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Abstract

The continuous increase in the use of mobile devices has been driving research

in the improvement of the energy consumption of these devices and the appli-

cations running on them. In this thesis, we present a tool that helps Android

developers understand the implications of their changes to the application’s

energy profile throughout its evolutionary development. The presented tool is

an extension over GreenAdvisor, an already existing tool that predicts energy

changes based on the changes in the application’s system-call profile and then

looks for the responsible code using a set of predefined relevant keywords [1].

Towards improving GreenAdvisor, GreenAdvisor2.0 instruments the applica-

tion source code and collects, in addition to system-call counts, system-call and

method-call timing information and uses this evidence to locate the methods

responsible for changes in the energy profile. In order to evaluate our work,

we synthetically produced conditions in which the decisions of GreenAdvi-

sor2.0 can be marked as correct or incorrect. Using this information, we then

quantified the accuracy and effectiveness of GreenAdvisor2.0 and compared

them to that of the original GreenAdvisor and random guess. We found that

GreenAdvisor2.0 made sensibly more correct decisions than the other two

competitor approaches in cases where the system-call profile was impacted

significantly by a re-factoring commit which synchronously consumed more

energy.

ii



To Haniyeh

For standing beside me although two continents away and supporting me

when I needed it the most

iii



Acknowledgements

I would like to thank my supervisor, Prof. Eleni Stroulia for her great su-

pervision. This thesis would not have been possible without her patience and

quality guidance.

I would also like to thank Dr. Abram Hindle for helping us understand the

statistical analysis used in this thesis.

I am also grateful to Karan Agarwal for walking us through the steps to

make GreenAdvisor work.

iv



Table of Contents

1 Introduction 1
1.1 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Related Work 6
2.1 Energy Measurement and Modeling . . . . . . . . . . . . . . . 6
2.2 Empirical Studies Analyzing Patterns of Energy-Consumption 9
2.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Methodology 13
3.1 The Original GreenAdvisor . . . . . . . . . . . . . . . . . . . . 13
3.2 GreenAdvisor2.0 . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Evaluation 28
4.0.1 Results and Analysis . . . . . . . . . . . . . . . . . . . 31

4.1 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Threats to Validity 36

6 Conclusion and Future Work 38

Bibliography 40

v



List of Tables

4.1 Calculated Measures for Experiment I . . . . . . . . . . . . . . 32
4.2 Calculated Measures for Experiment II . . . . . . . . . . . . . 33
4.3 Calculated Measures for Experiment III . . . . . . . . . . . . . 34
4.4 Calculated Measures for Experiment IV . . . . . . . . . . . . . 34

vi



List of Figures

3.1 Interaction of applications, C libraries, and kernel through system-calls 14
3.2 GreenAdvisor2.0 Workflow . . . . . . . . . . . . . . . . . . . . . 17
3.3 An Example Data File in sys callv1 and sys callv2 . . . . . . . . 18
3.4 An Example Data File in sys callv1.i and sys callv2.i . . . . . . . 20
3.5 An Example Data File in method callv1.i and method callv2.i . . . 21
3.6 An Example of Instrumentation in a Method . . . . . . . . . . . 23
3.7 GreenAdvisor2.0 Components . . . . . . . . . . . . . . . . . . . 25
3.8 An Example output of GreenAdvisor2.0 . . . . . . . . . . . . . . 27

vii



List of Symbols

srcv1 Application source, version 1
apkv1 Compiled APK of application source, version 1
srcv2 Application source, version 2
apkv2 Compiled APK of application source, version 2
srcv1.i Instrumented application source, version 1
apkv1.i Compiled APK of instrumented source, version 1
srcv2.i Instrumented application source, version 2
apkv2.i Compiled APK of instrumented source, version 2
system callv1 Set of 5 system-call counts profile obtained from runs of

version 1
system callv2 Set of 5 system-call counts profile obtained from runs of

version 2
system callv1.i Set of 5 system-call times profile obtained from runs of

instrumented version 1
system callv2.i Set of 5 system-call times profile obtained from runs of

instrumented version 2
method callv1.i Set of 5 method-call times profile obtained from runs of

