[LL]]

7
5%
'ECUM Qut p)

University of Alberta

&

éw

o)

Design and Implementation of an Object
Database for Injury Surveillance

by

Adriana Manas
Laboratory for Database Systems Research
Department of Computing Science
University of Alberta
Edmonton, Alberta
Canada T6G 2H1

Technical Report TR 97-06
June 1997

DEPARTMENT OF COMPUTING SCIENCE
The University of Alberta
Edmonton, Alberta, Canada

Design and Implementation of an Object
Database for Injury Surveillance

Adriana Manas

Abstract

Injury is one of the most under-recognized public health problems. Reduction
of injury is more likely to occur if data are available on causative factors, cir-
cumstances and populations at risk. This requires timely collection of data,
their organization to enable cross-referencing and access, and the dissemina-
tion of these data in a way that is useful to health providers and researchers.
The Dynamic Injury Data Project (DIDP) addresses these issues as a collab-
orative effort between the Department of Public Health (Faculty of Medicine
and Oral Health), the Department of Computing Science (Faculty of Sci-
ence) and the Faculty of Business. The objective of the project is to develop
a system that will capture and link real-time data from emergency medical
services, hospital, police, fire, utilities and administrative sources to facili-
tate studies in trauma outcomes research, medical quality improvement and
injury prevention strategies.

There are essentially two components to the system being developed. The
Data Collection component utilizes pen-based hand-held computers to be
employed by the emergency medical services and hospital personnel to cap-
ture the most important patient-related information encompassing all pre-
hospital, hospital and rehabilitative care. The Database Server component of
the system stores the collected data and allows sophisticated analysis of the
data. This technical report deals with the analysis, design and implementa-
tion of an object oriented database server for the DIDP. The server provides
persistent storage of the data, ensure its integrity, and provide a mechanism
for the applications to interact with the data.

Contents

1 Introduction

1.1
1.2
1.3
1.4

The Dynamic Injury Data Project
Motivationo
Scope of the Report o o
Report Organization

2 Background

2.1
2.2

2.3

2.4

2.5

3 The
3.1

Medical Informaticso oo
Public Health Surveillance Systems
2.2.1 Utilization of Surveillance Data
2.2.2 Planning a Surveillance System
2.2.3 Sources of Surveillance Data
Injury Surveillance Systemso
2.3.1 TheFacts o
2.3.2 Related Worko oo
2.3.3 The Challenge oo
Object-Oriented Database Systems
2.4.1 Mandatory Features
2.4.2 Optional Features
24.3 Open Choices L.

SUMIMATY + + v v v e v e e e e e e e e e e e e

Booch Methodology

The Notationo
3.1.1 Class Diagrams L.
3.1.2 Object Diagrams
3.1.3 Interaction Diagrams
3.1.4 State Transition Diagrams

10
10
11
11
12
13
15
16
16
18
19
20
25
26
27

3.1.5 Module Diagrams oL
3.1.6 Process Diagrams
3.2 The Methodology
3.2.1 Requirements Analysis
3.2.2 Domain Analysis 0oL
3.2.3 System Design Lo
3.3 Summary

Requirements Analysis

4.1 Patient’'s Flowo oo

4.2 System Architecture o000
4.2.1 Data Processing Architecture

4.3 Database Requirements.
4.3.1 The Database Server Charter

4.4 Summary e

The Design

5.1 Design Tool - Rational Rose

52 The Model
5.2.1 General Classes
5.2.2 Patient Identification and Health Information
5.2.3 Visits Information L.
5.2.4 Medications, Antibioticsand IVs
5.2.5 Diagnostic Images and Lab Exams
5.2.6 Invasive Therapy, Instrumentation and Fluids
5.2.7 Incidents and Personnel
5.2.8 Other Assessments
5.2.9 Gastrointestinal Assessment
5.2.10 Central Nervous System Assessment
5.2.11 Respiratory Assessment
5.2.12 Vital Signs Assessmento oL
5.2.13 OR Anaesthesia and Procedures
5.2.14 EMS Specific Information

5.3 SUMMATY oo e e e e e

Implementation Issues

6.1 Overview.
6.2 Database Roots and Extents

45
46
48
50
51
33
33

54
54
35
35
59
61
63
65
65
68
71
71
74
75
77
81
81
85

6.3 Basic and Extended Types L. 91

6.4 The Class Interfaces 91
6.4.1 Object Creation and Validation 91

6.4.2 Object Deletion 94

6.4.3 Attribute Retrieval and Modification 96

6.4.4 Classes with Extent 96

6.4.5 Relationships L. 97

6.4.6 Printing Methods 0L 98

6.5 OtherlIssues 98
6.5.1 The Visits Hierarchy Problem 98

6.5.2 Static Functions in C4+4+ 99

6.5.3 Cascade Deletion 101

6.6 Summary e 101

7 Conclusions and Future Work 103
A Class Specifications 110

List of Figures

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

4.1
4.2
4.3

5.1
5.2
5.3
5.4
3.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12

Class Category o 29
Class . . . o o o o 30
Association Relationship 00000 30
Uses Relationship oL 31
Has Relationship 31
Inherits Relationshipo 32
Abstract Adornmento 32
Class Cardinality 33
Relationship Cardinality 33
Object L 34
Link . . .o 34
Message e 35
Patient’s Flow oo 47
System Architectureo 49
Data Processing Architecture 0L 50
DIDP Main Diagram 56
General Classes o o 58
Patient Identification and Health Information 60
Visits Information oo 62
Medications, Antibiotics and IVs 64
Diagnostic Images and Lab Exams 66
Invasive Therapy, Instrumentation and Fluids 67
Incidents and Personnel 0oL 69
A possible solution for the critical incident problem 70
Other Assessments 72
Gastrointestinal Assessment 0oL, 73
Central Nervous System Assessment. 76

5.13
5.14
5.15
5.16
5.17

6.1
6.2
6.3
6.4
6.5
6.6

First approach in the design of spinal precautions 77

Respiratory Assessment 78
Vital Signs Assessmento oL oL 79
OR Anaesthesia and Procedures 82
EMS Specific Information00 83
Sample application program 88
didpInit(): how the database root is created 89
A method for retrieving the extent of a class 90
An insert() method for the class Color 93
A valins() method for the class Color 95
The visits hierarchy oo 100

Chapter 1

Introduction

Injury is one of the most under-recognized public health problems in the
world today [Fra97]. Three and a half million people die, and seventy eight
million are disabled every year as a result of injuries. Injury is the fifth leading
cause of death for all age groups, and the leading cause for individuals under
forty four years of age in Canada and the United States. More children over
the age of one die from injuries than from cancer, heart disease, respiratory
disorders, diabetes or Acquired Immune Deficiency Syndrome (AIDS).

Most injuries are not only predictable but preventable [FSH91]. Reduc-
tion of injury is more likely to occur if the causative factors, circumstances
and populations at risk are known. These data can be used in planning,
developing and implementing intervention strategies.

1.1 The Dynamic Injury Data Project

The Dynamic Injury Data Project (DIDP) is a collaborative effort between
the Department of Public Health (Faculty of Medicine and Oral Health), the
Department of Computing Science (Faculty of Science) and the Faculty of
Business. The goal of the project is to develop a system that will capture
and link real-time data from emergency medical services, hospital, police, fire,
utilities and administrative sources to facilitate studies in trauma outcomes
research, medical quality improvement and injury prevention strategies.
When fully implemented, the system will permit sophisticated analysis of
injury trends focusing on the groups of people who are injured, the causes and
circumstances, and the geographical locations of the incidents. The health

community will have access to a multitude of data previously impossible or
extremely difficult to integrate into analysis of injury occurrence and causes.
The treatment data of the injuries will provide information regarding clinical
practice guidelines by unveiling which treatments and procedures result in
the best outcomes (e.g. shorter stay in hospital, less time off work). This in-
formation can then be used for medical quality improvement initiatives. Fur-
thermore, diagnostic imaging and surgical interventions information, coupled
with computer reconstruction and simulation techniques, can contribute to
studies of the biomechanics of injuries. This potential for analysis will help
researchers in synthesizing many more types and sources of data into a larger
picture of the causes of injury and more insight into effective injury preven-
tion interventions. Furthermore, electronic collection of data could allow
sophisticated analysis by means of data mining techniques that would reveal
unpredictable patterns and previously unrecorded associations.

There are essentially two components to the system being developed.
The data collection component utilizes pen-based hand-held computers to
be employed by the emergency medical services and the hospital personnel
to capture the most important patient-related information encompassing all
pre-hospital, hospital and rehabilitative care. The database server component
of the system stores the collected data and allows sophisticated analysis of
the data.

This report deals with the analysis of the system requirements and the
design and implementation of the server component of the system.

1.2 Motivation

Most injury surveillance systems today rely on the analysis of routinely col-
lected mortality and hospitalization data. Such systems have a number of
deficiencies. First, these data are collected for administrative purposes only
and do not contain detailed data needed for injury surveillance. For example,
the circumstances in which certain injuries occur are very important in order
to develop injury prevention strategies but are not relevant for administrative
purposes and thus most of the time are not collected. Second, it is difficult
for the research community to access such data. Usually the data are only
stored in paper form which makes it difficult and time consuming to analyze.
In the few cases in which the data are stored electronically, those systems
reside in a central office where the bureaucracy needed to access it is such

that the data become outdated by the time the researchers get it, if they get
it at all.

Despite the numerous recommendations by a variety of stake-holders, lit-
tle progress has been made in the development of efficient injury surveillance
systems [F'SHO1]. There is a demonstrated need in public health today for the
development of such new, accurate, timely and accessible systems [GRT+94].

The DIDP system will meet the criteria for evaluation of surveillance
systems proposed by the Center for Disease Control and Prevention in the

United States [Eval88]:

e Simplicity. The design should be simple and the resulting system
should be easy to use.

e Flexibility. The system should accommodate changes in information
needs and operating conditions.

e Acceptability. The system should have the features that will encour-
age individuals and organizations to use the system on a regular basis.

e Timeliness. The system should provide up-to-date information at any
time.

The DIDP system will collect data from the scene of the injury all the
way through the time of the patient discharge and integration into the soci-
ety. These data will not only consist of regular formatted data but also of
multimedia data as well. Multimedia refers to the integration of structurally
formatted data, textual descriptions, images, audio and video.

1.3 Scope of the Report

This report deals with the analysis, design and implementation of an object-
oriented database server for the Dynamic Injury Data Project. The server
will provide persistent storage of the data, ensure its integrity, and provide
a mechanism for the applications to interact with the data. The major con-
tributions of this work are:

e The analysis of the requirements necessary to develop the DIDP database
server meeting the criteria mentioned earlier and the definition of the
required data sets for injury surveillance.

e The definition of the system and data processing architectures for the
DIDP system. These are initial architectures that could be easily
adapted in the future if needed.

o The design of a detailed object-oriented model for the DIDP database.
The model is general enough to be implemented in any object-oriented
database system. The object-oriented approach was chosen because of
its superior capability to represent multimedia data.

o The design of the database server mechanisms to ensure the consistency
and encapsulation of the data.

e The implementation of the database server in the form of a class library
to enable access of application programs and end users to the data.

1.4 Report Organization

This report is organized as follows. Chapter 2 gives the background necessary
to understand the rest of this work. Concepts in medical informatics, public
health and injury surveillance systems, and object-oriented databases are
explained. Chapter 3 gives an overview of the Booch Methodology, which is
the software development methodology used by the DIDP project to develop
the database server. Chapter 4 describes the requirements analysis. The flow
of a patient through the real system, and the system and data processing
architectures are described. The database server scope and responsibilities
are also specified in this chapter. The design of a precise object-oriented
model for the DIDP database is presented in Chapter 5. Implementation
details of the server are addressed in Chapter 6. A detailed description of
the class interfaces is provided. Some problems that arose during the project
due to the implementation tools used, as well as their solutions are also
discussed. Conclusions and future work are presented in Chapter 7.

Chapter 2

Background

2.1 Medical Informatics

Medical informatics refers to the application of information technology to en-
hance the quality of health care. Drs. Greenes and Shortliffe formally define
Medical Informatics as “... the field that concerns itself with the cognitive,
information processing, and communication tasks of medical practice, edu-
cation and research, including the information science and the technology to
support these tasks.” [GS90]. They point out that although medical infor-
matics is an intrinsically interdisciplinary field with a highly applied focus,
it also addresses a number of fundamental research problems and planning
and policy issues.

Medical informatics relies on computers to provide improved patient care.
With new medical informatics applications and improved communication
technology, health care providers will be able to access their hospital-based
data and move across networks to other departments, institutions and data
sources. They will be able to access information when, where and how they
need it. As Ball and Douglas state “health care informatics is not a wildly
futuristic vision. It is an evolving discipline now. In the 1990s, health care
will realize the promise of [medical] informatics in education, research, ad-
ministration and patient care.” [BD90].

10

2.2 Public Health Surveillance Systems

Public health surveillance is “

... the ongoing systematic collection, analysis
and interpretation of outcome-specific data for use in the planning, imple-
mentation and evaluation of public health practice.” [TC94]. A surveillance
system has the capacity for data collection, analysis and timely dissemina-
tion of the analyzed information to persons responsible for the development

of prevention and control programs.

2.2.1 Utilization of Surveillance Data

Public health surveillance data are used to assess the public health needs
of the community, to evaluate existing programs, and to conduct research.
The data show what the problems are, who is affected and where preven-
tion activities should be directed. These data can also be used to evaluate
the effectiveness of existing prevention programs, and to help researchers in
identifying areas of interest for further investigation. The most important
questions the data should be able to answer are who, where and when. Ac-
cording to Thacker [TC94] the uses of surveillance data include:

Quantitative estimates of the magnitude of a health problem.

e Portrayal of the natural history of a health problem.
Surveillance data can show how the health problem evolved indicating
the different rates and populations affected.

e Detection of epidemics.
Epidemics are not detected by analysis of routinely collected data but
are identified through the alertness of the health providers. The exis-
tence of a surveillance system permits the conveyance of the information
to give a prompt response to the problem.

¢ Documentation of the distribution and spread of a health
event.
The geographic patterns of a health event can help in trying to identify
the causative factors.

e Facilitating epidemiologic and laboratory research.
The identification of the populations at risk can lead to further epi-

11

demiologic and laboratory research, sometimes using the individuals
identified as subjects in those studies.

Testing of hypothesis.
Surveillance data could be used to determine whether or not a particu-
lar action (e.g. a national vaccine program) yield the expected results.

Evaluation of control and prevention measures.
With routinely collected data, health officials can examine the effect of
health policies.

Monitoring of changes in infectious agents.

The ability to monitor the changes of infectious agents permits health
officials to facilitate prevention activities including notifying clinicians
about proper treatment procedures.

Monitoring of isolation activities.

When suspicion arises of a possible spread of a serious disease, quaran-
tines can be imposed. The people on quarantine would be monitored
for a certain amount of time to ensure that the spread of the disease
would not occur.

Detection of changes in health practice.

The detection of changes in health practice can lead to further investi-
gation to learn the cause of the change and to study the impact of the
change in the outcomes and costs associated with health care.

Planning.

With knowledge about the changes in the population structure and the
conditions that affect them, health officials can plan to optimize the
available resources for health care.

2.2.2 Planning a Surveillance System

The first step towards establishing a surveillance system is to have a clear

understanding of what is expected from the system. A public health surveil-
lance system may be established to meet a variety of objectives including
assessment of the health status, establishment of public health priorities,
evaluation of programs, and conduct of research.

12

Surveillance systems monitor the occurrence and outcomes of health events
such as injury and disease. They monitor the frequency of the illness or in-
jury, usually measured in terms of number of cases, incidence or prevalence;
the severity of the condition, measured in case-fatality ratios, mortality, hos-
pitalization and disability rates; and the impact of the condition, measured
in terms of cost. Surveillance systems can also be utilized to monitor risk
factors associated with certain illnesses or injuries and are used to monitor
treatments that are the direct result of certain health events.

There are many health events that could potentially be tracked using a
surveillance system. However, it is impossible to develop a surveillance sys-
tem for every possible health problem. Ideally, resources will be allocated
to the development of surveillance systems to monitor “high priority” health
events. Although not an exact science, there are several indicators that are
useful for identifying high priority health events such as frequency, sever-
ity, costs (direct and indirect), preventability, communicability, and public
interest.

Once the purpose and need of a surveillance system has been identified,
methods for obtaining, analyzing, disseminating and using the information
should be determined and implemented.

2.2.3 Sources of Surveillance Data

This section describes the characteristics of five types of health information
sources in which data is collected routinely and is generally available for
analysis. As more information sources become available, effective surveil-
lance for a specific health event will rely on the analysis and synthesis of
information from a variety of sources, each of which have different strengths
and limitations.

Notifiable Disease Reporting

Reporting on notifiable diseases at the national level started in many coun-
tries over one hundred years ago. The list of diseases for which notification
is recommended has changed over time, and although there is overlap, the
list varies from country to country and from region to region.

The results of the reports are collated and published nationally, but its
primary purpose is to direct local prevention and control programs. The
problem with this reporting mechanism is that, although many diseases or

13

conditions are considered notifiable, compliance is poor in many countries
and sanctions are rarely enforced.

In spite of its limitations, surveillance systems based on reporting of no-
tifiable conditions are a mainstay of public health surveillance. Unlike other
sources of routinely collected data, information from notifiable conditions is
available quickly and from all regions. In the future, reporting of notifiable
conditions will be based on computerized databases developed for billing or
other purposes. However, the utility of these systems is limited at present as
they do not usually used the standard International Classification of Disease

(ICD) codes.

Vital Statistics

Data collected at the time of birth and at the time of death is one of the
cornerstones of surveillance. Vital statistics are an important source of in-
formation as it is the only health-related data available in many countries
in a standard format. More than 80 countries report vital events to the
World Health Organization coded and tabulated according to the Interna-
tional Classification of Diseases (ICD).

The usefulness of vital statistics for surveillance of a particular health
event depends on the characteristics of the event and the procedures used to
analyze the data. Although birth and death certificates are issued shortly
after the event, results of processing the data and producing a final report
at a national level can take several years [TC94].

In spite of the limitations, vital statistics are an important source of
information for surveillance at the local, national and international level.
Although differences in rates do not always reflect differences in disease and
injury, routine analysis of the birth/death information can highlight areas
where further investigation is necessary.

Registries

Registries differ from other data sources for surveillance in that information
from multiple sources are linked together for each individual over time. These
sources include hospital discharge reports, treatment records, pathology re-
ports and death certificates. Information from registries have been widely
used for research purposes, but in many cases they have also been used for
surveillance and related activities.

14

The most successful registries are those that have realistic purposes and
where the collected data are accurate and limited to essential information.
Even when data collection appears to be straight-forward, the time and re-
sources required to develop a registry are often underestimated.

Surveys

Surveys can provide useful information in assessing prevalence of health con-
ditions and potential risk factors, and for monitoring the changes in preva-
lence over time. They are also used to assess knowledge, attitudes and health
practices in relation to certain conditions. The people surveyed are usually
queried once and are not monitored individually after that. Surveys can be
conducted through questionnaires and personal or telephone interviews. The
survey sample has to be representative of the source population to provide
representative results.

Administrative Data Collection Systems

Administrative information that is routinely collected about episodes of care
(e.g. hospitalizations, visits to emergency rooms and health care providers,
etc.) can also be used for surveillance purposes. In most cases these data
are computerized for billing purposes only, but since they include diagnosis
information, they can also be used for surveillance. Data that include per-
sonal identifiers is important so that statistics can be calculated on the basis
of persons rather than on episodes of care. Special precautions are needed to
ensure the confidentiality of the individuals whose identifiers are stored in the
computerized data. Although most administrative data are available only for
certain types of health care (e.g. hospitalizations), analysis of administrative
data is useful for public health surveillance and program planning.

2.3 Injury Surveillance Systems

Surveillance systems for infectious diseases have existed for decades. Al-
though injuries have long been identified as a major public health problem,
surveillance systems that monitor and control injuries are only in their in-
fancy [TC94].

An injury is “any specific and identifiable bodily impairment or damage
resulting from acute exposure to thermal, mechanical, electrical, or chemical

15

energy, or from the absence of essentials such as heat or oxygen.” [Fra97].
Many people and many physicians regard injuries as accidents [FSH91]. In-
juries are nor accidents; accidents are random events while injuries are pre-

dictable and preventable [FSH91].

2.3.1 The Facts

Accurate and timely information is the cornerstone of effective injury pre-
vention and control. Yet, up to 97 percent of all injuries that require medical
attention are never recorded in any comprehensive data set for use in in-
jury surveillance [WFP96]. Garrison et al [GRT+94] claims that the failure
to record these potential surveillance data impedes assessment of a commu-
nity’s health care needs.

Mortality data has been extensively used to design injury prevention pro-
grams, but deaths are just a small part of the problem. It has been estimated
that for every injury death, there are as many as 330 visits to the hospital
emergency departments [RBB92]. Other studies show that injury deaths
account for less that 0.2 percent of all injured patients [WFPP95] and some-
times even less than 0.1 percent [RRTB92].

Hospital discharge data has also been used for injury surveillance, but
the lack of information about external cause of injury limits its usefulness
for prevention planning [RBB92]. Furthermore, the information provided by
these discharge reports only account for less that 2.5 percent of the injured
population each year [WFPP95].

Data for emergency departments have been used in several major studies
[RBB92]. But, unlike hospital discharges, there is no standardized reporting
system and the type of data obtainable from emergency departments is not
well documented. Furthermore, this information is not usually stored at the
emergency department and is only retrievable searching through the hospital
paper records, which can be a cumbersome procedure.

2.3.2 Related Work

To solve the lack of information on causal factors of injuries, Ribbeck et al
[RRTBY92] proposed a method to assign external cause of injury codes (E-
codes, a subset of the International Classification of Disease, 9th revision
codes) to all injury patients seen in a large volume emergency department.
An E-code assignment sheet was designed for use by the triage nurse of the

16

emergency department. This sheet contained a checklist with the frequently
occurring codes of injury. The registered nurse at the triage desk recorded the
cause of injury as the patient first encounter as well as the chief complaint,
vital signs and treatment priority. This study demonstrated the feasibility of
collecting data on causal factors of injuries in large emergency departments
without much difficulty.

Because 80 to 90 percent of all injured persons that seek medical atten-
tion are cared for at emergency departments [WFPP95], most efforts have
focused on developing injury surveillance systems based on data generated
by these departments. Garrison et al [GRT+94] identify emergency depart-
ment surveillance as a way of documenting illness and injury patterns and
for responding to health care challenges in the community. In their work
they examine the overall concept of emergency department surveillance and
related issues, and propose a national strategy for implementing this type of
surveillance.

Runyan et at [RBB92] have conducted a study to determine the routine
record-keeping practices in hospital emergency departments to assess the ad-
equacy of these information for injury surveillance and prevention planning.
The study demonstrates that the type of data collected in different emer-
gency departments vary considerably. It also shows the absence of informa-
tion about the external causes of injury. The authors conclude that efforts to
standardized the record-keeping process would enhance any use of emergency
data. They also point out that the development of methodologies to secure
the necessary information has potential not only for surveillance and research
but to ease the burden of record-keeping among busy clinicians and to help
hospitals with concerns about quality of care and cost reimbursement.

Williams et al [WFPP95] develop an injury surveillance system based
on the emergency department log. The emergency log was modified for the
collection of injury related data such as the external cause of injury. A list
of injury causes was developed on the basis of review of existing literature
and pilot tests. The log data were entered into a computerized database, and
descriptive analysis was performed. The list of injury causes was successful in
93 percent of the emergency department cases during the pilots. The authors
conclude that the expansion of emergency department logs for collection of
injury data require minimal training and costs and provide an excellent source
for injury surveillance.

Williams et al [WFP96] extend their work by proposing a more complete
emergency based injury surveillance system. The idea was to link the emer-

17

gency department logs with the existing computerized hospital records. They
created a system to merge the files by the hospital identification number and
the date of service as their key merge variables. Although some problems
were encountered, more than 97 percent of the patients seen in the emer-
gency department had additional data after the merge. With this system,
significantly more data can be examined to help in injury prevention and
planning.

Many efforts have also been focused on the development of trauma reg-
istries [TC94]. Trauma is defined as “blunt or penetrating injuries or burns”
[PM8Y]; this definition excludes other types of injuries such as poisonings,
asphyxiations, immersion or exposures to extreme temperatures. Some pro-
fessionals claim that data related to all injuries can not be captured as most
hospitals do not have sufficient resources for this task [PM89]. They also
claim that trauma registries can serve as a principal tool for the system-
atic audit of patient care provided by hospitals and trauma centers and as a
potential source of part of the data needed by injury surveillance [PM89].

2.3.3 The Challenge

Development of an injury surveillance system is not an easy task. Some of the
important issues that need resolution include defining the data set to be cap-
tured and defining the injured population. Currently, there is no standard
and easy accessible mechanism to obtain information on incidence, demo-
graphics, type, and cause of injury. To be effective, a surveillance system
must achieve a balance between completeness and practicality.

Although some efforts have been made to implement better injury surveil-
lance systems, they have two major drawbacks. First, the data collection is
only focused in emergency departments, not considering other data generated
in emergency medical services or the rest of the hospital. Second, the data is
collected in paper form and subsequently entered in some type of database.
This methodology duplicates the effort (and costs) of collecting data, delays
the availability of the data to be used by the health care providers during the
patient visits to the hospital, and introduces the possibility of errors and/or
loss of data.

There is a demonstrated need in public health for the development of
new, accurate, timely and accessible injury surveillance systems. The DIDP
challenge is to create a system that:

18

e collects all the data needed for injury surveillance;

e provides the latest computer technology:

o facilitates the health providers’ job in the data collection;

e makes data available at the same time in which is being collected; and

o helps in administrative tasks, eliminating the need to enter the same
data more than once, and thus, preventing errors.

