
Factorization Ranking Model for Fast Move Prediction
in the Game of Go

by

Chenjun Xiao

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c© Chenjun Xiao, 2016



Abstract

In this thesis, we investigate the move prediction problem in the game of Go by

proposing a new ranking model named Factorization Bradley Terry (FBT) model.

This new model considers the move prediction problem as group competitions

while also taking the interaction between features into account. A FBT model is

able to provide a probability distribution that expresses a preference over moves.

Therefore it can be easily compiled into an evaluation function and applied in a

modern Go program. We propose a Stochastic Gradient Decent (SGD) algorithm

to train a FBT model using expert game records, and provide two methods for fast

computation of the gradient in order to speed up the training process. We also in-

vestigate the problem of integrating feature knowledge learned by the FBT model in

Monte Carlo Tree Search (MCTS). Experimental results show that our FBT model

outperforms the state-of-the-art fast move prediction system of Latent Factor Rank-

ing, and it is useful in improving the performance of MCTS.

ii



Acknowledgements

First of all, I would like to express my sincere gratitude to my supervisor, Prof.

Martin Müller. He always provides me freedom to explore what I found interesting,

and his valuable guidance and support helped me in all the time of research and

writing of this thesis.

I gratefully acknowledge University of Alberta for financially supporting me. I

would also like to thank Kenny Young, who helped me to present our work at the

Computer Games Workshop at IJCAI 2016.

Finally, I want to thank my family. It is impossible to get through all these

challenges and hard time without your supports. Thank you so much for your un-

conditional love and support.

iii



Table of Contents

1 Introduction 1
1.1 Games and Artificial Intelligence . . . . . . . . . . . . . . . . . . . 1
1.2 The Game of Go . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Move Prediction in the Game of Go . . . . . . . . . . . . . . . . . 3
1.4 Contributions of this Thesis . . . . . . . . . . . . . . . . . . . . . . 3

2 Literature Review 5
2.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Stochastic Gradient Descent . . . . . . . . . . . . . . . . . . . . . 6
2.3 Factorization Machine . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Monte Carlo Tree Search . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Improving MCTS with Domain Knowledge . . . . . . . . . . . . . 9
2.6 Representing Moves with Features . . . . . . . . . . . . . . . . . . 9
2.7 State-of-the-Art Fast Move Prediction . . . . . . . . . . . . . . . . 11

3 The Factorization Bradley-Terry Model for Fast Move Prediction in the
Game of Go 14
3.1 The Factorization Bradley-Terry Model . . . . . . . . . . . . . . . 14
3.2 Move Prediction in Go using the Proposed Model . . . . . . . . . . 15
3.3 Parameter Estimation for FBT . . . . . . . . . . . . . . . . . . . . 16

3.3.1 Definition of the Optimization Problem . . . . . . . . . . . 16
3.3.2 Parameter Learning with Stochastic Gradient Descent . . . 16
3.3.3 Choice of Approach for Optimization . . . . . . . . . . . . 17
3.3.4 Efficient Gradient Computation . . . . . . . . . . . . . . . 18
3.3.5 Approximate Gradient . . . . . . . . . . . . . . . . . . . . 19

3.4 Integrating FBT Knowledge in MCTS . . . . . . . . . . . . . . . . 20

4 Experiments 22
4.1 Experiments of Move Prediction Performance . . . . . . . . . . . . 22

4.1.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1.2 Choice of Features . . . . . . . . . . . . . . . . . . . . . . 23
4.1.3 Expert Move Prediction . . . . . . . . . . . . . . . . . . . 25
4.1.4 Sampling for Approximate Gradient Computation . . . . . . 29

4.2 Integrating FBT-Learned Knowledge in MCTS . . . . . . . . . . . 30
4.2.1 Feature Knowledge for Move Selection in Fuego . . . . . . 30
4.2.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . 32

5 Conclusion and Future Work 35

Bibliography 36

iv



List of Tables

4.1 Results for Fsmall: probability of predicting the expert move with
FBT and LFR, for k = 5 and k = 10. Best results for each method
in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Results for Flarge, same format as Table 4.1. . . . . . . . . . . . . . 24
4.3 Move prediction by FBT with different sample sizes on data sets S1 −

S3. Results for LFR and FBT Full shown for comparison. Bold values
highlight best results among sampling methods. . . . . . . . . . . . . . 29

4.4 Running time comparison (specified in seconds) with different sim-
ulations for per move. . . . . . . . . . . . . . . . . . . . . . . . . 34

v



List of Figures

1.1 An example of a Go game: Opening (left) and end of the game
(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Small 3×3 Pattern Examples: (a) and (b) 3×3 pattern in the center.
(c) and (d) 3 × 3 pattern in the border. (e) and (f) 3 × 3 pattern in
the corner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Large Pattern Template [35]. . . . . . . . . . . . . . . . . . . . . . 11
2.3 An example of representing a move by a group of features. . . . . . 12

4.1 Distribution of patterns with different size harvested at least 10
times in different game phases. . . . . . . . . . . . . . . . . . . . . 26

4.2 Move prediction experiments of FBT and LFR trained with Fsmall.
y-axis is the prediction accuracy. In (a), the x-axis is the number of
ranked moves, while in (b) the x-axis represents the game stage. . . 27

4.3 Move prediction experiments of FBT and LFR trained with Flarge.
y-axis is the prediction accuracy. In (a), the x-axis is the number of
ranked moves, while in (b) the x-axis represents the game stage. . . 28

4.4 Accuracy of approximate sampling over time . . . . . . . . . . . . 30
4.5 Experimental results of integrating FBT knowledge in Fuego. . . . 33

vi



Chapter 1

Introduction

1.1 Games and Artificial Intelligence

Games, as a simplification of real-world decision making problems, provide an

ideal environment and a big challenge for Artificial Intelligence (AI) research.

Games research has pioneered many fields of AI research, such as Alpha-Beta

search [22], Monte Carlo Tree Search [10] and Deep Reinforcement Learning [25,

33]. All of these algorithms were originally designed to play complex games, and

have found applications in other areas [8, 21]. Computer programs using these tech-

niques are capable of playing at the same level as, or even defeating the strongest

human players in the world in many popular games:

• The chess program Deep Blue, developed by IBM used Alpha-Beta search

implemented in a game-specific hardware running on a specific-purpose ma-

chine. It defeated the World Chess Champion Garry Kasparov by a score of

two wins, one loss, and three draws in 1997 [32]. Current chess programs far

surpass the best human players.

• The checkers program Chinook developed by Jonathan Schaeffer and his

colleagues first won matches against top humans. Later, they solved the game

[31, 30]. The program used parallel search and a large endgame database.

• The poker program Cepheus developed by Michael Bowling and his col-

leagues is capable of playing a nearly perfect game of Heads-up Limit Hold’em

poker [7].

1



Figure 1.1: An example of a Go game: Opening (left) and end of the game (right).

• The Atari 26001 games playing program developed by Google Deepmind

with a deep convolutional network trained by variants of Q-learning from

self-played games achieved human-level performance in many games [25].

• The Go program AlphaGo developed by Google Deepmind recently won 4-

1 against Lee Sedol, one of the best Go players in the world. The program

applies several deep convolutional networks, trained by supervised learning

and reinforcement learning, in a Monte Carlo Tree Search framework [33].

1.2 The Game of Go

Go is an ancient Chinese board game. The game is played by two players Black

and White, who take turns to place a single stone of their own color on an empty

intersection on a Go board. The standard board sizes are usually 9 × 9, 13 × 13

and 19 × 19. Stones can only be removed if they become surrounded by opponent

stones. The goal of the game is to control a larger total area of the board with their

stones than the opponent by the end of the game. Figure 1.1 shows an example of

a typical Go game. The left picture shows the opening phase of the game, while

the right picture shows the end of the game. Black wins the game at the end by 3.5

points using Chinese rules.

