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Abstract 

Prognostics in engineering field is dedicated to predicting how long further a 

component or a system will perform their intended functions before failure. Prognostics 

is an essential building block in condition based maintenance. Accurate prediction of the 

component remaining useful life provides valuable information to decision making on 

maintenance planning, mission planning and logistics. Preventive actions based on 

remaining useful life prediction can dramatically avoid unscheduled downtime, reduce 

operational risk and cost, and improve the safety of the working environment. 

This thesis is devoted to developing integrated prognostics methods for the remaining 

useful life prediction of a specific component by integrating physics of failure and 

condition monitoring data. The first contribution of the thesis is that by combining 

physics and data effectively, the proposed method overcomes the limitations of existing 

prognostics approaches, which are mainly either physics based or data-driven. To account 

for the uncertainty in failure times of units in population, parameters are treated as 

random variables in physical degradation models. By noticing the uniqueness of the 

failure time for a specific unit, this study utilizes Bayesian inference to reduce the 

uncertainty in model parameters, which leads to a more accurate prediction on remaining 

useful life of the specific unit.  

This thesis also proposes an integrated prognostics method for the component 

operating under time-varying operating conditions. The capability to directly relate the 

load to the degradation rate is a key advantage of the proposed method over the existing 
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data-driven methods when dealing with time-varying operating conditions. This is the 

second main contribution of this thesis. 

To cater to real-time applications of condition based maintenance, an efficient 

spectral method named polynomial chaos expansion is investigated for uncertainty 

quantification in prognostics. The proposed method is able to accelerate the uncertainty 

quantification in the integrated prognostics method and the computational efficiency is 

significantly improved, which is the third main contribution of this thesis. 

In addition, this thesis accounts for two important factors when developing integrated 

prognostics method: uncertainty in damage initiation time and shock in the degradation. 

These two factors have not been explicitly considered for prognostics purpose in the 

existing research. By simultaneously adjusting both the damage initiation time and the 

model parameters, the prediction accuracy is improved. The failure time reduction caused 

by the shock is accommodated by identifying a virtual damage initiation time. This work 

consists of the fourth main contribution. 

The integrated prognostics methods developed in this thesis are applied to spur gears. 

Two types of failure modes are considered. One is the tooth fracture due to bending stress 

and the other one is the surface wear due to sliding contact. Validation is conducted using 

a run-to-failure experiment on a planetary gearbox. 
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Chapter 1. Introduction 

1.1 Overview, motivations and objectives  

Condition based maintenance (CBM) which is an innovative technology in reliability 

and maintainability engineering has emerged over recent years. CBM changes the way 

complex engineering systems are designed, monitored and maintained to ensure their 

safety, reliability and availability. The core idea of CBM is to put the engineering system 

under a continuous surveillance and to give maintenance suggestions according to the 

health condition of the system. CBM allows for preventive actions before failure occurs, 

so that the unscheduled downtime can be avoided and the operational risk and cost can be 

reduced. Due to the great potential of CBM, intensive research efforts have been invested 

from both industrial and academic sides to enhance its capability in various application 

areas, such as aerospace, power & energy, ground vehicle, manufacturing industry, as 

well as electronics industry. 

CBM architecture consists of three parts. 1) Diagnostics: to detect, identify and assess 

the faults. 2) Prognostics and Uncertainty Management: to predict remaining useful life 

(RUL) and its confidence level. 3) Maintenance Optimization: to schedule maintenance 

based on the failure probability predicted by prognostics and other information available 

on logistics. The research work in this thesis focuses on prognostics and uncertainty 

management.     

Prognostics is dedicated to predicting how long further a component or a system will 

perform their intended function before failure. Prognostics is an essential building block 

in CBM because accurate prediction of the component RUL provides valuable 
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information to decision making for corrective actions. Uncertainty inherent in prognostics 

imposes major challenges for prognostic methods development. Hence, another important 

task in prognostics is to quantify the uncertainty in RUL prediction. 

During operation in the life span, component health condition degrades gradually, 

resulting in the failure sooner or later. Condition monitoring systems are built to oversee 

the health condition of the component. Some health condition indices are extracted to 

represent the degradation process based on sensor measurements, including but not 

limited to vibration, acoustics and oil debris. There are two basic ways to predict the 

degradation. One is to analyze the sensor data to establish the relationship between the 

data and the degradation; the other one is to utilize the physics behind the degradation to 

build the predictive model. These two ways lead to two types of prognostics approaches: 

data-driven methods and physics-based methods. The third type of prognostics 

approaches tries to combine physics of failure and sensor data to benefit from both, 

which is termed in this paper as integrated prognostics methods. 

Gearbox is a critical system for power transmission. It is widely used in various 

engineering systems, such as ground vehicles, helicopters and wind turbines. Unexpected 

failure of the gearbox will cause catastrophic failure of the whole system. Hence, RUL 

prediction for the gear is important. In this thesis, we investigate two main failure modes 

of the gear. One is the tooth fracture caused by crack propagation due to cyclic bending 

stress at tooth root. The other one is the surface wear due to sliding contact during the 

mesh process. The failure mode of surface wear is studied for validation purpose. 

Existing prognostics methods for the gear are either data-driven or physics-based. The 

two types of methods have their respective drawbacks. Data-driven methods purely 
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depend on data without any consideration of physics, therefore, they sometimes end up 

with meaningless extrapolation. Furthermore, data-driven methods are inadequate to deal 

with time-varying operating conditions simply because it is impossible to build a library 

to cover all the possible operating conditions. While, physics-based methods usually 

assume model parameters to be deterministic without considering uncertainty. In addition, 

they require intensive efforts to build physical models with high fidelity.  

By noticing these limitations of the existing prognostics methods, the first objective 

of this thesis is to develop an integrated prognostics method for gear RUL prediction, 

which is able to combine physics of failure and sensor data to exceed these limitations. 

Although the gear is used to demonstrate the method, by appropriate model adjustment, 

the methodology can be extended to other critical component in engineering systems.  

The second research work is motivated by the inefficiency of the current uncertainty 

quantification methods in prognostics. The slow convergence rate prohibits the full 

exploration of the effects of uncertainty on RUL prediction. Hence, the second objective 

is to propose an efficient uncertainty quantification method in the integrated prognostics.  

The third motivation comes from the difficulties of data-driven prognostics methods 

in dealing with time-varying operating conditions. The third objective is to develop an 

integrated prognostics method that is able to account for changes in operating conditions.  

The fourth work is motived by the lack of research to consider uncertainty in damage 

initiation time and shock in the degradation in the integrated prognostics. The damage 

initiation time determines the starting point of prediction, whose uncertainty has not yet 

been explicitly considered in the existing prognostics methods. The shock causes a 

sudden amount of damage accumulation. Because of the shock, the degradation path will 
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deviate from the original one, resulting in a shortened lifetime of the component. Both 

factors have influences on the failure time. Hence the fourth objective is to accommodate 

their effects in the integrated prognostics.  

1.2 Approaches and validation  

There is a large variation in failure times of component population. Thus failure time 

is treated as random variable. Failure is often defined by the exceedance to a predefined 

threshold of an indicator. This indicator is usually the output of the prognostic model. 

Hence, when the prognostic model is used to predict the degradation, the uncertainty is 

usually assigned to model parameters. However, for an individual component that is 

currently under monitoring, its failure time is unique. The model parameters for this 

individual component should be deterministic or at least have very small uncertainty. In 

the proposed integrated prognostics methods, we can reduce the uncertainty in model 

parameters by utilizing the sensor data. After adjustments, the model parameters can 

better characterize the degradation path for this specific component. The predicted failure 

time will be more accurate. Bayesian inference is naturally amenable to uncertainty 

quantification. It is used to reduce the uncertainty in the model parameters. 

The proposed integrated method is able to deal with time-varying operating 

conditions in that the damage (crack) propagation model naturally relates the load to the 

degradation rate. The stress intensity factor (SIF) is calculated as a function of both crack 

size and load in the theory of linear elastic fracture mechanics. The time-varying loading 

condition considered in this thesis has a profile of piece-wise constant.  
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Uncertainty propagation is needed in Bayesian inference and failure time distribution 

computation. Monte Carlo simulation is often used to realize uncertainty propagation. 

However, its slow convergence rate makes it computationally infeasible to deal with high 

dimensional uncertainty. This thesis investigates a spectral method named polynomial 

chaos expansion (PCE) to improve the computational efficiency for uncertainty 

quantification in integrated prognostics.  

The prognostic model in the proposed integrated method is based on physics of 

failure. Hence, physical models are needed to describe the engineering system and the 

damage progression. Usually, the available physical models are used for system 

simulation under the healthy condition. However, since prognosis is to predict the 

damage progression, the physical models with faults are in need. Moreover, it is desirable 

to characterize the interactions of components in the system to achieve high fidelity. In 

the proposed integrated prognostics method, physical models include damage progression 

model, finite element model and gearbox dynamics model. These physical models can 

give good simulations for both the faulty gearbox dynamics and the fault progression 

process. 

Prognosis starts when a fault is detected and assessed by diagnosis. However, the 

inaccuracy of diagnosis leads to the inaccuracy of start time of prognosis. Early start time 

will underestimate the failure time, while late start time will overestimate the failure time. 

Hence, the damage initiation time should be considered as a source of uncertainty. By 

considering this type of uncertainty, we are able to deal with the lifetime reduction due to 

shock occurrence. The idea is to identify a different damage initiation time from the 
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original one. By adjusting both the damage initiation time and the model parameters 

simultaneously, the prediction accuracy is improved and the shock is accommodated. 

Validation of the proposed method is conducted by utilizing a set of experimental 

data from a run-to-failure test on a planetary gearbox. Mass loss of the sun gear is 

recoreded. It is assumed that the mass loss is caused by both rolling and sliding contact 

when gears are in mesh. Wear model is established for describing the wear progression. 

The recorded data on the mass loss are used to update the wear coefficient, which is the 

model parameter in the wear model. The proposed integrated method is able to give mass 

loss predictions that well agree with the actual mass loss.      

1.3 Main contributions 

 Propose an integrated prognostics method for gear RUL prediction with failure mode 

of tooth fracture. The proposed method is better than physics-based method in that the 

physical model parameters can be adjusted for a specific component; and is better 

than data-driven method in that massive data trending is not necessary.     

 Propose an efficient uncertainty quantification method in the integrated prognostics 

method based on PCE. The proposed method is able to accelerate the update process 

of model parameters as well as the uncertainty propagation in RUL distribution 

computation.  

 Propose an integrated prognostics method under time-varying operating conditions. 

The capability to directly relate the load to the degradation rate is a key advantage of 

the proposed method over existing data-driven methods.  
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 Propose an integrated prognostics method considering uncertainty in damage 

initiation time and shock in the degradation. By simultaneously adjusting both the 

damage initiation time and the model parameters, the prediction accuracy is improved 

and the shock effect is accommodated.  

 Propose an integrated prognostics method for the gear with failure mode of tooth 

surface wear, which is caused by sliding contact during the mesh process. The 

proposed method is validated using experimental data from a run-to-failure test. 

1.4 Organization and outline  

The thesis is organized as follows.  

Chapter 2 is the literature review on CBM, current prognostics approaches, physical 

models and uncertainty quantification.  

Chapter 3 is devoted to presenting the gearbox dynamics model that is used in this 

thesis. This dynamics model outputs the dynamic load that the gear tooth (healthy and 

faulty) experiences during the mesh process. Potential energy method is used to calculate 

the stiffness of the gear tooth that bears a curved crack initiated near the tooth root.  

Chapter 4 presents an integrated prognostic method for RUL prediction of the gear 

with the failure mode of tooth fracture. There are three basic parts in the proposed 

method: physical models, data and Bayesian inference. The logic is that, we will use data 

to update physical model through Bayesian inference. The physical models include a 

damage progression model, a finite element model and a gearbox dynamics model. The 

damage progression model adopted is the well-known Paris’ law, which describes the 

crack evolution with loading cycles. The parameters in the damage progression model are 
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to be updated in Bayesian inference. Finite element (FE) model is used to calculate SIF, 

which is an important quantity in Paris’ law. The load applied on the FE gear model is 

calculated by the gearbox dynamics model discussed in Chapter 3. The data is of two 

types:  degradation histories and sensor data. The degradation histories are used to 

determine an initial prior distribution for the model parameters; the sensor data are 

collected from condition monitoring and are used to update the model parameters.  

Chapter 5 presents an efficient uncertainty quantification method based on PCE in the 

integrated prognostics method. The sources of uncertainty considered are classified into 

three categories: model input uncertainty, measurement uncertainty and model 

uncertainty, among which, the model input uncertainty is further divided into updating-

uncertainty and non-updating-uncertainty. A form of likelihood in Bayesian inference 

considering different roles of different types of uncertainty is defined based on this 

classification. PCE is proposed to accelerate the update process and the uncertainty 

propagation in RUL prediction.  

Chapter 6 presents the integrated prognostics method under time-varying operating 

conditions. One of the most important operating conditions that the gearbox is subject to 

is loading. This chapter considers the time-varying loading profile of piece-wise constant. 

In the theory of linear elastic fracture mechanics, the surface of SIF is obtained as a 

function of both crack size and load. An efficient method based on PCE is used to 

accelerate Markov Chain Monte Carlo (MCMC) sampling in Bayesian inference 

implementation. The model parameters in damage progression model are considered to 

be correlated. Their joint probability density function (PDF) is updated when a new 
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observation on crack size is available at inspection time. Uncertainty propagation in RUL 

prediction is implemented using PCE considering the parameter correlation.   

Chapter 7 presents the integrated prognostics method considering uncertainty in 

damage initiation time and shock in degradation. The damage initiation time determines 

the start time of prognostics, which is the intercept of degradation path with time axis at 

the initial damage size. The model parameters determine the slope of the degradation path. 

Hence, simultaneous updates of damage initiation time and model parameters manifest 

the updates of both the slope and the intercept of the degradation path. In this way, the 

degradation path can be better characterized. Shock will cause a sudden damage 

accumulation, deviate degradation path from the original one, and shorten the gear 

lifetime. The proposed method accommodates the lifetime reduction by identifying a 

virtual damage initiation time. 

Chapter 8 presents the experimental validation for the integrated prognostics method. 

The failure mode considered is surface wear due to sliding contact during the mesh 

process. A run-to-failure test is conducted on a planetary gearbox. During the test, the 

weight loss of the sun gear is recorded at several inspection times. The surface wear and 

pitting are assumed to be responsible for the mass loss. A wear model for the sun gear 

tooth is established to predict the mass loss. In the integrated prognostics method, the 

wear coefficient in this wear model is updated by utilizing the measurements on mass 

loss collected during the experiment.   

Chapter 9 concludes the thesis and suggests areas for further research. 

 



10 

 

Chapter 2. Background and literature review 

2.1 CBM 

Reliability describes the ability of a product to perform its intended functions. High 

requirement of reliability is crucial to the engineering systems which are responsible for 

production, manufacturing, power generation and transportation. Unexpected failures of 

these systems will cause catastrophic loss of asset, undermine the revenue and the 

reputation of enterprises, and more dangerously, jeopardize human lives. The primary 

task in maintenance is to take actions to retain a system in a state in which it can perform 

the required function. Corrective maintenance is a maintenance strategy that suggests 

maintenance actions after failure occurs. It is totally reactive which allows for the 

unexpected failure to happen. Hence, this type of maintenance suffers from poor 

availability and high outage rate. Instead, preventive maintenance (Jardine and Tsang 

2005) suggests a time interval to perform the component replacement. This time interval 

can be optimized in terms of total cost and/or reliability based on the failure time 

distribution of the component. Even though the preventive maintenance can prevent 

unexpected failures to some extent, it is still resource wasteful, because the component 

may be replaced when it still has good life left.  

In the recent decade, CBM has emerged as a maintenance technology (Vachtsevanos 

et al. 2006). The strategy is to take maintenance actions according to the equipment 

health condition. CBM can achieve reliable and cost-effective operations of engineering 

systems. 
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In CBM, condition monitoring system is used to monitor the equipment health by a 

variety of sensors. Based on the sensor signals, faults are detected and assessed by 

diagnostics; future degradation and RUL are predicted by prognostics; and maintenance 

actions are taken accordingly. Diagnostics, prognostics and maintenance optimization are 

the three basic components in CBM (Jardine et al. 2006). 

2.2 Prognostics methods  

Classification of prognostics methods can be considered from different angles. 

Byington et al. (2002) classified the prognostic approaches into experience-based 

prognostics, evolutionary or trending models and model-based prognostics. Jaw and 

Wang (2004) proposed a classification of prognostics systems in terms of off-line and on-

line. It depends on whether the system performs tasks by feeding it with real time data 

while the equipment is in operation or by retrieving the previous stored data to do the 

analysis for the past operations. Hines and Usynin (2008) categorized the prognostics 

methods by the type of information they use: failure data-based, stress-based, effects-

based and combined type. The combined type was defined as methods which made use of 

a combination of failure data, stress data and effects data. A review paper on the 

prognostics methods in the field of rotating machinery (Heng et al. 2009) divided the 

prognostics models into traditional reliability models, prognostic models (physics-based, 

data-driven) and integrated approach. While in the paper (An et al. 2011), the authors 

categorized the methods into data-driven, physical model-based and hybrid approaches. 

The hybrid approaches specifically include particle filters and Bayesian techniques. Zio 

(2012) proposed classification among prognostic approaches as first-principle model-

based, reliability model-based and process sensor data-driven approaches. The author 
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also discussed the ways to hybrid information and data from various sources. By noticing 

these existing classifications, this thesis partitions the prognostics methods in its own way: 

data-driven methods, physics-based methods and integrated methods. The integrated 

methods are defined as a type of methods in which the data will be used to affect the 

physical model. In the following sections, the literature review will be conducted 

according to this classification. 

2.2.1 Data-driven prognostics methods 

Generally speaking, data-driven prognostics methods depend on data. They basically 

have two directions to proceed. One direction is based on the concept of reliability, where 

the failure time distribution is estimated by parametric or non-parametric models. The 

other direction is based on diagnostics feature extraction and intelligent training.  

Prognostics is closely related to reliability. Component reliability describes the 

probability of how long the component will fail. Time to failure of a component is a basic 

quantity of interest in reliability engineering. It is treated as random variable 

characterized by its probability distribution. The times when the operation is stopped but 

the component has not yet failed are termed as censor data. The history associated with 

the censor data is called suspension history. The suspension history provides the 

reliability information of the component surviving certain time. Both failure history and 

suspension history are useful in determining the failure time distribution. Prognostics 

based on failure time distributions, like Weibull analysis (Abernethy 1996), is one of the 

data-driven methods. When operating environment is considered, the reliability is also a 

function of the environment. The environment variables include temperature, humidity, 
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pressure, stress, speed, etc., which influence the failure time of the component. These 

variables are termed as “covariates”. The well-known proportional hazard model (PHM) 

proposed by Cox (1972) is a data-driven prognostics method considering covariates. In 

addition to environment variables, covariates in PHM can also represent health indicators. 

The hazard rate (2.1) in PHM consists of two parts: hazard baseline and covariate effects.  

ℎ(𝑡 | �̃�) = ℎ0(𝑡) exp(∑𝛽𝑖𝑧𝑖

𝑀

𝑖=1

)                                        (2.1) 

The coefficients 𝛽 could be estimated by partial likelihood. Anderson and Gill (1982) 

further investigated the scenario in which the hazards were non-proportional and the 

covariates were time-dependent. Markov models were often used to account for the 

influence of the covariates on component failure behavior (Samanta et al. 1991; Yeh, 

1997; Banjevic et al. 2001; Marseguerra et al. 2002). A disadvantage of reliability model 

is that it usually requires a large number of degradation states and distribution parameters 

to be fitted by data. As the equipment becomes more and more reliable, failure data will 

be insufficient for fitting the distributions.   

Lu and Meeker (1993) proposed a two-stage method to estimate the failure time 

distribution using degradation measures. General path model (linear or nonlinear) were 

developed, which was able to account for both population and individual effects. The 

model parameters were estimated using historical data. 

Different from the scarce of failure data, in CBM rich sensor data are available 

collected from condition monitoring of the component. Extracted features from the sensor 

data are expected to represent the component health condition. The features that are 

suitable for prognostics are expected to be damage sensitive and to have an increasing 



14 

 

trend with time as the damage accumulates. With these features, data-driven methods can 

be developed to identify the relationship between degradation status and aging of the 

component. Such approaches are mainly statistical methods, like regression, time series 

analysis (Hines and Garvey 2007), and artificial intelligence algorithms such as neural 

networks, fuzzy logic systems and support vector machines (Yan et al. 2004; Wang et al. 

2004; Sotiris and Pecht 2007; Peng et al. 2010).  Among these artificial intelligence 

methods, artificial neural network (ANN) is a promising and commonly used data-driven 

method for prognostics. Gebraeel et al. (2004, 2008) developed a feedforward neural 

network for ball bearing RUL prediction. The output of ANN model was the vibration 

magnitude. In the paper (Wu et al. 2007), the ANN output was life percentage. This type 

of output facilitates the threshold definition. Tian et al. (2010) developed a prognostics 

method based on ANN utilizing both failure and suspension histories, in which age of the 

component and condition monitoring data were the inputs, and life percentage was the 

output. A recurrent wavelet neural network was developed by Wang and Vachtsevanos 

(2001) to predict the rolling element bearing crack propagation. Other published work on 

component health prognostics based on ANN techniques are found in (Wang et al. 2004; 

Shao and Nezu 2000; Huang et al. 2007; Tse and Atherton 1999; Tian 2012).  These data-

driven methods can directly use the sensor data for equipment failure prognostics. 

However, because they are purely depend on sensor data without considering any physics, 

massive data training is needed and sometime the methods end up with meaningless 

extrapolation.  
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2.2.2 Physics-based prognostics methods 

Physics-based prognostics methods predict the component degradation based on 

physics of failure. The physical model is typically a mathematical equation that describes 

the damage evolution, as known from first-principle laws of physics. Because physics-

based methods are based on physics of failure, they have high prediction accuracy when 

applicable. In this type of methods, faulty system modeling is often required to calculate 

the physical quantities that determine the damage evolution. 

The faulty system modeling is a challenging issue in physics-based prognostics. Since 

analytical approaches are impossible or computational prohibited for many real 

applications, numerical methods become the indispensable tools to solve problems. FE 

method is a powerful numerical method to solve problems in structural mechanics, fluid 

mechanics, heat transfer as well as electromagnetics. In physics-based prognostics 

methods, the physical models often involve finite element analysis for a single stand-

alone component or a complex system considering the interactions of all the composing 

components. System dynamics modeling is also often used for the simulation of system 

vibration. In particular, the system dynamics at the faulty state is of our interest for the 

purposes of diagnostics and prognostics. Considering the system dynamics often 

facilitates to improve the fidelity of physical models.    

After obtaining the physical quantities by FE analysis and system dynamics 

modeling, the damage progression model will predict the future degradation and estimate 

the RUL of the component. Most approaches track the degradation and define the time to 

failure as the time when the degradation indicator exceeds a predefined threshold. The 
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physical models used in the literature for component failure prediction are discussed as 

follows. Paris’ law (Paris and Erdogen 1963) and its variants (Collipriest 1972; Inoue et 

al. 1999; Wheeler 1972) are often used to describe crack growth process. Kacprzynski et 

al. (2004) developed a 3D FE model for a cracked spiral bevel gear used in the helicopter 

transmission. Li and Lee (2005) and Li and Choi (2002) proposed a method of predicting 

RUL based on Paris’ law for spur gears. The method to predict the lifetime of a shaft with 

a crack was found in (Oppenheimer and Loparo 2002). Researchers also employed Paris’ 

law for spall expansion (Li et al. 1999; Kotzalas and Harris 2001; Roemer et al. 2008; 

Hannes and Alfredsson 2012) under rolling contact. Damage mechanics theory was 

investigated in (Xu and Sadeghi 1996; Marble and Morton 2006; Qiu et al. 2002) to 

predict the pitting process. The Archard’s model was used to describe the surface wear 

evolution of gears in (Wu and Cheng 1993; Flodin and Andersson 1997; Bajpai and 

Kahraman 2004). For electrical devices, like battery, the degradation models include 

Arrhenius model and Eyring model, etc.  

Physics based methods have high prediction accuracy, however, building an accurate 

physical model is not a trivial task, especially for complex engineering systems that 

involve many components, multiple failure modes and complicated working environment. 

Even if a high fidelity model is available, too much computational time may prohibit it 

from being used in real-time prognostics applications. In addition, physics based methods 

usually use deterministic model parameters without considering uncertainty. However, 

the times to failure exhibit a large variation even for identical components under well 

controlled environment. Hence, physics based methods fail to address the uncertainty in 

failure times. 
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2.2.3 Integrated prognostics methods 

Data affect model in various ways. For example, prediction is usually performed after 

the fault is detected and assessed by analyzing the sensor data in diagnostics. In other 

words, the size of the initial fault actually serves as the initial condition in the prediction 

model. Data can also be used to calibrate model parameters and to estimate the fault state. 

Particle filter (Orchard and George 2007; Cadini et al. 2009; Zio and Peloni 2011) is a 

state-of-the-art integrated prognostics method. When the damage progression is modeled 

as a dynamic system, particle filter can deal with non-linear state transition and non-

Gaussian noise. The fault state and the parameters can be estimated and updated using 

observations sequentially. Various uncertainty sources were considered by Sankararaman 

et al. (2011) including loading conditions, material properties, data uncertainty and model 

uncertainty. However, Bayesian inference was used to calibrate only three selected 

parameters based on a sensitivity analysis because Monte Carlo simulation prevented the 

full consideration of the effects of all the uncertainty sources on the failure prediction. 

Byington et al. (2009) used vibration diagnostics to update the model prediction for a 

cracked shaft. The model inputs were considered to be normal random variables. Monte 

Carlo simulation was used to obtain a distribution characterizing the dispersion in the 

fatigue life. Coppe et al. (2010) considered the RUL prediction for a structure that had a 

crack in it. A Bayesian framework was used to reduce the uncertainty in the material 

parameters in Paris’ law. With the uncertainty reduction, prediction on RUL was more 

accurate. An et al. (2011) extended Coppe’s work to identify correlated parameters 

simultaneously via Bayesian inference. Standard MCMC method was used to calculate 

Bayesian posterior joint distribution of the correlated parameters.  
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2.3 Physics of failure 

Physics-based prognostics methods take advantage of physics of failure. This thesis 

focuses on the life prediction of gears. Two failure modes of gears will be considered. 

One is the tooth fracture due to cyclic bending stress, and the other one is the surface 

wear due to sliding contact during the mesh process. This section presents the physics 

laws behind the physical models of these two failure modes. 

2.3.1 Fracture  

Fracture is a serious and commonly seen failure mode in engineering structures and 

mechanical components, such as ship deck, aircraft fuselage, bridge, oil pipeline, bearing, 

gear and shaft. Fracture is caused by crack propagation. In this section, fracture 

mechanics will be discussed in terms of its FE solution. The methods are presented to 

calculate SIF and crack growth direction. In addition, fatigue life models are discussed 

which are used to describe the crack growth with loading cycles. 

2.3.1.1  Fracture mechanics 

Unexpected fractural failures jeopardize human safety and engineering system 

integrity, which stimulate the research efforts to predict and control their occurrence. The 

work in this thesis is constrained within the theory of linear elastic fracture mechanics. 

FE method is widely used for stress analysis in fracture problem, where the discontinuity 

in the geometry introduced by the crack gives rise to a singularity of the stress and strain 

fields near the crack tip. Special elements are needed to simulate this singularity in 

fracture FE models. The fracture modes in the continuum can be considered in three 
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forms according to the loading modes: Mode I – opening; Mode II – in-plane sliding; 

Mode III – anti-plane tearing. These three modes are shown in Figure 1. 

 

Figure 1. Three types of loading on a cracked body (Anderson 2005). 

In the opening mode, the cracked body is loaded by tensile forces tending to open the 

crack; the sliding mode refers to in-plane shear loading, and the tearing mode 

corresponds to out-of-plane shear loading. SIF is an important quantity in fracture 

mechanics because it describes the stress field in the region near the crack tip and 

determines the crack propagation direction. Pertinent to the three loading conditions, 

there are three types of SIF: opening mode  𝐾𝐼, sliding mode 𝐾𝐼𝐼, and tearing mode 𝐾𝐼𝐼𝐼.  

2.3.1.2  Crack tip singularity 

From Williams (1957), the stress field near the crack tip in 2D fracture problem is 

shown in Figure 2. The normal stress 𝜎𝜃𝜃 , 𝜎𝑟𝑟  and shear stress 𝜎𝑟𝜃   are expressed 

approximately in cylindrical coordinate system as follows:  

𝜎𝜃𝜃 =
1

√2𝜋𝑟
cos

𝜃

2
[𝐾𝐼 cos

2
𝜃

2
−

3

2
𝐾𝐼𝐼 sin 𝜃]                                  (2.2) 

𝜎𝑟𝑟 =
1

√2𝜋𝑟
cos

𝜃

2
[𝐾𝐼 (1 + sin2

𝜃

2
) +

3

2
𝐾𝐼𝐼 sin 𝜃 − 2𝐾𝐼𝐼 tan

𝜃

2
]                 (2.3) 

𝜎𝑟𝜃 =
1

2√2𝜋𝑟
cos

𝜃

2
[𝐾𝐼 sin 𝜃 + 𝐾𝐼𝐼(3 cos 𝜃 − 1)]                            (2.4) 
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Figure 2.Two dimensional stress field near the crack tip. 

A singularity of 𝑟−1/2 in the stress along the ray originating from the crack tip is seen 

in the above expressions. The usual element type with polynomial shape function has 

difficulty in simulating such singularity, which motivates the invention of the special 

element called “singular” element. The essential novelty of the singular element is to 

create the 𝑟−1/2  singularity along the element edge as the point approaches the crack tip 

by moving the element node from the middle to the quarter of the element edge, as shown 

in Figure 3.   

