
Data-driven Process Monitoring and Fault Detection with
Convex Geometry

by

Qi Zeng

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Control Systems

Department of Electrical and Computer Engineering

University of Albertat

c©Qi Zeng, 2016



Abstract

Nowadays, industrial processes are becoming highly complex and integrated due to

the applications of advanced distributed control systems. As multiple production

units with thousands of actuators are operating at the same time, the reliability issue

of process plants naturally arises. To ensure the operational safety and maintain

the product quality, process monitoring is one of the most critical and challenging

topics in today’s industrial control designs. In recent decades, multivariate data-

driven monitoring techniques have gained a lot of attentions, due to their relatively

inexpensive implementation and good performance. However, these technique based

on the statistical modeling, are mostly built upon certain assumptions on the process

data. Once the measurements violate these assumptions, the monitoring performance

is hard to be guaranteed. To seek for a feasible solution of such potential issue, this

thesis is to develop an assumption-free data-driven fault detection method which

could be more applicable in the industrial practices.

To avoid data distribution fitting in process monitoring designs, we propose a

new approach to model the process normal operating behavior with a geometrical

enclosure, namely, a convex hull, from the normal process data. In order to achieve

on-line monitoring, an appropriate detection metric with the corresponding threshold

has been developed based on the property of convex hulls. We also introduced a

parallel coordinates based high-dimensional visualization tool to facilitate the visual

presentations of the detection results.

The performance of the proposed method is demonstrated with simulation exper-

iments of a continuous stirred tank heater and a benchmark plant from the Tennessee

Eastman challenge problem. The results have been compared with three conven-
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tional data-driven techniques, including the principle components analysis, partial

least square and one-class support vector machine, in terms of the detection rates and

detection delays. Both case studies reveal the advantages of the proposed method in

detecting randomized disturbances over the other methods.
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Chapter 1

Introduction

1.1 Motivation and background

In modern process industry, increasing demands of high product quality and operat-

ing profit continuously drive the advances of manufacturing technology. Along with

the booming development and wide application of distributed control systems (DCS),

nowadays process plants are highly integrated and complicated. Based on the pro-

duction requirements, different operating units may be added; multiple control loops

and hundreds of sensors are also implemented with little cost. Then, the safety and

reliability issues of such complex system naturally arise. As reported from Abnormal

Situation Management Consortium (ASM) [4], a petrochemical plant will suffer a

major incident every three years, and the estimated average annually cost in the U.S.

alone due to the accidents would be around $10–20 billion. In order to avoid fatal

accidents and guarantee operating safety and efficiency, all industrial processes indeed

should be effectively monitored at all time. When abnormal situations are detected,

appropriate treatments should be executed in time. Hence, process monitoring is the

most important aspect of automated control design and always draws huge attention

in both industry and academia.

Nowadays most of the advance closed loop control schemes, such as PID, model

predicted control (MPC) and internal model control (IMC), are able to regulate the

plant and maintain steady and smooth operation. However, when unexpected process

changes appear and the controllers fail to handle, abnormal situations would still
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Figure 1.1: General process monitoring scheme [1]

occur [1]. In process monitoring, the fault that triggers an abnormal event is defined

as an unpermitted deviation of at least one characteristic property or variable of

the system [5]. Common causes of faults in an industrial system include process

parameter changes, disturbance variations, and actuator or sensor problems [6]. Such

large scope of malfunction sources and the increasing complexity of industrial plants

make process monitoring design a great challenge.

A complete process monitoring loop commonly consists of three major stages as

demonstrated in Figure 1.1. At the first stage, a reliable fault detection method

should be deployed to inspect the process behavior on-line and announce the alarm

if a fault is detected. Once an alarm is presented, operators should quickly move on

to fault identification and diagnosis stage where they locate the malfunction source

and target the root cause. Once the abnormal behavior has been clarified, effective

counteractions should be taken in the final stage to bring the system back to normal

operation. As the initiator of such a monitoring routine, an early and accurate fault

detection would save operators invaluable time for further actions. In industrial

practice, fault detection is realized in the alarm system and implemented as the

primary layer of the accident protection framework [7,8]. And thus, the performance

and reliability requirements of a fault detection method are always critical.

In existing literature, fault detection methods are mainly classified into two ap-

proaches: model based and data-driven [1]. The design of model based methods

is highly dependent on comprehensive process knowledge and precise system models

which are hard to obtain, making the approach costly or even unrealistic to implement
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in practice [9,10]. For data-driven methods, the monitoring is achieved by comparing

the real time measurements with the process normal behavior captured from the op-

erational data historian, and the design only requires a plant data repository which

is relatively easier to access in today’s DCS [11,12]. Due to the low cost and the ease

of implementation, data driven approaches have been well recognized an accepted in

industry.

Traditional data-driven fault detection methods are mainly based on a univariate

approach where readings from different sensors are monitored individually by limited

sensing; thus each variable’s normal operating limits are generated based on their

historical distributions [13]. Such simple setup have been applied in industry for a

long time and is still dominating today’s alarm system design [14]. However, this

approach disregards the interaction among different process variables. Hence the

monitoring lacks robustness and detection results might be mis-leading. Consider a

quick example depicted in Figure 1.2. If we only use the mean ±3σ as the high and

low limits of the normal range of variables A and B, the sample represented by the

red dot is then detected as a abnormal reading, and the sample represented by the

green cross is regarded as a normal one. While, when we further inspect the jointed

distribution of variables A and B, clearly the green cross is separated from the normal

data cluster as a faulty sample, while the red dot is normal. Such ignorance of variable

correlation is among the main sources of nuisance alarms, causing poor performance

in many current industrial alarm monitoring systems [15].

In recent decades, multivariate fault detection methods have been getting more

popular due to their advantages in monitoring the dependent and correlated of vari-

ables in large scale systems. Started at early 1990s, certain iconic methods like Prin-

ciple Components Analysis (PCA) and Partial Least Square (PLS) have been leading

the trend in academia [16], where many researchers began to introduce more multi-

variate statistical tools into process monitoring. However, similar to the univariate

approach, the distribution assumptions are unavoidable when statistical modeling is

involved in capturing the normal data behavior. For example, some commonly used

multivariate control charts, such as Hotelling T2 and Square Prediction Error (SPE),
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Figure 1.2: Univeriate vs. multivariate monitoring [2]

were still based on the assumption where normal process data were Gaussian or nor-

mally distributed [1]. In practical operations, uncertainty between the real process

and model always exists [11], and the collected real measurements might not follow

any clear distributions pattern. Once the real data violate the expected distribution,

the reliability of data-driven methods might be questionable. In existing literature,

this problem of assumptions mismatch has never been well addressed with a clear

solution [17]. It lead to the key motivation of this thesis where we aim to develop a

fault detection approach which is less restricted by assumptions and more effective

for practical applications.

1.2 Literature review

Due to high demand of plant operational safety and manufacturing profitability, pro-

cess monitoring and fault detection has been one of hottest research directions in
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Figure 1.3: A general model-based fault detection scheme.

last decades. Intensive research has been established, and so many new methods had

been developed and applied in the industry. The essential objective driving the inno-

vation is to design a technique which offers the best fault detection performance in

terms of the maximized detection rate (DR), the minimized false positive rate (FAR)

and the minimal detection delay (DD). In this section, a brief discussion some exist-

ing methods is made to provide a big picture of the past and current trends in the

literature.

1.2.1 Model-based approach

The so called model based fault detection originally emerged in the area of automatic

control as a well-established system dynamic monitoring and accommodation prob-

lem [18]. The general concept is based on the analytical redundancy scheme depicted

in Figure 1.3. By running an explicit mathematical model in parallel with the mon-

itored plant, the inconsistencies between expected and the actual system behavior

could be generated as residual measurements for fault detection and further diagno-

sis [19]. More intuitively, the residual should be close to zero during process normal

operation, otherwise, abnormal behavior occurs when the residual value shows a sig-

nificant change. The model being used could either be directly derived from the first

principles or an empirically identified from the process data [9].

For residual generation, existing work could be classified into three categories,

namely, observer based, parity relations based, and parameter estimation based [5].
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The observer based approach was first purposed by Beard and Jones back in 1970s

as failure detection filters [18, 20]. The aim was to design a set of state observers

to track process operation, and then compute the detection residual as the variation

between the observer outputs and the system actual outputs. With a similar concept,

Willsky later adopted the Kalman filter as the optimal state estimator to monitor the

process [21]. The parity relation approach was introduced by Chow in 1980s [22],

where the process input-output relations was directly modeled and monitored by

parity equations. Both observer and parity relations based approaches use a similar

feed forward scheme to generate the residual, so they are commonly recognized as an

open-loop detection structure [23]. In contrast, the parameter estimation approach

used a closed loop scheme where system identification tools were first applied to

estimate unmeasurable process variables, and then estimation result was fed back to

calculated the detection residuals [24].

Based on the above basic approaches, a numbers of modifications and advances

have been discovered to deal with the issues of model uncertainty, system nonlinearity

and robustness, etc. [23, 25, 26]. Certain applications in industrial process and auto-

matic control systems also showed their promising results in detecting sensor faults

and abrupt system changes [27–29]. However, the detection performance of model

based methods are highly dependent on the reliability of adopted system models. For

the highly integrated and complicated industrial processes, developing comprehensive

system models are very costly and sometimes unrealistic. Therefore, applying model

based fault detection to a large scale system is still a practical challenge.

1.2.2 Data-driven approach

Instead of running an explicit model for analytical redundancy, a data-driven ap-

proach turns to extract the knowledge of system normal operation behavior from the

data historian [30]. By capturing the variable interaction and normal sample distri-

bution with a statistical model, the boundary of the system normal operating regime

could be identified. During online monitoring, the detection result is generated by

comparing the new measurements with the normal operating regime.
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The history of data-driven approach could be traced back to 1920s, when the

Shewhart control chart was introduced as a univariate monitoring method [31]. The

detection design simply took the mean and standard deviation to capture the sen-

sor reading distribution and thus defined the normal operating limits. Some ad-

vanced control charts like the cumulative sum (CUSUM) chart and the exponentially

weighted moving average (EWMA) chart were developed later [32,33]. These control

charts filter the monitored sensor data with certain linear or nonlinear filters, and use

the filtered measurements to compare with detection limits [31]. Till today, the filter-

ing techniques are still popular in the field of industrial univariate alarm design [34].

For more of advances in univariate alarm monitoring, readers are strongly recommend

to the comprehensive overview provided in [35] and the references there in.

Since the univariate methods have difficulty to handle highly correlated process

variables, the main trend of process monitoring and fault detection research have been

shifted to multivariate approach. The topic of multivariate statistical process control

(MSPC) started to arise in early 1990s with the applications of statistical tools in

process monitoring, such as the monitoring scheme based on principle components

analysis (PCA) and partial least square (PLS) [36,37]. PCA as a linear order reduc-

tion technique has the nature advantage in extracting correlations of high dimensional

data matrix and projecting the information into a lower dimensional space [38]. In

contrast, PLS as a linear regression method has the capability of identifying the

correlation between inputs and outputs presented by the process data [39]. These

two methods quickly got success in their applications of monitoring certain industrial

systems, and their modifications had also been heavily studied to handle process non-

linearity and dynamic correlations [40–43]. Similar to PCA, the other order reduction

technique, the so called canonical variate analysis (CVA), was also introduced into

the scope of fault detection by Russell in 2000 [44]. By assuming the process data

follow an autoregressive-moving-average model, CVA is able to capture the dynamic

correlation in the normal data and improve the detection performance.

After 2000s, a movement of seeking new multivariate analysis tools from other

fields also began to appear. From speech signal processing, the independent compo-
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nent analysis (ICA) was first adapted to fault detection by Kano in 2004 [45–47]. Dif-

ferent from previous approaches, ICA has the specialty to capture the non-Gaussian

behavior in process data. From the field of machine learning, the binary classifier

approach based on the support vector machine (SVM) was successfully modified and

adapted for fault detection by Mahadevan and Shah [48]. Combined with a radial

based kernel function, the modified 1-class SVM can well monitor nonlinear pro-

cesses. Most recently, the locality preserving projection (LLP) method is also applied

by Hu [49]. As an optimum data neighboring structure persevering algorithm, LLP

has proved to be less sensitive to the effect of outliers [50].

Among all data-driven methods that we mentioned, their statistical models are

always built upon different assumptions of the normal process behavior, and each

model has a unique interpretation of variables correlation [30,50]. In existing reviews

and comparison studies, their monitoring performance is expected to be different even

in the same benchmark test [51]. One feasible way to accommodate this situation is

through the deployment of an ensemble monitoring scheme which consists of a group of

methods with different assumptions. A good example is the decision fusion framework

purposed by Zhang in [52], where monitoring results from 6 different data-driven

techniques are combined using Dempster-Shafer evidence theory [52]. In testing with

the well know yet challenging Tennessee Eastman problem, Zhang’s fault detection

and diagnosis framework demonstrated a superior performance over any individual

method being considered.

