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ABSTRACT 

Frontline foremen and workers play a critical role in implementing management’s 

safety policies and procedures. Despite the ultimate position in safety organization of 

frontline foremen and workers, variations in safety competency and acceptance level 

are often neglected, which leads to diverse perceptions of safety instructions. This 

study aims to explore practical measures to evaluate how effectively safety programs 

and techniques are implemented at a frontline level. The challenges associated with 

evaluating frontline intervention effectiveness are (1) unclear establishment of 

evaluation criteria for ongoing safety intervention; (2) difficulty in identifying the 

intervention effectiveness due to infrequency of an incident occurrence; and (3) 

infeasibility of comparative study due to confounding or effect modifications. Since 

communication skills as well as competence for hazard awareness and response are 

fundamental and integral aspects of frontline safety management, pre-task planning 

and worksite inspection are investigated to determine the effectiveness of 

intervention implementation. Based on the rare event count data, a Poisson 

regression model is deployed which takes into account no-lost-time incident cases of 

156 workers and their evaluation factors in a construction pre-fabrication company. 

To achieve statistical homogeneity, some demographic factors (e.g., supervisor 

seniority, worker experience, craft size, position, shop & shift) as confounding and 

effect modification variables are applied in each regression test. The results of the 

factor analyses suggest that increasing content coverage rates, longhand description 

in the pre-task planning, and safety communication times are critical factors to 

reduce incident rates. Hazard identification and workplace inspection frequencies are 
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relatively less effective factors. For the evaluation variables subject to effect 

modifications, it is found through stratum analysis that the longhand description 

practice is effective for less experienced supervisors (<19 years). The safety 

communication is helpful to juniors (<35 years) versus seniors (35~71 years). In 

addition, company-wide time lag analysis demonstrates that hazard identification 

improves safety performance over the course of a 4-month term. 
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1. INTRODUCTION 

1.1 Background 

The safety performance of the construction industry has dramatically improved in 

recent years, with the Recordable Injury Rate in the United States decreasing by a 

margin of 74% in the period from 1989 to 2012. Simultaneously, a number of safety 

interventions have been developed in the construction industry, with their 

contributions to safety performance underscored by the strong connection between 

decreased incident rates and implementation of safety interventions. However, the 

construction industry is still known for higher incident rates than other industries due 

to its dynamic and physical challenging working environment. Though it accounts 

for just 8% of the overall workforce among all industries, statistics shows that the 

construction industry accounts for 25% and 18% of work-related fatalities in Canada 

and the United States, respectively (Association of Workers’ Compensation Boards 

of Canada 2013; U.S. Bureau of Labor Statistics 2013).  

In spite of dramatic improvements in safety performance with sustained efforts 

over the last three decades, traditional approaches have reached their limit with 

improvement rates plateauing. Although the adoption and establishment of new 

safety interventions in a construction site or fabrication facility is a major contributor 

to injury reduction, effectiveness assessment of these on-going interventions has had 

less attention. 

Top management in an organization establishes safety policy which defines 

strategic goals and often includes procedures which direct the decision making and 



2 

 

discretion to low-level management (Petersen 2003). As per the set procedures, 

frontline supervisors and workers conduct safety practices associated with their 

production activities at the lowest level in a company (Zohar 2000). Given the top-

down nature of safety management, employers anticipate workers to be cautious of 

the hazards in their daily tasks and to take appropriate mitigation actions against the 

risk (Hislop 1999). Contrary to employers’ expectations, however, continuous efforts 

to improve the safety policy and procedures do not always lead to significant 

enhancement of safety performance in practice. According to Zohar (2000), such 

discrepancies between management’s goals and implementation at the individual 

worker level are encountered when groups have significant variation in safety 

competency and acceptance level, which leads to diverse perceptions of safety 

procedures and policies among individual workers. Through safety climate research, 

it has been shown that groups with lower safety climate perception scores, have 

poorer safety records (Guest et al. 1994; Sherry 1991).  

To evaluate the effectiveness of frontline safety intervention, it is important to 

understand the foreman’s role and responsibilities with regard to safety-related 

activities. The foreman plays a key role in establishing and maintaining worker 

safety on the job as a link between workers and upper management. The upper 

management usually entrusts the site foreman with the responsibility for site safety 

(McVittie and Vi 2009). Therefore, significant group variation exists due to varied 

perceptions between instituted procedures and supervisory styles within each subunit. 

As an example, a recent study showed that a workgroup under a foreman with strong 

leadership skill has better safety performance than those under less competent 
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foremen (Van de Voorde 2013). In these respects, effectiveness evaluation of 

existing interventions is necessary to ensure on-site personnel’s ability to achieve 

effective hazard control, and to increase employees’ acceptance of supervisor-

administered interventions.  

1.2 Objectives 

This study aims to explore practical measures evaluating how effectively safety 

programs and techniques are being implemented at a frontline level. A case study is 

undertaken to determine appropriate metrics through field observation and to collect 

relevant data in practice. Consequently, the safety practices of foremen and 

individual workers are analyzed and compared with each individual’s safety records 

to ascertain recommended practices with the potential to lower incident rates.  

It is important to improve safety interventions by filling the gap between 

implementing techniques and evaluating the implementation through study of 

frontline practices rather than from a managerial level perspective. One of the most 

significant challenges in evaluation of safety intervention effectiveness can be 

determining what should be assessed and which measures should be employed. 

Systematic evaluation of a variety of elements of accurate assessment of the degree 

to which safety is being integrated into job-site work practices can be achieved 

(Hislop 1999). A critical step toward better performance is to focus on evaluating 

implementation techniques on existing safety programs rather than studying which 

safety technique and programs are effective. 
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1.3 Thesis Organization 

This thesis begins with an introductory chapter that presents an overview of the 

entire thesis, including the background, problem statement, research objectives, and 

methodologies used. 

Chapter 2 provides a theoretical background through review of previous studies 

related to construction safety interventions, safety roles and responsibilities of 

frontline foreman, and job safety analysis. In construction research and practice, 

various safety techniques and programs have proposed to identify, evaluate, and 

mitigate the causes of incidents. The relevant studies on effectiveness evaluation of 

safety intervention are reviewed and the challenges associated with frontline safety 

intervention are discussed. 

Chapter 3 discusses challenges in evaluating frontline safety interventions. 

Considering the characteristics of frontline organization and safety programs, three 

challenges in particular make it difficult to evaluate effectiveness: evaluation criteria 

of on-going safety interventions; validity and reliability of dependent variables; and 

effect modification and confounding.  

Chapter 4 explores the evaluation variables, defining practically measurable 

safety practices led by foremen and workers. This chapter presents two processes: 

selecting existing frontline safety interventions related to workers’ and foremen’s 

active participation, and identifying measurable evaluation factors through 

understanding of the relationships among selected variables. 

Chapter 5 explains the general regression model and its utilization in effectiveness 

studies as a research method. Furthermore, the rationale underlying the use of the 
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Poisson regression model for this particular study is discussed, and basic knowledge 

about such regression is introduced. 

Chapter 6 demonstrates the regression analysis and represents relative risk for 

each evaluation variable. Furthermore, additional stratum and time lag analyses are 

conducted for detailed results. 

Chapter 7 concludes the thesis with a summary of what has been practically and 

theoretically achieved. Some improvements in comparison to previous studies are 

discussed. Finally, proposed future enhancements are outlined. 
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2 LITERATURE REVIEW 

In construction, researchers and practitioners have proposed various safety 

techniques and programs to identify, evaluate, and mitigate the causes of incidents. 

This chapter reviews relevant studies on effectiveness evaluation of safety 

interventions, and discusses challenges associated with frontline safety intervention.  

2.1 Construction Safety Interventions 

Generally, a safety intervention can be justified as a trial to improve how tasks are 

done for better safety performance. In the worksite, there are various types of 

interventions, such as training programs, engineering practice, or administrative 

procedures or initiative (Robson 2001). Clinical research often uses intervention 

studies in laboratories to prove favourable results or negative side effects of drugs or 

treatments; these studies are considered to deliver the most reliable evidence in 

epidemiological research. 

Safety interventions are grouped as engineering interventions, considering the 

physical work condition; administrative interventions, focusing on procedures and 

policies; and personal interventions, pertaining to worker training and behaviour 

(Zwerling et al. 1997). The types of safety intervention implemented on a jobsite 

include not only Personal Protective Equipment (PPE) such as hearing protectors 

(Seixas et al. 2011) and safety glasses (Lipscomb 2000), but also managerial 

methods such as organizational policy, safety programs, incentives, and legislation 

(Becker et al. 2001; Darragh et al. 2004; Winn et al. 2004).  
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Depending on the perspective, safety interventions are applied differently at every 

level of a workplace safety program. Figure 2.1 illustrates the organizational safety 

management, which is divided into technical sub-system and human sub-system 

(Robson 2001). Regardless of the type of intervention, technical sub-systems aim to 

modify or improve the organization, design, or environment for the given workplace. 

Human sub-systems, alternatively, are intended to change the individual worker’s 

attitude or behaviour.  

Apart from this level of intervention, legislation, regulations, laws and standards 

are established by government, business, and professional organizations.  

 

Figure 2.1. Levels of intervention in the workplace safety system (Robson 2001) 

 

Various safety interventions have been examined in previous studies in order to 

ascertain the effect of safety interventions on safety performance; Table 2.1 

summarizes relevant studies corresponding to target interventions and data collection 

Organizational Safety 
Management 

(Safety committee structure, inspection 
schedules, hazard assessment procedures, 

safety performance incentives) 

Technical Sub-System 

(hardware, software, job procedure) 

Human Sub-System 

(Knowledge, behaviour, attitude, motivation 
related to safety) 
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methods, safety outcome measures, and analysis methods. Notably, survey 

questionnaires (Bailey 1997; DePasquale and Geller 1999; Ray and Frey 1999; 

Sokas et al. 2009; Vinodkumar and Bhasi 2010; Luria et al. 2008; Oude Hengel et al. 

2012; Kapp 2012) and interviews (Kines et al. 2010) have commonly been used as 

data collection methods to measure and evaluate the effectiveness of safety 

interventions based on participants’ perceptions. Apart from the surveys and 

interviews that require active participation of human subjects, field observations are 

carried out to determine the impact of safety interventions on incident rates; herein, 

here, application rates of safety interventions have been the primary measures of 

effectiveness, e.g., Haight and Thomas 2003). Comparative studies through literature 

reviews have also been carried out to determine successful safety interventions (Ray 

and Bishop 1995; Guastello 1993), while Hammer et al. (2015) utilized a 

combination of multiple types of data (e.g., survey, quiz score, health assessment) to 

assess safety performance. 
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Table 2.1a Analysis methods and target variables in industrial safety intervention research studies  

Independent Variable Target Intervention Analysis Method  Dependent Variable Reference 

Type Input Factors 

Literature 

review 

Training, feedback & 

goal setting 

Safety training Statistical review Safety performance 

index 

(Ray and Bishop 

1995) 

Literature 

review 

10 types of 

intervention programs 

Accident prevention 

program 

Regression, Meta-

analysis 

Effect size between 

target and control 

group 

(Guastello 1993)  

Literature 

review 

Various prevention 

strategies 

Various prevention 

strategies 

Meta-analysis Fatal injury cases & 

non-fatal injury cases 

(Sancini et al. 

2012) 

Survey Predicting self-

reported involvement 

variable  

Behaviour based 

safety program 

Forward entry 

regression  

BBS score (DePasquale and 

Geller 1999) 

Survey leadership, incentives 

and organization 

behaviour with 74 

question elements 

Overall safety 

program 

effectiveness 

Comparison between 

‘good’ & ‘poor’ firms 

Recordable accident 

statistics, 

compensation costs 

&frequency/severity 

ratio 

(Bailey 1997) 

Survey Behavioural safety 

index 

Behaviour safety 

programs  

Correlation analysis  Lost-time injury rates (Ray and Frey 

1999) 

Survey Fall & electrical 

safety pre-post 

knowledge 

Hazard Awareness 

Training 

Logistic regression Safety climate score (Sokas et al. 

2009b) 
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Table 2.1b Analysis methods and target variables in industrial safety intervention research studies (continued) 

 Independent Variable Target Intervention Analysis Method  Dependent Variable Reference 

Type Input Factors 

Survey Perceptions on six 

safety management 

practices 

Safety management  Structural equation  Safety knowledge and 

motivation 

(Vinodkumar and 

Bhasi 2010) 

Survey Training application 

 

Two empowerment 

training sessions 

Linear & logistic 

regressions 

Social support and 

work engagement 

score 

(Oude Hengel et 

al. 2012) 

Survey Safety-related 

supervisory score 

Supervision based 

safety 

Hierarchical linear 

modelling 

Unsafe behaviours 

(e.g., PPE violation, 

walking in permitted 

area) 

(Luria et al. 

2008)  

Survey Leadership scales 

 

Levels of 

transformational 

and contingent 

reward leadership 

Moderated regression 

models 

Individual 

perceptions of group 

safety climate 

(Compliance score) 

(Kapp 2012) 

Interview % of safety related 

communications of 

all records 

Foremen-worker 

verbal safety 

exchanges  

Generalized linear & 

Poisson regression 

Safety climate 

observation 

(Kines et al. 

2010) 

Survey, quiz & 

health 

assessment 

Supervisor quiz score 

& behaviour scale  

SHIP intervention 

 

Correlation & 

coefficient 

Blood pressure and 

health outcome 

(Hammer et al. 

2015) 
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Table 2.1c Analysis methods and target variables in industrial safety intervention research studies (continued) 

Independent Variable Target Intervention Analysis Method  Dependent Variable Reference 

Type Input Factors 

Observation Intervention 

application rates 

(Man-hours) 

 

4 intervention categories 

(Behaviour 

modification, incentive 

and awareness; training; 

job design; & 

equipment) 

 

Linear regression 

& exponential non-

linear regression 

Incident rates (Haight et al. 

2001; Haight and 

Thomas 2003)  

Observation Intervention 

application rates 

(Man-hours) 

 

4 intervention categories 

(Safety awareness and 

motivation, skill 

development and 

training, new tools and 

equipment design 

methods, equipment 

related activities) 

Linear regression 

& exponential non-

linear regression 

Incident rates (Iyer et al. 2004; 

Iyer et al. 2005)  

Observation Intervention 

application rates 

(Man-hours) 

5 intervention categories 

(Leadership & 

accountability; 

qualification, selection 

& pre-job; contractor 

engagement & planning; 

work in progress; safety 

evaluation & 

verification) 

Linear regression 

& exponential non-

linear regression 

Incident rates (Oyewole et al. 

2010)  
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Haight et al. (2001) proposed linear regression model analysis between 

intervention implementation and incident rate. As a part of collecting input and 

output variables, Haight et al. designed the Loss Prevention System model, 

categorized by 4 factors (i.e., behaviour, awareness, motivation; skill development 

and training; job design; and employment-related work) and composed of 15 

intervention variables (e.g., training, meeting, task analysis, hazard analysis, 

equipment inspection) to be measured in hours. In their study, the regression model 

and its function showed a significant exponential relationship between the 

intervention application rates and incident rates (Haight et al. 2001).  

Iyer et al. (2004) extended the original framework of the Loss Prevention System 

model to test generalizability in a power company and verified the mathematical 

relationship. Their study showed that 6 weeks of carry-over effect occurs in the 

safety interventions. Following the Iyer et al. study, Oyewole et al. (2010) 

established a model including 34 safety interventions categorized by 5 factor input 

variables (e.g., leadership and accountability; qualification, selection and pre-job; 

employee engagement and planning; work in progress and factor; and evaluation, 

measurement, and verification) similar to Haight’s Loss Prevention System model. 

The study tested intervention effects based on resource allocations for 31 resource 

combinations of 5 factors. Their findings showed that qualification, selection and 

pre-job are not positive effect to incident reduction rather than the other factors. 