      

Figure 3. Singular elements.  
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The singular element reproduces the 𝑟−1/2  singularity near the crack tip in FE 

formulation. Higher order elements have capabilities to approximate the real stress field 

more accurately. Within the framework of linear elastic fracture mechanics, stress and 

displacement fields in the area near the crack tip are determined by the SIFs. Techniques 

to calculate the SIFs include direct approach and energy approach. To be more specific, 

three methods are commonly used for computing SIFs under mixed Mode I and Mode II 

loading: (1) displacement correlation technique (Shih et al. 1976), (2) potential energy 

release rate technique (Narayana and Dattaguru 1996), (3) J-integral (Raju and 

Shivakumar 1990). The first technique is a direct approach and the rest two are energy 

based methods. In this thesis, the software of FRANC2D is adopted to compute the SIFs. 

FRANC2D is able to calculate SIFs using the three above methods. Direct approach 

based on the singular element is presented in the following section.  

2.3.1.3  SIF calculation using direct approach  

SIF dominates the stress states near the crack front fields under the condition of 

small-scale yielding. In order to predict the fracture process, including crack growth rate 

and trajectory, SIF should be the first to calculate.  

The direct approach is a displacement correlation method. The idea is to correlate the 

local displacements with their theoretical asymptotic values. The SIFs appearing in these 

equalities are extracted as a scaling parameter. If the triangular singular elements are used 

around the crack tip, as shown in the Figure 4, the displacement correlation method gives 

the following formulas for SIFs: 
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𝐾𝐼 =
𝐺√2𝜋

√𝑙(2 − 2𝜈)
[4(𝑣𝑏 − 𝑣𝑑) + 𝑣𝑒 − 𝑣𝑐]                                 (2.5) 

𝐾𝐼𝐼 =
𝐺√2𝜋

√𝑙(2 − 2𝜈)
[4(𝑢𝑏 − 𝑢𝑑) + 𝑢𝑒 − 𝑢𝑐]                                (2.6) 

where 𝑢𝑖 , 𝑣𝑖 , 𝑖 = 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 are the displacements obtained by FE method along 𝑥 and 𝑦 

directions respectively; 𝑙 is the length of element edge.    

 

Figure 4. Triangular singular element near the crack tip. 

Direct approach is simple and it expresses the SIFs as functions of the nodal 

displacements. The correlation form could have other variants. The accuracy depends on 

the local meshing. The use of singular element reduces the heavy computational work of 

refining the mesh size near the crack tip. The direct approach is used for the problem 

considered in this thesis.   

2.3.1.4  Crack growth trajectory 

Crack trajectory prediction is an important topic in fracture mechanics. It is also 

essential in health management in mechanical component suffering from crack fracture. 

Take the gear for example. For the sake of lightness, transmission system in the aircraft 



23 

 

and helicopter often utilizes gear set with thin rim. If the crack at the gear root grows 

towards to the rim, the failure will be catastrophic and the broken gear will cause damage 

to other critical components in the system. The consequence is more severe than the 

transverse crack trajectory across the tooth thickness. Lewicki and Ballarini (1997) did a 

research on the gear crack propagation path. Figure 5 shows the predicted crack 

propagation paths for gears with different backup ratio, from which it can be seen the 

crack towards to the rim in the thin-rimmed gear.  

 

Figure 5. Crack propagation paths with different backup ratio (Lewicki and Ballarini 

1997). 

To determine the crack propagation direction, the stress state near the crack tip needs 

to be investigated. According to Williams (1957), the leading stress term is singular in 𝑟 

and dominates the stress field near the crack tip in the elastic solution. Erdogan and Sih 

(1963) proposed the first-order maximum tangential stress theory for isotropic materials. 

It stated that the crack extension started at the crack tip and would grow in the direction 

normal to the maximum tangential tensile stress. Mathematically, by taking the derivative 

of 𝜎𝜃𝜃 in (2.2) with respect to 𝜃, the crack propagation angle is 

𝜃𝑐 = 2 tan−1 (
1 − √1 + 8(𝐾𝐼𝐼/𝐾𝐼)2

4𝐾𝐼𝐼/𝐾𝐼
).                                 (2.7) 
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To obtain the 2D crack trajectory, a static stress analysis should be done for each crack 

growth step. Then the trace of the crack tip through all the extension steps consists of the 

trajectory. 

2.3.1.5  Crack propagation life model 

Many mechanical components in engineering systems are subject to cyclic loading 

and susceptible to fatigue crack. For example, the shaft is loaded by tension and 

compression alternatively; the gear tooth is loaded only when it meshes. The overall 

fatigue life of the mechanical component can be described by three stages: crack 

initiation, crack propagation and fast rupture. Once the initial crack is observed, fracture 

mechanics may be applied to predict the crack propagation. Component failure is usually 

defined by a threshold value of crack size. Crack propagation life model describes the 

crack evolution with loading cycles.  

The fundamental crack propagation life model was proposed by Paris and Erdogan 

(1963). The model is well-known as Paris’ law. It asserted that the crack growth rate was 

linear with SIF in a log-log scale. Paris’ law is applicable in the stable crack propagation 

phase. The range of SIF during one loading cycle determines the crack size increment. By 

considering other factors which may affect the crack growth, Paris’ law has other variants. 

The Collipriest crack growth model (Collipriest 1972) took three other factors into 

account: load ratio, crack instability near rupture, and SIF threshold.  Inoue et al. (1991) 

developed a life model for the actual application of gears whose surface was treated. 

Hence, the fatigue life was influenced by different properties of the case and the core. 

Elber (1971) proposed an adaptation of Paris’ law by taking into account the important 
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effect of plasticity-induced crack closure. The crack propagation life model can be further 

modified to consider other factors that affect the crack propagation, such as oxidation, 

corrosion, variable amplitude loading, random loading, etc.  

2.3.2 Surface wear 

Wear occurs when two surfaces are loaded together and have relative sliding and/or 

rolling motion. The asperity contacts will result in worn particles. Archard (1953) 

proposed a wear model (2.8) in which the wear rate, expressed as the worn volume 

removed per unit sliding distance, is proportional to the load. 

𝑉

𝑠
= 𝐾

𝐹𝑁

𝐻
                                                           (2.8) 

where 𝑉  is the wear volume, 𝑠  is the sliding distance, 𝐾  is the dimensionless wear 

coefficient, 𝐻 is the hardness of the softer contact surface, and 𝐹𝑁 is the normal load. The 

wear coefficient 𝐾  is interpreted as the probability that an asperity interaction results in 

the formation of a wear particle. Because wear depth is of more interest by engineers than 

wear volume, by dividing both sides of (2.8) by the contact area, and replacing 𝐾 𝐻⁄  with 

a dimensional wear coefficient 𝑘, the wear model can have the following form in terms of 

the wear depth, ℎ, 

ℎ

𝑠
= 𝑘𝑝                                                               (2.9) 

where 𝑝 is the contact pressure. 

The Archard’s wear model is now generally accepted as a suitable framework within 

which the quantitative analysis on wear progression can be discussed (Peterson and 
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Winer 1980). The wear process was seen as an initial value problem in (Andersson 2010) 

and was described by a differential equation as 

𝑑ℎ

𝑑𝑠
= 𝑘𝑝                                                            (2.10) 

2.4 Dynamic models of gearbox  

Vibration signature is often used for fault diagnostics of the geared system. The faults, 

such as crack and pitting, affect the tooth stiffness and further affect the vibration of the 

system. A great deal of research work is invested to build dynamic models for the geared 

system to understand the torsional and/or lateral vibrations of the gearbox. These models 

assist in identifying the vibration sources in gear transmission.  

Based on the physical laws in dynamics, many mathematical models to describe the 

gearbox dynamics were developed in (Bartelmus 2001). Mesh stiffness variation is one of 

the vibration excitation sources. Numerical and analytical methods to compute mesh 

stiffness were proposed in (Wang and Howard 2004; Howard et al. 2001; Chaari et al. 

2009; Yang and Lin 1987). A one-stage gear set model with four degrees-of-freedom 

(DOF) considering torsional vibration was analyzed in by Lin et al. (1988), based on 

which the computer program DANST was developed in (Oswald et al. 1996). DANST 

can output the static transmission error, dynamic load, bending stress and other properties 

of spur gears. DANST was employed by Liou et al. (1992) to investigate the effect of 

contact ratio on spur gear dynamic load.  Additionally, authors of (Lin et al. 1994; 

Tavakoli and Houser 1986) focused on the work of minimizing the dynamic load and 

transmission error by modifying the profile of spur gear. The research work in (Cornell 
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and Westervelt 1978; Kasuba and Evans 1981; Vedmar and Andersson 2003; Velex and 

Ajmi  2007) developed approaches for computation of dynamic load. 

2.5 Uncertainty quantification 

Prognosis as an essential part of CBM imposes major challenge for CBM system 

designer and practitioner because of large-grain inherent uncertainty. Prediction of the 

stochastic fault progression requires effective uncertainty management which is usually 

conducted in the framework of probability theory. In the problem of uncertainty 

quantification, the uncertainty sources should be firstly captured and represented so that 

the model could be randomizd and transformed into a stochastic form. Then, the 

uncertainty propagation is executed to quantify the effects of the random inputs on the 

output of interest, which could be the health indicators or RUL in the prognostic model. 

Based on the model output with certain confidence level, decisions can be made for 

maintenance planning, mission planning and logistics to meet the reliability and 

availability requirement. Due to the uncertainty inherent in prognostics, the predicted 

RUL takes the form of probability distribution rather than a single value. However, large 

uncertainty provides little information on decision making. Hence, a major objective of 

uncertainty management in prognostics is to reduce the uncertainty in the predicted RUL 

distribution, which indicates a better prediction precision. 

Uncertainty propagation is part of uncertainty quantification. Its objective is to 

evaluate the uncertainty in model output given the uncertainty in model inputs while 

there is no explicit expression between the model inputs and the output. Monte Carlo 

simulation is often used for uncertainty propagation, in which a series of calls for the 

deterministic evaluations of the model output are needed to obtain sufficient samples of 
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model output. If the model evaluation is computationally intensive, it will be time-

consuming to obtain a large number of samples on the model output. Especially when 

high dimensional uncertainty is considered, the convergence rate of Monte Carlo 

simulation is unacceptably slow. The computational burden to deal with the high 

dimensional uncertainty is known as “curse of dimensionality”. Hence, an effective 

sampling strategy is of importance to improve the computational efficiency.  

This section starts with the introduction of two uncertainty propagation methods: 

Monte Carlo simulation in section 2.5.1., and the PCE in section 2.5.2. After that, 

Bayesian inference is discussed as a natural way for uncertainty quantification in section 

2.5.3. 

2.5.1 Monte Carlo simulation 

Monte Carlo simulation is the most widely used method for uncertainty propagation. 

It is a statistical sampling method popularized in the 1940s. Its distinguished merit is the 

flexibility to be implemented easily for almost any general model 𝒀 = ℋ(𝑿), which 

relates the input 𝑿 and output 𝒀 point-wisely. To obtain the statistical properties of 𝒀, a 

set of samples {𝑿(1), 𝑿(2), ⋯ , 𝑿(𝑀)} are drawn randomly from the joint distribution 𝑓𝑿(𝑿). 

The output 𝒀(𝑖)  corresponding to the input 𝑿(𝑖)  is 𝒀(𝑖) = ℋ(𝑿(𝑖)), 𝑖 = 1,2,⋯ ,𝑀.The 

mean and standard deviation of 𝒀 are estimated from these samples of output: 

�̂�𝒀 =
1

𝑀
 ∑𝒀(𝑖)

𝑀

𝑖=1

                                                     (2.11) 
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1

𝑀 − 1
 ∑(𝒀(𝑖) − �̂�𝒀)

2

𝑀

𝑖=1

.                                       (2.12) 
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From the central limit theorem, the distribution of �̂�𝒀, as 𝑀 → ∞, will converge to a 

Gaussian distribution with mean 𝜇𝒀  and standard deviation 𝜎𝒀 √𝑀⁄ . Hence the 

convergence rate of Monte Carlo simulation is inversely proportional to the square root 

of the number of samples, denoted as 𝑂(𝑀−1/2)  (Xiu 2010). This square root 

convergence rate is quite slow. For the large and complex system, of which a single 

model realization is time-consuming, Monte Carlo simulation becomes unacceptable in 

terms of computational time taken to achieve a good accuracy. However, the convergence 

rate of 𝑂(𝑀−1/2) is independent of the dimension of random space, which is a notable 

advantage. Based on the set of output samples {𝒀(1), 𝒀(2), ⋯ , 𝒀(𝑀)} , the PDF of the 

output can be estimated using an histogram. Smoother representations may be obtained 

through kernel smoothing techniques, see (Wand and Jones 1995). 

2.5.2 PCE 

Instead of sampling, PCE aims to approximate the model output by a simple 

polynomial expression. It is an efficient method to analyze and quantify the effects of 

random inputs on the stochastic process governed by ordinary/partial differential 

equations. PCE is essentially a spectral representation in random space, and exhibits fast 

convergence rate when the expanded function depends smoothly on the random 

parameters (Xiu 2007). By selecting the optimal type of orthogonal polynomials, the 

convergence rate could reach exponential if the function is analytic, i.e., infinitely smooth 

(Xiu and Karniadakis 2002).  

A large number of research papers have been published on the computational 

efficiency and accuracy achieved by PCE in many fields, most of which are nonlinear 



30 

 

problems with high dimensional uncertainty, e.g. fluid dynamics (Pettersson et al. 2009; 

Chantrasmi et al. 2006; Chantrasmi et al. 2009; Canuto et al. 1998; Najm 2009), 

chemistry reaction (Najm et al. 2009), solid mechanics (Eldred 2009; Ghosh and Farhat, 

2007), etc. For highly-nonlinear problem, a sufficiently high order polynomial space is 

required, as reported in (Debusschere et al. 2004; Eldred et al. 2008).  

The quantities to be solved in PCE are those coefficients in the polynomial expansion. 

There are two basic methods to calculate them: stochastic Galerkin method and stochastic 

collocation method. Stochastic Galerkin method is well developed to solve the stochastic 

problems. Reagan et al. (2004) and Najm et al. (2009) investigated uncertainty 

quantification in chemical systems using stochastic Galerkin method. In computational 

fluid dynamics, stochastic Galerkin method has many applications as well (Canuto et al. 

1988; Najm 2009). However, this method reformulates the stochastic problem into a 

larger set of coupled equations of coefficients, and thus the computational work is still 

cumbersome. Furthermore, when the original problem takes a highly complex and 

nonlinear form, the derivation of the Galerkin model can be nontrivial, sometimes 

impossible. Due to these limitations of stochastic Galerkin method, there has been a 

growing interest in another class of method known as stochastic collocation method. 

Stochastic collocation method has the power to take advantage of both stochastic 

Galerkin method and Monte Carlo simulation to achieve high resolution with the ease of 

implementation (Xiu and Hesthaven, 2005). It is widely acknowledged that stochastic 

collocation method collaborated with sparse grid has appealing capability in handling 

high-dimensional random space. With the uncertainty dimension increases, sparse grid 

algorithm is able to mitigate the “curse of dimensionality”, and meanwhile maintains the 
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numerical integration accuracy inherited from 1D integration rule as much as possible.  

In the stochastic collocation method, high dimensional integration is involved when a 

large number of random variables are considered. These integrations are computational 

intractable that must resort to numerical methods, in which a set of integration points and 

corresponding weights is determined according to the weight function in the integration. 

From one-dimensional to multi-dimensional integration, the natural extension is to use 

tensor product. If the variable dimension is 𝑑 and in each dimension 𝑛 points are used, 

the total number of integration points is 𝑛𝑑. As the dimension increases, the number of 

points grows very fast resulting in the well-known “curse of dimensionality”. To mitigate 

this, Smolyak (1964) proposed an algorithm to select a nodal set which consists of an 

algebraic sum of low-order tensor products based on one-dimensional quadrature rule in 

such a way that an integration property for one dimension is preserved for high 

dimensions as much as possible (Xiu, 2010). The nodal set obtained by Smolyak 

algorithm is called the sparse grid. Figure 6 shows the comparison of integration points 

for 2D integration. In the figure, the points are obtained based on extrema of Chebyshev 

polynomials, and a great reduction of number of nodes is observed in sparse grid 

compared to tensor product. 
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 (a). 1089 points using tensor product.                  (b). 145 points using sparse grid. 

Figure 6. Comparison of nodal sets for tensor product and sparse grid. 

 

2.5.3 Bayesian inference 

Bayesian inference is naturally amenable to uncertainty quantification for model 

parameters. Consider the parameters of interest, denoted by 𝜃, with a prior distribution 

𝜋(𝜃). Meanwhile a set of observations 𝒅 = {𝑑1, 𝑑2, ⋯ , 𝑑𝑛} is available and its marginal 

density function is 𝑓(𝒅). Bayesian inference generates a posterior distribution 𝜋(𝜃|𝒅) for 

parameters given the prior density and the observational data: 

𝜋(𝜃|𝒅) =
𝐿(𝒅|𝜃)𝜋(𝜃)

𝑓(𝒅)
                                            (2.13) 

where 𝐿(𝒅|𝜃) describes the likelihood to obtain these observations given parameters. 

Because the observations are fixed, the denominator in (2.13) is a constant, which is used 

to normalize the posterior density so that its integral is one. Hence, the posterior density 

is proportional to the product of the likelihood and the prior density.  

In most cases, the denominator in Bayesian inference is a high dimensional integral, 

which is computational intractable. Except when the prior and the likelihood form the so 
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called “conjugate pair”, numerical methods are needed to compute this integration. In 

contrast, MCMC method is to directly obtain the samples from posterior distribution.  

MCMC method is based on the fact that the generated samples in the stationary 

Markov chain is exactly the samples from the posterior distribution. MCMC can be 

applied when the target density is known up to a constant: 𝑝(𝑥) ∝ 𝑝(𝑥). In this thesis, the 

implementation of MCMC uses Hasting-Metropolis sampling algorithm and its procedure 

is as follows: 

1. Initialize 𝑖 = 0 and choose a starting point 𝑥0, and the list 𝑿 = {𝑥0}. 

2. Repeat the following steps until the convergence is reached 

- Sample 𝑥∗~ 𝑞(𝑥∗|𝑥𝑖) , where 𝑞(∙) is the proposal density function. 

- Calculate the acceptance ratio 𝛼(𝑥∗, 𝑥𝑖) = min[1,
�̃�(𝑥∗)𝑞(𝑥𝑖|𝑥

∗)

�̃�(𝑥𝑖)𝑞(𝑥∗|𝑥𝑖)
].    

- Sample 𝑢~Uniform (0,1). 

- If 𝑢 <  𝛼, set 𝑥𝑖+1 = 𝑥∗, otherwise, set 𝑥𝑖+1 = 𝑥𝑖. 

- 𝑿 = {𝑥𝑖 , 𝑥𝑖+1}. 

- 𝑖 = 𝑖 + 1 

3. The samples 𝑿 are used to construct the approximation to 𝑝(𝑥). 

The time for the chain to reach its stationary distribution is affected by the choice of 

the initial staring value 𝑥0 and the proposal density function. The most commonly used 

proposal density is the random walk around the origin. The step size of move is critical 

for the algorithm performance. If the step size is very small, most samples will be 

accepted and the chain will take long time to converge. If the step size is very large, the 

samples have more chance to fall into the tails of the target distribution, which results in 
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very low acceptance ratio. The series obtained by MCMC have strong correlation so that 

a large number of samples are needed to make inference about the posterior distribution.  
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Chapter 3. Dynamics simulation for one-stage 

gearbox 

3.1 Overview 

Vibration analysis of the mechanical system is the most commonly used technique to 

diagnose the fault of the mechanical components, because the fault occurrence will affect 

the overall vibration of the whole system. Tooth fracture is a commonly seen failure 

mode of gears. Crack often occurs near the tooth root where the highest bending stress 

appears due to repetitive cyclic loading. The crack appearance affects the tooth stiffness. 

Therefore, the total mesh stiffness will be affected accordingly when the cracked tooth 

comes into mesh.  Since the force acting on the tooth is determined by the mesh stiffness 

and the tooth deflection, the crack will affect the dynamic load on the tooth. Dynamic 

load can be considered as the sum of the transmitted load and an incremental load. The 

transmitted load is the static load. The incremental load is due to many factors, such as 

spacing errors, unbalance, deformation of teeth and velocity. Many publications consider 

the crack propagation under a static load, which excludes the effect of crack propagation 

on the load acting on the tooth. Li and Lee (2005) took this effect into account to 

calculate the dynamic load on the cracked tooth. The mesh stiffness was calculated using 

Fourier series approximation. In this thesis, we also consider the crack effect to obtain an 

accurate load to drive the crack propagation. Tian et al. (2004) applied the potential 

energy method to compute the stiffness of the cracked gear tooth assuming the crack 

propagates along a straight line. The work in this chapter extends the method to compute 

the stiffness of the cracked tooth with a crack that has a curved shape. A 6-DOF dynamic 
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motion system is used to simulate one-stage gearbox dynamics. Dynamic load on the 

cracked tooth is calculated for a complete mesh period. The materials in this chapter have 

been published in (Zhao et al. 2013a).  

3.2 Spur gears  

Spur gear is the most commonly used gear type. It has simple parallel and symmetric 

geometry and can change the velocity of the transmission system. Spur gear bears an 

involute profile to minimize the transmission error and the vibration noise. In this 

subsection, a brief introduction is presented about the involute geometry and the mesh 

process of spur gears.  

Involute curve can be considered as a path traced by the end of a string, which is 

originally wrapped on a circumference of a circle, when the string is unwrapped from the 

circle. This circle is called base circle. The driving gear (pinion) and the driven gear (gear) 

have the base circles with the radiuses of 𝑅𝑏1, 𝑅𝑏2 respectively. The movement of contact 

points when spur gears are meshing is along the line of action, which is the common 

tangent to the base circles and meanwhile is also the common normal to the tooth profiles.  

The top points of the teeth consist of outside circle with radiuses of 𝑅𝑜1, 𝑅𝑜2. The basic 

parameters characterize a gear set include diametral pitch 𝑃, number of teeth 𝑁1, 𝑁2 and 

pressure angle 𝛼0 . The circles which have the radiuses of 𝑅𝑝1 = 𝑅𝑏1 cos 𝛼0⁄ , 𝑅𝑝2 =

𝑅𝑏2 cos 𝛼0⁄  are called pitch circles. A pair of meshing gears is ought to have the same 

diametral pitch. The diametral pitch is defined as the ratio of teeth number and pitch 

circle diameter. The pressure angle is the complementary angle between the line of action 

and the line connecting two centers 𝑂1, 𝑂2 of base circles. 𝑂1𝑂2
̅̅ ̅̅ ̅̅ ̅ is called center distance. 
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According to Townsend (1992) and Litvin (1994), the following expressions are used to 

determine these parameters mentioned above: 

𝑅𝑏1 =
𝑁1

2𝑃
cos 𝛼0                                                          (31) 

𝑅𝑏2 =
𝑁2

2𝑃
cos 𝛼0                                                          (3.2) 

𝑅𝑂1 =
𝑁1 + 2

2𝑃
                                                             (3.3) 

𝑂1𝑂2
̅̅ ̅̅ ̅̅ ̅ =

𝑁1 + 𝑁2

2𝑃
                                                        (3.4) 

The main parameters of the gear and pinion used in this thesis are the same as those 

in Wu et al. (2008), shown in Table 1. 

Table 1. Main parameters of the gears 

Young’s modulus 𝐸 = 2.068 × 1011 Pa 

Poisson’s ratio 𝜈 = 0.3 

Pressure angle 20° 

Diametral pitch 8 in-1 

Width of teeth 𝑊 = 0.016m 

Number of teeth on pinion 𝑁1 = 19 

Number of teeth on gear 𝑁2 = 48 
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3.3 Potential energy method for mesh stiffness calculation 

Yang and Lin (1987) modeled the gear tooth as a cantilevered beam. The base of the 

beam was assumed not to experience any deflection. The authors partitioned the total 

potential energy stored in the meshing gear set into three categories: Hertzian energy, 

bending energy and axial compressive energy. Tian et al. (2004) added shear energy, 

which was proven to be a significant contribution to the total effective mesh stiffness. 

Also, the authors gave the formulas to calculate the mesh stiffness for the gear tooth with 

a straight crack, inclined at a constant intersection angle to upright vertical. This thesis 

extends the stiffness calculation to a tooth with a curved crack. This section is organized 

as follows. The potential energy method to calculate the stiffness of a healthy gear tooth 

is presented in section 3.3.1. Details are found in (Yang and Lin 1987) and (Tian et al. 

2004). In section 3.3.2, the formulas to calculate the stiffness of a tooth with a straight 

crack is given, referenced on (Tian et al. 2004). In section 3.3.3, the method is developed 

to calculate the stiffness of a tooth with a curved crack. 

3.3.1 Stiffness of a healthy tooth 

The Hertzian, bending, shear and axial compressive energy stored in a tooth are 

denoted by 𝑈ℎ, 𝑈𝑏 , 𝑈𝑠,  and 𝑈𝑎, respectively: 

𝑈ℎ =
𝐹2

2𝑘ℎ
, 𝑈𝑏 =

𝐹2

2𝑘𝑏
, 𝑈𝑠 =

𝐹2

2𝑘𝑠
, 𝑈𝑎 =

𝐹2

2𝑘𝑎
.                            (3.5) 

where𝑘ℎ, 𝑘𝑏 , 𝑘𝑠, 𝑘𝑎 stand for the Hertzian, bending, shear and axial compressive stiffness. 

𝐹 is the force acting on the mating tooth at the contact point. 
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The Hertzian contact stiffness of a pair of meshing teeth with the same material is 

considered to be constant, independent of the contact position (Yang and Sun 1985). The 

Hertzian stiffness is expressed as  

𝑘ℎ =
𝜋𝐸𝑊

4(1 − 𝜈2)
 ,                                                    (3.6) 

where 𝐸,𝑊, 𝜈 represent Young’s modulus, width of tooth, and Poisson’s ratio. The other 

three types of stiffness are dependent on the contact point. The involved parameters are 

depicted in Figure 7. Suppose the current contact point is 𝐶 and the corresponding pedal 

on the base circle is 𝑍𝐶 . The angle between 𝐶𝑍𝐶
̅̅ ̅̅ ̅ and the horizontal line is 𝛼1 , which 

determines the contact point as the gears rotate. 𝛼1  is also the angle for the force 

decomposition into horizontal and vertical: 𝐹𝑏 = 𝐹cos𝛼1 , 𝐹𝑎 = 𝐹sin𝛼1 . Denote any 

point on the tooth profile below 𝐶 as 𝐵, with the pedal  𝑍𝐵. The angle between 𝐵𝑍𝐵
̅̅ ̅̅ ̅̅  and 

the horizontal line is 𝛼 which is the variable that locates all the points below 𝐶 on the 

tooth profile and is also the integration variable in the potential energy. 𝛼2 as shown in 

the Figure 7 is the half of the base tooth angle, which serves as the upper limit in 

integration for energy.  



40 

 

 
Figure 7. Spur gear geometry 

The bending energy stored in a meshing gear tooth, based on beam theory, can be 

obtained by  

𝑈𝑏 = ∫
𝑀2

2𝐸𝐼𝑥
d𝑥 = ∫

[𝐹𝑏(𝑑 − 𝑥) − 𝐹𝑎ℎ]2

2𝐸𝐼𝑥

𝑑

0

𝑑

0

d𝑥 ,                                  (3.7) 

The shear energy is given by  

𝑈𝑠 = ∫
1.2𝐹𝑏

2

2𝐺𝐴𝑥
d𝑥

𝑑

0

,                                                         (3.8) 

𝐺 =
𝐸

2(1 + 𝜈)
.                                                             (3.9) 
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And the axial compressive energy is  

𝑈𝑠 = ∫
𝐹𝑎

2

2𝐸𝐴𝑥
d𝑥

𝑑

0

.                                                        (3.10) 

In the above formulas, 𝐼𝑥 and 𝐴𝑥 represent the area moment of inertia of the section, 

and the area of the section, where the distance from the tooth root is 𝑥, 

𝐼𝑥 =
1

12
(2ℎ𝑥)

3𝑊 =
2

3
ℎ𝑥

3𝑊,                                             (3.11) 

𝐴𝑥 = 2ℎ𝑥𝐿,                                                             (3.12) 

ℎ𝑥 = 𝑅𝑏[(𝛼 + 𝛼2) cos 𝛼 − sin 𝛼].                                        (3.13) 

The formulas for bending, shear and axial compressive stiffnesses are as follows: 

1

𝑘𝑏
= ∫

3{1 + cos 𝛼1[(𝛼2 − 𝛼) sin 𝛼 − cos 𝛼]}2(𝛼2 − 𝛼) cos𝛼

2𝐸𝑊[sin 𝛼 + (𝛼2 − 𝛼) cos 𝛼]3

𝛼2

−𝛼1

d𝛼,            (3.14) 

1

𝑘𝑠
= ∫

1.2(1 + 𝜈)(𝛼2 − 𝛼) cos 𝛼 cos2𝛼1

𝐸𝑊[sin 𝛼 + (𝛼2 − 𝛼) cos 𝛼]3

𝛼2

−𝛼1

d𝛼,                             (3.15) 

1

𝑘𝑎
= ∫

(𝛼2 − 𝛼) cos 𝛼 sin2𝛼1

2𝐸𝑊 [sin 𝛼 + (𝛼2 − 𝛼) cos 𝛼]

𝛼2

−𝛼1

d𝛼.                                (3.16) 

The total effective mesh stiffness between a pair of meshing teeth is  

1

𝑘𝑡
=

1

𝑘ℎ
+

1

𝑘𝑏1
+

1

𝑘𝑠1
+

1

𝑘𝑎1
+

1

𝑘𝑏2
+

1

𝑘𝑠2
+

1

𝑘𝑎2
,                           (3.17) 

where the subscripts 1 and 2 represent driving gear and driven gear, respectively. It can 

be seen from the expression that the mesh stiffness is a function of contact point. To 
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characterize the mesh stiffness varying with time, it requires to know which pairs of teeth 

are in mesh and where are the contact points. The contact ratio of the considered gear set 

is between 1 and 2. Hence, the single-pair-contact and double-pair-contact will alternate 

as gears rotate. So for the double-pair-contact, the total effective mesh stiffness is 

𝑘𝑡 = ∑ 
1

1
𝑘ℎ,𝑗

+
1

𝑘𝑏1,𝑗
+

1
𝑘𝑠1,𝑗

+
1

𝑘𝑎1,𝑗
+

1
𝑘𝑏2,𝑗

+
1

𝑘𝑠2,𝑗
+

1
𝑘𝑎2,𝑗

,

2

𝑗=1

             (3.18) 

where 𝑗 = 1 represents the first pair of meshing teeth, and 𝑗 = 2 represents the second 

pair. 