1.2.3 Convex hull based anomaly detection

A convex hull is a well studied geometric structure that represents the smallest convex

set containing a finite set of data points in the Euclidean space. How to efficiently

identify and compute the convex hull of a given dataset is one of the fundamental

algorithmic problems in the scope of computational geometry [53]. The resulting algo-

rithms have a great impact in image processing, especially in image feature extraction

and pattern reorganization problems [54]. Due to the nice property of the convex hull,

former researchers also applied it in statistical analysis and robust estimation, par-
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ticularly for outlier detection [55]. The well knew ISODEPTH algorithm proposed

by Ruts and Rousseeuw is based on convex hull peeling, where a data cluster is first

organized by layers of convex hulls, and samples on the outer most hull with the least

depth are identified as outliers [56]. The main advantage of ISODEPTH is that it

directly captures data structures with convex hulls and does not require distribution

fitting [57]. In other words, it is free of assumptions on data distribution.

Recently, the idea of using convex hulls to identify normal data structures had

been further extended in anomaly detection. The essential concept is to construct a

multivariate convex hull of training data as the boundary of system normal operating

regime, and use the convex hull to isolate any potential faulty samples [58]. The first

attempt of this detection scheme was reported by Lou in 2001, when he combined a

convex hull algorithm with trend analysis to develop an aircraft monitoring method

for B737 [59]; the simulated results showed good performance in detecting different

instrument faults. Lately, Sthele also introduced a computational geometry based

software monitoring and network security architecture called Aniketos [60]. Again,

by using normal data convex hull as the detection metric, Aniketos was able to identify

abnormal events of a website caused by programming errors and security attacks. In

robotics, the similar approach had also been applied to monitor the functionality of

a humanoid robot by Lynch and his colleague [61]. According the reports of above

applications, the feasibility of using the convex hull as assumption free multivariate

detection metric seems promising. But, in existing literature, an application of this

approach in industrial monitoring system is still missing.

1.3 Thesis contribution

The main objective of this thesis is to develop a multivariate data-driven fault de-

tection technique which has less restrictive data distribution assumptions and thus

is more suitable for practical applications. In the existing literature, the convex hull

based anomaly detection was evidenced to be an assumption-free approach with cer-

tain promising results. Therefore, the focus of this thesis is to adapt this new idea
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to industrial process monitoring and fault detection. The major contributions of this

thesis are listed below:

1. Introduced a new data-driven fault detection technique with the aid of the

convex hull based detection metric.

2. Developed a high dimensional process data visualization tool with parallel coor-

dinates to facilitate the convex hull based fault detection. The resulting visual

monitoring presentation is able to provide users more intuitive information for

further fault diagnosis and identification.

3. Demonstrated the superior detection performance of proposed method with

two simulated case studies in comparison with some of popular data-driven

techniques including PCA, PLS, and 1-class SVM.

1.4 Thesis organization

This thesis has been prepared according to the guidelines from the Faculty of Gradu-

ate Studies and Research (FGSR) at the University of Alberta. The rest of this thesis

is organized as follows.

In Chapter 2, we discuss the fault detection techniques being considered in this

research. First, to better introduce the preliminaries and concepts of data-driven

fault detection, a more detailed review of the three classical methods, including PCA,

PLS, and 1-class SVM, is provided, and these methods are all included in our later

case studies. Next, we present the details of newly proposed convex hull based fault

detection approach. In the design, the Quickhull algorithm is adapted to construct

the convex hull of training process data representing the system normal operating

regime; and hyperplane equations of the convex hull are used as the detection metric.

Chapter 2 is concluded with a simple illustrative example where we make a brief

comparison of all four fault detection methods.

Chapter 3 is concerned with the visual presentation of the real time monitoring.

To overcome the dimensional limitation of scatter plots in the Cartesian space, we
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present a high dimensional process visualization based on parallel coordinates. First,

basic background and preliminaries of the duality between the Cartesian space and

parallel coordinates is provided. To better accommodate our proposed fault detection

approach, we later present the way of reconstruct a convex hull envelope as the normal

operating regime in parallel coordinates with a simple graphical algorithm. Chapter

3 ends again with an example where we demonstrate how faulty samples could be

easily detected with our visualization setup.

Chapter 4 is to present two simulated industrial case studies which include the

Continuous Stirred Tank Heater (CSTH) and the Tennessee Eastman Challenged

Problem (TEP). For both case studies, details of experimental design and implemen-

tation are provided. The result from CSTH validates the superior detection perfor-

mance of the newly proposed method. Whereas, the TEP bench mark study shows

the effectiveness of our fault detection method in monitoring large scale processes,

and an example is given to demonstrate how the parallel coordinate visualization

could be utilized for further fault diagnosis.

Chapter 5 summarizes this research again with some concluding remarks, followed

by discussion of potential improvements and future work.

11



Chapter 2

Data-driven Fault Detection
Methods

2.1 Overview

In this chapter, we investigate multivariate process monitoring through the data-

driven fault detection techniques. First, a review of three iconic methods, including

PCA, PLS and 1-Class SVM, is provided to introduce the common concepts of data-

drive methods. Next, we propose a new fault detection approach by using multivariate

convex hulls as the detection metric. A simple illustrative example is then presented

to demonstrate the advantage of our method over the three existing ones.

2.2 Review of basic data-driven techniques

Multivariate data-driven fault detection methods started to become more popular ever

since the topic of multivariate statistical process control (MSPC) was introduced in

early 1990s. Unlike the model-based monitoring scheme, in which the design is based

on an explicit system model, data-driven methods are able to trace process normal

behavior from a set of historical data [37,62]. When comparing with the conventional

limit sensing based univariate approaches, MSPC also has the advantage in capturing

the multivariate dependency and correlation among different process variables. Due

to their relatively good operational simplicity and monitoring reliability, multivariate

data-driven methods have been widely applied in industrial monitoring systems with

12



some great successes [12].

Generally, most of the data-driven techniques consist of two preliminary design

stages, namely, an off-line training stage and an on-line monitoring stage. For the

off-line training stage, the associated tasks are mainly two folded [48]:

• Developing a statistical model based on a given set of normal operating data;

• Proposing a set of detection metrics and setting appropriate thresholds based

on the predefined confidence level.

Once the off-line training is complete with the appropriate validations, the implemen-

tation moves on to the on-line monitoring stage, where new test samples would be

projected simultaneously onto the model to calculate the detection metrics. By com-

paring the calculated metrics with the designed thresholds, users are able to inspect

the results and make the judgment if any fault has occurred.

In this review section, we briefly introduce three iconic data-driven methods, in-

cluding Principle Component Analysis (PCA), Partial Least Square (PLS) and One-

class Support Vector Machine (1-class SVM), in the form of the above design concepts.

2.2.1 Principle components analysis

Principle Component Analysis (PCA) is one of the most successful multivariate anal-

ysis tools which is famous of its powerful features, such as data decorrelation and

compression. As an optimal linear order reduction technique, PCA is able to project

the original high-dimensional data into a lower-dimensional space with a set of or-

thogonal loading vectors, named as principle components (PCs), without losing the

majority of data information. Due to its superiority in handling large datasets, since

1980s, PCA have been developed as one of the first MSPC methods and widely

applied in industrial processes for monitoring and fault detection. As a classical

technique, reviews and textbooks often consider it as the paradigm of data-driven

methods [1, 12,17,30].

In a PCA based monitoring scheme, the off-line training is conducted with data

collected from process measurements under the system normal operating condition.
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Consider a process with d measured variables, where n normal samples are collected

to form a standardized (mean centered and scaled to the unit variance) training data

matrix X as:

X =


x1
x2
...
xn

 =


x11 x12 . . . x1d
x21 x22 . . . x2d
...

...
. . .

...
xn1 xn2 . . . xnd

 ∈ Rn×d (2.1)

where the xi ∈ R1×d denotes each data sample as a row vector. The first step to built

a PCA model is to perform the singular value decomposition (SVD) on the sample

covariance matrix M, i.e.

M =
1

n− 1
X>X = PΛP> (2.2)

where Λ = diag(λ1, λ2, · · · , λd) ∈ Rd×d contains all non-negative real eigenvalues in

a decreasing order (λ1 ≥ λ2 ≥ · · · ≥ λd), and P = [p1, · · · , pd] ∈ Rd×d consists of all

orthogonal PCs as the column vectors [12].

In order to decompose X into a lower-dimensional vector space, we further divide

Λ and P as:

Λ =

[
Λpc 0
0 Λres

]
, Λpc = diag(λ1, · · · , λa), Λres = diag(λa+1, · · · , λd) (2.3)

P =
[
Ppc Pres

]
, Ppc ∈ Rd×a, Pres ∈ Rd×(d−a). (2.4)

where Λpc consists of all relatively large eigenvalues of M indicating most of the data

variance has been stored. The number a indicates how many eigenvalues and the

corresponding PCs are obtained by the model. Then, the projection of X in into the

lower dimensional space is denoted as a score matrix T which is calculated as:

T = XPpc ∈ Rn×a (2.5)

When reconstructing the data and checking the modeling error, we simply calculate:

X̂ = TP>pc, EX = X− X̂ (2.6)
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where X̂ is the observations captured by the model, and EX is the modeling residual.

To detect any abnormal deviations in the new process data, PCA utilizes two mul-

tivariate detection metrics, the Hotelling’s T-squared statistics (T 2) and the squared

prediction error (SPE), to monitor both of the modeled observations and the mod-

eling residuals [1].

For a new collected and normalized data sample vector x ∈ R1×d, its deviation

relative to the PCA model is represented by T 2 which is calculated as

T 2 = xPpcΛ
−1
pc P>pcx

>. (2.7)

The corresponding detection threshold, with a confidence level α, is estimated as

Jth,T 2
α

=
a(n2 − 1)

n(n− a)
Fα(a, n− a), (2.8)

where Fα(a, n− a) is the CDF value of a F distribution with a and n− a degrees of

freedom.

When regarding the deviation relative to modeling residuals, SPE statistics is

calculated as

SPE = xPresP
>
resx

>. (2.9)

The SPE threshold is approximated by

Jth,SPE = θ1

[
h0cα
√

2θ2
θ1

+ 1 +
θ2h0(h0 − 1)

θ21

]1/h0
, (2.10)

where θi =
d∑

j=a+1

λij, h0 = 1− 2θ1θ3
3θ22

and cα is the standard deviation according to the

1− α percentage of a normal distribution.

For the on-line monitoring stage, both detection metrics are calculated with new

process data and compared with their thresholds. Detection result of each sample is

then generated as a binary alarm signal based on the detection logic given by:{
Normal, T 2 ≤ Jth,T 2

α
and SPE ≤ Jth,SPE

Faulty, otherwise
(2.11)

Notice that PCA is primarily developed based on the assumption where normal

process data are linearly correlated and following the joint Gaussian distributions [63].
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Hence, when training samples violate this assumption, the reliability and robustness

of the resulted PCA model could not be guaranteed, and the detection performance

may unfortunately be downgraded.

2.2.2 Partial least squares

Partial least square (PLS), also known as projection to latent structures, is another

classical data-driven monitoring method from MSPC. Similar to PCA, PLS is also a

dimension reduction technique, but more advanced in its ability to extract correla-

tion between system inputs and outputs [36]. As a regression based approach, PLS

is capable of constructing a linear regressive model to capture the process normal be-

havior. Since its inferential model can be utilized for the on-line prediction of product

quality, PLS is also a popular tool for basic soft sensor design [64].

To build a PLS model for the fault detection purpose, firstly we prepare a set of

historical data including n samples, in both of a process measurements matrix X and

a output matrix Y, i.e.

X =


x1
x2
...
xn

 ∈ Rn×d,Y =


y1
y2
...
yn

 ∈ Rn×m (2.12)

where xi ∈ R1×d denotes the data sample as a row vector collected from d measure-

ment variables; and yi ∈ R1×m denotes the output vector consisted of m variables. In

order to perform the regression, m ≤ d is required.

The linear regressive model provided by PLS is presented in the following formulas

as,

X = TP> + EX and (2.13)

Y = TQ> + EY = XRQ> + EY . (2.14)

T = [t1, · · · , tβ] ∈ Rn×β is a lower dimensional score matrix consisting of all orthogonal

latent variables (LVs) ti’s. Each ti stores part of the covariance between X and Y.
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P ∈ Rn×d and Q ∈ Rn×m are matrices containing the loading vectors of both X and

Y, and R ∈ Rd×β projects X to T. Finally, EX and EY store the model residuals of

both inputs and outputs, which are assumed to be uncorrelated to neither X nor Y.