Shakioye and Haight (2010) developed a more practical model by integrating a 

dynamic model and an optimization module between the factors and incident rates 



13 

 

on the Loss Prevention System model. Their dynamic model is able to repeatedly 

establish coefficients of an updated relationship between the intervention factors and 

the incident rate as more data is gathered from the database through day-to-day 

operations. Then, the optimization module produces the best mix of man-hours for 

intervention application (Shakioye and Haight 2010). 

Statistical trials for an existing model have been conducted with incident data in 

another case study, where the application of linear regression techniques produced 

insignificant results, e.g., non-linear regression, correlation check, combination of 

regressors, and logarithm transformation (AlOmair 2015). Samuel (2012) developed 

research to show that statistical analyses such as the response surface methodology 

could be employed to investigate the interactive effects of safety intervention factors 

using actual data. Samuel’s research showed that the allocation of additional 

resources towards a categorized factor such as qualification, selection, or pre-job 

would not likely improve the overall safety intervention program, thereby leading to 

indiscriminate waste of resources and capital. More recently, meta-regression 

analysis has been developed and used to identify a significant linear relationship 

between time and risk reduction for fatal injuries, where that evaluation was highly 

dependent on large scale interventions (Sancini et al. 2012). 

2.2 Safety Role and Responsibility of Frontline Foremen  

In general, the management framework of a construction project has three layers: 

strategic, tactical, and frontline operational. Top management, middle management, 

and supervisor/foremen lead the layers’ respective safety management programs in 



14 

 

construction projects (Fang et al. 2015). The foreman has a responsibility to control 

unskilled, semi-skilled, and skilled workers.  

In turn, the foreman is supervised by middle management (e.g., supervisor/project 

manager), and top management (e.g., executives). The foreman liaises between the 

crafts and top management as a representative of the first line of supervision and is 

immediately responsible for safety performance on site (Hymel 2012).  

A number of guides and manuals support idea of essential interventions and their 

attributes to measure effectiveness. The construction frontline supervisor’s role and 

responsibility are described in various ways. For instance, the Construction Research 

Congress listed important safety tasks using a task and position competency matrix 

through ‘A Practical Guide to Safety Leadership’. The four tasks highlighted as ‘Full 

understanding required’ are; (1) carry out workplace and task hazard identification, 

risk assessments and control; (2) facilitate group team discussions and meetings; (3) 

plan and deliver toolbox talks; and (4) make site visits where the site worker is 

spoken to directly about HSE in the workplace (Biggs, et al. 2008).  

The frontline foreman’s safety involvement and initiatives have been found to 

have a stronger link to overall safety performance than does top management 

commitment (Simard and Marchand 1995). Although the relationship among top, 

middle management and frontline workers is important, their behaviour is indirect 

and conditional. Top management entrusts safety implementation to frontline 

supervisor/foreman (Swuste et al. 2012).  



15 

 

Safety research investigating construction projects for the London 2012 Olympic 

Games looked at the relationship between site supervisor competence and 

effectiveness of safety programs (Cheyne et al. 2011). The authors represented 

supervisor’s behaviours in companies with high safety performance and observed the 

following rends: (1) a large time investment on occupational safety topics; (2) 

participation in developing safety programs and procedures together with workers; (3) 

involvement in workplace inspection and accident investigation; and (4) 

responsibility for training of new employees.  

Consequently, the front-line foreman is the key staff responsible to conduct safety 

activities in addition to scheduling, coordination, and quality assurance. Although the 

foreman’s primary responsibility is production-related tasks, they must be familiar 

with the overall safety program, and must be held responsible for the safety of the 

workers under their supervision. Psychology and economics research conducted by 

the Mercatus Center has evaluated the behavioural effects of regulatory overload on 

businesses (McLaughlin and Williams 2014). This study found that numerous and 

detailed regulations can reduce compliance, discourage innovation, and fuel 

uncertainty (McLaughlin and Williams 2014). It is complicated and subjective to 

judge whether safety interventions have the result of overloading the worker. 

However, it is the case that workers tend to bypass safety rules due to increased 

cognitive failure and stress, leading to higher-risk behaviour (Mapp 2007). 
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2.3 Job Safety Analysis  

Job safety analysis (JSA) is ‘an analytical process which helps integrating 

accepted safety and health principles and practices into a particular task’ (CCOHS 

2006). Although there are numerous safety practices for frontline worker and 

foreman, ultimately most of these practices are included in or related to JSA both 

technically and conceptually. JSA gives detailed instructions to workers before the 

start of a given task. In order for it to be effective, though, all crew members must 

participate, and must assist in identifying hazards and corrective actions.  

JSA, also known as Job Hazard Analysis (JHA), is used at most construction 

companies under a variety of names, including job analysis, task analysis, or pre-task 

planning. Although these terms are used in various situations and industries, they 

either have very similar meanings to or are interchangeable with JSA (Glenn 2011).  

The most influential resource in shaping the format of these analyses has been the 

National Safety Council’s (NSC) three-column form, which is broadly utilized in 

risk assessment practice (Table 2.2). A JSA also comprises three main stages (Chao 

and Henshaw 2002) which are named differently, but conceptually constitute the 

same process as NSC’s standard form and any other risk assessments.  

(1) Identification – selecting a specific task and generating each activity step, and 

identifying any hazards which may occur during the work. 

(2) Assessment – evaluating the relevant level of risk for each hazard. 

(3) Control – putting in place sufficient measures to reduce or eliminate assessed 

hazards.  
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Table 2.2. Job Safety Analysis format of National Safety Council 

Sequence of Basic Job 

Steps 

Potential Hazards Recommended Action 

Procedure 

Examining a specific job 

by breaking it down into a 

series of steps or tasks, will 

enable you to discover 

potential hazards employees 

may encounter. 

Each job or operation will 

consist of a set of steps or 

tasks. Be sure to list all the 

steps needed to perform the 

job. Some steps may not be 

performed each lime; an 

example could be checking the 

casters on the hand truck. 

However, if that step is 

generally part of the job it 

should be listed. 

 

A hazard is a potential 

danger. The purpose of the Job 

Safety Analysis is to identify 

ALL hazards both those 

produced by the environment 

or conditions and those 

connected with the job 

procedure. 

To identify hazards, ask 

yourself these questions about 

each step: 

Close observation and 

knowledge of the job is 

important. Examine each step 

carefully to find and identify 

hazards-the actions, 

conditions, and possibilities 

that could lead to an accident. 

Com piling an accurate and 

complete list of potential 

hazards will allow you to 

develop the recommended 

safe job procedures needed to 

prevent accidents. 

Using the first two 

columns as a guide, decide 

what actions or procedures are 

necessary to eliminate or 

minimize the hazards that 

could lead to an accident, 

injury, or occupational illness. 

List the recommended safe 

operating procedures. Give a 

recommended action or 

procedure for each hazard. 

Serious hazards should be 

corrected immediately. The JSA 

should then be changed to 

reflect the new conditions. 

Finally, review your input 

on all three columns for 

accuracy and completeness. 

Determine if the 

recommended actions or 

procedures have been put in 

place. Re-evaluate the job 

safety analysis as necessary. 

 

 

In practice, the Construction Owners Association of Alberta has proposed Field 

Level Risk/Hazard Assessment as a tool similar to JSA, but specifically designed for 

frontline workers; hazard and control measures are thus developed for company- or 

project-specific JSAs. This can help individuals and crews to eliminate or minimize 
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potential losses during the course of performing their work (Hudson 1998). FLHA is 

at the base of the hierarchy of company risk assessment procedures (Figure 2.2). It is 

distinct from risk assessment practices in the higher levels of the hierarchy because 

focus group is related to frontline workers. 

 

 

Figure 2.2 Risk assessment structure in organization (Hudson 1998) 

 

In addition to its original purpose, JSA is a useful tool for maintaining a safety 

program by influencing employee knowledge and behaviour. Foremen are able to 

use JSA to train and provide safety knowledge, especially with regard to non-routine 

processes and frequently occurring hazards. Since JSA is more focused on particular 

tasks, it is a useful training resource for introducing company procedures or 

legislations in a practical context. JSA records contribute to work place inspection 

Corporate Risk Assessment 

(Procedure, insurance, investment) 

Pre-Project Planning  

(Project focused Team Risk Assessment) 

Pre-task Planning  

(JHA, JSA) 

Field/Shop Level Hazard Assessment 
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and incident investigation as useful information for reviewing hazard and control 

measures, and provide insight into how incidents occur. 

Since JSA involves a significant amount of human effort, it tends to have practical 

problems associated with methods and tools. Studies in the literature have discussed 

some of the pitfalls associated with implementing JSA on site (Lyon and Hollcroft 

2012). 

• Lack of consultation with or involvement from employees with practical 

knowledge of the task to be assessed and communication of management;  

• Failure to identify all hazards associated with a particular activity and all 

possible outcomes;  

• No follow-up actions based on the results of the assessment;  

• Poor assessment and control which fails to assign subject matter experts for 

particular risk assessments or to account for job analysis bias; 

• Systematic problems: insufficient time and resources; customary practices 

among incumbent; improper form; absence of review and verification process; 

• Insufficient identification of the hazards associated with a specific task;  

• Analysis not based on statistical data; 

• No connection between hazards and risk controls; and 

• No involvement of workers in decision process. 
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3 PROBLEM STATEMENT 

Previous studies provide insight into the effectiveness of safety programs and 

their relationships with safety outcomes. When such programs and managerial 

activities are applied to on-site practice, however, the following challenges make it 

difficult to evaluate safety program effectiveness in front-line management. 

3.1 Evaluation Criteria of Ongoing Safety Interventions 

In practice, evaluation criteria for ongoing safety interventions often are not 

clearly established, with the result that the evaluation comes to rely on subjective 

judgement in the intervention procedure. For instance, the manager’s handbook 

published by the Construction Owners Association of Alberta describes an 

evaluation criterion as an abstract clause such as “how well are forms filled out?” or 

“assign specific people to gather and analyze Field Level Risk Assessment data to 

solve the identified problem” (Hudson 1998).  

Similarly, the Job Safety Analysis (JSA) by Canada’s National Occupational 

Health & Safety only emphasizes a supervisor’s accountability to establish follow-up 

activities for monitoring the effectiveness, without providing any practical guideline 

(CCOHS 2006). Technical issues may arise from the fact that the monitoring and 

evaluation of safety practice now depends on the ability of each individual (e.g., 

supervisor) who implements such interventions.  

With these unclear and subjective instructions, WorkSafe New Zealand reported 

that 80% of employees could not accurately complete a hazard report, 49% of 

supervisors and team leaders fall into the middle or lowest group in reading company 
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health and safety procedure properly, and 20% of supervisors also struggled with 

health and safety paperwork, making it difficult for them to communicate the 

information to employees (Workbase 2013). Consequently, the ambiguities involved 

in evaluation criteria may cause difficulties in data collection. 

It could be argued that obligatory regulatory interventions are just organizational 

interventions to commit to or by which to compel workers to reduce injuries. 

Especially for pre-task planning such as JSA, if the job analyst misunderstands the 

objective of the process or does not have enough skill to conduct the task, company 

resources are wasted as a result (Dessler 2015). 

The ambiguities involved in evaluation criteria may also cause difficulties in data 

collection. Alternatively, various measurement techniques such as audits, perception 

surveys, and cost-benefit analyses have been proposed and applied to measure the 

quality of successful interventions. These methods play a role in better understanding 

respondents’ perceptions of the research topic (Needleman and Needleman 1996; 

Denzin and Lincoln 1994); however, such methods typically require more time and 

cost to continuously collect data over a long period in order to allow for the tracking 

and in-depth understanding of causality in the given case.  

Haight and Thomas (2003) provided a comprehensive literature review to 

determine a scientifically supported method to evaluate safety and health programs. 

As mentioned, many measurement techniques, such as audits, perception surveys, 

and cost-benefit analyses, have been used by previous researchers. Although these 

studies have helped to define the qualities of successful interventions for 
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practitioners, they fail to represent the magnitude of effectiveness with relative or 

absolute values.  

Both Hogg (2005) and Zou and Sunindijo (2015) discussed difficulties related to 

experimental research on workplace safety. Due to the complexity of on-site 

environments, self-reporting questionnaires and surveys are much more accessible 

and easier to organize. In addition, such research requires a good deal of attitudinal 

measurement, which is difficult to obtain by experiments. Further analysis in these 

studies revealed that survey questionnaires were the main methods used for data 

collection in quantitative research, and that more than half of qualitative research 

used interviews as the main qualitative research method. Such approaches tend to 

deliver intentionally distorted perspectives rather than actual situations. Although 

Needleman (1996) and Denzin (1994) emphasized that such qualitative research 

methods play a role in better understanding how interventions operate in the worksite, 

they still only function as a supportive factor in quantitative studies. In actual 

practice, the practitioners responsible for safety in a given company may adjust their 

interventions through subjective decisions. 

Recently, various approaches to evaluating safety intervention effectiveness have 

been conducted. Qualitative methods have been used to evaluate individual 

intervention implementation, such as interview, survey, observation and document 

analysis. Quantitative methods, in turn, rely on numerical variables with statistical 

approaches by survey or cost benefit analysis (Haight and Thomas 2003). However, 

most mathematical approaches have only considered intervention application rates in 
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comparison to incident rates as an outcome variable. These do not bring any practical 

intuition about implementation with craft-level workers, since workers are not in the 

position to select a given intervention but rather are limited to focusing on how to 

effectively conduct them within the context of a given application.  

With regard to the evaluation of safety intervention implementation, looking at 

how practitioners deliver a certain intervention to the workplace, for instance, is not 

sufficient. In spite of numerous intervention-related research studies having been 

conducted, less attention has been paid to safety interventions in the lower levels of 

an organization (i.e., frontline). Even when company safety interventions are well 

prepared and clearly presented to subunits, there can be significant variation between 

groups, resulting in different perceptions of company procedures and supervisory 

practices among the various subunits. Past studies have, for instance, identified 

differences in the safety climate of different role type subunits (Glendon and 

Litherland 2001). Others have noted the difference between safety profiles by age 

group in a single organization and proposed targeted safety strategies accordingly 

(Mason 1998).  

Many of the issues observed are to the fact that safety interventions are 

implemented by considering their acceptability to employees rather than their actual 

effectiveness (Zwerling et al. 1997). For example, a supervisor who instructs 

workers to ignore certain safety procedures whenever production falls behind 

schedule creates a distinction between company procedures and subunit practices 

(Zhang and Yu 1998). One study on safety climate identified discrepancies among 
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the safety climates of different subunit (Glendon and Litherland 2001). For these 

reasons, this study analyzes safety intervention effectiveness strictly within the scope 

of the front-line of an organization.  

3.2 Validity and Reliability of Dependent Variables 

Due to the relative infrequency of safety incidents, the lack of available data 

hinders identification of the causal relationship between evaluation items and 

incidents in data analysis. In reality, the majority of workers within a given 

workplace can usually remain uninjured despite a high incident rate; for example, a 

non-fatality rate of 149.6—which is the rate of the U.S. construction industry in 

2010—indicates, by definition, 149.6 out of 10,000 full time employees were injured 

(CPWR 2013). In this regard, safety analysis is often focused on the at-risk 

circumstances and attributes leading to an incident rather than ordinary conditions. 

Researchers tend to elaborate on the circumstances of an incident rather than 

ordinary conditions. Lost-time injury data has flaws, since the datasets of small 

organizations are out of balance and infrequent (Qiu et al. 2013; Spangenberg et al. 