instrumented version 1
method callv2.i Set of 5 method-call times profile obtained from runs of

instrumented version 2
Ts.v1 Tuple consisting number of times s is invoked in runs of

version 1
Ts.v2 Tuple consisting number of times s is invoked in runs of

version 2
Ts.v1.i Tuple consisting number of times s is invoked in runs of

instrumented version 1
Ts.v2.i Tuple consisting number of times s is invoked in runs of

instrumented version 2
Is.v1 Tuple indicating the impact of instrumentation on system-

call s in runs of version 1
Is.v2 Tuple indicating the impact of instrumentation on system-

call s in runs of version 2

viii



Hs.m.v1 Tuple indicating number of times system-call s is invoked in
method m in runs of version 1

Hs.m.v2 Tuple indicating number of times system-call s is invoked in
method m in runs of version 2

θ Set of significantly changed system-calls, obtained by comparing
counts of system-calls in runs of version 1 with that of runs of
version 2

λ Set of undesirably affected system-calls by instrumentation, ob-
tained by comparing the impact of instrumentation on counts of
system-calls in runs of version 1 with that of runs of version 2

δ Set of system-calls whose count were significantly changed but were
not undesirably affected by instrumentation, obtained by subtract-
ing λ from

ix



Chapter 1

Introduction

Mobile devices (e.g. smartphones and tablets) have now become the most pop-

ular kind of general-purpose computers. Despite phenomenal improvements

in the processing power of these devices, their battery is still considered to be

a limiting resource.

Mobile processor manufacturers have always been trying to optimize the

power-consumption behavior of their products. For example, the Apple A8

processor, which was first introduced in September 2014 with iPhone 6 and

iPhone 6 plus, was claimed to have 25% more CPU performance and 50% more

graphics performance while drawing only 50% of the power compared to its

predecessor, the Apple A7.

Another class of studies have been dedicated to the improvement of en-

ergy consumption at the level of operating systems. For example, Android

Marshmallow, released by Google in October 2015, was claimed to had be-

come smarter than its predecessors in terms of battery usage by (a) putting

the device into a sleep state when it is at rest, and (b) limiting the impact of

seldom-used apps on battery life.

Still, with all these improvements, an energy-hungry application can drain

your phone’s battery and leave you phone-less in the middle of nowhere, which

highlights the need for improvement of energy consumption at the application

level. If, however, application developers are meant to consider energy con-

sumption as a software quality, new tools are necessary to support this task.

In order to make a tool for developers that helps with energy-aware devel-
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opment, energy leaks should first be studied. One way to find energy leaks

is to compare two different implementation of a single feature. In real world,

when a developer pushes a re-factoring commit to the application’s source-code

repository, it is likely that they create a new implementation of an already ex-

isting feature. If the developer has access to a tool which shows how energy

is impacted with the changes being committed, they will have a better chance

of making energy-optimized apps.

Energy consumption can be measured both physically and logically. In

physical measurement, the application under test is usually run on an instru-

mented device where the current drawn by hardware components is physically

monitored and measured [8]. In logical measurement however, the energy con-

sumption is estimated using different parameters and metrics such as number

of system-calls made [1], or the power state of hardware components [7]. The

process of collecting these metrics is called profiling. Profiling can be done in

different levels of execution stack from hardware up to the operating system

and application under test and often needs some kind of modification in that

level which is called instrumentation. Instrumentation itself comes at a price:

it is difficult and it leads to more energy consumption which complicates the

process of estimating true energy consumption. Therefore, it is necessary to

control and carefully assess the impact of instrumentation when it is required

in an approach to measure energy consumption.

In this paper, we introduce GreenAdvisor2.0 which is a major extension

over GreenAdvisor, first introduced by Agarwal et al.[1]. The original GreenAd-

visor predicts changes in the energy profile of an Android application by look-

ing for the significant changes in the application’s system-call profile when the

application code undergoes a change/re-factor. If an increase in the energy

profile is predicted, the tool finds keywords in the added source-code which

are verbally or semantically relevant to the name of system-call whose count

has increased and points to the place of these keywords as the source of blame.