2.4 Object-Oriented Database Systems

Database management systems (DBMS) provide many advantages over the
traditional file processing approach [EN89]. They have been used for many
years in many areas including business, engineering, medicine, law, and ed-
ucation, to name a few. Not only do they provide standard services such
as data abstraction, support for multiple users, redundancy control, access
control, backup and recovery, but they also provide the ability to go beyond
the simple retrieval of information to high-level access through a powerful
query mechanism.

The DIDP system, when fully implemented, will not only consist of reg-
ular formatted data, but of multimedia data such as image, audio and video
as well. Since the relational model, which is the currently the most pop-
ular model for a variety of applications, has difficulties in representing the
complex data present in multimedia applications [Sch96], an object-oriented
DBMYS was chosen for the DIDP project.

In the following sections we present the main features and characteristics
of object-oriented DBMSs. These features are separated into three groups
following the organization of Atkinson’s et al [ABD+89] “Object-Oriented
Database System Manifesto”. The groups are:

e Mandatory features that a system must comply with in order to be
termed object-oriented DBMS;

e Optional features that can be added to improve the system, but
which are not mandatory; and,

e Open choices that the designer selects from a number of options.

19

2.4.1 Mandatory Features

An object-oriented DBMS must have the characteristics of a DBMS and
of an object-oriented system [ABD489]. To be a DBMS it must support
persistence, secondary storage management, concurrency, recovery and an ad
hoc query facility. In order to be an object-oriented system it must support
complex objects, object identity, encapsulation, types or classes, inheritance,
overriding and late binding, extensibility and computational completeness.

Persistence

Persistence is the ability to make the data survive past the execution of a
process in order to be reused by another process. The persistence should be
orthogonal to the type of data, that is, each object must be able to become
persistent independently of its type and without any explicit translation.
Also, the user should not have to move or copy the data to make it persistent.

Secondary Storage Management

This feature prevents the user from having to write code to manage certain
aspects of the physical level of the system. Secondary storage management is
a classical feature of DBMSs that include index management, data clustering,
data buffering, access path selection and query optimization. None of these
are visible to the user; they are simply performance features. They provide
a clear independence between the logical and physical level of the system.

Concurrency

The system must accommodate multiple users accessing the system at the
same time. It should, therefore, provide a mechanism to ensure the atomicity
of a sequence of operations (i.e. transactions) and controlled sharing of data.

Recovery

The system should provide a mechanism to recover from software or hardware
failures; that is, the system should bring itself back to some coherent state
upon recovery.

20

Ad Hoc Query Facility

The objective of the query facility is to allow the user to ask queries to the
database declaratively. Atkinson et al [ABD+89] define three characteristics
that a query facility should have:

e It should be able to express in a few words or mouse clicks non-trivial
queries concisely. It has to emphasize the what and not the how.

o It should be efficient. It should have some form of query optimization.

e It should be application independent. It should work on any possible
database, eliminating the need to write additional operations on user-
defined types.

Complex Objects

Complex objects are built by applying constructors to simpler objects [BM93].
Simple objects are integers, real numbers, characters, variable length strings,
and booleans. The minimal set of constructors that a system must provide
include sets, lists and tuples. Sets are very important as they are a natural
way of representing real world collections. Tuple constructors provide a nat-
ural means of representing attributes in an entity. Lists or Arrays are sets
with ordering on the elements and are necessary in some applications where
matrices or time series data are needed.

Object constructors must be orthogonal, that is, they should be applicable
to any object. In the relational model constructors are not orthogonal as set
constructors can only applied to tuples and tuples can only be applied to
atomic values.

Object Identity

Every object must be identified with a single object identifier (OID), which
must be independent of the values of the object attributes. By using OIDs,
objects can share other objects, and a general object network can be built
[BM93].

Because of this concept, two notions of equivalence exist: identity equality
and value equality. Two objects are identical if they are the same object (i.e.
the object identifiers are the same). Two objects are equal if the values of

21

the attributes of both objects are recursively equal. This means that two
identical objects are equal but the inverse is not necessary true.

Encapsulation

The idea of encapsulation comes from the necessity of clearly distinguish be-
tween specification and implementation, and the need for modularity. Mod-
ularity is an essential principle for designing and implementing complex soft-
ware where a team of programmers is involved [BM93]. It is also important
for supporting object authorization and protection mechanisms.

Encapsulation in programming languages derive from the concept of ab-
stract data type where an object consists of an interface and an implementa-
tion. The interface is the specification of the operations that can be invoked
on the object and it is the only visible part of the object. The implementation
has a data and a procedural part. The data represent the state of the object,
and the procedural part describes the implementation of each operation in
some programming language.

Whether the structural part is part of the interface is a matter of debate
in object-oriented DBMSs, while in the programming language approach the
structure is clearly part of the implementation. Although proper encap-
sulation is achieved when data are part of the implementation, there are
cases where encapsulation is not needed and the use of the system could be
significantly simplified if encapsulation is violated in special circumstances
[ABD+89]. For example, with ad-hoc queries, encapsulation can be elimi-
nated as issues on maintainability are not important. Thus, an encapsulation
mechanism must be provided by any object-oriented DBMS, but there are
some cases where its enforcement is not appropriate.

Types or Classes

Object-oriented systems can be divided in two categories: those that support
the concept of type and those that support the concept of class.

A type summarizes the common features of a set of objects with similar
characteristics. This concept corresponds with the concept of abstract data
type. A type has two parts: an interface and an implementation. The in-
terface consist in a list of operations and their signatures, and it is the only
visible part for the users of the type. The implementation consists of the
data part, which describes the internal structure of the object’s data, and

22

the procedures that implement the operations defined in the interface. In
programming languages, types are used to increase the programmer’s pro-
ductivity, ensuring the correctness of the programs. If the type system is
carefully designed, the type checking is done at compilation time; otherwise
it could be deferred until run-time. In type-based systems, types can not be
modified in run-time.

A class specification is the same as that of a type, but it is more of a run-
time notion [ABD489]. It contains a new operator that allows the creation
of new objects. Also, a class has its extension (i.e. the set of objects that are
instances of the class) attached. The user can manipulate this extension by
applying certain operations. Classes are not created to check the correctness
of a program but to create and manipulate objects.

An object-oriented DBMS has to provide one of these two forms of data
structuring. However, it is not necessary for the system to automatically
maintain the extent of a type. Consider, for example, the Date type that
can be used by many users in many databases. It does not make sense to
automatically maintain the set of all the dates used in the system. On the
other hand, in the case of a type such as Patient, it might be nice for the
system to maintain the patient extent.

Inheritance

The concept of inheritance is the most important concept of object oriented
programming [BM93]. With this mechanism a type called a subtype can be
defined on the basis of the definition of another type called a supertype. The
subtype inherits the attributes and behavior of its supertype. In addition, a
subtype can have its own attributes and behavior which are not inherited.
Inheritance provides code reuse and maintainability.

Overriding, Overloading and Late Binding

There are cases where one wants to use the same name for different oper-
ations. One common example is the draw operation. This operation takes
an object as input and draws it on the screen. Different types of objects are
displayed differently (e.g. a line, a circle, a rectangle). This forces the pro-
grammer to be aware of the type of the object in order to invoke the correct
draw operation. For example, if a programmer wants to draw all the objects
in a set whose type is unknown until run-time, in a conventional system,

23

he/she would have to write:

for x in X do
begin
case of type (%)
line: draw-line(x);
circle: draw-circle(x);
rectangle: draw-rectangle(x);
end
end

In an object-oriented system, the draw operation is defined at the most
general drawable type in the system, and then the implementation of the
operation is redefined for each subtype according to the type necessity (this
redefinition is called overriding). This results on a single name (draw) denot-
ing more than one program (that is called overloading). Therefore, to draw
the set of elements in the set, the programmer applies the draw operation
to each of them, and the system will pick the appropriate implementation at
run-time.

for x in X do draw(x);

Although the implementors would have to write the same amount of code,
the application programmer does not have to worry about the different pro-
grams for drawing. Also, the code is simpler, as it does not have any case
or if statements, and if another type is later added, the existing application
programs do not need to be modified.

In order to support this feature the system can not bind operation names
to programs at compile-time. They must be resolved at run-time. This
delayed translation is called late binding.

Extensibility

Every DBMS come with a set of predefined types. These types can be used
by the programmer to write their applications. An object-oriented DBMS
must be extensible, that is, it should provide a mechanism to define new types
and there should be no distinction in usage between the system defined and
the user defined types. However, it is not required that the collection of type
constructors (tuples, sets, lists, etc.) be extensible.

24

Computational Completeness

An object-oriented DBMS is computational complete if one can express any
computable function using the data manipulation language of the system.
The most common way to introduce computational completeness is to pro-
vide a reasonable connection to existing programming languages [ABD+89].
Being computational complete, object-oriented DBMSs are more powerful
than traditional systems which only store and retrieve data and perform
simple computations on atomic values.

2.4.2 Optional Features

This group includes those features that improve the system, but which do
not have to be included in an object-oriented DBMS. These features include
multiple inheritance, type checking, distribution, design transactions and
versions.

Multiple Inheritance

With single inheritance, each subtype has exactly one supertype. With mul-
tiple inheritance a type can have more than one supertype. Because there
is no consensus among the programming languages regarding this issue, this
feature is considered optional for object-oriented DBMSs.

Type Checking

The amount of type checking at compile time is left open. The more type
checking that can be performed, the better it is since this will prevent run-
time errors.

Distribution

The distribution of the database should be orthogonal to the object-oriented
nature of the system. An object-oriented DBMS may or may not be dis-
tributed.

Design Transactions

In many new applications, the classical transaction model is not satisfactory:
transactions tend to be long and the usual serializability criterion is not

25

adequate. Many object-oriented DBMSs provide design transactions (i.e.
long and nested transactions).

Versions

Versioning is a characteristic that many new applications such as CAD/CAM
or CASE need. Thus, object-oriented DBMSs could provide a versioning
mechanism to satisfy this need.

2.4.3 Open Choices

In this group we include those features where no consensus have been made
by the scientific community and where the different approaches do not make
a system more or less object-oriented.

Programming Paradigm

There is no reason to impose one programming paradigm over another. Any
programming paradigm could be chosen for the system. One solution might
be to make the system independent of the programming style and provide
multiple programming paradigms. The choice of syntax is also free and
people could argue forever which one to choose.

Representation System

The representation system is the set of atomic types and constructors pro-
vided by the system. Although there is a minimal set of atomic types and
constructors that has to be provided, this representation system could be
extended in many different ways.

Uniformity

The degree of uniformity of these systems is another open issue. At the
implementation level one should decide whether type information should be
stored as objects or not. This decision should be made based on the perfor-
mance and ease of implementation. At the programming language level, one
should decide if types are first class entities in the semantic of the language
or not.

26

2.5 Summary

In this chapter, many concepts that are needed to understand the rest of
this report are introduced. First, an overview on medical informatics and
general concepts on public health surveillance systems are explained. Then,
specific issues on injury surveillance systems and related work in the area
are discussed. Object-oriented DBMSs are also presented at the end of the

chapter.

27

Chapter 3
The Booch Methodology

Development of a complex system such as DIDP involves accommodation of
many and diversified requirements. Using a software development methodol-
ogy provides a standardized means of presenting and communicating the sys-
tem requirements and design decisions. The Booch Methodology [Booch93]
was chosen as the analysis and design methodology for the DIDP system.

The Booch Methodology is one of the most popular methodologies for
object-oriented analysis and design. It provides an expressive notation and
a set of heuristics needed by most businesses to produce working systems
efficiently. It provides a model that allows developers to enhance, correct and
maintain the same consistent model from the beginning of analysis through
implementation. The advantage of having this unique model is that there
is no throwaway work and the analysts and implementors can use the same
specifications thus preventing misunderstandings. Changes to the system
only have to be done in this unique model instead of changing multiple models
and documents which greatly simplifies the maintenance of the system. The
model and the system evolve together providing updated documentation at
any time.

This chapter describes the Booch Methodology based on some parts of the
structure of White and Goldberg’s “Using the Booch Method: A Rational
Approach” [WGY4].

28

3.1 The Notation

As Booch mentions [Booch93]: “The fact that this notation is detailed does
not mean that every aspect of it must be used at all times”. He also em-
phasizes that the notation is not an end in itself and that one should apply
only those elements of the notation that are needed and nothing more. In
this section the focus is on a subset of the notation used in this project. For
a complete description of the notation the reader can refer to Booch’s book
[Booch93].

The notation consists of six different diagrams that will be introduced in
the following sections.

3.1.1 Class Diagrams

The class diagram is the core diagram in the Booch notation. It shows the
existence of classes and their relationships. Class diagrams can contain class
categories, classes or a combination of the two.

Class Category

Class categories (Figure 3.1) serve to divide the system into logical units.
They are formed by a group of logically related classes that have low inter-
action with the classes of other categories. Class categories can also contain
other class categories. For certain diagrams it is useful to show some of the
classes contained by the class category. If we do not want to show any we can
simply drop the separating line and only show the category name. Classes in
a category might need classes that belong to another category. The using re-
lationship icon is used to indicate such relationship (See “Uses Relationship”
later in this section). If the category is used by all of the other categories we
indicate it with the key word global in the category icon.

CategoryName AnotherCategory
Class A
Class B

global

Figure 3.1: Class Category

29

Class

A class captures the common structure and behavior of a set of objects. It
is an abstraction of a real-world entity. When one of these entities exists in
the real world, it is an instance of the class and is called object. The major
attributes, operations and constraints of the class can be specified inside the
class icon (Figure 3.2). If we do not want to show any of these properties we
can simply drop the separating line and only show the class name.

T~
P N

/ ClassName

/ By S —
/ attributes
N constraints

S~ operations()

Figure 3.2: Class

Association Relationship

N
)

/

An association is a connection between two classes (Figure 3.3). It is the
most generic type of relationship. Associations are always bidirectional.

N

/ —
J Person >

—— S

—

/ = —
it \
/ City)

/
((e ive L (

Figure 3.3: Association Relationship

Uses Relationship

A use relationship between two classes denotes that a service from the target
class is being used by the source class, or that operations of the source class

have signatures whose return class or arguments are objects of the target
class (Figure 3.4). The class with the circle end of the relationship is the

source and the other one is the target.

30

—— N —— N

— _ / _

=
/ Person

I
; / 7
(
)

\ T

Figure 3.4: Uses Relationship

Has Relationship

A has relationship is used to show the whole-part relationship between two
classes (Figure 3.5). It is also known as aggregation relationship. The class
with the circle end of the has relationship is called the aggregate class. The
class at the target end of the has relationship is the part whose instances are
owned or contained by the objects of the aggregate class. The main difference
with the uses relationship is that in the has relationship the aggregate objects
own their parts. This means that when an object is deleted in the aggregate
class all the objects that are owned by that object must be deleted as well,
as they are just part of that object.

/ — N — .
J Car \ J Wheel N
/ / /
(? ((
\\ \\ \
N) N)
\ T = \ =
\ // \ //

Figure 3.5: Has Relationship

Inheritance Relationship

An inheritance relationship is used between two classes to show a is-a re-
lationship between them (Figure 3.6). When a class inherits from another
class it means that it shares its structure and behavior. The arrowhead points
toward the base class (or superclass). The other class is called the subclass.

Abstract Adornment

Abstract classes do not have instances and are used to define commonalities
among a group of classes. In order to identify an abstract class a letter “A”

31

Figure 3.6: Inherits Relationship

inside a triangle is used (Figure 3.7).

-~
= _ 7 TN

Y ClassName

Figure 3.7: Abstract Adornment

Cardinality Adornment

Cardinality can be specified for classes and for relationships. The possible
cardinality values are:

Value Description

1 One instance

n Unlimited number
0..n Zero or more

1.n One or more

0..1 Zero or one

<literal> Exact number
<literal>..n Exact number or more
<literal>..<literal> | Specified range

If cardinality is applied to a class it means that the class is only allowed
to have that number of instances (Figure 3.8). If no cardinality is specified
for a class the default value is n.

32

T~
P N

Y ClassName \\\J
/ {0..n} /
N

Figure 3.8: Class Cardinality

When cardinality is applied to a relationship it indicates the number of
links between the instances of the source and the target class (Figure 3.9).
There is no default value for unspecified relationship cardinalities.

—— T N
/ - / -
/. Source \ / Target \
/ 0..1 n / (/
N) N)
\ T \ P it
\ // \ //

Figure 3.9: Relationship Cardinality

3.1.2 Object Diagrams

Object diagrams are used to show a snapshot in time of a transitory group
of events over a certain configuration of objects. Each object diagram repre-
sents interactions or structural relationships that may occur among a certain
number of objects.

Object diagrams are used to show the different use cases or scenarios
and to understand the behavior of the system. Jacobson [Jac92] defines a
use case as “a particular form or pattern or exemplar of usage, a scenario that
begins with some user of the system initiating some transaction or sequence
of interrelated events.” In the DIDP system the action of dispatching an
ambulance is an example of a use case.

The essential elements of an object diagram are objects, links and mes-
sages.

33

Object

Each object represents an instance of its class. The object icon is similar to
the class icon except that it has a solid line as a boundary (Figure 3.10). If
multiple instances of the same class are used the multiple objects icon can
be used.

ObjectName

Figure 3.10: Object

Link

Objects interact with other objects through their links. A link is an instance
of any relationship that exists between two classes (e.g. has or uses rela-
tionship). It is analogous to an object being an instance of a class. A link
may exist between two objects only if the classes of those objects have a
relationship between them. The existence of a link means that the objects
can communicate: one can send messages to the other. An object can also
send messages to itself; that means that an object may be linked to itself.
The link is represented by a line between the objects (Figure 3.11).

Object A Object B

Figure 3.11: Link

34

Message

The message icon shows the direction in which a message is sent (Figure
3.12). Messages go generally in one direction but can also be bi-directional.
To show the order of the events the messages can have a sequence number
(starting at one). If no sequence number is specified the message can be
transmitted at any time relative to all other messages.

Object A Object B

Figure 3.12: Message

3.1.3 Interaction Diagrams

Interaction diagrams are an alternative to object diagrams. They are also
used to represent the scenarios or use cases. The relative order of the mes-
sages 1s easier to follow but they do not show links or attribute values as in
object diagrams.

3.1.4 State Transition Diagrams

Each class can have associated a state transition diagram. These diagrams
show the event-ordered behavior of the instances of that class. A state tran-
sition diagram should only be supplied for classes that have significant event-
ordered behavior.

3.1.5 Module Diagrams

Module diagrams show how classes and objects are allocated to modules in
the physical model of the system (i.e. the collection of directories and files
that composed the system). The use of these types of diagrams depends on
the implementation language since not all languages support this concept.
For example Ada supports all the module types in the Booch Methodology,
C++ only supports the concept of simple files and Smalltalk does not support
the concept of module at all.

35

3.1.6 Process Diagrams

Process diagrams show how processes are allocated to the processors in the
physical model. These diagrams are only needed if the process structure of
the system needs to be represented.

3.2 The Methodology

In the past, many methodologies have used a rigid series of steps. These
methodologies require the completion of one step before continuing with the
next one. The problem with this approach is that in reality developers use an
iterative process rather than a linear one. The Booch Methodology provides
an iterative process based on three mini-steps. This means that the develop-
ers will do a little bit of analysis, a little bit of design, a little bit of coding,
cycle back and do it again. All the steps of the methodology are completed
but in a series of cycles instead of in large leaps. The Booch Methodology
consists of three steps:

e Requirements analysis
e Domain analysis

e System design

3.2.1 Requirements Analysis

The objective of the requirements analysis is to determine what the customer
wants the system to do. In this step the key functionality and the scope of
the system domain must be defined. requirements analysis is a contract
between the customer and the developers on what the system will do. It is
not, however, a fixed contract. As the development goes on there might be
changes, but the requirements analysis will serve as a starting point and a
reference on what the system is supposed to do.

Use case analysis is a method to describe system functions. The collec-
tion of all the use cases of a system describes the complete functionality of
such system. During this step the developers and the domain experts work
together defining all the key use cases of the system. These use cases will be
used later to define the classes and operations.

36

There are no formal steps for requirements analysis because this process
can be very different from one situation to another. The only key for a good
requirements definition is a good understanding of the problem domain and
the customer needs.

Deliverables of Requirement Analysis

The methodology requires two formal products from the requirements anal-
ysis:

e System charter, which is a description of the responsibilities and the
scope of the system.

e System function statement, which is the collection of the key use
cases of the system.

3.2.2 Domain Analysis

The objective of the domain analysis is to define a precise object oriented
model of the part of real world that is relevant to the system. During this
step all data and major operations of the system are identified and added
into the model. This process also solves all the problems of vocabulary that
might arise in the requirements analysis and any contradicting requirements
that might exist. Good communication skills play a key role for this step.
The following steps are performed during domain analysis:

o Defining classes

Defining relationships

Defining operations

Finding attributes

Defining inheritance

e Validation and iteration

37

Defining Classes

The goal of this step is to identify the major classes of the system. The focus
must be on identifying those classes that reveal more about the problem
domain. The idea is not to obtain all the classes of the system but to get a
starting point for the analysis. The Booch Methodology is a highly iterative
process and as we get deeper into the analysis more classes will appear.

One way of discovering key classes is to find the nouns in the problem
statement, as they often correspond to classes. Although this is a very use-
ful trick it is important to maintain the focus at the logical level without
paying attention to implementation characteristics. We have to concentrate
in the whats and not in the hows. It is also important to avoid contextual
information present in the problem statement that is irrelevant to the sys-
tem responsibilities. We have to be careful with the ambiguity of the natural
language as well.

Another important thing to keep in mind is the choice of meaningful
names for the classes. A good name should bring to mind the abstraction
that is being represented without any further knowledge. Names must be
singular nouns (unless the class represents a collection) or an adjective and
a noun. The inability to name a class means that something is not clear
about that class or the abstraction we are trying to represent is not a class
but something else (e.g. relationship, attribute).

During this step we also have to start building the project’s data dic-
tionary. A data dictionary is a central repository for the domain entities,
including classes, attributes, relationships and operations, that are found
during the analysis and design. As the key classes are discovered we add
them into the data dictionary.

Once all the initial classes are defined, the semantics of these classes must
be identified. This means that we have to provide a short definition for each
class and also have to note any rules or constraints that we know about the
class.

Defining Relationships

Classes are not isolated entities. They relate to each other to form the
structure of the system. The goal of this step is to identify those relationships.
There are two types of relationships we have to identify: association and
aggregation (also known as has relationship). For an explanation of each of

38

these relationships see Section 3.1.1.

It is important to choose meaningful names for the relationships. The
name must provide significant semantic information. Names of relationships
are usually noun phrases that denote the nature of the relationship. They
do not need to be unique in the system, but only within their own context.
The inability to name a relationship could be a sign of incompleteness or
that more than one relationship was mistakenly gathered together. When
it is difficult to define a relationship, further analysis might show that new
classes and relationships need to be added. This refining of relationships is
a very important step in the process.

Similarly, we also have to provide a short definition for each relationship
capturing any rules or constraints that we know about. We also have to
define the cardinality of the relationships. The cardinality shows whether it
is mandatory that an instance of the source contains an instance of the target,
and the maximum number of target objects that the source can contain at
any one time. For more information on cardinalities see Section 3.1.1.

Defining Operations

The goal of this step is to identify the operations needed to support the
system functions. In order to determine which operations are needed, each
class should be examined. It is also during this step that the use cases defined
in the requirement analysis are expanded into detailed scenarios using object
diagrams. Modeling scenarios show how objects collaborate in the use case
and identify the operations needed in each object.

Each operation should perform one simple function. Too many inputs
and outputs should be avoided. This may indicate that the operation is
doing too many things and it should be split into two or more simpler ones.
Input switches also have to be avoided as they are often a sign of non-
primitive functions. Choosing a representative name for the operation is
also important. The name should reflect the outcome of the function. The
operations must be added to the class specification including any information
about the arguments and return value.

Finding Attributes

During this step the properties of the classes will be defined. The properties
that describe a class are known as attributes. An attribute is like an aggre-

39

gation relationship, where the label is the attribute name and the cardinality
is exactly one.

In order to find these attributes each class must be examined. Unlike
classes and relationships, attributes are often not mentioned in the problem
statement. The knowledge about the problem domain has to be used to
define them. Adjectives that describe the object are usually good candidates
for attributes. We have to keep in mind the problem domain and do not add
unnecessary attributes to the classes. The color of the eyes of a person can
be an attribute of the class Person, but it might not be pertinent to the
actual problem domain.

The attributes must be added to the class specification including their
types. Any attribute that is derivable from other attributes, if specified,
must be noted as derivable.

Defining Inheritance

The goal of this step is to generalize and specialize the classes with similar
domain types. There are two ways of doing this:

e Identifying superclasses. When common data or behavior is found
among a group of classes we can gather that common information in
one class and make the other classes subclasses of this new superclass.

e Identifying subclasses. If a subset of attributes or operations only
apply to a subset of the instances of the class it is useful to define a
subclass.

Validation and Iteration

To validate the model we have to check that all the classes, relationships,
operations and attributes that we have defined are sufficient to implement
the system defined in the system charter specified during the requirement
analysis.

There are two ways of validating the model: by using object diagrams
and by checking key outputs. In both cases we have to pick one or more sce-
narios/key outputs respectively and check that we have enough information
in the model to implement them.

Once the validation has been done we have to consider if we still have to
iterate all the steps in order to refine the model or if we have finished with

40

the domain analysis and can move to design. We can stop analysis and go
to design when, after iterating and walked through all the scenarios, we have
not found any more classes, relationships, operations or attributes. It should
be remembered that this is a highly iterative process and we can come back
to the domain analysis at any time.