2002). The analysis of these discrete events may be confounded by the rare 

appearance of safety incidents over long time periods, particularly where safety 

interventions are effective (Lee et al. 2001). Perhaps for this reason, self-reporting 

surveys and interviews have been widely applied in safety research (Hogg 2005; Zou 

and Sunindijo 2015). Although these proxy measures are regarded as more reliable 

than incident rates, the loose relationship between intermediate outcomes and 

incidents (Robson 2001) or the low validity of measurement (Esmaeili et al. 2015) 
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are issues that may factor in. Therefore, the appropriate selection of data types and 

investigation subjects is a key to gaining in-depth understanding of the relationship 

between frontline intervention effectiveness and safety performance. 

Low injury rate is not a sufficient predictor of severity potential. For instance, 

regarding the Texas City refinery explosion of 2005, the Chemical Safety and 

Hazard Investigation Board reported that “A very low personal injury rate at Texas 

City gave BP a misleading indicator of process safety performance” (Chemical 

Safety and Hazard Investigation Board (CSB) 2007). In a presentation at the 

International Association of Oil and Gas Producers Offshore Safety Forum, it was 

noted that total recordable injury rate is not fully able to predict the potential 

escalation to single and multiple fatalities. It is thus necessary to shift the focus 

toward recurring incidents equal to the escalation (Zijlker 2005).  

The use of lost-time injury cases as a common outcome variable has flaws, since 

the incident datasets of small organizations are imbalanced and the probability of an 

event is relatively low. On the other hand, logistic regression has been widely used to 

test binary outcome variables as a classical classification. Although some studies 

have proposed large-scale logistic regression, it is still limited with regard to analysis 

of rare events due to bias in application with large-scale datasets (Qiu et al. 2013). 

3.3 Confounding and Effect Modification 

Concerning difficulties related to data acquisition, it should be noted that the 

characteristics of individuals and tasks affecting the likelihood of incidents are often 

neglected in data analysis. Consequently, effect-modification and confounding 
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variables can randomly influence the accuracy of the evaluations; that is, various 

levels of inherent risk of subunits (e.g., those working at heights, younger workers, 

and workers in heavy industries) and concurrent use of several safety programs (e.g., 

in-house training and government campaign simultaneously) can lead to over- or 

under-estimates of the effectiveness of certain intervention (Robson 2001).  

Effect-modification and confounding can influence the accuracy of the 

evaluations, especially case control studies. Effect modification occurs when the 

effect size of the exposure between input variable (e.g., occupation, task, safety 

practice) and output variable (e.g., injury) is different in the level of third variable 

(e.g., age, gender, experience).  

As an example of effect modification, the statistics on disorder rates of low back 

pain by occupation in construction show that, overall, bricklayers (41.5%) had higher 

injury rates than painters (26.8%) (Stürmer et al. 1997). If these results are adjusted 

by age (effect modification), painter (57%) shows higher rates than bricklayer (47%) 

because the proportion failing into the senior cohort, generally more vulnerable to 

back pain, is higher among bricklayers than painters (Stürmer et al. 1997). In this 

case, the age can become a confounding variable if it affects both occupational 

choices (e.g., painter or bricklayer) and injury rates. Third variables—for instance, 

the age in this case—works as the effect modifier or confounding variable, where 

understanding of the actual relationship between the disorder and occupation is 

hindered when it is not considered. 
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Confounding is similar, but distinct from, effect modification; it occurs as a result 

of imbalance between the exposed and unexposed groups with respect to input 

variables (independent risk variables) and output variable (the incident of interest). 

Unlike with effect modification, confounding is related to both input and output 

variables.  

The difference between ordinary and confounding-considered results can be seen 

through a recent study about relationships between learning disabilities, conducted 

by the Canadian Community Health Survey (CCHS). The target interests were 

attention-deficit/hyperactivity disorder (ADHD) and risk of occupational injury 

among young workers. Multivariate logistic regression analysis was conducted to 

assess occurrences of medically attended work injuries. The crude odds ratio 

regardless of any demographic factors in the analysis represents the likelihood of 

work injury with ADHD as 2.7. However, with considering personal demographic 

variables as confounders, fully adjusted odds ratio indicates 1.9 which referring to 

lower ADHD effect size than crude ratio. This means that researchers accept over- or 

under-estimated ADHD effect in injury occurrence, unless the additional analysis 

with confounding variables conducted (Breslin and Pole 2009; McNamee 2005).  

To reduce effect modification and confounding effects, confounding effects can 

be controlled through proper preparations. However, it requires the logistical 

limitations of the effectiveness evaluation design such as short term and small 

population, which is not feasible for frontline organizations. Moreover, most safety 

studies are dependent on historical data rather than pre-designed assessment. Instead, 
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the other statistical correction method (e.g., stratification, regression analysis) can 

adjust estimated results to consider the effects of exposure. Historically, the most 

common statistical approach for dealing with confounding has been stratification; the 

standardized mortality ratio is a popular indicator to control age confounding.   
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4 RESEARCH SCOPE 

For the identification of practical measures to evaluate the effectiveness of 

ongoing safety interventions, a case study is conducted in a steel prefabrication shop 

located in Edmonton, Canada, in order to determine the effectiveness of different 

types of safety interventions and relevant performance indicators through field 

observation and data acquisition. The observation is mainly focused on frontline 

safety practices where foremen communicate and interact with workers, and the 

workers under each foreman are identified in order to evaluate frontline supervisory 

effectiveness among foremen. This approach allows for the fair comparison between 

study groups (i.e., foremen) with the assumption that top management or other latent 

variables equally influence frontline employees within an organization.  

In particular, the job and personal information of individual employees (e.g., task 

type, experience, and seniority) is collected to account for effect modification and 

confounding, and the entire population, including those without injury records, is 

involved in the data analysis to avoid over-estimation of the relationship between 

measures and safety records. To model the skewed data (e.g., the majority of workers 

in the dataset may not have any injury), a Poisson regression technique is applied for 

discovering and assessing the resulting risk levels associated with measures 

representing safety-related practices. The selection processes to determine the 

effectiveness of various safety interventions and measures and analytical methods 

are further described in this chapter.  
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4.1 Selection of Frontline Safety Interventions and Measures 

This section represents the process of exploring the evaluation variables. Since 

frontline workers and supervisor are the target interest as the lowest organizational 

level in this study, the focus is on those safety tasks which are initiated by these 

personnel.  

Figure 4.1 represents essential safety interventions by project phase and 

responsible organization level. As shown in the graph, in the early stages prior to 

construction/production, no safety activities are initiated by frontline supervisor and 

workers, despite some involvement as reviewers at these preliminary stages. 

Although most of the listed safety programs are directly or indirectly related to 

frontline workers, global programs controlled at the management or project team 

level are excluded in this research because they are equally provided through a 

frontline workplace without variance.  

Consequently, it is mainly supervisory activities that are considered in this 

analysis, since supervisors are responsible to implement safety policies and 

interventions as the lowest managerial role (Heinrich 1950). 
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In this case study, the major focus is placed on those safety interventions 

requiring active participation of and interaction between frontline workers and 

supervisors in the processes of risk identification, evaluation, and mitigation. 

Communication skills as well as competence for hazard awareness and response are 

fundamental and integral aspects of frontline safety management (Carter and Smith 

2006; Albert et al. 2014a).  

Accordingly, two safety interventions implemented in the organization—pre-task 

planning and worksite inspection—are investigated in order to evaluate the 

effectiveness of on-site implementation. Specifically, pre-task planning aims to 

identify potential hazard and control in each step of an activity and thus necessitates 

active engagement of frontline workers in the process (Hinze et al. 2012). Among the 

selected safety interventions involving frontline workers, pre-task planning is an 

integral aspect of identifying hazards that increase the worker’s hazard awareness 

and control measures (CCOHS 2006). The role of workplace inspection, meanwhile, 

is to evaluate and control hazards in working environments to ensure compliance 

with safety procedures and regulations.  

Table 4.1 outlines the general roles and responsibilities of foremen and workers 

(European Agency for Safety and Health at Work 2008; Government of Alberta 

2015) with associated evaluation measures, identified through observation and 

reviewed by safety personnel in the organization. Based on these two practices, 

variables can be generated to offer evaluation measures of intervention 

implementation. Since unrecognized hazards constitute missed opportunities to 
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assess and mitigate hazards (Cooke and Lingard 2011; Behm and Schneller 2013), 

implementation efforts to detect potential hazards are a critical aspect of evaluating 

safety intervention effectiveness. 
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Table 4.1. Role and responsibility of hazard recognition and control practices in frontline 

Safety 

Intervention 

Roles and Responsibilities Evaluation Measure 

Foremen Workers Variable Unit 

Pre-task Planning  Understand the general 

approach to assessment 

 Identify safety and 

health problems 

 Assess and prioritize the 

need for action 

 Suggest options 

available to eliminate or 

reduce risks and their 

relative merit 

 Promote and 

communicate safety and 

health improvements 

and good practices 

 Participate in the 

meeting 

 Alert foremen or 

employer about 

perceived risks 

 Report changes in the 

workplace 

 Submit proposal to 

control hazards 

 Cooperate to enable the 

employer to ensure a 

safe working 

environment 

 Hazard and control 

measure alignment with 

Job Hazard Analysis rate 

 Longhand Description 

Frequency 

 Safety Communication 

Time  

 Hazard Identification 

Frequency 

 

 Aligned item/JHA 

risk items (%) 

 No of longhand 

SLRA / total SLRA 

in research period 

(%) 

 Actual time during 

SLRA meeting 

(minutes)  

 No. of reported 

cases/person (times) 

 

Workplace 

Inspection 

 Investigate and record 

any new hazards 

identified  

 Act to eliminate or 

control the hazards 

 Order the workers to 

stop work or talk to 

affected workers about 

both the hazards and 

controls 

 Participate in workplace 

inspections when 

requested 

 Make suggestions for 

corrective actions to 

inspectors 

 

 Workplace Inspection 

Frequency 

 No. of reported 

cases/person (times) 
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4.2 Company Practice and Work Process Overview 

4.2.1 Workplace Inspection  

Through critical examination of the workplace, inspections identify and record 

hazards for corrective action. Joint health and safety committees, foremen, and 

workers can help to plan, conduct, report on, and monitor inspections. Regular 

workplace inspections are an important part of the overall quality, health, and 

environmental management program. 

Inspection team members are responsible for (Safe Work Australia, 2011):  

1) Recording all hazards identified during inspections and determining the risk 

associated with those hazards, in consultation with relevant employees and 

contractors;  

2) Determining appropriate controls to manage these risks, in consultation with 

relevant employees and contractors; and 

3) Ensuring that action items have been allocated to proper relevant and 

competent persons in the workplace.  

Planned general inspections should be conducted on a weekly basis for each 

project or area. The inspection team should include, where possible, representation 

from both management and the field workforce. The case company’s general 

workplace inspection form is described in Figure 4.2 and 4.3. 



36 

 

 

Figure 4.2. Workplace inspection form example (front) 
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Figure 4.3. Workplace inspection form example (Back) 
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4.2.2 SLRA/FLRA 

The FLRA/SLRA of the company where the case study is conducted is based on 

the Construction Owners Association of Alberta-recommended format, which is 

broadly utilized in Canadian practice. The applicability of FLRA and SLRA depend 

on whether the activity is being carried out in the field or in a shop area. The FLRA 

checklist is focused on hazardous situations in installation tasks, permits, and 

emergency preparedness. On the other hand, SLRA is designed for hazards in a shop 

environment. SLRA is thus concentrated on hazards related to the use of permanent 

equipment and routine work. Although these two forms should be differently 

designed for different types of work and different environments, the case company’s 

practice is to use similar forms for both contexts. In this study, only SLRA is looked 

at because the target group’s workplace is an indoor prefabrication shop. 

Generally, SLRA meetings are conducted on a daily basis. However, in addition 

to any routine sessions, SLRA should be implemented for any of the following four 

cases; 

1) New job or shift 

2) Change workers 

3) Change of work area or conditions 

4) Change in task or plan 

The FLRA/SLRA is completed at the task location and should be attended by all 

workers participating in the task, including sub-contractors. All workers should have 

input into the identification and controls of hazards. There is no maximum or 
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minimum amount of time required for such sessions. Contractually, a foreman can 

allow time for approximately 20 minutes since official commencement of daily work 

for unionized workers is 20 minutes before the start of physical working. Although 

theoretically the foreman can extend the SLRA meeting, workers prefer not to spend 

more than the regularly allotted minutes due to the need to meet the production 

schedule.  

As described in Figure 4.4 and 4.5, the SLRA form should be filled out by a 

facilitator on both the front and back of the form. The front of the form offers a 

number of critical check boxes to create awareness of hazards, and also provides an 

area for work task identification. The back of the form comprises commonly used 

risk assessment items: task, hazards, and control measures. This form includes areas 

for descriptions of the overall work task with the individual steps and stages of job 

tasks required to complete the work. Furthermore, hazards are described based on the 

planned work tasks. Finally, control measures are implemented and risk levels are 

determined by crew members. The facilitator records all the controls required to 

eliminate or at least minimize the hazard to an acceptable level. The entire crew has 

to sign on the form indicating concurrence about the stated risks and controls for 

each hazard.  
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Figure 4.4. SLRA form example (front) 
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Figure 4.5. SLRA form example (back)
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4.2.3 Work Process Overview 

This research focuses on the safety performance of the modular/prefabricated 

building construction sector during both manufacturing and on-site processes. More 

specifically, the target company’s operation is steel pre-fabrication of modules for 

industrial construction projects. Prefabricated construction, it should be noted, entails 

the manufacturing of building components in an off-site fabrication facility.  

The fabrication process broadly comprises a course of operations including 

detailing, fitting, welding, and surface processing. The detailing process is divided 

into subtasks, such as cutting, grinding, drilling, and burning. Surface processing 

includes painting, sand blasting, and fireproofing, depending on the customer’s 

design requirement (Figure 4.6). 

The entire operation is categorized by material weight and complexity, resulting 

in four shops. Each shop has basically the same process, with frequent overlaps in 

production schedule and urgent orders. 
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Figure 4.6. Work process map 
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4.3 Measurement of Evaluation Variables 

Technically, to avoid statistical limitations, only measurable and countable 

evaluation criteria are developed, e.g., bias, internal validity, sample heterogeneity 

(Robson 2001). Each type of variable has a numerical and continuous value, such as 

the numbers of cases or percentages to be suitable for statistical analysis. 

In respect to each variable as an evaluation element, first, a content coverage rate is 

associated with the quality of hazard identification during pre-task planning (a.k.a., 

SLRA). In the organization, JHA is conducted by middle managers such as 

superintendents and safety managers in conjunction with foremen on a yearly basis 

for a thorough review of potential hazards throughout the company’s operations, 

while SLRA is performed and led solely by frontline foremen to review and 

communicate potential hazards in daily practice. Thus, the alignment between 

reviewed hazards in SLRA and JHA represents the extent to which the potential risks 

identified through JHA are covered during the SLRA meeting as recommended by 

the organization policy and standard operation procedure, which eventually affect 

incident occurrence (Hudson 1998). The alignment is measured based on how many 

hazards and associated control measures in JHA are discussed in each SLRA report. 

Such alignment helps bridge gaps in the hierarchical management systems by 

bringing risk reviews by upper management to daily discussions on the nature of the 

work being performed (Roughton and Crutchfield 2008).  

Longhand description refers to manual writing of the SLRA form as opposed to 

shorthand (e.g., typing). Interestingly, a high rate of SLRA reports are observed in 
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the organization where the descriptions of tasks and hazards have been written by 

typing. From the behavioural standpoint, the most significant aspect of descriptions 

in longhand practice is that it is rarely observed that information is repeated, i.e., 

copying-and-pasting previous hazard generations and control measures. In contrast, 

shorthand practice repeats the same checklists and hazard generation and controls 

over 3 months to 6 months. In particular, the back of the page requires more 

narration than the front-left blank space on the shorthand assessment. Theoretically, 

people who write by hand generally have better learning and conceptual 

understanding than those typewriting (Mueller and Oppenheimer 2014; Mangen 

2010), and though writing longhand can slow the reporting process it may help to 

prevent distractions during writing (Yamamoto 2007). In this regard, the frequency 

of longhand reporting may shed light on the degree of time and effort as well as 

cognitive learning and understanding required for foremen to fill in the form as a 

“living document” and implement effective hazard assessment. This variable is 

measured in percentage terms of longhand practice throughout the study period. 