3.3.2 Stiffness of a cracked tooth - straight crack  

As mentioned, the crack occurrence will affect the tooth stiffness and the total 

effective mesh stiffness. To incorporate the dynamic load into the crack propagation, 

which will be discussed in Chapter 4, the stiffness of a cracked tooth should be calculated 

first. Because pinion is the driving gear, experiencing more frequent fatigue loading, this 

thesis considers a crack at the pinion root. Tian et al. (2004) considered the shallow crack, 

whose length was not passing the central line. Wu et al. (2008) extended the crack length 

across the whole tooth thickness. Both of the work assumed the intersection angle 𝜈 

between the crack path and the central line of the tooth as constant, which means the 

crack was assumed to propagate along a straight line. The Hertzian and axial compressive 

stiffness were not affected by the crack. The crack will influence the bending and the 

shear stiffness because the crack causes the change in the effective area moment of inertia 

and the area of the cross section. As shown in Figure 8, a crack with length 𝑞 is inserted 

at the tooth root.  The inclined angle with vertical is 𝜈. The area moment of inertia and 
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the area of cross section at a distance of 𝑥  from the tooth root (when 𝑞 sin 𝜈 −

𝑅𝑏1 sin 𝛼2 < 0) are 

𝐼𝑥𝑐 = {

1

12
(ℎ𝑐 + ℎ𝑥)

3𝑊,             if 𝑥 ≤ 𝑔𝑐,

1

12
(2ℎ𝑥)

3𝑊 =
2

3
ℎ𝑥

3𝑊,   if 𝑥 > 𝑔𝑐,

                                (3.19) 

𝐴𝑥𝑐 = {
(ℎ𝑐 + ℎ𝑥)𝑊,            if 𝑥 ≤ 𝑔𝑐,
2ℎ𝑥𝑊,                       if 𝑥 > 𝑔𝑐,

                                   (3.20) 

ℎ𝑐 = 𝑅𝑏1 sin 𝛼1 − 𝑞 sin 𝜈.                                           (3.21) 

By noticing the integration limits may cover different expressions for the area 

moment of inertia and the cross section area, the calculation may proceed according to 

different cases, depending on the contact position and the crack tip position. The 

complete set of formulas can be found in (Wu et al. 2008).  
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Figure 8. Cracked tooth geometry. 

3.3.3 Stiffness of a cracked tooth - curved crack 

The crack propagation direction is determined by the stress field near the crack tip, 

not necessarily along a straight line. Actually, in most cases the 2D crack has a curved 

shape. This thesis removes the assumption of a straight crack path made in (Yang and Lin 

1987) and (Tian et al. 2004), and uses the FE stress analysis to determine the direction of 

crack propagation. The curved crack propagation path is formed by connecting a series of 

straight crack increments. Hence, compared to the straight crack path, the intersection 

angle 𝛽 varies as crack grows, not a constant any more. Because the crack occurrence 
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only affects the bending stiffness and the shear stiffness, in this section only the formulas 

associated with these two types of tooth stiffness are given. Actually, when the gear tooth 

is considered as cantilever beam, the area of moment inertia and the cross section area are 

the only differences between a healthy tooth and a cracked tooth. Therefore, the method 

can be easily extended to deal with the curved crack as long as the locus of the crack tips 

at each crack propagation step is available.  

The initial crack is inserted at the pinion tooth root with size of 𝑎0. The procedure to 

calculate the tooth stiffness with a curved crack path is given as follows. As shown in 

Figure 9, the crack increment at each crack extension step is set to ∆𝑎. The crack tip is 

denoted by 𝑇𝑖, where the index 𝑖 represents the crack propagation step. The crack grows 

by ∆𝑎 in the direction determined by (2.7). Because the associated formulas to compute 

cracked tooth stiffness are related to four different cases, depending on the teeth contact 

point in mesh and the crack tip position as well, the index of 𝑖 = 1, 2, 3, 4 in Figure 9 

only symbolizes the four mentioned typical cases, and it does not mean that there are only 

these four crack tips.  

The base circle of pinion centers at 𝑂 with the radius of 𝑅𝑏1. The contact point 𝐶 is 

travelling along the tooth profile 𝑆�̃�, and the angle of 𝛼1 is determined by the tangential 

line passing 𝐶. Because the force 𝐹 is applied at the contact point 𝐶, perpendicular to the 

tangential line, the angle 𝛼1 also serves as the force decomposition angle to the horizontal 

direction 𝐹𝑏 = 𝐹cos𝛼1  and vertical direction 𝐹𝑎 = 𝐹sin𝛼1 . Additionally, the points 𝐺𝑖 

represent the intersectional points between the vertical line passing the crack tip and the 

tooth profile. And 𝑍𝑖 are the pedals on the base circle of the tangential line passing 𝐺𝑖. 

Accordingly, 𝑔𝑖 is the distance from 𝐺𝑖 to the tooth root 𝑆, and 𝛼𝑔𝑖 is the angle between 
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𝐺𝑖𝑍𝑖 and 𝑂𝑍𝑖. If the crack tip passes the central line, 𝐺𝑖
′ and 𝐺𝑖 are symmetric about the 

central line OP, and the associated 𝛼𝑔𝑖  is defined as the angle between 𝐺𝑖′𝑍𝑖  and 𝑂𝑍𝑖 . 

Lastly, 𝛼2 represents half of the base tooth angle. 

 

Figure 9. Tooth geometry with a curved crack. 

Essentially, the different ways in calculating 𝐼𝑥  and 𝐴𝑥  according to the crack tip 

location as well as the contact point position determine the four mentioned circumstances 

to calculate the tooth stiffness of a cracked tooth. These four cases are addressed below. 

Let the distance between tooth root 𝑆 and 𝐺𝑖𝑇𝑖 be 𝑢𝑖. As said before, the purpose of the 

index 𝑖 = 1, 2, 3, 4 is to indicate the four cases, not meaning there are only these four 

crack tip locations. 
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Case 1.  Crack tip = 𝑇1  (i.e., ℎ𝑐1 ≥ ℎ𝑟), 

  In this case,  

𝐼𝑥 =   {

1

12
(ℎ𝑐1 + ℎ𝑥)

3𝑊,       if 𝑥 ≤ 𝑔1,

1

12
(2ℎ𝑥)

3𝑊,              if 𝑥 > 𝑔1,

                              (3.22) 

𝐴𝑥 = {
(ℎ𝑐1 + ℎ𝑥)𝑊,       if 𝑥 ≤ 𝑔1,
2ℎ𝑥𝑊,                    if 𝑥 > 𝑔1.

                                  (3.23) 

 Case 1.1.  Contact point is above 𝐺1 (i.e., 𝛼1 > 𝛼𝑔1) . 

         The bending stiffness of the cracked tooth is  

1

𝑘𝑏

= ∫
12{1 + cos𝛼1[(𝛼2 − 𝛼)sin𝛼 − cos𝛼]}2(𝛼2 − 𝛼)cos𝛼

𝐸𝑊[sin𝛼2 −
𝑢1

𝑅𝑏1
+ sin𝛼 + (𝛼2 − 𝛼)cos𝛼]3

𝛼2

−𝛼𝑔1

d𝛼                          

+ ∫
3{1 + cos𝛼1[(𝛼2 − 𝛼)sin𝛼 − cos𝛼]}2(𝛼2 − 𝛼)cos𝛼

2𝐸𝑊[sin𝛼 + (𝛼2 − 𝛼)cos𝛼]3
d𝛼

−𝛼𝑔1

−𝛼1

.                           (3.24) 

 

                The shear stiffness is  
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1

𝑘𝑠

= ∫
2.4(1 + 𝜈)(𝛼2 − 𝛼)cos𝛼cos2𝛼1

𝐸𝑊[sin𝛼2 −
𝑢1

𝑅𝑏1
+ sin𝛼 + (𝛼2 − 𝛼)cos𝛼]

𝛼2

−𝛼𝑔1

d𝛼 

+ ∫
1.2(1 + 𝜈)(𝛼2 − 𝛼)cos𝛼cos2𝛼1

𝐸𝑊[sin𝛼 + (𝛼2 − 𝛼)cos𝛼]
d𝛼.

−𝛼𝑔1

−𝛼1

                                                                       (3.25) 

Case 1.2.  Contact point is below 𝐺1 (i.e., 𝛼1 ≤ 𝛼𝑔1) . 

               The bending stiffness and shear stiffness are given by  

1

𝑘𝑏
= ∫

12{1 + cos𝛼1[(𝛼2 − 𝛼)sin𝛼 − cos𝛼]}2(𝛼2 − 𝛼)cos𝛼

𝐸𝑊[sin𝛼2 −
𝑢1

𝑅𝑏1
+ sin𝛼 + (𝛼2 − 𝛼)cos𝛼]3

𝛼2

−𝛼1

d𝛼,           (3.26) 

1

𝑘𝑠
= ∫

2.4(1 + 𝜈)(𝛼2 − 𝛼)cos𝛼cos2𝛼1

𝐸𝑊 [sin𝛼2 −
𝑢1

𝑅𝑏1
+ sin𝛼 + (𝛼2 − 𝛼)cos𝛼]

𝛼2

−𝛼1

d𝛼.                  (3.27) 

Case 2.  Crack tip = 𝑇2  (i.e., ℎ𝑐2 < ℎ𝑟) 

        In this case, 

𝐼𝑥 =
1

12
(ℎ𝑐1 + ℎ𝑥)

3𝑊,                                                  (3.28) 

  𝐴𝑥 = (ℎ𝑐2 + ℎ𝑥)𝑊,                                                    (3.29) 

based on which, the bending stiffness, and shear stiffness are respectively obtained by  

1

𝑘𝑏
= ∫

12{1 + cos𝛼1[(𝛼2 − 𝛼)sin𝛼 − cos𝛼]}2(𝛼2 − 𝛼)cos𝛼

𝐸𝑊[sin𝛼2 −
𝑢2

𝑅𝑏1
+ sin𝛼 + (𝛼2 − 𝛼)cos𝛼]3

𝛼2

−𝛼1

d𝛼,           (3.30) 
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1

𝑘𝑠
= ∫

2.4(1 + 𝜈)(𝛼2 − 𝛼)cos𝛼cos2𝛼1

𝐸𝑊[sin𝛼2 −
𝑢2

𝑅𝑏1
+ sin𝛼 + (𝛼2 − 𝛼)cos𝛼]

𝛼2

−𝛼1

d𝛼.                  (3.31) 

Case 3. Crack tip = 𝑇3  (i.e., ℎ𝑐3 < ℎ𝑟) 

        In this case,  

𝐼𝑥 =
1

12
(ℎ𝑥 − ℎ𝑐3)

3𝑊,                                               (3.32)   

𝐴𝑥 = (ℎ𝑥 − ℎ𝑐3)𝑊,                                                  (3.33) 

       so the bending, and shear stiffness are 

1

𝑘𝑏
= ∫

12{1 + cos𝛼1[(𝛼2 − 𝛼)sin𝛼 − cos𝛼]}2(𝛼2 − 𝛼)cos𝛼

𝐸𝑊[−
𝑢3

𝑅𝑏1
+ sin𝛼 + (𝛼2 − 𝛼)cos𝛼]3

𝛼2

−𝛼1

d𝛼               (3.34) 

1

𝑘𝑠
= ∫

2.4(1 + 𝜈)(𝛼2 − 𝛼)cos𝛼cos2𝛼1

𝐸𝑊 [−
𝑢3

𝑅𝑏1
+ sin𝛼 + (𝛼2 − 𝛼)cos𝛼]

𝛼2

−𝛼1

d𝛼.                        (3.35) 

Case 4. Crack tip =  𝑇4  (i.e., ℎ𝑐4 ≥ ℎ𝑟) 

         In this case, 

𝐼𝑥 =
1

12
(ℎ𝑥 − ℎ𝑐4)

3𝑊,                                                   (3.36)  

𝐴𝑥 = (ℎ𝑥 − ℎ𝑐4)𝑊.                                                    (3.37) 

Case 4.1.  Contact point is above 𝐺4′ (i.e., 𝛼1 > 𝛼𝑔4) . 

1

𝑘𝑏
= ∫

12{1 + cos𝛼1[(𝛼2 − 𝛼)sin𝛼 − cos𝛼]}2(𝛼2 − 𝛼)cos𝛼

𝐸𝑊[−
𝑢4

𝑅𝑏1
+ sin𝛼 + (𝛼2 − 𝛼)cos𝛼]3

𝛼2

−𝛼𝑔4

d𝛼            (3.38) 



50 

 

1

𝑘𝑠
= ∫

2.4(1 + 𝜈)(𝛼2 − 𝛼)cos𝛼cos2𝛼1

𝐸𝑊[−
𝑢4

𝑅𝑏1
+ sin𝛼 + (𝛼2 − 𝛼)cos𝛼]

𝛼2

−𝛼𝑔4

d𝛼.                    (3.39) 

Case 4.2.  Contact point is below 𝐺4′ (i.e., 𝛼1 ≤ 𝛼𝑔4) . 

1

𝑘𝑏
= ∫

12{1 + cos𝛼1[(𝛼2 − 𝛼)sin𝛼 − cos𝛼]}2(𝛼2 − 𝛼)cos𝛼

𝐸𝑊[−
𝑢4

𝑅𝑏1
+ sin𝛼 + (𝛼2 − 𝛼)cos𝛼]3

𝛼2

−𝛼1

d𝛼           (3.40) 

1

𝑘𝑠
= ∫

2.4(1 + 𝜈)(𝛼2 − 𝛼)cos𝛼cos2𝛼1

𝐸𝑊[−
𝑢4

𝑅𝑏1
+ sin𝛼 + (𝛼2 − 𝛼)cos𝛼]

𝛼2

−𝛼1

d𝛼.                      (3.41) 

So far, we have obtained the formulas to calculate the bending stiffness, and shear 

stiffness of a cracked tooth at any crack tip position, and any contact point. No matter 

what the crack shape is, as long as the crack tip position is identified, i.e., 𝑢𝑖 is known, 

these two types of stiffness could be derived by the above formulas. With the Hertzian 

stiffness in (3.6), and the axial compressive stiffness in (3.16), the total effective mesh 

stiffness is ready to use in the set of dynamic equations.  

3.4 A 6-DOF dynamic model of one-stage gearbox 

Once the total effective mesh stiffness is known, the dynamic load on the cracked 

tooth can be calculated. In this thesis, a 6-DOF dynamic model developed by Wu et al. 

(2008) is used to simulate the dynamic motion of a one-stage gearbox, shown in Figure 

10. This dynamic model includes torsional and lateral motions. It is driven by an electric 

motor with the torque 𝑀1 and loaded with the torque 𝑀2. The motor shaft and the shaft 

that the pinion mounts on are coupled by a flexible input coupling. Similarly, the output 

coupling couples the output shaft and the shaft that driven gear mounts on. The shafts are 
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supported by bearings. The stiffness and the damping considered are for meshing gears, 

couplings and bearings. The friction during meshing is ignored here so the vibration in 𝑥 

direction is a free vibration, for which when the system is in a stable state, the vibration 

in 𝑥 direction disappears due to the damping.  

The governing motion equations (Wu et al. 2008) of the gearbox dynamics are as 

follows: 

𝑚1𝑦1̈ = 𝑘𝑡(𝑅𝑏1𝜃1 − 𝑅𝑏2𝜃2 − 𝑦1 + 𝑦2) + 𝑐𝑡(𝑅𝑏1𝜃1̇ − 𝑅𝑏2𝜃2̇ − 𝑦1̇ + 𝑦2̇) − 𝑘1𝑦1 − 𝑐1𝑦1̇   (3.42) 

𝑚2𝑦2̈ = 𝑘𝑡(𝑅𝑏1𝜃1 − 𝑅𝑏2𝜃2 − 𝑦1 + 𝑦2) + 𝑐𝑡(𝑅𝑏1𝜃1̇ − 𝑅𝑏2𝜃2̇ − 𝑦1̇ + 𝑦2̇) − 𝑘2𝑦2 − 𝑐2𝑦2̇ (3.43) 

𝐼1𝜃1̈ = 𝑘𝑝(𝜃𝑚 − 𝜃1) + 𝑐𝑝(𝜃�̇� − 𝜃1̇) 

−𝑅𝑏1 (𝑘𝑡(𝑅𝑏1𝜃1 − 𝑅𝑏2𝜃2 − 𝑦1 + 𝑦2) + 𝑐𝑡(𝑅𝑏1𝜃1̇ − 𝑅𝑏2𝜃2̇ − 𝑦1̇ + 𝑦2̇))                 (3.44) 

𝐼2𝜃2̈ = −𝑘𝑔(𝜃2 − 𝜃𝑏) − 𝑐𝑔(𝜃2̇ − 𝜃�̇�) 

−𝑅𝑏2 (𝑘𝑡(𝑅𝑏1𝜃1 − 𝑅𝑏2𝜃2 − 𝑦1 + 𝑦2) + 𝑐𝑡(𝑅𝑏1𝜃1̇ − 𝑅𝑏2𝜃2̇ − 𝑦1̇ + 𝑦2̇))                 (3.45) 

𝐼𝑚𝜃�̈� = 𝑀1 − 𝑘𝑝(𝜃𝑚 − 𝜃1) − 𝑐𝑝(𝜃�̇� − 𝜃1̇)                                         (3.46) 

𝐼𝑏𝜃�̈� = −𝑀2 + 𝑘𝑔(𝜃2 − 𝜃𝑏) + 𝑐𝑔(𝜃2̇ − 𝜃�̇�).                                        (3.47) 
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Figure 10. Dynamics model of gearbox with 6 DOFs (Wu et al. 2008). 

where 

𝐼𝑚/𝐼𝑏        mass moment of inertia of the motor/load 

𝐼1/𝐼2   mass moment of inertia of the pinion/gear 

𝑀1/𝑀2        input/output torque 

𝑚1/𝑚2      mass of the pinion/gear 

𝑅𝑏1/𝑅𝑏2      base circle radius of pinion/gear 

𝑘𝑝/𝑘𝑔     torsional stiffness of the input/output flexible coupling 

𝑐𝑝/𝑐𝑔        damping coefficient of the input/output flexible coupling  
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𝑘1/𝑘2              vertical radial stiffness of the input/output bearings 

𝑐1/𝑐2        vertical radial damping coefficient of the input/output bearings 

𝑘𝑡        total mesh stiffness 

𝑐𝑡 mesh damping coefficient 

𝑦1/𝑦2        linear displacement of pinion/gear in the 𝑦 direction 

𝜃1/𝜃2  angular displacement of pinion/gear 

𝜃𝑚/𝜃𝑏       angular displacement of motor/load 

 

3.5 Dynamic load calculation for the cracked tooth 

The system (3.42) - (3.47) is solved using MATLAB’s ODE15s function.  

Let 𝛿 represent the backlash. The dynamic tooth load 𝐹 is calculated based on the 

formulas given by Lin et al. (1988). Here, because lateral motion is also considered, its 

effect is added to the elastic and the damping force calculation. 

Case (i)  𝑅𝑏1𝜃1 − 𝑅𝑏2𝜃2 − 𝑦1 + 𝑦2 > 0, which is the case of normal operation: 

𝐹 = 𝑘𝑡(𝑅𝑏1𝜃1 − 𝑅𝑏2𝜃2 − 𝑦1 + 𝑦2) + 𝑐𝑡(𝑅𝑏1𝜃1̇ − 𝑅𝑏2𝜃2̇ − 𝑦1̇ + 𝑦2̇)   (3.48)  

Case (ii)  𝑅𝑏1𝜃1 − 𝑅𝑏2𝜃2 − 𝑦1 + 𝑦2 ≤ 0 , and  |𝑅𝑏1𝜃1 − 𝑅𝑏2 𝜃2 − 𝑦1 + 𝑦2| ≤  𝛿 , 

where the teeth pair will separate: 

𝐹 = 0                                                               (3.49) 

Case (iii) 𝑅𝑏1𝜃1 − 𝑅𝑏2𝜃2 − 𝑦1 + 𝑦2 < 0  , and  |𝑅𝑏1𝜃1 − 𝑅𝑏2 𝜃2 − 𝑦1 + 𝑦2| >  𝛿 , 

where the gear teeth will collide backside: 

𝐹 = 𝑘𝑡(𝑅𝑏2𝜃2 − 𝑅𝑏1𝜃1 − 𝑦2 + 𝑦1) + 𝑐𝑡(𝑅𝑏2𝜃2̇ − 𝑅𝑏1𝜃1̇ − 𝑦2̇ + 𝑦1̇).       (3.50) 
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The dynamic load on a tooth at the contact point is the sum of the elastic force 

𝑘𝑡(𝑅𝑏1𝜃1 − 𝑅𝑏2𝜃2 − 𝑦1 + 𝑦2) and the damping force 𝑐𝑡(𝑅𝑏1𝜃1̇ − 𝑅𝑏2𝜃2̇ − 𝑦1̇ + 𝑦2̇) . 

Because both the torsional and the lateral vibration are considered in this dynamic model, 

the effect of lateral vibration on relative gear tooth displacements as well as on velocities 

should be taken into account. In this study, the dynamic load 𝐹 in case (iii) is considered 

to be zero for simplicity.  

The dynamic load discussed above combines all the stiffness of teeth pairs being 

meshed. To focus on the cracked tooth of the pinion, the mesh stiffness of the teeth pair 

containing this cracked tooth will be extracted from the total effective mesh stiffness. The 

stiffness is a periodic function of rotation angle. During one mesh period, every tooth will 

experience three stages, shown in Figure 11, from the instant the tooth comes into contact 

with its mating tooth on the driven gear until the instant it departs from its mating tooth 

(a-b-c-d). Let’s consider the cracked pinion tooth .The first stage (a-b) is a double-pair-

contact stage, during which two pairs of teeth are in contact and share the transmission 

load. One pair of the two is composed by this cracked tooth and its mating tooth. The 

second stage (b-c) is a single-pair-contact stage, during which only one pair that contains 

the cracked tooth, is in mesh. The third stage (c-d) is again a double-pair-contact stage, in 

which the pair that contains the cracked tooth will share the load with the next pair of 

teeth.  
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Figure 11. Two contact stages in the gear mesh process. 

 

The mesh stiffness is a periodic function with the period as the meshing period when 

the teeth are healthy. One meshing period is selected to illustrate the change in the mesh 

stiffness after the crack appears at the tooth root. The crack is inserted at the first tooth 

from the reference position. The parameters of the gearbox are as the same to (Wu et al. 

2008) shown in Table 2, except for the input and the output torque. With these 

parameters, the total mesh stiffness and the stiffness of one pair that contains the cracked 

tooth are plotted in Figure 12 and Figure 13, for the healthy tooth and the cracked tooth 

with crack size of 3.4 mm, respectively. In these two figures, the blue solid line 

represents the total mesh stiffness contributed by all the teeth pairs in mesh, and the 

mauve dashed line represents the mesh stiffness of one gear pair. These two comparative 

figures clearly show the decrease of the tooth stiffness due to crack appearance.  
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Table 2. Gearbox dynamics specifications (Wu et al. 2008) 

Mass of the pinion 𝑚1 = 0.96 kg 

Mass of the gear 𝑚2 = 2.88 kg 

Contact ratio 𝐶𝑟 = 1.6456 

Mass moment of inertia of the motor 𝐼𝑚 = 0.0021 kg m2 

Mass moment of inertia of the load 𝐼𝑏 = 0.0105 kg m2 

Mass moment of inertia of the pinion 𝐼1 = 4.3659 × 10−4 kg m2 

Mass moment of inertia of the gear 𝐼1 = 8.3602 × 10−3 kg m2 

Input shaft frequency 𝑓 = 30 Hz 

Torsional stiffness of the coupling 𝑘𝑝 = 𝑘𝑔 = 𝑘𝑐 = 4.4 × 104 Nm/rad 

Damping coefficient of the coupling 𝑐𝑝 = 𝑐𝑔 = 𝑐𝑐 = 5.0 × 105 Nms/rad 

Radial stiffness of the bearing 𝑘1 = 𝑘2 = 𝑘𝑟 = 6.56 × 107 N/m 

Damping coefficient of the bearing 𝑐1 = 𝑐2 = 𝑐𝑟 = 1.8 × 105 Ns/m 
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Figure 12. Mesh stiffness of healthy teeth. 

 

Figure 13. Mesh stiffness when a cracked tooth is involved. 
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The static load and the dynamic load on the cracked tooth are plotted in Figure 14. 

The static load sharing between the two teeth pairs in mesh in the double-pair-contact 

stage is determined by the mesh stiffness sharing. As shown in Figure 14, during this one 

mesh period, the range of dynamic load is larger than that of the static load. A larger 

range of load will result in faster crack propagation. Hence, to produce conservative 

prediction of RUL, the maximum dynamic load is selected to apply on the cracked tooth. 

Because the minimum dynamic load that the tooth experiences is zero, the maximum 

dynamic load is actually the range of dynamic load during one mesh period.   

 

Figure 14. Static and dynamic load on the cracked tooth. 
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crack propagation in the gear tooth. Incorporation of the crack effect to the dynamic load 

and the realistic curved crack propagation path will increase the fidelity of physical 

models in the integrated prognostics method proposed in the next chapter.  
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Chapter 4. An integrated prognostics method for 

gears 

4.1 Overview 

Gearbox is a critical system for power transmission in engineering systems. The gears 

are subject to various failure modes, one of which is tooth fracture. Due to cyclic bending 

stress, a crack is prone to appear near the tooth root area. As loading cycles continue, the 

crack will propagate and eventually cause the tooth breakage. The tooth breakage may 

lead to catastrophic failure of the whole system. The existing prognostics approaches for 

gears are either physics-based or data-driven. As discussed in Chapter 2, both methods 

have their drawbacks. For example, physics-based methods usually use deterministic 

model without considering uncertainty, while data-driven methods may end up with 

meaningless extrapolation. In this chapter, an integrated prognostics method is proposed 

to predict the RUL of gears considering the failure mode of tooth fracture.  

In the proposed method, the physical models include a damage propagation model, 

Paris’ law, which is a well-known equation that describes the crack evolution with 

loading cycles; a FE model which is used to calculate SIF in Paris’ law; and a dynamics 

model which is used to calculate dynamic load that the gear tooth experiences. The 

parameters in Paris’ law are treated as random variables to account for the large amount 

of variation in failure times of the gear population. However, a specific gear has a unique 

failure time, which means the parameters in Paris’ law should be deterministic or at least 

have small uncertainty to predict the failure time of this specific gear.  To achieve this 

goal, condition monitoring data are used to estimate the crack size at inspection times and 
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to assist in identifying the model parameters through Bayesian inference for a specific 

gear. Every time a new estimation of crack size is available, the model parameters will be 

updated. The update process can reduce the uncertainty in model parameters and make 

the parameter distribution become narrower. Moreover, the position of the distribution 

will approach the actual values of the parameters. Therefore, the RUL predicted based on 

the updated model parameters will get more accurate. 

This chapter is organized as follows. Section 4.2 introduces the framework of the 

proposed integrated prognostics method for gear RUL prediction considering uncertainty. 

In Section 4.3, physical models used to describe the physics of failure are presented. In 

Section 4.4, uncertainty sources are defined to capture the uncertainty encountered in the 

integrated prognostics. The RUL calculation is presented in Section 4.5. Section 4.6 

addresses the update process for model parameter using Bayesian inference as well as the 

way to obtain prior distribution for the model parameter using historical data. In section 

4.7, examples are given to show the update process and to verify the method. Section 4.8 

concludes the chapter. The materials in this chapter have been published in (Zhao et al. 

2013a). 

4.2 Framework of the proposed integrated prognostics method 

The objective of integrated gear health prognostics is to predict gear RUL at a given 

time by fusing physical models with condition monitoring data. Uncertainty exists in both 

the model-based part and the data-driven part of the integrated prognostics method. These 

uncertainty sources are the key causes of the predicted RUL distribution. Hence, 

uncertainty quantification in the RUL is critical. Moreover, by incorporating the 
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observations on damage condition, the uncertainty in the predicted RUL is expected to be 

reduced, resulting in more accurate prognostics. 

The framework of the proposed integrated prognostics method is shown in Figure 15. 

There are basically two parts separated by a dashed line in the figure: the part of models 

on the left hand side, and the part of data on the right hand side. Bayesian inference is 

connecting both parts. On one hand, the model part consists of three physical models: 

degradation model, FE model and gear dynamic model. The degradation model (Paris’ 

law) is used to predict gear RUL. The purpose of the FE model is to calculate SIF that is 

the quantity used to solve Paris’ law. As discussed in Chapter 3, the gear dynamic model 

outputs the dynamic load which is applied in FE model to drive the crack propagation. 

On the other hand, the data part consists of crack estimations obtained by analyzing the 

condition monitoring data. There is uncertainty associated with the crack estimations. 

The crack estimations will be incorporated into Bayesian inference to update the 

distribution of model parameters. The RUL distribution is then predicted by propagating 

the uncertainty in the model parameters through the degradation model. In this 

framework, the condition monitoring data are able to assist in reducing the uncertainty in 

model parameters and in making them more accurate for a specific gear. Hence, the RUL 

prediction will get more accurate accordingly. Details of each part of the framework will 

be elaborated in the following subsections.    
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Figure 15. Integrated prognostics framework 

4.3 Physical models 

Without knowing the physics of failure, data-driven method must “train” or “fit” a 

large amount of data to identify certain pattern of trend in order to predict the future 

system behaviour. The effectiveness depends heavily on the availability of a set of dense 

and well-distributed data. In contrast, the predictive model in physics-based method is 

established based on the first principle laws of physics. Hence it can be directly used for 

failure prediction with high accuracy. In this section, three physical models needed in this 

chapter are introduced. 