Although its rules are quite simple, Go is a very complex and deeply strategic

1Atari 2600 was a popular second generation game console originally released in 1977.

2



game. For many years, it has been considered as a grand challenge for Artificial

Intelligence. In general, the difficulty of conquering computer Go comes from two

aspects. First, the game of Go has a tremendously large search space. For example,

19 × 19 has up to 361 legal moves and more than 10170 game states [16]. This is

many orders of magnitude too large for search algorithms that have been proven to

be successful in games such as chess and checkers. Second, before AlphaGo [33]

it has been considered very difficult to construct a suitable evaluation function [26]

for Go positions.

1.3 Move Prediction in the Game of Go

Human experts rely heavily on their Go knowledge when playing the game. This

knowledge is accumulated through a lifetime of playing and investigating game

records. It can help human experts to recognize promising moves and important

regions of a Go board without simulating many thousands of continuations like

modern Go programs. In computer Go research, knowledge is usually represented

by shape patterns and tactical features. A move prediction system is capable of

acquiring feature knowledge from human game records or self-played games using

machine learning techniques in order to mimic how experts play the game. Such

a system can directly serve as a Go playing program, but more importantly, it can

play the role of a selective move generator to guide the search tree by estimating

how likely each candidate move is to be played by an expert. Selective search

algorithms, such as Monte Carlo Tree Search (MCTS) [10], can then focus on the

most promising moves. Move prediction systems play a very important part in state-

of-the-art computer Go programs [8].

1.4 Contributions of this Thesis

This thesis focuses on investigating the problem of move prediction in the game

of Go. In particular, we are interested in building a fast move prediction sys-

tem, which is expected to predict expert moves as accurately as possible without

losing too much computational efficiency. As in most popular fast move predic-

3



tion systems, we consider each move as a group of features, and learn each fea-

ture’s weights to predict expert moves using a supervised learning method. In or-

der to do this, we propose and evaluate a new ranking model called Factorization

Bradley-Terry (FBT) model. The major innovation of this new model is to con-

sider the interaction between individual features within the same group as part of

a probability-based framework. This combines the strengths of two leading ap-

proaches: The probability-based Minorization-Maximization technique [11] and

Latent Factor Ranking [38], a model which considers feature interactions.

This thesis is organized as follows: In Chapter 2, we review several techniques

related to this thesis. In Chapter 3, we give the definition of the FBT model as

well as a stochastic Gradient Descent (SGD) based algorithm to train it using pro-

fessional game records. Two techniques are provided in order to accelerate the

training process: an efficient incremental implementation of the gradient update,

and an unbiased approximate gradient estimator. We also show how to integrate

FBT knowledge in the MCTS algorithm. In Chapter 4, we vary the size of data sets

as well as the expressiveness of the feature sets, in order to test the performance

of the FBT model. Experimental results show that FBT achieves the state-of-the-

art move prediction accuracy among all fast move prediction algorithms. We also

show that the feature knowledge learned by the FBT model is useful in improving

the strength of Monte Carlo Tree Search in the Go program Fuego [14]. The main

results of this thesis have been published in the following publications [39, 40]:

• Chenjun Xiao and Martin Müller. Factorization Ranking Model for Move

Prediction in the Game of Go. In Proceedings of the Thirtieth AAAI Confer-

ence on Artificial Intelligence (AAAI-2016), 1359-1365, 2016.

• Chenjun Xiao and Martin Müller. Integrating factorization ranked features

into MCTS: an experimental study. Computer Games Workshop at IJCAI,

2016.

4



Chapter 2

Literature Review

2.1 Supervised Learning

The objective of building a move prediction system is learning to predict expert

moves from professional game records. This is a standard supervised learning task

[37]. In supervised learning, the training data consists of a set of training examples,

which are pairs (x, y) consisting of some input data x and its desired output label y.

A supervised learning algorithm analyzes the training data and learns a prediction

function that predicts the label of new examples.

Most supervised learning algorithms aim to minimize a loss function L over

the training set. Suppose there is a labeled training set of N examples D =

{(x1, y1), . . . , (xN , yN)}. The input data x is usually represented by a feature vec-

tor. A supervised learning algorithm learns a function fθ : X → Y which predicts

the label of given input. The prediction function fθ is parameterized by a weight

vector θ. For example, in the linear case, θ corresponds to the weights of the fea-

tures. In the case where fθ is approximated by a neural network, θ corresponds to

the weight parameter of the neural network. A loss function l : Y × Y → R
≥0

for one training example is defined in order to measure how well f fits the training

data. The loss function over all training data is defined by

L(D, θ) =
N∑

i=1

l(fθ(xi), yi) (2.1)

The prediction function is learned by approximately solving an optimization prob-

5



Algorithm 1 Stochastic Gradient Descent

Input Initial parameters θ, learning rate α, training data D
1: while convergence condition not satisfied do

2: Randomly shuffle the training data D
3: for i = 1, 2, . . . , N do

4: θ = θ − α∇l(fθ(xi), yi)
5: end for

6: end while

lem

θ∗ = argminθ L(D, θ) (2.2)

Typical choices of the loss function l include l1 loss: |fθ(x)− y|, l2 loss: 1
2
(fθ(x)−

y))2 and negative log loss: −ln P (y|fθ(x)). In particular, the negative log loss is

designed for learning a probability-based model. Minimizing this loss corresponds

to the maximum likelihood estimation in statistics [4].

One common problem in supervised learning is overfitting, which means that

the learned model has poor performance for predicting new examples, since it over-

reacts to minor variations in the training data [4]. To avoid it, we usually solve the

following optimization problem instead of (2.2)

θ∗ = argminθ L(D, θ) + λR(θ) (2.3)

Here, R is a regularization function, which is typically a penalty on the com-

plexity of the learned model, and λ is a constant controlling the scale of the regu-

larization [4].

2.2 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is a stochastic approximation of the gradient

descent algorithm [5]. It was developed in order to solve large optimization prob-

lems. We use the optimization problem (2.2) to explain the idea of SGD. A standard

gradient descent algorithm performs the following updates iteratively until a con-

vergence condition is satisfied:

6



θ ← θ − α∇L(D, θ) = θ − α

N∑

i=1

∇l(fθ(xi), yi) (2.4)

This method is very straightforward and easy to implement in practice. How-

ever, if the training set is very large and if no simple formula exists to compute the

gradient ∇l(fθ(xi), yi), then evaluating the exact gradient ∇L(D, θ) might require

expensive computations. SGD deals with this issue by sampling a single example

(xi, yi) from the data set, and performs the gradient update for that sample only:

θ = θ − α∇l(fθ(xi), yi) (2.5)

It is well known that the sampled gradient matches the exact gradient in expectation

[5]. Although the theory demands selecting examples randomly, in practice it is

usually faster to first randomly shuffle the data set, then go through it sequentially

[6]. Pseudocode of SGD is provided in Algorithm 1.

2.3 Factorization Machine

There are two main ideas behind the model of Factorization Machine (FM) [27]:

taking the interaction between features into account, and applying a factorization

method to model the interaction. Including interactions between features in the

model has the advantage that more information is taken into account. The model

equation for a FM is defined as:

fw,v(x) := w0 +
m∑

i=1

wixi +
m∑

i=1

m∑

j=i+1

〈vi, vj〉xixj (2.6)

where w0 is the global bias, wi is the strength of xi and the dot product 〈vi, vj〉

models the interaction between xi and xj .