To find this PLS model, several well developed algorithms are available in the

existing literature, and reviews could be found in [65–67]. In this work, we utilize one

of the fastest PLS algorithm, known as SIMPLS [68]. The major iterative calculations

are summarized in Algorithm 1.

Algorithm 1 SIMPLS

1: Initialize:
Compute S = X>Y

2: for i := 1 : β do
3: Compute SVD of S
4: Get ri as the first left singular vector
5: Compute X score vector as ti = Xri
6: Compute X loading vector as pi = X>ti/(t

>
i ti)

7: Compute Y loading vector as qi = Y>ti
8: Compute Y score vector as ui = Yqi
9: Update vi = pi

10: if i > 1 then
11: Remove previous loadings and scores in vi and ui as
12: vi = vi −V(V>pi)
13: ui = ui −T(T>pi)
14: end if
15: Deflate S with current loading as S = S− vi(v>i S)
16: Store ti, ri, pi, qi, vi and ui into T, R, P, Q, V and U, respectively.
17: end for

Notices that β is a key design parameter in such PLS models. It presents the di-

mension of projected structure and indicates how many layers of LVs (in T,P and Q)

are built in the model. A standard way to determine β is to apply a cross validation

to collect the prediction residual sum of squares (PRESS) as referenced in [1]. Once

the cumulated residual error of Y is stabilized below 5-10%, the PLS model could be

finalized with the corresponding number of LVs as β.

Similar to the PCA based fault detection, PLS also utilizes T 2 and SPE as the

two detection metrics, where the calculation formulas are nearly the same but using
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different loading matrices. The exact equations are as

T 2 = xR

(
T>T

n− 1

)−1
R>x> (2.15)

SPE = ||(I−PR>)x>||2. (2.16)

And the corresponding thresholds according to confidence level α are derived as

Jth,T 2
α

=
β(n2 − 1)

n(n− β)
Fα(β, n− β) and (2.17)

Jth,SPE =
σspe
2µspe

χ2
α(

2µ2
spe

σspe
), (2.18)

where the F distribution alters its degree of freedom based on β, and χ2
α is the CDF

value of a Chi-squared distribution with its scaling factors calculated by the mean

(µspe) and variance (σspe) of SPE statistics.

Again, for on-line monitoring, PLS has the same detection scheme as PCA, where

the comparison results of both T 2 and SPE metrics are considered in the same

detection logic: {
Normal, T 2 ≤ Jth,T 2

α
and SPE ≤ Jth,SPE

Faulty, otherwise.
(2.19)

Since PLS is also a linear method, it shares the same fundamental assumption

as PCA, meaning it is not designed to handle system nonlinearity and non-Gaussian

distributions.

2.2.3 One-class support vector machine

The so-called support vector machine (SVM) is a famous learning algorithm which

was originally designed for binary classification problems [69]. The main concept

is to construct a linear classifier that best separates data points from two different

classes. In order to use it for novelty detection, one-class SVM was later proposed by

Schölkopf as a variant of the original algorithm [70].
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In one-class SVM, the aim is to identify a supported hyperplane which best ac-

commodate the majority of the training samples in a small space volume. If a new

sample is located on the same side of the hyperplane with the training samples, it

would be considered as a normal one. Otherwise, it is an outlier or a fault which does

not belong to the normal class. To handle the non-linear correlations of the measure-

ments, one-class SVM projects the training data into a higher dimensional feature

space with a radial based kernel function (rbf) to remove the non-linear correlations.

Thus, the linear hyperplane function derived in the feature space is equivalent to a

non-linear classifier [48].

To get more detail about the modeling process of one-class SVM, again let us

consider a training data matrix X ∈ Rn×d collected from the monitored process, where

n and d indicates the number of samples and the number of variables, respectively. As

mentioned earlier, we first project all samples into the feature space with rbf kernel

as

K(xi, xj) = φ(xi) · φ(xj) = e−γ||xi−xj ||
2

(2.20)

where φ(xi) for i = 1, · · · , n is the mapping of xi in the feature space, and γ is a user

defined variance scaling factor.

Next, to find a supported hyperplane which is above all training samples in the

feature space, we define a linear classifier function as:

fc(xi) = w · φ(xi) + ξi + b ≥ 0,∀ xi ∈ X; (2.21)

where w is the weight vector controlling the shape of the hyperplane, and b is the

center offset of the training data cluster. For each sample xi, ξi is introduced as a

slack variable to relax the hard decision boundary.

Since our objective is to identify the tightest hyperplane function that covers

all training samples, we solve the classifier based on the constrained optimization
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problem written as follows:

min
w,ξi,b

1

2
||w||2 +

1

αn

n∑
i=1

ξi + b

subject to w · φ(xi) ≥ −b− ξi, ξi ≥ 0.

(2.22)

Notice that α ∈ (0, 1] is a design parameter to control the tradeoff between the volume

of ||w||2 and mean of ξi. Intuitively, it represents the maximum fraction of error in

the training samples and serves as significant level of the classifier.

According to the above constraint, ξi ≥ 0 and ρi ≥ 0 are defined as Lagrange

multipliers to form the Lagrangian function:

L(w, ξ, ρ) =
1

2
||w||2 +

1

αn

n∑
i=1

ξi + b−
n∑
i

ηi(w · φ(xi) + b+ ξi)−
n∑
i=1

ρiξi. (2.23)

To solve it, all the partial derivatives of primal variables are set to zero to have:

∂L

∂w
= 0 → w =

n∑
i=1

ηiφ(xi); (2.24)

∂L

∂ξi
= 0 → ηi =

1

αn
− ρi ≤

1

αn
; (2.25)

∂L

∂b
= 0 →

n∑
i=1

ηi = αn. (2.26)

Substitute Equations (2.24) to (2.26) back to Equation (2.23), a simplified Lagrangian

in the dual form is finalized as:

min
η

1

2

n∑
i=1,j=1

ηiηjK(xi, xj)

subject to o ≤ ηi ≤
1

αn
,

n∑
i=1

ηi = 1.

(2.27)

where ηi could be solved by using standard quadratic programming (QP) techniques

[71]. The solution is further utilized to derive w and b; and thus where we complete

the classifier modeling process.
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For fault detection, the classifier function in the feature space is adapted as the

detection metric. For a testing sample x, we first project it in the feature space and

then calculate the function value fc(x) as

fc(x) = w · φ(x) + b =
n∑
i=1

ηiK(x, xi) + b. (2.28)

Based on the sign of fc(x) we could check if this sample belongs to the same class

as the training data, i.e., fc(x) ≥ 0 indicating it is normal or vise versa. To follow

the convention where a fault arises when the measurement is over the threshold, a

detection logic is finalized as {
Normal, −fc(x) ≤ 0;

Faulty, −fc(x) > 0.
(2.29)

2.3 Convex hull based fault detection

As previously discussed, data distribution assumptions are among the unavoidable

factors in data-driven techniques. The design of modeling and detection metrics

in most methods are targeting on some particular distribution patterns which the

training samples are expected to follow. However, in industrial applications, the real

data collected from various sensors may not comply with a clear distribution pattern,

and thus the performance of data-driven monitoring may be downgraded [35]. To

address such an issue, in this thesis we try to seek a feasible solution through the

computational geometry where we adapt the idea of using convex hulls of process

data as assumption free detection metrics. The following section is to introduce this

new convex hull based fault detection (CH-FD) technique.

2.3.1 Basic design concept

Like most data-driven monitoring methods, CH-FD is to monitor sensor readings

from process variables and identify any possible faulty sample from the normal ones.

We consider the case where a process is operating in a normal steady state, where

the system behavior is relatively unchanged. The essential concept is to generate a
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comprehensive geometric enclosure of the collected normal process data with a convex

hull which we regard as the normal operating regime. If a test sample falls into such

an enclosure, it would be classified as a normal sample. Otherwise, if an exterior

point of the convex hull is detected, it would be treated as a faulty reading. Figure

2.1 presents an intuitive graphical illustration of this concept.

Although the idea of using a geometric structure as the empirical enclosure of

historical data is very simple, it will be shown that the resulting convex hull in the

data space would be the tightest envelope of normal operating regime. The key

advantage of this approach is that any strong assumptions of data correlation or

pre-defined data distributions are not necessary [60].

To follow the common scheme of data-driven techniques, again the design of CH-

FD is summarized into two main stages:

• Training stage: collecting a set of historical process data under system’s normal

operation, and computing the convex hull of the dataset as the process normal

operating regime.

• Detection stage: using the convex hull as a geometric detection metric to identify

any exterior test sample as a potential fault.

2.3.2 Constructing the convex hull of normal process data

From the above design concept, the key task of the CH-FD training stage is to cap-

ture the process normal operating regime with an accurately computed convex hull

from a set of normal historical data. For this particular problem, a number of well

known convex hull algorithms are available from computational geometry [53]. In this

work, the Quickhull (Qhull) algorithm is chosen as our primary tool for convex hulls

constructions. Qhull was developed by Barber and Dobkin in 1993 as a extension

of the optimum 3D Clarkson and Shor’s algorithm for high-dimensional convex hulls

computations [72]. It is famous of its capability in handling the multi-dimensional

data (up to 9 dimensions) and the imprecision errors [73].
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Figure 2.1: Concept of convex hull based fault detection.

Preliminary of convex hull

Before we tape into Qhull, let’s first introduce some basic mathematical definitions

of convex hulls and the associated preliminaries. This brief review is adapted from

Barber’s original work in [73].

Consider a set of linearly independent points {x1, · · · , xn}, its affine combination

is the set

{x|x =
n∑
i=1

λixi,
n∑
i=1

λi = 1}. (2.30)

When ∀ λi > 0, the affine combination becomes a convex combination. Then a convex

set is the set of points which contains its convex combination, and a convex hull is

the smallest convex set containing such set of points.

A hyperplane in Rd is the affine hull of d independent points, and it separates

the space into two halfspaces. To define a hyperplane and its halfspaces, we use the

equation of outward pointing normal in the Hessian form, i.e.

~n · x− s = 0, (2.31)

where ~n ∈ R1×d is to denote the Hessian normal of d independent points, and s is
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(a) ∆1 a line (b) ∆2 a triangle (c) ∆3 a tetrahedron

Figure 2.2: Graphical illustrations of simplexes

the offset of hyperplane relative to a reference point (the space origin). Based on the

equation value, the location of a point x relative to the hyperplane and halfspace can

be revealed by the following three conditions:


if ~n · x− s > 0, x is above the hyperplane;

if ~n · x− s = 0, x is on the hyperplane as a coplaner;

if ~n · x− s < 0, x is below the hyperplane.

(2.32)

For a finite set of points, the convex hull is also a polytope which is bounded by

finite intersections of the halfspaces. The supporting hyperplanes of the halfspaces

then defines the convex hull boundary. An extreme point of the convex hull (polytope)

is called a vertex. The intersections of supporting hyperplanes on a convex hull are

called facets, where each facet is also a convex polytope. For an edge on the hull

where two different facets intersect, we name it as a ridge.

Moreover, for a set of d+1 independent points in Rd, the convex hull is a d-simplex

denoted as ∆d; see Figure 2.2 for examples of simplexes when d ∈ {2, 3, 4}. It is clear

to observe that each facet of ∆d is a ∆d−1, and each ridge is a ∆d−2.

Last but not least, a simplicial complex in Rd is a set of ∆i for 0 ≤ i ≤ d, where

each ∆i belongs to some ∆d. For a simple example shown in Figure 2.3, the simplicial

complex of a set points in R2 is represented as a triangulated diagram which consists

of triangles (∆2s) and line segments (∆1s). The vertices of the simplicial complex

then form the convex hull of these points.
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Figure 2.3: An example of simplicial complex in R2.

Compute convex hull with Quickhull (Qhull)

In Qhull, a set of input data points X = {x1, · · · xn} ∈ Rd is assumed to be in

general positions, where no sets of d + 1 points define a hyperplane in Rd−1. So

the convex hull, denoted as CH(X), is a simplicial complex comprised by a set of

d-simplexes. By following such an assumption, Qhull is able to present CH(X) with

a set of enclosing facets F = {fi, . . . , fm}, for i = 1, · · · ,m. Each facet fi then has d

vertices Vi = {vi,1, · · · , vi,d} and d ridges Ri = {ri,1, · · · , ri,d}.

To compute the CH(X), Qhull starts with d + 1 random chosen points in X to

create a d-simplex. For each facet fi of the d-simplex, all points above the hyperplane

are identified and assigned to fs’s outside set. Then, Qull gradually enlarges the hull

with an expansion routine. In each iteration, the furthest outside point of fi is taken

as the expansion vertex where new facets are generated to link the existing facets. An

iteration ends by deleting the covered facets and updating the new ones with their

corresponding outside sets. As a graphical illustration, Figure 2.4 presents how Qhull

expands a simplex with an exterior point in R3. The CH(X) is completed when all

points in X are enclosed, and the finalized lists of facets, vertices and hyperplane

equations are generated as outputs.