4.3.1 The degradation model 

The degradation model is used for describing the damage accumulation on the 

component with time. A failure is usually defined by the first time at which the damage 

indicator crosses a threshold. Most of the existing damage propagation models are built 

on the empirical Paris’ law. Through experimental data regression, parameters in Paris’ 

law are identified to give a fit to the degradation process.  

In this chapter, the basic Paris’ law is selected as the damage propagation model, 
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which has the form of 

d𝑎

d𝑁
= 𝐶(∆𝐾)𝑚,                                                     (4.1) 

where d𝑎/d𝑁 is crack growth rate, 𝑎 is crack size, 𝑁 is loading cycles, ∆𝐾 is the range of 

opening SIF, 𝐶 and 𝑚 are material dependent parameters and experimentally estimated 

by fitting fatigue test data. Paris’ law asserts a linear relationship between crack growth 

rate and SIF in a log-log scale. 

4.3.2 FE model 

FE models are widely used for solid mechanics analysis of components with 

complicated geometry and loading condition. That said, analytic solutions are difficult to 

obtain or do not exist at all (Li and Lee 2005; Kacprzynski et al. 2004; Glodez et al. 2002; 

Orchard and Vachtsevanos 2007; Sankararaman et al. 2001). Especially in terms of 

fracture problems, discontinuity of geometry can give rise to a singularity of strain near 

the crack tip in linear elastic fracture theory. Computational fracture mechanics provides 

an effective way to obtain the approximate solution to fracture problem by using either 

FE method or boundary element method. Commonly used methods, e.g., direct approach, 

energy based approach, etc., can calculate important parameters such as SIF using FE 

outputs. The readers can refer to Section 2.3.1 for more background of computational 

fracture mechanics. 

FE software packages facilitate the widespread applications of FE method in various 

areas, e.g., civil construction, machine design, system simulation, etc. The software of 

FRANC2D is designed specifically for the simulation of two-dimensional fracture 

process, and has been verified and used to do the analysis in many applications. 
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FRANC2D has an appealing feature to alter the structure body geometry and re-mesh 

near the crack tip automatically after the crack increments. Opening mode and sliding 

mode SIFs 𝐾𝐼 and 𝐾𝐼𝐼 are readily calculated using the built-in functions. In this thesis, 

FRANC2D is used to build a two-dimensional FE model for a spur gear tooth with a 

crack at root and to calculate 𝐾𝐼(𝑎) and 𝐾𝐼𝐼(𝑎) as functions of crack size. Since opening 

mode SIF 𝐾𝐼 dominates the crack propagation in spur gear tooth, the SIF mentioned in 

sequel refers to the opening mode SIF.   

4.3.3 Gear dynamics model 

Most of the studies on the gear crack propagation problem considered constant static 

load on the meshing teeth. They investigated how the crack propagated under a fixed 

force on the tooth, which is a stand-alone component. However, the appearance of a 

crack could reduce the tooth stiffness and will affect the whole dynamic characteristics of 

the gearbox system. Hence, the dynamic load that the cracked tooth experiences is also 

affected. The purpose of the gear dynamics model in this thesis is similar to that in (Li 

and Lee 2005), which is to calculate the dynamic load on a cracked tooth at different 

crack sizes. With certain crack size, the maximum dynamic load is selected to apply on 

the cracked tooth to drive the crack extension. The details of this dynamic model can be 

found in Chapter 3.   

4.4 Uncertainty sources 

Three main uncertainty sources are considered in the integrated prognostics method: 

material parameter uncertainty, model uncertainty, and measurement uncertainty.  

Manufacturing process variability may result in differences in material at micro-
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structural level, such as different grain orientations. Thus, even physically identical 

components made of the same type of material could demonstrate different fatigue 

behaviors. Experimental data on fatigue crack propagation (Virkler et al. 1979) showed 

that, even under carefully controlled conditions, both the number of cycles taken for the 

crack to reach a given size, and the crack size researched given a number of cycles, 

displayed a large amount of scatter. The experiment confirms the stochastic nature of 

crack propagation process. Researchers assigned randomness in the parameters of Paris’ 

law by treating them as random variables (Coppe et al. 2010; An et al. 2012; 

Sankararaman et al. 2011). Hence, the uncertainty in model parameters is considered to 

be responsible for the scatter in failure times among identical units made out of the same 

type of material. 

The degradation model adopts the basic form of Paris’ law as the crack propagation 

model without considering other possible parameters which may have impact on crack 

propagation, such as crack closure retard, fracture toughness, load ratio, etc. Therefore, 

an error term is introduced to represent the model uncertainty, and denoted by 𝜀. For 

simplicity, assume 𝜀 follows normal distribution in this chapter. Considering this model 

uncertainty, the modified Paris’ law is written as   

𝑑𝑎

𝑑𝑁
= 𝐶(∆𝐾)𝑚 𝜀.                                                       (4.2) 

In addition, measurement error 𝑒  is also considered. The real crack size is never 

known, but it can be estimated by in-situ condition monitoring and diagnostics 

techniques. There is uncertainty in the crack size estimation, and the error between the 

real crack size and the estimated one is assumed to be a zero-mean Gaussian white noise 



67 

 

with a standard deviation of 𝜎. The real crack size is denoted as 𝑎𝑟𝑒𝑎𝑙, and the estimated 

one is 𝑎𝑜𝑏𝑠, so the measurement error is defined as 𝑒 = 𝑎𝑜𝑏𝑠 − 𝑎𝑟𝑒𝑎𝑙. Thus, 

𝑒 ~ 𝑁(0, 𝜎2),                                                            (4.3) 

or equivalently, 

𝑎𝑜𝑏𝑠 ~ 𝑁(𝑎𝑟𝑒𝑎𝑙, 𝜎2).                                                   (4.4) 

4.5 RUL prediction 

The RUL prediction is performed at every inspection time when the current crack size 

is estimated. At the inspection time 𝑁𝑡, suppose the observed current crack size is 𝑎𝑡. The 

crack will propagate according to Paris’ law until it reaches the critical size 𝑎𝐶, when the 

gear is considered failed.   

By exchanging the position of differentiation, the modified Paris’ law considering 

model error is written in (4.5). 

𝑑𝑁

𝑑𝑎
=

1

𝐶(∆𝐾(𝑎))
𝑚
𝜀
                                          (4.5) 

Let the crack increment be ∆𝑎. The modified Paris’ law is discretized by finite difference 

method: 

∆𝑁𝑖 = 𝑁𝑖+1 − 𝑁𝑖 = ∆𝑎 [𝐶(∆𝐾(𝑎𝑖))
𝑚
𝜀]

−1
, 𝑖 = 𝑡, 𝑡 + 1,⋯.   (4.6) 

The summation ∑ ∆𝑁𝑖𝑖=𝑡  from the current crack size at inspection time 𝑁𝑡  until the 

critical size 𝑎𝐶 is the RUL. The entire failure time could be obtained by 𝑁𝑡 + ∑ ∆𝑁𝑖𝑖=𝑡 . 

Because of the uncertainty in both the degradation model and the model parameters, 

there is uncertainty in the predicted RUL. Monte Carlo simulation is employed in this 
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chapter to propagate the uncertainty to the predicted RUL. 

4.6 Parameter update through Bayesian inference 

The appealing feature of the integrated prognostics method is the ability to 

incorporate condition monitoring data into physical model adjustment. The condition 

monitoring data are collected for a specific gear operating in a specific environment 

under monitoring. Hence, the information that the data bear is specific for this individual 

gear. In the proposed integrated prognostics method, the condition monitoring data will 

be used to adjust the physical model parameters to make the RUL prediction of this 

specific gear more precise and more distinguished from other gears.  

Material parameters in Paris’ law should have narrow distributions or even 

deterministic values to describe the crack propagation in a specific gear. For the gear 

population, though, the distributions of material parameters should be much wider than 

those for a specific gear. By taking advantage of the condition monitoring data for the 

specific gear under monitoring, we should be able to reduce the uncertainty in these 

parameters. It is achieved by updating the parameter distribution through Bayesian 

inference at inspection times.  

Consider for example a simplified case where only the distribution of parameter 𝑚 is 

to be updated, while assuming the other material parameter C being constant. The prior 

distribution for 𝑚 is denoted by 𝑓𝑝𝑟𝑖𝑜𝑟(𝑚), and the likelihood to obtain the current crack 

estimation is 𝑙(𝑎|𝑚). Thus, the Bayesian formula to obtain the posterior distribution of 𝑚 

is given as 
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𝑓𝑝𝑜𝑠𝑡(𝑚|𝑎) =
𝑙(𝑎|𝑚)𝑓𝑝𝑟𝑖𝑜𝑟(𝑚)

∫ 𝑙(𝑎|𝑚)𝑓𝑝𝑟𝑖𝑜𝑟(𝑚)𝑑𝑚
.                                (4.7) 

To calculate the likelihood function in (4.7), the crack size predicted by Paris’ law at 

the inspection time is needed. To solve the Paris’ equation, it is discretized using a first-

order Euler method. Let the initial crack size be 𝑎0, and the incremental loading cycles be 

∆𝑁; then the discretized Paris’ law is 

{
𝑎((𝑖 + 1)∆𝑁) = 𝑎(𝑖∆𝑁) + (∆𝑁)𝐶[∆𝐾(𝑎(𝑖∆𝑁))]

𝑚
𝜀  

𝑎(0) = 𝑎0

,    𝑖 = 0,1,2⋯.  (4.8) 

The iteration sequentially proceeds until the current inspection time is reached. The crack 

size obtained in (4.8) through this discretization is denoted as 𝑎𝑠𝑖𝑚. In this process, model 

error is sampled from its assumed known distribution randomly at each iteration step. 

Because of the measurement error, the crack estimation 𝑎𝑜𝑏𝑠 has a distribution of 

𝑎𝑜𝑏𝑠~N (𝑎𝑠𝑖𝑚 , 𝜎2)                                           (4.9) 

Thus, the PDF of the normal distribution in (4.9) will be the likelihood function 𝑙(𝑎|𝑚),  

𝑙(𝑎|𝑚) =
1

√2𝜋𝜎
exp [−

1

2𝜎2
(𝑎𝑘

𝑜𝑏𝑠 − 𝑎𝑘
𝑠𝑖𝑚)

2
] .                  (4.10) 

Here, the effect of the model error 𝜀 on the 𝑎𝑠𝑖𝑚 mainly relies on its mean because of 

central limit theorem. Hence, without much loss of accuracy, the likelihood function is 

considered to be determined only by measurement error.  

The last problem to address is how to select the prior distribution of the parameter 𝑚. 

First assume that 𝑁 historical paths of degradation data are available, denoted in (4.19). 
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Each path 𝒫𝑖 composes of 𝑀 inspection time instances 𝑡𝑖
𝑗
, 𝑗 = 1,⋯ ,  𝑀 and the associated 

crack size 𝑎𝑖
𝑗_𝑜𝑏𝑠

 estimated at such inspection times.  

𝒫 = {𝒫𝑖|, 𝑖 = 1,⋯ ,𝑁}                                            (4.19) 

𝒫𝑖 = (𝑡𝑖
𝑗
, 𝑎𝑖

𝑗_𝑜𝑏𝑠
),   𝑗 = 1,⋯ ,  𝑀                                    (4.20) 

Next, apply Paris’ law to generate degradation paths 𝒫𝑖
′ with parameter 𝑚, obtaining the 

approximate crack size 𝑎𝑖
𝑗_𝑎𝑝𝑝

(𝑚) at the inspection time 𝑡𝑖
𝑗
, 𝑗 = 1,⋯ ,  𝑀.  

𝒫𝑖
′ = (𝑡𝑖

𝑗
, 𝑎𝑖

𝑗_𝑎𝑝𝑝
(𝑚)),   𝑗 = 1,⋯ ,  𝑀                             (4.21) 

Define 𝑒𝑖
𝑗(𝑚) = 𝑎𝑖

𝑗_𝑜𝑏𝑠
− 𝑎𝑖

𝑗_𝑎𝑝𝑝(𝑚), then the optimal 𝑚𝑜𝑝
𝑖  is found in the sense of least-

square, such that 

∑(𝑒𝑖
𝑗
(𝑚𝑜𝑝

𝑖 ))2 ≤  ∑(𝑒𝑖
𝑗
(𝑚))2

𝑀

𝑗=1

𝑀

𝑗=1

,   ∀𝑚                              (4.22) 

Lastly, prior distribution of 𝑚 will be determined by fitting {𝑚𝑜𝑝
𝑖 ,  𝑖 = 1,⋯ ,𝑁} using 

normal distribution.  

𝑓𝑝𝑟𝑖𝑜𝑟(𝑚)~𝑁 (𝜇𝑝𝑟𝑖𝑜𝑟
𝑚 , (𝜎𝑝𝑟𝑖𝑜𝑟

𝑚 )
2
).                                  (4.23) 

This prior distribution can be considered as the parameter distribution for the gear 

population. Once the condition monitoring data are available, the Bayesian inference will 

be implemented to update this prior distribution to obtain the posterior distribution which 

becomes specific to an individual unit. The posterior distribution will serve as the prior 

distribution for the next update conducted at the next inspection time. 

4.7 Example 

In this section, a numerical example is presented to demonstrate the proposed 
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integrated prognostics method. Simulated degradation paths are generated by considering 

various uncertainty sources. The degradation paths are divided into two sets: the training 

set is used to obtain the prior distribution, and the test set is used to test the prediction 

performance of the proposed method.  

4.7.1 Introduction  

The material and geometry properties of the spur gear used in this example are listed 

in Table 3. The FE model for the gear tooth is shown in Figure 16. Suppose the critical 

crack size is 𝑎𝑐 = 5.2 mm, which is 80% of the total circular thickness of the tooth. 

Beyond this threshold, the crack will propagate very fast, and the tooth breakage is 

imminent.   

The gear dynamic system discussed in Chapter 3 is used to calculate the dynamic load 

on this cracked tooth. The input torque is selected as 320Nm, and the output load torque 

is 640Nm. The rotation speed of gearbox is 30Hz. The other specifications of the gearbox 

are listed in Table 2. The maximum dynamic load appears at the rotation angle of 13.89 

degrees, higher than the static load. The results show that, for the entire crack path, the 

position of the maximum dynamic load will move forward a little bit as the crack size 

increases, but the movement is less than 1 degree so that the load is considered being 

applied at a fixed position, which corresponds to the rotation angle of 13.89 degrees. 
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Table 3. Material properties and main geometry parameters of the spur gear 

Young’s 

modulus 

(Pa) 

Poisson’s  

ratio 

Module 

(mm) 

Diametral 

pitch 

(in-1) 

Base 

circle 

radius 

(mm) 

Outer 

circle 

(mm) 

Pressure 

angle 

(degree) 

Teeth 

No. 

2.07e11 0.3 3.2 8 28.34 33.3 20 19 

 

 

Figure 16. 2D FE model for spur gear tooth. 

Referring to Figure 9 in Section 3.3.3, the procedure to obtain the SIF history as the 

crack grows from the initial size to the critical size under varying dynamic load is 

summarized next.  

1. Select the initial crack tip 𝑇𝑗 , 𝑗 = 0, such that the angle of 𝛽0 = 45 degrees, and 

the initial crack length 𝑎0=0.1mm. 

2. Calculate 𝑢𝑗 , which is the distance between tooth root 𝑆 and 𝑇𝑗𝐺𝑗. The total mesh 

stiffness 𝑘𝑡 is then obtained by the formulas proposed in Section 3.2.2 depending 

on where the crack tip is, and how many degrees the rotation angle is.  
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3. Solve gear dynamic equations in MATLAB by plugging 𝑘𝑡 obtained in step 2, 

and the dynamic load is computed using (3.48) – (3.50).  

4. Apply the maximum dynamic load at the contact point on the FE model of the 

cracked pinion tooth in FRANC2D, which corresponds to the rotation angle of 

13.89 degrees. The modes I and II SIFs, as well as the crack propagation angle, 

are calculated. 

5. Propagate the crack in the direction obtained in step 4 with an increment of 

∆𝑎=0.1mm. 

6. 𝑗 = 𝑗 + 1, return to step 2 until the crack size reaches the critical value. 

Following the procedure above, the histories of the two modes of SIFs are obtained, 

and shown in Figure 17. The mode I SIF 𝐾𝐼  is dominant just as reported in other 

published papers. So in Paris’ law, only ∆𝐾𝐼 is used to calculate the crack propagation 

rate. The third order polynomial is used to fit the discrete values of 𝐾𝐼  obtained by 

FRANC2D, thus 𝐾𝐼(𝑎) has its continuous form, and then the value of 𝐾𝐼 at any given 

crack size is available. Additionally, because the minimum load on the cracked tooth is 

zero, the range of the SIF during one loading cycle is the SIF obtained under the 

maximum dynamic load. Figure 18 plots the maximum dynamic load at different crack 

sizes. Applying the maximum dynamic load to the cracked tooth produces a larger SIF 

compared to that under the static load; and under this circumstance, the crack bears a 

faster propagation rate, which will lead to a relatively shorter RUL.  
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Figure 17. Stress intensity factor as a function of crack size. 

 

 

Figure 18. Mode I stress intensity factor and maximum dynamic load. 
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A set of crack degradation paths 𝒫  is generated using Paris’ law by adding 

measurement errors. All these paths, as well as the values of parameter 𝑚𝑖 that are used 

to generate these paths, termed here as real 𝑚𝑖, are recorded. The paths in 𝒫 are divided 

into two sets: training set 𝐻, and test set 𝑅. The training set is used to obtain the prior 

distribution for parameter 𝑚, and the test set is used to validate the proposed method.                           

To generate the degradation paths, we assume the following values and distributions 

for the parameters involved: 𝐶 = 9.12𝑒 − 11 , 𝜎 = 0.2 , 𝑚~N (1.4354, 0.22) , 

𝜀~N (2.5, 0.52) . Note that here the uncertainty regarding 𝑚  is related to the gear 

population, not of the specific gear being monitored.  

In this example, 10 degradation paths are generated using Paris’ law up, as shown in 

Figure 19. Select 𝐻 = {1, 2, 3, 5, 7, 8, 10} and 𝑅 = {4, 6,9}. The three test paths #4, 

#6, and #9 are bolded in Figure 19. Then, for each path 𝑖 ∈ 𝐻, the optimal 𝑚𝑜𝑝
𝑖 , 𝑖 = 1, 2,

3, 5, 7, 8, 10 satisfying (4.22) can be found using the least-square criterion, termed here 

as trained 𝑚𝑖. Then a normal distribution is used to fit them to obtain a prior distribution 

of 𝑚. 
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Figure 19. Ten degradation paths generated using prescribed parameters. 

4.7.2 Results on update process 

The ten real values of 𝑚 and the corresponding seven trained values are tabulated in 

Table 4, based on which the prior distribution of 𝑚 is calculated as 

𝑓𝑝𝑟𝑖𝑜𝑟(𝑚)~𝑁(1.454, 0. 10042).      

To validate the proposed integrated prognostics method, we take paths #4, #6, and #9 

for test. In path #4, 9 × 106 cycles are consumed for the crack to reach the critical size. 

The updating history for path #4 is shown in Table 5. In path #6, the actual failure time is 

3.4 × 106  cycles, and in path #9, it is 1.1 × 106  cycles. The update processes for 

distributions of parameter 𝑚 in path #6, and path #9 are shown in Table 6, and Table 7, 

respectively. 
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Table 4. The real values and the trained values of 𝑚 

Path # Real m Trained m 

1 1.2836 1.284 

2 1.5302 1.5328 

3 1.4569 1.4589 

4 1.2495 - 

5 1.5724 1.5729 

6 1.407 - 

7 1.4823 1.4807 

8 1.4844 1.4904 

9 1.5897 - 

10 1.3585 1.3583 

Table 5. Testing results for path #4 (real m=1.2495) 

Inspection cycle Crack length (mm) Mean of 𝑚 Std of 𝑚 

0 0.1 1.454 0.1004 

2 × 106     1.1656 1.2746 0.027 

4 × 106 1.9857 1.2514 0.0194 

6 × 106     3.1521 1.2556 0.016 

8 × 106     4.2336 1.2445 0.0121 

 

Table 6. Testing results for path #6 (real m=1.407) 

Inspection cycle Crack length (mm) Mean of 𝑚 Std of 𝑚 

0 0.1 1.454 0.1004 

0.7 × 106 0.9349 1.3956 0.037 

1.4 × 106 2.0607 1.4194 0.0253 

2.1 × 106 2.68 1.3931 0.0186 

2.8 × 106 3.7607 1.3967 0.0156 
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Table 7. Testing results for path #9 (real m=1.5897) 

Inspection cycle Crack length (mm) Mean of 𝑚 Std of 𝑚 

0 0.1 1.454 0.1004 

0.25 × 106 0.9629 1.5409 0.0458 

0.5 × 106 1.9648 1.5675 0.0298 

0.75 × 106 3.3989 1.6053 0.0201 

1 × 106 4.8369 1.5849 0.0111 

 

The results show that the Bayesian updates adjusted the mean of 𝑚 from the initial 

value 1.454 to its real values gradually, as more condition monitoring data become 

available. Moreover, the standard deviation of 𝑚  is reduced, which means that the 

uncertainty in 𝑚 is reduced. To demonstrate, Figure 20 shows the updated distributions 

of 𝑚 for path #4.  

The update processes of failure time distributions for path #4, #6, and #9 are shown in 

Figure 21, Figure 23 and Figure 24 respectively, from which we can see, the predicted 

failure time distribution also becomes narrower, and its mean is approaching the real 

failure time as update continues. The updated RUL at each inspection time for path #4 is 

computed as shown in Figure 22, and the vertical lines represent the real RUL at the 

inspection times. 
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Figure 20. Updated  distributions of 𝑚 for path #4. 

 

 

Figure 21. Updated failure time distributions for path #4. 

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
0

5

10

15

20

25

30

35

m

P
D

F

 

 

Prior m

1st update

2nd update

3rd update

4th update

Real m

5 6 7 8 9 10 11 12 13

x 10
6

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

-6

Loading cycles

F
a
ilu

re
 t

im
e
 P

D
F

 

 

Initial prediction

1st update

2nd update

3rd update

4th update



80 

 

 

Figure 22. Updated RUL for path #4.  

 

Figure 23. Updated failure time distributions for path #6. 
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Figure 24. Updated failure time distributions for path #9. 

4.8 Conclusions 

Accurate health prognosis is critical for ensuring equipment reliability and reducing 

the overall life-cycle costs, by taking full advantage of the useful life of the equipment. In 

this chapter, an integrated prognostics method is developed for gear RUL prediction, 

which utilizes both gear physical models, and real-time condition monitoring data. The 

physical models specific to gear include a FE model for gear stress analysis, a gear 

dynamics model for dynamic load calculation, and a damage propagation model 

described using Paris’ law. Material uncertainty and model uncertainty are considered to 

account for differences of failure times among different units. A Bayesian method is used 

to fuse the collected condition monitoring data in updating the distribution of the model 

parameter for the specific unit being monitored, and to achieve the updated RUL 

prediction. 
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An example based on simulated degradation paths is used to demonstrate the 

effectiveness of the proposed method. The results demonstrate that the proposed 

integrated prognostics method can effectively adjust the model parameter based on the 

observed degradation data, and thus lead to more accurate RUL predictions; and the 

prediction uncertainty can be reduced.  

The proposed method can only be used after crack initiation. Diagnostics methods are 

needed to detect the crack initiation, and after that, the prognostics methods, such as the 

one we propose in this chapter, can be used to predict the failure time. 
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Chapter 5. A stochastic collocation approach based 

on PCE for efficient integrated gear health prognosis 

5.1 Overview 

In prognostics, uncertainty quantification in RUL prediction is a major task. Monte 

Carlo simulation is a commonly used technique, which generates samples on the model 

output through the model evaluation. Its slow convergence rate makes Monte Carlo 

simulation infeasible for high dimensional uncertainty quantification when the model 

evaluation is computationally intensive. In this chapter, based on the integrated 

prognostics method proposed in Chapter 4, a stochastic collocation approach based on 

PCE is developed for efficient uncertainty quantification in the integrated gear health 

prognosis. The proposed method is able to improve the computational efficiency 

significantly.  

Figure 25 sketches one update process in the integrated prognostics method between 

two consecutive inspection times. This figure shows that the Bayesian inference is the 

pivot to combine physics models (FE model, gear dynamic model and degradation model) 

and condition monitoring data. The output of Bayesian inference is the updated 

distribution of input parameters in degradation model. And PCE is used in the calculation 

of the likelihood function and the failure time distribution.  
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Figure 25. Update process between two consecutive inspection times. 

This chapter is organized as follows. Section 5.2 presents fundamentals of PCE and 

stochastic collocation method. In Section 5.3, an efficient method based on PCE is 

proposed to improve the computational efficiency of uncertainty quantification in the 

integrated prognostics method. The uncertain inputs in the degradation model are further 

classified into updating-uncertainty and non-updating-uncertainty. Model uncertainty and 

measurement uncertainty are also considered as in Chapter 4 except that the model 

uncertainty is modeled by a lognormal distribution rather than a normal distribution. 

Examples are given in Section 5.4, illustrating the effectiveness and the efficiency of the 

proposed method. Two comparative studies are given to demonstrate the performance of 

PCE in terms of accuracy and efficiency. Section 5.5 concludes this chapter. The 

materials in this chapter have been published in (Zhao et al. 2013b). 

5.2 Fundamentals of PCE and stochastic collocation method 

In this section, fundamentals of PCE and stochastic collocation method on sparse grid 

are briefly presented. PCE can be considered as an efficient approximation to stochastic 
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processes and random variables. To introduce this technique and to further investigate the 

approximation properties, a probability space, (Ω, F, P), needs to be properly defined, 

where Ω is the event space equipped with σ-field ℱ and probability measure 𝒫.  

5.2.1 Background 

Consider a computational model 𝐻: 𝒁 = 𝐻(𝒀), mapping input vector 𝒀 ∈  ℝ𝑑  into 

output,  𝑍 ∈  ℝ , which is the quantity of interest. Here, for the sake of simplicity, 𝑍 is 

considered as a scalar. When it is a vector, the derivation holds component wise. In the 

probability space (Ω,ℱ, 𝒫), 𝒀 and 𝑍 become random variables, which are functions of 

random event 𝜔 ∈ Ω. The purpose of uncertainty quantification is to study the effects of 

uncertainty in 𝒀(𝜔) on the statistical property of 𝑍(𝜔).  

PCE is essentially a spectral method in probabilistic context. It relies on the fact that a 

random response of a computational model can be approximated by the polynomials 

coordinated in a suitable finite orthogonal basis. Let 𝒊 = (𝑖1,⋯ , 𝑖𝑑) be a multi-index with 

|𝒊| = 𝑖1+⋯+ 𝑖𝑑. By using PCE, the model output can be expressed as 

𝑍 = 𝐻(𝒀) ≈ 𝐻𝑃(𝒀) = ∑ 𝑓𝒊
|𝒊|≤𝑁

𝛷𝒊(𝒀) ,                                    (5.1) 

where {𝛷𝒊(𝒀)}|𝒊|≤𝑁 are the basis orthogonal polynomial functions in 𝑑-variate 𝑁th-degree 

polynomial space ℙ𝑁
𝑑 . 𝐻𝑃 can be seen as a orthogonal projection 𝑃𝑁: 𝐿2 → ℙ𝑁

𝑑 . The series 

converges in the sense of 𝐿2- norm given that both 𝒀 and 𝑍 have finite variances: 

‖𝐻 − 𝑃𝑁𝐻‖𝐿2 → 0,     𝑁 → ∞.                                           (5.2) 

The selection of basis polynomial function depends on the type of the distribution of 

input variables. There exists a correspondence between the basis function type and the 
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distribution type of the inputs. For example, if the input variable follows Gaussian 

distribution, Hermite polynomials are selected as basis. Basis functions of multivariable 

can be generated by the products of univariate basis functions when the components in 

the input random vectors are independent. For the general cases when the dependency 

exists among random variables, Soize and Ghanem (2004) conducted a theoretical study 

to clarify the mathematical structure of the associated functional space. But it may be 

difficult to find the orthogonal basis because of the unavailability of the joint PDF of 

random variables. However, for the dependence structure in multivariate Gaussian 

distribution, the correlated Gaussian random variables can be transformed into 

uncorrelated standard Gaussian random variables using Cholesky decomposition for 

covariance matrix. This is also the approach adopted in this chapter to tackle the 

uncertainty in the Gaussian distributed material parameters. 

The main computational task in PCE is to calculate the coefficients 𝑓𝒊 in 𝐻𝑃(𝒀). As 

discussed in Section 2.5.2, stochastic Galerkin method and stochastic collocation method 

are the two ways to obtain these coefficients. To save the efforts for complex model 

reformulation required by Galerkin method, the stochastic collocation method is 

introduced here briefly and adopted in this thesis.    

5.2.2 General PCE formulation 

Let 𝒀 be a 𝑑-variate continuous random vector in the probability space (Ω,ℱ,𝒫), 

having independent and identically distributed (i.i.d.) components: 𝒀 = (𝑌1,⋯ , 𝑌𝑑). The 

joint PDF of 𝒀 with respect to the support Γ𝒀 is denoted as 𝑝𝒀(𝐲) = ∏ 𝑝𝑌𝑖
(𝑦𝑖)

𝑑
𝑖=1 , where 

𝑝𝑌𝑖
(𝑦𝑖) is the marginal PDF of 𝑌𝑖.  
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Starting with one-dimensional case, let ℙ𝑁(𝑌𝑖) be univariate polynomial space with 

the degree up to 𝑁, and {𝜙𝑘(𝑌𝑖), 𝑘 = 0,⋯ ,𝑁} ⊂ ℙ𝑁(𝑌𝑖). We call {𝜙𝑘(𝑌𝑖), 𝑘 = 0,⋯ ,𝑁} 

univariate PCE basis functions in ℙ𝑁(𝑌𝑖)  if they satisfy the following orthogonality 

condition 

𝔼[𝜙𝑚(𝑌𝑖)𝜙𝑛(𝑌𝑖)] = ∫𝜙𝑚(𝑦)𝜙𝑛(𝑦)𝑝𝑌𝑖
(𝑦)𝑑𝑦 = 𝛾𝑚𝛿𝑚𝑛 ,   0 ≤ 𝑚, 𝑛 ≤ 𝑁 (5.3) 

where 

𝛾𝑚 = 𝔼[𝜙𝑚
2(𝑌𝑖)] = ∫𝜙𝑚

2(𝑦)𝑝𝑌𝑖
(𝑦)𝑑𝑦                               (5.4) 

is a normalized factors and 𝛿𝑚𝑛  is Kronecker delta function. The type of orthogonal 

polynomial is determined by the distribution type of random variable such that the 

orthogonality will hold with respect to the associated weight function 𝑝𝑌𝑖
(𝑦).  