It has been shown that the interactions are very important in the move prediction

problem [38]. The most straightforward way to model the interaction is to construct

a matrix, where each element indicates the interaction between two features. How-

ever, this simple model is extremely hard to learn when dealing with the prediction

problem under a sparse data set. Data is said to be sparse when almost all elements

of the feature vector are zero, and a sparse data set contains all sparse data. It is not

7



hard to see that if two features rarely appear together in the data set, it is impossible

to estimate their interaction. FM adopts a very smart way to deal with this issue: as

shown in model (2.6), every feature in the model has an interaction vector whose

dimension is a pre-defined parameter of the model, and the interaction between two

features is the dot product of their interaction vectors. Thereby, the interactions

between a feature with others can be estimated as long as this combination exists in

the training data set.

2.4 Monte Carlo Tree Search

The basic idea of Monte Carlo Tree Search (MCTS) [10] is to evaluate a state by

constructing a search tree T of game states evaluated by fast Monte Carlo simula-

tions. Each node n(s) of T corresponds to a game state s, and contains statistical

information about s: a total visit count for the state N(s), a value Q(s, a) and the

visit count N(s, a) for each action available in s. Simulations start from the initial

state s0, and are divided into two stages: in-tree and rollout. When a state st is

already represented in the current search tree, st ∈ T , MCTS uses a tree policy to

select an action to go to the next state. Otherwise, for a state out of the tree , st /∈ T ,

a roll-out policy is used to roll out simulations and eventually obtain a reward sig-

nal. At the end of a simulation, after a state action trajectory s0, a0, s1, a1, . . . , sT

with reward R is obtained, each node of {n(st)|st ∈ T } is updated according to

N(st)← N(st) + 1 (2.7)

N(st, at)← N(st, at) + 1 (2.8)

Q(st, at)← Q(st, at) +
R−Q(st, at)

N(st, at)
(2.9)

In addition the search tree is grown. In the simplest scheme, the first visited node

that is not yet in tree T is added to it.

The UCT algorithm [23] is the most well-known variant of MCTS. It uses the

UCB1 [2] algorithm as the tree policy to select actions by treating each state of

the search tree as a multi-armed bandit. The action value is augmented with an

8



exploration bonus, and the tree policy selects the action maximizing the augmented

value

a∗ = argmaxaQ(s, a) + c

√
logN(s)

N(s, a)
(2.10)

where c is a constant controlling the scale of the exploration.

2.5 Improving MCTS with Domain Knowledge

The quality of MCTS relies heavily on the performance of the Monte Carlo simu-

lations. However in games with a large state space, simple simulation is unlikely to

lead to accurate value estimation. Inaccurate estimation can mislead the search

and can severely limit the strength of the program. Domain knowledge of the

game can serve as heuristic information that benefits the search, and can signif-

icantly improve the performance of MCTS. Coulom [11] proposes Minorization-

Maximization (MM) to learn feature knowledge offline and uses it to improve ran-

dom simulation. Gelly and Silver [17] consider feature knowledge as a prior for

evaluation when a new state is added to the search tree. AlphaGo [33] incorporates

a supervised learned Deep Convolutional Neural Network (DCNN) as part of its

in-tree policy for move selection, and further improves the network with reinforce-

ment learning from games of self-play to get a powerful value estimation function.

The integrated system became the first program to beat the world’s top Go player

[1].

2.6 Representing Moves with Features

In supervised learning for move prediction, the first step is to find a representation

of each move as the input of the learning system. The common method is to rep-

resent each state-move pair as a set of active features. This representation has two

advantages. First, it is well suited for generalization. The tabular case in reinforce-

ment learning, directly using the state-move pair as input data of learning, would

fail, since the training set cannot include all possible game states and might con-

tain conflicting move selections in the same state. With such a representation, it is

9





Figure 2.2: Large Pattern Template [35].

If a move has a particular feature, we say that feature is active in that move. With

feature representation, each move is represented by a group of active features. Fig-

ure 2.3 shows an example. It shows the active features of move R12, including the

location of the move, distance to previous move, game phase, CFG distance and

matched shape pattern. Note that both 3× 3 patterns and large patterns are rotation

invariant.

A deep learning model is capable of learning high level representations auto-

matically from raw input data [3]. This important property has made deep learning

the state-of-the-art for many machine learning tasks, including move prediction in

Go [9, 24]. However, a well-performing deep neural network is too slow to be used

for fast move prediction. The features discussed above are still most popular here.

2.7 State-of-the-Art Fast Move Prediction

The most popular high-speed move prediction systems represent each move as a

combination of a group of features. They learn weights for each feature from ex-

pert game records by supervised learning, and define an evaluation function based

11



Figure 2.3: An example of representing a move by a group of features.

on these weights, which is used to rank moves. Examples include Bayesian Full

Ranking [35], Bayesian Approximation for Online Ranking [37, 36], Minorization-

Maximization (MM) [11] and Latent Factor Ranking (LFR) [38].

MM is an efficient learning algorithm which is very popular in Computer Go.

In this model, move prediction is formulated as a competition among all possible

moves in a Go position. Each move is represented as a group of features. A sim-

ple probabilistic model named the Generalized Bradley-Terry model [20] defines

the probability of each feature group winning a competition. The strength of each

feature is estimated by maximizing the likelihood of the expert moves winning all

competitions over the whole (large) training set.

LFR improves the performance of move prediction by taking pairwise interac-

tions between features into account. This is modelled using a Factorization Machine

(FM) [27], an efficient model especially for problems with sparse interactions be-

tween features. Move prediction is considered as a binary classification problem,

with the expert move in one class and all other legal moves in the other. A drawback

of LFR is that the evaluation it produces does not provide a probability distribution

over all possible moves. This makes it harder to combine it with other kinds of

evaluation.

12



The successes of both LFR and MM highlight two different aspects: the in-

teractions between features within a group, and an efficient ranking model to de-

scribe the interactions between all possible groups. The Factorization Bradley Terry

model combines these aspects: like MM, move prediction is modeled as a compe-

tition among all moves using a Bradley-Terry model. As in LFR, a Factorization

Machine models the interaction between the features of a move.

Recently, Deep Convolutional Neural Networks (DCNN) have achieved human-

level performance and have outperformed traditional techniques for predicting ex-

pert moves [9, 24]. However, well-performing networks are very large, with mil-

lions of weights [24], and even on specialized hardware their evaluation speed is

orders of magnitude slower than traditional techniques. Therefore, it makes sense

to continue research on high performance fast move prediction algorithms as well.

For example, in AlphaGo they are used as a temporary evaluation in a game tree, to

give the search a good direction even before the slow neural network evaluation is

available [33].

13



Chapter 3

The Factorization Bradley-Terry

Model for Fast Move Prediction in

the Game of Go

In this chapter, we first introduce the Factorization Bradley-Terry Model, then show

how this model can be applied to the move prediction problem. We also provide

an algorithm for parameter learning based on Stochastic Gradient Descent and two

approaches to accelerate the training process.

3.1 The Factorization Bradley-Terry Model

The Factorization Bradley-Terry (FBT) model is introduced for estimating the prob-

ability of a feature group winning competitions with other groups, while taking into

account the pairwise interactions between features within each group using a Fac-

torization Machine (see Section 2.3). Let k ∈ N
+ be the dimension of the factor-

ization model. Let F be the set of all possible features. For feature f ∈ F , let

wf ∈ R be the feature’s (estimated) strength, and vf ∈ R
k be its factorized interac-

tion vector. Here, the interaction strength between two features f and g is modeled

as 〈vf , vg〉 =
∑k

i=1 vf,i · vg,i. The parameter space of this model is w ∈ R
|F| and

v ∈ R
|F|×k.

The idea of using factorized interaction vectors comes from Factorization Ma-

chines [27]. The matrix v ∈ R
|F|×k is a sparse approximation of the full pairwise

interaction matrix Φ ∈ R
|F|×|F|, which is huge for large |F|. A proper choice of

14



k makes such models especially efficient for generalization under sparse data sets

(see Section 2.3) [27]. In Computer Go, settings k = 5 and k = 10 are popu-

lar [38]. Richer feature sets and larger training sets require increasing k for best

performance, as will be shown in Table 4.1 in the Experiments Chapter.