Third, safety communication is one of the important factors to enhance safety 

exchange, followed by safety climate. For safety management, communication 

between supervisor and workers is not only the key element that enhances 

knowledge sharing and worker involvement, but also an indicator of successful risk 

assessment (Simard and Marchand 1994). Here communication and participation are 

associated with leader-member exchange levels of safety information (Kines et al. 

2010; Zhou and Jiang 2015). In particular, when provided an opportunity to 
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participate in a decision making process, workers tend to become more receptive to 

the decision made (Roughton and Crutchfield 2008). This measure is thus quantified 

with actual time spent for any instruction, review, or discussion among crafts during 

a SLRA meeting, usually 20 minutes in length. 

Fourth, hazard identification refers to the process of ensuring that the level of risk 

is consistently recognized and controlled within acceptable ranges of risk tolerance. 

When not appropriately performed, such processes are closely correlated to the 

occurrence of injury and illness, as workers can remain in the at-risk conditions 

without any safety control. Previous studies have investigated the relationship 

between hazard identification and injury rate and revealed that the relevant measure 

can be utilized as a leading indicator for workplace safety (Manuele 2009; Albert et 

al. 2014b). In the case organization, hazards are identified by individual frontline 

workers; hence the number of reported cases per employee is used as an input 

variable to investigate the relationship with incident records. 

Finally, workplace inspection is regularly performed to identify potential hazards 

associated with working conditions on a jobsite. The inspection has a significant 

influence on the reduction of injury rate (McLeod et al. 2014), and as part of an 

auditing program, worker’s involvement in jobsite safety inspection is a critical 

factor affecting injury prevention, thus serving as a performance indicator (Hinze et 

al. 2012). For the case organization in particular, the purpose of workplace 

inspection is not only to monitor site conditions, but also to identify any hazard 

missed and uncontrolled from the pre-task planning. In this research, the number of 
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inspection reports per worker is measured as a variable representing worker 

participation and involvement in risk mitigation activities.   
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5 METHODS 

This chapter discusses general regression model and its utilization in effectiveness 

studies. Furthermore, this chapter discusses why Poisson regression model is 

required for this particular study, and introduces basic knowledge about general 

regression. 

5.1 Evaluation Outline 

The effect of practice measures (e.g., content coverage rate) on safety 

enhancement is assessed using a regression model built for the datasets collected in 

the case study. Regression has been widely used as a statistical tool which allows for 

modelling the relationship between variables and predicting the outcome on the basis 

of the model. In construction, regression analysis has been applied to various 

research areas including cost and scheduling (Lowe et al. 2006; Hwang 2009; Duffy 

et al. 2011), project dispute resolution (Cheung et al. 2010), change orders 

(Anastasopoulos et al. 2010), and safety management (Tam and Fung 1998; Fang et 

al. 2006; Cooper and Phillips 2004; Sokas et al. 2009a; Oude Hengel et al. 2012). 

An overview of data analysis is illustrated in Figure 5.1. Five evaluation measures 

are used as independent variables with effective modifiers or confounders such as 

seniority (Hymel 1993), experience (Breslin and Smith 2006; Bena et al. 2009), craft 

size (Burt et al. 2008; Hinze 1981), age (Lander et al. 2016), trade (WorkSafeBC 

2014; Bureau of Labor Statistics 2014), and shift (Wong et al. 2011; Ogiński et al. 

2000). These secondary variables can potentially affect the safety performance, 

thereby necessitating statistical adjustment. For the controlling of confounding or 
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effect modification, stratified analysis is carried out to determine the presence of 

confounding effect and the level of association with the dependent variable. As an 

output variable representing the safety records, the number of incidents per employee 

during the case study is recorded and counted in the form of non-negative and 

discrete numbers. As a result of regression analysis, Relative Risk (RR) is 

consequently produced and utilized to estimate the influence of each independent 

variable on the dependent variable. 
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Figure 5.1. Overview of frontline worker safety intervention effectiveness evaluation 
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5.2 Evaluation Design 

Various conceptual designs of effectiveness evaluation in the context of 

evaluating safety intervention have been introduced. Robson (2001) discussed 

comprehensive intervention methods from a technical perspective. As described in 

Table 5.1, effectiveness evaluation designs are divided into three types: experimental, 

quasi-experimental, and non-experimental. 

The experimental design produces the strongest evidence of a causal link between 

the intervention implementation and observations. Group comparison is conducted 

by control and intervention groups through an unbiased process, while quasi-

experimental design can be considered for non-randomized groups and before-after 

assessment, which is different approach from the experimental design, in order to 

overcome logistical limitations (Robson 2001).  

In this study, feasible strategies from each design are employed, which allows for 

target group analysis. Non-randomized control and intervention groups without 

before-after assessment are applied, whereas reversed evaluation and randomization 

are excluded due to technical impossibility and the original population limitations in 

a frontline work site.  
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Table 5.1. Characteristics of different types of evaluation designs (Robson 2001) 

Type of 

Design 

Characteristic of Design 

Inherent in Design As commonly used in 

workplace evaluations 

Strength of 

evidence of 

effectiveness 

Randomization of 

workers/workplaces 

Control or 

compariso

n group 

Pre-

intervention 

measurements 

Non-

experimental 

Weak No Sometimes Sometimes 

Quasi-

experimental 

Moderate No Sometimes Yes 

Experimental Strong Yes Yes Yes 

 

5.3 Poisson Regression  

Regression techniques have been widely used as prediction tools in the 

construction industry. Regression analysis is one of the strongest statistical methods 

to calculate an estimation of outcome based on the input parameter. It can be 

interpreted from plot and correlation coefficient values by computing the dependent 

and independent variables (Montgomery et al. 2012).  

In construction safety management, Tam and Fung (1998) used multiple 

regression analysis to study the relationship between safety management strategies 

and site casualty rates. In safety research, Fang et al. (2006) employed logistic 

regression to analyze the relationship between safety climate and personal 

characteristics. In addition, safety training interventions were evaluated as an 

explanatory variable by other researchers in diverse areas (Cooper and Phillips 2004; 

Sokas et al. 2009b; Oude Hengel et al. 2012). Outcome variables are determined by 
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safety climate or work site inspection, which is easily measured on site. However, 

such intermediate outcome variables may not guarantee validity due to subjectivity, 

in spite of higher statistical reliability than injury or fatality rates as the outcome 

variable.  

In general, regression models have been widely utilized to predict safety 

performance. As listed in Table 2.1 in an earlier chapter, the linear regression 

method is commonly used to measure intervention effectiveness because it is a 

strong statistical tool to estimate the parameters expected from a model (Bailey 1997; 

Ray and Frey 1999; Vinodkumar and Bhasi 2010; Hammer et al. 2015). 

Each regression has a different type of dependent variable. When the dependent 

variable is continuous, linear regression is commonly used. One assumption of linear 

regression analysis is that the residual errors follow a normal distribution. If the 

dependent variable is categorical and a binary outcome variable (e.g., fatality, 

sick/healthy, present/absent), linear regression does not work properly. In such cases, 

logistic regression can be employed to analyze binary, ordinal, and multinomial 

outcomes. Among these categorical variables, logistic regression model works for 

discrete event counting variables, but it produces favourable representation in binary 

values unless everyone commits only one incident or less in the period.  

Poisson regression is also employed to model counting variables. Typically, 

incident data follow Poisson distribution, which is broadly used in traffic accident 

analysis (Joshua and Garber 1990; Abdel-Aty and Radwan 2000), political science 

(Famoye and Singh 2006), clinical trials (Gardner et al. 1995), and property damage 
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assessment (Ismail and Jemain 2007). The dependent variable is assumed to follow a 

Poisson distribution, and the logarithm of its predicted value can be modelled by a 

linear combination of unknown parameters. For instance, Amick (2015) conducted 

Poisson regression analysis to estimate the effect of a unionized environment on 

safety performance, since unionized construction companies have higher no-lost-

time claim rates (RR 1.28, CI 1.23 to 1.34) than nonunion companies. Breslin and 

Smith (2006) applied Poisson regression to evaluate job tenure and lost-time claim 

rates. Their study proposed to test a goodness-of-fit statistic from the Poisson model 

(deviance/degrees of freedom) and they opted to use a negative binomial model since 

it indicates a better fit than the Poisson model (1.20/8.44). Their analysis showed that 

the first month claim rates in each worker’s tenure are relatively higher (RR 5.56 for 

contact object, 6.36 for falls, 2.93 for exertion, and 5.28 for exposure to harmful 

substance), except for cases of repetitive motion-related injuries. 

As the dependent variable, No-lost-time incidents, including severe injuries (e.g., 

lost-time injuries), are employed as an outcome variable, since the use of only lost-

time incident rates poses some disadvantages in safety intervention effectiveness 

research. In this study, all incidents are collected in terms of the parameters set forth 

by the Workplace Safety and Insurance Board, which specifies lost-time cases as 

follows (Smith 2010); 

1) Worker is absent from regular work 

2) Worker earns less than regular pay for regular work  

3) Worker requires modified work at less than regular pay 
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4) Worker requires modified work at regular pay for more than seven 

calendar days  

 

Cases which require health care but not an absence from work other than the day 

of injury are referred to as no-lost-time claims, and they are outlined as follows. 

1) Less severe injuries (requiring health care but not time off work) 

2) Injuries where the worker cannot return to their normal duties the next 

day, but can do another (less demanding) job, or their current job with 

modifications. 

3) Claims submitted as a result of a chronic work-related condition, after the 

worker has stopped participating in the labour force (i.e., retired). 

4) Claims in which the worker took time off, but was told to submit a no-

lost-time claim 

5) Claims in which, although the worker could not return to their job, they 

were forced to return to the workplace the next day 

The use of no-lost-time incidents as the dependent variable offers three 

methodological advantages: (1) higher frequency than lost-time injuries, which 

delivers a homogeneous distribution; (2) objectivity by avoiding biased self-

reporting; and (3) strong connection to lost-time injury rates (Zohar 2000). In 

addition, as illustrated by the 1-10-30-600 pyramid depicted in Figure 5.2, every 29 

minor injuries account for 10 lost-time injuries (Bird and Loftus 1976). Therefore, 
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no-lost-time injuries still play an important role in evaluating comprehensive safety 

performance within any organization.  

 

Figure 5.2. Safety accident pyramid (Bird and Loftus, 1976) 

 

As shown in Figure 5.3, the gap trends between lost-time injury and no-lost-time 

injury of both the case company for this research and Ontario example cases have 

grown wider over the years. Accepted lost-time claims are found to have declined 

much more quickly than no-lost-time claims in Ontario from 1991 to 2006 (Smith 

2010). In particular, lost-time claims have been extremely rare for the partner 

company, which makes difficult to use lost-time injuries in the study.  

Previous studies have noted that such increasing or stable no-lost-time injury rates 

versus lost-time injury rates is associated with ‘under-reporting’ by workers and 

‘under-claiming’ by employers (Safety and Board 2013). Thus, injury rates 
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combining lost-time and no-lost-time are the ideal solution. In this study, no-lost-

time cases are used for analysis due to the statistically insufficient amount of lost-

time cases. 

 

Lost-time Claim   No-lost-time Claim 

Figure 5.3. Lost and No-lost-time claim trends (the company case study) 
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Figure 5.4. Lost and No-lost-time claim trends (companies in Ontario) 

 

To determine the specific regression model, identification and understanding of 

the data distribution is the initial step in the analysis. The data used as the dependent 

variable is no-lost-time incident records, including any cases in which the injured 

employee seeks medical treatment. Compared to lost-time cases or near-miss reports, 

such data may help to avoid issues related to the rareness of severe injuries and to 

instances of biased self-reporting (Zohar 2000). Since such incident data includes 

variables which are discrete and restricted to non-negative integers, a negative 

binomial or Poisson regression model can be used as a subset of the Generalized 

Linear models. One of the important decision factors in selecting one of these two 

models is that conditional mean and variance of data are compared in order to 

identify over-dispersion and equi-dispersion. The histogram of no-lost-time incidents 

presented in Figure 5.5 visually illustrates that the distribution has a skewed shape 

with a skewness ratio of 1.68 (i.e., the normal distribution’s ratio is 0); the lines of 

probability distributions visually show that Poisson distribution has a closer fit to the 

dataset. The result of a Kolmogorov-Smirnov test (Chakravarti and Laha 1967), 

which can be used to compare sample datasets with a reference probability 

distribution, also indicates that the dataset may follow the Poisson distribution 

(asymptotic significance 2 tailed: 0.967).  
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Mean = 0.790, Std. Deviation = 0.923, Variance = 0.852, N = 156 

Figure 5.5. Comparison among histogram, Poisson and negative binomial 

probability distributions of the number of incidents 

 

In addition, as a major assumption of Poisson regression, equi-dispersion should 

be checked to determine whether conditional variance is equal to conditional mean. 

Lagrange multiplier test (Greene 2003) is one of the methods to determine whether 

equi- or over-dispersion exists in particular data. The null hypothesis assumes that 

conditional variance exceeds conditional mean; in such a case, negative binomial 

regression can be appropriate. For the incident data collected, fitting a negative 

binomial model with ancillary parameter (k = 0) into the Lagrange multiplier test 
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does not yield a statistically significant p-value (0.419 with 95% confidence interval); 

accordingly, the null hypothesis for over-dispersion is rejected (Cameron and Trivedi 

1998). Therefore, over-dispersion (k > 0) should not be an issue when using Poisson 

regression for the data used in this study. 

A Poisson regression model, also known as a log-linear model, is a generalized 

linear model with the logarithm as the link function; it also includes a Poisson 

distribution function based on the rate parameter (λ) and independent variable (x). 

Poisson regression fits linear models to a logarithm (counts of number of events) 

which looks for group differences. The probabilities of events for a Poisson 

distribution are defined in Equation (1). In this equation, a random variable Y 

follows a Poisson distribution with parameter λ; that is, the average number of 

incidents in a certain period of time is designated by a rate parameter (λ) for an 

individual employee (i). The rate parameter (λ) is determined with an explanatory 

variable, also known as an independent variable (x) representing the safety 

interventions (e.g., content coverage rates, longhand description rates). The Poisson 

regression model is fitted to log Y; then models of the form can be represented as per 

Equation (2), whereby we observe the sound theoretical rationale for using logit with 

binomial and log for the Poisson. 

In Equation (3), a regression co-efficient, 𝑒𝑥𝑝(𝛽), represents the expected change 

in the logarithm of the mean per unit change in the predictor 𝑥𝑖. Increasing 𝑥𝑖by one 

unit multiplies the mean by a factor, 𝑒𝑥𝑝(𝛽) (Cameron and Trivedi 1998). 
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  𝑃(𝑌𝑖 = 𝑦𝑖|𝑥𝑖) = 𝑒−𝜆𝑖𝜆𝑦𝑖/𝑦𝑖!      (1)  

Log (𝜆𝑖) = 𝛽0 + 𝑥1𝛽1 + 𝑥2𝛽2 + ⋯ +  𝑥𝑘𝛽𝑘        (2) 

 𝜆𝑖 = 𝑒𝑥𝑝(𝑥𝑖𝛽)        (3) 

where 

y: observed number of occurrences of incidents per individual worker (0, 1, 2, ...,) 

x: explanatory/independent variable, e.g., safety communication time (0~20) 

i: individual worker (1,2, 3… n) 

λ: average number of incidents per observed time interval 

 

When 𝑥𝑖  is binary, exponential (𝛽)  is referred to as an RR ratio. The RR is 

produced to represent the ratio of the probability of an incident occurring among 

multiple groups. In other words, RR is the ratio of the probability of event 

occurrence (i.e., injury rate) of exposed (i.e., treatment) versus unexposed (i.e., 

control) group. An RR of less than 1.0 reflects a negative relationship (e.g., incident 

occurrence less likely in exposed than in control group), while a value greater than 

1.0 represents positive relationship between the exposed and unexposed group.  