Although Qhull is designed based on a simple expansion routine, it guaran-

tees convergence. And the worst-case complexity is O(n log r) for d ≤ 3 and
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(a) Initialization (b) Finding visible facet (green)

(c) Constructing new facets (d) Delete redundant facets

Figure 2.4: An example of Qhull expansion routine in R3

O(nrbd/2c/(bd/2c!r)) for d ≥ 4, where r denotes the number of vertices been pro-

cessed. From some earlier experiment results, Qhull is able to effectively avoid a

significant amount of redundant hyperplane generations and distance tests than most

of the basic randomized search algorithms [72]. For more details of Qhull, a brief

algorithmic outline is summarized as Algorithm 3 in Appendix A, and the reader is

advised to visit the official release website [74].

Similar to other fault detection methods, constructing a convex hull with normal

training data could be considered as a modeling process. The difference is that we

are using a geometric enclosure as the model, instead of using statistical modeling.
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Figure 2.5: A two dimensional convex hull with all hyperplanes and enclosing
halfspaces

With the aid of Qhull, the convex hull construction is free of parameter tuning.

2.3.3 Detection metric and threshold

As the process normal operating regime has been modeled by a convex hull, the goal

for the detection stage is to identify and separate any possible faulty sample from the

normal ones. To achieve this, we propose a distance based detection metric according

to the geometric property of the convex hull. The setup is to check the distance of

a test sample relative to the convex hull supporting hyperplanes in order to check if

such sample is bounded by the normal operating regime. Different from the linear

classifier in 1-class SVM, where only one hyperplane function is applied, our distance

metric considers all hyperplanes included in by the convex hull.

Suppose a convex hull CH(X) has already been constructed via Qhull for a train-

ing set stored in X ∈ Rn×d, where n and d again refer to the number of samples and

process variable, respectively. One of the handy features of Qhull is that all the enclos-

ing facets with their hyperplane functions on CH(X) are accessible in the algorithm

outputs. For a clear presentation, we denote all m facets as a set F = {f1, · · · , fm}.
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For each facet fi, the set of d vertexes is denoted as Vi = {vi,1, · · · , vi,d}. All hy-

perplane functions are also stored by a matrix of all outward pointing norms and a

vector of offsets as

~N =

~n1
...
~nm

 ∈ Rm×d and S =

s1...
sm

 ∈ Rm×1. (2.33)

According to Preparata and Shamos [53], the intersection of halfspaces about the

origin is equivalent to the convex hull of points in the dual space, see Figure 2.5 for

an example in the two dimensional space. Thus, the interior space of CH(X) could

be defined as a set of points that satisfy the system of m linear inequality as:

{x | ~Nx> − S ≤ 0(m×1), x ∈ R1×d}. (2.34)

For checking whether or not a new test sample x ∈ R1×d belongs to the interior space

of CH(X), we could simply adopt the linear inequality in Equation (2.34) to design

the following distance metric:

D(x) = ~Nx> − S ∈ Rm×1. (2.35)

The corresponding detection logic is given by{
if D(x) ≤ 0m×1, x ∈ CH(X) as a normal sample;

otherwise, x /∈ CH(X) as a fault.
(2.36)

Notice that the relative distances between any test sample to all convex hull

hyperplanes are captured by D(x). As points are bounded by CH(X) only when

D(x) ≤ 0m×1, the detection threshold is then naturally set as the zero vector. Unlike

conventional norm metrics and calculated thresholds used in other fault detection

methods (e.g. T 2 and SPE), here the resulted detection logic is strict; and from the

conditions in (2.36), we are able to inspect a faulty sample to decide which particular

set of facet(s) it exceeds.

2.3.4 Curse of dimensionality and recursive training

Like all semi-supervised methods, CH-FD only uses the data from a normal class for

training. The quality of training samples might directly affect its detection perfor-
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mance in terms of the type I error (FAR) and type II error (MAR). For instance, a set

of normal data, which have been collected when the system is lack of excitations or

disturbances, may not fully reveal the dynamics of the system. On the other hand, as

the number of monitored variables and dimensionality of the measurements increases,

the collected data points turn to spread out into a larger volume and the cluster be-

come less dense in the Euclidean space, which increases the complexity of the convex

hull computation. Such effect is commonly known as the ‘Curse of Dimensionality’,

and it is also the main burden which causes convex hull based anomaly detection

suffer from high type I errors [55].

One way to tackle this issue is trough the recursive training, where we repeatedly

reconstruct and validate the convex hull with the enlarged training sets (more normal

samples), till the FAR of the validation samples converges to a desired level (e.g.

below 1-5%). In our later examples, this strategy will be applied when monitored

process units contain more than three variables.

There are several other good techniques available for reducing the FAR from

univariate alarm monitoring study. One simple way is to pre-filter the data with some

designed linear or non-linear filters. For a more advanced tool, a on- or off-delay timer

could also be utilized when CH-FD is announcing the abnormality. However, here

we aim to uncover the full potential of CH-FD and analyze its performance. In later

comparison studies with other methods, this work only consider the raw detection

results generated by the logic in Equation (2.36).

2.3.5 Illustrative example I

In this section, we draw a brief comparison of all 4 data-driven fault detection methods

covered so far through a simple numerical example. Consider a linear bivariate system:

x2 = x1 + g, where x1 and x2 are the two monitored variables, and g is a random

disturbance with the uniform distribution U(−1.5, 1.5). First, 495 normal samples

(pairs of x1 and x2) were randomly generated with x1 ∈ [−1.5, 1.5]. 6 faulty samples

were later injected where they were located closely to the normal samples cluster but

not following the distribution pattern. A scatter plot of all normal and faulty samples
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Figure 2.6: Illustrative example I – data visualization.

is presented on Figure 2.6.

In this example, the first 300 normal samples were used as the training data, and

the rest 195 normal samples combined with the 6 faults were served for detection

tests. The PCA model was built with 1 PC to capture 85% of the total variance

of the training data. PLS considered x1 as the model input and x2 as the model

output, where the regression was finalized with 1 LV. The detection thresholds of

PCA and PLS were calculated based on the 99% confidence level. For 1-class SVM,

the training data were projected into the feature space with a rbf kernel (γ = 1), and

the model was built to correctly classify 99% of the training samples. The remaining

201 samples were projected in different models accordingly.

As shown in Figures 2.7a and 2.7b, PCA and PLS both had poor detection results

for the 6 faulty samples. Only two successful detections were reported by the SPE

metrics of PCA; otherwise, faults samples were all fussed with the normal. Even

though, the monitored system is a linear one, such a result is expected, since the

training samples were not normally distributed (PCA and PLS assume linear rela-

tionships).

On the other hand, 1-class SVM presented good results as shown in Figure 2.7c.

All 6 faulty samples could be clearly separated from the normal ones by the detection

threshold fixed at zero. However, it’s also clear to observe that several high metrics
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(a) PCA T 2 and SPE (b) PLS T 2 and SPE

(c) 1-class SVM (d) CH-FD

Figure 2.7: Illustrative example I – detection results.

appeared among the training and validation samples. If an empirical threshold was

designed based on the metrics values in the validation set, these so-called outliers

may significantly windup the limit and thus lead to poor detection results. This is

because the rbf is a Gaussian based kernel function. Once the training samples are

not jointly Gaussian distributed, the kernel may have difficulty to fit the distribution

and regard certain normal samples as outliers [75].

For our new proposed method, a convex hull of training samples are first con-

structed via Qhull. According to the demonstration in Figure 2.7d, all validation
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samples were well contained by the convex hull, and faulty points could be clearly

separated. Such good detection result is due to the fact that no assumptions of data

distribution has been made, and the convex hull is able to accurately capture the

system normal operating regime as a geometric pattern of the training samples.
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Chapter 3

Visualization Based on Parallel
Coordinates

3.1 Overview

In the previous chapter, we introduced a convex hull based data-driven fault detection

technique (CH-FD). In this new method, the process normal operating regime is

realized as a convex hull which forms the geometric enclosure of normal process data.

The monitoring visualization for a small system, where the number of monitored

variables is no more three, could be generated by graphing the convex hull with

the scatter plot of testing samples in the Cartesian space. On the plot, exterior

points of the convex hull could be visually identified as faults. However, when the

process contains more than three measurements, this visualization setup is no longer

applicable due to the dimensionality constraint in the Cartesian space. In this chapter,

we develop a high-dimensional monitoring visualization tool with the aid of parallel

coordinates plots, in order to better present the detection results of CH-FD for a

multivariate process.

3.2 Background

Parallel coordinates are a commonly used visualization technique for high-dimensional

geometry and multivariate data. The history of this tool could be traced back to the

original work of Maurice in 1885 [76], when he presented his work on a coordinate
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Figure 3.1: A simple example of a parallel coordinates plot [3]

transformation. On a typical parallel coordinates plot, the variable axes are placed

vertically and aligned in parallel to each other. As shown in the example in Figure 3.1,

a set of d-dimensional data points are presented as polylines under this coordinates

setup. Each ployline consists of d vertices which is on the variable axes, indicating the

coordinate of each data point on each dimension. As the variable axes could be freely

added in this coordinate system, the data dimensionality is no longer a constrains,

which allows us to visualize the data in a high-dimensional sense. Ever since the

property of this coordinate system had been further uncovered by Inselberg [77], this

powerful tool began to lead the fashion of visual based data mining [78–81].

The key concept of using parallel coordinates for data analytics is to identify

the multivariate dependencies and correlations through the data pattern presented

on the plot [79]. When a set of bivariate data holds a particular correlation or

distribution, the corresponding data mapping on parallel coordinates also presents a

unique geometrical pattern [82]. As a simple demonstration, Figure 3.2 presents four

types of common bivariate data patterns in the Cartesian space with their mapping

on the parallel coordinates. For the correlations that show convex patterns, see the

ellipsoid and convex hull in Figure 3.2, the mapping of data points forms a pair of

envelopes which also show the convexity [81].
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Figure 3.2: Geometric patterns of 4 different correlations on parallel coordinates

In existing literature, one of the successful applications of parallel coordinates in

process monitoring is the multivariate alarm management tool proposed by Brooks

[83]. In that work, techniques were developed to model the system normal behavior

on parallel coordinates with the high-dimensional envelope of process data. Methods

for multivariate alarm rationalization and control tuning based on parallel coordi-

nates were also introduced. The main results of Brooks’ work later led to a process

management package which kept serving the industry till today. More information

of the package can be found in [84]. As discussed in the previous chapter, our newly

developed convex hull based fault detection shares a similar concept with Brooks’

method, where we model the process normal operating regime as a geometrical struc-

ture. In the following sections, we adopt Brook’s idea and study the way to realize the

convex hulls as envelopes on parallel coordinates, so that high-dimensional process

normal operating regimes could be displayed on data monitoring plots.

3.3 Preliminary on parallel coordinates

In this section, a brief review of parallel coordinates fundamentals is provided based

on Inselberg’s book published in 2009 [85]. The material covers the basic knowledge

which is required for the later discussions of convex hull envelopes.
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Figure 3.3: Mapping a 2 dimensional point on parallel coordinates

3.3.1 Coordinates setup

Consider a two dimensional plane in the Cartesian coordinate system shown in Figure

3.3 (left), where x1 and x2 are to denote the orthogonal axes. On the parallel coor-

dinates, the equivalent variable axes are expressed in parallel on the xy plane shown

in Figure 3.3 (right). The first vertical axis X1 coincides with y; and the second axis

X2 on the right has a horizontal distance h relative to X1. For the simplicity, both

origins on X1 and X2 are aligned to the origin of y axis, and all vertical axes are

pointing in the same direction. Here we use the over-line ‘ ’ to indicate an object on

parallel coordinates.

For a two-dimensional point P = (p1, p2), its mapping from the Cartesian space

to the parallel coordinates is achieved with the point to line transformation, where

the line image is denoted by P . The coordinates of both intercepts on X1 and X2

are given by (0, p1) and (h, p2), respectively. Based on these coordinates, the line

equation of P could be derived as:

P : y =
p2 − p1
h

x+ p1, h 6= 0. (3.1)

When plotting high-dimensional data points on parallel coordinates, we simply

add up the vertical variable axes and evenly spread them on the xy plane. For

example, the point P = (P1, P2, · · · , Pd−1, Pd) ∈ Rd is displayed as a polyline P

36



Figure 3.4: Mapping a high-dimensional data point on the parallel coordinates

as shown in Figure 3.4. The polyline is synthesized by a set of d − 1 straight line

segments {p1, p2, · · · , pd−2, pd−1}. Each pi is between a pair of neighboring vertical

axes, namely, X i and X i+1 and still follows Equation (3.1) in the form:

pi : y =
(pi+1 − pi)

h
x+ pi, h 6= 0 , i ∈ [0, d− 1]. (3.2)

As variable axes are placed in parallel, the order of axes on the plot is not trivial

to arrange. For a display of d-dimensional data points, the total number of unique

axes orders is d(d− 1)/2. This means that the axes order could be freely alternated,

generating different geometric patterns of the data points.