The strength EG of a group G ⊆ F in FBT is defined as

EG =
∑

f∈G

wf +
1

2

∑

f∈G

∑

g∈G,g 6=f

〈vf , vg〉 (3.1)

In FBT, the popular exponential model [19] is used to model winning probabil-

ities in competition among groups. Given N groups {G1, . . . ,GN}, the probability

that group Gi wins is given by:

P (Gi wins) =
exp(EGi)∑N

j=1 exp(EGj)
(3.2)

3.2 Move Prediction in Go using the Proposed Model

Let S be the set of possible Go positions and Γ(s) be the set of legal moves in a

specific position s ∈ S . The objective of the move prediction problem is to learn

from a training set to predict expert moves. Features F are used to describe moves

in a given game state. Each move is represented by its set of active features G ⊆ F .

The training set D consists of cases Dj , with each case representing the possible

move choices in one game position sj .

Dj = { G
i
j | for i = 1, . . . , |Γ(sj)|}

As in MM, the process of choosing a move is modeled as a competition, using

the ranking model defined before. In this setting, the set of features F is the set

of “players” which compete in groups. Let the winner of the competition among

groups in Dj be G∗j . From (3.2), the probability of the current test case is

P (Dj) =
exp(EG∗

j
)

∑|Γ(sj)|
i=1 exp(EGi

j
)

(3.3)

15



3.3 Parameter Estimation for FBT

In the proposed FBT model (3.3), each feature’s strength and factorized interaction

vector is learned from a training setD = {D1, . . . ,Dn}. This section first poses the

learning of these parameters as an optimization problem, then describes a Stochastic

Gradient Descent (SGD) algorithm for estimating them, and finally provides two

methods for accelerating the learning process.

3.3.1 Definition of the Optimization Problem

Suitable parameters in FBT can be estimated by maximizing the likelihood of the

training data. For the jth training case Dj , the negative log loss function is given

by

lj = − ln
exp(EG∗

j
)

∑|Γ(sj)|
i=1 exp(EGi

j
)
= −EG∗

j
+ ln

|Γ(sj)|∑

i=1

exp(EGi
j
) (3.4)

Assuming that competitions are independent, the loss function becomes simply

the sum over all training examples:

L =
1

n

n∑

j=1

lj (3.5)

The corresponding optimization problem is:

min
w∈R|F|,v∈R|F|×k

L+ λwR(w) + λvR(v) (3.6)

We use L2 regularization 1
2
|| · ||2 as our regularization function R to avoid over-

fitting. λw and λv are parameters. The choice of setting their values is discussed in

the Experiments Chapter.

3.3.2 Parameter Learning with Stochastic Gradient Descent

We propose a SGD algorithm to learn the model parameters. Equation (3.1) can

be expressed as a linear function with respect to every single model parameter θ ∈

w ∪ v [28],

16



EG = θhG,θ + gG,θ (3.7)

where if θ = ws ∈ w, hG,θ = 1; if θ = vs,q ∈ v, hG,θ = 1
2

∑
t∈G,t 6=s vt,q. In both

cases, gG,θ = EG − θhG,θ. Note that gG,θ are independent of the value of θ, and if

s 6∈ G, both hG,θ and gG,θ are simply zero. Using these facts, the gradient of the loss

function lj for parameter θ can be written as:

∇jθ =−
∂EG∗

j

∂θ
+

∂ ln
∑|Γ(sj)|

i=1 exp(EGi
j
)

∂θ

=− hG∗
j ,θ

+

∑|Γ(sj)|
i=1 ∂exp(EGi

j
)/∂θ

∑|Γ(sj)|
i=1 exp(EGi

j
)

=− hG∗
j ,θ

+

∑|Γ(sj)|
i=1 exp(EGi

j
)hGi

j ,θ∑|Γ(sj)|
i=1 exp(EGi

j
)

(3.8)

The resulting gradients∇jθ for updating a parameter θ are:

−1 +

∑|Γ(sj)|

i=1 exp(E
Gi
j
)I{s∈Gij}

∑|Γ(sj)|

i=1 exp(E
Gi
j
)

θ = ws, s ∈ G
∗
j

−HG∗j ,q +

∑|Γ(sj)|

i=1 exp(E
Gi
j
)I{s∈Gij}HGi

j
,q

∑|Γ(sj)|

i=1 exp(E
Gi
j
)

θ = vs,q, s ∈ G
∗
j

∑|Γ(sj)|

i=1 exp(E
Gi
j
)I{s∈Gij}

∑|Γ(sj)|

i=1 exp(E
Gi
j
)

θ = ws, s /∈ Gij

∑|Γ(sj)|

i=1 exp(E
Gi
j
)I{s∈G∗j }HGi

j
,q

∑|Γ(sj)|

i=1 exp(E
Gi
j
)

θ = vs,q, s /∈ G∗j

(3.9)

with indicator function I and HG,q =
1
2

∑
t∈G,t 6=s vt,q.

3.3.3 Choice of Approach for Optimization

The new model (3.3) can be considered an extension of the generalized Bradley-

Terry model [20], which applies a Factorization Machine to model the interaction

between team members when computing a team’s ability. It is very similar to the

17



conditional exponential model [12], which is widely used in computational linguis-

tics. From this standpoint, it seems like optimization algorithms for solving these

models such as Alternating Optimization (AO) [28], Maximization-Minimization

(MM) [20] [11] and Improved Iterative Scaling (IIS) [12] might also be suitable for

solving (3.6). Generally speaking, all of these methods try to solve the optimization

problem iteratively. At each iteration, to update a parameter θ, they first construct a

sub-optimization problem according to properties of the function to be optimized,

such as Jensen’s inequality or an lower bound for the logarithm function. Next, they

find the optimizer as the starting point of the next iteration by fixing all the other

parameters except θ and setting the derivative of θ to zero. In (3.6), the derivative

of a group Gij for θ is

∂exp(EGi
j
)

∂θ
= exp(θhGi

j ,θ
)exp(gGi

j
)hGi

j ,θ

If θ ∈ v, the values hGi
j ,θ

will change with different i and j, and thus the update of

θ ∈ v at each iteration does not have a closed form solution. A numerical method

such as Newton’s method is required to compute the update value for θ, which

would introduce further computational complexity. In conclusion, it would be very

inefficient to use such algorithms for problem (3.6).

3.3.4 Efficient Gradient Computation

The first bottleneck of computing the gradient of the loss function lj via (3.8) is

calculating exp(EGi
j
) for each i ∈ {1, . . . , |Γ(sj)|}. For one particular group G,

a direct computation of exp(EG) is O(|G|k). However, we can compute this term

once and update it in constant time when parameters corresponding to some feature

s ∈ G have changed. Suppose that we update the parameter θ to θ′. Then for a

group G, EG = θhG,θ + gG,θ should be updated to

E ′
G = θ′hG,θ + gG,θ = EG + (θ′ − θ)hG,θ (3.10)

Therefore, at the beginning of training we precompute all EG in the training set

once, then update them efficiently through equation (3.10) when necessary, which

only takes constant time.

18



After this optimization, the computational complexity of updating EG depends

on the complexity of calculating hG,θ. For w, the h term in (3.10) is just 1, so the

update time is constant. For updating θ = vs,q ∈ v, the direct computation of the

h term in (3.10) takes O(|G|) time. However, it can be updated in constant time by

first precomputing RG,q =
1
2

∑
t∈G vt,q for each group in the training set, since

hG(vs,q) = RG,q −
1

2
vs,q (3.11)

After an update of vs,q to v′s,q, RG,q can be updated in constant time by

R′
G,q = RG,q +

1

2
(v′s,q − vs,q) (3.12)

Using equations (3.10) to (3.12), exp(EG) can be updated in constant time.