The basis functions in multiple variable polynomial space ℙ𝑁
𝑑  are the products of 

those of univariate: 

𝛷𝒊(𝒀) = 𝜙𝑖1
(𝑌1)⋯𝜙𝑖𝑑

(𝑌𝑑),     0 ≤ |𝒊| ≤ 𝑁                             (5.5) 

So that ℙ𝑁
𝑑  can be defined as the expansion of {Φ𝒊(𝑌), 0 ≤ |𝒊| ≤ 𝑁}, 

ℙ𝑁
𝑑 ≡ {𝑝: Γ𝑌 → ℝ | 𝑝(𝒀) = ∑ 𝑐𝑖𝛷𝒊(𝒀)

|𝒊|≤𝑁

}                               (5.6) 

It follows directly from (5.3) and (5.5) that, 

𝔼[Φ𝒊(𝒀)Φ𝒋(𝒀)] = ∫ 𝛷𝒊(𝒚)𝛷𝒋(𝒚)𝑝𝒀(𝐲)𝑑𝒚

Γ𝒀

= 𝛾𝒊𝛿𝒊𝒋, 0 ≤ 𝑚, 𝑛 ≤ 𝑁  (5.7) 
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where 𝛾𝒊 is a multiplication of one-dimensional normalized factors and 𝛿𝒊𝒋 is d-variate 

Kronecker delta function. 

To address the approximation property, define the weighted 𝐿2 space:  

𝐿2(Γ𝒀) ≡ {𝑓: Γ𝒀 → ℝ | 𝔼[𝑓2(𝒀)] = ∫ 𝑓2(𝒚)𝑝𝒀(𝐲)𝑑𝒚

Γ𝒀

< ∞}        (5.8) 

with the inner product 

< 𝑤, 𝑣 >𝐿2= ∫ 𝑤(𝒚)𝑣(𝒚)𝑝𝒀(𝐲)𝑑𝒚

Γ𝒀

                                  (5.9) 

and the 𝐿2- norm 

‖𝑤‖𝐿2 = ( ∫ 𝑤2(𝒚)𝑝𝒀(𝐲)𝑑𝒚

Γ𝒀

)
1
2                                     (5.10) 

Based on the PCE basis functions in polynomial space ℙ𝑁
𝑑  and the weighted 𝐿2 space 

defined above, from classical approximation theory, the following conclusion holds: 

For any 𝑓 ∈  𝐿2(𝛤𝑌), define 𝑁th-degree PCE orthogonal projection as 

𝑃𝑁𝑓 = ∑ 𝑓𝒊
|𝒊|≤𝑁

𝛷𝒊(𝑌)                                                 (5.11) 

𝑓𝒊 =
1

𝛾𝒊
 ∫ 𝑓(𝐲)𝛷𝒊(𝐲) 𝑝𝑌(𝐲)𝑑𝐲

Γ𝒀

,     𝛾𝒊 = 𝛾𝑖1 ⋯𝛾𝑖𝑑                       (5.12) 

Then  

‖𝑓 − 𝑃𝑁𝑓‖𝐿2 → 0,     𝑁 → ∞.                                       (5.13) 
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That is to say, the function of random variables can be approximated in a form of 

orthogonal polynomial expansion. The convergence rate depends on the regularity of the 

function 𝑓 and the type of orthogonal polynomials 𝛷𝒊(𝑌). This kind of convergence is 

referred to as spectral convergence, and this expansion error due to the truncated degree 

of polynomial space is referred to as PCE projection error. More details of this section 

could be found in Xiu (2010). 

5.2.3 Stochastic collocation method 

Stochastic collocation method aims at estimating the coefficients in the polynomial 

expansion by utilizing the orthogonality of the basis functions. By multiplying the basis 

function to the polynomial expansion and taking the expectation in 𝐿2-norm, one gets the 

theoretical expression of each coefficient: 

𝑓𝒊 = ∫ 𝑓(𝐲)𝛷𝒊(𝐲) 𝑝𝑌(𝐲)𝑑𝐲

Γ𝒀

.                                          (5.14) 

However, the integration in (5.14) is intractable when high dimensional random space is 

involved. In practice, the numerical integration rules provide approximate solutions by a 

weighted sum using the pre-selected points 𝒑(𝑗) ∈ ℝ𝑑  and the associated weights 

𝛼(𝑗) ∈  ℝ, 𝑗 = 1,⋯ , 𝑄, such that 

𝑓𝒊 = ∑𝑓(𝒑(𝑗))𝛼(𝑗)

𝑄

𝑗=1

→ 𝑓𝒊, 𝑄 → ∞ .                               (5.15) 

With 𝑓𝒊 available, define the operator 𝐼𝑁: 𝐿2 → ℙ𝑁
𝑑 , such that  
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𝐼𝑁𝑓 = ∑ 𝑓𝒊
|𝒊|≤𝑁

𝛷𝒊(𝒀).                                                (5.16) 

Various schemes of summation in (5.16) may be used which differ in the selections of 

the integration rules. For one-dimensional case, this problem is readily solved using the 

available numerical integration rules, such as Gaussian quadrature rule and Clenshaw-

Curtis rule. The natural generalization to multi-dimensional case is to use tensor product. 

However, the number of points in the tensor product will grow rapidly as the dimension 

increases, which is known as “curse of dimensionality”. When high dimensional 

uncertainty is considered, the computational burden will be very heavy using tensor 

product collocation.  

Smolyak sparse grid can mitigate the “curse of dimensionality” by constructing the 

nodal set which consists of an algebraic sum of low-order tensor products based on one-

dimensional quadrature rule. Such construction will result in a great reduction of nodes 

for integration compared to tensor products. 

Define the integration operator ℒ𝑖[𝑓] in the 𝑖-th dimension     

ℒ𝑖[𝑓] ≡ ∑𝑓(𝑝𝑖
𝑗
)

𝑄

𝑗=1

𝛼𝑖
𝑗
                                              (5.17) 

then the Smolyak algorithm gives the following multi-dimensional operator 

ℒ[𝑓] = ∑ (−1)𝐾−𝑑−|𝒊| ∙ (
𝑑 − 1

𝑑 − 𝐾 + |𝒊|
)

𝐾−𝑑≤|𝒊|≤𝐾−1

∙ (ℒ𝑖1⨂⋯⨂ℒ𝑖𝑑)     (5.18)  

The difference between 𝑃𝑁𝑓  and 𝐼𝑁𝑓  is caused by the approximation of the 

coefficients 𝑓𝒊 → 𝑓𝒊 , and the consequent error ‖𝑃𝑁𝑓 − 𝐼𝑁𝑓‖𝐿2  is called aliasing error. 



91 

 

When the numerical integration rule converges, the aliasing error tends to zero, which 

means 𝐼𝑁𝑓 becomes a good approximation to 𝑓.  

5.3 The proposed stochastic collocation method for uncertainty 

quantification in integrated gear prognosis 

This section will elaborate the proposed stochastic collocation method for uncertainty 

quantification in the integrated prognostics method. Firstly in Section 5.3.1, the 

uncertainty sources as well as their roles in the integrated prognostics are defined. By 

classifying the model parameters into updating-uncertainty and non-updating-uncertainty, 

a likelihood function is defined to combine the contribution from both measurement error 

and non-updating-uncertainty. Then Section 5.3.2 and 5.3.3 present the stochastic 

collocation method based on PCE for uncertainty quantification in RUL and Bayesian 

inference, respectively.  

5.3.1 Modeling of uncertainty sources 

In this chapter, it is assumed that all the uncertainty is categorized into three main 

sources: model inputs uncertainty, measurement uncertainty and model uncertainty. The 

model inputs uncertainty is further classified into updating-uncertainty and non-updating-

uncertainty. 

Paris’ law and its evolutions are widely used physical models to describe the crack 

propagation process. When the associated inputs in the model are treated as random 

variables, Paris’ law becomes a stochastic equation. Denote the set of all these random 

inputs appearing in Paris’ model as 𝚯 , and divide them into two subsets: updating-

uncertainty 𝐔 , and non-updating-uncertainty 𝑹 . The distributions of uncertain inputs 
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belonging to 𝐔 are unknown, and only a priori may be assumed. The updating-

uncertainty will be updated through Bayesian inference using the condition monitoring 

data. With the uncertainty reduction, the distribution of updating-uncertainty will be 

narrowed and may converge to the real value for a specific unit. While, those uncertain 

inputs belonging to 𝑹  will take well-known distributions, and they are treated as 

contributors to the likelihood function in the Bayesian inference. So this type of 

uncertainty is named as likelihood-uncertainty. Both the likelihood-uncertainty and the 

updating-uncertainty contribute to RUL distribution. In addition to the likelihood-

uncertainty, another contributor to the likelihood function is the measurement error, 

which has been defined in the integrated prognostics method presented in Chapter 4. 

The existence of a number of different physical models to describe the crack 

propagation process implies that there is no perfect model for all the circumstances. The 

models are usually selected by leveraging the accuracy and the complexity. The authors 

in (Ortiz and Kiremidjian 1988) assigned the reason of randomness nature of the crack 

growth rate to the random unpredictable resistance in material’s microstructure. Yang et 

al. (1985) proposed a model by multiplying a stochastic term 𝜀 to the deterministic crack 

growth model after investigating the crack propagation in the fastener holes of aircrafts 

under spectrum loading, and experiments were also conducted to validate this model. The 

random term 𝜀  was assumed to be a lognormally distributed random variable and 

“accounts for the crack growth rate variability, such as the variabilities due to material 

cracking resistance, crack geometry, crack modeling, spectrum loading, etc.” (Yang et al. 

1983). This model has the simplest stochastic form and produces conservative and 

reasonable results. Many related work adopted this multiplicative form of model error for 
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crack propagation study in other applications (Sankararaman et al. 2011; Ortiz and 

Kiremidjian 1988; Yang et al. 1983; Yang et al. 1987; Willhauck et al. 2008). The 

statistical property of 𝜀 could be acquired by a least-square fitting of Paris’ law in a log-

log scale using the information of crack sizes and associated cycles obtained in an 

experiment of fatigue crack propagation, as reported in (Yang et al. 1987; Virkler et al. 

1978). The experimental data showed the residual 𝜁  in the regression model has a 

Gaussian distribution, and thus, the distribution of 𝜀 could be obtained by noticing the 

relationship of 𝜀 = exp (𝜁) . Based on the discussion above, the distribution of 𝜀  is 

assumed to be log-normal in this chapter.  

In a word, the uncertainty considered in this chapter can be categorized as follows:  

{

measurement error 𝑒
model error 𝜀

Random model inputs {
updating − uncertainty 𝑼

non − updating − uncertainty 𝑹.  

 

As for the problem that among the random model inputs which belong to which 

subset, is a matter to be decided according to the specific application.  

5.3.2 Stochastic collocation method based on PCE for uncertainty 

quantification in RUL distribution 

The crack propagation process is stochastic in nature, which is affected by a variety 

of uncertainty, such as material, lubrication, speed, loading and damage initial conditions. 

If all the uncertain factors are considered as the random inputs in the crack propagation 

model, the computation of RUL distribution will become a problem of uncertainty 

propagation.  
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We parameterize the probability space by finding the finite set of uncertain factors in 

the gear health degradation. The random parameters in this set are denoted by 𝝃 =

(𝜉1,⋯ 𝜉𝑑), and are assumed to be i.i.d. so that the density function can be written as 

𝜌(𝝃) = ∏ 𝜌𝑖(𝜉𝑖)
𝑑
𝑖=1 . Given the distribution of 𝝃 , the corresponding orthogonal basis 

polynomials {Φ𝒊(𝝃) ∈ ℙ𝑁
𝑑 , 0 ≤ |𝒊| ≤ 𝑁}  are selected. Denote the failure time as 𝑇 , 

which is the quantity of interest. 𝑇 will be a function of these random inputs 𝝃 through 

Paris’ law, 

𝑇 = 𝑇(𝝃).                                                 (5.19) 

Firstly, nodal set is selected using Smolyak algorithm, which is  {𝜉(𝑗),   𝑗 = 1,⋯ , 𝑄}. 

Based on the proper integration rule, the associated weights 𝛼(𝑗), 𝑗 = 1,⋯ , 𝑄, are also 

available. Secondly, the failure times at these nodes are obtained by propagating the 

crack through Paris’ law to the critical size in a deterministic way. Denote them as 

�̃�𝑗 = 𝑇(𝜉(𝑗)), 𝑗 = 1,⋯ , 𝑄 . After that, we use the truncated 𝑁 -th degree polynomial 

expansion, 𝑇𝑁 = 𝑃𝑁𝑇, to approximate 𝑇, 

𝑇𝑁 = ∑ �̂�𝑙
𝑀
𝑙=1 Φ𝑙(𝝃),                                           (5.20) 

𝑇𝑁 → 𝑇      as      𝑀 → ∞.                                      (5.21) 

From (5.12), we have 

�̂�𝑙 = ∫ 𝑇(𝝃)
Γ

Φ𝑙(𝝃)𝜌(𝝃) d𝝃.                                   (5.22) 

Based on (5.13), numerical integration could be used to calculate �̃�𝑙
𝑁 to approximate �̂�𝑙,  

�̃�𝑙
𝑁 = ∑ �̃�𝑗 ∙𝑄

𝑙=1 Φ𝑙(𝜉
(𝑗)) ∙ 𝛼(𝑗),                                 (5.23) 

�̃�𝑙
𝑁 → �̂�𝑙       as      𝑄 → ∞.                                    (5.24) 
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Finally, we replace �̂�𝑙 in (5.20) by �̃�𝑙
𝑁, obtaining 

𝐼𝑁𝑇 = �̅�𝑁 = ∑ �̃�𝑙
𝑁𝑀

𝑙=1 Φ𝑙(𝝃),                                   (5.25) 

�̅�𝑁 → 𝑇𝑁      as      𝑄 → ∞.                                     (5.26) 

Through the triangular inequality involving projection error and aliasing error, �̅�𝑁 will 

converge to 𝑇 , which is guaranteed by (5.21) and (5.26). �̅�𝑁  can approximate 𝑇  to a 

required accuracy by increasing the order of polynomial and the number of nodes for 

integration. If the error of numerically solving 𝑇 is also considered, the approximation is 

still valid as long as such numerical method gives convergent solution to the 

deterministic problem (Xiu 2007).  

The failure time distribution obtained by PCE is an approximative solution, of which 

the accuracy can be refined by increasing the polynomial degree and the number of 

integration points. Comparing to Monte Carlo sampling, two merits of PCE are distinct. 

One is the reduction of computational time because the executions of the deterministic 

problem, say, Paris’ law equation here, are needed only at the selected nodes in the sparse 

grid. The other merit is that the post-processing work is simple because the evaluation of 

polynomials is a trivial task. Since the failure time is expressed in a form of polynomial 

expansion, its density function and the associated moments can be obtained in a very 

efficient manner. 

5.3.3 Stochastic collocation method based on PCE for uncertainty 

quantification in Bayesian inference 

As discussed in Section 5.3.1, we divide the set of all random model inputs, 𝚯, 

appearing in the degradation model into two subsets: updating-uncertainty 𝑼, and non-
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updating-uncertainty (likelihood-uncertainty) 𝑹. The condition monitoring data provide 

the estimated crack size with uncertainty at inspection time. Denote the random variable 

of the estimated crack size as 𝑎, the updating-uncertainty vector as 𝒖, and the likelihood-

uncertainty vector as r. The formula of Bayesian rule is: 

𝑓𝑝𝑜𝑠𝑡(𝒖|𝑎) =
𝐿(𝑎|𝒖)𝑓𝑝𝑟𝑖𝑜𝑟(𝒖)

∫ 𝐿(𝑎|𝒖)𝑓𝑝𝑟𝑖𝑜𝑟(𝒖)𝑑𝒖
 ,                             (5.27) 

Given a fixed value of updating-uncertainty 𝒖, the likelihood to observe a crack size 

at a given inspection time depends on two factors: measurement error 𝑒 and likelihood-

uncertainty 𝒓.    

Let 𝑎𝑗
𝑠𝑖𝑚 denote the crack size obtained by Paris’ law at inspection time 𝑗. Because of 

the uncertainty in the non-updating-uncertainty 𝒓, 𝑎𝑗
𝑠𝑖𝑚 becomes a random variable with 

density ℎ𝑗(𝑎). Meanwhile, by considering the measurement error, the estimated crack 

size at such inspection time has the following normal distribution: 

𝑎𝑗
𝑜𝑏𝑠~N (𝑎𝑗

𝑠𝑖𝑚(𝒓), 𝜎2)                                               (5.28) 

Denote the density function in (5.28) as 𝑔𝑗(𝑎). Then the likelihood to observe the crack 

size 𝑎𝑗
𝑜𝑏𝑠 at inspection time 𝑗 is defined as 

𝐿(𝑎𝑗
𝑜𝑏𝑠 | 𝒖) =  ∫𝑔𝑗(𝑎𝑗

𝑜𝑏𝑠 | 𝑎𝑗
𝑠𝑖𝑚(𝒓), 𝒖) ∙ ℎ𝑗(𝑎𝑗

𝑠𝑖𝑚(𝒓) | 𝒖) d𝑎𝑗
𝑠𝑖𝑚(𝒓)    (5.29) 

This formulation of the likelihood function accounts for both effects of the non-

updating-uncertainty and the measurement error. In the likelihood function (5.29), 𝑔𝑗(𝑎) 

is known as a Gaussian PDF. However ℎ𝑗(𝑎) is unknown, and can only be obtained 

through uncertainty propagation. If we have high dimensional uncertainty in the set of 𝑹, 
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getting ℎ𝑗(𝑎)  is a time-consuming task using Monte Carlo simulation. Thus, to improve 

the computation efficiency, we employ stochastic collocation method based on PCE to 

replace Monte Carlo simulation to perform this task.  

Suppose the likelihood-uncertainty in 𝑹 to be i.i.d random vector 𝒓 = (𝑟1,⋯ , 𝑟𝐷). 

The crack size 𝑎𝑗
𝑠𝑖𝑚(𝒓) at inspection time 𝑗 is a random variable due to uncertainty in 𝒓. 

It can be approximated by PCE as, 

𝑎𝑗
𝑠𝑖𝑚(𝒓) =  ∑μ ̃𝐢jΦ𝒊(𝒓)

𝒊≤𝑁

,    𝑗 = 1,2,⋯                              (5.30) 

μ ̃𝐢j = ∑𝑎𝑗
𝑅(𝒓𝑙)Φ𝒊(𝒓)𝛼

𝑙

𝑄

𝑙=1

,           𝑙 = 1,2,⋯ , 𝑄                      (5.31) 

where 𝒓(𝑙) are the pre-selected nodes and 𝛼(𝑙) are the associated weights for integration. 

The prior distribution of updating parameters in 𝑼 can be obtained using the similar 

procedure discussed in Section 4.6.  

With the prior distribution and the likelihood function available, Bayesian inference 

as shown in (5.27) can be applied to update the distribution of uncertain parameters in the 

set of 𝑼 . With the updated distribution of parameters, the RUL distribution can be 

predicted using PCE stochastic collocation method discussed in Section 5.3.2.  

5.4 Example 

5.4.1 Introduction 

In this section, we present a numerical example on integrated gear prognosis using the 

proposed PCE stochastic collocation method for uncertainty quantification. The physical 
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models were discussed in Chapters 3 and 4. The FE model of spur gear tooth in Figure 16 

with the property in Table 3 is utilized in this chapter. The SIF in Figure 17 and the 

dynamic load in Figure 18 are adopted as well in this chapter. The uncertainty sources 

considered include model error 𝜀 , measurement error 𝑒 , and two material random 

parameters in Paris’ law, 𝐶 and 𝑚. Other parameters appearing in Paris’ law are treated 

as deterministic. Divide the random inputs appearing in Paris’ law into two subsets: 

𝑹 = {𝐶}, 𝑼 = {𝑚}. The crack observations are simulated by Paris’ law with artificially 

added measurement error.  

To generate the simulated degradation paths, the following values and distributions 

for the parameters are assumed: 𝑚~N (1.4354, 0.22), 𝐶~N (9.12𝑒 − 11, (1𝑒 − 12)2) , 

𝜎 = 0.15 , 𝜀~Ln (0.8924, 0.21282) .  It is worth noting that here the uncertainty 

regarding 𝑚 is for the gear population, not for the specific gear being monitored.  

In this example, ten degradation paths are generated, as shown in Figure 26. Seven of 

them consist of the training set, and the three remaining in bold are for test. The selection 

of the two groups is random in theory while there is a underlying preference. That is, the 

paths bearing the value of “m” which are far from the mean of prior distribution have the 

priority to be selected in order to better show the method’s capability of tuning 

parameters. In Figure 26, the paths with the longest (path #1) and the shortest (path #4) 

lifetimes are selected in the test set. Furthermore, path #7 which has similar value of “m” 

as the mean of prior distribution is also targeted to illustrate the stability of proposed 

method in an opposite perspective. 
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Figure 26. Ten degradation paths generated using prescribed parameters 

The purposes of the example are two-fold. One is to show the effectiveness of the 

integrated prognostics method with PCE stochastic collocation method for uncertainty 

quantification. The other purpose is to demonstrate the computational efficiency of PCE 

by comparing with Monte Carlo simulation. The results are shown in the next two 

subsections.  

5.4.2 Results on update process 

The ten generated degradation paths are summarized in Table 8. This table tabulates 

the failure times, the real values of m generating the associated paths as well as the 

trained values of m. The test set consists of paths #1, #4 and #7. Normal distribution is 

used to fit the other seven paths in the training set to obtain the prior distribution of 𝑚: 
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𝑚~N (1.4029, 0.18782)                                          (5.32) 

Table 8. The real values and the trained values of 𝑚 

Path # Failure cycles Real value Trained value 

1 22.75e6 1.1009 - 

2 9.55e6 1.2403 1.2365 

3 4.25e6 1.3724 1.3671 

4 0.3e6 1.7968 - 

5 0.8e6 1.6454 1.646 

6 1.0e6 1.6098 1.6064 

7 3.8e6 1.3884 - 

8 18.15e6 1.1388 1.1377 

9 2.05e6 1.4863 1.4893 

10 5.3e6 1.3364 1.3375 

 

The only likelihood-uncertainty in this example is the material parameter 𝐶 

following normal distribution. Hence, up to third-order Hermite orthogonal polynomials 

are used in PCE and a sparse grid containing 7 points is selected. The updating-

uncertainty in this example is the material parameter 𝑚 , which also follows normal 

distribution. At each inspection time, this distribution is updated by Bayesian inference. 

From that inspection time, the RUL is calculated based on the distributions of both 𝐶 and 

𝑚. To achieve this, a two-dimensional sparse grid with 13 nodes is selected. The third-

order polynomial space is selected in PCE to approximate the RUL distribution.  

Table 9, Table 10 and Table 11 show the updating results for both 𝑚 and failure time. 

From these results, it is observed the convergence of the prior distribution to the actual 

values is obvious. For example, starting with the prior value 1.4029, 𝑚 approaches its 
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respective real values in the three paths gradually, as the condition monitoring data on the 

crack size are fused into Bayesian inference. Meanwhile, the uncertainty reduction in 

both 𝑚 and failure time is apparent. The failure time distributions for path #1, #4 and #7 

are shown in Figure 27, Figure 28 and Figure 29 respectively, from which we can 

observe that with the updated 𝑚, the predicted failure time distribution becomes narrower 

and its mean is approaching the real failure time. This example only utilizes low degree 

of polynomial and few collocation nodes in PCE, however, the prediction accuracy is 

satisfactory. In the following subsection, comparative study is conducted to illustrate the 

effects of the truncated polynomial degree and the number of collocation nodes on the 

accuracy of PCE. It shows that with the increase of both factors, the PCE accuracy can be 

improved.  

Table 9. Testing results for path #1 (real m=1.1009, real failure time=2.275e7 cycles) 

Inspection 

cycle 

Crack length 

(mm) 
Mean of 𝑚 Std of 𝑚 

Mean of 

Failure time 

Std of 

Failure time 

0 0.1 1.4029 0.1878 6.9703e6 9.2389e6 

0.7e7    1.6849 1.1257 0.0153 1.947e7 1.2064e6 

1.4e7     2.9092 1.1024 0.0099 2.2493e7 5.5313e5 

2.1e7    4.6018 1.0991 0.0073 2.2789e7 9.3263e4 

 

Table 10. Testing results for path #4 (real m=1.7968, real failure time =0.3e6 cycles) 

Inspection 

cycle 

Crack length 

(mm) 
Mean of 𝑚 Std of 𝑚 

Mean of 

Failure time 

Std of 

Failure time 

0 0.1 1.4029 0.1878 6.7118e6 8.8709e6 

0.1e6 1.4971 1.7924 0.0184 3.0302e5 2.3163e4 

0.2e6 3.1079 1.8008 0.0114 2.8527e5 7.4258e3 

 



102 

 

 

Figure 27. Updated failure time distributions for path #1 

 

Figure 28. Updated failure time distributions for path #4 
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Table 11. Testing results for path #7 (real m=1.3884, real failure time=3.8e6 cycles) 

Inspection 

cycle 

Crack length 

(mm) 
Mean of 𝑚 Std of 𝑚 

Mean of 

Failure time 

Std of 

Failure time 

0 0.1 1.4029 0.1878 6.7092e6 8.8759e6 

1.2e6 1.4387 1.3839 0.0185 3.8888e6 3.1581e5 

2.4e6 3.022 1.3947 0.0119 3.6268e6 9.7808e4 

3.6e6 4.7519 1.3799 0.007 3.8027e6 1.0637e4 

 

Figure 29. Updated failure time distributions for path #7 
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conducted in this subsection to illustrate the effects of the two factors. In this 

investigation, we select the RUL prediction as the representative case, in which two 

uncertainty factors, 𝐶 and 𝑚 are the random inputs. And we focus on the entire failure 

time during which the crack is propagated from its initial size to the critical value.  

Due to the lack of explicit form of the exact solution, we consider the result obtained 

using Monte Carlo simulation as the real distribution of the failure time, so as to compare 

with the results obtained by PCE stochastic collocation method. Comparative studies are 

conducted to demonstrate 1) the effect caused by truncated polynomial degree by fixing 

the number of integration nodes, and 2) the effect caused by number of integration nodes 

by fixing the truncated polynomial degree. The mean and standard deviation of RUL 

distribution predicted by PCE are compared with those of the real distribution obtained 

by Monte Carlo simulation.  

The comparison results are tabulated in Table 12 and Table 13, respectively. As 

shown in Table 12, with a fixed and sufficient degree of polynomial space, the mean of 

and the standard deviation of the RUL approach those of the real RUL, as the number of 

integration nodes increase. On the other hand, Table 13 shows the accuracy improvement 

by increasing the truncated polynomial degree with a fixed number of integration nodes. 

It is worth noting that the latter type of improvement is limited by the number of 

integration nodes. It is possible that the higher order polynomial may not perform better 

than the lower order one, unless we increase the integration accuracy at the same time, 

i.e., the number of integration nodes. It is concluded that PCE accuracy can be improved 

by increasing both the truncated polynomial degree and the number of integration nodes. 
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But it should be noted that the increase in polynomial degree and number of integration 

nodes will lead to the increase in computation burden.  

Table 12. Effect of number of integration nodes with 6
th 

order polynomial space 

RUL 5 nodes 13 nodes 29 nodes 53 nodes 89 nodes 137 nodes 5000 MC 

Mean 5.3733e6 5.9348e6 6.038e6 6.1427e6 6.1837e6 6.1943e6 6.1974e6 

Std 9.5945e9 1.1115e7 1.214e7 1.28e7 1.3591e7 1.3867e7 1.3912e7 

 

Table 13. Effect of truncated polynomial degree with 137 integration nodes 

RUL 2
nd

 order 3
rd

 order 4
th
 order 6

th
 order 7

th
 order 8

th
 order 5000 MC 

Mean 6.0472e6 6.087e6 6.161e6 6.1943e6 6.1914e6 6.2072e6 6.1974e6 

Std 1.0315e7 1.1954e7 1.3042e7 1.3867e7 1.3922e7 1.413e7 1.3912e7 

 

5.4.3 Comparative study on PCE efficiency 

The implementation of the integrated prognostics method is conducted in MATLAB. 

The code mainly includes two phases: Bayesian update and RUL prediction. In this 

subsection, the comparison will be conducted on the computational time consumed by 

PCE stochastic collocation and Monte Carlo simulation. Path #1 is selected as an 

example to demonstrate the comparison results.  

Monte Carlo simulation is a random sampling method. The model needs to be 

evaluated at all the samples. As a matter of fact, the nature of PCE stochastic collocation 

method is also a process of sampling. However, it samples following “rules” which 

decide the selection of integration points. The model only needs to be evaluated at these 

integration points to obtain the coefficients in the polynomial expansion. After obtaining 

the coefficients, the remaining work is polynomial evaluation which costs negligible 
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computational time compared to the model evaluation. Hence, the computational time 

saved by PCE is mainly attributed to the reduction of times to evaluate the model. 

Let’s assume it will take around 2 seconds to compute the failure time using discrete 

Paris’ law. If Monte Carlo simulation is used, at least 1000 iterations is required to get a 

good picture of failure time statistics, which will take around 90 minutes. In contrast, 

PCE stochastic collocation only needs 13 nodes to give agreed results, which means the 

Paris’ equation only needs to be solved deterministically at these 13 predetermined points. 

So the time consumed by PCE is only around 26 seconds. That is, the proposed integrated 

prognosis approach is seventy times faster than the simulation method for the case 

considered here.  

To compare the results obtained by Monte Carlo simulation and PCE stochastic 

collocation method, the error between the predicted failure time and the real failure time 

defined in (5.33) is used to measure the prediction performance of these two approaches. 