The data in this study are analyzed using the statistical computing package, 

Statistical Package for Social Science (SPSS). In particular, the model-fitted 

statistics, the summary of the model effects, and the parameter estimates are 

reviewed as follows:  

First, the goodness-of-fit table lists various statistics indicating model-fitness. To 

assess the fitness of the model, the goodness-of-fit chi-squared test is conducted. 
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This test evaluates the model form to determine whether or not the Poisson model 

form fits the input incident data. If the results of the test are found to be statistically 

significant, this would indicate that the data do not fit the model well. As a second 

step, Omnibus test whether the explained variance in a set of data is significantly 

greater than the unexplained variance. Using p-values, the model is tested to find 

whether or not it yields statistically significant results. Third, the model effects test 

evaluates each of the model variables with the appropriate degrees of freedom. 

Finally, the parameter estimates indicate the regression coefficients for each of the 

variables, along with robust standard errors, p-values, and 95% confidence intervals 

for the coefficients. Control of Effect Modification and Confounding 

Effect modification and confounding are usually involved in causal studies 

because they provide biased results for exposure magnitude. Generally, to evaluate 

the relationship between a causal factor and an outcome variable, potential 

confounders or effect modifiers must be identified since they can lead to misleading 

outcomes. For the effect modifiers or confounders, stratification is widely used to 

identify and reduce effect modification and confounding; for instance, the 

standardized mortality ratio is a popular method to remove confounding by age 

(Cook, 2007). Some researchers have used confounding and effect modification for 

the same purpose since these two variables are similar. However, it should be 

determined whether a given variable is an effect modifier or a confounder in order to 

prevent a misleading result.  
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Effect modification relationships among three variables can be represented as in 

Figure 5.6. Suppose that age is one of the effect modifiers in a study evaluating the 

efficacy of training to decrease workplace injury. It is certain that training helps to 

improve not only safety performance but also injury rates. Meanwhile, injury rate is 

generally higher in younger age groups than in older ones. Consequently, the injury 

rate will be higher than expected if the trial group covers only younger age. Similarly, 

age may function as a confounder in other study designs.  

 

 

 

Figure 5.6. Relationship diagram of exposure, outcome and effect modification 

 

In contrast to effect modification, confounding is related to both input and output 

variables. For instance, a logistic regression model shows that the injury ratio of shift 

workers is estimated as [Odd Ratio (OR), 2.65]. When considering a third variable 
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such as manual or non-manual work as a confounder, the adjusted OR is lower than 

in the previous estimation, with a value of 1.73. The reason for this discrepancy is 

that a larger proportion of manual workers belong to the night shift than to the day 

shift. These manual workers are more prone to be exposed to risk than are non-

manual workers. As mentioned above, manual worker (third variable) is related to 

both shift work (input variable) and injury ratio (output variable) (Wong et al. 2011a).  

For instance, in one study available in the literature the construction worker lost-

time injury rate ratio (Denmark/Sweden) is 2.06 for minor injuries in a single 

organization that has operations in both countries, while the ratio is found to 

decrease to 1.23 for serious cases, using a regression method which considers sick 

leave policy differences (Spangenberg et al. 2003). The authors of the study 

discovered that Swedish workers are reluctant to report minor injuries since the 

Swedish labour legislation stipulates that the injured worker is responsible to pay for 

their first day of injury-related absence. In contrast, in Denmark employers are 

responsible to cover the cost of lost-time from all injuries. Confounding occurs as a 

result of imbalance between the exposed and unexposed groups with regard to input 

variables (i.e., independent risk variables) and output variable (i.e., the incident of 

interest).  

The difference between confounding and effect modification can be easily 

illustrated by the diagram depicting the relationship among exposure, outcome, and a 

third variable such as effect modifier or confounder (Figures 5.6 and 5.7, 
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respectively). In order for a factor to be considered a confounder, two conditions 

must be met: 

1) the third variable should be associated with exposure without being the 

consequence of exposure, and 

2) the third variable should be associated with outcome independent of exposure, 

but not as an intermediary. 

 

 

Figure 5.7. Relationship diagram of exposure, outcome & confounding 

 

For example, in verifying the relationship between work at height and fall 

accident, occupation is a one of the concerns prior to collecting data. Occupation is 

certainly associated with the frequency of work at height as well as with workplace 

injury. Construction trade workers are more likely to work at height and also have a 

dominant fall accident rate (30%) that is higher than for the second highest 
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occupation (e.g., 13% in service workers) (WorkSafeBC 2013). On the other hand, if 

applying age as a third variable to distort exposure and outcome, it will not be a 

confounder since there will be no association with work at height. Although fall 

accidents tend to be more prevalent within the senior age cohort, age is not found to 

be a major concern with regard to working at height on the industry practice in 

general. 

The most significant difference between confounder and effect modifier has to do 

with association with exposure variable. As described in Figure 5.5, effect modifier 

has no link to exposure variable, while confounder has relationships with both 

exposure and outcome variables. 

The rationale for distinguishing between confounding and effect modification is 

that the approach to achieving final estimation will be different. Effect modification 

is a demographic phenomenon that should be verified, and therefore stratum-specific 

estimates are required in order to achieve accurate results. There are several methods 

of controlling confounding (Swuste et al. 2012);  

1) Stratification (report and compare findings for each category or at each 

level of the confounding factor); this should decrease or eliminate 

confounding effects by the stratifying factor 

2) Standardization or adjustment for an important confounding factor 

3) Multiple regression to “adjust” for multiple confounding factors 

Stratification is widely used to identify and reduce effect modification and 

confounding effects; for instance, the standardized mortality ratio is a popular 
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method to remove confounding by age (Cook et al. 2007). The main process of 

stratification divides the data into subgroups (i.e., strata) according to categories or 

ranges of a factor, and is used to obtain stratum-specific relative risk. Each stratum-

specific relative risk is compared with the crude relative risk. If effect modification 

exists in the analysis, the relative risks of association in the subgroups differ from 

one another; this information can in turn be used to identify the magnitude of 

association among the subgroups based on the adjusted relative risks.  

For instance, if a study assesses the effect of wearing a hearing protection device 

against hearing loss using the regression model, the model first produces crude 

relative risk in order to represent the effect size for all workers (Table 5.1). However, 

if age is assumed as an effect modifier, the stratification by young and old groups 

produces different relative risks for each group. The researcher may conclude that 

the hearing protection devices prevent worker hearing loss in 40% of cases (1 − 0.6 × 

100). When considering the relative risk by age group separately, and comparing 

relative risk between these two groups (0.4 < 0.9), it can be inferred that the use of a 

hearing protection device is more effective for the younger worker group than for the 

old worker group. However, older workers are still more vulnerable to workplace 

noise than are younger workers, even when wearing the hearing protection devices. 

Table 5.2. Example of relative risk interpretation in stratification analysis 

Hearing Protection Device 

Effect Modifier: Age 

Relative Risk of Hearing Loss  

  

All group (Crude relative risk) 0.6 

Young (Age < 30) 0.4 

Old (Age 30+) 0.9 
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In spite of the simple and straightforward way of carrying out the analysis, 

stratification is infeasible if dividing several strata or applying multiple confounding 

variables simultaneously, (which results in a surge of strata containing statistically 

few or no samples). Alternatively, especially to control for multiple confounding 

factors at the same time, stratification is often replaced by regression models. 

The decision tree in Figure 5.8 gives an idea of how to detect whether 

confounding or effect modification is available in the model. From steps 1 to 3, 

crude RR is the main factor by which to estimate the association between the 

exposure and outcome of interest. Considering an example encompassing the 

probability of injury in the intervention and non-intervention group, the data is 

expressed in the 2×2 matrix in Table 5.3.  

 

Table 5.3. Example risk ratio 2 × 2 data generation  

Risk Injury occurred No injury occurred 

Intervention a b 

Non-intervention c d 

 

Crude RR is calculated as follows. 

Crude RR = 
𝑅𝑖𝑠𝑘 𝑜𝑓 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑖𝑛 𝑒𝑥𝑝𝑜𝑠𝑒𝑑 

𝑅𝑖𝑠𝑘 𝑜𝑓 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑖𝑛 𝑢𝑛𝑒𝑥𝑝𝑜𝑠𝑒𝑑
 = 

𝑎/(𝑎+𝑏)

𝑐/(𝑐+𝑑)
  (4) 

 

This crude RR expresses initial relative risk regardless of any confounders or effect 

modifiers. Stratification analysis is conducted with potential effect modifiers and 

confounders by hierarchical sampling such as age, experience, or gender. As a result 
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of stratified RR, if a stratum-specific RR is not different from crude RR, it may be 

assumed that confounding has an impact on the analysis. This brings us to the next 

step on the left side of the tree (Steps 4C to 5C) to define crude and adjusted RRs. If 

this results in significant different from stratum-limited RR, it can be considered as 

an outcome caused by effect modification on the right side of the tree (Step 4EM). In 

the case of effect modification, stratum-specific RRs are the final deliverables to give 

a perspective of the intervention effectiveness of each level (Webb and Bain 2011). 
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Confounding Effect Modification 

* RR: Relative Risk  

Figure 5.8. Decision tree between confounding and effect modification (Webb and Bain 2011) 
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In terms of confounding controlled analysis, baseline ratios of outcome variable 

and adjusted RR for potential confounders are produced as described in Step 4C. 

Change in estimate (CIE) method is employed to remove less effective confounders 

before comparing crude and adjusted RRs at Step 4C. The CIE procedure deletes 

potential confounders in a stepwise fashion, with the full model as the starting point. 

At each step, the covariate that causes the smallest change in the exposure effect 

estimate, compared with the full model estimate, upon deletion is removed. The 

process stops when deletion of each of the remaining variables causes a relative 

change of more than a given cutoff value, usually set at 10%. The idea is that, if the 

most important confounders are taken into account, the full model estimate will have 

a low bias, although possibly high variance.  

A potential confounder is eliminated at each step if the covariate changes between 

the baseline and the full model estimate are immaterial. The process finalizes when 

remaining variables after removing insignificant confounders yield a given minimum 

point, typically set at 10% change (Budtz–Jørgensen et al. 2007). Consequently, at 

Step 5C, adjusted RR is accepted when crude and adjusted RRs are over 10% 

different. On the contrary, only crude RR is used when crude and adjusted RRs are 

the same or within a 10% range. 

5.4 Data Collection and Input 

As the quantitative analysis of the safety intervention, variation studies on 

historical cases of a construction pre-fabrication company based in Alberta, Canada, 

are conducted. Eighteen months of no-lost-time injury data of 156 workers at all 
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fabrication shops and shifts are collected from the environmental health and safety 

department. Three documents are used in the analysis—Shop/Field-Level Level Risk 

Assessment (SLRA) for customized pre-task planning, hazard identification, and 

workplace inspection reports. Table 5.4 and Figure 5.8 show descriptive statistics of 

frontline works participating in the research. As highlighted earlier, incident cases 

are inclined to 0 with low standard deviation up to maximum 5 cases, while age, 

supervisor seniority, and experience maintain statistical homogeneity. With regard to 

crew size, three teams have minimum resources due to special nature of work, 

despite a mean of 12.87. The occupation of “fitter” accounts for the highest 

proportion of overall positions, and day shift accounts for the majority of jobs. The 

population of each shop is equally distributed between AB and C, while other shops 

are varied in distribution due to the unique nature of the work performed. 

 

Table 5.4. Descriptive statistics of participants  

Variable Unit N Min. Max. Mean Std. Dev. 

Incident Case 156 0 5 0.79 0.923 

Age Year 156 19 71 44.26 2.870 

Supervisor 

seniority 

Year 156 3 23 15.78 7.413 

Experience Year 156 1 23 11.30 7.557 

Craft size Persons 156 3 19 12.87 3.820 
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Figure 5.9. Descriptive statistics of participants 
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It is important to understand the characteristic and demographic distribution of the 

particular sample organization associated with demographic variables and work 

nature. Recent research studies have been discussing demographic factors with 

regard to safety performance (e.g., safety climate, injury rate, worker perception), 

examining demographic variables as a target interest. In this study, these 

demographic factors are critical variables to be used as confounders or effect 

modifiers. Before applying demographic factors into the model, it is beneficial to 

understand the relationship between demographic variable and incident rate, since it 

may not be accounted for in the effect modifier or confounder unless any 

relationships between demographic variables and incident rate are identified.  

Previous studies have discussed causal relationships between these demographic 

factors and incident rates, as outlined below:  

1) Age: In general, the younger age group (< 30 years old) has higher injury rates 

than those older than 30 years old (Lander et al. 2016). Furthermore, it can be 

seen that injury incidence is approximately two to three times higher for 

workers below 30 years of age than for those more than 30 years of age. 

According to a report by the National Institute for Occupational Safety and 

Health (NIOSH), younger workers (< 25 years old) experience approximately 

twice as many occupational non-fatal injuries as do older workers.  

2) Foreman seniority: Foreman seniority is one of the critical factors to consider 

in assessing the frontline of an organization since these staff facilitates most of 

the safety intervention for frontline workers. A previous research study has 
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indicated that the relationship between foreman experience and injury 

frequency is a strong inverse correlation and that more injuries are associated 

with foremen who have less experience (Hymel 1993).  

3) Experience: Job tenure is highly related to work injury. Particularly during the 

first month on the job, workers are exposed to significantly higher risk at 

workplace. In spite of a decreasing trend in lost-time claim (LTC) rates for 

work injury and illness in Ontario, for instance, newly employed workers are 

at greater risk than are more experienced workers (Breslin and Smith 2006b). 

In another study, workers with fewer than six months’ experience show 41% 

higher relative risk compared with those with job tenure greater than two 

years (Bena et al. 2013).  

4) Crew size – size of workgroup is significantly related to safety climate as well 

as to workers’ safety perceptions. Through a case study of forestry and 

construction workers, Burt et al. (2008) asserted that social relationships 

among workgroup members help to cultivate attitudes of being conscientious 

about and responsible for upholding safety in the workplace safety in the 

workplace. Hinze (1981) also proved that a smaller workgroup enhances 

social relationships and reduces instances of workplace injury. 

5) Position / Occupation: According to available statistics (e.g., WorkSafeBC 

2014; Bureau of Labor Statistics 2014), typically “welder” is the most injury 

prone occupation in steel fabrication shops. However, no previous studies 

have strictly divided occupations into one standard because each company’s 
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work process is different than others. Thus, only a conceptual idea can be 

obtained from the historical statistics.  

6) Shift: Night shift workers are subject to a higher rate of workplace injury 

(Odd Ratio 2.04) than are day shift workers (Wong et al. 2011). Furthermore, 

a greater proportion of serious injuries occur among night shift workers 

(Ogiński et al. 2000).  