Deliverables of Domain Analysis

The deliverables of domain analysis include:

e Class diagrams identifying the different classes of the system with
their relationships.

e Class specifications for all the classes. They must include all the in-
formation regarding each class including its relationships, superclasses,
attributes and operations.

e Object diagrams showing the use cases defined in the requirement
analysis. Object diagrams or interactions diagrams can be used.

e Data dictionary listing all the entities in the domain including classes,
relationships and attributes.

3.2.3 System Design

Analysis focuses on understanding the domain; design focuses on how to
implement those requirements.

An iterative approach during design is even more important than during
analysis. Trying to make a complete design in one step is far too complex
to obtain a good quality system. Also using an iterative approach will allow
users to see working versions of the software earlier. The following steps are
performed during the System Design:

o Defining the initial architecture.
e Planning executable releases.

o Developing executable releases.

41

Defining The Initial Architecture

The internal structure or organization of a system is called architecture.
When a system has a clean, well organized architecture it is easy to un-
derstand, test, maintain, and extend. Usually architectures are organized in
layers. Each layer uses the services of the layers below and has no knowl-
edge of the layers above. This facilitates changing each of these layers at
any time without affecting the rest of the system (as long as the interface
between them is maintained). There are two main tasks involved in defining
the initial architecture:

e Choosing major service software. We have to decide which ser-
vice software will be used during implementation. This software may
include an operating system, a database manager, device interfaces,
graphical user interfaces (GUIs), etc. This decision has to be made
early in the design process as it will be a starting point for the remain-
der of the design decisions.

e Defining class categories. When new classes are added for imple-
mentation purposes, the system grows. New class categories may have
to be created to contain these classes. It is important to keep the logi-
cal and physical aspects of the system independent of each other. This
will facilitate the portability of the domain part of the system across
multiple platforms and will also help in the reusability of the classes
used only for implementation (e.g. the interface library).

Planning Executable Releases

As with design, trying to implement the whole system in one step is far too
complex to obtain a good quality system. Instead, it is better to build the
system in a series of executable releases. An executable release is a mini-
system that performs a group of related functions and tasks.

An incremental plan to build the system using several executable releases
has to be defined. Eventually these releases will be integrated to provide a
complete system. One approach for planning executable releases is to try
to reduce development risk. This means that each release should eliminate
some risk in the project. Risk areas are those areas in the system’s design
or requirements that are possibly incomplete or incorrect. The customer
may not be sure about a certain part of the system and will need to see the

42

system working to make sure that that part of the system is what he/she
really needs. Also new services, hardware or another systems that were not
tried will be tested to see if they comply with what was expected of them or
if there is a need to replace them.

The executable release plan should contain the goal of the release, the
classes to be implemented, the use cases to be implemented and the required
inputs and outputs. Testing will be done after each release to ensure that
the goals of the executable release are met.

Developing Executable Releases

In order to develop an executable release the following tasks have to be
performed:

¢ Adding control classes. Control classes model functionality that is
not present in any of the classes of the system. They make different
objects collaborate to provide certain behavior. Instances of control
classes are usually temporal and only last during the execution of an
activity.

e Detailing the implementation of operations. Many operations
are sufficiently simple to be detailed during analysis. Other operations,
in particular those that involve many objects, need further definition.
New object diagrams will be developed for these operations. Also,
for some complex operations, object diagrams might not be sufficient
to illustrate the steps of the operation. In these cases, an algorithm
will provide a better definition of the operation. Pseudo code or the
implementation language could be used to express this algorithm.

e Implementing relationships. There are two issues to consider: nav-
igational paths and containment. During analysis, associations are de-
fined between classes. These relationships are bi-directional, but some
of them are traversed only in one direction. During design we add the
navigation paths to the associations. We also have to define how all the
relationships between classes will be implemented: by containing the
object or by pointers or references. Also some container classes might
need to be defined in order to implement One-to-Many and Many-to-
Many relationships (e.g. the class Set).

43

e Defining access control. During analysis one could assume that ev-
ery class has access to every attribute and operation of any other class.
During design we try encapsulate each class so that the implementation
is completely hidden from its public interface. This will help localize
all the effects of change.

Deliverables of System Design

The deliverables of system design include:

e Completed class diagrams that show the new implementation classes
and the categories added to the system.

e Completed class specifications which show the implementation de-
tails added such as algorithms to carry out operations, members added
to the classes for internal operation and access control of the members.

e Design object diagrams for the non-trivial operations.
e Executable release plans

e Architectural descriptions which describe the choices of hardware
and software for the system.

3.3 Summary

In this chapter the Booch methodology is introduced. This software de-
velopment methodology provides a standardized means of presenting and
communicating the system requirements and design decisions for the DIDP
system. The Booch notation is explained focusing in the subset of the no-
tation used in this project. Each of the three steps of the methodology (i.e.
requirements analysis, domain analysis and system design) is discussed in
detail. The deliverables for each step are also presented.

44

Chapter 4

Requirements Analysis

The first step in defining the requirements of the DIDP system is to under-
stand the problem domain and what is expected from the system. In order
to achieve this goal several activities are performed:

e Reading the project proposal. The first task was to know what
the goal of the DIDP project was. The proposal provided a starting
point in defining the scope of the system.

e Observing the real system. Seeing the environment and conditions
in which the users of the system work provided a good idea about some
of the characteristics that the system must comply. For example, it is
not uncommon that paramedics make notes on small pieces of paper
while treating the patient and they complete the formal report later
once the patient is in the hospital. This means that the data is not
always entered in the system in the same sequence as it happens in
real life and thus the validation mechanisms should contemplate this
situation.

e Consulting with domain experts. Many paramedics, doctors and
nurses were interviewed during this process. It is very important to
understand that each professional in the health system has a different
need in order to build a system that satisfies all its users. For example,
doctors use more free-format forms while nurses use charts in order to
enter information.

e Revising forms. Many paper forms that are used in the hospital and
in the ambulances were reviewed in an attempt to become more familiar

45

with the vocabulary and the type of data collected. Forms that are no
longer used were also revised to understand why they were discarded.

4.1 Patient’s Flow

In this section we explain the process that is followed when a patient is
injured and 911 is called until the patient is discharged from the hospital
and reintegrated into the society (see Figure 4.1).

Emergency Medical Service (EMS). Injuries can happen anywhere: at
home, at work, on the road. Once 911 is called, an ambulance is dis-
patched to the scene of the injury. This ambulance could be an air
or ground ambulance depending on the location of the incident. The
emergency medical technicians and paramedics in the ambulance serve
as an extension of the physicians in the field and work under medical
direction. The difference between an emergency medical technician and
a paramedic is that paramedics can perform more advanced procedures
such as intubating the airway and giving medications. It is important
that the injured person is treated in the first hour of being injured
to have a better chance of survival. The Emergency Medical Service
(EMS) has the responsibility of transporting the patient to a hospital
as soon as possible and to stabilize the patient’s condition on the way
to the hospital.

Emergency Room (ER). Once the ambulance arrives at the hospital the
patient is brought into the EFmergency Room (ER). Emergency depart-
ments have many types of professionals such as emergency doctors,
nurses, specialists-orthopedics, respiratory /orthopedic/x-ray technicians,
and students in these areas. An emergency doctor assesses the patient
and if the patient has a only minor injury he/she is sent home after
receiving the necessary treatment. In more severe cases the patient is
referred to specialists within the hospital and could be transfered to
the Operating Room (OR), the Intensive Care Unit (ICU) or to the
Ward.

Operating Room (OR). Patients that need surgery will be brought to the
Operating Room (OR). Anaesthetists, surgeons and nurses are among
the type of personnel we can find in this unit. Once the patient is

46

EMS SN

Admissions

ER

OR

Y

Ward

A

Y

ICU

A Rehab

-

Hospital

Admissions

Figure 4.1: Patient’s Flow

47

operated he/she can be transfered to the ICU or the Ward depending
on his/her condition. It could happen that a patient needs more than
one surgery and is thus transfered back and forth from the ICU/Ward
to the OR.

Intensive Care Unit (ICU). Patients that need stabilization and close
observation are brought to the Intensive Care Unit (ICU). Here special
nurses and doctors take care of them until they are well enough to go

to the Ward or die.

Ward. Patients are sent to the Ward when they are not well enough to go
home or to rehabilitation but they do not need very close observations
as to send them to the ICU. Nurses, technicians and doctors work here.
They are capable of taking care of orthopedic and internal injuries.
Once the patient is recovered he/she is discharged and sent home or is
transfered to the Rehabilitation unit.

Rehabilitation. The objective of the Rehabilitation unit is to give back
to the patients the skills they had before the injury. Occupational
therapists, physiotherapists and speech therapists are part of a team
devoted to maximize the skills an injured person can gain. Once a
patient is rehabilitated he/she is sent home.

There are other units in the hospital such as Laboratory Services, Radi-
ology Department, etc. that provide support to all the professionals working
in the units mentioned above. Also the Admissions Office takes care of the
administrative part of the hospital.

4.2 System Architecture

Figure 4.2 illustrates all the major elements in our architecture. We have
one or more hand-held computers in each of the hospital units and in the
ambulances. These units communicate with the database server through a
network. A few details about this network should be mentioned. From the
system’s perspective the choice of a particular network is not important as
long as it provides a reliable service. The presence of hand-held computers
suggests that a wireless network could be used. As observed during analysis,
the way of capturing data will be much easier using these units because of the

48

/
* Hospital

~
Database Server

Figure 4.2: System Architecture

49

End Users

| ! !

Data

Collection
A A

Applications

v v v
Visual Query
Interface

Database Server

'

ObjectStore

Data

Figure 4.3: Data Processing Architecture

nature of the activities performed by the users of the system. For example,
there is usually no space in an operating room to place a desktop computer.
If a wireless network is not used, the hand-held units could be used stand-
alone and then the collected data downloaded to the database server with a
certain frequency.

4.2.1 Data Processing Architecture

The data processing architecture of the system, including some components
not yet developed, is depicted in Figure 4.3. The data collection component
of the architecture utilizes pen-based hand-held computers to be employed
by the emergency medical services and the hospital personnel to capture the
most important patient-related information. The database server component
of the system stores the collected data and allows sophisticated analysis of

50

the data through a visual query interface. The mapper component will link
the data collection and database server components so that data could be
transfered between them.

The object-oriented DBMS used to develop the database server is Ob-
jectStore [Obj95]. ObjectStore has been used in many applications where
high performance, reliability, concurrency and scalability are among the rig-
orous requirements to be met, and where conventional databases are unable
to meet user requirements due to their limited ability to accommodate com-
plex data and relationships [Obj97]. ObjectStore provides native support
for extended data types such as image, free text, video, audio, time series,
spatial and HTML objects, as well as for the extended relationships among
non-tabular unstructed data. This enables the building of applications that
would be difficult or impossible to implement with conventional relational or
object-relational DBMSs.

This report deals with the database server layer of the architecture. The
data collection component is being developed in the Department of Public
Health Sciences at the University of Alberta. Future Work, as discussed
in Chapter 7, includes the development of the visual query interface, the
mapper, and several other applications to interact with the database server
and provide services to the end users.

4.3 Database Requirements

After a careful analysis of all the data gathered in each of the different units
of the hospital and the EMS we define the minimum data set for each of
them. A minimum data set is composed of the least number of items of
information which provide most of the data required by the majority of the
users. For this phase of the project we focus on the information gathered in
the EMS, ER, ICU, OR and the Admissions office.

There is significant commonality in the data requirements of each unit,
even if the commonalities are exhibited at different levels of detail. The type
of collected data can be classified into the following groups:

e Patient identification and health information. Includes demo-
graphics information about the patients, medications taken on a regular
basis, medic alerts, allergies and other medical problems the patients
have.

51

General information about the visits to the hospital/EMS.
Includes detailed chronological information about the visits of the pa-
tients to the different units, information needed by the Workers” Com-
pensations Board and Social Services, and information on the incidents
in which the patients were injured.

Medications, antibiotics and IVs. Includes all the medications,
antibiotics and IVs provided to the patients.

Diagnostic images and lab exams. Includes the laboratory exams
and images ordered for the patients including their results.

Invasive therapy, instrumentation and fluids. Includes the genito-
urinary procedures done to the patients, the instrumentation applied
and the input/output fluid assessments.

Critical incidents and personnel. Includes the critical incidents oc-
curred to the patients and the personnel contacted during the patients’
visits.

Gastrointestinal assessment. Includes gastrointestinal exams, os-
tomy, stoma and stool assessments.

Central nervous system assessment. Includes general central ner-
vous system assessments, pain assessments, spinal precautions applied
to the patients and intercranial probe readings.

Respiratory assessment. Includes chest exams, respiration support
devices applied, airway procedures done and ventilator control readings.

Vital Signs assessment. Includes pulse, respiration, blood pressure,
pupil, skin and Glasgow comma scale assessments.

Other assessments. Includes injury and cardiovascular system as-
sessments and musculoskeletal devices applied.

Specific information about OR anaesthesia and procedures.
Includes pre-assessments of the patients before the operations, anaes-
thesia setup information, operation procedures done and monitor read-
ings during the operations.

52

e Specific information about the EMS visit. Includes general as-
sessments and treatments done and information about the ambulance
runs.

4.3.1 The Database Server Charter

In order to conclude the requirements analysis we have to define the scope
and responsibilities of the database server. The key responsibilities of the
database server include:

e To provide persistent (i.e. permanent) storage for the data collected
from the scene of the injury to the time the patient is discharged and
re-integrated into the society. In this first version of the server we

consider the information gathered in the EMS, ER, ICU, OR and the

Admissions office.

o To ensure the integrity of the data enforcing the corresponding integrity
constraints.

e To provide the necessary recovery mechanisms in case of hardware or
software failures.

e To provide a mechanism that keeps track of when a user performs an
operation on the data.

e To provide a uniform interface for the application programmers to write
applications that interact with the database server.

4.4 Summary

In this chapter the requirements analysis is presented. The activities per-
formed to understand the problem domain, and the flow of a patient since
he/she is injured to the time of discharge from the hospital and reintegration
into the society are discussed. The system and data processing architecture
is introduced. The database requirements and the scope and responsibilities
of the database server are also explained.

33

Chapter 5

The Design

Database design involves the definition of a precise object-oriented model of
the DIDP system and its environment. The DIDP database design was kept
simple and flexible to accommodate future changes in information needs and
operating conditions. The programming language and database chosen for
implementation (C+4+/ObjectStore) also influenced the design.

In the following sections the motivations behind each design decision and
the influence of the implementation on the design are discussed.

5.1 Design Tool - Rational Rose

Automated tools help free analysts and designers from some of the tedious
tasks of modeling so that they can concentrate on the truly creative aspects
of analysis and design. There are certain things that these tools can do
and others that they can not. Automated tools can, for example, enforce
conventions, help with consistency checking of the model, tell whether or not
a certain state in a state transition diagram is reachable and take care of the
data dictionary. On the other hand, an automated tool can not tell when a
new class has to be defined or how to simplify certain structures; that needs
human insight.

For the DIDP system Rational Rose/C++ [Rose95] was chosen as the
visual modeling tool. Rational Rose supports the Booch notation and it is
specifically designed for C++ developers who need to keep their application
model synchronized with the implementation [Rose97]. Although Rational
Rose provides C++ code generation, this feature was not used in this project

54

since it only provides support for mapping persistent objects to a relational
DBMS, not to the object-oriented DBMS that was used in this project.

5.2 The Model

The overview of the DIDP model is depicted on Figure 5.1. For each of
the functional groups identified during the requirements analysis there is one
class category. There is also an extra category called General Classes that
contains the classes that are used by all the categories in the model.

The classes contained in a category are private and can not be accessed
from any other category. Then only exceptions are those classes listed in the
category icons that are offered as public. If a category needs one of the classes
offered as public by another category, a use relationship has to be specified
between the two. For example, the classes contained in the EMS Specific
Information category can access the classes Next Of Kin and Patient
contained in the Patient Identification and Health Information category. The
classes contained in the General Classes category can be accessed by all the
classes in the model because the category is marked as global.

Each category in the diagram has a class diagram associated with it. We
describe each of these diagrams in the following sections. The complete set
of class specifications are listed in Appendix A.

5.2.1 General Classes

As mentioned before, the General Classes category contains the classes that
are used by all the categories in the model (see Figure 5.2).

We assume the existence of certain basic data types such as integer,
positive (or unsigned) integer, real, boolean, date, time and string
that are not shown in the diagrams but are defined in the class specifications
for completeness.

In order to provide a basic auditing mechanism, an abstract class called
Security was defined. This is the root class of the model and every class
inherits from it either directly or through its superclass. Security provides
a method called TimeStamp() that updates the date/time and user id stored
in the object that calls it. Objects can invoke this method when they are
created or each time they are being modified to record who created/modified
the object and when. This mechanism has its limitations, as discussed in

35

[uuosiad JuswIssassy
pue sjuapiou| SJUBWISSASSY Jayl0 Jeunseulonsen
Q

JusWISSassy WalsAg
SNOAIBN [esiua)

O

w_o_:% pue JuswnJisu|
‘Adelay] eaiseau| |

@)

paispiO swex3 qeq

ptiind wion, = bt T bl § NSIA Hun
swex3 ge pue HSIA HO
sebew| sonsoubelq USIA NOI

1SIA HUN [8J9) [elidsoH

USIA uun Bay [eldsoH
USIA H3

7 USIA ST
uoljewloju| SHsIA

SAl pue sonoiquuy
‘suoneoIPaN

[eqo|6
jusied
Uiy JO 1XeN
yijesH pue
sosse|) [Bloudyn) uoneoluap| Jualed

weubelqg urelN daid

5

JuUsWISSOSSY
Aojendsay

JUBWISSasSY
SUBIS [eNA

— |

S9INpPad0id
pue eisayiseeuy 4O

Q

uonew.oyu|
oyoads SN

56

Figure 5.1: DIDP Main Diagram

Chapter 7, but serves as a basic auditing tool that will help to develop a
more extensive auditing mechanism in a future version of the system.

The abstract class Named Object provides the common attributes and
behavior needed by all the classes that have name as an attribute. In partic-
ular, it simplifies the implementation of those subclasses of Named Object
that do not have any extra attributes or behavior other than the ones inher-
ited. There are many of these classes in the model where the only difference
among them is their semantic definition. For example Color and Drug
Type have exactly the same attributes and behavior, but they are used to
model very different entities.

The abstract class Descripted Object works exactly like Named Ob-
ject except that it provides the attributes and behavior needed by the classes
that have description as an attribute instead of name.

The abstract class Ranged Value provides the common attributes and
behavior for those classes that have a name and a range of valid values. For
example, every laboratory exam has a name and a range of possible valid
values for the result.

Because the inheritance relationships between the four classes discussed so
far and their subclasses do not give any insight in the problem domain itself,
they are not shown in the rest of the diagrams. For a detailed inheritance
information see the class specifications in Appendix A.

The classes Age, Pname and Address are considered extended types.
This means that the extents of these classes are not maintained, and that
the objects of these classes only exists as part of other objects by physical
containment instead of pointers or references. Age represents the age of a
person in years and months. Pname represents a person name, including the
first name, middle name, surname and title. Address represents any regu-
lar postal address including street number, street name, apartment number,
postal code and city. It also stores the latitude and longitude coordinates
of the location to be used by a Global Positioning System in the future (see
Chapter 7).

An instance of the class ICD9 Code represents a particular International
Classification of Disease, 9th revision code. These codes have widespread
international use to summarize anatomical diagnoses [Mac84] and are com-
monly used in discharge summary sheets.

We define a Body Region as any external region of the human body
(e.g. chest, leg, head, etc.). A body region can have a macro region. For
example the macro region for hand is arm. A body region has one or more

57

(aby

~ ——

~ -

uolfayo.loeuw TN

(_ 8p0Q 6a0I /
ST Ty

/palgo
//cmﬁ_‘_omon_ /

~

N

—

~

)
/
/
/ A
Fe

)

/ /

_ Anoag \
SN T T ——

~7

sasse|) [elauan

N2

——

38

Figure 5.2: General Classes

body parts. A Body Part represents any part of the human body. It could
be the skin of a body region, a joint, a bone, a blood vessel, a nerve, a muscle,
a tendon, a ligament or an internal organ.

The class Color represents any color that a substance may have. The
class Province and City are used to represent provinces and cities used
throughout the model.

5.2.2 Patient Identification and Health Information

The Patient Identification and Health Information category contains the
classes used to identify the patients and to maintain their health history
(see Figure 5.3).

The abstract class Person includes information such as the name of the
person, the home address and home telephone number. A Patient is any
person that visits the hospital/EMS seeking attention. Each patient is iden-
tified by a patient identification number which is unique for the individual
and is maintained through the different visits of the patient the hospital /EMS
more than once. Other information about the patient includes the gender,
date of birth, health care number, blue cross number, and the name of the
family physician. If the patient is a native, the treaty number and the Band
he/she belongs to has to be identified. If a patient dies the date/time and
cause of death are also recorded. A Next Of Kin has to be specified for each
patient when possible. The active next of kin is the one with the latest date
of assessment. The system maintains the previous nexts of kin for historical
purposes.

For every health condition that a patient has, the system records the
date/time in which the condition was first assessed and the date/time since
when the condition is no longer valid. This is necessary to know what the
hospital/EMS personnel knew about a patient at a certain point in time
and to maintain a history of the patient’s health conditions. The abstract
class Medical Condition provides the attributes and behavior necessary to
comply with this requirement.

The classes Medic Alert, Health Problem and Allergy represent all
the medic alerts, health problems and allergies a patient might have. The
classes Patient Medic Alert, Patient Health Problem and Patient
Allergy represent the medic alerts, health problems and allergies the patients
have/had.

Each object of the class Regular Medication represents a medication

59

- \ (
(N \ ~

_ ST
~7 N —
\
-

v J\\\J uompuoy
/ uoneolpal . [eolpa
< Jfenbay ——
~— / ~
N
u
7N
— |
{ N \
) ™) ™
/ / /- wejqoid v
_ Abig|y _ UueeH /

//\ —

— /
S N
™
—— \ .
x \ \\\ h
u_-— ~ ——— \
¥ J \ ~. / .
-
A /
AN

) _ ~
-~ ﬁ\ Haly ,/u K ,
\/ ™ u- 2Po used {_ vy opepy ¢
/ wa|qoid e N T TN T~
__UlleaH jusied
///C\ ///\\
lo—. 1 7N
L - ‘\/(\ |
oot ui ///
L) o)
u’/ / / /
jusired / (_uUpJoxeN [/
—~ ~— e / ~ . /
~7 N\ N — N —
\\)r\ 170
\ RN
))
/ s
(_ pueg /
—~ AN

(_ uosled r

= /

60

N ———

~7

uoleWIOU| YlfedH pue uoneoijiuap| 1usied

Figure 5.3: Patient Identification and Health Information

that a patient takes on a regular basis. The information stored includes the
name of the medication, the dose and frequency in which it is taken.

5.2.3 Visits Information

The Visits Information category contains the classes used to keep all the
general information related to the patients’ visits to the hospital/EMS (see
Figure 5.4).

Every patient can visit the hospital more than once. A Patient Visit
represents a particular visit of a patient. Within the hospital, the patient
can visit many units (i.e. ER, ICU, OR). The design considers EMS as one
of these units since data collection is very similar in all of them. The infor-
mation related to a visit includes the weight and height of the patient, the
date/time the patient arrived/left the hospital and the date/time of admis-
sion/discharge if the patient was admitted.

If a patient is injured while working, certain information is recorded for
the Workers” Compensation Board (WCB). A WCB Claim keeps informa-
tion about the patient’s occupation, his/her social insurance number and the
name of current employer. If the patient is under social assistance, some
information is recorded for Social Services. Social Service Info keeps in-
formation such as the number of social service and the name of the social
worker that is related to the patient.

A Valuable represents any valuable that a patient might have when
he/she arrives at the hospital (e.g. a ring, a watch, a wallet, etc.). Each
instance of Patient Valuables represents a collection of all the Valuables
that a patient had at check-in including the amount of cash (if any) and the
name of the person who kept these valuables if they were not left with the
patient.

Something very important to record for each patient visit is the informa-
tion regarding the incident in which the patient was injured. This information
is kept in Incident Info. The information recorded includes: whether the in-
cident was indoors or outdoors, all the Safety Devices that the patient was
using during the incident and the external Causes of injury. Each instance
of Cause represents a different E-code. The E-codes are a subset of the ICD9
codes that are used for codifying the external causes of injury. Ribbeck et
al [RRTB92] have first shown that E-coding is a valuable method for injury
surveillance that can be easily performed in Emergency Departments, and
that its value is essential for injury prevention research.

61

— 7N 7N = \
R —— | ——=7 \ (S
o \ [NG (N \ ~
N/ N M > M) / eaineg /)
| y Y / y __ Hees
/ ~_¥sAnal/ L H_m_>mm_ 4 T
(_ wsiAHO ~ ! - u -
TN T K\/(\ /
| =N
))
Y s
ul_ esney 7
-2 =
u ~ =
| J 7 | -
/s s (J
S ._Boy [endsoy M /J c/\ a|genep 7
\\ _ . N \’//\ \ \ =~ \//\\
/ . | Emc_oc_ =~
)) [! T
/ PN == /
- H_m_>m_>_m_ / L , _ { -
//\ A\ \ _ \\\ v OM /v
| S s - 7 se|qenen
) u | (_ uaned 7/
/0 wsawn S / g T
//_/M/Lo _S_mw/o_._\\ (USIA Emzmn_ /
- - T 3 —
(T Ko~
\
| N
/ ojueomies
) AN { [elog 7
| .. S = /
\ h L0 - -
| D) AT
/ J/ (\
NSIA BUN F | o
//// \I//\\ \‘\)/ \ u
_ - \
[N E_m_OmO>> \
L (o e ~ =

UNESH PUE UOREOIIUSP Judljed LIox)
-/

__ wened s

N T ——

~7

uolrewloju| sHSIA

62

Figure 5.4: Visits Information

In different units, different information is recorded. In a first draft of the
design one class was created per possible unit visit: ER visit, ICU Visit,
OR Visit and EMS Visit. However, there are many commonalities among
them which suggests the creation of superclasses. An instance of the abstract
class Unit Visit represents a visit to any unit. There are certain activities
such as giving drugs or inserting IVs that could be performed in every unit.
An instance of the abstract class Hospital Gral Unit Visit represents a
visit to any hospital unit. Certain things such as diagnostic images or lab
exams are done in the hospital and can not be done in the EMS. An instance
of the abstract class Hospital Reg Unit Visit represents a visit to any unit
in the hospital that is not OR. OR has particular data requirements that are
different from the rest of the hospital units.