GreenAdvisor2.0 replaces this blame assignment procedure by adopting a

multi-layer tracing approach, which produces time-stamped system-call and

method-call profiles. Finally, these profiles are used to localize the method-to-
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blame for the energy-consuming change.

In assigning blame for a surge in the energy-consumption of an app to a spe-

cific piece of code, GreenAdvisor2.0 recognizes two conditions: Synchronous

and Asynchronous.

The energy is consumed synchronously in an application method when it

is bound to the life time of the method. The energy may also be consumed as

a result of a method-call long after the method is finished executing which is

called asynchronous energy-consumption.

In our research, we explore the following questions:

Q1: Does the new approach of blame assignment work when the system-call

profile is impacted by a re-factoring commit which synchronously consumes

more energy?

Q2: Does the new approach of blame assignment work when the system-call

profile is impacted by a re-factoring commit which asynchronously consumes

more energy?

Q3: Does the new approach of blame assignment work when the system-call

profile is impacted by a re-factoring commit which we may not be able to

categorize as completely synchronous or asynchronous?

We evaluate our work by theoretically answering the above questions and

conducting a series of four experiments to support our answers. Our experi-

ments are all based on synthetic test-cases where we inject both system-call-

producing and system-call-free code to a number of methods in the source-

code of an Android application. In these experiments, we synthetically pro-

duced conditions in which the decisions of GreenAdvisor2.0 can be marked as

correct or incorrect. Using this information, we then quantified the accuracy

and effectiveness of GreenAdvisor2.0 and compared them to that of the orig-

inal GreenAdvisor and random guess. The results of supporting experiments

suggest that GreenAdvisor2.0 made sensibly more correct decisions than the
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other two competitor approaches in cases where the system-call profile was im-

pacted significantly by a re-factoring commit which synchronously consumed

more energy

1.1 Thesis Overview

• The Original GreenAdvisor: The original GreenAdvisor runs two

versions of an Android application and looks for the changes in the sys-

tem-call profile to predict changes in the energy profile. It then identifies

the code responsible for this change by looking for verbal connections be-

tween the name of the increased system-call and the tokens in code.

• GreenAdvisor2.0: In order to ensure that the two Android applica-

tions are executed the same way, GreenAdvisor2.0 uses manually writ-

ten use-case test scripts instead of JUnit test suite used by the original

GreenAdvisor. GreenAdvisor2.0 refines the blame assignment proce-

dure of its previous version, by (a) adding application-level instrumen-

tation, and (b) performing a richer system-call profiling. As a result,

three kinds of profile events are collected when the Android applica-

tion executes: timestamped system-call, timestamped method-start and

timestamped method-end. Composing all these events and using statis-

tical tests, GreenAdvisor2.0 determines which methods are to blame for

changes in the application’s system-call profile.

• Evaluation and Conclusion: First, the situations where GreenAdvi-

sor2.0 may and may not work effectively were explained and then the

results of four supporting experiments were presented. In these exper-

iments, conditions in which the decisions of GreenAdvisor2.0 can be

marked as correct or incorrect were synthetically produced. Using this

information, accuracy and effectiveness of GreenAdvisor2.0 were quan-

tified and compared to that of the original GreenAdvisor and random

guess. The results of supporting experiments suggest that GreenAdvi-

sor2.0 made sensibly more correct decisions than the other two com-
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petitor approaches in cases where the system-call profile was impacted

significantly by a re-factoring commit which synchronously consumed

more energy.

1.2 Contributions

This thesis makes the following important contributions:

• We correct the approach taken by the original GreenAdvisor for testing

Android applications.

• We propose a multi-layer tracing approach which is used to collect sys-

tem-call and method-call profile information. We then compose the two

to blame methods for significantly changing the system-call profile.

• We propose three actions that can be taken to minimize undesired effects

of instrumentation on the energy-consumption profile.

• We propose a quantification evaluation approach which is based on syn-

thetic test-case generation and is used to compare GreenAdvisor2.0 with

the original GreenAdvisor and random guess.