Regarding the space complexity of the fast gradient computation method de-

scribed above, let γ = maxj∈{1,...,n}|Dj|. For each group G inDj , storing one EG and

one RG,q for each factorization dimension 1 ≤ q ≤ k, gives total space complexity

O(nγk). For example, for 19 × 19 Go, γ ≤ 361, so the total space complexity is

O(nk).

3.3.5 Approximate Gradient

Another bottleneck of computing the gradient via (3.8) is processing the set of all

groups. For example, in the move prediction problem in 19 × 19 Go, the average

value of |Γ(sj)| is about 200. A Monte Carlo approach can address this problem by

sampling an approximate gradient that matches the real gradient in expectation.

Let P i
j be the probability that Gij is the winner of Dj using model (3.2). The

probability distribution Pj = (P 1
j , . . . , P

|Γ(sj)|
j ) over Dj allows us to construct an

unbiased approximate gradient. Consider a mini-batch of groups created by sam-

pling M groups {G(1), . . . ,G(M)} from Dj according to the probability distribution

Pj . The sampled approximate gradient of the loss function lj for parameter θ is:

∇̂jθ = −hG∗
j
(θ) +

1

M

M∑

i=1

h
G
(i)
j ,θ

(3.13)

19



We now show that the sampled approximate gradient matches the gradient

(3.8) in expectation.

Lemma 1. E
Pj
[∇̂jθ] = ∇jθ

Proof.

E
Pj
[∇̂jθ] =− hG∗

j ,θ
+ E

Pj
[
1

M

M∑

i=1

h
G
(i)
j ,θ

]

=− hG∗
j ,θ

+

|Γ(sj)|∑

i=1

P i
jhGi

j ,θ
= ∇jθ

(3.14)

3.4 Integrating FBT Knowledge in MCTS

A move prediction system provides useful initial recommendations to a search

about which moves are likely to be the best. Selective search with a proper explo-

ration scheme, such as MCTS, can further improve upon these recommendations.

One favourable property of the FBT model is to produce a probability-based eval-

uation, which estimates how likely each move is going to be selected by a human

expert in a given game state. Therefore, FBT knowledge can be used as part of an

exploration strategy, to focus exploration on moves which are favoured by human

experts.

We apply a variant of the PUCT formula [29] to integrate FBT knowledge in

MCTS. This formula is also used in AlphaGo [33]. The idea of PUCT is to explore

moves according to a value that is proportional to the predicted probability, but also

decays with repeated visits, as in UCT [23]. When a new game state s is added

to the search tree, we call a pre-trained FBT model to get a prediction PFBT (s, a),

which assigns an exploration bonus EFBT (s, a) for each move a ∈ Γ(s). In order

to keep sufficient exploration, we set a lower cut threshold λFBT , where for all

a ∈ Γ(s) if PFBT (s, a) < λFBT then simply let EFBT (s, a) = λFBT , otherwise

EFBT (s, a) = PFBT (s, a). During in-tree move selection at state s, the algorithm

selects move

20



a∗ = argmaxa∈Γ(s)(Q(s, a) + cpuctEFBT (s, a)

√
lg(N(s))

1 +N(s, a)
) (3.15)

where Q(s, a) is the accumulated move value estimated by online simulation, cpuct

is an exploration constant, N(s, a) is the number of visits of move a in s, and

N(s) =
∑

a∈Γ(s) N(s, a).

21



Chapter 4

Experiments

The experiments in this section consist of two parts. In the first part, we evaluate

the FBT model and the approximate gradient computation for the move prediction

task in the game of Go. FBT is compared with the state-of-the-art move prediction

algorithm of Latent Factor Ranking (LFR) [38]. In the second part, we integrate

the factorization ranked features in the open source program Fuego [14], in order

to test if FBT knowledge is helpful for improving the performance of MCTS. All

experiments are performed on a 2.4 GHz Intel Xeon CPU with 64 GB memory and

based on the latest Fuego (svn revision 2017).

4.1 Experiments of Move Prediction Performance

4.1.1 Setup

Both FBT and LFR use the same parameters as in [38], with learning rate α = 0.001

and regularization parameters λw = 0.001, λv = 0.002. The same stopping crite-

ria for the training process are applied: if an algorithm’s prediction accuracy on

a validation set is not increased for three iterations, the training is stopped and

the best-performing weight set is returned. Three data sets of increasing size,

S1 ⊂ S2 ⊂ S3, are used, which contain 1000, 10000, and 20000 master games

respectively. The games are in the public domain at https://badukmovies.

com/pro_games. S1 is from year 2013, S2 is from years 2008-2013 and S3 is

from 1999-2013.

The learned model is evaluated on a test set. The test and validation set con-

22



tain 1000 games each, and are disjoint from the training sets and from each other.

The prediction accuracy in all experiments is defined as the probability of choos-

ing the expert moves over all test cases, not as the average accuracy over the 12

game phases used in [38]. That metric gives higher percentages since it weighs the

opening and late endgame more, where the prediction rate is above average.

4.1.2 Choice of Features

When using large patterns, many algorithms can get a high move prediction ac-

curacy at the beginning of the game [38]. This is because these moves are often

standard opening moves which can be represented very accurately by large pat-

terns. It is informative to also compare move prediction algorithms without such

large patterns. Therefore, two different feature sets, the small pattern feature set

Fsmall and the large pattern feature set Flarge are used in all tests. Both sets con-

tain the same non-pattern features. Fsmall adds only 3 × 3 patterns, while Flarge

includes large patterns. Fsmall helps provide a better comparison of FBT and LFR,

while Flarge yields a more powerful move prediction system overall.

The Fsmall features are the same as in the LFR implementation that is part of

the open source Fuego program [14]. Large patterns in Flarge were added for this

study. Most features are similar to earlier work such as [11, 38]. For implementation

details, see the Fuego code base [13].

The simple features used in this work are:

• Pass

• Capture, Extension1, Atari2, Self-atari3 Tactical features similar to [11].

• Line and Position (edge distance perpendicular to Line) ranges from 1 to 10.

• Distance to previous move feature values are 2,. . . , 16, ≥ 17. The distance is

measured by d(δx, δy) = |δx|+ |δy|+max{|δx|, |δy|}.

1Extend an existing configuration of one or more stones along the side.
2A stone or chain of stones has only one liberty, and may be captured on the next move if no

more additional liberties.
3Adding a stone that can make one’s own stones in an Atari.

23



Table 4.1: Results for Fsmall: probability of predicting the expert move with FBT

and LFR, for k = 5 and k = 10. Best results for each method in bold.

Training set FBT5 FBT10 LFR5 LFR10
S1 32.56% 32.82% 30.01% 30.08%

S2 33.18% 33.42% 30.95% 31.63%

S3 33.46% 34.01% 31.13% 31.94%

Table 4.2: Results for Flarge, same format as Table 4.1.

Training set FBT5 FBT10 LFR5 LFR10
S1 35.83% 35.96% 34.38% 34.47%

S2 38.26% 38.31% 37.12% 37.34%

S3 38.48% 38.75% 37.56% 37.69%

• Distance to second-last move uses the same metric as previous move. The dis-

tance can be 0.

• Fuego Playout Policy These features correspond to the rules in the playout pol-

icy used in Fuego. Most are simple tactics related to stones with a low number

of liberties.

• Side Extension The distance to the closest stones along the sides of the board.

• Corner Opening Move Standard opening moves.

• CFG Distance Distance when contracting all stones in a block to a single node

in a graph [15].

