could not explain the increased
serum lactate concentrations during the prepartal period. Research conducted by our team and others
has demonstrated that feeding dairy cattle large amounts of concentrate is associated with increased
concentration of rumen endotoxin (a bioactive cell-wall component of all Gram-negative bacteria) and
a systemic acute phase response [7,30,31]. Recently, we showed that elevation of serum lactate was
strongly correlated to increased rumen endotoxin [32]. However, given the low level of grain feeding at
´8 and ´4 wks before parturition (i.e., dry-off period), it is not clear what triggers increased lactate in
the plasma. It is speculated that presence of dormant pathogenic bacteria (i.e., Gram-negative bacteria)
in the mammary gland of the cows affected by lameness might release endotoxin, which stimulates
lactate dehydrogenase and increased lactate in the plasma [33]. Lactate dehydrogenase is known to
catalyze conversion of pyruvate to lactate. In support of our hypothesis are data that indicate that
intravenous infusion LPS in cattle increases plasma lactate [34]. Moreover, the incidence rate of bovine
Gram-negative bacterial intramammary infection (IMI) during the dry period is almost three to four-fold
greater than during lactation [35].

Concentrations of NEFA and BHBA in the serum are well accepted as indicators of energy
balance. During the state of negative energy balance (NEB), both serum levels of NEFA and BHBA
increase, which have been correlated with enhanced incidence of disease or impaired reproductive
performance [36]. In this study, both serum concentrations of NEFA and BHBA did not show differences
between healthy and lameness-affected cows. Enhanced concentrations of NEFA and BHBA in the
serum during the disease week and at +4 wks postpartum in both groups illustrated that these cows
underwent a state of mild NEB, given the fact that their concentrations were still under the cut-off values
suggested for fatty liver or ketosis [37]. DMI data around parturition showed that cows with lameness
had lower DMI during the disease week as compared to healthy cows; however, concentrations of NEFA
and BHBA around calving did not show a significant difference between the two groups.

4.2. Alterations in Innate Immunity

Among the three inflammatory cytokine measured in this study, IL-6 and TNF increased but IL-1 was
lower at ´8 and ´4 wks prepartum in cows with lameness, which suggests presence of a subclinical
inflammation. The reason why serum IL-1 was lower prepartum in cows that developed lameness is not
clear; however, Fontaine et al. [38] reported increased levels of IL-1beta mRNA in perivascular cells
of the laminar tissue of horses with induced laminitis suggesting the role of IL-1 in development of a
local inflammatory process, and not a systemic one. Interleukin-6, on the other hand, is known to be
produced by T helper 2 type (Th2) cells [39]. Previous research has suggested that serum IL-6 can be
used as a prognostic biomarker for predicting cows with severe mastitis and prostpartum reproductive
diseases like endometritis and retained placenta [39,40]. Our study indicated that concentrations of
serum IL-6 were greater in lame cows during prepartum period compared with those after calving,
which is in agreement with research conducted by Ishikawa [39]. Furthermore, a greater serum level
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of IL-6 at´4 wks prepartum was found to affect lameness. Increased TNF in cows with lameness before
calving can also be explained by the presence of inflammatory condition and potentially endotoxemic
state of those cows. Gabay and Kushner [11] and Emmanuel et al. [30] emphasized that translocation
of endotoxin into the systemic circulation stimulates the release of pro-inflammatory cytokines such
as IL-6, TNF, and IL-1 by liver macrophages, resulting in enhanced secretion of APPs like Hp, SAA,
and LBP.

Serum APPs are part of a general nonspecific immune response [41]. Haptoglobin is known for its
binding to hemoglobin and antibacterial effects [42], whereas, the functions of SAA and LBP are related
to binding, neutralizing, and clearing endotoxin from systemic circulation [43]. Haptoglobin has been
used as a biomarker of mastitis [44], metritis [45], and several inflammatory conditions and bacterial
infections in dairy cows [46]. Compared with Hp, SAA and LBP have been used as biomarkers of
acute diseases [47,48]. Our research showed that all three APPs increased immediately during the week
of disease diagnosis (after parturition) compared with the prepartum levels, which confirms previous
reports [43]. Enhanced concentrations of serum APPs, like SAA, LBP, C-reactive protein, and Hp are
associated with rumen endotoxin and low ruminal pH [30,49]. We did not measure rumen pH or rumen
endotoxin in this study.