1.3 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, we present an

overview of the related literature. In Chapter 3, we explain our methodology in

details. In Chapter 4, we evaluate our blame-assignment procedure in theory

and practice. In Chapter 5, we explain the potential flaws and threats to

validity. Finally, Chapter 6 concludes this thesis.
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Chapter 2

Related Work

As we studied the background of different steps of our method, we organized

the literature in two main topics: energy measurement and modeling, and

empirical studies analyzing patterns of energy-consumption.

2.1 Energy Measurement and Modeling

This class of studies have been conducted to measure and model energy. En-

ergy measurement could be done both physically and logically. In logical

approach the amount of energy consumed is often estimated using different

metrics in application, OS, and/or hardware levels. After measurement at the

physical level is collected, different approaches, such as regression or other sta-

tistical analysis, may be used to build an energy model in a specific granularity

level.

Hindle et al. proposed and implemented GreenMiner, a dedicated hard-

ware mining software repositories testbed composed of 4 galaxy nexus phones

and a Raspberry Pi [8]. The Raspberry Pi starts the test and runs a sequence

of interactions (swipes and taps) on an emulator, then collects system-call pro-

file and physical energy measurement data and uploads it onto a centralized

server.

Chowdhury et al. used a big-data approach in which they train a model

based on a set of applications’ energy measurements and profile information

and use that model to estimate the energy consumption of a new application

for a test run [6]. In this study, they used a feature selection algorithm called
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elastic net and recursive elimination to select 15 features and build a model

that can estimate energy-consumption mostly within 10% error.

Mittal et al. presented an energy-emulation tool that enables developers

to estimate the energy use of their mobile apps from within their development

environment by scaling the emulated resources including the processing speed

and network characteristics to match the app behavior to that on a real mobile

device [14].

The Eprof platform, developed by Pathak et al., uses a finite state ma-

chine to model the energy consumption of an application with power states

represented as nodes and system-calls represented as the state-transition edges

[15]. Based on this model and the input parameters of the system-calls invoked

by each method, they estimate the energy consumption of an application at

the method level. This approach, however, requires the manual modification

of the application framework, a potentially time-consuming and error-prone

task. Hao et al. presented a similar approach, Elens, which records the ex-

ecution trace and run-time information (e.g. state of hardware components

during execution) of an Android application and then constructs a model to

estimate the energy consumption of the application in three levels of granular-

ity including specified path, method, and line by line [7]. Both Eprof and Elens

suffer from the same shortcoming: if the cause of the energy consumption is

not due to the use (and state) of hardware, neither model will recognize it.

Agarwal et al. presented GreenAdvisor, a tool for analyzing energy con-

sumption and its changes as the application evolves, based on system-call

traces [1]. This approach relies on their empirical studies, which validated

the energy-consumption “Rule of Thumb”: When the count of a system-call

changes significantly from one version to the next, the application’s energy

consumption will also change [2]. GreenAdvisor uses strace, a system-call

trace utility, to record the count of system-call invocations in each version.

When it detects a change in the count of a system-call’s invocations, it uses

a bag-of-words method to locate the code that is likely responsible for this

change (based on associations between method names and system-call names).

However, this blame-assignment method is not very robust.
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Schubert et al. designed and developed a software energy-profiler which

makes it possible to calibrate a hardware platform once (using a power meter),

and then use the calibration data to obtain energy profile of the software

running on that platform, without requiring the use of a power meter [18].

This study relies upon a minimal instrumentation of the kernel code (tens

of lines of code) and accounts for both synchronously and asynchronously

consumed energy.

Pathak et al. study of Eprof also relies upon instrumentation for obtaining

profiling information and use that to model energy consumption [15]. In this

study, the source-code is first instrumented for method-call and system-call

tracing. The instrumented binary is then run on an instrumented mobile-

platform/OS to gather both detailed method-call and system-call traces at

run-time.

Li et al. referred to [3] in their study of vlens as an efficient method of

instrumentation [11]. Their main strategy was to minimize the placements of

probes and claimed that this significantly reduces the possible instrumentation

overhead. In another study, Lu et al. proposed a lightweight and automatic

approach to estimate the method-level energy consumption for Android apps

[13]. In this approach, probes are only placed at the beginning of methods

which increases the number of byte-code instructions only by 2% and take

only 3% longer to execute which they claimed to be a minimal insignificant

overhead.