5.2.4 Medications, Antibiotics and IVs

The Medications, Antibiotics and IVs category contains the classes used to
keep information about the medications, antibiotics and IVs given to the
patients during their visits (see Figure 5.5).

The class Drug represents all the drugs that can be given to a patient.
The information stored includes: the name of the drug, its Drug Type, the
recommended dose per kilogram and any other relevant information about
it.

The abstract class Drug Given represents any drug that was given to
a patient. The information recorded includes the given Drug, the Drug
Route by which it was administered, the dose, the date/time that started
and ended, and the schedule on which it was given, if any. A Medication
Given represents any drug given to the patient that is not an antibiotic. As
we can see in the figure, medications can be administered in any unit, but
antibiotics can only be administered in the hospital units. An Antibiotic
Given represents any antibiotic administered to the patient. Sometimes, in
order to decide which antibiotic should be given to a patient, a laboratory
exam is ordered. The system keeps track of the relationship between the
Antibiotics Given and the Lab Exams (cultures) associated with them.

The information recorded for each IV done to a patient includes: the
date/time it started and ended, the IV Solution given, the Body Region
where it was inserted, the size of the needle used, and the rate infused in
mm /hour.

63

/

(

—
-~
—_—— e

e —_

/
|
|

N
AN

~

wcozmc:o%c_ SUSIA WOY)

USIA
SO “—_CD 1=219] _.m”—_QWOI
// \\\l
7N

——~_7 \

—~— ;e

(sasse|D [eIOUSL) WOLY)
— ~

~7 N NI
- , & ///\ T
\/ \

)
\

/

)
/
\

uolbay

. Apog

///\\//_.

h
\
_uonnios Al

///\ /\

)
v

/
\/Awmem_ \
geT pue wommE_ wo;woﬁam_o wouj)
) peiepig)
__wex3jqgel /

——
N -

f

\mw,ﬂr\

Eo;m:to,E_ SUSIA Eo:
{ :m_>=c3 /

~ i /

/\ —_

S/l pue s21101g1IUY ‘SuolledIpay

/\

/\

uanIb Y
co;mo__om_\,_ \

\

m&._. mED /

/\ ——

N . ——
170
ainyny
7N
u u . — \
= (N
—_7 f / // //
\/ N \ \u: &)
) ™ (6nig %
/ USAID s o —
__onoiguuy / ~7
///\\//\
\\\/FA_ 7N
~7TN \\ -7 N\/[\ |
e N \
N / ~_u b -
//v \
S/ (_ cm>_o Bnig \ mEom Bnig \

64

Figure 5.5: Medications, Antibiotics and IVs

5.2.5 Diagnostic Images and Lab Exams

The Diagnostic Images and Lab Frams category contains the classes used
to keep information regarding the diagnostic images and laboratory exams
ordered for the patients during their visits (see Figure 5.6).

Every Image Ordered for a patient is kept in the system. The informa-
tion recorded includes: the type of Image ordered, the Body Part affected,
the date/time it was ordered, the date/time it was done, and a textual de-
scription of the results. In the future the actual image will be stored together
with this information (see Chapter 7).

A Lab Exam represents a laboratory exam that could be ordered for a
patient. Every laboratory exam has a name and a range of possible values
for its result. The system groups these laboratory exams into different Lab
Exam Types. For every Lab Exam Ordered for a patient the type of
Lab Exam, the date/time when it was ordered, the date/time the sample
was taken (if any), the results, and the date/time these results were available
are stored.

5.2.6 Invasive Therapy, Instrumentation and Fluids

The Invasive Therapy, Instrumentation and Fluids category contains the
classes used to keep information regarding the genito-urinary procedures that
are performed, the instrumentation applied, and the input/output fluid as-
sessments of the patient (see Figure 5.7).

A GU Procedure represents a genito-urinary procedure that could be
done to a patient in any regular hospital unit (i.e. ER and ICU). For each
GU Procedure Done to a patient the type of GU Procedure and the
date/time it started and ended, is stored. An Instrument represents any
instrument that could be applied to a patient. For each Instrument Ap-
plied to a patient the type of Instrument, the date/time of application,
the Body Region where it was applied and the date/time it was removed
is recorded.

An Input Fluid represents any fluid that could be given to a patient.
These fluids are grouped into different Input Fluid Types. Fach time a
fluid is given to a patient, an instance of Patient Intaken Fluid is created
and the type of Input Fluid, the date/time of assessment and amount of
fluid is recorded.

An Output Fluid is any fluid that could come out of a patient’s body.

65

/)
/ v
_edAL wex3z geq /
=7 y
N T
\\\// \\\ N\
—— | Y |
{ \ { !
| N / ///
~N
U~
-) /)) (sesse|) [esouoD Eo:\v \q
A\ // ﬁ// abeuw| \\ /// ued Apog \\
~ -~ S —
> } N -
\ q
/
/ /
///mem_ gel /
AN ST~
~ —'
\\\//
A==
A N
/ ™~
))
/ palepiO , y
_ wex3qe] u'._pasepiQ abew|
///\\l//\\c ///\\I//\\
\\\//
7 gﬂ 8
br
,. -
(UoleWLIOJU] SHSIA WO
/ /
/ HSIA /
__Hun [esD [endsoH
-~ = /
~_7 —

swex3 qe pue sabew| ansoubelq

66
Figure 5.6: Diagnostic Images and Lab Exams

adAL e
_Pmigindu

// /\

~7 F

~N

\r pini4 indu /

- —
=1

—_

/ pinig usseu|

/

(_ juened

~—
N T T ——

// / //
(sasse|) [eidusL) WOIY)
-/

/ /
_pini4 indino \ N Joj0n \

~

A

)

~__Uu

/ _o_:_n_ indinQ \b
\ uaned \
~ —

~u

~

N -l

~7 N\ ~7 N\ ~7 N\
— \ — \ — |
N (N (\
//xmomwm BIBUSE) WO)) -~
Y 7 EE _“_. \ aInpado.d \v
EmE::wc_ / (co_mwm_ %om_ / N /
/\ -7 N T T~
L
uj o
_ N
- |
cT \
— (Ny
\ \,
u //v / auoQ p
/. panddy __@inpadoid N /
(_ Juswninsu] 7 ~ =
u / —u
///\\//\

E\,o_aéec_ SYSIA woyy)
/ USIA \\
“_c: [eJ jeudsoH \

TN T T

~_

Dl

t.

\

N

spin|4 pue uoneluswnisu| ‘Adelay] aAlseAu|

USIA

~<

HED Bay |endsoH \

N T

~_

o:mc:o,E_ SUSIA EoE N

/
\

I—
Ne

Figure 5.7: Invasive Therapy, Instrumentation and Fluids

Each time a fluid comes out of a patient, an instance of Patient Output
Fluid is created. The information recorded includes: the type of Output
Fluid, the date/time of assessment and the amount, consistency and Color
of the fluid. If the fluid comes out from a particular instrument that was
applied to the patient, the relationship between the Patient Output Fluid
and the Instrument Applied is recorded.

5.2.7 Incidents and Personnel

The Incidents and Personnel category contains the classes used to keep infor-
mation regarding the critical incidents occurred to patients and the personnel
contacted during the patients’ visits (see Figure 5.8).

Every Personnel Contacted during a patient’s visits is recorded by
the system. The information recorded includes: the Personnel Type con-
tacted, the name of the personnel, the date/time he/she was called, and the
date/time he/she made the contact.

For every Critical Incident Occurred to a patient, the date/time of
the incident, the Critical Incident and the Critical Incident Reason is
recorded.

As depicted in Figure 5.8, every Critical Incident has a set of possible
Critical Incident Reasons. What the figure does not show, however, is
that only a Critical Incident Reason that belongs to the set of possible
reasons for a Critical Incident can be chosen as the incident reason for a
Critical Incident Occurred.

This problem is solved in the Booch notation by creating a dashed line
between the Critical Incident Occurred and the reasons relationship and
eliminating the incident reason and the incident relationships. The dashed
line means that Critical Incident Occurred is associated with a pair of
Critical Incident-Critical Incident Reason. We found some problems
with this notation. If the model had an m-n relationship between Critical
Incident Occurred and Critical Incident Reason, using this notation
would imply that we can have many Critical Incident-Critical Incident
Reason pairs associated to a unique Critical Incident Occurred without
indicating that the Critical Incident must be the same in all the pairs.
Another drawback is that it could happen that we do not want to specify a
reason every time an incident occurs, and this notation enforces to take at
least one reason.

One way of solving this problem is to create an extra class that contains

68

~

\

~N

_ Juspiou] [eono

///\\

L —

—

suoseal

JuspIoUl

\

N

paINo2Q

JuspIou [BOILID

~

—_——
~_7

—

/ uoseay
__ 1uapiou| [eOlD

/
// ———
Lo~ -

uoseal Jusploul

/
/

/
{

/
/

\ NS
Ac\ozmc:o,,c_ SHSIA Wody) wv

USIA /

2 ——

_ Hun [eJo [endsoy
Raal)

~_

|[ouu0SIad pue sjusplou|

/
/

/
/

N adA] jsuuosiad
N =

b

/ pajoeluo)

\ [duuosiIad

ST~
N ~

/
/
/

/

Figure 5.8: Incidents and Personnel

all the valid pairs of Critical Incident - Critical Incident Reason and
creating a relationship between Critical Incident Occurred and this new
class (see figure 5.9).

o~
T~ N\

/o =
/ Critical Incident ™
e Occured /
(/
S \
N >
\ .
| T
\
~n
S~ 1 S~ S~
ST N P ST N
/ Critical Incident ™, /- Justified / Critical Incident ™
/ Reason A N/ Incident n 1./ /
(- N \
™ ‘ ™ ‘ ™ ‘
/ / /
| i | T~ | T~
-7 _ 7 _ 7

Figure 5.9: A possible solution for the critical incident problem

This would be good solution if each class were a flat structure, as in the
relational model, because any n-m relationship would have to be implemented
as a separate flat structure. With complex structures (i.e. objects), an n-m
relationship can be implemented using sets without the necessity of any extra
structures. Thus, inserting a new class is not a very good approach. This
would force the model to have things that do not exist in the real world and
also would make the implementation more complex. Furthermore, the n-m
case mentioned before would not be solved by this method, and neither the
enforcement of at least one reason.

What is needed to solve this problem is to show in the diagram the
restriction of the incident reason relationship. For this purpose, we propose
a new element in the notation: A dotted arrow between the relationship
that has a restriction (i.e. incident reason) and the restriction relationship
(i.e. reasons). The head of the arrow will point towards the restriction

70

relationship. This would be read as: a Critical Incident Occurred can
be associated with a Critical Incident Reason if and only if that reason
belongs to the set of reasons valid for the Critical Incident associated with
the Critical Incident Occurred. This solution works for n-m relationships
and does not enforce the model to choose a reason if it is not needed. This
notation is not presented in the diagram because the diagrams were generated
using Rational Rose which does not support this notation or allows free hand
drawing.

5.2.8 Other Assessments

The Other Assessments category contains the classes used to keep informa-
tion regarding injury, musculoskeletal and central vascular system assess-
ments done to the patients during their visits (see Figure 5.10).

For every Injury a patient presents, the date/time of the assessment, the
affected Body Part and the ICD9 Code that applies have to be recorded.

A Musskel Device represents a musculoskeletal device that could be
applied to a patient. A Musskel Assessment represents a musculoskeletal
device that is applied to a patient. The type of Musskel Device, the Body
Region where it is applied and the date/time of application and removal
have to be recorded.

A CVS Assessment represents a cardiovascular system assessment done
to a patient in any regular hospital unit. For every CVS Assessment, the
date/time of assessment and the juglar venous pressure (JVP) have to be
specified. Each time a CVS Assessment is done, a Heart Assessment
and a CVS Pulse Assessment for each side of the body are also done. A
Heart Assessment stores the different type of heart sounds found during
the patient’s heart assessment and the best way to apply the monitor leads
in order to obtain the best configuration of the electrocardiogram (ECGQG)
pattern. A CVS Pulse Assessment specifies which side of the body is
being assessed and if a pulse is present or absent in different locations of the

body.

5.2.9 Gastrointestinal Assessment

The Gastrointestinal Assessment category contains the classes used to keep
information regarding the gastrointestinal exams, and the stool, ostomy and
stoma assessments done to the patients during their visits (see Figure 5.11).

71

(

/ JUBISSBSSY
osind SAD /

~ ——

19

N

/
ﬂ

,
)

/
\

(oguj SusIA wouy)

[\
S
\v / JUBWISSBSSY

N JesH

~. m——

I

/ Juewissessy
. SN0/
-

USIA \
a_cz Boy [endsoH \

p—

/ e

//\

— /

J) (sesse|] [elousn Eew

, 8dneq y

(_mv_mw:_\,_ \ ﬁ

——
/\

|

co_mmm_ fpog /
/ ST~

it

/ JuBWSSassy

(

N

_mv_mw:s_ /

—_—_

P T
K r/ A ///
wmmmm_o [eJauan) Eoe Awommm_o [eJauan) EQ:

f Hed >_8m_ / f 88 80_

/
g /V

/
h E:E_ /

/w\%

SIUBWISS|asSSY 19ylO

\\JLW\

(oguj SusIA wouy)

/
~

D)

/
USIA S/

E: [elo) jendsoH \

p—

/ 7

//\

72
Figure 5.10: Other Assessments

— \/ \ \
\\/\\\ /, \\\ N\ \\/[\\ |
(\ — | A \
~ - \ N
/ //w / N / /u
) h S9SSE|) |BJousn) wol
/" jewssesse) Y (sesse|] [RI8USD W ,P\v\
__ ueipenbin /" juewssessy 7 % 10100 ,
T __ BwoS / T~ o——
14 /// AT —— ~u
u
H ~
- - /~ I u —
— . A\
(\ I — /
A - | - \
J h - \ { N
y) { N | ~
(/ J A /)
\ wex3 19 / /) / jewssessy
S~ S/ / Wewssessy 7 " |001S /
-y __ Awaso U
- g -
//\

b A
’ \
\ N
| (i susinwor)
/ / /

/ (ou] SwsIp woy))

(HSIA / (/
_ 3un Bay [endsoy ~__¥sanor
/// \\///\\ //\\///\

~

1UBWISSASSY [BUIISaIUI0IISED

73
Figure 5.11: Gastrointestinal Assessment

A Gi Exam represents a gastrointestinal exam done to a patient in any
regular hospital unit. For every Gi Exam the following information has to
be specified: the date/time of assessment, the shape of the abdomen, the
bowel sounds, if the patient is nauseated or has cramps, and the results of
the peritoneal lavage and rectal examination if they were done. Also, for
each abdomen quadrant, an assessment indicating the rigidness, distension
and tenderness of the zone has to be done. Each instance of Gi Quad-
rant Assessment represents the assessment of an abdomen quadrant for a
patient.

The stool, ostomy and stoma assessments are only done in the ICU. For
each Stool Assessment the date/time of assessment and the Color and
consistency of the stool have to be recorded. For each ostomy done to a
patient an Ostomy Assessment is recorded. The information regarding an
ostomy includes: the date/time of assessment, the type of ostomy and the
abdomen quadrant where it was done. If a mocous fistula was also done, the
abdomen quadrant where it is located also has to be specified. For a Stoma
Assessment the date/time of assessment, the integrity and the associated
ostomy have to be recorded.

5.2.10 Central Nervous System Assessment

The Central Nervous System Assessment category contains the classes used
to keep information regarding the general central nervous system (CNS) and
pain assessments, the intercranial probe control and the spinal precautions
applied to the patients during their visits (see Figure 5.12).

For each Pain Assessment done in any regular hospital unit, the date/time
of assessment, the Body Region assessed, the severity, intensity and descrip-
tion of the pain are recorded.

A CNS Assessment represents a central nervous system general as-
sessment done to a patient in any regular hospital unit. For every CNS
Assessment, the date/time of assessment has to be specified. Each time
a CNS Assessment is done, the Reflexes and Movements for each side
of the patient’s body are assessed. An instance of Reflexes specifies which
side of the body is being assessed and if the reflexes are normal, absent or
brisk for different parts of the body. An instance of Movements specifies
which side of the body is being assessed and characterizes the movement of
the arm and leg for that side.

The intercranial probe (ICP) control is only performed in the ICU. Each

74

instance of ICP Control represents an intercranial probe inserted to a pa-
tient. Each assessment of the probe is recorded in ICP Reading.

The abstract class Spinal Prec represents any spinal precaution applied
to a patient. The date/time of application and removal is recorded. The
Cervical Prec, Thoracic Prec and Lumbar Prec represent, respectively,
a cervical, thoracic and lumbar precaution applied to the patient. For the
cervical precautions the information stored includes: if a hard collar or sand-
bags were used, if the patient’s head of the bed was up 30 degrees and if
the patient was prevented to lie on one side. For the thoracic and lumbar
precautions no further information has to be specified.

The design of the spinal precautions hierarchy was influenced by the use
of C4++ in the implementation. The first approach in the design is shown
in Figure 5.13. For implementing the relationship between Hospital Gral
Unit Visit and Spinal Prec a set of pointers to objects of type Spinal
Prec had to be used. The problem is that when one of these objects is
removed from the set, the object’s class is not known, since C++ does not
know its type at runtime. This means that it is not known if we are dealing
with a cervical, thoracic or lumbar precaution. Although this problem could
be solved adding an extra attribute indicating the name of the class to which
the object belongs to, and then casting the pointer retrieved from the set
to the correct class, the space, performance and programming complexity
of such solution is not justifiable. Instead, we decided to decompose the
relationship in three: one for cervical, one for thoracic and one for lumbar
precautions.

5.2.11 Respiratory Assessment

The Respiratory Assessment category contains the classes used to keep in-
formation regarding the chest exams, respiration support devices applied,
ventilator control and airway procedures done to the patients during their
visits (see Figure 5.14).

For every Chest Exam performed on a patient in any regular hospital
unit the following information has to be specified: the date/time of assess-
ment, whether the airway is clear, obstructed or intubated, how the chest
expansion is and the position of the trachea. A Lung Exam is also con-
ducted each time the chest is examined, and the results of the auscultation
and percussion for each of the six lobes of the lungs are recorded.

An Airway Proc Done represents an airway procedure that was done

75

. \\\)/ \\\ \
— \\\ \ T ,/ T ,/
~A o
AN [\ \ ~o | ~<
(\ / //) v) v
\ BN)) \ / \ /
) v /' bBuipesy / wEoEo>o_>_ \ _ moxozom \
{ f/ dal / ! —~_
_9ad _mc_aw \ 0 _/ S
~
\\/
)/\\ J/
@ AN
7 | ~
\/ N mmwmm_o [eJouan Eo¢
- SEl)) [EP9USY) L
)) _uoibay Apog
_loauod doI I
—~ //\ /\
\\ C
AN N - N
I RN N N \\/(\ \
28.d \v /\ o8.d \v \ 28.d \v \ EmEmmmmm< \v \ S~
Jequn o_om_o (mo_am ~ (
- n L ~_ m._. ~_ _ o I) ~— w_Mo / \ JUBISSOSSY \v
—/ = | N —
(N u L ued 7
\ ~ —~ m——
(ojuf SSIA wos EQ:J u

/\ _USIANDI \

T T~
/ I
g/

\ / ~
N OJU| S}HSIA wol N

| (opu) susiA wou) i\\p\E)

e / USIA e

\ 7 f

HSIA / un 6y [endso
H_cz [esD [endsoH A 3 E_\W//_u \
N T T N

~_

lJUSWISSOSSY Ewww\nm SNOAISN [ellua)d

76
Figure 5.12: Central Nervous System Assessment

/\\‘//\\

/Hospital Gral "\
Unit Visit
((
N

—

! as -
/~ Spinal Prec
(/ (/

A |

~)
e

o~]/\ T \\\
J T L Yl S— /- Lumbar Prec
/" Cervical Prec / Thoracic NG/ /
/ / / Prec / ((
(((SN |
N) N) \ T —

) o= \ o= NS

Figure 5.13: First approach in the design of spinal precautions

to a patient. For each procedure done, the type of Airway Procedure and
the date/time when it was done is recorded. Each instance of Respiration
Support represents a respiration support device applied to a patient. For
each device the date/time of application/removal and the type of Resp Sup-
port Device applied have to be recorded. If a patient is under ventilator
assistance, the values of the ventilator settings have to be recorded. Fach
instance of Ventilator Control represents an assessment of the settings of
the ventilator at a particular point in time.

5.2.12 Vital Signs Assessment

The Vital Signs Assessment category contains the classes used to keep infor-
mation regarding the vital signs of the patients during their visits (see Figure
5.15).

The vital signs of the patients are assessed in every unit in the hospital
and the EMS. Although each unit assesses a different set of vital signs, many

77

|0u0) 7/
loemusp

ST~

\ o0id Aemury

/4 - Ve —
A N A .
| N / N
)) /)
/ ainpadoid i / mo_>om_ i
N Remuy / _ uoddng dsey /
N —__7 T =
/_v /A_‘
uj
_ /ﬂ uj|
—— \
; \ — ﬂ
~ - \
/ // A //
)) / ~
/ auoQ e /)

/ yoddng 7/
T~ o/ __ uoneldsay /
~u U~~~

SN

~
—

N

~

=~

—u

I

~
\)/k\

P
\

(oju] spsIA wioyy) <

(
N

~

USIA y
uun [eso feydsoy /

T T~

-
N

Juswssassy Alojelidsay

)

wex3 bun

_ wex3giseyn
N

—_

—

'\ -~
el

N

| (ou] susiA wiouy)

/

{
L un
n

HSIA
Hay |endsoH

~_

e

—

—_

~

~

/
/
/

~

)

/
/

78

Figure 5.14: Respiratory Assessment

\ NN
(ouf susIA woy))

/ /
__WSIANDI 7
R
~ 3
P U
— \ —— \
\/ - \ -
~ ~
)/ subisleup | L subis J
_ [er0adg noj \ S__ [eHA N \
-t -

/
\ SoH a
(///\\//\\ [y
S gFerend
~ -~ e
— | L
A N
) z
N ndnd / N
-~ —_ ——
- (/F
\ N
))
/ v
N uns /
///\\;//\\

/

~_. —

T~
~7 N
—_—— |
{ \
\ =~
)) ~—

\ DN
(ouf susIA woly))

- /
(__ ¥SIAHT 7

~Z /

N

e A1
\C//
— \
(N
\ /J
)
/) subg

subig eUA

~7 TN
—— | -
(/* //\\

by

7/
(_ uonelidsay \\

subig o T
_[ewA oiseq \0/:/ N
)

—
(/r
\ NN
(ouf susIA woly))
/S /
(__HSIASW3 7
R N3,
P
ad!
\\C// \\\//
(N
\ ~_ Ly ///
]
/) subis /' subigreun
__[EUASWZ / __[ewadg sw3 1
///\\;//\ ///\\]/(\
—— l — \
{ N (N
) @y susiA wou))
\ mcm_w s u _.%‘ /
__ FEupdlo __HSIA HO
N T T~ TN T T ——

ainssald
pooig /

N

~

//\\

/ /
(_ esind /
EREN \//\\

-~

1UBWISSasSY subIS [elIA

/

/

79

Figure 5.15: Vital Signs Assessment

commonalities found leaded to the creation of superclasses.

Each instance of the abstract class Basic Vital Signs represents a vi-
tal signs assessment for a patient. The date/time of assessment, the body
temperature, a Pulse, Blood Pressure and Respiration assessment are
recorded. A Pulse assessment includes the pulse reading (i.e. heart rate)
and the position, volume and rhythm of that pulse. A Blood Pressure
assessment includes the systolic and diastolic blood pressure, the side of the
body and position in which the blood pressure was assessed. A Respiration
assessment includes the amount of breaths per second and the depth, quality
and rhythm of the respiration.

During a patient’s visit to the OR, the assessment of these basic vital
signs is sufficient. Each instance of the Or Vital Signs represents a vital
signs assessment for a patient during his/her visit to the OR. Although the
class Or Vital Signs does not add any more attributes or behavior to the
Basic Vital Signs, this class has to be created in order to associate it with
an OR Visit. If the Basic Vital Signs were associated with OR Visit, every
subclass would have inherited this relationship too, and that is not correct.

Each instance of the abstract class Extended Vital Signs represents
a more comprehensive vital signs assessment for a patient. It inherits from
Basic Vital Signs and adds a Skin, Pupil and Ges (Glasgow Comma
Scale) assessment. It also provides the calculation of the Revised Trauma
Score. A Skin assessment includes the color, moisture, turgor, general and
extremities temperature of the skin. A Pupil assessment includes the side of
the body being assessed (i.e. left or right) and the size and response of the
pupil. A Ges assessment includes the Glasgow Comma Scale eye opening,
verbal and motor response of the patient and provides the Glasgow Comma
Scale score.

During a patient’s visit to the ER, the assessment of these extended vital
signs is enough. Ems Vital Signs, Er Vital Signs and Icu Vital Signs
each represents a vital signs assessment for a patient during his/her visit to
the EMS, ER and ICU respectively.