Table 5.5 summarizes all the inputs used for the regression model. The 

independent variables are logically divided into two groups of effect modification 

and confounding variables and evaluation measure variables. For the dependent 

variable, the number of incidents per worker during the 18 months is collected and 

used for the regression. 
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Table 5.5. Summary of input variables in regression model 

Independent / 

Dependent Variable 

Type of Variable Sub-type of Variable Type of Input (Input range) 

Independent Variables Potential Effect 

Modifier & 

Confounder 

Shop Categorical (DE, AB, C, D, E) 

Trade Categorical (CNC, F, W, H, CR) 

F: Fitter, W: Welder, H: Helper, CR: Crane 

operator 

Shift Categorical (N, D) 

N: Night, D: Day 

Age Numerical (19~71 years old) 

Foremen Seniority Numerical (1~23 years) 

Experience Numerical (1~23 years) 

Craft Size Numerical (3~19 persons) 

Evaluation Variable Content Coverage Rate Numerical (0~100 %) 

Longhand Description Frequency Numerical (0~100 %) 

Safety Communication Time Numerical (0~20 minutes) 

Hazard Identification Frequency Numerical (0~5 times) 

Workplace Inspection Frequency Numerical (0~9 times) 

Dependent Variable  No-lost-time Injury Numerical (0~5 times) 
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6 RESULT 

This chapter presents the effect size of each intervention evaluation variable and 

associated effect modification and confounding. As a baseline, effect size is first 

depicted in crude relative risk (RR), regardless of any confounders and effect 

modifiers. Then, any variables affected by effect modification are analyzed by 

stratification, and the ones subject to confounding are described by adjusted RR. 

Time series analysis is then conducted if the variable shows a less statistically 

significant result. The reason to require a more significant relationship in the time 

series analysis than in the group comparison is that the hazard identification practice 

covers not only individual workers but also the entire workplace; consequently, the 

practice improves the entire group’s hazard recognition level more than the 

individual worker’s. 

6.1 Crude Relative Risk for Overall Evaluation Variables 

The RRs derived from the Poisson regression are presented in Table 6.1. The 

table includes evaluated variables, as well as associated coefficient β and crude RR. 

Crude RR can provide only a basic picture of the probability of an incident occurring 

before controlling effect modification or confounding. Further analyses are described 

in the following section.  

With a baseline of 1, an RR below 1 indicates that the incident is less likely to 

occur in the intervention group (e.g., longhand description) than in the control group 

(e.g., shorthand description). On the other hand, an RR above 1 indicates that the 
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incident is more likely to occur in the intervention group than in the control group. 

The way to interpret these RRs would be to compute the percent relative effect (the 

percent change in the intervention group). In this respect, the relative effect of the 

intervention group can be expressed as a percentage of the no-intervention group 

(where the no-intervention group is considered to have 100% risk of injury). For 

example, in the case of RR < 1, those who had the high content coverage rate have a 

54% decrease in risk of injury, compared to the group with the low content coverage 

rate (100%). This example is also represented in the simple calculation expressed 

below. 

 

% decrease = (1 - RR) × 100, e.g. (1 - 0.462) × 100 = 54 % decrease in incident (5) 

 

On the contrary, when RR > 1, (although such cases are not observed in this 

study), the group working at height sees a 23% increase in incidents compared to 

those who do not work at height. 

 

% increase = (RR − 1) x 100, e.g. (1.234 − 1) x 100 = 23% increase in incident (6) 

 

Given the RR of each variable, the content coverage is a significant risk reduction 

variable at 53.8% (RR 0.462 [0.257, 0.830]). It can be interpreted that the group 

whose SLRA is better aligned with company JHA is less likely to encounter an 

incident than are less aligned groups. 



80 

 

From the facilitator’s behaviour perspective, the longhand description in the 

SLRA and more safety communication time are recommended practices to improve 

safety performance. The handwriting application to SLRA is a significant factor, 

associated with a 59% reduction in incident rate compared to computerized pre-

written applications (RR 0.411 [0.245, 0.689]). It can be inferred that the group 

which has foremen conducting longhand description practice in SLRA is less likely 

to be injured than the group which does not. Despite advances in and increasing 

utilization of digital technologies, this result implies that omitting the use of a 

computer in favour of manually written descriptions in safety documentation leads to 

improved safety performance. 

Safety communication time can reduce incidents by a margin of 13% (RR 0.869, 

[0.786, 0.962]) compared to groups with less communication, although this has an 

RR closer to 1 than do previous variables. It can be interpreted that more safety 

discussion and instruction between foremen and workers can decrease injuries 13% 

more than the group with less communication 

 On the other hand, since the hazard identification frequency (Crude RR 0.990 

[0.900, 1.089]) represents an RR of approximately 1, it can be inferred that these 

variables may not be an effective means of decreasing safety incidents. In addition, 

the hazard identification does not produce statistically significant result (P-value: 

0.836). Therefore, further research is required in order to better understand the 

statistical relationship. 
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For workplace inspection frequency, in spite of the relatively low risk reduction 

factor of 7%, the workplace inspection frequency (Crude RR 0.925 [0.857, 0.998]) 

also helps to reduce safety incidents. It can be interpreted that those in the group that 

has a relatively high workplace inspection frequency are less likely to be injured than 

those in the group which rarely conducts workplace inspections.  
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Table 6.1. Crude Relative Risks and confounders in estimated variables 

Evaluation Variable 

 

Coefficient β Crude Relative 

Risk
1
 

95% CI 

 

Effect modifier  Confounder 

  Lower Upper   

Content Coverage Rate 

 

-0.772 0.462** 0.257 0.830 - - 

Longhand Description 

Frequency 

 

-0.889 0.411** 0.245 0.689 Supervisor 

seniority 

- 

Safety Communication 

Time  

 

-0.140 0.869** 0.786 0.962 Age - 

Hazard Identification 

Frequency 

 

0.010 0.990 0.900 1.089 - Experience 

 

Workplace Inspection 

Frequency 

-0.078 0.925* 0.857 0.998 - - 

 

** P-value < 0.01, * < 0.05

                                                 

1
 RR < 1, those in the intervention group are less likely to be injured than those in the no-intervention group 

RR > 1, those in the intervention group are more likely to be injured than those in the no-intervention group 
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6.2 Stratification Analysis by Effect Modification of Longhand Description 

Frequency and Safety Communication Time 

The target group is divided into subgroups by the identified effect modifiers, 

referred to as strata. Given stratification, the RR of each subgroup is independent 

from any effect modification related to the stratifying factor. Table 6.2 gives RRs for 

each stratum. The first observation of note is that handwriting practice in the >19-

year experience group is at relatively higher risk (RR 0.823) than are less 

experienced groups (RR 0.130 and 0.158). This result does not simply mean that 

foremen with more than 19 years of experience are riskier than those with less than 

19 years of experience. Instead, it can be inferred that those working under foremen 

with fewer than 19 years of experience who conduct longhand practice are less likely 

to be injured than those working under foremen with more than 19 years of 

experience. In other words, longhand practice has a greater and more positive impact 

on the immature than on the comparatively mature foremen group with regard to 

SLRA implementation.  

The second observation is that safety communication time in the 35- age group is 

associated with relatively lower risk (RR 0.751) than 35~50 and 50+ age groups (RR 

1.049 and 1.040) with the same amount of the safety communication time. Similar to 

the interpretation of longhand description practice, workers under 35 years old who 

spend the same amount of time on safety communication are less likely to be injured 

than workers aged 35+. It can also be inferred based on this finding that the younger 
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group is more sensitive to the degree of safety intervention implementation than the 

more experienced group. 

Table 6.2. Stratification analysis of relative risks by effect modifier 

Longhand Description in SLRA 

Stratum: Foremen seniority 

RR 95% CI 

Lower Upper 

All group (Crude) 0.411** 0.245 0.689 

<10-year experience group  0.158** 0.039 0.643 

10~19-year experience group 0.130** 0.032 0.528 

>19-year experience group 0.823 0.455 1.489 

Safety Communication Time 

Stratum: Age 

   

All group (Crude) 0.869** 0.786 0.962 

<35 age group  0.751* 0.380 0.972 

35~50 age group 1.049 0.877 1.255 

>50 age group 1.040 0.974 1.111 

** P-value < 0.01, * <0.05 

Due to the detected effect modifications in these two variables, it can be stated 

that these two practices are affected by the given group of the population and its 

characteristics. As illustrated in the confounding and effect modification decision 

tree (Figure 5.8), it is thus necessary to conduct further examination such as 

stratification analysis.  
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6.3 Adjusted Relative Risk by confounding for Hazard Identification 

Frequency 

Based on the decision tree and CIE methods, experience is selected as the 

confounder associated with hazard identification frequency in Table 6.3. In regards 

to hazard identification frequency, adjusted RR (1.007) delivers the opposite result, 

implying that an increasing hazard identification frequency leads to increased 

incident rate. Nevertheless, since these crude and adjusted RRs are not statistically 

significant, it is considered as the reference factor only, and further mathematical 

experimentation must be carried out to determine its effectiveness.  

Table 6.3. Adjusted Relative Risks and confounders in estimated variables 

Evaluation 

Variable 

 

Coefficient 

β 

Crude 

RR 

Adjusted 

RR 

95% CI 

 

Confounder 

   Lower Upper  

Hazard 

Identification 

0.010 0.990 1.007 0.916 1.108 Experience 

 

 

6.4 Time Series Analysis for Hazard Identification Frequency 

Given the RR of each variable, the hazard identification (adjusted RR 0.990 

[0.916, 1.108]) has approximately 1 for RR. Therefore, it can be interpreted into the 

variance of risk is minimum between frequent and rare incident groups. Nevertheless, 

the RR is considered as the reference factor only due to the limited statistically 

reliability as indicated by the high P-value; thus, further mathematical 

experimentation must be carried out. Due to the statistically insignificant result of the 
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Poisson regression analysis with regard to hazard identification frequency and 

incident rate, linear regression is conducted to investigate longitudinal relationship.  

The trend graph in Figure 6.1 illustrates the company-wide monthly moving 

average hazard identification and incident rate for a recent 20-month span using 4-

month time lag analysis. It is observed that the number of hazard identification 

practices is negatively related to incidents 4 months after the time of conducting the 

practice. Apart from that, the coefficient of determination R
2
 indicates that over 63% 

(R square 0.627) of the variation in the explanatory factors is analyzed by the linear 

regression model (see Tables 6.4 and 6.5 and Figures 6.2 and 6.3). Therefore, it can 

be concluded that the hazard identification practice is potentially one of the factors 

contributing to improved safety performance.  

The purpose of hazard identification practice is to detect potential hazards which 

can lead to uncontrollable situations. Such potential hazards exist when workers do 

not possess the knowledge and experience identified in the risk analysis or method 

statement. In this regard, previous studies (Haslam et al. 2005; Carter and Smith 

2006) have noted that 33.5% of hazards are not adequately identified and 42% of 

construction injuries occur due to the lack of hazard identification skills. Therefore, 

further studies are required to further explore this finding. 
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Figure 6.1. Moving average trend of hazard identification and incident rate (4-month lag) 
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Table 6.4. Linear regression model summary 

Model 

(lag time) 

R R Square Adjusted R 

Square 

Std. Error of 

the Estimate 

Durbin-

Watson 

4 months 0.792
a
 0.627 0.606 1.46334 1.291 

3 months 0.561
a
 0.315 0.277 1.98789 0.974 

2 months 0.227
a
 0.052 −0.001 2.33194 0.687 

1 month 0.176
a
 0.031 −0.023 2.35751 0.657 

a. Predictors: (Constant), Hazard Identification 

b. Dependent Variable: Incident 

 

Table 6.5. ANOVA for 4-month time lag case 

Model Sum of 

Squares 

df Mean 

Square 

F Sig. 

4 mo. Regression 64.678 1 64.678 30.204 .000
b
 

Residual 38.544 18 2.141   

Total 103.222 19    

a. Dependent Variable: Incident 

b. Predictors: (Constant), Hazard Identification 
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Figure 6.2. Normal P-P plot of regression standardized residual 

 

 

Figure 6.3. Scatter plot 
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7 CONCLUSION 

This dissertation develops a framework of practical measures to evaluate the 

effectiveness of safety programs and techniques implemented at the frontline level, 

and reports the findings which have been explored through the case study. The first 

step toward solving the problem of determining the effectiveness of frontline safety 

intervention is to find variations in safety competency and acceptance level among 

individual workers as well as among foremen.  

This research highlights three challenges and propose corresponding solutions as 

follows: (1) objective and measurable evaluation criteria are developed through a 

comprehensive literature review and site observation in order to eliminate unclear 

and subjective evaluations of existing frontline safety interventions; (2) regression 

analysis appropriate to rare event incident data distribution is conducted to increase 

validity of evaluations of small organizations; (3) confounding control and stratum 

analysis are suggested to reduce inaccuracy of evaluations resulting from the 

randomizing effect of confounding and effect modification.  

This chapter discusses the differences among and potential improvements to 

existing safety interventions, and addresses the practical and theoretical implications 

of the results. Finally, it is proposed that future study explore attributes to measure 

the effectiveness of other interventions in different work environments, and seek 

psychological and mathematical studies regarding the relationship between worker 

behaviour and safety task overload. 
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7.1 Discussion 

On the basis of previous studies, which have primarily explored which 

interventions are effective, this research investigates approaches that shed light on 

how to effectively implement interventions. The approaches considered in this study 

are indicated by quantifiable relative risk (RR) factors in order to assess the 

relationship between each indicator and safety incidents. This approach gives 

foremen an opportunity to emphasize relatively important implementation action 

items in each intervention; accordingly, management can not only encourage 

workers to facilitate the intervention effectively, but can also evaluate worker 

competency based on objective criteria found in this research.  

Longitudinal study for single groups is widely used in safety intervention research, 

while latent variables can threaten internal validity. Due to the complex nature of 

workplace safety, such internal validity occurs when long-time investigation is 

required, which may involve a number of unintentional organizational events (e.g., 

specific events between measurements, maturation of tasks, instrument changes, loss 

of subjects). Alternatively, Poisson regression with confounding and effect 

modification control is employed to overcome statistical and circumstantial threats. 

As a result, the fully adjusted RRs associated with confounding effect and stratum 

analysis related to an effect modification give a wide spectrum of understanding of 

the magnitude of incident occurrence probability for each intervention variable. This 

approach helps to illustrate practically that the influence of exposing a population is 

considerable, and addresses how to pre-determine potential confounders in industrial 
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health and safety studies. Additional factors, such as adjusted RR and stratification, 

may suggest different perspectives to understand effect size, depending on level or 

characteristic of the given group. It is also observed that time series analysis is better 

suited than is group comparison study to company-wide practices such as hazard 

identification. 

7.2 Practical Implications 

The findings have valuable practical implications in terms of the identified 

relative risks of each effectiveness evaluation variable. First, the success of frontline 

safety management is highly dependent on worker competence, attitude, motivation, 

and behaviour (e.g., content coverage in SLRA, longhand description in SLRA, 

safety communication time). Second, some implementation practices deliver better 

performance in certain age or experience groups. In this study, longhand practice in 

SLRA is found to be relatively beneficial for the less experienced foremen group, 

while the younger group is more sensitive to the degree of safety intervention 

implementation than is the more experienced group. 

Safety communication and interactions between frontline foreman and workers 

during pre-task planning constitute an important behavioural parameter in the 

implementation of safety interventions. Moreover, hazard and control measure 

alignment and handwritten pre-task planning, which assesses “content coverage and 

longhand description”, may be partly related to supervisor attitude in the 

implementation of the particular safety intervention (Oyewole et al. 2010b). 

Interestingly, a number of researchers have shown that people who practice writing 
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by hand have better learning and are better able to compose thoughts than those 

typewriting electronically due to reduced distraction (Yamamoto 2007; Mueller and 

Oppenheimer 2014). Another study has highlighted the hand’s unique relationship 

with the brain when it comes to composing thoughts and ideas (Berninger et al. 

2015). Thus, handwriting practice in safety planning will serve as an indicator of 

intervention effectiveness and supervisor competency. 

In terms of the efficacy depending on the given group’s characteristics, it is 

observed through stratification analysis that longhand description in SLRA is 

effective for less experienced foremen. In addition, more investment of safety 

communication time leads to favourable results among younger workers. 

Correspondingly, these findings provide safety facilitators with valuable practical 

implications, such as (1) recommending that less experienced foremen use 

handwriting in SLRA and (2) encouraging younger workers to communicate with 

foremen about safety issues. 