Our approach is based on logical measurement of energy and uses sys-

tem-call counts as a metric for estimating the amount of energy consumed in

two different versions. We also perform application level instrumentation in

which we try to reduce the system-call overhead by keeping the profile data

in memory and writing it on disk only once at the end of each use-case. Not

only we try to perform a low-overhead instrumentation but we also control for

any unintentional affect on energy by taking a number of conservative actions

explained in Chapter 3.
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2.2 Empirical Studies Analyzing Patterns of

Energy-Consumption

Another class of literature we assessed have been conducted to analyze the

patterns of energy-consumption. Two main objectives of studies in this class

are to identify energy leaks and find out what areas the developers should

focus on more for energy-consumption optimization.

According to an empirical study on the energy-consumption of Android

applications, Li et al. found that only 39% of energy is consumed in non-

idle state [10]. This means that the other 61% is consumed in idle state

where no application code is under execution. This finding has an interesting

implication: bad choice of color schema could waste energy way more than a

badly written code does. They also classified the consumed non-idle energy

and found that 85% of it is consumed on API calls (possibly single lines of code

invoking services provided by libraries or services external to the project), 13%

consumed on system events (e.g. context switches, garbage collection, etc.),

and only 2% on the user code. Assessing API calls, they found that network

is consuming the most energy among all other services. They also found that

making a HTTP request consumes significantly higher energy compared to

other network steps. They also assessed developer-written code and found that

a HTTP request making loop consumes more energy than a loop invoking any

other API; both these loops consume more energy than a loop without any

API calls.

On a similar study, Linares-Vasquez et al. mined and analyzed 55 mobile

apps for energy-greedy APIs and usage patterns [12]. They discussed the cases

where either the anomalous energy consumption is unavoidable or where it is

due to sub-optimal usage or choice of APIs and finally provided a recipe for An-

droid developers to reduce energy-consumption while using certain categories

of Android APIs and code patterns.

In another empirical study, Li et al. investigated the impact of different

coding practices that are commonly suggested or proposed in the official An-

droid developers web site on energy consumption [9]. They mainly focused
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on three categories: network usage, memory consumption, and low-level pro-

gramming practices and found some interesting results about each. In the first

category, network usage, they found that the energy consumption of download-

ing 1000 bytes of data is roughly the same as downloading 1 byte; therefore,

an energy-efficient programming practice would be to bundle several small

HTTP requests into larger ones whenever it is possible. In the second cat-

egory, memory consumption, they found that high memory usage consumes

more allocation energy and may cause the application to become more en-

ergy consuming. On the flip side, insufficient memory may cause more energy

consumption in other components of the smart phone, such as 3G or WiFi

network. Thus, developers need to have guidelines to help them decide what

is the appropriate amount of memory to allocate. Finally, in the third cat-

egory, low-level programming practices, they found that avoiding references

to array length in a loop reduced energy by 10%, static invocations consumed

15% less energy than virtual invocations, and direct field-accesses used 30-35%

less energy than indirect getter and setter methods.

Mining Stack Overflow for energy related discussions, Pinto et al. created

and analyzed a data-set of more than 300 questions and found that developers

do not have the necessary tools and knowledge for energy-aware development

[17]. Wilke et al. also mined user feedback on Google Play and found that

energy inefficiency negatively impacts the user ratings of both free and paid

applications, which suggests a general disregard for energy-efficiency driven

development among Android developers [19]. They also identified the major

causes of energy inefficiency of many Android applications to be background

activities when the app is minimized, faulty GPS behaviour, unnecessary CPU

and RAM activities, and synchronization attempt with the Internet when the

device is not connected to any network.

Pathak et al. conducted a study that introduces and characterizes an

energy bug called no-sleep bug. This bug arises from mishandling power con-

trol APIs. It keeps the components on during the active use of the app and

results in significant and unexpected battery drainage [16]. They also intro-

duced asynchronous energy behaviour as a challenge for energy modeling in
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the granularity level of functions in another study [15]. This hard-to-track

behaviour could happen in three cases:

Tail Power State: GPS, WiFi, SDCard, 3G components could enter in high

power state during the execution of a routine and stay in that state long after

the routine ends.