3.3.2 Point to line duality

One of the most interesting property of parallel coordinates is that it holds a so-called

point to line duality (point↔ line) with the Cartesian coordinate system. Consider

a line on the x1x2 plane defined as

l : x2 = mx1 + b,m 6= 1, (3.3)

where m is the slope, and b is the intercept on x2 shown on Figure 3.5. For any two

points A1 and A2 on l, their mapping on parallel coordinates can be derived based
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on Equation (3.1) as:

A1 : y =
ma1 + b− a1

h
x+ a1, A2 : y =

ma2 + b− a2
h

x+ a2 (3.4)

With simple calculation, it could be verified that A1 and A2 have a unique intercept

on the xy plane at

l = (
h

1−m
,

b

1−m
),m 6= 1. (3.5)

As A1 and A2 are able to define l in the Cartesian space, l is then the unique mapping

of l on parallel coordinates. When m = 1, x = h/(1 − h) → ∞, indicating the

mapping of all points on l are parallel lines on the xy plane. Otherwise, depended on

the value of m, l is located at different regions of the xy plane, as shown in Figure

3.6. Combined with the point to line transformation described in Equation (3.1), we

then have the fundamental point ↔ line duality between the Cartesian coordinates

and the parallel coordinates.

3.3.3 Curves to envelopes

According the Inselberg’s illustration in Chapter 7 of [85], the fundamental duality

could be further extended to the transformation of curves to envelopes between the

two coordinates systems. Consider a conterminous and differentiable curve C on

Figure 3.5: Mapping a line in R2 on parallel coordinates
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Figure 3.6: The effect of the line slope m on the horizontal position of line image in
parallel coordinates

Figure 3.7: Mapping a continuous curve C as an envelope C on parallel coordinates

Figure 3.7 (left). The line mappings of points on C, P i on parallel coordinates,

are plotted on the right as dash lines, which are all tangent to a unique envelope

denoted as C on the xy plane. All points on C are the point images of all tangential
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Figure 3.8: A line point chain LPC and its envelope LPC on parallel coordinates

supporting lines of points P on C. If the curve is defined as a continuous function as

C : x2 = f(x1), the corresponding envelope C could be analytically derived based on

the fundamental duality as:

x =
h

1− f ′(x1)
and y =

x2 + x1f
′
(x1)

1− f ′(x1)
, (3.6)

where f
′
(x1) is the derivative. In addition, if the envelope is also defined by a con-

tinuous function as C : y = g(x), the curve C could be retraced as:

x1 = y − xg′
(x) and x2 = y + (h− x)g

′
(x). (3.7)

Similar transformation also holds for a curve formed by a set of piecewise line

segments, e.g, line point chains or polylines. Consider the line point chain LPc,

depicted in Figure 3.8, which is formed by a set of three lines {l1, l2, l3}. The points

{v1, v2, v3, v4} are to denote the vertices of the chain. As each li is the tangential

supporting line of all points on it, its mapping li on the xy plane is a vertex on

the envelope LP c. For the vertices of LPc which have two supporting lines, i.e. v2

and v3, their line mapping connect two different vertices. Therefore, Based on the

point ↔ line duality, it’s clear to conclude that the envelope of a line point chain

on parallel coordinates is also a line point chain [86]. For a two-dimensional convex
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hull, the enclosing facets (lines) are connected by the vertices to form this type of

line point chain. This result then provides an important insight of how to derive the

envelope of bivariate convex hulls on parallel coordinates.

3.4 Convex hull envelopes in parallel coordinates

After being equipped with the basics of parallel coordinates, this section is to illustrate

the mapping of bivariate convex hulls and present an envelope plotting technique.

3.4.1 Property of convex hull envelopes

In the existing literature, the transformation of convex sets from the Cartesian space

to the parallel coordinates is no longer a new topic. Back to 1985, Inselberg had

already discovered the mapping pattern when he generalized the point↔ line duality

with the theory from projection geometry [77, 82]. The main result was summarized

in [86] by the duality of estar ↔ hstar, where the estar represents an ellipsoid

shaped convex sets, and the hstar represents a point set which is bounded by general

hyperbola envelopes. Here the rigorous definition of hstar is adapted from [86].

Definition 1 A point set HP is an hstar iff its boundary is a closed piecewise line

point curve formed by Cc1 ∪ Cc2 ∪ l1, l2, where Cc1,Cc2 are convex upward and con-

vex downward piecewise line point curves having no vertical edges and left and right

endpoints Li,Ri respectively; for i = 1, 2, li = LjRk, j 6= k, are their common cours-

ing supporting lines, and not vertial lines separate the chains (see Figure 3.9 for an

example).

Based on the duality of convex sets, for a two-dimensional convex hull denoted as

CH, the corresponding envelope on the parallel coordinates is the hstar boundary

denoted as CH, as shown on Figure 3.10. According to Definition 1, CH consists of a

concave up envelope LP u on the top and a concave down envelope LP l at the bottom.

Here we use the subscripts to distinguish the envelopes based on their positions. Both

LP u and LP l are the corresponding mappings of the upper and lower line point chains
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Figure 3.9: hstar – a general hyperbola shape

on CH, see LPu and LPl on Figure 3.10 (left). The so-called starting and ending

points of each chain denoted as vl and vr are the vertices where a pair of supporting

lines, with slope m = 1, could be draw to bound the convex hull in the Cartesian

space.

The special case happens when the CH contains facet(s) with slope m = 1, see

Figure 3.11 (left). Since points on these facets are parallel lines on the xy plane, i.e,

v3 ‖ v4 and v7 ‖ v8 on Figure 3.11 (right), the asymptotes of LP u and LP l are then

decoupled. Correspondingly, the vertices of these facets are considered as the starting

Figure 3.10: Mapping the vertices of a convex hull on parallel coordinates
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Figure 3.11: A special case when a convex hull contains facets with slope m = 1.

and ending points, e.g, LPu starts with vur and ends at vul, while LPl starts with vll

and ends at vlr. According to these observations, the unique envelope of any convex

hull could be systematically plotted once the upper and lower chain are correctly

identified.

The most important property of this mapping is that a convex hull envelope on

parallel coordinates also reflects the convexity according to Corollary 1 in [86].

Corollary 1 P is an interior point of CH iff P separates LP u and LP l (interior

points of estars ↔ interior lines to hstars).

More intuitively, a line P , representing an interior point P ∈ CH, is always bounded

by CH, such that P is on or below LP u, and also on or above LP l. For an exterior

point P /∈ CH, the P may not pass the space that is bounded by CH, or it inter-

cepts with either LP u or LP l. An illustrative example is presented in Figure 3.11,

where the envelope, interior points and exterior points are depicted in green, blue

and red respectively. For rigorous proof of such convex duality, readers could refer to

Inserlberg’s detailed discussion in [86] and the references therein.

Recall in the CH-FD which we discussed in Chapter 2, a convex hull of process

data is utilized to define the system normal operating regime. This result from Insel-

berg indicates any bivariate convex hull could be realized as a unique pair of convex
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(a) A convex hull vs. its interior and ex-
terior points

(b) The convex hull envelope vs. lines of
its interior points

(c) The convex hull envelope vs. lines of
its exterior points

Figure 3.12: A demonstration of convexity on parallel coordinates

envelopes on the parallel coordinates, and the exterior points of the convex hull could

be visually detected, as their line mappings violate the geometric pattern of the en-

velopes. This good feature would allow us to reconstruct the normal operating regime

on parallel coordinates.

3.4.2 Plotting convex hull envelopes

After we demonstrated the mapping of convex hulls on parallel coordinates, one might

conclude that this transformation could be easily derived through the basic point↔

line duality. However, when dealing with random convex sets, how to systematically

construct the envelops is still a practical challenge. In the existing literature, the
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discussion of such convex envelope plotting on parallel coordinates is very limited.

The real time convexity algorithm presented by Inselberg seems to be the only good

solution to this problem, see Algorithm A2 in [86]. The idea is to initialize the

envelopes with three non-collinear points in a given dataset. For each remaining

point, check if there is any outer intersection with the upper or lower envelope, and

then gradually update the envelope till all line images of the samples in the set are

bounded. Although Inselberg’s algorithm holds convincing results for any given two-

dimensional convex sets, the expansion routine, which involving all points in the set,

may seems overwhelming and redundant. For the rest of this section, a simplified

approach for plotting convex envelopes is introduced. We mainly take the advantage

of using the Qhull algorithm to pick out the vertices of a convex set in advance, and

then directly render the facets of the convex hull on parallel coordinates to construct

the envelope. Details of the plotting procedure is illustrated in the following steps,

and the main algorithmic routines are summarized in Algorithm 2.

(a) Step 2: searching for starting points (b) Step 3: identifying LPu and LPl

Figure 3.13: Locating the chain starting points and clarifying upper and lower chains
on a convex hull

Step 1. Initialization:

First, for a set of data points X ∈ R2, the convex hull CH(X) is computed with
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Qhull to determine the set of vertices V .

Step 2. Identifying the starting points of line point chains:

Next, we identify the starting points of upper and lower chains on the convex hull.

To search for the possible candidates, a passing line li with slope m = 1 is generated

for each vi ∈ V , see Figure 3.13a. If li is above or below all remaining vertices, vi

is then considered as a possible left or right starting point, and would be stored in

the candidate sets, i.e. LS and RS, accordingly. Obviously, when CH(X) contains

facet(s) with slope m = 1, more vetices would be assigned in the candidate sets.

Then, in each candidate set, based on their relative positions we clarify which vertex

starts the upper or lower chain, see vul, vur, vll and vlr on Figure 3.13a.

Step 3. Identifying all vertices on the upper and lower chains:

Once the chain starting (ending) points are identified, they are utilized as the

reference to allocate each vi ∈ V on the upper or lower chain correctly. A simple way

is to draw the lines to connect the left and right starting points, i.e. lu passes vulvur

and ll passes vllvlr as shown in Figure 3.13b. Then, for each vi ∈ V which is on or

above lu, it is obviously a member of the upper chain and would be stored in the set

LPu. Whereas, for each vi, which is on or below ll, it would be assign to LPl as a

member of the lower chain. Once all vertices complete this position test, all members

of the upper and lower line point chains are finalized.

Step 4. Mapping the line point chains on parallel coordinates:

Finally, to render the unique envelope of the convex hull on parallel coordinates,

the line point chains which bounded all line images of vertices need to be correctly

derived. First, we sort the vertices on convex hull’s upper and lower chains in a

counter clockwise order (CCW) based on their polar angle relative to the starting

points. In our convention, we start the storing on the upper chain LPu with the right

starting point vur, and for LPl we choose to start with the left point vll. Once the

sorting is complete, facets on each chain are then defined by two neighboring vertices

in the list, see U1-U3 and L1-L3 on Figure 3.14 (left). As these facets are line segments

in R2, their point images on parallel coordinates could be derived with Equation (3.5),

see L1-L3 and U1-U3 on Figure 3.14 (right). By plotting the line segments which link
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Figure 3.14: Step 4: converting facets on a convex hull into vertices of the envelope
on parallel coordinates

these points on the xy plane, the upper and lower chains, namely, LP u and LP l, of

the convex hull envelope are then correctly rendered.

