ERA

Download the full-sized PDF of Magnetic field assisted programming of particle shapes and patternsDownload the full-sized PDF

Analytics

Share

Permanent link (DOI): https://doi.org/10.7939/R3CF9JM1B

Download

Export to: EndNote  |  Zotero  |  Mendeley

Communities

This file is in the following communities:

Chemistry, Department of

Collections

This file is in the following collections:

Journal Articles (Chemistry)

Magnetic field assisted programming of particle shapes and patterns Open Access

Descriptions

Author or creator
Xu, Wenwen
Yao, Yuyu
Klassen, John S.
Serpe, Michael J.
Additional contributors
Subject/Keyword
Chains
System
Bubbles
Nanoparticles
Janus Colloidal Particles
Mechanism
Design
Balance
Type of item
Journal Article (Published)
Language
English
Place
Time
Description
Anisotropic particles have generated an enormous amount of research interest due to their applications for drug delivery, electronic displays and as micromotors. However, up till now, there is no single protocol capable of generating particles of “patchy” composition with a variety of well-defined and predictable shapes. To address this, in this submission we dispersed magnetic nanoparticles (MNPs) in a non-magnetic fluid containing monomer and crosslinker. This solution was added to the surface of Teflon, which was submerged in the solvent 2,2,4-trimethylpentane. Under these conditions a round, stable droplet was formed on the Teflon. Upon exposure to a permanent magnet, the MNPs self-assembled into clusters with a variety shapes and sizes. The shape and size of the clusters depended on the magnetic field strength, which we controlled by systematically varying the distance between the magnet and the droplet. Interestingly, the shape of the liquid droplet was also influenced by the magnetic field. Upon polymerization, the MNP patterns and the droplet shape was preserved. We also show that very complex MNP patterns and particle shapes could be generated by controlling the distance between the drop and both a magnet above and below the droplet. In this case, the resulting patterns depended on whether the magnets were attracting or repelling each other, which was capable of changing the field lines that the MNPs align with. Overall, this approach is capable of generating particles with predictable MNP patterns and particle shapes without the use of any templates or complex synthetic steps. Furthermore, by using a sprayer (or similar approaches, e.g., ink jet printing) this technique can be easily scaled up to produce many complex anisotropic particles in a short amount of time.
Date created
2015
DOI
doi:10.7939/R3CF9JM1B
License information
© The Royal Society of Chemistry 2015 distributed under an Attribution-NonCommercial 3.0 Unported Licence
Rights

Citation for previous publication
Xu, W., Yao, Y., Klassen, J., and Serpe, M. (2015). Magnetic field assisted programming of particle shapes and patterns. Soft Matter, 11(36), 7151-7158.
Source

Link to related item

File Details

Date Uploaded
Date Modified
Audit Status
Audits have not yet been run on this file.
Characterization
File format: pdf (Portable Document Format)
Mime type: application/pdf
File size: 8393100
Last modified: 2017:09:05 16:31:40-06:00
Filename: SM_11_36_7151_ESM.pdf
Original checksum: f42f8566105428c31bb78b690d1cd51b
Well formed: false
Valid: false
Status message: Unexpected error in findFonts java.lang.ClassCastException: edu.harvard.hul.ois.jhove.module.pdf.PdfSimpleObject cannot be cast to edu.harvard.hul.ois.jhove.module.pdf.PdfDictionary offset=6290
Status message: Invalid Annotation list offset=6290
Status message: Outlines contain recursive references.
File title: SM_11_36_7151
Activity of users you follow
User Activity Date