Wakelocks: During execution of a routine, a wakelock may be acquired. It

can cause some components to enter a high power state and stay in that state

until the lock is released in possibly another routine.

Exotic Components: Components such as camera which drain energy when

they are switched on and they continue until they are switched off in possibly

another routine.

Bao et al. performed an empirical study by mining power-management

commits and found that for different kinds of Android application (e.g., Games,

Connectivity, Navigation, Internet, Phone & SMS, Time, etc.), the dominant

power-management activities differ [4]. This means that the few developers

that focus on energy-efficiency while developing apps tend to focus on different

areas depending on the type of app they are developing. For example, a

developer who is creating a gaming app should focus more on the color schema

and memory optimization, while a developer who is creating a messaging app

should focus more on network usage optimization.

Chan et al. used real network and application measurements to compre-

hensively analyze the energy consumption of 12 common mobile applications

by breaking down their total energy consumption into data and signaling (due

to LTE signaling) energy components [5]. The results of this study show that

signaling energy consumption may become a major concern for mobile carriers.

The aforementioned empirical studies suggest that bad programming prac-

tices such as careless use of APIs could vastly affect the application’s energy

consumption, the problem that our tool, the GreenAdvisor2.0, is aimed to

solve.
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2.3 Chapter Summary

In this chapter, literature related to this thesis was discussed. The literature is

organized in three main topics: empirical studies analyzing patterns of energy-

consumption, energy metrics and modeling, and instrumentation and profiling.

The literature reviewed in the first topic pursue two main objectives: iden-

tifying energy leaks, and finding out what areas the developers should focus

on more for energy-consumption optimization.

The literature reviewed in the second topic suggest that energy measure-

ment could be done both physically and logically and shine light on the dif-

ference between the two.

Finally, the literature in the third topic explain instrumentation-based pro-

filing and the measures taken to control its undesired impact on the energy-

consumption.
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Chapter 3

Methodology

GreenAdvisor2.0 extends the original GreenAdvisor in two dimensions: (a)

it improves on its testing procedure, and (b) it improves the reliability and

accuracy of its blame-assignment feature.

3.1 The Original GreenAdvisor

For the sake of security, consistency, code reuse, and developers’ convenience,

operating systems provide access to different services and underlying hardware

components through a set of predefined functions called system-calls. Appli-

cations residing in user space use these system-calls to access resources such

as hard-disk, memory, sensors, camera, and other periferals as well as services

such as creating, executing, management, and transferring data between pro-

cesses, receiving event notifications, etc. Figure 3.1 shows an overview of this

interaction between user and kernel spaces.

During the evolution of an Android project, every commit that makes a

change in the code of a use-case could also make a change in the system-call

profile of that use-case. In a study that focuses on the system-call profile

and its relationship with energy profile, Agarwal et al. prove that there

is a correlation between the two [2]. For this purpose, system-call counts

were measured for different versions of two Android applications, Firefox

and Calculator. Then linear and regression models were built using these

measurements to generate estimations about energy consumption which led

into a classification of versions as being low/high energy consuming. Finally,
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Figure 3.1: Interaction of applications, C libraries, and kernel through system-calls

by analyzing energy and system-call profiles, they introduced The Rule of

Thumb which states the following:

“If the system-call profile changes significantly from the previous version,

it is probable that the application’s energy consumption has changed as well.”

[2]

To evaluate this rule, Agarwal et al. computed four different metrics:

Precision, Recall, Specificity, and F1:

Precision =
SS

SS + SN

Recall =
SS

SS +NS

Specifity =
NN

NN + SN

F1 = 2 × Precision×Recall

Precision+Recall

In the above equations, SS is the number of times that both the changes in

energy consumption and system-call counts are significant; NS is the number
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of times the change in energy consumption is significant, while there is no

significant change in counts of system-calls; SN is the number of times the

system-call profile changes significantly but the energy consumption does not;

finally, NN is the number of times that neither of the two change significantly.