Denote 𝜌(𝑡) as the PDF of failure time predicted at the last inspection time. The real 

failure time is 𝑡𝑟. The prediction error is defined in a weighted 𝐿2-norm, 

(∫(𝑡 − 𝑡𝑟)
2𝜌(𝑡)dt)

1
2
.                                              (5.33) 

Table 14 shows the comparison of the prediction errors as well as the computational 

time of Monte Carlo simulation and stochastic collocation method. From this table, it is 

seen that PCE not only produces satisfactory results but also saves much computational 

efforts.  
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Table 14. Comparison of Monte Carlo simulation and PCE collocation method 

Approach 

Time in two phases Total time RUL 

prediction 

error 

(cycle) 

Bayesian 

update 

RUL 

prediction 
Integrated method 

Monte Carlo 

simulation 
1000 loops 1000 loops - 

9.9325e4 1
st
 update 146830 sec 5066.5 sec ≈42 hours and 12 min 

2
nd

 update 151540 sec 3439.5 sec ≈43 hours and 30 min 

3
rd

 update 147470 sec 725.5 sec ≈41 hours and 10 min 

PCE 

collocation 

method 

7 points 13 points - 

9.8624e4 1
st
 update 959.7 sec 65.1 sec ≈17.1 min 

2
nd

 update 1016.7 sec 44.2 sec ≈17.7 min 

3
rd

 update 963.5 sec 9.6  sec ≈16.2 min 

 

5.5 Conclusions 

In this chapter, within the integrated prognostics framework for gear RUL prediction, 

a stochastic collocation approach based on PCE is developed for efficient integrated gear 

health prognosis. Instead of using simulation, stochastic collocation method based on 

PCE is employed to evaluate the uncertainty in gear RUL prediction and to compute the 

likelihood function in Bayesian inference. Two categories of random parameters 

appearing in Paris’ law are also defined.   

The results in the numerical example demonstrate that the integrated prognostics 

method with stochastic collocation method for uncertainty quantification can effectively 



108 

 

and efficiently adjust the model parameters based on the observed degradation data, and 

thus lead to more accurate RUL prediction. The significant improvement of 

computational efficiency provided by PCE enables us to consider more uncertain factors 

in a practical way. This method has the potential to be applied to other rotating 

components, such as bearings, shafts, and structures, such as aircraft structures, bridges, 

pipelines, pressure vessels, etc. These potential applications require investigations in 

building the physical models for these components and structures, integration of the PCE 

methods, updating methodologies, etc.  
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Chapter 6. An integrated prognostics method under 

time-varying operating conditions 

5  Overview 

The recent interest in prognostics under variable loads is fuelled by operations and 

maintenance personnel’s need for decision support tools. Equipment subjected to time-

varying operating conditions imposes a demanding requirement on a prognostic method 

because of its dynamic nature. Prognostics should account for changes in operating 

conditions and report an accurate RUL in a timely manner. The research efforts to 

address prognostics under time-varying operating conditions are driven by the need of 

on-line prognostics for manufacturing process, numerical controlled machining as well as 

other scenarios where the changes in operating conditions during production are 

unavoidable. A gearbox under time-varying operating conditions is investigated in this 

chapter. The time-varying environment could be due to the changes in temperature, load, 

lubrication, speed, etc. This chapter specifically addresses changes in load, which is the 

most important operating condition factor for a power transmission system.  

The existing studies concerning prognostics under time-varying environment are 

mostly data-driven. In (Gebraeel and Pan 2008), a linear degradation model was assumed. 

The effects of time-varying operating conditions on the degradation signal were taken 

into account by the coefficients assigned to these time-varying environmental parameters. 

Bayesian methods were used to derive the posterior distribution of these coefficients. 

Because of the linear model assumption, analytical expressions for the posterior 

distribution as well as that for the residual life distribution were available. Liao and Tian 
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(2013) extended the prognostics in time-varying operating conditions to non-linear 

models, in which the degradation process was assumed to be governed by the Brownian 

motion with linear drift. Stress changes were accounted for in the instantaneous drift 

parameter. Bayesian inference was employed to estimate the posterior distribution of 

coefficients in the drift parameter. These approaches tackle the prognostics under time-

varying operating conditions through the coefficients estimation in the degradation model. 

Unfortunately, these data-driven methods do not address the physical mechanism of the 

degradation, and hence the load has no direct relationship with the parameters in the 

degradation model. In addition, the effectiveness of data-driven methods also depends 

heavily on the availability of a set of dense, well-distributed data. It is thus particularly 

challenging for time-varying operating conditions because it is unlikely that the training 

set encompasses all the operating conditions.   

By noticing the limitations of existing data-driven prognostics methods, the present 

chapter develops an integrated prognostics approach to deal with time-varying operating 

conditions. In the integrated prognostics approach, the degradation model is built on the 

physics of damage progression, which is usually a function of environmental parameters. 

Any changes of these environmental parameters, such as load, temperature, and speed, 

can be manifested immediately in the physical model. Hence, a key advantage of using 

the integrated prognostics method to deal with time-varying operating conditions is its 

capability to directly relate the environmental parameters to the degradation model. The 

proposed framework can apply to different mechanical components, given the 

corresponding physical models. 
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By noticing the efficiency of stochastic collocation method based on PCE, we will 

apply it for the uncertainty quantification in this chapter. Considering the uncertainty in 

the two correlated parameters of Paris’ law, this study applies PCE technique to improve 

the efficiency of MCMC algorithm (Marzouk et al. 2007, Marzouk and Xiu 2009) when 

updating these parameters via Bayesian inference. A specific PCE formulation is given 

for the uncertainty quantification. By expressing the likelihood as an explicit function of 

material parameters, this formulation allows a large amount of samples to ensure MCMC 

convergence in an efficient manner, hence enabling a fast update of the joint PDF of the 

two correlated material parameters. Because the updated joint PDF of material 

parameters can better characterize the degradation process, the failure time distribution 

based on this joint PDF is expected to be more accurate.  

 

 

 

 

 

 

 

 

 

 

Figure 30. Update process between two consecutive inspection times under time-varying 

loading conditions. 
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Figure 30 shows the update process between two consecutive inspection times in the 

integrated prognostics method considering time-varying loading condition. Since this 

chapter considers the effect of loading condition on prognostics, loading profile is 

extracted to be one independent module as an input to FE model. As a consequence, SIF 

becomes a surface with respect to both crack size and load. Because this surface is 

obtained offline by running the FE model at a baseline load and a series of selected crack 

sizes, there is no line connecting data module to FE model.  

This chapter is organized as follows. The physical models and the load profile are 

presented in Section 6.2. In Section 6.3, an integrated prognostics method is proposed 

under time-varying loading conditions, which includes the Bayesian inference framework, 

the specific PCE formulation to update two correlated material parameters, the way to 

obtain prior joint distribution, and the method for RUL prediction. In Section 6.4 

examples are given to demonstrate the effectiveness of the method. Section 6.5 concludes 

the work. The materials in this chapter have been published in (Zhao et al. 2015a). 

6.2 Physical models and load change 

The physical models include the FE model and the degradation model. When a 

component is subject to a time-varying loading condition, the degradation process 

described by the degradation model (e.g., Paris’ law) will depend on the load, denoted by 

𝑙𝑜. To be specific, the expression of SIF range ∆𝐾 = ∆𝐾(𝑎, 𝑙𝑜) suggests that the model 

degradation rate is a function of crack size and loading condition. In order to capture the 

degradation pattern of a cracked component using Paris’ law, the response surface of ∆𝐾 

with respect to crack size and load is needed.  
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A piece of equipment under operation may be exposed to a series of varying loads 

according to the user’s needs. The work logs should record two facts: the time when a 

loading change occurs, and the amplitude of such a change. The general case may be 

described as follows. Assume that totally 𝑛 loading changes happen at time 𝑡1, 𝑡2 ⋯ , 𝑡𝑛, 

respectively, and that the load amplitude during [𝑡𝑖, 𝑡𝑗) is 𝐹𝑖,𝑗 , as shown in Figure 31. 

This is a loading profile of piece-wise constant. 

 

Figure 31. General load changes history. 

As discussed, the key value that needs to be determined in the degradation model is 

the SIF (which determines ∆𝐾 in Paris' law), which is primarily a function of crack size, 

structure geometry and loading condition. The inputs of crack size and structure 

geometry have already been taken into account in the geometric modeling in the FE 

model, while the input of loading condition is provided by the load history recorded in 

the work logs. For complex situations, such as non-linearity and non-elasticity in the 

materials, the relationship between ∆𝐾 and load needs to be obtained by running the FE 

analysis each time the new load is applied. In this thesis, the stress analysis is constrained 

within the framework of linear elastic fracture mechanics. As a result, ∆𝐾 has a linear 



114 

 

relationship with the load. By following this convention, the baseline relationship of ∆𝐾 

and load may be derived by running FE model once for a baseline load only. The 

remaining work is merely to multiply the derived ∆𝐾 by the ratio between the new and 

the baseline loads. In this way, a surface of ∆𝐾 with respect to different crack sizes and 

different loads can be obtained. For transmission systems, such as a gearbox, the load is 

determined by the input torque. Such an observation can significantly improve the 

efficiency of implementing the proposed prognostics approach.  

6.3 Uncertainty quantification for correlated material parameters 

in Paris’ law 

Due to its stochastic nature, the crack propagation process should be investigated 

within a framework of probability theory. Paris’ law is used to describe fatigue crack 

growth undergoing cyclic loading during its stable growth period, in which the material 

parameters 𝑚 and 𝐶 are obtained by fitting the experimental fatigue data. The variability 

of the crack propagation process should be reflected by the randomness in 𝑚 and 𝐶. It 

was reported in (Annis 2003) that a strong correlation between 𝑚 and 𝐶 must be taken 

into consideration to achieve acceptable prediction accuracy. In practice, assume a set of 

experimental trajectories of stochastic crack growth is available, i.e., a set of curves 

representing crack growth rate 𝑑𝑎 𝑑𝑁⁄  vs ∆𝐾. By linear regression using Paris’ law in a 

log-log scale, for each trajectory, we can determine a pair of (𝑚, log𝐶) which minimizes 

the discrepancy between the measurements and the predicted values. A standard 

statistical analysis can be applied to the sample set of (𝑚, log𝐶) to infer the best joint 

probabilistic distribution of (𝑚, log𝐶). It is found that the bivariate normal distribution is 
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usually a valid hypothesis for the joint density of (𝑚, log𝐶) (Ortiz and Kiremidjian, 1988; 

Annis 2003; Ditlevsen and Olesen 1986; Kotulski 1998). The density obtained in this 

way can be considered as prior information of the parameters. 

As discussed before, precise values are often unknown for these material parameters 

for a specific unit. Sometimes only the prior distribution is available based on the 

population failure histories. In this section, the joint distribution of 𝑚 and log 𝐶 will be 

updated via MCMC in Bayesian inference, by taking advantage of the condition 

monitoring data on crack size. As more condition data come in, the uncertainty in the 

material parameters will be reduced, and the mean values may approach the real values.  

6.3.1 Updates of the joint distribution of material parameters in 

Paris’ law 

Considering the model error, the non-linear dependence of crack growth on the 

loading cycle is embedded in Paris’ law: 

𝑑𝑎

𝑑𝑁
= 𝐶(∆𝐾(𝑎, 𝑙𝑜))𝑚𝜀.                                                 (6.1) 

A surface of ∆𝐾(𝑎, 𝑙𝑜) is derived using the method in Section 6.2. It is assumed that 

material parameters, (𝑚, log 𝐶) , is a bivariate Gaussian random vector. The joint 

distribution of (𝑚, log 𝐶) will be updated through Bayesian inference given the crack 

sizes estimated at given inspection times.  

Equation (6.1) is solved by discretizing it using the first-order Euler method. Let the 

initial crack length be 𝑎0, and the incremental loading cycles be ∆𝑁; then the discretized 

Paris’ law is 
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{
𝑎((𝑖 + 1)∆𝑁) = 𝑎(𝑖∆𝑁) + (∆𝑁)𝐶[∆𝐾(𝑎(𝑖∆𝑁), 𝑙𝑜(𝑖∆𝑁))]𝑚𝜀  

𝑎(0) = 𝑎0

,    𝑖 = 0,1,2⋯.   (6.2) 

The iteration sequentially proceeds until the inspection time for update is reached. The 

model error is sampled from its assumed known distribution randomly at each iteration 

step. The crack size simulated through this discretization is denoted as 𝑎𝑠𝑖𝑚.   

As before, Bayesian inference is used to update the distribution of model parameters, 

given the estimated crack size as the inspection time. In particular for this chapter, it is 

the joint distribution of 𝑚 and log 𝐶 that is to be updated because they are correlated with 

each other.  

Assume that during the whole crack propagation process, from the initial detected 

crack 𝑎0 to the critical crack size 𝑎𝐶 where the failure occurs, there are totally 𝑈 updates 

at inspection times 𝑇1, 𝑇2, ⋯ , 𝑇𝑈 . At each update time 𝑇𝑗 , suppose that the material 

parameters �⃗� 𝑗 = (𝑚𝑗 , log𝐶𝑗)
T  follow a bivariate normal distribution 𝑁(�⃗⃗� 𝒋, 𝚺𝒋), where 

�⃗⃗� 𝒋 = (𝜇𝑚𝑗
, 𝜇𝐶𝑗

)T is the mean vector, and 𝚺𝒋 is the covariance matrix with the covariance 

coefficient 𝜌𝑗, where 

𝚺𝒋 = [
𝜎𝑚𝑗

2 𝜌𝑗𝜎𝑚𝑗
𝜎𝐶𝑗

𝜌𝑗𝜎𝑚𝑗
𝜎𝐶𝑗

𝜎𝐶𝑗

2 ].                                            (6.3) 

The crack sizes �⃗⃗� 1:𝑗 = (𝑎1
𝑜𝑏𝑠, 𝑎2

𝑜𝑏𝑠, ⋯ , 𝑎𝑗
𝑜𝑏𝑠) at the inspection times 𝑇1, 𝑇2, ⋯up to 𝑇𝑗 are 

estimated through diagnostic methods. Then, denote the PDF of 𝑁(�⃗⃗� 𝒋, 𝚺𝒋) as Π(�⃗� 𝑗), 

Π(�⃗� 𝑗) =
1

(√2𝜋)2

1

√det (𝚺𝒋)
exp [−

1

2
(�⃗� 𝑗 − �⃗⃗� 𝒋)

𝑇
𝜮𝒋

−1(�⃗� 𝑗 − �⃗⃗� 𝒋)] .          (6.4) 
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At the next update time 𝑇𝑗+1 , the crack size 𝑎𝑗+1
𝑜𝑏𝑠  is estimated from sensor data. The 

posterior distribution of �⃗� 𝑗+1 is obtained using the Bayesian inference formula   

𝑓𝑝𝑜𝑠𝑡(�⃗� 𝑗+1|�⃗⃗� 1:𝑗+1) =
𝑙(�⃗⃗� 1:𝑗+1|�⃗� 𝑗)𝑓𝑝𝑟𝑖𝑜𝑟(�⃗� 𝑗)

∫ 𝑙(�⃗⃗� 1:𝑗+1|�⃗� 𝑗)𝑓𝑝𝑟𝑖𝑜𝑟(�⃗� 𝑗) 𝑑�⃗� 𝑗
 .                      (6.5) 

Given the assumption that the measurement error, 𝑒𝑘 = 𝑎𝑘
𝑜𝑏𝑠 − 𝑎𝑘

𝑠𝑖𝑚, 𝑘 = 1,⋯ , 𝑗 + 1, 

are statistically i.i.d. random variables, then the likelihood 𝑙(�⃗⃗� 1:𝑗+1|�⃗� 𝑗) is calculated as 

𝑙(�⃗⃗� 1:𝑗+1|�⃗� 𝑗) = ∏Φ𝑘(𝑎𝑘
𝑜𝑏𝑠|�⃗� 𝑗)

𝑗+1

𝑘=1

,                                            (6.6) 

where 

Φ𝑘(𝑎𝑘
𝑜𝑏𝑠|�⃗� 𝑗) =

1

√2𝜋𝜎
exp [−

1

2𝜎2
(𝑎𝑘

𝑜𝑏𝑠 − 𝑎𝑘
𝑠𝑖𝑚)

2
] .                          (6.7) 

As time passes, new samples are collected. Accordingly, the posterior distribution of 

�⃗� 𝑗 = (𝑚𝑗, log𝐶𝑗)
T is obtained via (6.5) sequentially as 𝑗 increases. In this way, the joint 

distribution of material parameters is updated to be more accurate for this specific unit 

under monitoring. Thus, the failure time predictions based on these parameters will be 

more accurate and reliable.  

When Metropolis-Hastings algorithm in MCMC is used to implement Bayesian 

inference, the time-consuming part is the calculation of the likelihood function 

𝑙(�⃗⃗� 1:𝑗+1|�⃗� 𝑗) = ∏ Φ𝑘(𝑎𝑘
𝑜𝑏𝑠|�⃗� 𝑗)

𝑗+1
𝑘=1 . For any sample �⃗� 𝑗 generated by a random walk, the 

discretized Paris’ law needs to be evaluated to obtain the crack sizes up to the current 

inspection time 𝑇𝑗. A large number of samples are required to ensure the convergence of 

the Markov chain so that the posterior distribution will be the stationary state of this 
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Markov chain. This task is computationally prohibitive for an on-line prognostics mission. 

To improve the computation efficiency, the stochastic collocation method based on PCE 

is used, as presented in the following.  

6.3.2 Stochastic collocation method in Bayesian inference  

In Chapter 5, a PCE stochastic collocation method was proposed for the uncertainty 

quantification in the integrated prognostics method. The specific PCE formulation was 

presented for updating one material parameter 𝑚 in the example. This subsection presents 

the specific formulation of employing PCE to update two correlated material parameters 

𝑚 and 𝐶 in Paris’ law through Bayesian inference. By expressing the likelihood as an 

explicit function of 𝑚 and 𝐶, this formulation allows a large number of samples to ensure 

convergence of MCMC in an efficient manner, hence enabling fast update of the joint 

distribution of the two material parameters.  

Consider the material parameters �⃗� = (𝑚, log𝐶) in Paris’ law as a random vector with 

two components. In this chapter, �⃗�  is assumed to follow a bivariate normal distribution 

with joint density function Π(�⃗� ), where the mean is �⃗⃗� , and the covariance matrix is 

𝚺 = [
𝜎𝑚

2 𝜌𝜎𝑚𝜎𝑐

𝜌𝜎𝑚𝜎𝑐 𝜎𝑐
2 ]. To take advantage of the orthogonality of the basis polynomial 

functions to reduce the computational work, �⃗�  needs to be converted into a random vector 

�⃗�  whose components are standard statistically i.i.d. Gaussian variables by Cholesky 

decomposition, 

𝚺 = 𝑳𝑻𝑳,                                                              (6.8) 

�⃗� = 𝑳−𝟏(�⃗� − �⃗⃗� ).                                                       (6.9) 



119 

 

After the change of variable, define the crack size at inspection time 𝑇 obtained by 

Paris’ law as 𝑎𝑠𝑖𝑚(�⃗� ) = 𝑎𝑠𝑖𝑚(�⃗⃗� + 𝑳�⃗� ) = 𝑎𝑠
𝑠𝑖𝑚(�⃗� ) . The polynomial approximation to 

𝑎𝑠
𝑠𝑖𝑚(�⃗� ) is denoted by 𝑎𝑠,𝑁

𝑠𝑖𝑚(�⃗� ), which is the projection in 𝑁-th order polynomial space. 

Following the notation in Section 5.2, we can write 𝑎𝑠,𝑁
𝑠𝑖𝑚(�⃗� ) = 𝑃𝑁𝑎𝑠

𝑠𝑖𝑚(�⃗� ) . Let 𝒊 =

(𝑖1, 𝑖2) be an index with |𝒊| = 𝑖1+𝑖2; then, 

𝑎𝑠𝑖𝑚(�⃗� ) = 𝑎𝑠
𝑠𝑖𝑚(�⃗� ) ≈ 𝑎𝑠,𝑁

𝑠𝑖𝑚(�⃗� ) = ∑ �̂�𝒊

𝑁

|𝒊|=0

Ψ𝒊(�⃗� ).                       (6.10) 

The coefficients �̂�𝒊 are calculated as 

�̂�𝒊 = 𝔼(𝑎𝑠
𝑠𝑖𝑚(�⃗� )Ψ𝒊(�⃗� )) = ∫𝑎𝑠

𝑠𝑖𝑚(�⃗� ) Ψ𝒊(�⃗� ) Χ(�⃗� ) d�⃗� ;                 (6.11) 

and Ψ𝒊(�⃗� ) are the orthogonal basis functions defined as products of one-dimensional 

orthogonal polynomials, satisfying, after normalization, the equality 

𝔼 (Ψ𝒉(�⃗� )Ψ𝒔(�⃗� )) = 𝛿𝒉,𝒔 = {
1,          𝑤ℎ𝑒𝑛 𝒉 = 𝒔
0,            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 ,                      (6.12) 

and Χ(�⃗� ) = φ(𝜁1)φ(𝜁2), φ(𝑥) = (1 √2𝜋⁄ )exp(−𝑥2 2⁄ ). Because the random vector is 

assumed to follow a bivariate normal distribution, a set of Hermite polynomial is selected 

as basis functions in polynomial space. To reduce computational work, a sparse grid 

containing 𝑅 pairs of integration points and associated weights, {(�⃗� (𝑗), 𝛽(𝑗)), 𝑗 = 1,⋯ , 𝑅}, 

is generated for computing the coefficients in (6.11) numerically as 

�̃�𝑖 = ∑𝑎𝑠
𝑠𝑖𝑚(�⃗� (𝑗))

𝑅

𝑗=1

Ψ𝒊(�⃗� 
(𝑗)) 𝛽(𝑗).                                      (6.13) 

If we define  
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𝐼𝑁𝑎𝑠
𝑠𝑖𝑚(�⃗� ) = 𝑎𝑠,𝐼

𝑠𝑖𝑚(�⃗� ) ≜ ∑ �̃�𝑖

𝑁

|𝒊|=0

Ψ𝒊(�⃗� ) .                                (6.14) 

then, we have 

𝑎𝑠,𝐼
𝑠𝑖𝑚(�⃗� ) → 𝑎𝑠

𝑠𝑖𝑚(�⃗� ) = 𝑎𝑠𝑖𝑚(�⃗� )   𝑎𝑠 𝑁 → ∞,𝑅 → ∞.                 (6.15) 

Equation (6.15) is of essential importance for accelerating Bayesian inference 

implementation because it provides an efficient way to calculate the likelihood function 

𝑙(�⃗⃗� 1:𝑗+1|�⃗� 𝑗) = ∏ Φ𝑘(𝑎𝑘
𝑒𝑠𝑡𝑖|�⃗� 𝑗)

𝑗+1
𝑘=1 . As mentioned previously, to obtain the posterior joint 

distribution, each random walk in MCMC needs the evaluation of Paris’ law once. A 

large number of MCMC samples could consume a large amount of computational time 

for Markov chain to converge. With the availability of 𝑎𝑠,𝐼
𝑠𝑖𝑚(�⃗� ) as an approximation to 

𝑎𝑠𝑖𝑚(�⃗� )  as shown in (6.15), the expression of 𝑎𝑠,𝐼
𝑠𝑖𝑚(�⃗� )  is simply a combination of 

polynomials. For each random walk, 𝑎𝑠𝑖𝑚(�⃗� ) is easily approximated by 𝑎𝑠,𝐼
𝑠𝑖𝑚(�⃗� ). The 

performance of such an approximation depends on the order of polynomial space as well 

as the number of points in the collocation set. 

6.3.3 Prior distribution in Bayesian inference 

To initiate the Bayesian inference, the information of the prior distribution of the 

material parameters is needed. Because an individual component is the focus, the 

population can be naturally considered as a candidate for a priori. Hence, to get the prior 

distribution of (𝑚, log 𝐶), one assumes historical data are available for 𝐹 identical gear 

sets under identical constant loading condition. Each history serves as a degradation path, 

with loading cycles and the associated crack sizes. Following the standard crack fatigue 
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test procedure (ASTM E647-00, 2000), the linear regression of (𝑚𝑖, log 𝐶𝑖), 𝑖 =

1,2,⋯ , 𝐹, can be obtained for each failure history. Let 

�̅� =
1

𝐹
∑𝑚𝑖

𝐹

𝑖=1

, 𝑠𝑚𝑚 =
1

𝑛
 ∑(𝑚𝑖 − �̅�)2

𝐹

𝑖=1

 ;                             (6.18) 

log 𝐶̅̅ ̅̅ ̅̅ =
1

𝐹
∑log 𝐶𝑖

𝐹

𝑖=1

,    𝑠𝑐𝑐 =
1

𝐹 − 1
 ∑ (log 𝐶𝑖 − log 𝐶̅̅ ̅̅ ̅̅ )2

𝐹

𝑖=1

              (6.19) 

𝑠𝑚𝑐 =
1

𝐹 − 1
 ∑(𝑚𝑖 − �̅�)(log𝐶𝑖 − log 𝐶̅̅ ̅̅ ̅̅ )

𝐹

𝑖=1

;                           (6.20) 

𝑺𝑚𝑐 = [
𝑠𝑚𝑚 𝑠𝑚𝑐

𝑠𝑚𝑐 𝑠𝑐𝑐
].                                                (6.21) 

Then the prior distribution is selected to be 𝑁 ([�̅�, log 𝐶̅̅ ̅̅ ̅̅ ]
𝑇
,  𝑺𝑚𝑐). The regression process 

can also be implemented by simulation based optimization, see Section 4.6. The objective 

is to find the optimal value (𝑚𝑖
𝑜𝑝

, log 𝐶𝑖
𝑜𝑝

), 𝑖 = 1, 2,⋯ , 𝐹 , which generates the 

degradation path that has the minimum difference from the real degradation path in a 

least-square sense.  

6.3.4 RUL prediction 

By using the crack size estimation as the observation, Bayesian inference is able to 

update the joint distribution of the material parameters. The RUL or failure time 

prediction is conducted after the updated distribution is available. Paris’ law can be 

written in its reciprocal form as follows, 

d𝑁

d𝑎
=

1

𝐶(∆𝐾(𝑎, 𝑙𝑜))𝑚𝜀
.                                            (6.16) 
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Let the current inspection cycle be 𝑁𝑡  and the crack increment be ∆𝑎 . The RUL is 

calculated by discretizing (6.16) in the following way, 

∆𝑁𝑖 = 𝑁𝑖+1 − 𝑁𝑖 = ∆𝑎[𝐶∆𝐾(𝑎𝑖, 𝑙𝑜𝑖)
𝑚𝜀]−1, 𝑖 = 𝑡, 𝑡 + 1,⋯        (6.17) 

The summation ∑ ∆𝑁𝑖𝑖=𝑡  from current inspection cycle to the cycle where failure occurs 

is the RUL. Accordingly, the failure time is expressed as 𝑁𝑡 + ∑ ∆𝑁𝑖𝑖=𝑡 . 

PCE is used to quantify the uncertainty of material parameters in the RUL or the 

failure time. The procedure was detailed in Section 5.3.2 for the case when the two 

material parameters were considered independent to each other. In this chapter, the two 

parameters are considered to be correlated. Hence, the first step to is to use the change of 

variable in (6.9) to transform them into i.i.d. random variables so that PCE can be applied. 

After this step, the remaining steps are similar to those provided in Section 5.3.2.  

6.4 Examples 

The crack propagation at the root of a spur gear is taken as an example to demonstrate 

the proposed method. To deal with time-varying loading condition, the baseline torque is 

selected as 40 N-m. The response surface of SIF as a function of crack size and load is 

shown in Figure 32. According to the linear elastic fracture mechanics theory, this 

surface is linear with respect to load and nonlinear with respect to crack size. Here, cubic 

polynomial is used to fit this nonlinearity. With this surface available, the SIF at any 

combination of load and crack size is obtained by simply looking up the corresponding 

value in this surface. Hence, it is unnecessary to run the FE model for every case during 

online prognostics, which saves considerable computational time.  
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Ten degradation paths are generated using the following parameters: 𝜇𝑚 = 1.4354,

𝜇𝐶 = −23.118,  𝜎𝑚 = 0.2, 𝜎𝑐 = 0.5, 𝜌 = −0.99. Two examples are conducted in this 

section. The loading change pattern in Example 1 is a two-step load change, in which the 

stress is held constant during two consecutive times when load changes. The purpose is to 

demonstrate that, as more crack estimations are incorporated into Bayesian inference, the 

updated distributions will gradually converge to the corresponding real values. 

Furthermore, in Example 2, we will show that the proposed method is effective even 

when the loading profile changes. A loading profile of a three-step load change is used. It 

demonstrates that two different loading histories will have similar narrow posterior 

distributions for (𝑚, log 𝐶). 

 

Figure 32. Surface of SIF as a function of load and crack size. 
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The simulated degradation paths with measurement error 𝜎 = 0.15 mm are shown in 

Figure 33. Consider that the torque increases from 40 N-m to 120 N-m at 0.5 × 107 

cycles, and returns to 40 N-m at 2 × 107  cycles. Under this two-step load change 

condition, two distinct changes in the slope of the degradation path are observed in 

Figure 33 because the crack growth rate is changed when the load changes. The prior 

joint distribution is obtained based on the first 8 paths among these ten paths, giving  

(𝑚, log 𝐶)~ 𝑁 ([
1.4472 

−23.12
] , [

0.0229 −0.052
−0.052 0.1203

]).                (6.18) 

 

Figure 33. Ten degradation paths generated under two-step load change. 
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which have the shortest failure time and the longest one, respectively. The Bayesian 

update is performed at each inspection time, which is equally spaced. Some of the 
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The real material parameters used to generate the path #9 is:  (𝑚, log 𝐶) =

(1.1495,−22.4311) and the real failure time is 2.43 × 107 cycles. The inspection time 

interval is 4 × 106 cycles. The updating results are shown in Table 15 from which it can 

be observed that the mean of the material parameters are approaching their real values as 

more observations are available. Figure 34 displays the contours of the prior and the 

posterior distribution of the last update. The update process of failure time distribution 

obtained using the updated material parameters distribution is displayed in Figure 35. The 

failure time distribution gets narrower and approximates to the real failure time as 

expected. The uncertainty in the predicted failure time is thus reduced.  