7.3 Theoritical Implications 

Although incident rates are commonly used in safety data analysis, a causal 

relationship can be over/under-estimated due to statistically insufficient incident data. 

The analysis of these discrete events may be restricted by the infrequency of events 

over long time periods. The preponderance of rare events in the data suggests that 

utilization of Poisson count models is appropriate for this analysis. In the 

construction industry, overall improvement trends in safety performance lead to 

significant decreases in incidents. In spite of the incident reduction achieved, human 
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reactions to rare events (e.g., workplace injuries) appear to be disproportionate to the 

objective probability of the events, e.g., overestimate in judgement (Zacks and 

Hasher 2002; Erev et al. 1994) or underweighting in decision making (Barron and 

Erev 2003). In this regard, the proposed series of verification processes (e.g., visual 

representation of incident data distribution, Kolmogorov-Smirnov test for skewness, 

and Lagrange multiplier test for dispersion) render the selection of appropriate 

regression model to researchers, especially for handling rare incident data.  

In this particular case study, a Poisson regression model is suitable to this data 

distribution and produces objective estimations to aid management’s judgement and 

decision making with regard to subjective assumptions. 

7.4 Limitations 

This study identifies implementation factors relating to safety interventions at the 

frontline level. The research questions posed in this study have been explored and 

addressed through the quantitative analysis performed as part of the case study. 

However, the exploratory nature of this study and the justified importance of the 

construction sector warrant further research in other industries. Furthermore, since 

this sample case is limited to indoor activities and relies on actual data from the 

operations being studied, similar research for frontline safety organizations in 

various industries and environments will be required. 

From a documentation analysis standpoint, discrepancies between record and 

reality are inescapable, (although this research intends to mitigate subjectivity), such 

that document-focused analysis forms a relatively large portion of this research. 
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Well-written safety pre-task planning cannot guarantee injury avoidance. However, it 

can help to define the anticipated behaviour and the implementation of pre-task 

planning, as well as identify engineering defects (Glenn 2011).  

Since this study is based on historical data, it is not possible to take into account 

group variances resulting from modifications of resources or work generation. New 

employment in safety management as well as changes in corporate safety strategy 

has made it difficult to draw conclusions using historical controls. As highlighted by 

Robson (2001), executing certain interventions and evaluating their effectiveness are 

tasks that should be designed at the initial stage. In spite of efforts in this research to 

analyze using objective input data such as numerical incident cases, future study can 

employ intermediate variables (e.g., climate score, work-site observation checklist, 

employ survey) for the purpose of validation. Further studies should also be 

developed to define the relationship between these intermediate variables and injury 

reduction. 

7.5 Recommendations for Future Study 

One of the key points of this research is to find measurable injury reduction 

factors among frontline and micro-size organizations. In practice, worker safety 

behaviour and safety documentation have little variance within the entire work group, 

which makes it difficult to measure relationships between certain potential injury 

reduction factors and incident rates.  

In future studies, various mathematical approaches and trials in other 

circumstances will be used to explorer more attributes of safety intervention 
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effectiveness at the frontline level. This research has evaluated the effectiveness only 

of hazard recognition and control on/by the frontline of an organization, while other 

safety interventions (e.g., craft training, equipment inspection, and housekeeping 

inspection) can be assessed in different sets. 

In spite of a number of safety management practices adopted, frontline foremen 

have a burden to conduct safety activities in addition to scheduling, coordination, 

and quality assurance, regardless of the effectiveness of the program. In fact, the 

excessive amount of responsibilities carried by frontline foremen may result in 

distraction in the workplace. As discussed earlier, it is assumed that workers and 

foremen tend to ignore safety procedures in case of increased cognitive failure and 

stress, resulting in higher-risk behaviour. Therefore, any psychological and 

mathematical studies about safety overload and behaviour would throw light on 

safety intervention effectiveness.  
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APPENDIX A: ANALYSIS PROCESS AND RESULTS 

I. Poisson Regression Crude Relative Risk  

1) Content Coverage Rate 

Model Information 

Dependent Variable Incident 

Probability Distribution Poisson 

Link Function Log 

Case Processing Summary 

 

N Percent 

Included 156 100.0% 

Total 156 100.0% 

Goodness of Fit
a
 

 Value df Value/df 

Deviance 164.356 154 1.067 

Scaled Deviance 164.356 154  

Pearson Chi-Square 158.196 154 1.027 

Scaled Pearson Chi-Square 158.196 154  

Log Likelihood
b
 −179.215   

Akaike's Information 

Criterion (AIC) 
362.429   

Finite Sample Corrected AIC 

(AICC) 
362.508   

Bayesian Information 

Criterion (BIC) 
368.529   

Consistent AIC (CAIC) 370.529   

 

Dependent Variable: Incident 

Model: (Intercept), SLRA_RiskCompliance
a
 

a. Information criteria are in smaller-is-better form. 

b. The full log likelihood function is displayed and used in computing 

information criteria. 
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Omnibus Test
a
 

Likelihood Ratio 

Chi-Square df Sig. 

7.613 1 .006 

 

Dependent Variable: Incident 

Model: (Intercept), 

SLRA_RiskCompliance
a
 

a. Compares the fitted model against the 

intercept-only model. 

Tests of Model Effects 

Source 

Type III 

Wald Chi-

Square df Sig. 

(Intercept) 0.403 1 0.526 

SLRA_RiskCompliance 6.664 1 0.010 

 

Dependent Variable: Incident 

Model: (Intercept), SLRA_RiskCompliance 

Parameter Estimates 

Parameter B Std. Error 

95% Wald Confidence 

Interval 

Hypothesis 

Test 

Lower Upper 

Wald Chi-

Square 

(Intercept) −0.067 0.1052 −0.273 0.139 0.403 

SLRA_RiskCompliance −0.772 0.2990 −1.358 −0.186 6.664 

(Scale) 1
a
     

Parameter Estimates 

Parameter 

Hypothesis Test 

df Sig. 
 

Lower Upper 

(Intercept) 1 0.526 0.935 0.761 1.150 

SLRA_RiskCompliance 1 0.010 0.462 0.257 0.830 

(Scale)      

 

Dependent Variable: Incident 

Model: (Intercept), SLRA_RiskCompliance 

a. Fixed at the displayed value. 
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2) Longhand Description Frequency 

Goodness of Fit
a
 

 

Value df Value/df 

Deviance 159.459 154 1.035 

Scaled Deviance 
159.459 154 

 

Pearson Chi-Square 174.437 154 1.133 

Scaled Pearson Chi-

Square 
174.437 154 

 

Log Likelihood
b
 

−176.766 
  

Akaike's Information 

Criterion (AIC) 
357.531 

  

Finite Sample Corrected 

AIC (AICC) 
357.610 

  

Bayesian Information 

Criterion (BIC) 
363.631 

  

Consistent AIC (CAIC) 
365.631 

  

 

Dependent Variable: Incident 

Model: (Intercept), SLRA_Longhand
a
 

a. Information criteria are in smaller-is-better form. 

b. The full log likelihood function is displayed and used in 

computing information criteria. 

 

Omnibus Test
a
 

Likelihood Ratio 

Chi-Square df Sig. 

12.510 1 .000 

 

Dependent Variable: Incident 

Model: (Intercept), SLRA_Longhand
a
 

a. Compares the fitted model against the 

intercept-only model. 
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Tests of Model Effects 

Source 

Type III 

Wald Chi-

Square df Sig. 

(Intercept) 0.003 1 0.959 

SLRA_Longhand 11.362 1 0.001 

 

Dependent Variable: Incident 

Model: (Intercept), SLRA_Longhand 

 

 

Parameter Estimates 

Parameter B Std. Error 

95% Wald Confidence 

Interval Hypothesis Test 

Lower Upper 

Wald Chi-

Square df 

(Intercept) 0.006 0.1067 −0.204 0.215 0.003 1 

SLRA_Longhand −0.889 0.2639 −1.407 −0.372 11.362 1 

(Scale) 
1

a
 

     

Parameter Estimates 

Parameter 

Hypothesis 

Test 

Exp(B) 

95% Wald Confidence Interval for 

Exp(B) 

Sig. Lower Upper 

(Intercept) 0.959 1.006 0.816 1.239 

SLRA_Longhand 0.001 0.411 0.245 0.689 

(Scale)     

 

Dependent Variable: Incident 

Model: (Intercept), SLRA_Longhand 

a. Fixed at the displayed value. 
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3) Safety Communication Time 

Goodness of Fit
a
 

 

Value df Value/df 

Deviance 164.322 154 1.067 

Scaled Deviance 
164.322 154 

 

Pearson Chi-Square 161.317 154 1.048 

Scaled Pearson Chi-Square 
161.317 154 

 

Log Likelihood
b
 

−179.198 
  

Akaike's Information 

Criterion (AIC) 
362.395 

  

Finite Sample Corrected AIC 

(AICC) 
362.473 

  

Bayesian Information 

Criterion (BIC) 
368.495 

  

Consistent AIC (CAIC) 
370.495 

  

Dependent Variable: Incident 

Model: (Intercept), SLRA_SafetyTimeInvest
a
 

a. Information criteria are in smaller-is-better form. 

b. The full log likelihood function is displayed and used in computing 

information criteria. 

 

Omnibus Test
a
 

Likelihood Ratio 

Chi-Square df Sig. 

7.647 1 .006 

 

Dependent Variable: Incident 

Model: (Intercept), 

SLRA_SafetyTimeInvest
a
 

a. Compares the fitted model against the 

intercept-only model. 
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Tests of Model Effects 

Source 

Type III 

Wald Chi-

Square df Sig. 

(Intercept) 4.380 1 0.036 

SLRA_SafetyTimeInvest 7.399 1 0.007 

 

Dependent Variable: Incident 

Model: (Intercept), SLRA_SafetyTimeInvest 

 

Parameter Estimates 

Parameter B Std. Error 

95% Wald Confidence Interval 

Hypoth

esis 

Test 

Lower Upper 

Wald 

Chi-

Square 

(Intercept) 0.788 0.3768 0.050 1.527 4.380 

SLRA_SafetyTimeInvest −0.140 0.0514 −0.241 −0.039 7.399 

(Scale) 
1

a
 
    

 

Parameter Estimates 

Parameter 

Hypothesis Test 

df Sig. 
 

Lower Upper 

(Intercept) 1 .036 2.200 1.051 4.604 

SLRA_SafetyTimeInvest 1 .007 .869 .786 .962 

(Scale)      

 

Dependent Variable: Incident 

Model: (Intercept), SLRA_SafetyTimeInvest 

a. Fixed at the displayed value. 
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4) Hazard Identification Frequency 

Continuous Variable Information 

 

Std. Deviation 

Dependent Variable Incident .923 
 

Hazard Identification 1.89889 

Goodness of Fit
a
 

 

Value df Value/df 

Deviance 171.926 154 1.116 

Scaled Deviance 
171.926 154 

 

Pearson Chi-Square 167.519 154 1.088 

Scaled Pearson Chi-Square 
167.519 154 

 

Log Likelihood
b
 

−182.999 
  

Akaike's Information 

Criterion (AIC) 
369.998 

  

Finite Sample Corrected AIC 

(AICC) 
370.077 

  

Bayesian Information 

Criterion (BIC) 
376.098 

  

Consistent AIC (CAIC) 
378.098 

  

Dependent Variable: Incident 

Model: (Intercept), HazardIdenti
a
 

a. Information criteria are in smaller-is-better form. 

b. The full log likelihood function is displayed and used in computing information criteria. 

Omnibus Test
a
 

Likelihood Ratio 

Chi-Square df Sig. 

0.043 1 0.835 

Dependent Variable: Incident 

Model: (Intercept), HazardIdenti
a
 

a. Compares the fitted model against the 

intercept-only model. 
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Tests of Model Effects 

Source 

Type III 

Wald Chi-

Square df Sig. 

(Intercept) 4.646 1 0.031 

HazardIdenti 0.043 1 0.836 

Dependent Variable: Incident 

Model: (Intercept), HazardIdenti 

Parameter Estimates 

Parameter B Std. Error 

95% Wald Confidence Interval Hypothesis Test 

Lower Upper 
Wald Chi-

Square df 

(Intercept) −0.226 0.1050 −0.432 −0.021 4.646 1 
HazardIdenti −0.010 0.0487 −0.106 0.085 0.043 1 
(Scale) 1

a
      

Parameter Estimates 

Parameter 

Hypothesis Test 

Exp(B) 

95% Wald Confidence Interval for Exp(B) 

Sig. Lower Upper 

(Intercept) 0.031 0.797 0.649 0.980 

HazardIdenti 0.836 0.990 0.900 1.089 

(Scale)     

Dependent Variable: Incident 

Model: (Intercept), HazardIdenti 

a. Fixed at the displayed value. 

5) Workplace Inspection Frequency 

Omnibus Test
a
 

Likelihood Ratio 

Chi-Square df Sig. 

4.266 1 0.039 

 

Dependent Variable: Incident 

Model: (Intercept), Inspection
a
 

a. Compares the fitted model against the 

intercept-only model. 
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Tests of Model Effects 

Source 

Type III 

Wald Chi-

Square df Sig. 

(Intercept) 1.128 1 0.288 

Inspection 4.042 1 0.044 

 

Dependent Variable: Incident 

Model: (Intercept), Inspection 

 

 

Parameter Estimates 

Parameter B Std. Error 

95% Wald Confidence Interval Hypothesis Test 

Lower Upper 

Wald Chi-

Square df 

(Intercept) 0.282 0.2658 −0.239 0.803 1.128 1 

Inspection −0.078 0.0387 −0.154 −0.002 4.042 1 

(Scale) 1
a
      

 

Parameter Estimates 

Parameter 

Hypothesis Test 

Exp(B) 

95% Wald Confidence Interval for Exp(B) 

Sig. Lower Upper 

(Intercept) 0.288 1.326 0.788 2.233 

Inspection 0.044 0.925 0.857 0.998 

(Scale)     

 

Dependent Variable: Incident 

Model: (Intercept), Inspection 

a. Fixed at the displayed value. 
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II. Poisson Regression Adjusted Relative Risk 

1) Stratification Analysis for Longhand Description Frequency  

I. Seniority group (<10-year) 

Model Information 

Dependent Variable Incident 

Probability Distribution Poisson 

Link Function Log 

Case Processing Summary 

 N Percent 

Included 40 100.0% 
Excluded 0 0.0% 
Total 40 100.0% 

Continuous Variable Information 

 N Minimum Maximum Mean 

Dependent Variable 
Incident 40 0 4 .55 

Covariate 
SLRA_Longhand 40 .0 .8 .400 

Continuous Variable Information 

 Std. Deviation 

Dependent Variable Incident .846 
Covariate SLRA_Longhand .3870 

Goodness of Fit
a
 

 

Value df Value/df 

Deviance 37.249 38 0.980 
Scaled Deviance 37.249 38  
Pearson Chi-Square 38.105 38 1.003 
Scaled Pearson Chi-

Square 
38.105 38  

Log Likelihood
b
 −36.178   

Akaike's Information 
Criterion (AIC) 

76.356   

Finite Sample Corrected 
AIC (AICC) 

76.680   

Bayesian Information 
Criterion (BIC) 

79.733   

Consistent AIC (CAIC) 81.733   

Dependent Variable: Incident 

Model: (Intercept), SLRA_Longhand
a
 

a. Information criteria are in smaller-is-better form. 

b. The full log likelihood function is displayed and used in 

computing information criteria. 
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Omnibus Test
a
 

Likelihood 

Ratio Chi-

Square df Sig. 

8.464 1 0.004 

Dependent Variable: Incident 

Model: (Intercept), SLRA_Longhand
a
 

a. Compares the fitted model against the 

intercept-only model. 

Tests of Model Effects 

Source 

Type III 

Wald Chi-

Square df Sig. 