For the ICU and EMS visits, specific vital signs for each unit are also
assessed. Fach instance of the Ems Special Vital Signs includes the glu-
cose level and oxygen saturation of the patient and some values needed to
calculate the Pre Hospital Index. Each instance of the Icu Special Vital
Signs includes the cardiac index, the central venous pressure, the pulmonary
artery pressure, the pulmonary and systemic vascular resistance index and
the wedge. If a cooling or warming blanket is used it is also indicated.

80

5.2.13 OR Anaesthesia and Procedures

The OR Anaesthesia and Procedures category contains the classes used to
keep information regarding the assessment of the patients prior to the opera-
tions, the operation and anaesthesia setup information, the monitor readings
during the operations and the procedures done to the patients during their
visits to the OR (see Figure 5.16).

Before any visit to the OR, a Pre Assessment of the patient needs to
be done. The information recorded includes: the date/time of assessment,
the class of risk of the operation, the amount of blood units available, the
date/time of the last meal and the dental risk of the patient. If the operation
is an emergency, the fact is also recorded in the pre assessment. A Denti-
tion Assessment, a Pre Airway Exam and an Anaesthetic History
assessment also have to be done prior to the operation. Each instance of the
Dentition Assessment represents a patient’s tooth with a certain problem
(e.g. missing, capped, loose, etc). The most important information recorded
in the Pre Airway Exam includes the anticipation of difficult intubation
and the neck mobility. The Anaesthetic History records any previous
anaesthetic problems of the patient or his/her family.

The operation and anaesthesia Setup Info includes: the Gas Type,
anaesthesia Technique and Monitors and equipment used during the op-
eration, the Position of the patient and how he/she was connected to the
equipment (i.e. the Circuit). Whether the patient’s eyes were tapped,
lubbed and/or padded is also specified with the setup information.

An Or Procedure is fully defined by a Body Part and ICD9 Code.
Every Procedure Done to a patient during an OR Visit and all the mon-
itor readings done during the operation have to be recorded. Each instance
of Patient Or Reading represents one of these readings. The date/time
of assessment, the type of Or Reading being assessed and its value are
recorded.

5.2.14 EMS Specific Information

The EMS Specific Information category contains the classes used to keep
information regarding the ambulance runs and the general assessments and
treatments done to the patients during their visits to the EMS (see Figure
5.17).

Fach EMS Visit has one ambulance run associated with it. Each in-

81

N __Med >_uom_ \ (_ edAl seny / 7 \
7 | TN~ _ TN T —— [\
(Ny T ~ N v
~ 7N
S9SSE|) [BIBUSL) WOJ -
(; 101) \c \ L f uonIsog
8p00 600 F TN \ ~< o
/\\//\ ~-u_ ,r \ \u
u | ~< _ o:c_ccooh
/) enpaooig)’
. 10 /
—_ /
b -
V\\ /
(u
TN \
— |) -
(N / auoq —
\ N __8Inpadold \
/ Juswssessy \v TN u —
__ uonjueq
el
~ u
N /.\ oE_ QEmw /
—_ |
b(N -
\ RN { \
/) — e
JUBWISSasS I
{ olg v \\ b % (oju] sysiA wody) \u f(//hoﬁ\.c\ow,_
F//\\/ L __ HSIAHO \
N TN T T =
—— |
(N
\ //v _
\ wexg y —.\\)/ // \/[\\ /,
_ >mzc_< ald \ = \ \; Buipesy \/Z N
- /\ \
N V //u H/ LO uaned \ \
\ AoisiH / TN T T L mc_vmmm 10 \

\ ~<
(sesse|D |eloudarn) woly)
S/

_ onayisseuy 1

~~

~ 7

S91NpPadonid pue eisaylsseuy O

~<

-

:38_0

ST

—

—

Figure 5.16: OR Anaesthesia and Procedures

\/[\\ / N\/(,/
| s |
(sesse|n) [RJAUBL) WOJ)) % adAL y
h\‘ \\ 7 T - Aypoeq \\
_9P0J 609 P \ P / ~ e
T = [N { N .
g \ N \ N
|) |)
/ sisoubelq / ;
(oBN / (_ uawieal] /
uj~ Lo T T A
S \ (s8sSE|9) [RJAUBL) WOJ)) o \
u [-
/, N / :m_mm_m) | N
/ pog / / %
///
(__ sisoubeiq \c/o s ul " Auoeq 7 N
N S uoibayoyioad L - ST P
—_ 7 -7
u T~ | 10 S~ |
[N / [N
slalyipow J N uolneulSap)
uoibal h\ auoq ; mc / ISqUIBIN
\ ~
u //mhmsa/mﬁ , e e \smmw
e \ ~ - K\ - ! ~ -
T \ u N
(N u _ \ u
M /J/ \\\ \ \g !
u-—— \
/ JeupoN (L _ojuunyg 1 -
{_ sisouBelg / 10 JoHipow Hcoemmommf S~ ol =/ Y e ,,
ST T U, juswssessy L S
(_ [essusny J)
—~ —— / /
~ u b=y __Joyoedsig ¢
= \ //\\//\
l u [N
\\)/ \Q} J //
\\/(\ \ —. -7 \ ; \v
| (uonewIO| \ S~ L 9y /
Up[eSH PUE UOHEORRUSP] Juslied Wolj) (uoiyewlioju] SHSIA W)]
/
(L uyjoxeN / ISI /
DHOPEN g L ISASAE
~ ~
gpazuoyine

uolreww.oju| 914198ds SN

Figure 5.17: EMS Specific Information

stance of Run Info represents an ambulance run. The information recorded
includes: the reason for the call, the date/time of the 911 call, the date/time
of ambulance dispatch, the date/time the ambulance arrive/left the scene
and the date/time of the ambulance arrival at the destination. The response
level (emergency medical service, basic or advanced life support), the type of
response and transport, the total kilometers of the run and the name of the
policeman /woman that attend the call, if any, are also recorded. For every
run, which Vehicle was assigned to the run, who the Dispatcher of the call
was, the Crew Members in the ambulance, and the destination Facility
are also recorded. The facilities are grouped by Facility Type.

If a patient is a minor or unable to give consent, a Next Of Kin has
to authorize the transport or treatment of that patient. Every Treatment
Done to the patient during the EMS Visit has to be recorded. The type of
Treatment and the date/time it was done are stored.

Every possible Diagnosis is identified by an ICD9 Code. The system
also records if the diagnosis is considered or not an injury, if only a specific
Body Region applies to that diagnosis and the Macro Diagnosis to which
it belongs. The possible Diagnosis Modifiers that apply for a particular
diagnosis are also stored. During the EMS Visit the patient’s condition
is assessed. Each instance of the class General Assessment includes: the
date/time of the assessment, the Diagnosis, the Body Region affected and
a Diagnosis Modifier if needed.

We have in this diagram a problem similar to that described in Section
5.2.7. In this case a General Assessment can be associated with a Diagno-
sis Modifier if and only if that modifier belongs to the set of modifiers valid
for the Diagnosis associated with the General Assessment. Introducing
the same notation as before, we would need to trace a dotted arrow from the
assessment modifier to the modifiers relationship. We do not present this
notation in the diagram because the diagrams were generated using Rational
Rose which does not support this notation or free hand drawing.

A restriction also exists for the region relationship. If General Assess-
ment is associated with a Diagnosis that could only be applied to a specific
Body Region, General Assessment could only be associated with that
Body Region and no other. In any other case no restriction applies. This
restriction can not be represented in the Booch notation. However, introduc-
ing a new notation for a problem that is so specific to this problem domain
does not make sense. Perhaps a good idea might be to generalize the no-
tation we introduced before so that it just represents a restriction between

84

relationships without specifying which that restriction is. This will tell the
person who is reading the diagram that there is a restriction and that the
details are in the Class Specifications. Instead of a dotted arrow, we can use
a dotted line with no arrow head between the two relationships with and “R”
adornment meaning Restriction.

5.3 Summary

In this chapter a precise object-oriented model for the DIDP system is de-
scribed. For each functional group identified in the requirements analysis,
one class category with its correspondent class diagram is defined. The moti-
vations behind each design decision and the influence of the implementation
tools (C+4/ObjectStore) in the design are discussed. A side issue in this
chapter is the introduction of new elements to the Booch notation to deal
with particular modeling problems. In the following chapter the issues re-
garding the DIDP database implementation are discussed.

85

Chapter 6

Implementation Issues

The design presented in Chapter 5 is sufficiently general to be implemented
on most object-oriented DBMSs. In this chapter we describe the actual
implementation of the DIDP database. The implementation language is C++
[Str91, Lip91]. The specific implementation of the language used is the Solaris
2.5, SPARCompiler C++ Version 4.0.1. The DBMS used is ObjectStore
Version 4.0.

6.1 Overview

The database server functionality is provided though a group of libraries.
There is one library per class category created in the design. Each of these
libraries implements the classes of the class diagram associated with the
correspondent class category.

The database server is organized as several libraries so that the applica-
tion programs would only have to link-edit ! the libraries they need. The
general library has to be link-edited by every application program as it pro-
vides the implementation of basic and extended types, and classes that are
used by most of the other libraries. Unfortunately, the idea of only link-
editing some of the libraries does not work because of the way ObjectStore
manages relationships. ObjectStore always needs to have the implementa-

ITink-edit is the process by which several files of machine code are combined to form a
single program. These files may be the result of several different compilations, and one or
more may be library files of routines provided by the system and available to any program

that needs them [ASUS8S]J.

86

tion of both classes that are related in order to link-edit a program. Since
the classes in the general library have relationships with classes in almost
every other library, and since the general library is always link-edited, this
means that we also need to link-edit every other library related to it. Thus,
all the libraries have to be link-edited to every application program that uses
the DIDP database server.

Figure 6.1 shows a sample application program that uses the services of
the DIDP database server. Three important things have to be noticed. First,
every application program that uses the DIDP libraries has to include the
didp.hh header. Second, the first statement in the program has to be the call
to the function didpInit(), which performs the general initialization necessary
to use the libraries and creates the database if it does not exist. Third, the
path to the location of the database to be used by the application program
has to be specified in an environment variable called DB. The didpInit()
function checks if an ObjectStore database exists in the DB location, and if
it does not, it creates a new one. The application programmer is responsible
for opening/closing the database and for defining the transaction boundaries
of the application. For details on how transactions work in ObjectStore see

[0bj95).

6.2 Database Roots and Extents

With ObjectStore, any C4++ object can be made persistent and handled the
same way as transient objects. Once persistent, an object can be accessed
either by navigation from other persistent objects or by giving it a persistent
name. These names are called database roots, or entry points.

The set of all objects that belong to a class is called the extent of the
class. ObjectStore does not automatically maintain the extents of classes;
they have to be maintained manually. Extents are essential for queries which
search over a particular class. The DIDP database server maintains the
needed extents automatically as persistent parameterized sets.

Once an extent is created there must be a mechanism to locate it. That
is why each extent is usually associated with a database root. In the DIDP
database, there are 138 classes and extents of 50 of them have to be main-
tained. This poses a problem since ObjectStore recommends not to have
more than 10 database roots because of performance reasons. The problem
is solved in the DIDP database using a dictionary as the only database root.

87

#include <didp.hh>
void didplnit();

int main(int, char **argv)
{

didplnit();
os_database *dbl=os_database::open(getenv(''DB"));

OS_BEGIN_TXN(tx1, 0, os_transaction::update)

OS_END_TXN(tx1)

dbl—close();
return 0;

Figure 6.1: Sample application program

88

OS_BEGIN_TXN(create_dictionary,0,0s_transaction::update)

if (!(dbl—find_root("Didp_root"))) {
dbl—create_root("Didp_root")
—set_value(&os_Dictionary<String,void=>::create(db1,200,
os_Dictionary<String,void+>::signal _dup_keys |
os_Dictionary<String,void*>::pick_from_empty_returns_null));

}

OS_END_TXN(create_dictionary)

Figure 6.2: didpInit(): how the database root is created

The key element of the dictionary is a String that represents the name of a
class, and the second element is a pointer-to-void that points to the persistent
parameterized set that represents the extent of that class.

The database root and the dictionary are created when the database is
first created in the didpInit() function (see Figure 6.2). No duplicate values
are allowed in the key element of the dictionary so that every class has one
and only one extent.

With this approach, the extent of any class in the schema can be found
simply by retrieving the database root, called Didp_root, and looking into the
dictionary for the name of the class. Fach class is responsible for creating its
own extent and adding it to the dictionary. Also, every class that maintains
its extent should provide a static method that returns this extent. A sample
method for retrieving the extent of a class called ClassName is shown in

Figure 6.3.

89

os_Set<ClassNamex># ClassName::getExtent(os_database *db1)

{

//Check if the database exists and is open
assert(dbl—is_open());

// Retrieve the database root

os_Dictionary<String,void+>* DidpExtents =
(os_Dictionary<String,void#>x)
dbl—find_root("Didp_root")—get_value();

// Retrieve the extent of the class
os_Set<ClassNamex> *TheExtent = (o0s_Set<ClassName>x)
DidpExtents—pick("ClassName");

// If the extent does not exist, create it
if (!TheExtent) {
os_Set<ClassName*>& extent =
os_Set<ClassNamex>::create(db1l,
os_collection::pick from_empty_returns_null |
os_collection::maintain _cursors);
DidpExtents—insert(""ClassName", &extent);
TheExtent = &extent;

}

// Return the extent of the class
return TheExtent:

Figure 6.3: A method for retrieving the extent of a class

90

6.3 Basic and Extended Types

The design assumes the existence of certain basic data types. Some of these
types are provided by C+4+, others by ObjectStore and others had to be
implemented. The types Int, Unsigned Int and Real are implemented
using the C++ int, unsigned int and double types respectively. The type
Bool is implemented using the ObjectStore os_boolean type.

Date, Time and String had to be implemented. Date represents any
date between 1.1.1753 and 31.12.9999. Time represents any point in time
starting at 1.1.1902 at 00:00:00 hours. It considers day time savings and the
different time zones. String represents any character string. Each of these
classes provides a group of constructors, print methods, a method indicating
if the object is null, a set of arithmetic operators and specific methods related
to the class. The default constructors for Date and Time create the current
date and time respectively. The default constructor for String creates an
empty character string. Date provides a validation method that returns true
if the parameters passed are valid for creating a date, or false if not. If invalid
parameters are passed to the constructors a null date is created.

The extended types Age, Pname and Address are implemented similar
to the basic data types. They provide a set of constructors, print methods, a
method indicating if the object is null, a set of arithmetic operators, one or
more validation methods for the constructor parameters and specific methods
related to the class. If invalid parameters are passed to the constructors a
null object is created.

6.4 The Class Interfaces

Every class in the DIDP database, except the basic and extended types de-
scribed in the previous section, has a similar interface. Obviously, each class
has specific needs and thus specific methods, but there are many common-
alities among the class interfaces. In this section we describe this common
interface and the motivation behind each implementation decision.

6.4.1 Object Creation and Validation

When a constructor of a class is invoked in C++, the memory needed by the
object is already allocated, that is, the object is already created. Object-

91

Store overrides the new method provided by C+4++ so that the objects that
belong to classes marked as persistent are created in persistent memory (i.e.
the database). This means that by the time a constructor is called, there
is an object created in the database. In order to maintain consistency in
the DIDP database, the parameters passed to initialize the attributes of the
object need to be validated to ensure that the created object has values that
do not put the database in an inconsistent state. One solution might be to
return a success/failure code so that the programmer deletes the created ob-
ject if it is inconsistent. This would be a simple but not an efficient solution.
Anyway, C4++ does not allow constructors to return any value. The appli-
cation programmer would have to inspect the object to see whether or not
it consistent. This means that the application programmer should know the
validation procedures for each class, and thus, the advantages of encapsula-
tion of object-oriented programming would be useless. Another solution is to
provide a static validation method. The programmer would have to invoke
the validation method and according to the result decide whether to invoke
the new method or to display an error message. In this case the programmer
does not need to be aware of the validation procedure but he/she is still in
charge of maintaining the consistency of the database. The programmer can
create an inconsistent object and put the database in an inconsistent state
on purpose or by mistake. It is preferable to remove this responsibility from
the programmer. For this reason, in order to create objects in the DIDP
database, every class provides a static method called insert(). This is the
only way to create objects in a class, as the class constructors are hidden
as protected methods. The insert() method has as parameters a reference
to the database in which the object is going to be created and the values
necessary to initialize the attributes of the object. If the database exists and
is open, and the values are valid, the object is created (i.e. the new method
and constructor are invoked). If the class maintains its extent, the object
is also added to the class extent. The insert() method returns a pointer to
the created object. If no object was created because the validation failed, it
returns a null pointer.

The problem with this approach is that if there is an error and the insert
returns a null pointer, the programmer would not know what the problem
was. If the insert() method returns an error code, the programmer would not
have a pointer to the created object and would not been able to manipulate
that object without having to query the database to find the object. The
solution is to provide a static method called wvalins() for every class, whose

92

Color* Color::insert(os_database *dbl, const String& colorname)

{

// Check if the database exists and is open
assert(dbl—is_open());

// Validated the parameters
if (Color::valins(dbl,colorname) # OK)
return NULL;

// Creates and initializes the object

Color *element = new(dbl, Color::get_os_typespec())
Color(colorname);

assert(element # 0);

// Inserts the new object in the extent
os_Set<Color+> xextent = Color::getExtent(db1);
extent—insert(element);

// Returns a pointer to the new object
return element;

Figure 6.4: An insert() method for the class Color

93

return type is a pointer to Error. This method has exactly the same param-
eters as the insert method and does the validation of the parameters. If an
error is found, it creates an instance of the class Error and returns a pointer
to it, if not, it returns a null pointer.

Every possible error is codified. Every instance of Error stores the Er-
rorType, the Operation that caused the error (i.e. insert, modify, delete) and
the Attribute for which the invalid value was intended to. It also provides a
printLine() method that the application programmer could use to show the
error to the final user. Figures 6.4 and 6.5 show the insert() and valins()
methods for the class Color.

With these two static methods we ensure the consistency of the DIDP
database and free the application programmer to concentrate on the seman-
tics of his/her programs instead of taking care of the consistency of the
database.

6.4.2 Object Deletion

Problems similar to those found in object creation were found for object
deletion. When an object invokes its destructor, that object is deleted. In
order to maintain consistency in the DIDP database, we need to be sure
that no object is pointing to the object we want to delete. The problem is
not dangling pointers, ObjectStore takes care of that assigning null to the
pointers that are pointing to the deleted object. The problem is the logical
consistency of the database. For example, every injury is uniquely identified
by a Body Region and an ICD9 Code. If after creating an instance in
Injury we delete the ICD9 Code that is associated with it, the injury
definition would be incomplete and inconsistent, as it must be associated
with an ICD9 code, and thus the whole database would be in an inconsistent
state. Because this validation must be made before deleting the object, it can
not be made in the class destructor, as once the destructor execution starts
there is no way to cancel the deletion operation. For this reason, in order to
delete objects from the DIDP database, every class provides a static method
called erase(). This is the only way to delete objects from the database as
the destructor of the class is hidden as a protected method. If an error is
found during the validations, an Error object is created and a pointer to it
is returned. If no error is found, the object is deleted (i.e. its destructor is
invoked) and a null pointer indicating that the operation was successful is
returned.

94

Errors Color::valins(os_database *dbl, const String& colorname)

{

// Check if the database exist and is open
assert(dbl—is_open());

// Check that the parameter is not null

Error xerr = NULL;

if (colorname == "") {
err = new Error(NULLVAL, INS, "ColorName");
assert(err # 0);

return err;

}

// Check that the color is not already created

if (Color::exists(dbl,colorname)) {
err = new Error(DUPLICATED, INS, "ColorName");
assert(err # 0);

return err;

}

// Returns an Ok code
return NULL;

Figure 6.5: A valins() method for the class Color

95

6.4.3 Attribute Retrieval and Modification

Every attribute of every class is private. This means that no method/program
can access the attributes of any class except through its interface. Every
attribute that a class wants other classes/programs to see has a getAttribute-
Name() method that returns the attribute value. Also, every attribute that
the class allows to be modified has a modAttribute Name() associated. This
modification method validates the new value before modifying the attribute
in the database. If an error is found during the validation, an Error object
is created and a pointer to it is returned. If no error is found, the new value
is assigned to the attribute and a null pointer indicating that the operation
was successful is returned.

6.4.4 Classes with Extent

We can divide the classes in the DIDP database into two categories: the
Passive classes and the Active classes. Passive classes are those classes whose
instances represent things from the real world that have no relevance in the
system unless they are referenced by an object that belongs to an Active
class. The extents of the Passive classes must exist before the system can
be used. For example, for every native patient, the band to which he/she
belongs to has to be specified. Each instance of the class Band represents a
different native band. When an instance of Patient is created to represent
a native patient, the object that represents the Band to which the native
belongs to has to exist in order to reference it from the Patient object. The
native bands by themselves have no relevance to the system, but determining
which band each patient belongs to, is relevant. Band is a Passive class and
Patient is an Active class.

The extent of every passive class and the extents of the classes Patient
and RunlInfo are maintained by the DIDP database server to facilitate
queries. Every other class can be accessed navigating through other objects.

All the classes whose extents are maintained have four standard static
methods: getFrtent(), exists(), get(), and printClass(). getFatent() returns
a pointer to the set that contains pointers to all the objects that belong to
the class extent. exists() returns true if an object that contains the values
passed as parameters exists in the class extent and false otherwise. get()
returns a pointer to the object that contains the values passed as parameters
if any exist in the class extent. If none is found, a null pointer is returned.

96

printClass() prints all the objects in the extent to the output stream passed
as a parameter.

6.4.5 Relationships

Relationships were implemented using the mechanisms ObjectStore provides.
ObjectStore supports One-to-One, One-to-Many and Many-to-Many rela-
tionships. It represents relationships using pointers and collections. One-to-
One relationships are represented by a pointer on each side. One-to-Many
and Many-to-One relationships are represented by a collection from the one
side and a pointer from the many side. Many-to-Many relationships are
represented by collections on both sides. ObjectStore relationships ensure
referential integrity ? for participating objects. When code modifies one side
of the relationship the other side is automatically updated by ObjectStore
therefore guaranteeing referential integrity. Although this integrity can be
maintained by the programmer via explicit code in the applications, Object-
Store takes care of it saving time and preventing programming errors.

The DIDP database server keeps the relationship members of the classes
private. Every class provides the correspondent get() methods for those re-
lationships members that want other classes/programs to see.

One-to-Many and Many-to-One relationships are always created by pass-
ing a pointer to an object of the class on the one side to the insert() method
of the object in the many side. For example, in order to create an instance
of PatientAllergy, a pointer to Patient is required in its insert() method.
This method will invoke the constructor of the class and will create the link
between the two objects. ObjectStore takes care of the inverse relationship.
This means that a pointer to the Patient Allergy object will be automati-
cally inserted in the collection maintained by the Patient object to represent
the relationship. If the PatientAllergy object is later deleted, ObjectStore
will remove the pointer from the collection in Patient so that no dangling
references are left.

One-to-One relationships work in a similar manner. One of the classes in
the relationship is chosen to require a pointer to an object in the other class
in its insert() method. The rest of the mechanism is the same as the one
described above.

2The term éntegrity refers to the accuracy or validity of data. To ensure referential
integrity means to ensure that no object has a reference (i.e. pointer) to a non-existent
object.

97

When a Many-to-Many relationship exists between two classes, only one
of the classes in the relationship is responsible to create the links between
the objects of the two classes. For this purpose, this class provides an ad-
dClassName() and a removeClassName() methods that create and remove
the relationship between the two. For example, Patient Valuables has a
Many-to-Many relationship with Valuable. Patient Valuables provides
two methods called addValuable() and removeValuable() that create and
delete the links between these two classes.

6.4.6 Printing Methods

Every class provides a printLine() and a static printSet() method. print-
Line() prints the object to the output stream passed as a parameter. The
static method printSet() prints all the objects in the set passed as a parame-
ter to the output stream indicated. The set passed as a parameter is a set of
pointers to objects that belongs to the class to which the printSet() method
belongs to. printSet() is used to implement the printClass() method.

6.5 Other Issues

In this section we describe some particular problems found during imple-
mentation due to the implementation tools used (i.e. C++/ObjectStore)
and how they were solved.

6.5.1 The Visits Hierarchy Problem

The visits inheritance hierarchy is created to group all the attributes and
behavior that the EMS Visit, ER Visit, OR Visit and ICU Visit classes
have in common. As depicted in Figure 6.6, Patient Visit has a One-to-
Many relationship with the Unit Visit class. This means that every patient
can visit many units during his/her visit to the hospital/EMS. As described
before, a One-to-Many relationship is implemented using a pointer on the

many side and a set of pointers in the one side. Thus, every object that
belongs to ER Visit, OR Visit, EMS Visit and ICU Visit ? has a pointer

3These are the only non-abstract classes in the hierarchy, and thus, the only ones that
can be instantiated.

98

to one object of Patient Visit, and every object of Patient Visit has a set
of pointers of type Unit Visit.

The problem is that we only know that Patient Visit has a set of pointers
of type Unit Visit, but we do not know at runtime if a pointer is a pointer
to an object of type ER Visit, ICU Visit, OR Visit or EMS Visit. This
happens because C++4 objects do not know their type at runtime.

One solution would be to create four relationships: one for ER Visit, one
for ICU Visit, one for OR Visit and one for EMS Visit. Although this
approach is used for the spinal precautions (see Section 5.2.10), it can not
be used in this context because there are some methods in Hospital Reg
Unit Visit, Hospital Gral Unit Visit and Unit Visit that need to know
to which Patient Visit the object belongs to, and if the relationship is in
the leaves of the hierarchy the superclasses are not aware of it. For example,
in the Hospital Reg Unit Visit we need to validate that the date/time
that the patient enters/leaves a unit is between the date/time the patient
enters/leaves the hospital, and this data is stored in Patient Visit.