Table 15. Testing results for path #9 

Inspection cycle Crack length (mm) 𝜇𝑚 𝜇𝐶 

0 0.1000 1.4472 -23.1200 

8 × 106 0.6373 1.4590 -23.1479 

12 × 106 2.2764 1.1871 -22.4771 

16 × 106 2.8742 1.1637 -22.4067 
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Figure 34. Contours of prior and posterior distribution of (𝑚, log 𝐶) for path #9. 

 

 

Figure 35. Updated failure time distribution for path #9. 
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Similarly, the updating results for path #10, which has the longest failure time, are 

shown in  

Table 13. The real material parameters used to generate the Path #10 is (𝑚, log 𝐶) =

(1.6336,−23.6258) and the real failure time is 6.43 × 107 cycles. The inspection time 

interval is 10 × 106 cycles. The contours of the prior and the posterior distribution of the 

last update are shown in Figure 36. The predicted failure time distributions are presented 

in Figure 37. The parameters adjust themselves to get close to their real values. 

Accordingly, the uncertainty in the failure time distribution is reduced gradually, the 

mean of which approaches the real failure time.  
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Table 16. Testing results for path #10  

Inspection cycle Crack length (mm) 𝜇𝑚 𝜇𝐶 

0 0.1000 1.4472 -23.1200 

10 × 106 0.7293 1.5670 -23.4063 

20 × 106 2.4450 1.6515 -23.6117 

60 × 106 4.3758 1.6510 -23.6457 

 

Figure 36. Contours of prior and posterior distribution of (𝑚, log 𝐶) for path #10. 
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Figure 37. Updated failure time distribution for path #10. 

6.4.2 Example 2 

For a specific gear, the values of (𝑚, log 𝐶) are material dependent, and are not 

supposed to change with different loading profiles. In this example, path #11 is 

subject to a loading profile different from that in Example 1, and a three-step load 

change is used. At 0.5 × 107 cycles, the torque increases from 40 N-m to 160 N-m; at 

1.5 × 107cycles, the torque returns to 40 N-m; and at 3 × 107 cycles, the torque goes 

up to 120 N-m until the component failed. The degradation path is shown in Figure 

38. The true values of the material parameters for this component are (𝑚, log 𝐶) =

(1.6336,−23.6258), the same as that in path #10 in Example 1. The real failure time 

is 3.44 × 107  cycles. The inspection time interval is 4 × 106  cycles. The update 

process is listed in Table 17. Even though the last update of (𝑚, log 𝐶) deviates a 
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small amount from their real values, the failure time distribution gets closer to the real 

failure time, shown in Figure 39. This example demonstrates that the proposed 

method is effective, even when the current loading profile is different from the 

loading profile under which historical data were collected.  

It may be worth noticing that in Paris’ law, different combinations of  𝑚 and 𝐶 

could lead to the same crack size at a given loading cycles. When the measurement 

error is too large for the Bayesian inference to discriminate the real values of 

(𝑚, log 𝐶) from the noise, there is a possibility that the updated (𝑚, log 𝐶) deviates 

from the true value. However, the failure time still approaches the real failure time. A 

similar conclusion was made in (An et al. 2012). 

 

Figure 38. Degradation path of #11 generated under three-step load changes. 
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Table 17. Testing results for path #11  

Inspection cycle Crack length (mm) 𝜇𝑚 𝜇𝐶 

0 0.1000 1.4472 -23.1200 

12 × 106 1.6192 1.6036 -23.5285 

20 × 106 2.5303 1.6547 -23.6579 

32 × 106 3.5021 1.6972 -23.7521 

 

Figure 39. Updated failure time distributions for path #11. 
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the proposed integrated prognostics approach over the existing data-driven methods for 

dealing with time-varying operating conditions. 

In the proposed method, uncertainty in material parameters is considered responsible 

for randomness in the predicted failure time. The joint distribution of the material 

parameters is updated as the sensor data is available. The updated distributions better 

characterize the material parameters and reduce the uncertainty in them for the specific 

unit under monitoring. The update process is realized via Bayesian inference. To reduce 

the computational effort, the stochastic collocation method based on PCE is applied for 

uncertainty quantification. Examples are given to demonstrate the effectiveness of the 

proposed method, which is effective even when the current loading profile is different 

from the loading profile under which historical data were collected. Even though the 

gearbox is considered in this chapter, the proposed method is also applicable to various 

other components and structures subject to the similar fatigue loading profile, after the 

appropriate adjustment of physical models. 
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Chapter 7. Gear integrated health prognosis 

considering crack initiation time uncertainty and 

random shock 

7.1 Overview 
 

A large grain of inherent uncertainty imposes major challenges in prognostic methods 

development. Uncertainty may arise from various sources, such as micro-structure of 

material, operating conditions, working environment, measurement as well as human 

factors. There are many research efforts being conducted on how to identify, capture and 

manage these multiple sources of uncertainty to make the RUL prediction more accurate, 

precise and reliable. The existing prognostic approaches usually start the prediction at an 

assumed time instant when a fault at certain severity is detected (Coppe et al. 2010; An et 

al. 2012; Orchard and Vachtsevanos, 2007). This is based on an assumption that the 

starting point of prognosis is accurate. However, due to the limitations of the fault 

detection and diagnostic technologies, there is a large variation in the accuracy of fault 

detection. This variation affects the prediction accuracy accordingly: an early starting 

point of prognostics will lead to underestimated RUL, and a late starting point will lead to 

overestimated RUL. Crack initiation time (CIT) determines the starting point of 

prognostics. Hence, it is needed to explicitly consider the uncertainty in CIT.  

Among existing research on real time prognostic algorithms development, most of 

them investigated components/systems undergoing a gradual degradation with time. Such 

gradual degradation is governed by a dynamic model, either data driven or physics-of-

failure based, which usually leads to a continuous degradation. Very few of them have 
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considered the degradation path containing shock, which appears as a sudden jump in the 

degradation. The shock will cause sudden damage increase and accelerate the degradation 

rate. In reliability engineering, researchers have investigated the ways of modeling shock 

process in system reliability analysis (Wang et al. 2011; Mallor and Santos 2003; Jiang et 

al. 2012). The purpose of these studies was either to investigate system reliability 

properties or maintenance strategies considering the shock effects. However in the 

present study, we look into the shock effects on real time RUL prediction. This purpose is 

also the main focus of prognostic algorithms development in CBM.  

In the crack propagation problem, model parameters in Paris’ law include material 

dependent coefficients, which should not be affected by external forcing factors, e.g., 

overload causing shock. Hence, another uncertainty source rather than material 

parameters is needed to account for the shock effect on the degradation prediction. 

Because sudden damage increment results in a discontinuity in the degradation path, the 

lifetime is shortened accordingly. Note that, if the slope of the degradation path is given 

as fixed, the degradation path with a shortened lifetime can be considered as equivalent to 

a gradual degradation path which has an earlier CIT. Therefore, the variation in CIT 

provides a degree of freedom in translational adjustment for the degradation path. With 

both slope and translational adjustments, the integrated prognostics method is expected to 

reduce the uncertainty in RUL prediction and to capture the shock effect on the 

degradation as well.  

In this chapter, an integrated prognostics method is developed to account for both the 

uncertainty in CIT and the shock in gear degradation. We define CIT as the time instant 

when a crack is detected and the prognosis starts. In fact, when the CIT is adjusted, it is 
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the “intercept” with the time axis of the degradation path at the initial crack size that is 

adjusted, which is a different mechanism of adjustment. The combination of adjustment 

in both “slope” and “intercept” will better characterize the real degradation path given the 

crack observations. Section 7.2 presents the integrated prognostics framework which 

incorporates the uncertainty in CIT. In Section 7.3, the proposed method is elaborated in 

detail. Three cases are considered: gradual degradation considering both model parameter 

uncertainty and CIT uncertainty; shock degradation with known shock occurrence time; 

and shock degradation with unknown shock occurrence time. In Section 7.4, examples 

are given to show the effectiveness and the efficacy of the method. Section 7.5 concludes 

the work. The materials in this chapter have been documented in (Zhao et al. 2015b). 

7.2 Integrated prognostics framework 
 

An integrated prognostics framework is proposed in this chapter for gear RUL 

prediction considering CIT uncertainty. Two types of degradation are considered: gradual 

degradation and shock degradation.  

The gradual degradation was described by Paris’ law. The equation is shown in (7.1) 

{

d𝑎

d𝑁
= 𝐶(Δ𝐾(𝑎))𝑚

𝑎(𝑡0) = 𝑎0

                                                      (7.1) 

where 𝑡0 is CIT which is treated as a random variable. The Paris’ law is discretized using 

first-order Euler’s rule as in (7.2) to obtain the crack size at inspection times. 

{
𝑎(𝑖∆𝑁) = 𝑎((𝑖 − 1)∆𝑁) + (∆𝑁)𝐶[∆𝐾((𝑎(𝑖 − 1)∆𝑁))]

𝑚

𝑎(𝑡0) = 𝑎0

.                   (7.2) 
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The iteration proceeds until the inspection time 𝑡𝑖 is reached. The crack size obtained is 

denoted as 𝑎𝑖(𝑡0, 𝜉).  

The other type of degradation contains shock. The shock causes a sudden damage 

accumulation due to external impact, such as a transient overload. In the case of fracture, 

the phenomenon of shock is a sudden increase in crack size. The degradation containing 

shock is defined as the shock degradation.  

The core idea of “integrated” prognostics method is to combine condition monitoring 

data (e.g., crack size observations) and physical models in a way that crack size 

observations can be utilized to adjust the physical model. After the adjustment, the 

physical model is expected to predict the RUL better. The adjustment is incurred when a 

new observation is available. The sequential adjustments form a series of updates, which 

are triggered at every inspection time. Figure 40 shows the data flow in the integrated 

prognostics method proposed in this chapter. The model update is achieved by updating 

the distributions of uncertain parameters through Bayesian inference. The posterior 

distribution of the uncertain parameters is applied in Paris’ law to calculate RUL. 

Meanwhile, the posterior distribution is fed into the next iteration as the prior distribution. 

The first prior distribution in absence of any observations is obtained by regressing the 

existing historical degradation paths.  

When the update process is executed, three cases are considered: Case 1) no shock 

occurs; Case 2) shock occurs at a known time; and Case 3) shock occurs at an unknown 

time. As shown in Figure 40, when the gradual degradation without shock is considered 

(Case 1), the posterior distribution is directly used as the prior distribution for the next 

iteration. However, when shock is considered (Case 2 and 3), an adjustment is added for 
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marginal posterior distribution of CIT before it is used as the prior distribution for the 

next iteration. The purpose of this adjustment is to make sure that a virtual gradual 

degradation can be identified equivalently by searching an appropriate CIT which is 

earlier than original CIT. The equivalence is defined in the sense of failure time. 

Accordingly, the likelihood function also needs modifications to eliminate the adverse 

effects brought out by the observations before shock occurs. The details of the three cases 

will be addressed in Section 7.3.  

 

Figure 40. Data flow in the proposed integrated prognostics method 
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7.3 Integrated prognostics method considering CIT uncertainty 

and shock in the degradation 

Damage degradation governed by dynamic equations is usually a continuous function 

with time regardless of measurement error. A discontinuity in the degradation path occurs 

due to sudden increase in damage size, i.e., shock, which may be caused by transient 

overload. Such increase in damage size will shorten the lifetime. The sudden change is 

due to external forces, rather than the uncertainty in material dependent model parameters. 

By noticing the equivalence between a degradation path with a shortened lifetime due to 

shock and a gradual degradation path with an earlier CIT, the uncertainty in CIT is 

considered to account for the shock effect. In this section, we firstly present the definition 

of uncertainty in CIT as well as the process to incorporate it in the Bayesian update 

process. After that, the integrated prognostics method considering shock degradation is 

proposed, which is realized by considering uncertainty in both material parameters and 

CIT. The distribution of RUL can be obtained using the updated uncertainty parameters. 

7.3.1 Uncertainty in CIT 
 

The well-known Paris’ law describes the crack propagation rate using the principle of 

linear elastic fracture mechanics. It represents the crack propagation rate as a function of 

SIF and material dependent parameters 𝑚 and 𝐶. Hence, given the applied loading, both 

𝑚 and 𝐶 are factors that determine the “slope” of the degradation path in a scale of crack 

size versus time. The previous chapters focused on the adjustment of ξ = (𝑚, 𝐶), which 

represents the “slope” of the degradation path. The motivation to identify CIT as another 

source of uncertainty is that this uncertainty is difficult to account for by “slope”. It is 
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actually a translational movement along the time axis. In another word, the CIT is the 

“intercept” with the time axis of the degradation path at the initial crack size. By 

adjusting the “slope” and the “intercept” simultaneously, it is expected to obtain an 

optimal approximation to the real degradation path. 

Denoting the initial crack size as 𝑎0 and the critical crack size as 𝑎𝐶 , as shown in 

Figure 41, the degradation paths are generated by varying CIT and physical model 

parameters.  As a result, the variation in the crack size at a certain inspection time 𝑡𝑖 is 

contributed by uncertainty in both CIT and the physical model parameter. The path in the 

red dashed line represents the actual degradation path, with actual values for both the CIT 

and the physical model parameters. However, these actual values are not known exactly 

beforehand. The objective to use the Bayesian inference is to obtain their distributions by 

feeding the crack observations. 

 

Figure 41. Degradation paths generated by varying CIT and physical model parameters. 
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Define a set of random variable, 𝜉 = (𝑚, 𝐶), representing the uncertainty from model 

material parameters. As before, 𝑡0 stands for the CIT. Here, 𝑡0 is also considered as a 

random variable to account for the uncertainty in CIT. Suppose that several failure 

histories are available with the information on inspection times and associated crack sizes. 

Then a prior distribution 𝑓𝑝𝑟𝑖𝑜𝑟(𝑡0, 𝜉) can be obtained by regression and statistical fitting. 

If it is assumed that the crack measurement error follows zero-mean Gaussian distribution 

with 𝜎 as the standard deviation, at a certain inspection time 𝑡𝑢 the likelihood to observe 

a crack size of 𝑎𝑢
𝑜𝑏𝑠 = 𝑎𝑜𝑏𝑠(𝑡𝑢) is  

𝑙(𝑎𝑢
𝑜𝑏𝑠|𝑡0, 𝜉) =

1

√2𝜋𝜏
exp(−

(𝑎𝑢
𝑜𝑏𝑠 − 𝑎𝑢(𝑡0, 𝜉))

2

2𝜎2
)  .                           (7.3) 

In the Bayesian inference framework, a posterior distribution 𝑓𝑝𝑜𝑠𝑡(𝑡0, 𝜉)  can be 

obtained by 

𝑓𝑝𝑜𝑠𝑡(𝑡0, 𝜉|𝑎𝑢
𝑜𝑏𝑠) =

𝑙(𝑎𝑢
𝑜𝑏𝑠|𝑡0, 𝜉)𝑓𝑝𝑟𝑖𝑜𝑟(𝑡0, 𝜉)

∫ 𝑙(𝑎𝑢
𝑜𝑏𝑠|𝑡0, 𝜉)𝑓𝑝𝑟𝑖𝑜𝑟(𝑡0, 𝜉)d𝑡0d𝜉

 .                           (7.4) 

The update process is executed at the inspection time when new observation on crack 

size is available. The posterior distribution of the current update process will serve as the 

prior distribution for the next update process. To circumvent the intractable integration in 

the Bayesian formula, importance sampling technique is used to obtain samples which 

follow the posterior distribution. In order to simplify the problem and to emphasize the 

different effects of “slope” and “intercept”, in the following discussions, only uncertainty 

in 𝑚 and 𝑡0 are considered while 𝐶 is treated as a constant. 
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7.3.2 Physical model update considering shock in the degradation 

 

Besides gradual degradation, shock degradation is another degradation type where the 

damage is accumulated suddenly leading to a discontinuity in the degradation path. In 

Figure 42, the blue line depicts a gradual degradation path with CIT 𝑡0_𝑎𝑐𝑡𝑢𝑎𝑙, and the 

marks of circle on the path represent crack sizes at inspection times. Assume that a shock 

happens between the third and the fourth inspection times. The shock will result in a 

sudden crack increment, denoted by purple dotted line segment. After the shock, the 

gradual degradation continues at an accelerated rate. A shock degradation path is thus 

formed, which is depicted by a magenta line with square marks. Because of the shock, the 

lifetime is shortened with an extent denoted by a green dash line segment. The shock 

degradation is thus a discontinuous curve. Material dependent model parameters should 

be static because the material is not changing. It also explains why the two degradation 

paths are parallel after the shock occurs. Hence, a new uncertainty source should be 

uncovered to account for the change of the degradation path due to shock. By noticing 

that our interest is to predict the future performance instead of regressing over the past 

performance, we can assume a virtual crack growth history back propagating from the 

time when shock occurs. This virtual history is indicated in yellow dot-dash line in Figure 

42. Therefore, the objective of predicting the degradation after the shock occurrence can 

be achieved by identifying a gradual degradation with a different CIT, to be more specific, 

an earlier one, denoted by 𝑡0_𝑣𝑖𝑟𝑡𝑢𝑎𝑙. Based on the foregoing analysis, uncertainty in both 

the CIT and the material parameter will be considered to deal with shock degradation. 

We investigate two cases in the following discussions: shock occurrence time instant is 

known and shock occurrence time instant is unknown.  
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Figure 42. Shock degradation path for illustration purpose 

 

7.3.2.1 Shock occurrence time is known 

The update process is executed every time when observation on crack size is 

available. The posterior distribution in the last iteration will be used as the prior 

distribution in the next iteration. By assimilating the observations, the variance of 

uncertainty parameter is expected to be reduced and the mean to approach the actual 

value. The shrinkage of uncertainty leads to a narrower distribution, which appears to 

have a peak covering a very small range of parameter values. When we implement the 

Bayesian inference (7.4), importance sampling technique is utilized, where the density is 

represented by samples from the associated distribution. This discretization of the 

continuous function excludes the samples with low density, especially when sample size 

is limited. After several updates before the shock occurs, the prior distribution becomes 



143 

 

very narrow and its density has a peak near the actual CIT. As a consequence, if the 

virtual CIT is far from the actual CIT, there will be little chance for the values near 

𝑡0_𝑣𝑖𝑟𝑡𝑢𝑎𝑙 to be sampled.  When the shock occurs, there is a sudden increase in crack size, 

which results in a noticeable difference between the predicted crack size and the actual 

observation. In order to attribute this difference to an earlier CIT, it needs a fair extent of 

adjustment of CIT in its posterior distribution. Hence, the coverage of prior distribution 

must be large enough to give moderate density for the virtual CIT 𝑡0_𝑣𝑖𝑟𝑡𝑢𝑎𝑙, otherwise 

the samples could not carry useful information. Therefore, the posterior distribution 

before shock occurs is adjusted in a way that the variance of CIT marginal distribution is 

artificially increased to make sure the vicinity of the targeted virtual CIT 𝑡0_𝑣𝑖𝑟𝑡𝑢𝑎𝑙 has 

moderate chance to be sampled.  

Let the inspection times be a set {𝑡𝑢: 𝑢 = 1, 2,⋯ , 𝑈}. At these inspection times, the 

observed crack sizes form a set {𝑎𝑢
𝑜𝑏𝑠: 𝑢 = 1, 2,⋯ , 𝑈} and the uncertain parameters are 

denoted by {(𝑡0
(𝑢)

, 𝜉(𝑢)): 𝑢 = 1, 2,⋯ , 𝑈} . Assume that the measurement errors are 

independent among different inspection times; hence, the likelihood function to observe a 

crack growth history up to an inspection time 𝑡𝑠 is  

𝑙𝑠(𝑎1:𝑠
𝑜𝑏𝑠|𝑡0

(𝑠−1)
, 𝜉(𝑠−1)) = ∏𝑙 (𝑎𝑢

𝑜𝑏𝑠|𝑡0
(𝑠−1)

, 𝜉(𝑠−1))

𝑠

𝑢=1

,                            (7.5) 

where 𝑙 (𝑎𝑢
𝑜𝑏𝑠|𝑡0

(𝑠−1)
, 𝜉(𝑠−1))  was defined in (7.3). The 𝑎1:𝑠

𝑜𝑏𝑠  refers to the set of 

observation history {𝑎𝑢
𝑜𝑏𝑠: 𝑢 = 1, 2,⋯ , 𝑠}  up to the inspection time 𝑡𝑠 . The update 

process at 𝑡𝑠 can be obtained accordingly by 
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𝑓𝑝𝑜𝑠𝑡(𝑡0
(𝑠−1)

, 𝜉(𝑠−1)|𝑎1:𝑠
𝑜𝑏𝑠) 

=
𝑙𝑠(𝑎1:𝑠

𝑜𝑏𝑠|𝑡0
(𝑠−1)

, 𝜉(𝑠−1))𝑓𝑝𝑟𝑖𝑜𝑟(𝑡0
(𝑠−1)

, 𝜉(𝑠−1))

∫ 𝑙𝑠(𝑎1:𝑠
𝑜𝑏𝑠|𝑡0

(𝑠−1)
, 𝜉(𝑠−1))𝑓𝑝𝑟𝑖𝑜𝑟(𝑡0

(𝑠−1)
, 𝜉(𝑠−1))d𝑡0

(𝑠−1)
d𝜉(𝑠−1)

.             (7.6) 

The inspection times divide the whole lifetime into several disjoint intervals. If the 

degradation is gradually happening without shock, the update of uncertain parameters is 

to directly assign the posterior distribution of uncertain parameters at the current 

inspection time to be the prior distribution at the next inspection time. However, if the 

shock occurs at a known time instant during interval [𝑡𝑣−1, 𝑡𝑣), the posterior distribution 

will be adjusted before being assigned to the prior distribution for next update. As 

discussed earlier, the adjustment is to increase the variance of marginal distribution for 

CIT to cover 𝑡0_𝑣𝑖𝑟𝑡𝑢𝑎𝑙 . Denote the adjusted distribution as 𝑓𝑝𝑜𝑠𝑡(𝑡0
(𝑣−1)

, 𝜉(𝑣−1)) . In 

addition, the likelihood also needs modification. The actual observations before the shock 

occurs have adverse effects on the likelihood of observing the crack sizes after the shock. 

Hence, only the observations after the shock will be used to define the likelihood function 

in Bayesian formula for the updates executed after shock occurrence time. The update 

process considering the shock occurring at a known time instant thus is modified to be 

𝑙𝑠(𝑎1:𝑠
𝑜𝑏𝑠|𝑡0

(𝑠−1)
, 𝜉(𝑠−1)) = {

∏ 𝑙 (𝑎𝑢
𝑜𝑏𝑠|𝑡0

(𝑠−1)
, 𝜉(𝑠−1))𝑠

𝑢=1 ,    when 𝑠 < 𝑣

∏ 𝑙 (𝑎𝑢
𝑜𝑏𝑠|𝑡0

(𝑠−1)
, 𝜉(𝑠−1))𝑠

𝑢=𝑣 ,    when 𝑠 ≥ 𝑣
          (7.7)                

𝑓𝑝𝑟𝑖𝑜𝑟(𝑡0
(𝑠)

, 𝜉(𝑠)) = {
𝑓𝑝𝑜𝑠𝑡(𝑡0

(𝑠−1)
, 𝜉(𝑠−1)),    when 𝑠 ≠ 𝑣

𝑓𝑝𝑜𝑠𝑡(𝑡0
(𝑠−1)

, 𝜉(𝑠−1)),    when 𝑠 = 𝑣
  .                     (7.8) 

7.3.2.2 Shock occurrence time is unknown 



145 

 

If the shock occurs at an unknown time, we could adopt the same adjustment strategy 

presented in Section 7.3.2.1 for each update, to ensure that the virtual CIT will be 

covered within the distribution samples. However, this strategy will result in a large 

amount of uncertainty in RUL prediction, which provides little useful information in 

decision making. Hence, an additional step for shock detection is proposed to add into the 

update process to deal with the case when shock occurrence time is unknown.  

Shock occurrence will cause sudden increase of the crack size. The amount of 

increase is assumed to be far out of the range of measurement error. A large adjustment 

of CIT from the last inspection time is expected. The average of the predicted crack size 

using the distribution of CIT at the last inspection time ought to deviate a lot from the 

observed crack size at the inspection time right after shock occurs. Therefore, a shock is 

said to be detected if the amount of such deviation exceeds a predefined threshold, δ. The 

criterion is that, shock occurs during [𝑡𝑣−1, 𝑡𝑣) if  

| 𝔼
(𝑡0

(𝑣−1)
,𝜉(𝑣−1))

[𝑎 (𝑡𝑣|𝑡0
(𝑣−1)

, 𝜉(𝑣−1))] − 𝑎𝑣
𝑜𝑏𝑠| > δ.                        (7.9) 

The symbol of 𝔼  denotes the operator for expectation. After identifying the shock 

occurrence time, update process (7.7) - (7.8) will apply. 

7.3.3 RUL prediction 

The ultimate goal of updating uncertain parameters is to predict the RUL of the 

cracked gear more accurately. With the updated parameter distribution obtained through 

Bayesian inference, the RUL prediction is given accordingly at the inspection time. Paris’ 

law can be written in its reciprocal form as in (7.10), 
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𝑑𝑁

𝑑𝑎
=

1

𝐶(∆𝐾(𝑎))𝑚
.                                                (7.10) 

Let the current inspection cycle be 𝑁𝑢(𝑡0) and the crack increment be ∆𝑎. The RUL is 

calculated by discretizing (7.10) in the following way, 

∆𝑁𝑖(𝜉) = 𝑁𝑖+1(𝜉) − 𝑁𝑖(𝜉) = ∆𝑎[𝐶(∆𝐾(𝑎𝑖))
𝑚
]
−1

 .                     (7.11) 

The RUL is the summation ∑ ∆𝑁𝑖𝑖 (𝜉) from the current inspection cycle to the cycle 

when failure occurs. Therefore, the total failure time is expressed as F(𝑡0, 𝜉) = 𝑁𝑢(𝑡0)  +

∑ ∆𝑁𝑖(𝜉|𝑡0)𝑖 . This expression shows that the uncertainty in total failure time prediction is 

determined by the uncertainty in both the CIT and the physical model parameters, (𝑡0, 𝜉). 

Thus more accurate values of (𝑡0, 𝜉) will produce more accurate F(𝑡0, 𝜉). An update of 

F(𝑡0, 𝜉)  will be triggered after the update of (𝑡0, 𝜉)  so as to adjust the failure time 

prediction. 

7.4 Examples 

Three cases are discussed in Section 7.3 in which case 3 can be considered as a 

generalization of case 2 with an additional step for shock detection. Hence, it is sufficient 

to only verify case 3 for case 2 to be valid. In this section, we will show the effectiveness 

of the proposed method for case 1 and 3: gradual degradation considering CIT and 

degradation with shock occurring at an unknown time. 

7.4.1 Case 1: Gradual degradation considering CIT  

In this case, the prior distributions of the uncertain parameters are assumed as: 

𝑚~𝑁(1.4, 0.2), 𝑡0~𝑁(2e6,2e5). The measurement error is 𝑒~𝑁(0, 0.152), The values 
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of the constants are set to be: 𝐶 = 9.12e − 11, 𝑎0 = 0.1mm, 𝑎𝐶 = 5.2mm. The history 

of SIF is adopted from the example in Chapter 4, in which the input torque is 320 Nm 

and the effect of dynamic load is considered. The characteristics of the two actual 

degradation paths are shown in Table 18. These two test degradation paths share the same 

value of real 𝑚 (𝑚 = 1.6) but the different crack initiation times. 

Table 18. Characteristics of two actual degradation paths #1 and #2 

Path # 𝑚 
𝑡0  

(cycles) 

Failure time 

(cycles) 

Inspection 

interval (cycles) 

1 1.6 1.7e6 4,215,500 3e5 

2 1.6 2.3e6 4,815,500 5e5 

 

The crack observations and updating results for the two paths are listed in Table 19 

and Table 20, respectively. The updated PDFs for distributions of 𝑡0 and 𝑚 are displayed 

in Figure 43 and Figure 44 for path #1, and in Figure 45 and Figure 46 for path #2.  

Table 19. Update process for path #1 

Update # Inspection 

time (cycles) 

Crack size 

(mm) 

Mean of 𝑚 Mean of 𝑡0 

(cycles) 

Mean of 

𝐹(𝑡0, 𝑚) 

(cycles) 

Prior   1.4 2e6 17,159,000 

1 3,015,700 2.1900 1.6277 1.9572e6  

2 3,315,700 3.0425 1.6420 2.0105e6  

3 3,615,700 3.5473 1.6275 1.9325e6  

4 3,915,700 4.2072 1.6134 1.8354e6 3,989,700 

Actual 

value 

  
1.6 1.7e6 4,215,500 

 

The updating results show that, as more crack observations are fed into Bayesian 

inference, the means of 𝑚  and 𝑡0  approach progressively to their actual values. 
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Meanwhile, the standard deviation is decreasing, which shrinks the distribution shape. 

This is beneficial for improving the performance of prognostic algorithm since narrower 

distribution indicates reduced uncertainty, and it is useful in making more accurate and 

cost-effective maintenance decisions. Based on the updated uncertain parameters, the 

mean of the failure time approaches its actual value accordingly. The actual values are 

denoted using star marks in the Figures 43-46. 