A high Precision indicates that a significant change in system-call profile

leads to a significant change in energy profile. A high Recall indicates that

the cases where significant energy consumption changes were observed, co-

occur with the cases where system-call profile significantly changes. A high

Specificity indicates that the The Rule of Thumb may produce a few false

positives and finally F1 is a measure of accuracy; the higher the F1 the more

balanced and accurate the model is.

Observing Precision, Recall, and F1 being much higher than random guess

and a quite high Specificity; Agarwal et al. concluded that the The Rule of

Thumb should hold in majority of cases. They used this conclusion as the basis

of GreenAdvisor which is primarily aimed to predict energy changes without

having to rely upon hardware-based instrumentation.

GreenAdvisor runs jUnit test suite of two versions of an application and

looks for changes in the system-call profile. Since the jUnit test suite of an ap-

plication is supposed to evolve through time, GreenAdvisor would sometimes

incorrectly attribute the change in system-call profile only to the evolution of

source code, ignoring the fact that the change could have been because of a

modification in the test suite.

Since GreenAdvisor requires system-call profiles to identify energy-con-

sumption changes, it has to run the application versions under a specific test.

It is important to note that if the testing procedure driving the earlier appli-

cation version is different from that of the subsequent version (i.e. different

set of application methods are called or some of the methods are called dif-

ferent number of times), the energy-consumption profile will change too. If

such a change co-occurs with changes in the application’s source code (e.g.

a refactoring commit), the detection of code to blame becomes complicated

because we can not tell with certainty which of the two changes (e.g. change in
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testing procedure or change in the application’s source code) have caused the

change in the system-call invocation and eventually energy profile. Therefore,

the assumption that the change in system-call profile can be attributed only

to the evolution of source code would be a valid assumption only if the test

script for driving both versions are exactly similar.

After GreenAdvisor finds the system-calls whose counts were significantly

changed, it uses a bag of words, a dictionary containing 24 system-call names

and their associated regular expressions, to identify the code responsible for

changes in the system-call profile from the earlier application version to the

subsequent. These regular expressions capture the invocation of methods

whose name include particular keywords which are thought to be verbally

or semantically connected to the name of the system-call to blame (i.e. the

system-call whose count has been significantly changed).

This blame assignment methodology is argued to suffer several shortcom-

ings:

(A) The bag-of-word does not include the system-call to blame:

Due to the fact that the bag-of-word is a predefined dictionary, it might not

contain all the system-calls defined by the operating system. The associated

regular expressions could also be incomplete or incorrect. Agarwal et al. also

recognized this issue in their study [1].

(B) The regular expressions might match undesired code segments:

For example the word Thread is matched when the system-call to blame is

read because the latter is a sub-string of the former.

(C) The responsible code segment might not include a relevant

keyword: It is possible that there is no verbal or semantic connection that

can be traced to identify the code-to-blame.
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3.2 GreenAdvisor2.0

The implementation of GreenAdvisor2.0 relies upon the addition of two pro-

filing functionalities to the original GreenAdvisor: Timestamped System-Call

Profile and Method Call Profile.

3.2.1 Workflow

Figure 3.2, shows GreenAdvisor2.0’s workflow of detecting and localizing

changes in the energy profile of an Android application which consists of four

main steps:

Figure 3.2: GreenAdvisor2.0 Workflow

(Step 1) Finding Significantly Changed System-calls: Each of the two

versions of the Android application under test, srcv1 (the version before refac-

toring commit) and srcv2 (the version after refactoring commit), are compiled

and two apk files, apkv1 and apkv2, are generated. Then test cycles start with

a call to startTestCycle service of the Core. The apkv1 file, strace package

files, and the test script are sent over to the Emulator. Any installed version of

the application as well as old profile data (which may have been made during

previous runs) are deleted from the Emulator. The apk file is installed. The

strace utility is executed with appropriate option parameters to listen for the

application under test. Then the test script is executed five times on version 1.
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Each time, the profile data file produced which contains counts of system-calls

invoked is downloaded and kept in the database. We call the set of these five

profile data files sys callv1 throughout this thesis. Then the exact same steps

are taken to produce and download profile data files for the second application

version, sys callv2. Figure 3.3 shows an example data file in these sets.