To solve this problem an extra attribute is added to Unit Visit called
Unit. This attribute indicates to which class the object belongs to and is
initialized with the correct value when the object is created. Although the
attribute is private, the class interface provides a getUnit() method that re-
turns its value. Each time a pointer is retrieved from the set in Patient
Visit, the programmer only has to ask to which class the pointer belongs
and cast the pointer to the correct type. In order to avoid this inconvenience
to the application programmer, the Patient Visit class provides four meth-
ods called getErVisit(), getleuVisits(), getOrVisits() and getFEmsVisits() that
take care of the casting and return the set of ER Visit, ICU Visit, OR
Visit and EMS Visit respectively. With this approach this implementation
problem is completely hidden from the application programmer.

6.5.2 Static Functions in C++

Many static methods are used in the DIDP database schema (e.g. insert(),
getExtent(), etc.). The implementation of many of these methods are very
similar from one class to the other.

For example, the implementation of getFutent() is exactly the same for
every class except that there are some os_Set declarations in its body that
need a parameter indicating the type of the objects in the set. This parameter
should be the name of the class to which the method is bound at runtime.

99

S—— T =T

/ Patient Visit \% J UnitVisit O,
/ / n - /
N o K

AN N
) \)
{

o —
— -
~ N\

1

ST S

/ Hospital Gral ™\
i Unit Visit /
((

~
)

\\\
\\W//// - N

e
f /. EMS Visit
/ (/
//\\T/ﬂ\\\\ (\\ |
/' Hospital Reg) N)
/ Unit Visit ~ 7/ =
f [_
N \
\\ \\J/)
WY
NY -
\ N
STl S STl N /" ORVisit
/. ERVisit / ICU Visit (/ (/
((((S \
S \ S \ N)
N) N) \ T —
\ o — \ T — \v//
N N

Figure 6.6: The visits hierarchy

100

For example, for Color::getExtent(), the os_Set declarations would look like:
os_Set<Color*>. Unfortunately there is no way to do this in C++ static
functions.

The other problem posed by static functions in C++ are the calls to other
static functions. Assume that there are two static methods MethodA () and
MethodB() that belongs to ClassX, where MethodA() invokes MethodB()
within its body. Further assume that ClassX has a subclass, ClassY, that
redefines MethodB(). When ClassY::MethodA() is invoked, we expect this
method to invoke the redefined MethodB(). Unfortunately, this is not the
case. The MethodB() from ClassX is invoked.

Since the implementation of many of these methods are so similar, du-
plicating the code is not an efficient solution. Any change that has to be
done to one of these methods in the future would mean changing every im-
plementation in every class. In order to solve this problem we used macros.
Thus, although every class has to declare the method in its header, there is
a unique implementation. Among the functions implemented as macros, we
have: getFuatent(), get(), exists(), printClass(), printSet() and insert(). This
approach saves hundreds of lines of code and simplifies the future changes to
the methods.

6.5.3 Cascade Deletion

Every time a Patient object is deleted from the database, we also want
to delete all the information related to him/her. That means that all the
objects that belong to the Patient object have to be deleted as well. Ob-
jectStore provides a mechanism that automatically takes care of this issue.
The problem is that it requires the destructors of the classes to be public. As
explained in Section 6.4.2, the DIDP database server keeps the destructors
of the classes protected. For this reason, this ObjectStore facility is not used,
and the cascade deletion was implemented manually. Each erase() method
invokes the erase() methods of the objects it owns before invoking its own
destructor, and thus achieving the required cascade deletion.

6.6 Summary

In this chapter the implementation details of the DIDP database server are
discussed. An explanation on how the libraries that support the database

101

server functionality are organized, and a sample on how the application pro-
grams that use the services of the DIDP database server should look like,
are provided. The solution of the database root problem and the handling
of class extents is also explained. Some details on the implementation of
basic and extended types are discussed. Also, a detailed description of the
class interfaces is provided. Some problems found due to the implementation
tools used, and how they were solved are also mentioned at the end of the
chapter.

102

Chapter 7

Conclusions and Future Work

This report describes the analysis, design and implementation of an object-
oriented database server for the Dynamic Injury Data Project (DIDP). This
server provides persistent storage of the data, ensures its integrity, and pro-
vides a mechanism for the applications to interact with the data.

The major contributions of this work can be summarized as follows:

e The analysis of the requirements necessary to develop an object-oriented
database server for the the DIDP system. The constraints specific to
the problem domain were identified during this process.

e The definition of the minimum data sets for injury surveillance in each
of the hospital units and the emergency medical services.

e The definition of the initial system and data processing architectures
for the DIDP system. Since the database server is designed and imple-
mented as independent as possible from these architectures, it could be
easily extended or modified in the future if needed.

o The design of a detailed object-oriented model for the DIDP database.
The model is sufficiently general to be implemented in any object-
oriented DBMS. The documentation for the model is stored in Rational
Rose so that it could be easily modified if changes are needed.

e The introduction of new elements in the Booch’s notation to deal with
particular modeling problems found during the model definition.

103

o The design and implementation of the database server mechanisms to
ensure the consistency and encapsulation of the data.

e The successful implementation of the database server in the form of a
library to enable access of application programs and end users to the
data.

This work is only the initial step towards the development of the DIDP
system. In the future, there are a number of modifications and enhancements
that can be introduced:

e Multimedia data.

The current version of the database server only supports text and reg-
ular formatted data. Nevertheless, the database server is designed con-
sidering the requirements needed to include multimedia data. For ex-
ample, the complex nature of multimedia data was considered when
choosing the database model; that is one of the reasons for selecting an
object-oriented approach. In the future, multimedia data such as the
images ordered for the patients (e.g. X-rays, CT Scans) and video of
the scenes of the incidents, could be easily added to the database.

e Global positioning system (GPS).

This feature will allow to exactly locate where an injury occurred.
There are many ways of collecting the GPS information. In urban
settings, the system could ask for the address where the incident took
place and translate this address into geographic coordinates. In rural
areas where an address could not be entered, GPS units could be used
to identify the location. There are two ways of implementing the use
of GPS units. One is to install hand-held GPS units in the ambulances
and have the EMS personnel take note of the location of the injury and
enter the information into the computer. The second one is to interface
the GPS units directly with the computer to entire eliminate the man-
ual entry of the GPS information. Both have their pros and cons. The
first solution is easier to implement and less expensive, but could intro-
duce errors. The second solution is more expensive but prevents errors
in entering the data. Despite the solution adopted, GPS information
will be very useful in developing injury intervention strategies.

e Visual query interface.
A visual query interface should be developed in order to allow end

104

users to perform queries in an easy and friendly manner. In particular,
the support of content-based queries of images and video would open
endless possibilities in the study of injuries. For example, the automatic
recognition of certain patterns in an X-ray could help with the diagnosis
of certain conditions.

e Performance optimization.
In the current version of the database server, ObjectStore clustering
and indexing is not considered, as the type of queries that would be
regularly performed is not yet identified. During the pilot testing of
the database, access patterns should be studied in order to add opti-
mization mechanisms to improve performance.

e Improvement of the audit mechanism.

The audit mechanism provided by the current version of the database
server has several limitations. First, only the last user that makes
a modification on the object is recorded instead of having detailed
information of the evolution of the operations. Second, when an object
is modified, the older values of the object are lost. It could be useful
to know not only that a modification was done, but exactly which
changes were made to the data. The last problem is that when an
object is deleted, all the information including the audit information
is lost. A solution might be to make only a logical deletion of the
object, marking it as deleted, and offering the database administrator a
process to physically delete the objects once that the audit information
has been used. A more comprehensive audit mechanism has to be
implemented in a future version of the database server in order to solve
these problems. The complexity of such a system will be determined
by the need of the DIDP system to audit its data.

e Security features.
Maintaining patient confidentiality is a very important issue. In order
to limit access to the database server a fingerprint mechanism will be
implemented. Access will then be monitored by the system requiring
personnel to have their fingerprints electronically digitalized. A finger-
print scanner will verify the user identity. Several levels of security will
be provided for different users.

e Voice data collection.

105

Although using hand-held pen-based computers greatly simplifies the
data collection, there are environments where voice data collection
could be useful. An example might be the data collection in the EMS
where the paramedics could collect the data at the same time that they
are providing treatment to the patient. The data could be “dictated”
to the computer using voice commands and key words that the com-
puter would have pre-stored. The use of voice data collection could
greatly improve the collection of data in specific environments.

Direct connection of medical equipment to the DIDP system.
Instead of having the nurses collecting data from devices that are con-
nected to the patients and entering manually these data into the DIDP
database, the devices connected to the patient could interface with the
DIDP system sending the necessary changes in the patients’ condition
automatically when needed.

Treatment guidelines.

Instead of having the common practices for injury treatment loaded
into the DIDP database, the database server should be able to retrieve
the needed information from existing repositories. Once an injury is
diagnosed, the server will be able to show the doctors the latest proce-
dures that have to be followed for treating that particular injury. This
interconnection can be accomplished either by simple triggers or by
sophisticated Al-based learning techniques.

106

Bibliography

[ABD+89] Atkinson M., Bancihon F., DeWitt D., Dittrich K., Maier D. and

[ASUSS]

[BD90]

[BMO3]

[Booch93]

[ENS9]

[Eval88]

[FST91]

[Frad7]

Zdonik 5., “The Object-Oriented Database System Manifesto”,
Proceedings of 1st International Conference on Deductive and
Object-Oriented Databases (DOOD), Kyoto, Japan, December
1989.

Aho A.V., R. Sethi, J.D. Ullman, “Compilers, principles, tech-
niques and tools”, Addison-Wesley, 1988.

Ball M.J. and Douglas J.V., “Healthcare Informatics”, Health-
care Informatics Magazine, May 1990.

Bertino E. and L. Martino, “Object-Oriented Database Systems:
Concepts and Architectures”, Addison-Wesley, 1993.

Booch G., “Object-Oriented Analysis and Design with Applica-
tions”, Benjamin/Cummings, 1993.

Elmasri R., S.B. Navathe, “Fundamentals of Database Systems”,
Benjamin/Cummins, 1989.

Centers for Disease Control, “Guidelines for Evaluating Surveil-

lance Systems”, MMWR, Vol.37, No.S-5, May 1988.

Francescutti L.H., L.D. Saunders and S.M. Hamilton, “Why are
there so many injuries? Why aren’t we stopping them?”, Cana-
dian Medical Association Journal, 144(1), pp.57-61, 1991.

Francescutti L.H., “Injury Control: Are you accountable?”, The
Canadian Journal of CME, pp.109-119, January 1997.

107

[GRT494] Garrison H.G., C.W. Runyan, J.E. Tintinalli, C.W. Barber, W.C.

[GS90]

[Jac92]

[Lip91]

[Mac84]

[Obj95]

[0bj97]

[PMS8Y]

[RBB92]

[RRTBY2]

Bordley, 5.W. Hargarten, D.A. Pollock and H.B. Weiss, “Emer-
gency Department Surveillance: An Examination of the Issues
and a Proposal for a Nation Strategy”, Annals of Emergency

Medicine, 24(5), pp.849-855, 1994.
Greenes R.A. and Shortliffe E.H., “Medical Informatics: An

Emerging Discipline with Academic and Institutional Perspec-
tives”, Journal of the American Medical Association 263(8):1114-
1120, 1990.

Jacobson 1., “Object Oriented Software Engineering, A Use Case
Driven Approach”, Addison-Wesley, 1992.

Lippman S.B., “C+4 Primer”, 2nd Edition, AT&T Bell Labora-
tories, December 1991.

MacKenzie E.J., “Injury Severity Scales: Overview and Direc-
tions for Future Research”, American Journal of Emergency

Medicine, Vol.2, No.6, pp.537-549, 1984.

ObjectStore Release 4.0, Object Design Inc., C++ API User
Guide, June 1995.

Object Design, Inc. Home Page,
http://www.odi.com/AboutObjectDesign/

Pollock D.A. and P.W. McClain, “Trauma Registries: Current
Status and Future Prospects”, Journal of The American Medical

Association, Vol.262, No. 16, October 1989.

Runyan C.W., J.M. Bowling and 5.I. Bangdiwala, “Emergency
Department Record Keeping and the Potential for Injury Surveil-
lance”, The Journal of Trauma, Vol.32, No. 2, 1992.

Ribbeck B.M., Runge J.W., Thomason M.H., Baker J.W., “In-
jury Surveillance: A Method for Recording E Codes for In-
jured Emergency Department Patients”, Annals of Emergency

Medicine, 21:37-40, January 1992.

108

[Rose95]

[Rose97]

[Sch96]

[Str91]

[TC94]

[WEFP96]

[WEPP95]

[WG94]

Rational Rose Release 2.7, Rational Software Corporation, Using
Rational Rose/C++ documentation set, May 1995.

Rational Software Corporation Home Page,
http://www.rational.com /pst /products/rosecpp.html

Schone M., “A Generic Type System for an Object Oriented
Multimedia Database System”, Master’s thesis, University of Al-
berta, Department of Computing Science, 1996.

Stroustrup B., “The C4++ Programming Language”, Addison-
Wesley, 1991.

S.M. Teusch and R.E. Churchil (editors), “Principles and practice
of public health surveillance”, Oxford University Press, 1994.

Williams J.M., P.M. Furbee and J.E. Prescott, “Development of
an Emergency Department-Based Injury Surveillance System”,
Annals of Emergency Medicine, 27:1, January 1996.

Williams J.M., P.M. Furbee, J.E. Prescott and D.J. Paulson,
“The Emergency Department Log as a Simple Injury Surveillance

Tool”, Annals of Emergency Medicine, 25:5, May 1995.

White 1., M. Goldberg, “Using the Booch Method: A Rational
Approach”, Benjamin/Cummings, 1994.

109

Appendix A

Class Specifications

The following are the class specifications for the DIDP model. The classes are
grouped by category and inside each category they are shown alphabetically.
The order of the categories is:

1.

= = =

R e A T

Incidents and Personnel

Central Nervous System Assessment

Visits Information

Other Assessments

OR Anaesthesia and Procedures
Gastrointestinal Assessment

Diagnostic Images and Lab Exams

Patient Identification and Health Information
Medications, Antibiotics and Ivs

Invasive Therapy, Instrumentation and Fluids

. Vital Signs Assessment
. EMS Specific Information

. Respiratory Assessment

General Classes

110

Class name:

Critical Incident

Category: Incidents and Personnel
Documentation:

Represents a critical incident that might occur to a patient.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Descripted Object
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name: .

Critical Incident Occured
Category: Incidents and Personnel
Documentation:

Represents a critical incident that occured to a patient.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Security
Associations:

Critical Incident Reason incident reason
We must validate that the reason chosen is in the set of reasons allowed for
the critical incident chosen.

Critical Incident incident

Private Interface:
Has—-A Relationships:
Time Timelncident
Date/Time of the critical incident.

State machine: No

Concurrency: Sequential
Persistence: Persistent

Class name: .

Critical Incident Reason
Category: Incidents and Personnel
Documentation: o

Represents a reason why a critical incident might occur.
Export Control: Public
Cardinality: n
Hierarchy: .

Superclasses: Descripted Object
Associations:

Critical Incident reasons
State machine: No
Concurrency: Sequential
Persistence: Persistent

111

Class name:

Personnel Contacted

Category: Incidents and Personnel
Documentation:

Represents a personnel contacted during a patient’s visit.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Security
Associations:

Personnel Type

Private Interface:
Has—-A Relationships:
Pname Name
Name of the person contacted.

Time TimeCalled
Date/Time the person was called.

Time TimeContact
Date/Time the person did the contact. It must be >= TimeCalled.

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:

Personnel Type
Category: Incidents and Personnel
Documentation:

Represents a type of personnel in the hospital.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Descripted Object
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:

CNS Assessment
Category: Central Nervous System Assessment
Documentation:

Represents an assessment of a patient’s central nervous system.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Security

Public Interface:
Has—-A Relationships:
Reflexes
Movements

Private Interface:
Has—-A Relationships:

112

String Comments
Comments on the CNS assessment.

Time _ TimeAssessment
Date/Time of assessment.

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:
Cervical Prec
Category: Central Nervous System Assessment
Documentation: . .
Represents a cervical spinal precaution applied to a patient.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Spinal Prec

Private Interface:
Has-A Relationships:

Bool HardCollar
Was a hard collar used for the cervical precaution of the patient?
Bool HeadU

aaup
Was the patient’s head of bed up 30 degrees?

Bool ‘NoSideLying
Was the patient prevented to lie on one side?

Bool SandBags _) .
Were sand bags used for the cervical precaution of the patient?

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:
ICP Control
Category: Central Nervous System Assessment
Documentation:))
Represents an intracranial pressure probe inserted to a patient.
Export Control: Public
Cardinality: n
Hierarchy: .
Superclasses: Security

Public Interface:
Has—-A Relationships:
ICP Reading

Private Interface:
Has—-A Relationships:
Time Timelnserted
Date/Time the probe was inserted.

Time TimeRemoved
Date/Time the probe was removed. It must be >= Timelnserted

113

State machine: No

Concurrency: Sequential
Persistence: Persistent
Class name: .

ICP Reading
Category: Central Nervous System Assessment
Documentation:)

Represents an intracranial pressure probe reading of a patient.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Security
Public Interface:

Operations:

Cpp ()

Private Interface:
Has—-A Relationships:
Enum DrainManipulation
Indicates the drain manipulation mode. The possible values are: Open
intermittent, Open continously.

Unsigned Int IcpReading
Intracranial pressure reading. Values: 0—-120 Hg.

Unsigned Int MapProbe
Mean arterial pressure measured through the probe. Values: 0-200 Hg

Time TimeAssessment
Date/Time of assessment. It must be between the D/T the probe was
inserted and D/T the probe was removed.

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:
Lumbar Prec
Category: Central Nervous System Assessment
Documentation: .
Represents a lumbar spinal precaution applied to a patient.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Spinal Prec
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:
Movements
Category: Central Nervous System Assessment
Documentation:

Represents a movement assessment of a patient for one side of the body.

114

Export Control: Public

Cardinality: n

Hierarchy:

_ Superclasses: Security
Private Interface:
Has—-A Relationships:

MovementTy Arm
Movement of the arm.

MovementTy Leg
Movement of the leg.
SideTy Side
Side of the body assessed.
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:
Pain Assessment
Category: Central Nervous System Assessment
Documentation:
Represents a pain assessment of a patient.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Security
Associations:
Body Region

Private Interface:
Has-A Relationships:
String ~ Description
Description of the pain.

Enum_ Intensity
Intensity of the pain. The possible values are: Light, Moderate, Severe.

Unsigned Int Severit
Severity of the pain. Values: 1-10.

Time _ TimeAssessment
Date/Time of assessment.

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:
Reflexes
Category: Central Nervous System Assessment
Documentation:
Represents a reflexes assessment of a patient for one side of the body.
Export Control: Public
Cardinality: n
Hierarchy: .
Superclasses: Security

115

Private Interface:
Has—-A Relationships:
ReflexTy Ankle
Reflexes of the ankle.

ReflexTy Biceps
Reflexes of the biceps.

ReflexTy Knee
Reflexes of the knee.

ReflexTy Plantar
Reflexes of the plantar.

SideTy Side
Side of the body assessed.

ReflexTy Supinator
Reflexes of the supinator.

ReflexTy Triceps
Reflexes of the triceps.

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:

Spinal Prec
Category: Central Nervous System Assessment
Documentation: . .

Represents a spinal precaution applied to a patient.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Security

Private Interface:
Has-A Relationships: _
Time _ TimeApplied
Date/Time the precaution was applied.

Time TimeRemoved
Date/Time the precaution was removed. It must be >= TimeApplied

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name: .
Thoracic Prec
Category: Central Nervous System Assessment
Documentation: o
Represents a thoracic spinal precaution applied to a patient.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Spinal Prec
State machine: No
Concurrency: Sequential

116

Persistence:

Class name:

Cause

Category:
Documentation:

Persistent

Visits Information

Represents a cause that might produce an incident.

Export Control:
Cardinality:
Hierarchy:

Superclasses:
Private Interface:

Has—-A Relationships:

State machine:
Concurrency:
Persistence:

Class name:

EMS Visit

Category:
Documentation:

Public
n
Descripted Object

String Ecode _ _ _
E-code that corresponds to the cause. The picture is NNN.N where N is a
number between 0 and 9.

No

i Sequential
Persistent

Visits Information

Represents a visit of a patient to the EMS.

Export Control:
Cardinality:
Hierarchy:
Superclasses:
Public Interface:
Has—-A Relationships:

Private Interface:
Has-A Relationships:

Public
n
Unit Visit

Treatment Done

General Assessment

Run Info

Ems Vital Signs

Next of Kin “authorizedBy o _
Person that authorized the transport or the treatment of the patient is s/he is
a minor or is unable to give consent.

String ~ DiagnosticCode)
Diagnostic code of the patient if the service uses them.
Strin InvoiceNo

_Num%er assigned to the trip in the dispatch log or number of the invoice
issued to patient.

String PCR .
Patient Care Report Number. It can have up to 6 digits.

String ReasonForAmbulance _
Most important problem the patient describes.

Pname ReceivingPhysician -
Name of the receiving physician in the facility.

Enum Transfer - o
If patient was transported from one facility to another, indicates whether the

117

State machine:
Concurrency:
Persistence:

Class name: =
ER Visit

Category:
Documentation:

patient was an in—patient (currently admitted into the facility) or an out patient
(not admitted). Values: None,In, Out.

No

i Sequential
Persistent

Visits Information

Represents a visit of a patient to the ER.

Export Control:
Cardinality:
Hierarchy:
Superclasses:
Public Interface:
Has—-A Relationships:

State machine:
Concurrency:
Persistence:

Class name:

Hospital Gr

Category:
Documentation:

Represents a visit of a patient to any unit in the hospital.

Export Control:
Cardinality:
Hierarchy:
Superclasses:
Public Interface:
Has—-A Relationships:

State machine:
Concurrency:
Persistence:

Class name:

Public
n

Hospital Reg Unit Visit

Er Vital Signs
No

i Sequential
Persistent

al Unit Visit

Visits Information

Public
n
Unit Visit

Image Ordered

Lab Exam Ordered
Respiration Support
Airway Proc Done
Ventilator Control
Injury

Musskel Assessment
Personnel Contacted
Critical Incident Occured
Antibiotic Given
Instrument Applied
Patient Output Fluid
Patient Intaken Fluid
Cervical Prec
Thoracic Prec
Lumbar Prec

No

i Sequential
Persistent

118

Hospital Reg Unit Visit

Category: Visits Information
Documentation:
Represents a visit of a patient to any regular unit in the hospital.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Hospital Gral Unit Visit

Public Interface:
Has-A Relationships:

GU Procedure Done
Chest Exam
CVS Assessment
CNS Assessment
Gi Exam
Pain Assessment

Private Interface:
Has—-A Relationships:

Time TimeEnterUnit
Date/Time the patient entered the unit.
Time TimeLeftUnit
Date/Time the patient left the unit. It must be >= TimeEnterUnit.
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:
ICU Visit
Category: Visits Information
Documentation:
Represents a visit of a patient to the ICU.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Hospital Reg Unit Visit

Public Interface:
Has—-A Relationships:
ICP Control
Stool Assessment
Ostomy Assessment

Icu Vital Signs

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:

Incident Info
Category: Visits Information
Documentation: _

Information related to the environment where a patient was injured.
Export Control: Public
Cardinality: n
Hierarchy:

119

Superclasses: Security
Associations:

Cause
Safety Device

Private Interface:
Has—-A Relationships:
Enum Setting _
Indicates if the activity being done when the patient was injured was being
done outdoors or indoors. Values: Outdoors, Indoors.

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name: = |

OR Visit
Category: Visits Information
Documentation:

Represents a visit of a patient to the OR.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Hospital Gral Unit Visit

Public Interface:
Has—-A Relationships:
Setup Info
Patient Or Reading
Procedure Done
Pre Assessment
Or Vital Signs

Private Interface:
Has—-A Relationships:
Pname Anaesthetist
Name of the anaesthetist.

Time EndAnaesthesia
Date/Time anaesthesia ended. Must be >= TimeAnaesthesiaStart.

Time EndOperation
Date/Time operation ended. Must be >= TimeOperationStart.

Time StartAnaesthesia
Date/Time anaesthesia started.

Time StartOperation
Date/Time operation started. Must be >= TimeAnaesthesiaStart.

Pname Surgeon
Name of the surgeon.

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:
Patient Valuables
Category: Visits Information

120

Documentation: .
Represents the valuables a patient had when s/he arrived to the hospital.

Export Control: Public
Cardinality: n
Hierarchy: _
Superclasses: Security
Associations:
Valuable

Private Interface:
Has-A Relationships:
Real MoneyAmount
Amount of money the patient had when s/he arrived to the hospital if any.

Pname PersonLeftWith
Name of the person to which the valuables were left with if any.

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name: Lo

Patient Visit
Category: Visits Information
Documentation:

Represents a patient visit to the health system.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Security

Public Interface:

Has—-A Relationships:
WCB Claim
Social Service Info
Incident Info
Patient Valuables
Unit Visit

Operations:
Bmi ()

Private Interface:
Has—-A Relationships:
Time Admission
Date/Time patient was admitted to the hospital.

Time Arrive
Date/Time patient arrived to the hospital.

Time Discharge
Date/Time patient was dishcarged from the hospital.

Unsi%ned Int HeightCm
Height of the patient in cm.

Time Left
Date/Time patient left the hospital.

Unsigned Int VisitNo
Visit Number of the patient to the health system (i.e. EMS and/or Hospital).

Unsigned Int WeightKg
Weight of the patient in kg.

121

State machine: No

Concurrency: Sequential
Persistence: Persistent
Class name: .

Safety Device
Category: Visits Information
Documentation: .

Represent a safety device that a patient might have used during an incident.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Descripted Object
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name; .