• Shape Patterns The small pattern set contains all patterns of size 3 × 3. The

large pattern set includes circular patterns with sizes from 2 to 14, harvested as

in [35, 38]. All shape patterns are invariant to rotation, translation and mirroring.

The system contains 195 non-shape pattern features and 1089 3x3 patterns in to-

tal. The total number of large patterns depends on which training set is used, since

all large shape patterns are harvested from the training set (as shown in Section

4.1.3). Thereby, we have |Fsmall| = 1284 and |Flarge| = 195 +NL if NL large pat-

terns are harvested. For a move, we can define its feature vector with x ∈ {0, 1}|F |.

The feature group of a move is the set of all features that have the value of one in x.

24



4.1.3 Expert Move Prediction

To compare the prediction accuracy of FBT and LFR on each data set, two different

models were trained for each algorithm, setting the dimension of the factorized

interaction vector to k = 5 and k = 10. These methods with a specific k value are

called FBTk and LFRk respectively. All results are averaged over five runs, since

both FBT and LFR randomize initial parameter values.

Experiment with Fsmall

Results for the small pattern set Fsmall are presented in Table 4.1. Both methods

improve with larger training sets. For each combination of training set Si and k,

FBT outperforms LFR. The best model learned by FBT, for k = 10 and S3, out-

performs the best LFR model by 2.07%. Note that the gap between the maximum

and minimum prediction accuracy of the five runs over all tests of FBT is 0.64%,

which shows that FBT is quite stable and the performance difference between LFR

and FBT is significant. Prediction accuracy increases with growing k, confirming

the observation in [38].

Figures 4.2(a) and (b) compare the details of the move prediction results of LFR

and our method. Figure 4.2(a) compares the cumulative probability of predicting

the expert’s move within the top n ranked moves, for S3 with k = 10. While both

methods rank most expert moves within the top 20, the gap between FBT and LFR

grows initially up to about rank 5, then holds steady throughout. Figure 4.2(b)

presents the prediction accuracy per game stage, where each game phase consists

of 30 moves as in [38]. FBT outperforms LFR at every stage of the game.

Experiment with Flarge

For creating large pattern features, pattern harvesting collects all patterns that occur

at least 10 times in the training set. For training sets S1, S2 and S3, the number

of such patterns is 9390, 84660 and 152872 respectively. Following [37] and [34],

Figure 4.1 shows the distribution of largest matches for the different pattern sizes in

each game phase. Large patterns dominate in the opening (phase 1), then disappear

rapidly. Later in the game, only small size patterns are matched. Table 4.2 shows

25



1 2 3 4 5 6 7 8 9 101112

1
2

3
4

5
6

7
8

9
10

11
12

13
14

0

0.2

0.4

0.6

0.8

Game Phases
Pattern Shape Size

P
e
rc

e
n
ta

g
e
 M

a
tc

h
e
d

Figure 4.1: Distribution of patterns with different size harvested at least 10 times in

different game phases.

the prediction accuracy of FBT and LFR trained with Flarge. The gap between the

maximum and minimum prediction accuracy of the five runs over all tests of FBT

is 0.82%. Figures 4.3(a) and (b) show the cumulative prediction probabilities and

the accuracy per game stage.

Both FBT and LFR learn better models with Flarge than with Fsmall, with huge

differences in the opening due to large patterns, and both methods achieve very high

accuracy at the endgame. As with Fsmall, FBT outperforms LFR on every data set,

but the differences between the two methods are smaller. This can be expected,

especially for the opening stage, where both algorithms learn the same large-scale

patterns for the standard opening moves. FBT retains its advantage for the middle

game, which is important in practice since many games are decided there.

26



2 4 6 8 10 12 14 16 18 20

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank

 

 

LFR10

FBT10

(a) Fsmall cumulative rank, k = 10

0 2 4 6 8 10 12
0.25

0.3

0.35

0.4

0.45

0.5

Game Phase

 

 

LFR10

FBT10

(b) Fsmall accuracy per game stage, k = 10

Figure 4.2: Move prediction experiments of FBT and LFR trained with Fsmall. y-

axis is the prediction accuracy. In (a), the x-axis is the number of ranked moves,

while in (b) the x-axis represents the game stage.

27



2 4 6 8 10 12 14 16 18 20

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank

 

 

LFR10

FBT10

(a) Flarge cumulative rank, k = 10

0 2 4 6 8 10 12
0.25

0.3

0.35

0.4

0.45

0.5

Game Phase

 

 

LFR10

FBT10

(b) Flarge accuracy per game stage, k = 10

Figure 4.3: Move prediction experiments of FBT and LFR trained with Flarge. y-

axis is the prediction accuracy. In (a), the x-axis is the number of ranked moves,

while in (b) the x-axis represents the game stage.

28



Table 4.3: Move prediction by FBT with different sample sizes on data sets S1 − S3.

Results for LFR and FBT Full shown for comparison. Bold values highlight best results

among sampling methods.

Training set FBT S5 FBT S10 FBT S20 FBT S30 LFR FBT Full

S1 30.04% 30.81% 31.06% 31.78 % 30.01% 32.56%

S3 32.07% 32.90% 32.98% 33.03% 30.95% 33.18%

S3 32.54% 33.01% 33.09% 33.12% 31.13% 33.46%

4.1.4 Sampling for Approximate Gradient Computation

To evaluate the new online sampling method for approximate gradient computation,

experiments with k = 5 were run on the three training sets, varying the number of

samples, m ∈ {5, 10, 20, 30}. In the following, FBT Sm denotes approximate FBT

with m samples, while FBT with full gradient computation is labeled FBT Full.

LFR is also included. The results are presented in Table 4.3. The performance

of FBT S increases with growing number of samples m, and approaches that of

FBT Full. FBT S performs better than LFR even with a small number of samples.

Regarding the cumulative rank, FBT S30 achieves 82.26% for top 20 prediction,

compared to 83.54% for FBT Full and 77.81% for LFR (the right-most data points

in Figure 4.2(a)).

The purpose of using Monte Carlo approximation in the gradient computation

is to accelerate the training process while still keeping the theoretical soundness

and practical accuracy. Figure 4.4 plots the prediction accuracy of FBT Full and

FBT Sm as a function of time for all tested m. The plot shows the best prediction

accuracy achieved so far on the validation set in 30 seconds intervals, starting from

the same initial parameter value, on a training set of 1000 games with k = 5 using

feature set Fsmall. All sampling algorithms finish the training process within 15

minutes, while FBT Full needs about an hour. FBT S20 and FBT S30 outperform

FBT Full in the early phases. The performance of FBT S30 comes very close to

FBT Full, while using less time to train (15 minutes vs 1 hour). The performance

of the approximate gradient estimators increases with the number of samples, since

the variance is reduced.

29



0 5 10 15 20 25 30 35 40
0.22

0.24

0.26

0.28

0.3

0.32

0.34

Time (1 unit = 30 seconds)

V
a
lid

a
ti
o
n
 A

c
c
u
ra

c
y

 

 

FBT_S5
FBT_S10
FBT_S20
FBT_S30
FBT_Full

Figure 4.4: Accuracy of approximate sampling over time

4.2 Integrating FBT-Learned Knowledge in MCTS

We use the open source program Fuego [14] as our experimental platform to test

if FBT knowledge is helpful for improving MCTS. We first introduce the feature

knowledge in the current Fuego system, then introduce the setup of the experiment,

and finally present the results.

4.2.1 Feature Knowledge for Move Selection in Fuego

Prior Feature Knowledge

Recent versions of Fuego such as svn version 2017 used in these experiments apply

feature knowledge to initialize statistical information when a new node is added

to the search tree. A set of features trained with LFR [38] and k = 10 is used.