(Intercept) 0.125 1 0.723 

SLRA_Longhand 6.643 1 0.010 

Dependent Variable: Incident 

Model: (Intercept), SLRA_Longhand 

Parameter Estimates 

Parameter B Std. Error 

95% Wald Confidence Interval 

Hypothesis 

Test 

Lower Upper 

Wald Chi-

Square 

(Intercept) −0.087 0.2464 −0.570 0.396 0.125 

SLRA_Longhand −1.842 0.7149 −3.244 −0.441 6.643 

(Scale) 
1

a
 

    

Parameter Estimates 

Parameter 

Hypothesis Test 

df Sig. 
 

Lower Upper 

(Intercept) 1 .723 .916 .565 1.485 

SLRA_Longhand 1 .010 .158 .039 .643 

(Scale)      

Dependent Variable: Incident 

Model: (Intercept), SLRA_Longhand 

a. Fixed at the displayed value. 
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II. Seniority group (10~19 year) 

Case Processing Summary 

 N Percent 

Included 31 100.0% 
Excluded 0 0.0% 
Total 31 100.0% 

Continuous Variable Information 

 N Minimum Maximum Mean 

Dependent Variable Incident 31 0 3 .58 
Covariate SLRA_Longhand 31 .0 1.0 .494 

 
Continuous Variable Information 

 Std. Deviation 

Dependent Variable Incident .720 
Covariate SLRA_Longhand .3444 

Goodness of Fit
a
 

 Value df Value/df 

Deviance 20.064 29 0.692 
Scaled Deviance 20.064 29  
Pearson Chi-Square 18.709 29 0.645 
Scaled Pearson Chi-

Square 
18.709 29  

Log Likelihood
b
 −25.835   

Akaike's Information 
Criterion (AIC) 

55.670   

Finite Sample Corrected 
AIC (AICC) 

56.098   

Bayesian Information 
Criterion (BIC) 

58.538   

Consistent AIC (CAIC) 60.538   

Dependent Variable: Incident 

Model: (Intercept), SLRA_Longhand
a
 

a. Information criteria are in smaller-is-better form. 

b. The full log likelihood function is displayed and used in 

computing information criteria. 
Omnibus Test

a
 

Likelihood 
Ratio Chi-

Square df Sig. 

8.870 1 0.003 

Dependent Variable: Incident 
Model: (Intercept), SLRA_Longhand

a
 

a. Compares the fitted model against the 
intercept-only model. 

Tests of Model Effects 

Source 

Type III 

Wald Chi-
Square df Sig. 
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(Intercept) 0.520 1 0.471 
SLRA_Longhand 8.121 1 0.004 

Dependent Variable: Incident 
Model: (Intercept), SLRA_Longhand 

Parameter Estimates 

Parameter B Std. Error 

95% Wald Confidence Interval 
Hypothesis 

Test 

Lower Upper 
Wald Chi-
Square 

(Intercept) 0.213 0.2961 −0.367 0.794 0.520 
SLRA_Longhand −2.043 0.7167 −3.447 −0.638 8.121 
(Scale) 1

a
     

Parameter Estimates 

Parameter 

Hypothesis Test 

df Sig.  Lower Upper 

(Intercept) 1 0.471 1.238 0.693 2.212 
SLRA_Longhand 1 0.004 0.130 0.032 0.528 
(Scale)      
Dependent Variable: Incident 
Model: (Intercept), SLRA_Longhand 
a. Fixed at the displayed value. 

 

 

 

III. Seniority group (>19-year) 

Case Processing Summary 

 

N Percent 

Included 85 100.0% 

Excluded 0 0.0% 

Total 85 100.0% 

Continuous Variable Information 

 

N Minimum Maximum Mean 

Dependent Variable Incident 85 0 5 0.98 

Covariate SLRA_Longhand 85 0 0.9 0.247 

Continuous Variable Information 

 

Std. Deviation 

Dependent Variable Incident 0.988 

Covariate SLRA_Longhand 0.3785 
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Goodness of Fit
a
 

 Value df Value/df 

Deviance 88.258 83 1.063 
Scaled Deviance 88.258 83  
Pearson Chi-Square 85.937 83 1.035 
Scaled Pearson Chi-

Square 
85.937 83  

Log Likelihood
b
 −107.809   

Akaike's Information 
Criterion (AIC) 

219.619   

Finite Sample Corrected 
AIC (AICC) 

219.765   

Bayesian Information 
Criterion (BIC) 

224.504   

Consistent AIC (CAIC) 226.504   
Dependent Variable: Incident 
Model: (Intercept), SLRA_Longhand

a
 

a. Information criteria are in smaller-is-better form. 
b. The full log likelihood function is displayed and used in 

computing information criteria. 
Omnibus Test

a
 

Likelihood 
Ratio Chi-

Square df Sig. 

0.424 1 0.515 

Dependent Variable: Incident 
Model: (Intercept), SLRA_Longhand

a
 

a. Compares the fitted model against the 
intercept-only model. 

Tests of Model Effects 

Source 

Type III 

Wald Chi-
Square df Sig. 

(Intercept) 0.028 1 0.866 
SLRA_Longhand 0.413 1 0.520 

Dependent Variable: Incident 
Model: (Intercept), SLRA_Longhand 

Parameter Estimates 

Parameter B Std. Error 

95% Wald Confidence Interval 
Hypothesis 

Test 

Lower Upper 
Wald Chi-
Square 

(Intercept) 0.022 0.1284 −0.230 0.273 0.028 
SLRA_Longhand −0.194 0.3024 −0.787 0.398 0.413 
(Scale) 1

a
     

Parameter Estimates 

Parameter 

Hypothesis Test 

df Sig.  Lower Upper 

(Intercept) 1 0.866 1.022 0.794 1.314 
SLRA_Longhand 1 0.520 0.823 0.455 1.489 
(Scale)      
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2) Stratification Analysis for Safety Communication Time 

I. Age group (<35-year) 

Case Processing Summary 

 N Percent 

Included 44 100.0% 

Excluded 0 0.0% 

Total 44 100.0% 

Continuous Variable Information 

 N Minimum Maximum Mean 

Dependent Variable Incident 44 0 5 1.02 

Covariate SLRA_SafetyTimeInvest 44 5.0 10.0 7.500 

Continuous Variable Information 

 Std. Deviation 

Dependent Variable Incident 1.067 

Covariate SLRA_SafetyTimeInvest 1.8236 

Goodness of Fit
a
 

 Value df Value/df 

Deviance 35.698 42 0.850 

Scaled Deviance 35.698 42  
Pearson Chi-Square 33.929 42 0.808 

Scaled Pearson Chi-

Square 
33.929 42  

Log Likelihood
b
 −50.984   

Akaike's Information 

Criterion (AIC) 
105.967   

Finite Sample Corrected 

AIC (AICC) 
106.260   

Bayesian Information 

Criterion (BIC) 
109.536   

Consistent AIC (CAIC) 111.536   

Dependent Variable: Incident 

Model: (Intercept), SLRA_SafetyTimeInvest
a
 

a. Information criteria are in smaller-is-better form. 

b. The full log likelihood function is displayed and used in 

computing information criteria. 

Omnibus Test
a
 

Likelihood 

Ratio Chi-

Square df Sig. 

14.418 1 0.000 

Dependent Variable: Incident 

Model: (Intercept), 

SLRA_SafetyTimeInvest
a
 



124 

 

a. Compares the fitted model against the 

intercept-only model. 

Tests of Model Effects 

Source 

Type III 

Wald Chi-

Square df Sig. 

(Intercept) 13.944 1 0.000 

SLRA_SafetyTimeInvest 12.580 1 0.000 

Dependent Variable: Incident 

Model: (Intercept), SLRA_SafetyTimeInvest 

Parameter Estimates 

Parameter B Std. Error 

95% Wald Confidence 

Interval 

Hypothesis 

Test 

Lower Upper 

Wald Chi-

Square 

(Intercept) 2.404 0.6439 1.142 3.666 13.944 

SLRA_SafetyTimeInvest −0.341 0.0962 −0.530 −0.153 12.580 

(Scale) 1
a
     

Parameter Estimates 

Parameter 

Hypothesis Test 

df Sig.  Lower Upper 

(Intercept) 1 0.000 11.070 3.134 39.102 

SLRA_SafetyTimeInvest 1 0.000 0.711 0.589 0.858 

(Scale)      

Dependent Variable: Incident 

Model: (Intercept), SLRA_SafetyTimeInvest 

a. Fixed at the displayed value. 

 

II. Age group (35~50 year) 

Case Processing Summary 

 

N Percent 

Included 53 100.0% 

Excluded 0 0.0% 

Total 53 100.0% 

Continuous Variable Information 

 

N Minimum Maximum Mean 

Dependent Variable Incident 53 0.0 4.0 0.92 

Covariate SLRA_SafetyTimeInvest 53 5.0 10.0 7.585 
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Continuous Variable Information 

 Std. Deviation 

Dependent Variable Incident 0.978 

Covariate SLRA_SafetyTimeInvest 1.9849 

Goodness of Fit
a
 

 Value df Value/df 

Deviance 56.068 51 1.099 

Scaled Deviance 56.068 51  
Pearson Chi-Square 54.646 51 1.071 

Scaled Pearson Chi-

Square 
54.646 51  

Log Likelihood
b
 −65.826   

Akaike's Information 

Criterion (AIC) 
135.652   

Finite Sample Corrected 

AIC (AICC) 
135.892   

Bayesian Information 

Criterion (BIC) 
139.593   

Consistent AIC (CAIC) 141.593   

Dependent Variable: Incident 

Model: (Intercept), SLRA_SafetyTimeInvest
a
 

a. Information criteria are in smaller-is-better form. 

b. The full log likelihood function is displayed and used in 

computing information criteria. 

Omnibus Test
a
 

Likelihood 

Ratio Chi-

Square df Sig. 

0.849 1 0.357 

Dependent Variable: Incident 

Model: (Intercept), 

SLRA_SafetyTimeInvest
a
 

a. Compares the fitted model against the 

intercept-only model. 

Tests of Model Effects 

Source 

Type III 

Wald Chi-

Square df Sig. 

(Intercept) 0.580 1 0.446 

SLRA_SafetyTimeInvest 0.843 1 0.359 

Dependent Variable: Incident 

Model: (Intercept), SLRA_SafetyTimeInvest 
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Parameter Estimates 

Parameter B Std. Error 

95% Wald Confidence 

Interval 

Hypothesis 

Test 

Lower Upper 

Wald Chi-

Square 

(Intercept) 0.423 0.5553 −0.666 1.511 0.580 

SLRA_SafetyTimeInvest −0.067 0.0732 −0.211 0.076 0.843 

(Scale) 1
a
     

Parameter Estimates 

Parameter 

Hypothesis Test 

df Sig.  Lower Upper 

(Intercept) 1 0.446 1.526 0.514 4.532 

SLRA_SafetyTimeInvest 1 0.359 0.935 0.810 1.079 

(Scale)      

Dependent Variable: Incident 

Model: (Intercept), SLRA_SafetyTimeInvest 

a. Fixed at the displayed value. 

 

III. Age group (>50-year) 

Case Processing Summary 

 N Percent 

Included 59 100.0% 

Excluded 0 0.0% 

Total 59 100.0% 

Continuous Variable Information 

 N Minimum Maximum Mean 

Dependent Variable Incident 59 0.0 3.0 0.49 

Covariate SLRA_SafetyTimeInvest 59 5.0 10.0 8.203 

Continuous Variable Information 

 Std. Deviation 

Dependent Variable Incident 0.653 

Covariate SLRA_SafetyTimeInvest 1.7497 

Goodness of Fit
a
 

 Value df Value/df 

Deviance 52.792 57 0.926 

Scaled Deviance 52.792 57  
Pearson Chi-Square 50.348 57 0.883 

Scaled Pearson Chi-

Square 
50.348 57  

Log Likelihood
b
 −52.505   

Akaike's Information 

Criterion (AIC) 
109.011   
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Finite Sample Corrected 

AIC (AICC) 
109.225   

Bayesian Information 

Criterion (BIC) 
113.166   

Consistent AIC (CAIC) 115.166   

Dependent Variable: Incident 

Model: (Intercept), SLRA_SafetyTimeInvest
a
 

a. Information criteria are in smaller-is-better form. 

b. The full log likelihood function is displayed and used in 

computing information criteria. 

Omnibus Test
a
 

Likelihood 

Ratio Chi-

Square df Sig. 

0.539 1 0.463 

Dependent Variable: Incident 

Model: (Intercept), 

SLRA_SafetyTimeInvest
a
 

a. Compares the fitted model against the 

intercept-only model. 

Tests of Model Effects 

Source 

Type III 

Wald Chi-

Square df Sig. 

(Intercept) 0.009 1 0.925 

SLRA_SafetyTimeInvest 0.543 1 0.461 

Dependent Variable: Incident 

Model: (Intercept), SLRA_SafetyTimeInvest 

Parameter Estimates 

Parameter B Std. Error 

95% Wald Confidence 

Interval Hypothesis Test 

Lower Upper Wald Chi-Square 

(Intercept) −0.081 0.8613 −1.769 1.607 0.009 

SLRA_SafetyTimeInvest −0.078 0.1056 −0.285 0.129 0.543 

(Scale) 
1

a
 

    

Parameter Estimates 

Parameter 

Hypothesis Test 

df Sig. 
 

Lower Upper 

(Intercept) 1 0.925 0.922 0.170 4.988 

SLRA_SafetyTimeInvest 1 0.461 0.925 0.752 1.138 

(Scale)      
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3) Adjusted Relative Risk for Hazard Identification 

Goodness of Fit
a
 

 Value df Value/df 

Deviance 164.843 153 1.077 

Scaled Deviance 164.843 153  

Pearson Chi-Square 161.546 153 1.056 

Scaled Pearson Chi-Square 161.546 153  

Log Likelihood
b
 −179.458   

Akaike's Information 

Criterion (AIC) 
364.915   

Finite Sample Corrected AIC 

(AICC) 
365.073   

Bayesian Information 

Criterion (BIC) 
374.065   

Consistent AIC (CAIC) 377.065   

Dependent Variable: Incident 

Model: (Intercept), HazardIdenti, Experience
a
 

a. Information criteria are in smaller-is-better form. 

b. The full log likelihood function is displayed and used in computing 

information criteria. 

Omnibus Test
a
 

Likelihood Ratio 

Chi-Square df Sig. 

7.126 2 0.028 

Dependent Variable: Incident 

Model: (Intercept), HazardIdenti, 

Experience
a
 

a. Compares the fitted model against the 

intercept-only model. 

Tests of Model Effects 

Source 

Type III 

Wald Chi-

Square df Sig. 

(Intercept) 0.024 1 0.878 

HazardIdenti 0.021 1 0.884 

Experience 6.393 1 0.011 
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Parameter Estimates 

Parameter B Std. Error 

95% Wald Confidence Interval Hypothesis Test 

Lower Upper 

Wald Chi-

Square df 

(Intercept) 0.021 0.1365 −0.246 0.288 0.024 1 

HazardIdenti 0.007 0.0486 −0.088 0.102 0.021 1 

Experience −0.040 0.0158 −0.071 −0.009 6.393 1 

(Scale) 1
a
      

Parameter Estimates 

Parameter 

Hypothesis Test 

Exp(B) 

95% Wald Confidence Interval for 

Exp(B) 

Sig. Lower Upper 

(Intercept) 0.878 1.021 0.782 1.334 

HazardIdenti 0.884 1.007 0.916 1.108 

Experience 0.011 0.961 0.932 0.991 

(Scale)     

Dependent Variable: Incident 

Model: (Intercept), HazardIdenti, Experience 

a. Fixed at the displayed value. 
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APPENDIX B: EXAMPLE OF COMPANY SAFETY DOCUMENT PRACTICE 

I. Longhand Case 
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II. Shorthand Case 

 

 

 

 

 