Social Service Info
Category: Visits Information
Documentation:

_In.forrr:jatlon needed by the social services for a patient if s/he receiving social assistance when

injured.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Security

Private Interface:
Has-A Relationships:
String . SocialServiceNo .
Social services number for the patient. The picture is ANNNNN, where A is a
capital letter and N is a number between 0 and 9.

Pname SocialWorker _
Social worker name associated with the patient.

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:

Unit Visit
Category: Visits Information
Documentation: _

Represents a visit of a patient to any unit of the health system.
Export Control: Public
Cardinality: n
Hierarchy: .

Superclasses: Security

Public Interface:
Has-A Relationships: v

122

Medication given

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:

Valuable
Category: Visits Information
Documentation:

Represents a valuable a patient might have when arrives to the hospital.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Descripted Object
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name: .

WCB Claim
Category: Visits Information
Documentation: . _

Represents a WCB claim. This type of claims are used for patients injured while working.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Security

Private Interface:
Has—-A Relationships:
String BusTelNo
Business telephone number of the person.

String Employer
Patient ’'s employer name.
String ~ Occupation
Ocuppation of the patient.
String Sin
Social Insurance Number of the %atient. If amlicable the Department of
Veteran’a Affairs Number or the Regimental Number.
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:
CVS Assessment
Category: Other Assessments
Documentation:
Represents an assessment of a patient’s cardiovascular system.
Export Control: Public
Cardinality: n
Hierarchy:

123

Superclasses: Security
Public Interface:
Has-A Relationships:
Cvs Pulse Assessment
Heart Assessment

Private Interface:
Has-A Relationships:
String Comments
Comments on the CVS exam.

Enum Jvp .
Juglar venous pressure. The possible values are: Normal, Increased,
Decreased.

Time _ TimeAssessment
Date/Time of assesssment.

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:
Cvs Pulse Assessment
Category: Other Assessments
Documentation: _ .
Represents an assessment of a patient’s CVS pulse for one side of the body.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Security

Private Interface:
Has—-A Relationships:
CvsPulseTy Brachial
Brachial pulse.

CvsPulseTy Carotid
Carotid pulse.

CvsPulseTy Dorsalispedis
Dorsalispedis pulse.

CvsPulseTy Femoral
Femoral pulse.

CvsPulseTy Posterotibial
Posterotibial pulse.

CvsPulseTy Radial

Radial pulse.

SideTy Side

Side of the body assessed.
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:

Heart Assessment

124

Category: Other Assessments
Documentation: _
Represents an assessment of a patient’s heart.

Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Security

Private Interface:
Has-A Relationships:
Enum MonitorLead
How the leads are applied to the patient in order to obtain the best
configuration of the ECG pattern. The possible values are: |, Il, lll, MLCI.

Bool Murmur
Is murmur present in the heart sound?

Bool Rub
Is there a presence of a rub sound?

Bool S1
Is sound S1 present?

Bool S2
Is sound S2 present?

Bool S3
Is sound S3 present?

Bool S4
Is sound S4 present?

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:
Injury
Category: Other Assessments
Documentation: _
Represents an assessment of a patient’s injury.
Export Control: Public
Cardinality: n
Hierarchy: .
Superclasses: Security
Associations:
Body Part

Private Interface:
Has-A Relationships:
Time TimeAssessment
Date/Time of assessment.

State machine: No .
Concurrency: _ Sequential
Persistence: Persistent

Class name:

Musskel Assessment

125

Category:
Documentation:

Other Assessments

Represents an assessment of a musculo skeletal device applied to a patient.

Export Control:
Cardinality:
Hierarchy:
Superclasses:
Associations:

Private Interface:
Has—-A Relationships:

State machine:
Concurrency:
Persistence:

Class name:

Public
n
Security

Musskel Device
Body Region

Time TimeApplied
Date/Time the device was applied.

Time TimeRemoved
Date/Time the device was removed. It must be >= TimeApplied.

Unsigned Int WeightKg
Weight used in the device in kg if applicable.

Musskel Device

Category:
Documentation:

No _

i Sequential
Persistent
Other Assessments

Represents a musculo skeletal device.

Export Control:
Cardinality:
Hierarchy:
Superclasses:
State machine:
Concurrency:
Persistence:

Class name:

Public
n

Descripted Object
No

i Sequential
Persistent

Anaesthetic History

Category:
Documentation:

OR Anaesthesia and Procedures

Represents an assessment of the anaesthetic history of a patient.

Export Control:
Cardinality:
Hierarchy:

Superclasses:
Private Interface:

Has-A Relationships:

Public

n

Security

String Comments

Comments on the patient’s anaesthetic history.

Bool FamilyHx
Were there any anaesthetics problems in the family?

Enum PersonalHx _)
Personal anaesthetic history of the patient. The possible values are: No

126

Brevious general anaesthetic, No Problems previous general anaesthetic,

roblems previous general anaesthetic.

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:

Circuit
Category: OR Anaesthesia and Procedures
Documentation: _ _ _

Represents a circuit by which a patient might be contected to the equipment during an operation.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Descripted Object
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name: _

Dentition Assessment
Category: OR Anaesthesia and Procedures
Documentation:

Represents an assessment of a patient’s tooth.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Security

Private Interface:
Has—-A Relationships:
Bool Bridge _
Does the tooth have a bridge?

Bool Capped
Is the tooth capped?

Bool Chipped
Is the tooth chipped?

Bool Denture
Is the tooth a denture?

Bool Loose
Is the tooth loose?

Bool Missing7
Is the tooth missing™

Enum Tooth

Name of the tooth. The possible values are: 11-URCI, 12-URTI, 13-URS,
21-ULCI, 22-ULTI, 23-ULS, 41-WRCI, 42-WRTI, 43-WRS, 31-WLClI,
32-WLTI, 33-WLS. Where: U:Upper, W: Lower, R:Right, L:Left, C:Central,
T:Lateral, S:Cuspid, l:Incisor.

State machine: No .
Concurrency: _ Sequential
Persistence: Persistent

127

Class name:

Gas Type

Category: OR Anaesthesia and Procedures
Documentation:

Represents a gas type that might be used for anaesthesia in an operation.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Named Object
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:

Monitor
Category: OR Anaesthesia and Procedures
Documentation:

Represents a monitor or equipment that might be used in an operation.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Descripted Object
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:

Or Procedure
Category: OR Anaesthesia and Procedures
Documentation:

Represents an operation procedure that might be done to a patient.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Descripted Object
Associations:

ICD9 Code
Body Part

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name: .

Or Reading
Category: OR Anaesthesia and Procedures
Documentation:

Represents a reading that can be done during an operation.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Ranged Value

128

State machine: No

Concurrency: Sequential
Persistence: Persistent
Class name: .

Patient Or Reading
Category: OR Anaesthesia and Procedures
Documentation:) _

Represents a monitor or equipment reading done during an operation of a patient.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Security
Associations:

Or Reading

Private Interface:
Has-A Relationships:
Time TimeAssessment
Date/Time of assessement.

Real Value
Value of the reading. It must be between the lower and upper bound for the
reading.
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name;
Position
Category: OR Anaesthesia and Procedures
Documentation: N
Represents a position that a patient might have during an operation.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Descripted Object
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:
Pre Airway Exam
Category: OR Anaesthesia and Procedures
Documentation:)
Represents an airway exam done to the patient before an operation.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Security

Private Interface:
Has-A Relationships:
Bool AnticipateDifficultIntubation
Is there any anticipation of difficult intubation?

129

Enum AoExtension .
Atlantoccipital extension. The possible values are: Zero, Half, Full.

Enum Mallampati
Ease of intubation. The possible values are: I, II, Ill, IV.
Unsigned Int MouthOpening

Mouth opening in cm.

Enum NeckMobilityExtension)
How much the patient can extend his neck. The possible values are: 0 cm, <
2.5cm,>=2.5cm.

Enum NeckMobilityFlex

Hov%/ much the patient flex his neck. The possible values are: 0 cm, <5 cm,
>=5cm.

Bool PriorDifficultintubation

Was there a prior difficult intubation?

Bool Prominentincisors
Does the patient have prominent incisors?

Enum Thyromental]))
Distance between the thyroid cartilage and the tip of the chin. The possible
values are: <6 cm, >=6 cm.

State machine: No .
Concurrency: Sequential
Persistence: Persistent
Class name:
Pre Assessment
Category: OR Anaesthesia and Procedures
Documentation: . _ _
Represents a general preassessment done to a patient before going to an operation.
Export Control: Public
Cardinality: n
Hierarchy: .
Superclasses: Security

Public Interface:
Has—-A Relationships:
Anaesthetic History

Pre Airway Exam
Dentition Assessment

Private Interface:
Has-A Relationships:

Unsigned Int Asa
Class of Risk of operation. The possible values are: 1,2,3,4,5,6.
Bool DentalRisk

Has the patient informed about any dental risk?

Bool Emergency)
Is the operation an emergency operation?

Bool GoodDentition N
Does the patient have a good dentition?

Time NpoStatus
Date/Time of last meal.

130

Time _ TimeAssessment
Date/Time of assessment.

Unsigned Int XMatch
How many units of blood are available for the patient.
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:
Procedure Done
Category: OR Anaesthesia and Procedures
Documentation: .
Represents an operation procedure done to a patient.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Security
Associations:

Or Procedure

Private Interface:
Has-A Relationships:
String Comments
Comments on the procedure.

State machine: No .
Concurrency: Sequential
Persistence: Persistent
Class name:
Setup Info
Category: OR Anaesthesia and Procedures
Documentation: _) _
Represents the anaesthesia setup information for a patient’s operation.
Export Control: Public
Cardinality: n
Hierarchy: .
Superclasses: Security
Associations:
Circuit
Gas Type
Position
Monitor
Technique

Private Interface:
Has—-A Relationships:

Bool EyesLubed
Were the patient’s eyes lubed?
Bool EyesPadded

Were the patient’s eyes padded?

131

Bool EyesTapped
Were the patient’s eyes tapped?

State machine: No .
Concurrency: Sequential
Persistence: Persistent
Class name:
Technique
Category: OR Anaesthesia and Procedures
Documentation: _ _ _
Represents an anaesthesia technique that might be used in an operation.
Export Control: Public
Cardinality: n
Hierarchy: . _
Superclasses: Descripted Object
State machine: No .
Concurrency: Sequential
Persistence: Persistent
Class name:
Gi Exam
Category: Gastrointestinal Assessment
Documentation:) _)
Represents a gastrointestinal exam of a patient.
Export Control: Public
Cardinality: n
Hierarchy: .
Superclasses: Security

Public Interface:
Has—-A Relationships:
Gi quadrant assessment

Private Interface:
Has—-A Relationships:
Enum AbShape)
Shape of the abdomen. The posssible values are: Flat, Round, Obese.

Enum BowelSounds
Bowel sounds. The posssible values are: Absent, Normal, Hyperactive,
Hypoactive.

String Comments _
Comments on the gastrointestinal exam.

Bool Cramping
Does the patient have cramps?

Bool _ Nausated
Is the patient nausated?

Strin PeritonealLavage
Results of the peritoneal lavage.

Strin RectalExamination
Results of the rectal examination.

Time _ TimeAssessment
Date/Time of assessment.

132

State machine: No

Concurrency: Sequential
Persistence: Persistent
Class name:

Gi quadrant assessment
Category: Gastrointestinal Assessment
Documentation:

Represents a gastrointestinal quadrant assessment of a patient.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Security

Private Interface:
Has—-A Relationships:
Bool Distended
Is the zone distended?

QuadrantTy GiQuadrant
Abdomen quadrant assessed.

Enum Rigidness
Rigidness of the zone. The possible values are: Soft, Firm, Rigid.

Bool Tender
Is the zone tender?

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:

Ostomy Assessment
Category: Gastrointestinal Assessment
Documentation:

Represents an assessment of a patient’s ostomy. An ostomy is an opening created by a surgeon
into the intestine from the outside of the body.

Export Control: Public

Cardinality: n

Hierarchy: _
Superclasses: Security

Public Interface:
Has—-A Relationships:
Stoma Assessment

Private Interface:
Has-A Relationships: .
QuadrantTy FistulaQuadrant _
Abdomen quadrant where the mocous fistula was done if any.

QuadrantTy OstomyQuadrant
Abdomen quadrant” where the ostomy was done.

Enum OstomyT%pe _
Type of ostomy done. The possible values are: Colostomy, lleostomy.

Time _ TimeAssessment
Date/Time of assessment.

133

State machine: No

Concurrency: Sequential
Persistence: Persistent
Class name:

Stoma Assessment
Category: Gastrointestinal Assessment
Documentation:

Represents an assessment of a patient’s stoma.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Security

Private Interface:
Has—-A Relationships:
Bool Bloody
Is the stoma bloody?

Bool Dusky
Is the stoma dusky?

Enum Integrity _
Integrity of the stoma. The possible values are: Normal, Prolapsed, Recesed.

Time _ TimeAssessment
Date/Time of assessment.

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:
Stool Assessment
Category: Gastrointestinal Assessment
Documentation: _
Represents an assessment of a patient’s stool.
Export Control: Public
Cardinality: n
Hierarchy: .
Superclasses: Security
Associations:
Color

Private Interface:
Has—-A Relationships:
Enum Consistency .
Consistency of the stool. The posssible values are: Diarrea, Diarrea Mucosy,
Formed, Constipated, Chyme, Melena.

Time _ TimeAssessment
Date/Time of assessment.

State machine: No .
Concurrency: _ Sequential
Persistence: Persistent

134

Class name:

Image
Category: Diagnostics Images and Lab Exams
Documentation:

Represents an image that might be ordered for a patient.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Descripted Object
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:

Image Ordered
Category: Diagnostics Images and Lab Exams
Documentation:

Represents an image ordered for a patient.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Security
Associations:

Body Part
Image

Private Interface:
Has—-A Relationships:
Strin Result
Result of the image.

Time TimeDone
Date/Time the image was done. It must be >= TimeOrdered.

Time TimeOrdered
Date/Time the image was ordered.

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:

Lab Exam
Category: Diagnostics Images and Lab Exams
Documentation:

Represents a lab exam that might be ordered for a patient.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Ranged Value
State machine: No
Concurrency: Sequential
Persistence: Persistent

135

Class name:

Lab Exam Ordered

Category: Diagnostics Images and Lab Exams
Documentation:

Represents a lab exam ordered for a patient.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Security
Associations:

Lab Exam

Private Interface:
Has—-A Relationships:
Real Result
Result of the lab exam. It must be in the allowed range for the lab exam.

Time TimeOrdered
Date/Time the exam was ordered.

Time TimeResult
Date/Time the result of the exam reached the unit. It must be >=
TimeOrdered and >= TimeSample taken (if there was a sample taken).

Time TimeSampleTaken
Date/Time the sample was taken if any. It must be >= TimeOrdered and <=
TimeResult.
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:
Lab Exam Type
Category: Diagnostics Images and Lab Exams
Documentation:
Represents a lab exam type.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Descripted Object

Public Interface:
Has—-A Relationships:

Lab Exam

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:

Allergy
Category: Patient Identification and Health Information
Documentation:

Represents an allergy a patient might have.
Export Control: Public
Cardinality: n

136

Hierarchy:

Superclasses: Descripted Object
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:

Band
Category: Patient Identification and Health Information
Documentation:

Represents an indian band.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Named Object
Associations:

Patient

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:

Health Problem
Category: Patient Identification and Health Information
Documentation:

Represents a health problem a patient might have.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Descripted Object
Associations:

Patient Health Problem

Private Interface:
Has-A Relationships:
Enum ProblemType
Type of health problem. The possible values are: Respiratory,
Cardiovascular, Neurological, Gi/Hepatic/Renal, Metabolic/Endocrine, Other.

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:,

Medic Alert
Category: Patient Identification and Health Information
Documentation:

Represents a medic alert that a patient might have.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Descripted Object

137

Associations:
Patient Medic Alert

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:, L

Medical Condition
Category: Patient Identification and Health Information
Documentation:

Represents a medical condition that a patient has.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Security

Private Interface:
Has—-A Relationships:
String Comments
Comments on the patient’s medical condition.

Time TimeFirstAssessed
Date/Time the medical condition was first assessed.

Time _Timelnactivation o
Date/Time since when the medical condition is no longer valid. Must be >=
TimeFirstAssessed.

State machine: No .
Concurrency: _ Sequential
Persistence: Persistent

Class name:

Next of Kin

Category: Patient Identification and Health Information

Documentation: _ _
Represents a next of kin of a patient. When one patient has more than one next of kin, the one with
the last date of assessment is the valid.

Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Person

Private Interface:
Has-A Relationships:
Date DateAssessment
Date the next of kin was assessed.

Enum Relationship
Relationship of the next of kin with the patient. Values: Mother, Father,
Daughther, Son, Brother, Sister, Other.

State machine: No .
Concurrency: _ Sequential
Persistence: Persistent

Class name:

138

Patient

Category:
Documentation: .
Represents a patient.

Export Control:
Cardinality:
Hierarchy:
Superclasses:
Public Interface:
Has-A Relationships:

Operations:

Private Interface:
Has-A Relationships:

State machine:
Concurrency:
Persistence:

Class name:

Patient Identification and Health Information

Public
n

Person

Patient Allergy

Patient Visit

Patient Medic Alert
Regular Medication
Patient Health Problem
Next of Kin

Bmi ()
PatientAge ()
getHeightCm ((

getWeightKg))

Date Birthdate
Date of birth of the patient.

String BlueCrossNumber
Blue Cross number of the patient if any. The picture is NNNNN-NNNN where
N is a number between 0 and 9.

String CauseOfDdeath
Cause of death of the patient.

Bool Estimated
Indicates if the birthdate is estimated or real.

Pname FamilyPhisician
Name of the family phisician if any.

Enum Gender
Gender of the patient. The possible values are: Male, Female.

String‘l HealthCareNumber
Health care number of the patient. The picture is NNNNN-NNNN where N is
a number between 0 and 9.

String Patientld
Id that identifies the patient in the hospital. It can have up to 8 digits.

Time TimeDeath
Date/Time of death of the patient.

Unsigned Int _TreatyNumber

greeclity number of the patient in case the s/he is a native and belongs to a
and.

No

i Sequential
Persistent

Patient Allergy

139

Category: Patient Identification and Health Information
Documentation: _
Represents an allergy that a patient has.

Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Medical Condition
Associations:
Allergy

Private Interface:
Has-A Relationships:
String. Reaction
Reaction of the patient to the allergy.

State machine: No

Concurrency: Sequential
Persistence: Persistent

Class name:

Patient Health Problem
Category: Patient Identification and Health Information
Documentation:

Represents a health problem that a patient has.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Medical Condition
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name: .

Patient Medic Alert
Category: Patient Identification and Health Information
Documentation:

Represent a medical alert that a patient has.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Medical Condition
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:

Person
Category: Patient Identification and Health Information
Documentation:

Represents a person.

Export Control: Public
Cardinality: n

140

Hierarchy: _
_ Superclasses: Security
Private Interface:
Has—-A Relationships:
Address HomeAddress
Home address of the person.

String HomeTelNo
Home telephone number of the person. It has the picture (NNN)NNN-NNNN
where N is a number between 0 and 9.

Pname PersonName
Name of the person.

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name: . .
Regular Medication
Category: Patient Identification and Health Information
Documentation: o _ _
Represents a medication that a patient takes on a regular basis.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Medical Condition

Private Interface:
Has—-A Relationships:
Real Dose
Dose of the medication the patient takes each time.

WUnitTy ~ DoseUnits
Dose units of the medication the patient takes each time.

String Frequency] o
Frequency on which the patient takes the medication.

String MedicationName
Name of the medication the patient takes.

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name: = .

Antibiotic Given
Category: Medications, Antibiotics and IVs
Documentation:

Represents an antibiotic given to a patient.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Drug Given
Associations:

Lab Exam Ordered Culture

State machine: No

141

Concurrency: _ Sequential
Persistence: Persistent

Class name:

Drug
Category: Medications, Antibiotics and IVs
Documentation:

Represents a drug that can be administered to a patient.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Named Object

Private Interface:
Has—-A Relationships:
String Comments
Comments on the use of the drug.

Real ProtocolDoseKg
Dose of the drug that is suggested per kg.

WUnitTy ProtocolUnits
Units in 'which the protocol dose is expressed.

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name: .
Drug Given
Category: Medications, Antibiotics and IVs
Documentation:
Represents a drug given to a patient.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Security
Associations:
Drug Route
Drug

Private Interface:
Has-A Relationships:
Real Dose
Dose of the drug given to the patient.

Enum Schedule
Schedule on which the drug was administered. The possible values are:
Q1H, Q2H, Q4H, Q6H, Q8H, Q12H, QD, Premed, Prn.

Time TimeEnded
Date/Time the drug was suspended. It must be >= TimeStarted.
Time TimeStarted

Date/Time the drug was given or started.

WUnItT Units
Units of the dose given to the patient.

142

State machine: No .
Concurrency: _ Sequential
Persistence: Persistent

Class name:

Drug Route

Category: Medications, Antibiotics and IVs
Documentation: _
Represents a route by which a drug can be administered to a patient.

Export Control: Public
Cardinality: n
Hierarchy: .

Superclasses: Descripted Object
State machine: No
Concurrency: Sequential
Persistence: Persistent

Class name:

Drug Type

Category: Medications, Antibiotics and IVs
Documentation:
Represents a type of drug.

Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Descripted Object
Public Interface:

Has—-A Relationships:

Drug
State machine: No
Concurrency: Sequential
Persistence: Persistent
Clasls \r}ame:
Category: Medications, Antibiotics and IVs
Documentation: _
Represents an IV given to a patient.
Export Control: Public
Cardinality: n
Hierarchy: .
Superclasses: Security
Associations:
[V Solution
Body Region

Private Interface:
Has-A Relationships:
Unsigned Int Rate
Rate infused in mm/hour.

Real SizeUsed
Size of the needle used in the IV. The range must be between 0.0 and 30.0.

143

Time TimeEnded
Date/Time the IV was removed. It must be >= TimeStarted.

Time TimeStarted
Date/Time the IV started.

Unsigned Int . UnsuccessfulAttempts
Unsuccessful attempts in putting the IV.

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name: .

IV Solution
Category: Medications, Antibiotics and IVs
Documentation:

Represents a solution that might be given in an IV.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Named Object
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:, . .

Medication given
Category: Medications, Antibiotics and IVs
Documentation: o

Represents a medication given to a patient. It can be any type of drug except antibiotics.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Drug Given
State machine: No
Concurrency: Sequential
Persistence: Transient
Class name:

GU Procedure
Category: Invasive Therapy, Instrument and Fluids
Documentation: _ .

Represents a genito-urinary procedure that might be done to a patient.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Descripted Object
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:

144

GU Procedure Done

Category: Invasive Therapy, Instrument and Fluids
Documentation: _ .

Represents a genito—urinary procedure done to a patient.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Security
Associations:

GU Procedure

Private Interface:
Has-A Relationships:

Time TimeEnded
Date/Time the procedure ended. It must be >= TimeStarted.
Time TimeStarted

Date/Time the procedure started.

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name: .
Input Fluid
Category: Invasive Therapy, Instrument and Fluids
Documentation:
Represents a fluid that might be intaken by a patient.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Ranged Value
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name: .
Input Fluid Type
Category: Invasive Therapy, Instrument and Fluids
Documentation:
Represents a type of fluid that might be intaken by a patient.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Named Object

Public Interface:
Has—-A Relationships:

Input Fluid
State machine: No .
Concurrency: _ Sequential
Persistence: Persistent

Class name:

145

Instrument

Category: Invasive Therapy, Instrument and Fluids
Documentation:

Represents an instrument that might be inserted/applied to a patient.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Descripted Object
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name: .

Instrument Applied
Category: Invasive Therapy, Instrument and Fluids
Documentation:

Represents an instrument that was applied to a patient.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Security
Associations:

Instrument
Body Region

Private Interface:
Has-A Relationships:
String Comments
Comments on the instrument inserted/applied to the patient.

Unsigned Int Number
Number that identifies the instrument.

Time TimeApplied
Date/Time the instrument was inserted/applied.

Time TimeRemoved
Date/Time the instrument was removed. It must be >= Timelnserted.

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name: .

Output Fluid
Category: Invasive Therapy, Instrument and Fluids
Documentation:

Represents a fluid that might come out of a patient.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Ranged Value
State machine: No
Concurrency: Sequential
Persistence: Persistent

146

Class name:

Patient Intaken Fluid

Category: Invasive Therapy, Instrument and Fluids
Documentation: o

Represents an assessment of a fluid intaken by a patient.
Export Control: Public
Cardinality: n
Hierarchy:)

Superclasses: Security
Associations:

Input Fluid

Private Interface:
Has-A Relationships:
Time TimeAssessment
Date/Time of assessment.

Real Value
ﬁ\mé)unt of the intaken fluid assessed. It must be in the allowed range for the
uid.
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name: .
Patient Output Fluid
Category: Invasive Therapy, Instrument and Fluids
Documentation:
Represents an assessment of a fluid that came out of a patient.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Security
Associations:
Color
Output Fluid

Public Interface:
Has-A Relationships:
Instrument Applied

Private Interface:
Has—-A Relationships:
Enum AssessmentAmount
Assessment of the amount of output fluid. The possible values are: Small,
Moderate, Large.

Enum Consistency
Consistency of the output fluid. The possible values are: Mucosy,
Sedimented, Colonized, Thick, Watery, Sticky.

Time _ TimeAssessment
Date/Time of assessment.

Real Value

ﬁ‘"ﬁé’“”t of the output fluid assessed. It must be in the allowed range for the
uid.

147

State machine: No

Concurrency: Sequential
Persistence: Persistent
Class name; . .