The LFR evaluation is a real value indicating the strength of the move without any

probability based interpretation. Fuego designed a well-tuned formula to transfer

the output value to the prior knowledge for initialization. It adopts a similar method

30



as suggested in [17], where the prior knowledge contains two parts: Nprior(s, a)

and Qprior(s, a). This indicates that MCTS would perform Nprior(s, a) simulations

to achieve an estimate of Qprior(s, a). Let VLFR(s, a) be the evaluation of move a ∈

Γ(s), Vlargest and Vsmallest be the largest and smallest evaluated value respectively.

Fuego uses the following formula to assign Nprior(s, a) and Qprior(s, a),

Nprior(s, a) =

{
cLFR∗|Γ(s)|

SA
∗ VLFR(s, a) if VLFR(s, a) ≥ 0

− cLFR∗|Γ(s)|
SA

∗ VLFR(s, a) if VLFR(s, a) < 0
(4.1)

Qprior(s, a) =

{
0.5 ∗ (1 + VLFR(s, a)/Vlargest) if VLFR(s, a) ≥ 0

0.5 ∗ (1− VLFR(s, a)/Vsmallest) if VLFR(s, a) < 0
(4.2)

where SA =
∑

i |VLFR(s, i)| is the sum of absolute values of each move’s eval-

uation. When a new game state is added to the search tree, Fuego initializes its

statistics by setting N(s, a)← Nprior(s, a) and Q(s, a)← Qprior(s,a).

Greenpeep Knowledge

A second kind of knowledge used in Fuego is in-tree move selection policy is called

Greenpeep Knowledge. It uses a pre-defined table of diamond shape patterns (size

4 in Figure 2.2) to get probability based knowledge Pg(s, a) about each move a ∈

Γ(s). This knowledge is added as a bias for move selection according to a variant

of the PUCT formula [29]. The reason why Fuego could not use LFR knowledge

to completely replace the simpler Greenpeep knowledge might be that LFR cannot

produce a probability-based evaluation. Details of the Greenpeep knowledge can

be found in the Fuego source code base [13].

Move Selection in Fuego

In summary, Fuego adopts the following formula to select moves during in-tree

search,

move = argmaxa(Q(s, a)−
cg√

Pg(s, a)
×

√
N(s, a)

N(s, a) + 5
) (4.3)

where cg is a parameter controlling the scale of the Greenpeep knowledge. Q(s, a′)

is initialized according to formula (4.1) and (4.2), and further improved with Monte

31



Carlo simulation and Rapid Action Value Estimation (RAVE). Note that formula

(4.3) does not have the UCB style exploration term, since the exploration constant

is set to zero in Fuego. The only exploration comes from RAVE. Comparing for-

mula (4.3) with (3.15), we could consider the FBT knowledge PFBT (s, a) as a

replacement of the Greenpeep knowledge Pg(s, a), but with a different way to be

added as a bias and a different decay function.

4.2.2 Setup

We call Fuego without LFR prior knowledge FuegoNoLFR, Fuego applying for-

mula (1) to select moves in-tree FBT-Fuego, and Fuego without LFR but using

formula (1) FBT-FuegoNoLFR. The lower cut threshold for FBT knowledge is set

to λFBT = 0.001. All other parameters are left at the default settings of Fuego. The

FBT model used in this experiment is trained on S2 with Flarge features and has

interaction dimension k = 5.

4.2.3 Experimental Results

We first compare FBT-FuegoNoLFR with FuegoNoLFR. This experiment is de-

signed to show the strength of FBT knowledge without any influence from other

kinds of knowledge. We test the performance of FBT-FuegoNoLFR against Fue-

goNoLFR with different exploration constants cpuct. After initial experiments, the

range explored was cpuct ∈ {2, 2.3, 2.5, 2.7, 3}. Scaling with the number of simula-

tions per move, Nsim was tested by setting Nsim ∈ {100, 1000, 3000, 6000, 10000}.

Figure 4.5(a) shows the win rate of FBT-FuegoNoLFR against FuegoNoLFR. All

data points are averaged over 1000 games. The results show that adding FBT

knowledge can dramatically improve the performance of Fuego over the baseline

without feature knowledge as prior. FBT-FuegoNoLFR scales well with more simu-

lations per move. With cpucb = 2 and 10000 simulations per move FBT-FuegoNoLFR

can beat FuegoNoLFR, with a 81% winning rate.

We then compare FBT-Fuego with full Fuego, in order to investigate if the FBT

knowledge is comparable with current feature knowledge in Fuego and able to im-

prove the performance in general. In this case, cpuct is tuned over a different range,

32



0 2000 4000 6000 8000 10000

0.4

0.5

0.6

0.7

0.8

0.9

1

Simulations per move

W
in

 R
a
te

 

 

c
pucb

 = 2

c
pucb

 = 2.3

c
pucb

 = 2.5

c
pucb

 = 2.7

c
pucb

 = 3

(a) FBT-FuegoNoLFR vs FuegoNoLFR.

0 2000 4000 6000 8000 10000

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Simulations per move

W
in

 R
a
te

 

 

c
pucb

 = 0.05

c
pucb

 = 0.1

c
pucb

 = 0.15

c
pucb

 = 0.2

c
pucb

 = 0.25

(b) FBT-Fuego vs Fuego.

Figure 4.5: Experimental results of integrating FBT knowledge in Fuego.

33



Program Name 100 1000 3000 6000 10000

FBT-FuegoNoLFR 11.8 192.4 704.1 1014.5 1394.9

FuegoNoLFR 5.1 55.7 148.7 225.2 354.4

FBT-Fuego 23.4 241.1 734.1 912.6 1417.5

Fuego 10.8 168.3 564.2 778.6 1161.2

Table 4.4: Running time comparison (specified in seconds) with different simula-

tions for per move.

cpuct ∈ {0.05, 0.1, 0.15, 0.2, 0.25}. Nsim ∈ {100, 1000, 3000, 6000, 10000}, and all

data points are averaged over 1000 games as before. Results are presented in Fig-

ure 4.5(b). FBT-Fuego has worse performance in most settings of cpuct. But it can

be made to work after careful tuning. As shown in Figure 4.5(b), with cpucb = 0.1,

FBT-Fuego scales well with the number of simulations per move, and achieves 62%

winning rate against Fuego with 10000 simulations per move. One possible reason

is that the FBT knowledge is not quite comparable with the LFR knowledge. The

moves these two methods favour might be different in some situations, which makes

it very hard to tune a well tuned system when adding another knowledge term.

Finally, we show the running time of our methods with different simulations per

move in Table (1). FBT-FuegoNoLFR spends much more time than FuegoNoLFR,

since FuegoNoLFR only uses Greenpeep knowledge for exploration and thus does

not need to compute any feature knowledge. FBT-Fuego takes less time than FBT-

FuegoNoLFR, since it does not compute the Greenpeep knowledge. The speed

of FBT-Fuego is a little worse than Fuego. The slight time difference is spent on

computing large patterns, while Fuego only uses small shape patterns.

34



Chapter 5

Conclusion and Future Work

The new Factorization Bradley-Terry (FBT) model, combined with an efficient

Stochastic Gradient Descent algorithm, is applied to predicting expert moves in

the game of Go. Experimental results show that FBT outperforms LFR, the previ-

ous state-of-the-art high-speed move predictor. FBT is also useful in improving the

performance of Monte Carlo Tree Search.

Future work includes: 1. try to discover a method to transform FBT knowledge

into prior knowledge for initialization. 2. try to apply the FBT knowledge for im-

proving a fast roll-out policy. 3. combine FBT with Deep Convolutional Neural

Networks (DCNN) to get a fast accurate move predictor. For example, in computer

vision DCNN has been used to extract features of pictures and combined with a

traditional classifier in a powerful object detection system [18]. A similar approach

might also work for the move prediction problem: use DCNN to extract new fea-

tures, then apply FBT to learn feature weights. Another possible approach is to

automatically switch between FBT and DCNN, in order to get a high prediction

accuracy while still keeping a low processing time.