Furthermore, serum concentrations of all the tested APPs increased already at ´4 or ´8 wks before
calving (prior to occurrence of disease) in cows with lameness than CON cows, which illustrates that
Hp and SAA can be considered as potentially early predictors of lameness. Interestingly, there was a
decreasing trend for concentrations of SAA at ´4 wks prepartum. The reason for this response is not
clear. It is speculated that this might be related to involvement of various endotoxin neutralizing factors
such as lipoproteins, transferrin, and albumin in removal of endotoxin from systemic circulation as well
as increased mucosal barrier functions [11,30].

4.3. Milk Production, Composition, and DMI

Data showed that cows with lameness experienced lower DMI and milk production during the
experimental period. This can be explained by the effects of lameness on cows’ welfare and wellbeing
and the fact that lame cows laid down more than usual and could not consume enough feed to produce
more milk [50]. Two other potential mechanisms that might explain the depression in feed intake are
subacute rumen acidosis (SARA) and translocation of endotoxin or other potential toxic compounds
from ruminal fluid into the systemic circulation [30,31]. In addition, feed intake and milk production
were also related to BCS. Cows with greater BCS at calving (>3.5) experience lowered feed intake and
milk yield, and an increased risk of metabolic disorders [51].

Another interesting finding of this study was that cows with lameness had milk fat depression and
lower fat-to-protein ratio. Lowered percentage of fat in the milk has been associated with decreased
rumen pH and SARA [30]. SARA is a trigger for a cascade of events inducing subclinical laminitis
as well as other closely related diseases [52]. In recent studies, our group reported strong associations
between rumen endotoxin and milk fat depression syndrome in dairy cows [32,53]. Fat-to-protein ratio
during early lactation is a helpful indicator of lipomobilization, ruminal acidosis, and periparturinet
diseases [52,54]. Several studies have emphasized correlations between fat-to-protein ratio and the
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incidence of involuntary culling [54,55] as well as occurrence of some postparturient diseases like
displaced abomasum, retained placenta, and metritis [54].

Milk fat is the component of milk most affected by a high-grain diet and its effects on rumen
fermentation profile [20]. Milk fat content is often used as a predictor of fiber adequacy and the risk
of SARA in dairy cattle [56]. Milk fat and its ratio to milk protein were remarkably lower throughout
the study, which suggests presence of SARA in the lame cows.

We also found that cows with lameness had greater SCC in the milk, which supports our hypothesis
that subclinical mastitis might render cows more susceptible to lameness. In addition, correlation
analysis between several serum variables and SCC revealed that innate immune responses in the systemic
circulation might be related to inflammation of the mammary gland. Low SCC is used as a reliable
indicator of healthy mammary gland and high-quality milk because enhanced milk SCC is mostly related
to presence of pathogenic bacteria [57]. In this study, milk SCC showed a positive correlation with serum
lactate, IL-6, TNF, and SAA at disease week as well as at´8 to´4 wks before parturition. These results
confirm previous reports indicating high incidence of intra-mammary infection during the dry period,
which contribute to development of subclinical and (or) clinical mastitis during early lactation [41]. This
indicates that the mammary gland of some of the high producing cows is under stress throughout the
whole year, including the dry period, rather than during the lactation period alone. This also suggests
that screening the health status of the mammary gland throughout the lactation cycle would be a better
approach than the routine SCC test during the lactation period. Results of correlation analysis showed
that mammary gland might be another source of endotoxins in the blood circulation, besides rumen, in
dairy cows. Endotoxin translocated into the systemic circulation might reach the claws directly or induce
other agents of disease like biogenic amines that consecutively trigger lameness.

Of note, due to the low number of cows in this study, the findings must be considered preliminary.
Further research with a larger number of cows is warranted to elucidate the precise role of prepartum
inflammation as well as metabolic and innate immunity responses in the pathogenesis of lameness.
Moreover, more research work is warranted to validate the identified blood biomarkers.

5. Conclusions

Overall data from this study indicated increased serum concentrations of lactate at -8 and -4 wks
before parturition in cows that developed lameness postpartum. Serum lactate has the potential to
be used as a predictive and diagnostic biomarker to identify cows that might develop lameness. In
addition, concentrations of serum pro-inflammatory cytokines like IL-6 and APPs including Hp and
SAA increased at ´8 or ´4 wks prepartum, preceding development of clinical lameness. Both
pro-inflammatory cytokines and APPs can be considered as useful variables to predict and assess the
severity of lameness in dairy cows. We also observed that cows with lameness experienced lower DMI,
lower milk production, milk fat depression, lower milk fat-to-protein ratio, and greater SCC in the milk
during the experimental period. Further studies with larger cohorts of animals are warranted to validate
the identified biomarkers.
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