As this plotting technique is developed based on the geometrical property of con-

vex hull envelopes, it guarantees to display the correct line point chain of the envelope

on parallel coordinates. Notices that, this rendering algorithm does not directly com-

pute the convex envelope of a dataset on parallel coordinates; it only aims to render

the envelope of a known convex hull for the ease of implementation. For real time

convex envelope computation, it’s better to refer to Inselberg’s original algorithm

presented in [86].
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Algorithm 2 Plot convex hull envelope

1: Input:
V - set of convex hull vertices

2: Initialize:
LS - set of possible LP chain starting points on the left
RS - set of possible LP chain starting points on the right
LPu - set of vertices on convex hull upper chain
LPl - set of vertices on convex hull lower chain
U - set of points on upper envelope
L - set of points on lower envelope

3: for each vi ∈ V do
4: compute line li pass through vi with slope m = 1
5: if ∀ vj ∈ V is on or below li then
6: assign vi to LS
7: else if ∀ vj ∈ V is on or above li then
8: assign vi to RS
9: end if

10: end for
11: for each vi ∈ LS do
12: if vi is above vj ∈ LS, ∀j 6= i then
13: vul ← vj as the left start of upper chain
14: else if vi is below vj ∈ LS, ∀j 6= i then
15: vll ← vj as the left start of lower chain
16: end if
17: end for
18: for each vi ∈ RS do
19: if vi is above vj ∈ RS, ∀j 6= i then
20: vur ← vi as the right start of upper chain
21: else if vi is above vj ∈ RS, ∀j 6= i then
22: vlr ← vi as the right start of lower chain
23: end if
24: end for
25: assign vul and vur to LPu, and assign vll and vlr to LPl
26: compute the line lu that pass through vul and vur
27: compute the line ll that pass through vll and vlr
28: for each vi ∈ V do
29: if vi is above lu then
30: assign vi to LPu
31: else if vi is below ll then
32: assign vi to LPl
33: end if
34: end for
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Algorithm 2 Plot convex hull envelope (continued)

35: sort veritces in LPu in CCW respect to vur
36: sort veritces in LPl in CCW respect to vll
37: for i = 1 : k − 1 where k is the size of set LPu do
38: compute facet Ui that pass through vivi+ 1 ∈ LPu
39: calculate the point image Ui of Ui with Equation (3.5)
40: end for
41: link all points in U in parallel coordinates as upper envelope LP u

42: for i = 1 : z − 1 where z is the size of set LPl do
43: compute facet Li that pass through vivi+ 1 ∈ LPl
44: calculate the point image Li of Li with Equation (3.5)
45: end for
46: link all points in L in parallel coordinates as upper envelope LP u

3.5 A parallel coordinates based visualization for

convex hull based fault detection

According to our discussions in Sections 3.3 and 3.4, the parallel coordinates mainly

have two advantages for high-dimensional process data visualization. First, it is able

to display multivariate data without a constraint on the data dimensionality. Second,

the envelopes of convex hulls on parallel coordinates not only present the information

of vertices and facets, but also keep the convexity with its geometric patterns. With

these good features, the parallel coordinates indeed could be well utilized for CH-FD

in visualizing the detection results in a multivariate sense. For the rest of this section,

we introduce a parallel coordinates based visualization which is specifically designed

to facilitate CH-FD.

3.5.1 Design

The essential concept of this visualization is to imitate the normal operating regime

obtained in CH-FD by a multivariate envelope on the parallel coordinate which rep-

resents the unique geometric pattern of normal process data. When monitoring the

process, new data samples are also displayed on the parallel coordinates plot along

with the envelope. By comparing the new samples’ ploylines with the envelope, an
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Figure 3.15: CH-FD high-dimensional visualization – computing convex hulls of all
possible bivariate data clusters (an example in R4).

abnormality could be visually detected if any violation of the normal pattern is ob-

served.

Figure 3.16: CH-FD high dimensional visualization – converting convex hulls in R2

into bivariate envelopes in parallel coordinates
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Figure 3.17: CH-FD high dimensional visualization – padding bivariate envelopes

In order to synthesis the high-dimensional envelope for a set of normal data,

the two-dimensional convex hulls of all bivariate data clusters are first computed

by Qhull. See Figure 3.15 for an example of randomly generated dataset with 4

variables, where the convex hull of each bivariate data cluster on the scatter plot is

computed and shown in green. Next, these convex hulls are converted into bivariate

envelopes and plotted on parallel coordinates with Algorithm 2. Figure 3.16 displays

the rendering results. Lastly, to generate a complete envelope covering all monitored

variables, we pad the bivariate envelopes in a user defined axes order. The resulted

multivariate envelope is then able to contain all ploylines of normal samples, as shown

in Figure 3.17, and represents the geometric pattern of the normal data. Notices that

when padding the bivariate envelopes, we only keep the hstar region between the

variables axes to ensure a clear presentation. Unfortunately, some information of

each bivariate convex hull may be lost during this padding process.

3.5.2 Illustrative example II

To better demonstrate how this visualization tool could be utilized to facilitate CH-

FD, we adapted the simulation of a simple open loop linear system suggested by [87]

to present an illustrative example. The numerical description of the monitored system
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is given as:

X =

x1x2
x3

 =

0.3723 0.6815
0.4890 0.2954
0.9842 0.1793

[s1
s2

]
+

e1e2
e3

 (3.8)

The vector [x1, x2, x3]
> denotes the three system states; [s1, s2]

> denotes the Gaus-

sian distribution inputs; and [e1, e2, e3]
> is an array of zero-mean white noises with

the standard deviations of 0.01. The system’s normal operating condition was simu-

lated with the inputs s1 : N(10, 0.8) and s2 : N(12, 1.3), where N(.) is to denote the

Gaussian distribution given the mean and the variance. 1000 samples of both state

variables and inputs were recorded as a set of training data. To achieve the monitor-

ing, CH-FD was first trained by computing a 5-dimensional convex hull of all training

samples with Qhull. The corresponding envelope of 5 monitored variables was then

plotted based on the axes order as x1, x2, x3, s1 and s2, as shown in Figure 3.18.

Clearly, all polyplines representing the normal samples were accurately contained by

the envelope which formed the geometric pattern of the system’s normal operating

regime.

In the testing dataset, the first 200 samples were generated based on the normal

operating condition. At the 201st sample, a change in input variables was triggered

as s1 : N(5, 0.6) and s2 : N(20, 0.7) to imitate the situation where an unexpected

system mode transition appeared. For the fault detection experiment, CH-FD was

first performed with each sample to generated a detection result. When presenting

Figure 3.18: Illustrative example II – Training samples and convex hull envelope
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Figure 3.19: Illustrative example II – Testing samples with the convex hull envelope.

Figure 3.20: Illustrative example II – Alarm plot of CH-FD results.

a sample on the parallel coordinates plot, the color of its ployline was depended on

its detection result, i.e. the blue color indicated a normal sample, and the red color

showed a fault. To display the time information, the detection results of CH-FD were

also presented as a discrete time binary alarm trend on a plot.

According to the detection results presented by the parallel coordinates plot in

Figure 3.19, two separate clusters of ploylines could be clearly observed. The blue

cluster representing the normal samples was perfectly bounded by the convex hull

envelope. In contrast, the ploylines in the red cluster violated the normal pattern in

multiple sections. Especially, for those line segments in between axes x3, s1, and s2,
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their interceptions with the normal envelope clearly indicated the change of system

operating point. From red line segments between other axes, mean shifting of x1

and x2 readings could also be observed. Notice the ploylines of testing samples were

plotted in the time order of the dataset, i.e, the ployline of newest sample was always

above the previous ones. Hence, the red cluster was above the blue cluster, which is

consistent with the alarm plot of CH-FD shown in Figure 3.20.

From this simple example, the parallel coordinates based visualization would allow

us better inspect the detection results of CH-FD. When comparing the geometric

pattern of faulty samples with the normal envelope, more information of system

abnormal behavior could be directly visualized on the plot.
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Chapter 4

Industrial Case Studies

4.1 Overview

In this chapter, the proposed convex hull based fault detection (CH-FD) is applied in

two industrial benchmark processes to demonstrate the detection performance. The

first case study utilizes the simulation of a continuous stirred tank heater (CSTH) to

validate the performance in monitoring a typical process unit. For the second case

study, further testings are conducted with the benchmark plant from the Tennessee

Eastman (TE) challenge problem. To better assess the performance in both examples,

the detection results from the methods discussed in chapter 2 are collected to draw

the comparison analysis.

4.2 Case I: Continuous stirred tank heater

The conterminous stirred tank heater (CSTH) simulator developed by Thornhill [88]

is a hybrid simulation which utilized the real disturbance data captured from a pilot

plant to drive the first principle model. As depicted by the schematic in Figure 4.1,

the stirred tank is supplied with both hot water (HW) and cold water (CW), and

further heated with a steam coil. The three process inputs are the HW, CW and

steam valve position. The process outputs, including the tank level, the water flow

rates and the temperature, are all controlled by PI loops. The measurements from

all sensors are presented as electrical signals on a 4-20mA scale. The disturbances
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of the level, CW valve position and temperature are provided with 2500 samples

of real data collected from a pilot plant. More details of the CSTH model could

be found in [88], and the MATLAB version of the simulation is available at http:

//personal-pages.ps.ic.ac.uk/~nina/CSTHSimulation/index.htm.

Figure 4.1: CSTH configuration

4.2.1 Data preparation

In this experiment, two sets of simulated data had been generated according to the

two normal operating conditions listed in Table 4.1. Notices the tank is operating

without HW under the first condition. For our fault detection experiments, three

process variables, including the level, CW flow and temperature, were chosen to be

monitored. In each operating condition, 2500 normal samples were collected with a

sample time of 1 sec. The first 2000 samples were used for modeling, and the rest

500 samples were used in validations.

4.2.2 Model training

For this example, we compare CH-FD with PCA and 1-class SVM. When training

the models, PCA took two PCs to capture 80% of total variance of the training
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Table 4.1: A list of CSTH normal operating points

Variable Operate point 1 Operate point 2
Level/mA 12.00 12.00
CW flow/mA 11.89 7.330
CW valve/mA 12.96 7.704
Temperature/mA 10.50 10.50
HW valve/mA 0 5.5

Table 4.2: A list of injected faults in CSTH simulation.

Fault Sensor & actuator Type Intensity
1 Level Step bias -1 mA
2 Temperature Step bias 0.5 mA
3 Temperature Ramp bias 0.01 mA/sample + e
4 Temperature Ramp bias 0.001 mA/sample + e
5 CW valve Sticking 2 %
e is a random Gaussian disturbance with µ = 0 and σ = 0.01

samples. 1-class SVM was built with a rbf kernel where the scaling factor γ = 1. The

classifier was tuned to contain 99% of the training samples. In CH-FD, the convex

hull of training data was generated by Qhull, where the resulted FAR of the validation

samples was below 2%. For detection metric of PCA and 1-class SVM, the empirical

thresholds were set as the value of 10th highest metrics in the validation sets to meet

the 99% confidence level.

In our fault detection tests, five faults were designed and implemented according

to the detail descriptions listed in Table 4.2. The disturbance types included sensor

step bias and valve stiction. For each fault, the simulation triggered the disturbance

after 200 sec (200 samples), and then kept running for another 200 sec. As the plant

is controlled by closed loop PI controllers, all faults were expected to be mitigated

after a time period. For two different operating conditions, the process behavior was

also expect to vary. For example, the temperature bias was easier to suppress when
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HW was not supplied. In the analysis, performance measures used in this study were

the fault detection rate and the detection latency.

4.2.3 Detection results

The results of detection rates from all three methods are tabulated in Table 4.3, and

the maximum values have been highlighted in bold face. Among all fault classes,

1-class SVM generally performed better than PCA as expected, due to the fact that

CSTH is a non-linear process. With the aid of an rbf kernel, the classifier of 1-

class SVM clearly had the advantage in recovering non-linear correlations between

process variables. It is also clear to observe that CH-FD was able to obtain better

detection rates than 1-class SVM, except faults 1 and 3 at Operate point 2 where

it only generated 1 less successful detection. For faults 4 and 5 at both operating

conditions, CH-FD had almost improved the detection rates by around 10%.

Table 4.4 lists the detection latencies of all three methods, and again the minimal

delay values have been highlighted in bold face. According to the results of faults 1

and 2, all three methods are able to detect step bias right after is has been triggered.

Table 4.3: CSTH results – detection rates (in %)

Operate point 1 test data
Fault PCA – T 2 PCA – Q 1-class SVM CH-FD
1 44 36.5 50 50.5
2 13.5 16.5 13.5 16.5
3 62 75 78 83
4 19.5 23 27 34.5
5 32.5 12.5 31.5 45.5

Operate point 2 test data
Fault PCA – T 2 PCA – Q 1-class SVM CH-FD
1 67 48.5 76 75.5
2 32 31.5 37.5 39
3 89 90 92 91.5
4 27.5 23 27 43.5
5 19.5 7 23 30.5
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Table 4.4: CSTH results – detection latencies (in sec)

Operate point 1 test data
Fault PCA – T 2 PCA – Q 1-Class SVM CH-FD
1 1 1 1 1
2 1 1 1 1
3 11 12 7 3
4 12 3 3 3
5 3 14 12 2

Operate point 2 test data
Fault PCA – T 2 PCA – Q 1-class SVM CH-FD
1 1 1 1 1
2 1 1 1 1
3 7 15 7 7
4 7 10 7 7
5 9 41 20 13

For the ramp bias in faults 3 and 4, all methods detected the abnormality significantly

slower, because the disturbance would take a considerable time to wind up till the

controllers were no-longer capable of regulating the effect. Similarly, the operating

point oscillation caused by the CW valve stiction would emerge slowly. Thus, the

large delay numbers of fault 5 were presented by PCA-SPE and 1-class SVM. Among

results of different faults, CH-FD all provided the minimal sample delay, except the

case of fault 5 at Operate point 2.