35



Bibliography

[1] https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_
Sedol. [Online; accessed 2016-07-26].

[2] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multi-
armed bandit problem. Machine Learning, 47:235–256, May 2002.

[3] Y. Bengio. Learning deep architectures for AI. Foundations and trends in
Machine Learning, 2(1):1–127, 2009.

[4] C.M. Bishop. Pattern recognition and machine learning. Springer, 2006.

[5] L. Bottou. Large-scale machine learning with stochastic gradient descent. In
Proceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

[6] L. Bottou. Stochastic gradient descent tricks. In Neural Networks: Tricks of
the Trade, pages 421–436. Springer, 2012.

[7] M. Bowling, N. Burch, M. Johanson, and O. Tammelin. Heads-up limit
hold’em poker is solved. Science, 347(6218):145–149, January 2015.

[8] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. Cowling, P. Rohlfshagen,
S. Tavener, D. Perez, S. Samothrakis, and S. Colton. A survey of Monte Carlo
tree search methods. IEEE Trans. Comput. Intellig. and AI in Games, 4(1):1–
43, 2012.

[9] C. Clark and A. Storkey. Training deep convolutional neural networks to play
Go. In F. Bach and D. Blei, editors, Proceedings of the 32nd International
Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015,
volume 37 of JMLR Proceedings, pages 1766–1774. JMLR.org, 2015.

[10] R. Coulom. Efficient selectivity and backup operators in Monte-Carlo tree
search. In J. van den Herik, P. Ciancarini, and H. Donkers, editors, Proceed-
ings of the 5th International Conference on Computer and Games, volume
4630/2007 of Lecture Notes in Computer Science, pages 72–83, Turin, Italy,
June 2006. Springer.

[11] R. Coulom. Computing Elo ratings of move patterns in the game of Go. In
Proc. Computer Games Workshop 2007 (CGW2007), pages 113–124. 2007.

[12] S. Della Pietra, V. Della Pietra, and J. Lafferty. Inducing features of ran-
dom fields. IEEE transactions on pattern analysis and machine intelligence,
19(4):380–393, 1997.

[13] M. Enzenberger and M. Müller. Fuego, 2008-2015. http://fuego.
sourceforge.net.

36



[14] M. Enzenberger, M. Müller, B. Arneson, and R. Segal. Fuego - an open-
source framework for board games and Go engine based on Monte Carlo tree
search. IEEE Transactions on Computational Intelligence and AI in Games,
2(4):259–270, 2010.

[15] K. J. Friedenbach. Abstraction Hierarchies: A Model of Perception and Cog-
nition in the Game of Go. PhD thesis, University of California, Santa Cruz,
1980.

[16] S. Gelly, L. Kocsis, M. Schoenauer, M. Sebag, D. Silver, C. Szepesvári, and
O. Teytaud. The grand challenge of computer Go: Monte Carlo tree search
and extensions. Communications of the ACM, 55(3):106–113, 2012.

[17] S. Gelly and D. Silver. Combining online and offline knowledge in UCT.
In ICML ’07: Proceedings of the 24th international conference on Machine
learning, pages 273–280. ACM, 2007.

[18] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies
for accurate object detection and semantic segmentation. In Computer Vision
and Pattern Recognition (CVPR), 2014 IEEE Conference on, pages 580–587.
IEEE, 2014.

[19] T.K. Huang, C.J. Lin, and R.C. Weng. Ranking individuals by group com-
parisons. In Proceedings of the 23rd International Conference on Machine
Learning, pages 425–432. ACM, 2006.

[20] D. Hunter. MM algorithms for generalized Bradley-Terry models. Annals of
Statistics, pages 384–406, 2004.

[21] L.P. Kaelbling, M.L. Littman, and A.W. Moore. Reinforcement learning: A
survey. Journal of artificial intelligence research, 4:237–285, 1996.

[22] D.E. Knuth and R.W. Moore. An analysis of alpha-beta pruning. Artificial
intelligence, 6(4):293–326, 1976.

[23] L. Kocsis and C. Szepesvári. Bandit based Monte-Carlo planning. In
J. Fürnkranz, T. Scheffer, and M. Spiliopoulou, editors, Machine Learning:
ECML 2006, volume 4212 of Lecture Notes in Computer Science, pages 282–
293. Springer Berlin / Heidelberg, 2006.

[24] C. Maddison, A. Huang, I. Sutskever, and D. Silver. Move evaluation in Go
using deep convolutional neural networks. CoRR, abs/1412.6564, 2014.

[25] V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Belle-
mare, A. Graves, M. Riedmiller, A.K. Fidjeland, G. Ostrovski, and S. Pe-
tersen. Human-level control through deep reinforcement learning. Nature,
518(7540):529–533, 2015.

[26] M. Müller. Computer Go. Artificial Intelligence, 134(1–2):145–179, 2002.

[27] S. Rendle. Factorization machines. In G. Webb, B. Liu, C. Zhang, D. Gunopu-
los, and X. Wu, editors, ICDM 2010, The 10th IEEE International Conference
on Data Mining, Sydney, Australia, 14-17 December 2010, pages 995–1000.
IEEE Computer Society, 2010.

37



[28] S. Rendle, Z. Gantner, C. Freudenthaler, and L. Schmidt-Thieme. Fast
context-aware recommendations with factorization machines. In Proceedings
of the 34th international ACM SIGIR conference on Research and develop-
ment in Information Retrieval, pages 635–644. ACM, 2011.

[29] C. Rosin. Multi-armed bandits with episode context. Ann. Math. Artif. Intell.,
61(3):203–230, 2011.

[30] J. Schaeffer, N. Burch, Y. Bjrnsson, A. Kishimoto, M. Müller, R. Lake, P. Lu,
and S. Sutphen. Checkers is solved. Science, 317(5844):1518–1522, 2007.

[31] J. Schaeffer, R. Lake, P. Lu, and M. Bryant. Chinook the world man-machine
checkers champion. AI Magazine, 17(1):21, 1996.

[32] J. Schaeffer and A. Plaat. Kasparov versus Deep Blue: The rematch. ICCA
Journal, 20(2):95–101, 1997.

[33] D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, and S. Diele-
man. Mastering the game of go with deep neural networks and tree search.
Nature, 529(7587):484–489, 2016.

[34] D. Stern. Modelling Uncertainty in the Game of Go. PhD thesis, 2008.

[35] D. Stern, R. Herbrich, and T. Graepel. Bayesian pattern ranking for move pre-
diction in the game of Go. In Proceedings of the 23rd international conference
on Machine learning, pages 873–880. ACM, 2006.

[36] R.C. Weng and C.J. Lin. A bayesian approximation method for online ranking.
The Journal of Machine Learning Research, 12:267–300, 2011.

[37] M. Wistuba, L. Schaefers, and M. Platzner. Comparison of bayesian move pre-
diction systems for Computer Go. In Computational Intelligence and Games
(CIG), 2012 IEEE Conference on, pages 91–99. IEEE, 2012.

[38] M. Wistuba and L. Schmidt-Thieme. Move prediction in Go - modelling fea-
ture interactions using latent factors. In I. Timm and M. Thimm, editors,
KI2013, volume 8077 of Lecture Notes in Computer Science, pages 260–271.
Springer, 2013.

[39] C. Xiao and M. Müller. Factorization ranking model for move prediction in
the game of Go. In AAAI, pages 1359–1365, 2016.

[40] C. Xiao and M. Müller. Integrating factorization ranked features into MCTS:
an experimental study. In Computer Games Workshop at IJCAI, 2016.

38