 

 

Figure 43. Updated distributions of 𝑡0 for path #1 
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Figure 44. Updated distributions of 𝑚 for path #1 

 

Table 20. Update process for path #2 

Update # Inspection 

time(cycles) 

Crack size 

(mm) 

Mean of 

𝑚 

Mean of 

𝑡0(cycles) 

Mean of 

𝐹(𝑡0, 𝑚) 

(cycles) 

Prior   1.4 2e6 17,159,000 

1 3215700 1.5910 1.5469 1.9827e6  

2 3715700 2.3063 1.5545 1.9999e6  

3 4215700 3.4307 1.5821 2.1583e6  

4 4715700 5.0218 1.6073 2.3604e6 5025200 

Actual 

value 

  
1.6 2.3e6 4,815,500 
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Figure 45. Updated distributions of 𝑡0 for path #2 

 
Figure 46. Updated distributions of 𝑚 for path #2 
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7.4.2 Case 2 & 3: Degradation with shock  

In this case, the prior distributions of the uncertain parameters are given as: 

𝑚~𝑁(1.6, 0.2), 𝑡0~𝑁(6.5e7, 0.5e7). The measurement error is 𝑒~𝑁(0, 0.152) while the 

values of the constants are set to be 𝐶 = 9.12e − 11, 𝑎0 = 0.1mm, 𝑎𝐶 = 5.2mm. The 

computed SIF values versus crack size are shown in Figure 47, for which the input torque 

is 40 Nm and the effect of dynamic load is not considered. One actual degradation path, 

path #3, is used to demonstrate this case, and the characteristics of the degradation path 

are shown in Table 21. The actual degradation path #3 is depicted in Figure 48. The 

marks of circle represent the actual crack sizes, which are unknown. The marks of star 

represent the observed crack sizes, which deviate from the corresponding actual values 

due to measurement error. Shock occurs between observation #3 and #4, and a sudden 

increase in crack size can be seen in Figure 48.  

 
Figure 47. History of stress intensity factor for path #3 
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Table 21. Characteristics of actual degradation path #3 

Path # 𝑚 
𝑡0_𝑎𝑐𝑡𝑢𝑎𝑙 

(cycles) 

𝑡0_𝑣𝑖𝑟𝑡𝑢𝑎𝑙 

(cycles) 

Failure time 

(cycles) 

Inspection 

interval(cycles) 

3 1.4354 7.5e7 4.9e7 1.474e8 1e7 

 

 
Figure 48. Actual shock degradation path #3 

Table 22. Update process for path #3 

Update # Inspection 

time(cycles) 

Crack size 

(mm) 

Mean of 𝑚 Mean of 𝑡0 

(cycles) 

Mean of 

𝐹(𝑡0, 𝑚)(cycles) 

Prior   1.6 6.5e7 1.331e8 

1 8.5e7 0.2775 1.3006 6.7311e7 2.639e8 

2 9.5e7 0.3968 1.2382 6.8447e7 3.126e8 

3 10.5e7 1.0214 1.3204 6.8454e7 2.183e8 

4 11.5e7 2.4759 1.4303 4.7962e7 1.480e8 

5 12.5e7 2.7370 1.4233 4.7805e7 1.524e8 

6 13.5e7 3.6924 1.4301 4.7735e7 1.454e8 

7 14.5e7 4.7976 1.4334 4.8387e7 1.465e8 

Actual 

value 

  
1.4354 5.0060e7 1.474e8 
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The shock could be detected between update #3 and #4 using the criterion proposed 

in Section 7.3.2. The horizontal boarder between these two updates points in Table 22 

separates the update process into two phases: history before shock occurrence and history 

after shock occurrence. From Table 22, it is observed a sudden transition of changing 

pattern for mean of 𝑡0 after the shock is detected. Before the shock occurs, the mean of 𝑡0 

tends to increase to reach 𝑡0_𝑎𝑐𝑡𝑢𝑎𝑙 = 7.5𝑒7 cycles, which is the actual CIT of the shock 

degradation path. Accordingly, the mean of failure time 𝐹(𝑡0, 𝑚)  tends to approach 

1.7235e8 cycles, which is the failure time of a gradual degradation if no shock occurs, as 

depicted by dot-dash line with marks of triangle in Figure 48. However, after the shock 

occurs, the mean of CIT reverses the changing direction to approach 𝑡0_𝑣𝑖𝑟𝑡𝑢𝑎𝑙 = 5.006𝑒7 

cycles. Compared to the actual shock degradation, this virtual gradual degradation path 

compensates the reduction of failure time due to shock occurrence by identifying an 

earlier CIT. As a material dependent parameter, there is no such transition in 𝑚 because 

its value is dependent on material, which should not be changed by shock occurrence. 

Based on the accurate information on parameters 𝑡0 and 𝑚, the predicted mean of failure 

time 𝐹(𝑡0, 𝑚) successfully approach the actual failure time in a shock degradation, which 

is 1.4742e8, as depicted by solid line with marks of circle in Figure 48. 

Figure 49 shows the updates of PDF for 𝑚, in which the bold line indicates the 

updates after the shock occurs. It can be seen that, as more observations are available, the 

mean of 𝑚 approach the actual value. Also the variance of PDF is reduced progressively 

which provides more precise information. Figure 50 shows the updates of PDF for 𝑡0, in 

which two neighbourhoods are apparent to observe. One is in the vicinity of  𝑡0_𝑎𝑐𝑡𝑢𝑎𝑙 =

7.5𝑒7, denoted using the mark of diamond, and the other is in the vicinity of 𝑡0_𝑣𝑖𝑟𝑡𝑢𝑎𝑙 =
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5.006𝑒7 denoted using the mark of star. As discussed before, this phenomenon explains 

the adjustment of 𝑡0  due to the shock occurrence, and the mean of 𝑡0  approaches 

𝑡0_𝑣𝑖𝑟𝑡𝑢𝑎𝑙 after the shock occurs.   

 
Figure 49. Updated distributions of 𝑚 for path #3 

 
Figure 50. Updated distributions of 𝑡0 for path #3 
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7.5 Conclusions 

Prognostics tools are used for RUL prediction starting from the CIT. However there is 

uncertainty in CIT due to the limited capability of existing fault detection tools, and such 

uncertainty has not been explicitly considered in the literature for integrated prognosis. A 

shock causes a sudden damage increase and creates a jump in the degradation path, which 

shortens the total lifetime, and it has not been considered before either in the integrated 

prognostics framework. This chapter proposes an integrated prognostics method 

considering these two important factors, the uncertainty in CIT and the shock in gear 

degradation. In the proposed integrated prognostics method, CIT is considered as an 

uncertain parameter, which is updated using condition monitoring data. To deal with the 

sudden damage increase and the reduction of lifetime, a virtual gradual degradation path 

with an earlier CIT is utilized, and the effect of shock is captured through identifying an 

appropriate CIT. Examples demonstrate the effectiveness of the proposed method in 

predicting RUL considering shock and uncertainty in CIT.  
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Chapter 8. Experimental validation 

8.1 Overview 

In the several preceding chapters, the aspects of an integrated prognostics method 

were researched for gear life prediction: the framework, the uncertainty quantification, 

considering time-varying operating conditions, and considering crack initiation time and 

shock in the degradation. The failure mode investigated in the preceding chapters was the 

tooth fracture which is caused by cyclic bending stress at the tooth root. In addition to the 

tooth fracture, gears also suffer from another failure mode of surface wear due to sliding 

contact in the mesh process. Researchers have proposed various wear models which are 

dedicated to forecasting the wear progression with time. Among them, the Archard’s 

wear model (Archard 1953) is now generally accepted as a suitable framework within 

which the quantitative analysis on wear progression can be discussed (Peterson and 

Winer 1980). The wear coefficient 𝑘 in Archard’s wear model is an important parameter 

that determines the wear rate. There exists a large amount of variation in the value of 

wear coefficient among different units due to contacting material property. Flodin and 

Andersson (1997) used Archard’s model to predict the wear in spur gears. The sliding 

distance was calculated based on the involute profile of spur gear tooth. The contact 

pressure was obtained by a Winkler surface model. When calculating the load on gear 

tooth, the mesh stiffness was assumed to be constant for simplicity. The wear coefficient 

𝑘 was selected as a parameter with constant value. There was no experimental result 

reported in that paper to validate the method. A wear prediction methodology was 

proposed in (Bajpai et al. 2004) for parallel axis gear pairs, which was also based on 
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Archard’s model. Commercial software was employed to calculate the contact pressure 

during the mesh process. Thanks to the FE model and the technique of surface integral 

formulation, the method was able to calculate the contact pressure and the sliding 

distance with accounting for the geometry change due to wear and tooth manufacturing 

imperfections. In the experimental validation, four tests were conducted. The purpose of 

the first experiment was to determine the wear coefficient 𝑘. Then the predictions were 

conducted using the same 𝑘 obtained in the first experiment and were compared to the 

other three tests because the authors assumed that all the test specimens were 

manufactured with the same material, heat treatment, and manufacturing process, and 

also assumed the same test conditions. These assumptions exclude the variations in wear 

coefficient among different components and impose risks of applying this wear 

coefficient to other components. This chapter researches the integrated prognostics 

method for the failure mode of surface wear and presents the experimental validation 

using a run-to-failure test on a planetary gearbox. We consider the wear coefficient as a 

random variable to account for its variation in different components. However, for a 

specific component, the uncertainty of the wear coefficient is much less than that of the 

population. Therefore, we propose to use inspection data during the wear process to 

reduce the uncertainty in wear coefficient for the specific component. Because the wear 

removes material of contacting surface, the mass loss would be an effective indicator for 

the wear status. The mass loss data will be integrated into the Bayesian inference to 

update the prior distribution of the wear coefficient into its posterior distribution. The 

posterior distribution is expected to better characterize the specific wear process as a 

result of the data assimilation. The organization of this chapter is as follows. In Section 
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8.2, the wear model for spur gear is established. Section 8.3 presents the integrated 

prognostics method proposed for the failure mode of surface wear. Section 8.4 presents 

the run-to-failure experiment on a planetary gearbox. The experimental validation is 

given in Section 8.5. Section 8.6 concludes the work.    

8.2 Wear model for spur gear 

During the mesh process of spur gears, there is a relative movement between the two 

meshing teeth because of the difference in tangential velocity, except for the pitch point. 

The sliding movement causes wear of tooth surface. The material particles will be 

removed due to the surface wear and the tooth profile will be altered. As discussed in 

Section 2.3.2, the Archard’s wear model (2.10) describes the wear rate.  

𝑑ℎ

𝑑𝑠
= 𝑘𝑝  

We discretize the model into the form in (6.1) 

ℎ(𝑖) = ℎ(𝑖 − 1) + 𝑘𝑝𝑠                                                 (6.1) 

where ℎ is the wear depth, 𝑠 is the sliding distance, 𝑝 is contact pressure and 𝑘 is the 

wear coefficient.  

In order to use Archard’s wear model to predict the gear tooth surface wear, two 

important quantities are needed: the contact pressure and the sliding distance of all the 

points on the tooth flank during the mesh process. In order to analyze the two quantities 

for all the points on the tooth flank, a coordinate system is established first. In this 

coordinate system, the origin is located at the pitch point; 𝑦 axis is along the line of 

action; 𝑥 axis is perpendicular to the 𝑦 axis. For spur gear with involute tooth profile, the 
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contact points are moving along the 𝑦 axis. As shown in Figure 51, 𝑃 is the pitch point; 

𝐵1 and 𝐵2 are the tangential points of base cycles; the tooth comes into mesh at point 𝑄2 

and departs the engagement at point 𝑄1; the two points 𝑄2
′  and  𝑄1

′  are the transition 

positions for the two types of contact: single-pair-contact and double-pair-contact. The 

load carried by this tooth is plotted above the 𝑦 axis without scale. 

 

Figure 51. The coordinate system and the load distribution 

When the meshing gears are loaded together by normal load 𝐹 , the surface will 

deform to form the area of contact, as shown in Figure 52. The contact can be regarded as 

the cylinder on cylinder line contact. Hertz contact theory will be applied to calculate the 

contact pressure for each point on the tooth flank when it comes into mesh. Suppose one 

point on the tooth flank starts the engagement at point 𝑁 which has the coordinate of 

(0, 𝑦). As shown in Figure 52, the contact width is 2𝑎𝐻. The radiuses of curvature at the 

contact point for the pinion and the gear are 𝑅1and 𝑅2 respectively.  

𝑅1 = 𝑅𝑏1 tan 𝛼0 + 𝑦,                                                    (6.2) 

𝑅2 = 𝑅𝑏1 tan 𝛼0 − 𝑦,                                                    (6.3) 

Then, the effective radius of curvature 𝑅∗ is defined as  
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1

𝑅∗
=

1

𝑅1
+

1

𝑅2
.                                                         (6.4) 

In a similar manner, the effective modulus of elasticity 𝐸∗ is defined as 

1

𝐸∗
=

1 − 𝜈1
2

𝐸1
+

1 − 𝜈2
2

𝐸2
.                                                (6.5) 

 

Figure 52. Contact of a pair of spur gear teeth 

According to Hertz contact theory, the half contact width is  

𝑎𝐻 = √
4𝐹𝑅∗

𝜋𝐸∗
                                                        (6.6) 

and the mean contact pressure is  

�̅�𝑁 =
4𝐹

3𝜋𝑎𝐻
.                                                         (6.7) 

After obtaining the contact pressure, another quantity that is needed in Archard’s wear 

model is the sliding distance. Andersson (1975) gave an analytical formula for sliding 

distance 𝑠1 of the point 𝑁 (0, 𝑦) on pinion flank as follows. 
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𝑠1 = 𝑎𝐻 − √(𝑅2)2 − (𝑅𝑝2 sin 𝛼0 − 𝑦1𝑑) + 𝑅𝑝2 cos 𝛼0                  (6.8) 

𝑅2 = √(𝑅𝑝2 cos 𝛼0 − 𝑎𝐻)2 + (𝑅𝑝2 sin 𝛼0 − 𝑦1𝑒)
2
                      (6.9) 

𝑦1𝑒 = √𝑅1 − (𝑅𝑝1 cos 𝛼0 + 𝑎𝐻)2 − 𝑅𝑝1 sin 𝛼0                        (6.10) 

𝑦1𝑑 = √𝑅1 − (𝑅𝑝1 cos 𝛼0 − 𝑎𝐻)2 − 𝑅𝑝1 sin 𝛼0                        (6.11) 

𝑅1 = √(𝑅𝑝1 cos 𝛼0)2 + (𝑅𝑝2 sin 𝛼0 − 𝑦)
2
                             (6.12) 

With the contact pressure and the sliding distance available, the determination of wear 

coefficient is required before using Archard’s model to predict the wear depth evolution. 

8.3 Wear model update through Bayesian inference 

 
In this chapter, Archard’s wear model is used to predict the wear depth evolution at 

each point on the tooth surface. More accurate wear coefficient in the model leads to 

more accurate wear prediction. However, different gears most likely have different wear 

evolution processes due to unavoidable variations in material property, manufacturing 

process and working conditions. We therefore consider the wear coefficient as a random 

variable to account for the uncertainty in wear evolution process from the population 

point of view. Meanwhile, the health condition of an individual gear is of our interest. 

The uncertainty in the failure time of a specific gear is much less than that in the 

population. Hence, a mechanism of uncertainty reduction is needed in the wear prediction. 

By noticing the material removal as a direct consequence of gear wear process, the gear 
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mass loss would be a good indicator of wear status. The Bayesian inference will take the 

data on gear mass loss as observations to update the distribution of wear coefficient. The 

formula is given in (6.13) 

𝑓𝑝𝑜𝑠𝑡(𝑘|𝑚𝑙) =
𝑙(𝑚𝑙|𝑘)𝑓𝑝𝑟𝑖𝑜𝑟(𝑘)

∫ 𝑙(𝑚𝑙|𝑘)𝑓𝑝𝑟𝑖𝑜𝑟(𝑘) 𝑑𝑘
.                                  (6.13) 

where 𝑘 is the wear coefficient, and 𝑚𝑙 stands for the mass loss. The update on wear 

coefficient distribution is conducted at each inspection time when a new measurement on 

gear weight is available. The posterior distribution will serve as the prior distribution for 

the next update at the next inspection time. 

At each inspection time 𝑇𝑗  , the measured mass loss is 𝑚𝑙𝑗
𝑜𝑏𝑠 . With the wear 

coefficient 𝑘𝑗−1  obtained in the last inspection time 𝑇𝑗−1 , the predicted mass loss at 

inspection times 𝑇1 up to 𝑇𝑗  are thus denoted as 𝑚𝑙1:𝑗
𝑚𝑜𝑑 , which are computed with the 

predicted wear depth and material density. We define the measurement error as 𝑒 =

𝑚𝑙𝑜𝑏𝑠 − 𝑚𝑙𝑚𝑜𝑑  and assume it follows zero-mean Gaussian distribution with standard 

deviation 𝜎. It is further assumed that the measurement errors at different inspection 

times are i.i.d., therefore the likelihood to observe the mass loss at inspection times up to 

𝑇𝑗 is 

𝑙(𝑚𝑙1:𝑗
𝑜𝑏𝑠|𝑘𝑗−1) = ∏

1

√2𝜋𝜎
exp(−

(𝑚𝑙𝑖
𝑜𝑏𝑠 − 𝑚𝑙𝑖

𝑚𝑜𝑑)2

2𝜎2
)

𝑗

𝑖=1

               (6.14) 

where 𝑚𝑙1:𝑗
𝑜𝑏𝑠 stands for the mass loss measured at inspection times 𝑇1 up to 𝑇𝑗.  

8.4 A run-to-failure experiment on a planetary gearbox 

Planetary gearbox is extensively used in helicopter, wind turbine and other 

engineering systems which require high power transmission and good torque ratio in a 
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small volume. There are three types of gears in a planetary gearbox: sun gear, planet gear 

and ring gear. By holding one type of gear stationary and letting the other two types 

rotate around it, the planetary gearbox can have different configurations. The 

configuration to be investigated in this experiment is to keep ring gear stationary and to 

provide power to the sun gear. All the gears are spur type.  

A run-to-failure experiment was conducted on a planetary gearbox test rig. In this 

experiment, data collected include vibration signals, current signals of the drive/load 

motor, encoder signal and torque signal. In addition, the metal particle counter data and 

the weight loss of gears were also recorded. The physical parameters of this planetary 

gear set are listed in Table 23. More details on this experiment can be found in the 

technical report by Do et al. (2010).  

Table 23. The physical parameters of the planetary gear set (Do et al. 2010) 

Parameters Sun gear Planet gear Ring gear 

Number of teeth 19 31 81 

Module (mm) 3.2 3.2 3.2 

Pressure angle 20° 20° 20° 

Mass (kg) 0.7 1.822 5.982 

Face width (m) 0.0381 0.0381 0.0381 

Young’s modulus (Pa) 2.068 × 1011 2.068 × 1011 2.068 × 1011 

Poisson’s ratio 0.3 0.3 0.3 

Base circle radius (mm) 28.3 46.2 120.8 
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Because the surface wear removes material of the gear and causes the weight loss, the 

recorded history of weight loss will be a good indicator for wear propagation. Hence, the 

weight loss is used as observations to adjust the wear model in the integrated prognostics 

method. Among all the gears, sun gear experiences the most severe wear. Therefore, the 

wear prediction of the sun gear is of interest.  

Before the gear was considered failed, the planetary gearbox experienced 19 runs.  

The photographs in Figure 53 show the tooth profile changes of the sun gear during this 

experiment. In these photographs, we can see the gear tooth becomes thinner gradually as 

runs continue and much material was removed. At the end of run #19, the thickness of the 

teeth was reduced to about 50% of the original thickness. According to the tooth profile 

changes and the metal particle data, this run-to-failure experiment can be divided into 

three stages:  

 Runs 1-6: Normal operations to damage initiation. 

 Runs 7-11: Initial to severe damage progression. 

 Runs 12-19: Severe damage progression and profile change. 

The weight loss of the sun gear is plotted in Figure 54. During these 19 runs, the input 

torque was kept to a constant level starting from run #5. Also considering the 

complicated burn-in period and the relatively large measurement error in the early stage, 

the data on the weight loss during run #1 to run #4 are not used in the validation.  
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Figure 53. Tooth profile changes of the sun gear (Do et al. 2010) 

 

 

Figure 54. Measured mass loss of the sun gear 
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8.5 Validation of the integrated prognostics method 

In the wear model (6.1), the wear coefficient will determine the wear rate. The 

purpose of the integrated prognostics method is to use observations of mass loss of sun 

gear to update the wear coefficient in the wear model so that the wear process for this 

specific gear can be predicted more accurately. The Bayesian formula can be modified 

into (6.13). Similar to the failure mode of tooth fracture, the update on wear coefficient 

distribution is conducted at each inspection time.  

The contact pressure and the sliding distance for each point on the sun gear tooth 

flank are calculated based on the methods given in Section 8.2.1. The contact pressure 

and the sliding distance for each point on tooth surface are assumed to be constant along 

the wear progression. By noticing the fact that the history of mass loss roughly has a 

linear trend from run #5 to run #14 as shown in Figure 54, the assumption of constant 

pressure and sliding distance being constant during the wear process is acceptable for 

these runs. During the late stages after run #14, we believe that this assumption is not 

valid anymore because the wear rate is accelerating and the predicted mass loss will be 

less than the actual mass loss. Therefore, for the purpose of validating the integrated 

prognostics method, the mass loss records from run #5 to run #14 are used to update the 

wear coefficient.  

In addition, the gear mesh process is actually a combination of rolling and sliding 

contact. Besides surface wear due to the sliding contact, the material removal is also 

contributed by the rolling contact fatigue. During the experiment, pitting was observed on 

the gear tooth which was caused by rolling contact. To account for the effect of pitting on 
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the mass loss, we select the maximum wear depth as the wear depth for all the points. 

The reason is that, in the photograph of tooth profile, the wear volume change is roughly 

uniform for all the points on the tooth flank.  Furthermore, the photograph also suggests 

similar wear condition of all the teeth of the sun gear. Therefore, we additionally assume 

that all the teeth of sun gear experience the same amount of wear. According to the 

configuration of the planetary gearbox, each tooth on the sun gear will mesh 3.2 times 

with all the four planet gears during one cycle of rotation. Hence, if we denote the wear 

depth increment on the sun gear tooth during one mesh period as ℎ𝑠  and the mass of 

material removed as 𝑚(ℎ𝑠), then the total mass loss of the sun gear within one cycle of 

rotation will be 𝑚(ℎ𝑠) × 3.2 × 19 (# of teeth of sun gear). 

For a given value of wear coefficient, we can use discretized Archard’s model (6.1) to 

predict the wear depth. For example, when 𝑘 = 1.27 × 10−15Pa−1, Figure 55 displays 

the predicted wear depths from run #5 to run #14 only considering sliding wear effect. 

From the figure, we can see that the maximum wear depth occurs near the root area. 
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Figure 55. Predicted wear depths of the sun gear  
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Table 24. Update process for wear coefficient 𝑘  

Run # Measured mass loss Mean of 𝑘 Std of 𝑘 

 0 3e-15 1e-15 

5 1.4 1.0552e-15 2.9315e-16 

6 4.45 0.9288e-15 9.2107e-17 

7    8.12 1.0664e-15 4.9948e-17 

8 10.9 1.1636e-15 3.2156e-17 

9 13.81 1.2186e-15 2.2289e-17 

10 17 1.2513e-15 1.6210e-17 

11 20.13 1.2672e-15 1.2228e-17 

12 26.04 1.2748e-15 9.5061e-18 

13 28.71 1.2776e-15 7.5751e-18 

14 34.53 1.2770e-15 6.1681e-18 

 

Figure 56. Updated distributions of wear coefficient 𝑘 
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From the results of update process, it is observed that the mean of wear coefficient 𝑘 

has been adjusted from the prior value 3 × 10−15Pa−1  to the value around 1.27 ×

10−15Pa−1. Moreover, the shape of the distribution gets narrower, which indicates that 

the uncertainty is reduced gradually as more data of mass loss are available. 

 

Figure 57. Measured and predicted mass loss of the sun gear 

The prediction results are compared between the physics-based method and the 

integrated prognostics method, shown in Figure 57. The green dotted line with marks of 

triangle represents the mass loss predicted by physics-based method, which uses a prior 
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𝑘 = 1.27 × 10−15Pa−1. From the figure, it is obvious that the predicted results obtained 

by the integrated prognostics method agree well with the measured data from run #5 and 

run #14. In contrast, the mass loss predicted by the physics-based method has large 

discrepancy with the measured data. The results show that, the integrated prognostics 

method is able to accurately identify the wear coefficient for a specific unit under 

monitoring by using measurement on gear mass loss. With the updated wear coefficient 

obtained through Bayesian inference, the wear process is predicted with good accuracy.   

8.6 Conclusions  

In this chapter, the integrated prognostics method is developed for the failure mode of 

surface wear of the gear. The validation is conducted using a run-to-failure experiment. 

The wear model is only used to predict the surface wear due to sliding contact. In order to 

account for the contribution of rolling contact to the mass loss, we propose to remove the 

material using the maximum wear depth. In addition, the assumption of contact pressure 

and sliding distance being constant during the wear process leads to a linear prediction, 

which is not suitable anymore for the late stage of the wear process.  

In order to obtain a more accurate prediction on wear process, in the future work, the 

FE model will be used to calculate the actual contact pressure and the sliding distance, 

accounting for the effects of tooth profile changes due to material removal. Moreover, a 

more reasonable model will be built to account for the interactions between pitting and 

surface wear process. 
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Chapter 9.  Conclusions and future work 

9.1 Conclusions 

Integrated prognostics methods for gear life prediction have been proposed in this 

thesis. The methods can make use of condition monitoring data and update the physical 

model to achieve more accurate failure time prediction.  

Several aspects in prognostic method development are researched, including 

uncertainty quantification, time-varying operating conditions, crack initiation time and 

shock in the degradation.  

An efficient method is developed to improve the computational efficiency in 

uncertainty quantification in the integrated prognostics. The method is the stochastic 

collocation method based on PCE. It can accelerate the process of model update and RUL 

prediction significantly. By using this method, it is possible to fully explore the effect of 

uncertainty from multiple sources on the life prediction. 

The integrated prognostics method can deal with time-varying operating conditions. 

In this thesis, the varying loading condition is considered since it is the most important 

operating factor for a power transmission system. The loading profile takes the form of 

piece-wise constant. With the capability to directly relate the load to the degradation rate, 

the integrated prognostics method can account for the loading change in RUL prediction. 

The CIT affects the failure time prediction. By considering it as a source of 

uncertainty, the prediction accuracy is improved by adjusting both the slope and the 

intercept of the degradation path. It also facilitates the prediction of degradation with 



173 

 

shock in it. By searching a different CIT, the reduction in lifetime that is caused by the 

shock can be accommodated.  

We also develop the integrated prognostics method for another failure mode of the 

gear: surface wear caused by sliding contact. The proposed method is validated using a 

run-to-failure experiment on a planetary gearbox. The recorded data on mass loss in the 

experiment are used to update the wear coefficient in the integrated prognostics method. 

By observing the tooth profile change in the photographs, the maximum wear depth is 

used to remove material, which accounts for the rolling contact to some extent. The 

predicted mass loss matches well with the measured mass loss during the middle stage of 

wear process. The wear model is no longer valid at the late stage because of the 

assumption of contact pressure and sliding distance being constant. More sophisticated 

methods are needed to calculate the actual contact pressure and the sliding distance in the 

future work.  

9.2 Future work 

The future work may include the following aspects. 

 It is expected that the wear process should be affected by the wear itself. That is, the 

contact pressure and the sliding distance should be a function of wear depth. In order 

to improve the wear model, FE modeling will be used to calculate the contact states 

and the sliding distance. The assumption of constant values for them can be removed 

to produce more reasonable results. 

 The wear process is actually involving more than one wear mechanisms. It is a 

complicated process that all the mechanisms can affect each other. For example, the 
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mild wear due to sliding contact can expose some areas of the tooth body under stress 

concentration, hence to accelerate the fatigue process due to rolling contact. More 

effort can be invested to build an effective physical model to predict the pitting 

process and to investigate the interactions between different wear mechanisms. 

 In this thesis, the crack size is taken as the observations to update model parameters. 

However, it may be difficult to obtain an accurate mapping between crack size and 

condition feature. Under such circumstance, the integrated prognostics method should 

have the capability to use condition feature directly to update model parameters. 

Hence, the research effort will be further devoted to extracting effective and 

representative condition features for prognostics and to incorporate their uncertainty.  

 The time-varying loading condition considered in the current work takes the form of 

piece-wise constant. We assume the theory of linear elastic fracture mechanics can 

always apply. However, the variable amplitude loading condition may result in crack 

closure and plasticity, which makes the linear elastic fracture mechanics theory not 

suitable. The future work will consider the physical model for life prediction that can 

account for more factors in the crack propagation. 

9.3 Paper published from the thesis work 

A. Peer-Reviewed Journal Papers  

1. Fuqiong Zhao, Zhigang Tian and Yong Zeng, “Uncertainty quantification in gear 

remaining useful life prediction through an integrated prognostics method,” IEEE 

Transactions on Reliability, vol. 62, no. 1, pp. 146-159. 2013. 

2. Fuqiong Zhao, Zhigang Tian and Yong Zeng, “A stochastic collocation approach 

for efficient integrated gear health prognosis,” Mechanical Systems and Signal 

Processing, vol. 39, pp. 372-387, 2013. 

http://users.encs.concordia.ca/~tian/index_files/Papers/IEEE_TR_Zhao_2012.pdf
http://users.encs.concordia.ca/~tian/index_files/Papers/IEEE_TR_Zhao_2012.pdf
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3. Fuqiong Zhao, Zhigang Tian, Eric Bechhoefer and Yong Zeng, “An integrated 

prognostics method under time-varying operating conditions,” IEEE Transactions 

on Reliability, vol. PP, no. 99, pp. 1-14, 2015. 

4. Fuqiong Zhao, Zhigang Tian and Yong Zeng, “Gear integrated prognostics 

considering shock in degradation and uncertainty in crack initiation time,” 

submitted. 

5. Fuqiong Zhao and Zhigang Tian “Integrated prognostics method for gear wear 

prediction”, in preparation. 

B. Peer-Reviewed Conference Papers 

1. Fuqiong Zhao and Zhigang Tian, “Gear integrated prognosis considering crack 

initiation time uncertainty”. In Proceedings of the 20
th

 ISSAT International 

Conference on Reliability and Quality in Design, Seattle, USA, August, 2014. 

2. Fuqiong Zhao and Zhigang Tian, “Gear remaining useful life prediction using 

generalized polynomial chaos collocation method”. In Proceedings of the 18
th

 

ISSAT International Conference on Reliability and Quality in Design, Boston, 

USA, July, 2012. 

3. Fuqiong Zhao and Zhigang Tian. ‘’Crack propagation simulation in spur gear 

tooth root using ANSYS’’. In Proceedings of the 17
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