Considering the good results in both detection rates and detection latency, such

competitive performance confirms that the convex hull of normal data captures more

complicate process normal operating regimes. When an abnormal event introduces

a shifting of process operating points, the detection setup of this new approach can

quickly and accurately identify the faulty samples. Thus, CH-FD should be consider

as an effective fault detection approach for small scale systems.
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4.2.4 Fault 5: CW valve 2% stiction

The so-called stiction is one of the most commonly found valve problem in industrial

processes. Due to the phase lag between the control signal and the actual flow rate,

the presence of stiction in valves always causes process oscillations and degrades the

control loop performance. In the existing literature, a number of studies have been

conducted focusing on this problem, and many researchers dedicated to properly

model and effectively detect the stiction phenomena [89]. As mentioned before, fault

5 in this example was to imitate a 2% stiction happened to the CW control valve by

injecting a simple deadband with a magnitude of 0.34mA (equivalent to 2% of total

valve scale 4-20mA).

As the test data depicted in Figure 4.2c, the deadband triggered a serious oscilla-

tion in both the CW flow rate and the tank temperature. Compared to the normal

operation regime defined by the red convex hull, the cluster of test data was signifi-

cation enlarged by the faulty samples laid outside the hull. Thus, in the alarm plot

shown in Figure 4.2d, this fault could be easily detected by CH-FD, and the alarm

pattern indicates the oscillation persisted till the end of the monitoring period.

As for PCA, the T 2 statistic was able to report detections at the first 100 samples

once the fault was triggered. For the last 100 samples, the metric values could not be

distinguished from normal ones. This might due to the fact that the linear correlation

among the three variables still held, even if the data samples were oscillatory. Sim-

ilarly, the metric values of 1-class SVM clearly presented the oscillation. However,

the high empirical threshold was unable to separate most faulty samples from the

normal ones. This particular example well demonstrates the effectiveness of CH-FD

in detecting valve stiction. The convex hull based detection metric is relatively more

sensitive to the faulty samples because it is free of distribution assumptions.

4.3 Case II: Tennessee Eastman process

The Tennessee Eastman (TE) challenge problem proposed by Downs and Vogel [90] is

a popular benchmarking platform for chemical process control and monitoring studies.
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(a) PCA T 2 plot (b) 1-class SVM plot

(c) CH-FD data space monitoring plot (d) CH-FD alarm plot

Figure 4.2: CSTH demo – detection result of valve stiction

In this section, the updated version of the TE simulator provided by Bathelt [91] is

utilized to demonstrate the application of CH-FD in monitoring a complex plant.

Figure 4.3 depicts a basic schematic diagram of the process with five major units,

including the reactor, condenser, stripper, separator and compressor. The process

has four input reactants (A, D, E and C) to produce two main products as well as a

inert and a byproduct. The plant operates with 52 measurements in total, including

22 continuous process variables, 11 manipulated variables and 19 sampled analyzer

measurements which are listed in Tables 4.5 to 4.7. To stabilize this process, the

plant-wide control structure developed by Richer is implemented [92]. For the process

monitoring benchmarking, the 20 faults originally defined by Downs and Vogel listed
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Figure 4.3: Tennessee Eastman process P&ID

in Table 4.8 are utilized [90].

For more information of the TE process model, readers could refer to [90]. More

details of the simulator could be found in [91], and the MATLAB version is available to

download at http://depts.washington.edu/control/LARRY/TE/download.html.

4.3.1 Data preparation

In this case study, our datasets were prepared by collecting the samples from 52

variables with a sample time of 3 minutes. For the training set, measurements were

recorded for 1200 hours of normal operation to generate 24000 samples. For the fault

detection benchmarking, 20 testing sets according to faults listed in Table 4.8 were

generated. Each testing set consisted of 48 hours of operation record (960 samples),

and the fault was introduced after 8 hour normal operation (160 samples).
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Table 4.5: TE process – list of continuous process variables

Variable name Tag Base case value Units

A feed (stream 1) XMEAS(1) 0.25052 kscmh

D feed (stream 2) XMEAS(2) 3664.0 kg h−1

E feed (stream 3) XMEAS(3) 4509.3 kg h−1

A and C feed XMEAS(4) 9.3477 kscmh
Recycle flow XMEAS(5) 26.902 kscmh
Reactor feed rate XMEAS(6) 42.339 kscmh
Reactor pressure XMEAS(7) 2705.0 kPa gauge
Reactor level XMEAS(8) 75.000 %
Reactor temperature XMEAS(9) 120.40 ◦C
Purge rate XMEAS(10) 0.33712 kscmh
Separator temperature XMEAS(11) 80.109 ◦C
Separator level XMEAS(12) 50.000 %
Separator pressure XMEAS(13) 2633.7 kPa gauge

Separator underflow XMEAS(14) 25.160 kg h−1

Stripper level XMEAS(15) 50.000 %
Stripper pressure XMEAS(16) 3102.2 kPa gauge

Stripper underflow XMEAS(17) 22.949 m3 h−1

Stripper temperature XMEAS(18) 22.949 ◦C

Stripper steam flow XMEAS(19) 230.31 kg h−1

Compressor work XMEAS(20) 341.43 kw
Reactor water temperature XMEAS(21) 94.599 ◦C
Separator water temperature XMEAS(22) 77.297 ◦C

Table 4.6: TE process – list of manipulated variables

Variable name Tag Base value(%) Units

D feed flow XMV(1) 63.053 kg h−1

E feed flow XMV(2) 53.980 kg h−1

A feed flow XMV(3) 24.644 kscmh
A and C feed flow XMV(4) 61.302 kscmh
Compressor recycle valve XMV(5) 22.210 %
Purge valve XMV(6) 40.064 %

Separator pot liquid flow XMV(7) 38.100 m3 h−1

Stripper liquid product flow XMV(8) 46.534 m3 h−1

Stripper steam valve XMV(9) 47.446 %

Reactor cooling water flow XMV(10) 41.106 m3 h−1

Condenser cooling water flow XMV(11) 18.114 m3 h−1
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Table 4.7: TE process – list of sampled analysis variables

Analyzer unit Variable name Tag

Reactor feed analysis (stream 6)

Component A XMEAS(23)
Component B XMEAS(24)
Component C XMEAS(25)
Component D XMEAS(26)
Component E XMEAS(27)
Component F XMEAS(28)

Purge gas analysis (stream 9)

Component A XMEAS(29)
Component B XMEAS(30)
Component C XMEAS(31)
Component D XMEAS(32)
Component E XMEAS(33)
Component F XMEAS(34)
Component G XMEAS(35)
Component H XMEAS(36)

Product analysis (stream 11)

Component D XMEAS(37)
Component E XMEAS(38)
Component F XMEAS(39)
Component G XMEAS(40)
Component H XMEAS(41)

4.3.2 Model training

CH-FD training

In order to achieve an effective on-line monitoring for the TE process, the applied

method should be able to detect any abnormal deviation appearing in the 22 process

variables and the 11 manipulated variables. Hence, in the training stage of CH-

FD, we aim to capture the normal operating regime of all 33 monitored variables.

Such a large number of data dimensions is indeed overwhelming for the convex hull

computation. The associated challenges are mainly two folded. First, when the data

dimension kept increasing, the sets of facets and hyperplane functions would also be

enlarged exponentially. With limited storage and computing power, Qhull could only

handle the data up to 9 dimensions [74]. Thus, to directly construct a convex hull

with all the monitored variables was not feasible. Secondly, even if we were able to

push the algorithm to its limit, the resulting high-dimensional convex hull would also
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Table 4.8: TE process – list of faults

Fault Description Type

1 A/C feed ratio, B composition constant (stream 4) Step
2 B composition, A/C ratio constant (stream 4) Step
3 D feed temperature (stream 2) Step
4 Reactor cooling water inlet temperature Step
5 Condenser cooling water inlet temperature Step
6 A feed loss (stream 1) Step
7 C header pressure loss-reduced availability (stream 4) Step
8 A, B, C feed composition (stream 4) Random
9 D feed temperature (stream 2) Random
10 C feed temperature (stream 4) Random
11 Reactor cooling water inlet temperature Random
12 Condenser cooling water inlet temperature Random
13 Reaction kinetics Slow Drift
14 Reactor cooling water valve Sticking
15 Condenser cooling water valve Sticking
16 Unknown Unknown
17 Unknown Unknown
18 Unknown Unknown
19 Unknown Unknown
20 Unknown Unknown

suffer a high FAR due to the ‘Curse of Dimensions’.

To overcome this barrier of data dimensionality, we came up with following strate-

gies to implement the CH-FD:

• Variable localization: All process variables and manipulated variables are

allocated into different groups according to the layout of the main operating

units and the major steam flows in the TE plant. Each group is then considered

as a sub-unit consisting no more than 8 variables and would be monitored

independently.

• Recursive training: A convex hull of each sub-unit would be trained and cross

validated with recursively enlarged training sets, till the FAR of the validation

samples converges to a desired value.

65



Table 4.9: TE process CH-FD – monitored variables partition

Reactor Inputs (6D)
Variable Steam Tag
A feed 1 XMEAS(1)
A feed flow 1 XMV(3)
D feed 2 XMEAS(2)
D feed flow 2 XMV(1)
E feed 3 XMEAS(3)
E feed flow 3 XMV(2)
Reactor PVs (6D)
Variable Steam Tag
Reactor feed rate 6 XMEAS(6)
Reactor pressure 7 XMEAS(7)
Reactor level XMEAS(8)
Reactor temperature XMEAS(9)
Reactor cooling water outlet temperature 12 XMEAS(21)
Reactor cooling water flow 12 XMV(10)
Separator PVs (5D)
Variable Steam Tag
Separator pot liquid flow 10 XMV(7)
Product separator underflow 10 XMEAS(14)
Product separator pressure XMEAS(13)
Product separator level XMEAS(12)
Product separator temperature XMEAS(11)
Stripper PVs (6D)
Variable Steam Tag
A and C feed flow 4 XMV(4)
A and C feed 4 XMEAS(4)
Stripper pressure 5 XMEAS(16)
Stripper level XMEAS(15)
Stripper temperature XMEAS(18)
Stripper steam flow XMEAS(19)
Product Outlet (2D)
Variable Steam Tag
Stripper underflow 11 XMEAS(17)
Stripper liquid product flow 11 XMV(8)
Condenser PVs(2D)
Variable Steam Tag
Condenser cooling water outlet temperature 13 XMEAS(22)
Condenser cooling water flow 13 XMV(11)
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Compressor PVs(2D)
Variable Steam Tag
Recycle flow 8 XMEAS(5)
Compressor work XMEAS(20)
Purge Gas (2D)
Variable Steam Tag
Purge rate 9 XMEAS(10)
Purge valve 9 XMV(6)

Based on the TE process schematic diagram in Figure 4.3, 8 monitoring units

were introduced, including 5 operation units: reactor, condenser, stripper, separator

and compressor, as well as three main stream flows: reactor inputs, product outlet

and purge gas. Each sub-unit consisted of all related variables listed in Table 4.9.

Notice that in the Richer’s control scheme, the compressor recycle valve and stripper

steam valve (XMV(5) and XMV(9)) were not controlled and held at their optimum

set points. Thus, these two manipulate variables were not consider in this imple-

mentation. Otherwise, this monitoring scheme covered all 22 process variables and 9

manipulate variables.

Table 4.10: TE process CH-FD – FARs of convex hull in each monitoring unit

Sub-units 90 h 180 h 300 h 600 h 900 h 1200 h
Reactor inputs (6D) 19% 11% 8% 4% 4% 3%
Reactor (6D) 22% 15% 14% 8% 5% 5%
Separator (5D) 12% 7% 5% 5% 4% 2%
Stripper (6D) 22% 13% 13% 10% 7% 5%
Condenser (2D) 1% 0% 0% 0% 0% 0%
Compressor (2D) 0% 0% 1% 1% 0% 0%
Purge gas (2D) 0% 0% 0% 0% 0% 0%
Product outlet (2D) 1% 0% 0% 0% 0% 0%

When constructing the convex hull for each sub-unit, the normal datasets were

gradually enlarged from 90 hour to 1200 hour length. In each set, the first 2/3

samples were loaded to Qhull for convex hull computation. The remaining 1/3 samples
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were used for cross validation. The resulted FARs for all sub-units are tabulated in

Table 4.10. It is clear to observe that the high-dimensional convex hulls required

significantly more training samples to stabilize the FAR. When the normal operation

was extended to 1200 hour, the FARs of all sub-units converged below to somewhere

below 5%.