Basic Vital Signs
Category: Vital Signs Assessment
Documentation:

Represents an assessment of the basic vital signs of a patient.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Security

Public Interface:
Has—-A Relationships:
Pulse
Respiration
Blood Pressure

Private Interface:
Has-A Relationships:
Unsigned Int BodyTemperature
Temperature of the body. Values: 0-50 C.

Time _ TimeAssessment
Date/Time of asessment.

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:

Blood Pressure
Category: Vital Signs Assessment
Documentation:

Represents an assessment of a patient’s blood pressure.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Security
Public Interface:

Operations:

Map ()

Private Interface:
Has-A Relationships:
Unsigned Int Diastolic
Patient’s diastolic blood pressure. Values: 0—-200 Hg.

Enum Position
Position where the blood pressure was taken. The possible values are:
Elevated, Fowler, Supine.

SideTy Side
Side of the body where the blood pressure was taken.

Unsigned Int Systolic
Patient’s systolic blood pressure. Values: 0-300 Hg.

148

State machine: No

Concurrency: Sequential
Persistence: Persistent
Class name: . . .
Ems Special Vital Signs
Category: Vital Signs Assessment
Documentation:
Represents an assessment of special vital signs of a patient that are only assessed in the EMS.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Security

Private Interface:
Has—-A Relationships:
Real Glucose
Glucose level of the patient. Values: 0.0-15.0.

Unsigned Int O2Saturation
Oxygen saturation percent. Values: 0-100 %
Enum PhiConsiousness
Pre—hos(gntal index consiousness. The possible values are: Not Assessed,
Normal(0), Confused/Combative(3), No inteligible words(5).
Enum PhiPenetration
Pre—hospital index Benetrati_on. The possible values are: Not Assessed,
NotPenetration(0), Penetration(4).
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name: .
Ems Vital Signs
Category: Vital Signs Assessment
Documentation:
Represents a vital signs assessment done in the EMS.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Extended Vital Signs

Public Interface:
Has—-A Relationships:
Ems Special Vital Signs

Operations:
PreHospitallndex ()

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name: .

Er Vital Signs
Category: Vital Signs Assessment

149

Documentation: _
Represents a vital signs assessment done in the ER.

Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Extended Vital Signs
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name: . .
Extended Vital Signs
Category: Vital Signs Assessment
Documentation: .
Represents an assessment of the extended vital signs of a patient.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Basic Vital Signs

Public Interface:
Has-A Relationships:

S
upi
Gces
Operations: _
RevisedTraumaScore ()
State machine: No .
Concurrency: Sequential
Persistence: Persistent
Class name:
Gces
Category: Vital Signs Assessment
Documentation: _
Represents an assessment of a patient’s Glasgow Comma Scale.
Export Control: Public
Cardinality: n
Hierarchy: .
Superclasses: Security
Public Interface:
Operations:

GlasgowCommaScale ()

Private Interface:
Has-A Relationships:)
Unsigned Int EyeOpening

Patient’s glas%ow comma scale eye opening. The possible values are:

1:None, 2:To

Unsigned Int MotorResponse

ain, 3:To Voice, 4:Spontaneous.

Patient’s glasgow comma scale motor response. The possible values are:
1:None, 2:Extension (pain), 3:Flexion (pain), 4:Withdraw, 5:Localize pain,

6:0bey commands.

Unsigned Int VerbalResponse

Patient’s glasgow comma scale verbal response. The possible values for
atients whose age > 1 year old: 1:None, 2:Incomprehensive words,
:Innapropiate words, 4:Confused, 5:Oriented. If patient is < 1 year old

values are 1,2,3,4,5.

150

State machine: No

Concurrency: Sequential
Persistence: Persistent
Class name: . . .

lcu Special Vital Signs
Category: Vital Signs Assessment
Documentation:

Represents an assessment of special vital signs of a patient that are only assessed in the ICU.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Security

Private Interface:
Has-A Relationships:
Enum Blanket
Type of blanket that the patient is using. The possible values are: Cooling
blanket, Warming blanket, Warming blanket with rectal probe.

Unsigned Int Ci
Cardiac index. Values: 0—10 Dynes/Sec/Cm2.

Unsigned Int CV?
Central venous pressure. Values: 0-30 Hg.

Unsigned Int ~ Mpap
Mean pulmonary arterial pressure. Values: 0-70 Hg.

Unsigned Int _ PaDiastolic
Pulmonary artery diastolic. Values: 0-60 Hg.

Unsigned Int . PaSystolic
Pulmonary artery systolic. Values: 0-90 Hg.

Unsigned Int ~ Puri
Pulmonary vascular resistance index. Values: 0-500 Dynes/Sec/Cm2.

Unsigned Int Svri
Systemic vascular resistance index. Values: 0—-3000 Dynes/ Sec/Cm2.

Unsigned Int Wedge
Wedge. Values: 0-40 Dynes/Sec/Cm2.
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name: .
Ilcu Vital Signs
Category: Vital Signs Assessment
Documentation:
Represents a vital signs assessment done in the ICU.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Extended Vital Signs

Public Interface:

151

Has—-A Relationships:

State machine:
Concurrency:
Persistence:

Class name:

Icu Special Vital Signs
No

i Sequential
Persistent

Or Vital Signs

Category:

Documentation:

Vital Signs Assessment

Represents a vital signs assessment done in the OR.

Export Control:
Cardinality:
Hierarchy:

Superclasses:

State machine:
Concurrency:
Persistence:

Class name:

Pulse

Category:

Documentation:

Public

n

Basic Vital Signs

No _
Sequential

Persistent

Vital Signs Assessment

Represents an assessment of a patient’s pulse.

Export Control:
Cardinality:
Hierarchy:

Superclasses:
Private Interface:
Has—-A Relationships:

State machine:
Concurrency:
Persistence:

Class name;

Pupil

Category:

Documentation:

Public
n
Security

Enum Position _
Position on which the patient’s pulse was assessed. The possible values are:
Radial, Femoral, Pedal, Apical, Monitor.

Unsigned Int . PulseRead
Patient’s pulse reading. Values: 0-250 hr (heart rate).

Enum Rhythm
Rhythm of the patient’s pulse. The possible values are: Regular, Irregular.

Enum Volume

Volume of the patient’s pulse. The possible values are: Easy palpable,
Thready, Bounding.

No

i Sequential
Persistent

Vital Signs Assessment

Representé an assessment of a patient’s pupil.

Export Control:

Public

152

Cardinality:
Hierarchy:

Superclasses:
Private Interface:

Has-A Relationships:

n

Security

Bool LightResponse
Did the pupil respond to light?

Enum Response _
I@es%onse of the patient’s pupil. The possible values are: Normal, Sluggish,
IXed.

SideTy Side
Side of the body assessed.

Unsigned Int Size
Size of the patient’s pupil. Values: 1-6 mm.
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name: _ .
Respiration
Category: Vital Signs Assessment
Documentation:
Represents an assessment of a patient’s respiration.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Security
Private Interface:
Has—-A Relationships:
Bool Assisted

State machine:
Concurrency:
Persistence:

Class name:

Skin

Category:
Documentation:

Was the patient’s respiration assisted?

Enum Depth
Depth of the patient’s respiration. The possible values are: Adequate,
Shallow, Deep.

Enum Quality
Quality of the patient’s resPiration. The possible values are: Non-laboured,
Laboured, Dyspneic, Short of breath.

Unsigned Int Respirations
Breaths per minute of the patient. Values: 0-60 bpm (breaths per minute).

Enum Rhythm

Rhythm of the patient’s respiration. The possible values are: Regular,
Paradoxical, Hyperventilating, Hypoventilating.

No

i Sequential
Persistent

Vital Signs Assessment

Represents an assessment of a patient’s skin.

153

Export Control: Public

Cardinality: n

Hierarchy: .

_ Superclasses: Security
Private Interface:
Has—-A Relationships:

Enum Color _ .
Color of the patient’s skin. The possible values are: Normal, Pale, Flushed,
Cyanose, Grey, Jaundice, Other.

Enum Moisture

Moisture of the patient’s skin. The possible values are: Dry, Moist,
Disphoretic.

Skin TemperatureTy PerTemperature

Temperature of the patient’s extremities skin.

Skin TemperatureTy ~ Temperature
Temperature of the patient’s skin.

Enum Turgor
Turgor of the patient’s skin. The possible values are: Normal, Tentled.

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:

Crew Member
Category: EMS Specific Information
Documentation:)

Represents a possible member for an ambulance crew.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Security
Associations:

Run Info

Private Interface:
Has-A Relationships:
Pname Name
Name of the crew member.

String ~ RegistrationNo
Registration number of the crew member. It can have up to 6 digits.
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name: .
Diagnosis
Category: EMS Specific Information
Documentation: _ _
Represents a diagnosis that might be assessed to a patient.
Export Control: Public
Cardinality: n

154

Hierarchy:

Superclasses: Descripted Object
Associations:
ICD9 Code
Public Interface:
Has—-A Relationships:
Diagnosis Modifier modifiers
Private Interface:
Has-A Relationships:
Bool Injury

Is the diagnosis considered as an injury?

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name: . L.

Diagnosis Modifier
Category: EMS Specific Information
Documentation:

Represents a modifier that a diagnosis might have.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Descripted Object
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:

Dispatcher
Category: EMS Specific Information
Documentation:

Represents a dispatcher.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Named Object
Associations:

Run Info

Private Interface:
Has-A Relationships:
Unsigned Int DistrictNo
Ambulance district code.

String ~ ServiceNo

Service identification number assigned b¥ the Emergﬁncy Health Services.
Thg 8|cture is ANNN, where A is a capital letter and N is a number between 0
and 9.

State machine: No .
Concurrency: _ Sequential
Persistence: Persistent

155

Class name:

Facility

Category: EMS Specific Information
Documentation:

Represents a facility to which a patient might be transported.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Named Object
Associations:

Run Info destination

Private Interface:
Has—-A Relationships:
Address FacilityAddress
Address of the facility.

State machine: No

Concurrency: Sequential
Persistence: Persistent

Class name:

Facility Type
Category: EMS Specific Information
Documentation:

Represent a type of facilty.

Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Descripted Object
Public Interface:

Has—-A Relationships:

Facility
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:

General Assessment
Category: EMS Specific Information
Documentation:

General assessment of a patient.

Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Security

Associations:
Diagnosis
Diagnosis Modifier assessment modifier

We must validate that the modifier chosen is in the set of modifiers allowed
for the diagnosis chosen.

Body Region egion

regi
We must check if the diagnosis has a specific re%ion to which it applied. In
that case the region of the assessment must be the same. In any other case

156

Private Interface:
Has—-A Relationships:

State machine:
Concurrency:
Persistence:

Class name:

Macro Diag

Category:
Documentation:

any region can be selected.

Time _ TimeAssessment
Date/Time of assessment.

No

i Sequential
Persistent

nosis

EMS Specific Information

Represents a macro diagnosis.

Export Control:
Cardinality:
Hierarchy:
Superclasses:
Public Interface:
Has—-A Relationships:

State machine:
Concurrency:
Persistence:

Class name:

Run Info

Category:
Documentation:

Public
n
Descripted Object

Diagnosis
No

i Sequential
Persistent

EMS Specific Information

Represents an ambulance ride.

Export Control:
Cardinality:
Hierarchy:
Superclasses:
Associations:

Private Interface:
Has-A Relationships:

Public
n
Security

Vehicle

Address Destination
Address of the destination. If the patient is transported to a known facility the
system will copy the address of the facility.

Pname PoliceName . .
Police name in case the call was attended by a police officer.

String ReasonForCall
Reason why the ambulance was called.

Enum ResponseLevel _
Level of care dispatched to the call. The possible values are: ALS (Advances
Life Support), BLS (Basic Life Support), EMR (Emergency Medical Rescue).

Strin% RunNo o
Number assigned to the run. It can have up to 6 digits.

157

Time TimeArriveDestination
Date/Time at which the unit arrived at its destination. It must be >=
TimeLeftScene.

Time _ TimeArriveScene
Date/Time at which the unit arrived to the scene. It must be >=TimeDispatch.

Time TimeCalledReceived
Date and Time the called was received by the dispatcher.

Time TimeDispatch

Date/Time at which the unit left the station to respond the call or the unit
acknowledged the call from the dispatcher. It must be >=
TimeCalledReceived.

Time _ TimelLeaveScene
Date/Time at which the unit left the scene or the call was cancelled. It must
be >= TimeLeaveScene.

UnsiPned Int TotalKm
Total km for the trip.

Enum TypeOfResponse)
Indicates the type of response. The possible values are: Emergency (lights
and siren), Non—-emergency.

Enum TypeOfTransport
Indicates the type of transport. The possible values are: Emergency (lights
and siren), Non—-emergency, No transport.

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:

Treatment
Category: EMS Specific Information
Documentation:

Represents a treatment that a patient might receive.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Descripted Object
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:

Treatment Done
Category: EMS Specific Information
Documentation:

Represents a treatment that was done to a patient.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Security
Associations:

158

Treatment

Private Interface:
Has-A Relationships:
Time TimeAssessment
Date/Time the treatment was done.

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name;

Vehicle
Category: EMS Specific Information
Documentation:

Represents a vehicle that can be sent to a call.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Security

Private Interface:
Has-A Relationships:

String EhsVehicleld
!jd_ a_t33|gned to the vehicle by Emergency Health Services. It can have up to 6
igits.
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:
Airway Proc Done
Category: Respiratory Assessment
Documentation:)
Represents an airway procedure done to a patient.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Security
Associations:

Airway Procedure

Private Interface:
Has—-A Relationships:
Time TimeDone
Date/Time the airway procedure was done.

State machine: No .
Concurrency: _ Sequential
Persistence: Persistent

Class name:

Airway Procedure

159

Category: Respiratory Assessment
Documentation: . _
Represents an airway procedure that might be done to a patient.

Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Descripted Object
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:

Chest Exam
Category: Respiratory Assessment
Documentation:

Represents a patient’s chest examination.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Security

Public Interface:
Has-A Relationships:
Lung Exam

Private Interface:
Has—-A Relationships:
Enum Airway _
Airway assessment. The possible values are: Clear, Obstructed, Intubated.

Enum ChestExpansion
Assessment of the expansion of the chest. The possible values are: Right =
Left, Right < Left, Right > Left.

String Comments
Comments on the chest exam.

Time _ TimeAssessment
Date/Time of assessment.

Enum Trachea
Position of the trachea. The possible values are: Central, Left, Right.

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:
Lung Exam
Category: Respiratory Assessment
Documentation:
Represents a patient’s lung exam.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Security

Private Interface:
Has—-A Relationships:
AuscultationTy AuscultationLIN
Results of the auscultation for Lingular Lobe.

160

AuscultationTy AuscultationLLL
Results of the auscultation for The Left Lower Lobe.

AuscultationTy AuscultationLUL
Results of the auscultation for the Left Upper Lobe.

AuscultationTy AuscultationRLL
Results of the auscultation for the Right Lower Lobe.

AuscultationTy AuscultationRML
Results of the auscultation for the Right Medium Lobe.

AuscultationTy AuscultationRUL
Results of the auscultation for the Right Upper Lobe.

PercussionTy PercussionLIN
Result of the percussion for the Lingular Lobe.

PercussionTy PercussionLLL
Result of the percussion for the Left Lower Lobe.

PercussionTy ~ PercussionLUP
Result of the percussion for the Left Upper Lobe.

PercussionTy PercussionRLL
Result of the percussion for the Right Lower Lobe.

PercussionTy PercussionRML
Result of the percussion for the Right Medium Lobe.

PercussionTy ~ PercussionRUL
Result of the percussion for the Right Upper Lobe.

State machine: No

Concurrency: Sequential
Persistence: Persistent

Class name: .

Resp Support Device
Category: Respiratory Assessment
Documentation:

Represents a respiratory support device.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Descripted Object
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name: _ .

Resplratlon Support
Category: Respiratory Assessment
Documentation:

Represents a respiratory device applied to a patient.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Security
Associations:

161

Resp Support Device

Private Interface:
Has-A Relationships: . _
Time TimeApplied]
Date/Time the support was applied.

Time TimeRemoved _
Date/Time the support was removed. It must be >= TimeApplied.

State machine: No _
Concurrency: Sequential
Persistence: Persistent
Class name: _
Ventilator Control
Category: Respiratory Assessment
Documentation: _ _ _
Represents an assessment of the values of a ventilator applied to a patient.
Export Control: Public
Cardinality: n
Hierarchy: .
Superclasses: Security

Private Interface:
Has—-A Relationships:
Unsigned Int Ac
Assist Control. Values: 0-30.

Unagned Int Fio
Fraction of Oxygen control. Values 0-100%

Unsigned Int Im

Intermittent mechanical ventllatlon control. Values: 0-30.
Unsigned Int Peep

Peep control. Values: 0-20.

Unsigned Int Pip

Pip control. Values: 0-60 cm H20.

Unsigned Int

P
Pressure support control. Values: 0-30.

Time _ TimeAssessment
Date/Time of assessment.

Unsigned Int Vit
Volume tidal control. Values: 0—1000.
Enum Weaning
Weanin Brocedure why controls were changed. The possible values are: Nil,
IMV, P agger, T—piece, Cpap, Plugging Trial, Plugged, Extubated.
State machine: No
Concurrency: _ Sequential
Persistence: Persistent
Class name:
Address
Category: General Classes

162

Documentation:

Represents an address.

Export Control:
Cardinality:
Hierarchy:

Superclasses:
Private Interface:

Has—-A Relationships:

State machine:
Concurrency:
Persistence:

Class name:

Age

Category:
Documentation:

Public

n

Security

Strin AptNo

Apartment number of the address if any.
Real Latitude

Geographical latitude of the address. The value must be >= -99 and <= 99
and might have till 6 decimal values.

Real Longitud
Geographical longitud of the address. The value must be >= -999 and <=
999 and might have till 6 decimal values.

String PostalCode
Postal code of the address. The picture is ANA NAN, where A must be a
capital letter and N must be a number between 0 and 9.

String StreetName
Name of the Street of the address.
String StreetNo
Street Number of the address.
No
Sequential
Persistent

General Classes

Represents the age of a person.

Export Control:
Cardinality:
Hierarchy:

Superclasses:
Private Interface:

Has—-A Relationships:

State machine:
Concurrency:
Persistence:

Class name:

Auscultatio

Category:

Documentation:
Represents the result
Bronchiole, Rub.

Export Control:
Cardinality:

Public
n
Security

Unsigned Int MonthsOld
Unsigned Int YearsOld

No

i Sequential
Persistent

nTy
General Classes

of the auscultation of a lung part.Values: Normal, Crackles, Wheezes,

Public
5

163

Hierarchy:

Superclasses: none
State machine: No
Concurrency: Sequential
Persistence: Transient
Class name:

Body Part
Category: General Classes
Documentation:

Represents a part of the human body.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Named Object

Private Interface:
Has—-A Relationships:
Enum PartType
Type of the body part. The possible values are: Skin, Joint, Bone, Blood
Vessel, Nerve, Muscle, Tendon, Ligament, Internal Organ.

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name: .

Body Region
Category: General Classes
Documentation:

Represents an external region of the human body.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Named Object
Associations:

Diagnosis specificRegion

Public Interface:
Has—-A Relationships:
Body Part
Body Region macroRegion
Macro body region of the body region. For example "Hand" has as a

Macro_region "Arm".

State machine: No .
Concurrency: _ Sequential
Persistence: Persistent
Class name:

Bool
Category: General Classes
Documentation:

Represents a boolean value.

164

Export Control: Public
n

Cardinality:
Hierarchy:
Superclasses: none
State machine: No
Concurrency: Sequential
Persistence: Transient
Class name:
City
Category: General Classes
Documentation:
Represents a city where an address might be located.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Named Object

Public Interface:
Has—-A Relationships:

Address

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:

Color
Category: General Classes
Documentation:

Represents a color that a substance might have.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Named Object
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:

CvsPulseTy
Category: General Classes
Documentation:

Represents an CVS pulse assessment. Values: Pulse present, Pulse absent.
Export Control: Public
Cardinality: 2
Hierarchy:

Superclasses: none
State machine: No
Concurrency: _ Sequential
Persistence: Transient
Class name:

Date

165

Category: General Classes

Documentation:
Represents a date between 1.1.1753 and 31.12.9999.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: none

Private Interface:
Has-A Relationships:
Unsigned Int Julnul
Julian day number.

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name: .
Descripted Object
Category: General Classes
Documentation:
Represents an object that has a description.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Security

Private Interface:
Has—-A Relationships:
String ~ Description
Description of the object.

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:

Enum
Category: General Classes
Documentation:

Represents an enumerated list of values.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: none
State machine: No
Concurrency: Sequential
Persistence: Transient
Class name:

ICD9 Code
Category: General Classes
Documentation:

IRepresents an ICD9 code.

166

Export Control: Public

Cardinality: n

Hierarchy: . _
Superclasses: Descripted Object

Associations:

Injury

Private Interface:
Has-A Relationships:
String lcd9Code _
ICD9 code. The picture is NNN.N where N is a number between 0 and 9.

State machine: No .
Concurrency: _ Sequential
Persistence: Persistent
Class name:

Int
Category: General Classes
Documentation:

Represents an integer number.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: none
State machine: No .
Concurrency: _ Sequential
Persistence: Transient
Class name:

MovementTy
Category: General Classes
Documentation:

Represents an extremity movement assessment. Values: Normal power, Mild weakness, Severe
weakness, Spastic flexion, Extension, No response.

Export Control: Public
Cardinality: 6
Hierarchy:

Superclasses: none
State machine: No
Concurrency: Sequential
Persistence: Transient
Class name: .

Named Object
Category: General Classes
Documentation: _

Represents an object that has a name.
Export Control: Public
Cardinality: n
Hierarchy: .

Superclasses: Security

Private Interface:
Has—-A Relationships:

167

String Name
Name of the object.

State machine: No .
Concurrency: Sequential
Persistence: Persistent
Class name: .
PercussionTy
Category: General Classes
Documentation: _ _
Represents the result of the percussion of a lung part. Values: Timpanic, Dull, Resonant, Hyper.
Export Control: Public
Cardinality: 4
Hierarchy:
Superclasses: none
State machine: No .
Concurrency: Sequential
Persistence: Transient
Class name:
Pname
Category: General Classes
Documentation:
Represents the name of a person.
Export Control: Public
Cardinality: n
Hierarchy: .
Superclasses: Security

Private Interface:
Has—-A Relationships:
Strin MiddleName
Middle name of a person.

String Name
First name of a person.

String Surname
Surname of a person.

Enum Title .
Title of a person. The possible values are: Mr. Mrs. Miss Ms. Dr.

State machine: No .
Concurrency: Sequential
Persistence: Persistent
Class name:

Province
Category: General Classes
Documentation:] . _

Represents a province where a city might be located.
Export Control: Public
Cardinality: n

168

Hierarchy:)
Superclasses: Named Object
Public Interface:
Has-A Relationships:

City

Private Interface:
Has-A Relationships:
Strin ShortName
Short name for the province. The picture is: AA where A is a capital letter.

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:

QuadrantTy
Category: General Classes
Documentation:

Represents an abdomen quadrant. Values: Right Upper, Right Lower, Left Upper, Left Lower.
Export Control: Public
Cardinality: 4
Hierarchy:

Superclasses: none
State machine: No
Concurrency: Sequential
Persistence: Transient
Class name:

Ranged Value
Category: General Classes
Documentation: _

Represents an object that has a lower an upper bound.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Named Object

Private Interface:
Has—-A Relationships:

Real From
Lower bound of the range.
Real To
Upper bound of the range.
String Units
Units'in which the values of From/To are expressed.
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:
Real
Category: General Classes

169

Documentation:
Represents a real number.

Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: none
State machine: No
Concurrency: Sequential
Persistence: Transient
Class name:

ReflexTy
Category: General Classes
Documentation:

Represents a reflex assessment. Values: Normal, Absent, Brisk.
Export Control: Public
Cardinality: 3
Hierarchy:

Superclasses: none
State machine: No
Concurrency: Sequential
Persistence: Transient
Class name:

Security
Category: General Classes
Documentation:

Main class of the system where the security is defined. All the classes inherit from this class.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: none
Public Interface:

Operations: _

TimeStamp()

Private Interface:
Has-A Relationships:
Time OpTime
Tlme when the operation was performed.

String User
Name of the user that performed the operation.
Un.siqned Int Userld _
Unix 1d of the user that performed the operation.

State machine: No .

Concurrency: _ Sequential

Persistence: Persistent

Class name:

SideTy
Category: General Classes
Documentation:

Represents a side of the Body. Values: Left, Right.

170

Export Control: gublic

Cardinality:
Hierarchy:

Superclasses: none
State machine: No
Concurrency: Sequential
Persistence: Transient
Class name:

Skin TemperatureTy
Category: General Classes
Documentation:

Represents a skin temperature assessment. Values: Hot, Warm, Cool, Cold.
Export Control: Public
Cardinality: 4
Hierarchy:

Superclasses: none
State machine: No
Concurrency: Sequential
Persistence: Transient
Class name:

String
Category: General Classes
Documentation:

Represents any string of ASCII characters.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: none

Private Interface:
Has—-A Relationships:

(Unspecified) strRep

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:

Time
Category: General Classes
Documentation:

Represents any instant in time since 1.1.1901
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: none

Private Interface:
Has-A Relationships:
Unsigned Int sec
Seconds since 1.1.1901 in GMT.

State machine: No

171

Concurrency: _ Sequential
Persistence: Persistent

Class name;
Unsigned Int
Category: General Classes
Documentation:
Represents a positive integer number.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: none
State machine: No
Concurrency: Sequential
Persistence: Transient
Class name:
WUnNItTy
Category: General Classes
Documentation:) _
Represents a weight unit used by medications. Values: Microgram, Miligram, Gram.
Export Control: Public
Cardinality: 3
Hierarchy:
Superclasses: none
State machine: No
Concurrency: Sequential
Persistence: Transient

172