The convex hull envelopes of all sub-units were then plotted on parallel coordinates

as shown in Figure 4.4. To provide a better presentation, the mean centered and

standardized training samples were utilized to generate those greened envelopes with

the graphical method presented in Chapter 3. Based on the detection results of CH-

FD, the validation samples had been projected on the parallel coordinate plots in

different colors, i.e, normal samples were in blue and faults were in red. It is clear

to observe that most of the normal samples were contained by the envelopes, and

only few false positive samples appeared. Thus, for later fault detection tests, the

convex hulls derived from the data of 1200 hour normal operation were utilized as

the monitoring models, and the corresponding parallel coordinates envelopes were

considered as the visualization references.

Training of the other methods

To analyze the performance of CH-FD, a comparison study was made with PCA,

PLS and 1-class SVM. When training these methods, the modeling and validation

were all conducted with the 1200 hour training data. For PCA, 29 PCs were retained

to capture 95% of the total variance of the training samples. When training PLS,

the model considered the sampled analysis variable XMEAS(35) as the output, and

used 29 LVs to extract 95% of the total linear correlations. The thresholds of T 2 and

SPE metrics, in both PCA and PLS, were calculated with a 99% confidence level.

The classifier of 1-class SVM was also built to capture 99% of normal samples with a

rbf kernel. The kernel scaling factor γ was set as 1. The detection threshold was left

at the default value (−F (x) = 0) based on the resulted classifier function.
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Figure 4.4: TE process CH-FD – visual validation on parallel coordinates

4.3.3 Detection results

Similar to the previous case study, the fault detection rates and the detection delays

are the two performance measurements that we use to evaluate all 4 methods. Ac-

cording to the previous work by Russel in [44], faults 3, 9 and 15 are unable to cause

any signification deviation to the steady state operating point. Thus they are gener-

ally hard to be detected by existing data-driven methods. Later, Yin also reported

that fault 16 had low detection rates among all methods tested in [51], particularly

when the TE simulation was implemented with the control structure by Richer [92].

According to our experiment, CH-FD was also unable to detect these faults. Thus,

in the following analysis, the results of faults 3, 9, 15 and 16 are not included.
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Detection delays

In this case study, the detection delay was recorded as the time duration between the

instance when a fault was triggered and the first detection sample of each method.

The recorded delays are tabulated in Table 4.11, where the minimum delay of each

fault is presented in bold face. According to this set of results, PLS and 1-class

SVM were the two fastest detection methods for step disturbances (in faults 1-7),

where they only introduced one sample delay except faults 1 and 2. However, the

SPE metric of PLS presented large delay numbers in most of the faults. This is

because the residuals of the PLS model which only carries limited information of

the variables correlations; and thus the SPE metric would be less sensitive to the

deviations appeared in the data. CH-FD and PCA also detected these faults quickly

with few more delay samples. In detecting random disturbances for faults 8-12, CH-

FD and 1-class SVM showed clear advantages. In the remaining faults, these two

methods also demonstrated their superiority over PCA and PLS. Particularly for

Table 4.11: TE process results – the comparison of detection delays (in min)

IDV CH-FD PCA-T 2 PCA-Q 1-class SVM PLS - T 2 PLS - SPE
1 9 9 6 3 12 66
2 15 21 12 12 3 270
4 6 6 6 3 3 270
5 6 3 3 3 3 9
6 6 6 6 3 3 24
7 6 6 6 3 3 9
8 27 42 54 27 60 234
10 33 42 39 33 39 N/A
11 15 15 15 15 15 15
12 12 27 72 12 60 N/A
13 39 75 75 75 75 129
14 6 9 12 3 3 33
17 174 189 177 183 177 249
18 213 240 222 223 228 354
19 6 12 12 3 12 90
20 135 138 129 123 123 168
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fault 13, the delay time was significantly reduced by CH-FD.

From this set of results, the advantage of CH-FD in capturing an accurate and

strict process normal operating regime could be further validated, even when part of

the correlation was disregarded as monitored variables were localized into different

sub-units. On the other hand, the superiority of 1-class SVM in detecting process

non-linearity and local behavior deviations [48] was again confirmed. Both of these

two methods seem to be very competitive. For PCA and PLS, their performance were

also appealing. However, due to the fact that their detection metrics were designed

based on the assumption of linear Gaussian distributions, they only had advantages

in quickly detecting simple step bias disturbances.

Detection rates

Table 4.12: TE process results – the comparison of detection rates (in %)

IDV CH-FD PCA - T 2 PCA - SPE 1-class SVM PLS - T 2 PLS - SPE
1 99.8 99.8 99.9 99.9 100 97.5
2 99.5 99.1 99.6 99.9 99.8 75.7
4 99.8 99.9 99.9 99.9 100 37.2
5 99.8 99.9 99.9 99.9 100 99.7
6 99.3 99.3 99.3 99.9 100 95.1
7 99.8 99.8 99.8 99.9 100 99.8
8 98.3 97.8 97.43 98.1 98.0 29.0
10 95.4 72.9 92.3 84.8 96.1 0.12
11 99.5 99.1 98.4 99.6 99.5 68.0
12 69.0 40.9 19.7 47.8 54.4 0.12
13 97.1 97.1 97.1 97.0 97.3 25.09
14 99.9 99.6 99.5 99.6 99.9 65.0
17 92.8 91.4 92.9 92.6 93.0 44.01
18 81.1 69.5 78.9 72.3 80.9 7.87
19 99.6 98.4 98.5 99.0 99.6 27.3
20 94.5 94.5 94.9 95.3 95.3 14.7

The results are again tabulated in Table 4.12, and the maximum detection rate

of each fault is presented in bold face. As our training sets consist of significantly
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more samples than other TE datasets, which were applied in [44, 48, 51], the trained

model in each method would be more accurate and robust. So, better results on the

detection rates were expected from all 4 methods. For the step disturbances in faults

1-7, all methods had high detection rates which were all above 99%. Similar to the

results on the detection delay, 1-class SVM and PLS T 2 had some slight advantages,

while CH-FD and PCA almost had identical performance. When detecting random

disturbances in faults 8-12, the best detection rates were shared among CH-FD, 1-

class SVM and PLS T 2. Particularly in the test of fault 12, CH-FD had a signification

higher detection rate over other methods. For the rest of the fault list, CH-FD and

PLS T 2 were the top two candidates which shared most of the best results.

The above results basically were consistent with what was observed in the earlier

comparison of the detection delays. However, CH-FD did not clearly stand out for the

best detection rate. This might due to the fact that part of correlation was ignored

when we separated the variables into different monitoring units. For example, the

flow of all reactants would directly affect the input flow of the reactor, but their

measurements were in different monitoring units, so that the correlation could not be

captured by the two separate convex hulls.

Fault detection visualization

During the experiments, faulty samples in each testing set were also projected onto

the separated parallel coordinates plots with the normal operating envelopes. It was

interesting to observe that our plots showed clear advantages in visualizing and iden-

tifying the top bad variables for certain simple faults. Taking fault 10 as an example,

the disturbance was introduced by the random variance of C feed temperature. Ac-

cording to the parallel coordinates visualization shown in Figure 4.5, the 5th variable

on the plot of the stripper unit could be easily identified as the worst upset variable

where the geometric pattern presented clear oscillation. Recall our variable partition,

which is listed in table 4.9, this variable is exactly the stripper temperature which

directly reflected the root cause of the fault. In addition, similar oscillation patterns

could also be observed from the 1st variable of the separator unit and the 2nd variable
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Figure 4.5: TE process – presenting fault 10 on parallel coordinates

of product outlet unit. These variables are the valve control signals of the input steam

and the outlet steam of the stripper unit. From their oscillation patterns, we could

conclude that the control was trying to compensate the temperature disturbance by

tuning the steam flow rates of the stripper units. When referring to the alarm plot

of CH-FD shown in Figure 4.6a, the consistent alarm announcing period throughout

the faulty samples also conformed the successful detection of the disturbance. While

on the plots of PCA, PLS and 1-class SVM presented in Figures 4.6b to 4.6d, the

detection metrics all showed clear dropping periods indicating the oscillation of the

faulty variables. However, they can not provide sufficient information to allow the

user to locate the source of abnormality.
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(a) Fault 10 CH-FD alarm plot (b) Fault 10 PCA metrics

(c) Fault 10 PLS metrics (d) Fault 10 1-class SVM metrics

Figure 4.6: TE process – detection results of fault 10
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Chapter 5

Concluding Remarks

5.1 Contributions

In modern process industries, the critical requirements of operating safety and high

demands of production efficiency are continuously driving the advances in process

monitoring. Over the last few decades, multivariate data-driven techniques have an

emerging success due to their relative low-cost implementation and good performance.

Today, a variety of different statistical or machine learning tools have been introduced

in this field and proven to be effective in detecting process abnormal behavior. How-

ever, most of these methods have been developed based on their prior assumptions

of process data distributions. In real industrial practice, the process data collected

during on-line operation may not present a clear distribution pattern. When apply-

ing these data-driven techniques in a real monitoring scheme, their reliability may

be hard to guarantee. This thesis dedicates to seeking for a feasible solution to this

potential issue. As a result, the idea of using convex hulls as an assumption free

detection metrics is successfully adapted for the process monitoring design, and a

parallel coordinates based visualization tool is introduced to facilitate the presenta-

tions of detection results. The major contributions through the content of this thesis

are summarized as follows.

In chapter 2, a study of three iconic data-driven monitoring techniques, including

PCA, PLS and 1-class SVM, are first presented to discuss the common preliminaries

and design concepts of data-driven methods. Next, we introduce the convex hull based
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fault detection method. In this new method, the Quickhull algorithm is utilized to

construct the convex hull of collected normal training data; and a detection metric

based on the hyperplane equations of the convex hull is then designed.

In chapter 3, we investigate for a better visual presentation of the real time moni-

toring results. To overcome the dimensional limitation of scatter plots in the Cartesian

space, we present a high dimensional process visualization based on parallel coordi-

nates. First, basic background and preliminary of the duality between Cartesian

space and parallel coordinates are provided. To better facilitate our newly proposed

fault detection method, the way of reconstructing convex hull envelopes in parallel

coordinates are later introduced. A simple example is demonstrated to show how

faulty samples could be visually detected with this visualization setup.

In order to further validate the performance of convex hull based fault detection,

the testing results with two simulated industrial case studies are presented in chapter

5. Our results from the CSTH example manifest the superior performance of this new

method in detecting faults caused by random disturbances and valve stiction. In the

second example of the TE benchmark process, we demonstrate how to implement this

new method with a large scale process. Although it is hard to overcome the ‘curse

of dimensionality’, once the convex hulls are fed with sufficient training data, the

detection results from this new method are also competitive comparing to existing

data-driven techniques.

5.2 Scope of the future work

• Due to the ‘curse of dimensionality’, the proposed convex hull based detection

technique clearly has the limitation of its high false alarm rates especially when

dealing with high-dimensional process data. This may directly limit the ap-

plications of this method in monitoring large scale systems. This issue should

be further addressed in the future study. Certain tools from the field of indus-

trial alarm monitoring may be adopted as good solutions. For example, data

pre-filtering and delay timers could be combined with the fault detection de-
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sign where high false alarm rates of the convex hull metric may be effectively

suppressed.

• In the setup of our parallel coordinates based visualization, how to effectively

reveal the time information of the monitored process data is still a challenging

topic. The solution of this problem may lead us to investigate the multivariate

causality analysis on the parallel coordinates. In addition, with different axes

orders, the patterns formed by the same set of data would vary on parallel

coordinates. Hence, how to effectively order the variable axes to highlight the

information of variables dependency is also an interesting topic worthy further

investigation.
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Appendix A

Outline of Qhull Algorithm

Algorithm 3 Qhull

1: Input:
a set of d dimensional data points X

2: Initialize:
create a d simplex with d+ 1 points in X

3: for each facet f do
4: for each unassigned x ∈ X do
5: if x is above f then
6: assign x to f ’s outside set
7: end if
8: end for
9: end for

10: for each f with a non-empty outside set do
11: select the furthest point x of f ’s outside set
12: initialize the visible facet set FV of x
13: for each unvisited neighbor f of facets in FV do
14: if x is above f then
15: add f to FV
16: end if
17: end for
18: identify the boundary of FV as a set of ridge RB
19: for each ridge r ∈ RB do
20: create a new facet from r and x
21: end for
22: for each new facet f

′
do

23: for each point y in an outside set of a facet in FV do
24: if y is above f

′
then

25: assign y to f
′
’s outside set
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Algorithm 3 Qhull (continued)

26: end if
27: end for
28: end for
29: delete the facets in FV
30: end for
31: Output:

list of facet F , list of vertices V and list of facet hyperplane
functions including normal vectors in N and offset vector S
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