Figure 3.3: An Example Data File in sys callv1 and sys callv2

Retrieving sys callv1 and sys callv2 from database, for each system-call

s invoked we construct two tuples, Ts.v1 and Ts.v2. Ts.v1 consists of 5 counts

each representing the number of times s is invoked in an execution of version

1 and Ts.v2 consists of 5 counts each representing the number of times s is

invoked in an execution of version 2. In order to assess whether or not Ts.v2

is significantly different from Ts.v1, GreenAdvisor2.0 uses Student’s T-Test

to find the P-value of change and the Bonferroni correction to determine its

significance. Student’s T-Test is a statistical hypothesis test which can be

used to determine if two sets of data are significantly different from each other.

Statistical hypothesis testing is based on rejecting the null hypothesis if the

likelihood of the observed data under the null hypotheses is low. If multiple

hypotheses are tested, the chance of a rare event increases, and therefore, the

likelihood of incorrectly rejecting a null hypothesis increases. The Bonferroni

correction compensates for that increase by testing each individual hypothesis

at a significance level of α/m, where α is the desired overall alpha level and

m is the number of hypotheses. For example, if a trial is testing m = 20
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hypotheses with a desired α = 0.05, then the Bonferroni correction would

test each individual hypothesis at α = 0.05/20 = 0.0025. By performing

Bonferroni correction we are being more conservative in recognizing changes

as being significant. We call the set of significantly changed system-calls

obtained in this step θ throughout this thesis.

θ is the set of significantly changed system-calls, obtained by comparing
counts of system-calls in runs of version 1 with that of runs of version 2

(Step 2) Instrumentation and Execution of Instrumented Ver-

sions: Both versions of the source code, srcv1 and srcv2, are instrumented

and produce srcv1.i and srcv2.i. As discussed earlier, only those methods

that have changed between the two versions are instrumented at this step.

The instrumented sources are then compiled into apks apkv1.i and apkv2.i

which are executed five times each using the same test script as before. The

execution of an instrumented apk produces a method-call profile in addition

to a new system-call profile which includes timestamps for each system-call

invocation. Both method-call profiles, method callv1.i and method callv2.i,

and both system-call profiles, sys callv1.i and sys callv2.i, of the instrumented

versions are also stored in the database. Figure 3.4 and 3.5 show example

data files in these sets.

(Step 3) Finding Undesirably Affected System-calls: Retrieving

sys callv1, sys callv1.i, sys callv2, and sys callv2.i from database, this time

four tuples are constructed, Ts.v1, Ts.v1.i, Ts.v2, and Ts.v2.i for each system-call s

invoked, similar to the tuples constructed in the first step. Then by perform-

ing a pairwise difference between Ts.v1 and Ts.v1.i a new tuple Is.v1 is obtained

which indicates the impact of instrumentation on the invocation of s in version

1:

Is.v1 = Ts.v1.i − Ts.v1

Similarly we can obtain Is.v2 which indicates the impact of instrumentation

on the invocation of s in version 2:
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Figure 3.4: An Example Data File in sys callv1.i and sys callv2.i

Is.v2 = Ts.v2.i − Ts.v2

As discussed earlier, if Is.v1 and Is.v2 are significantly different, then the

timestamped system-call profile recorded for s could not be trusted in the

process of blame assignment. In this case, we claim that s is undesirably

affected by instrumentation and we call the set of undesirably affected

system-calls λ throughout this paper.

λ is the set of undesirably affected system-calls by instrumentation, ob-
tained by comparing the impact of instrumentation on counts of system-
calls in runs of version 1 with that of runs of version 2

(Step 4) Blaming Methods: Subtracting set λ from set θ, we obtain a

new set of system-calls whose counts in executions of version 1 were signifi-

cantly different from that of version 2 but were not undesirably affected by

instrumentation. We call this set δ:

δ = θ − λ
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Figure 3.5: An Example Data File in method callv1.i and method callv2.i

δ is the set of system-calls whose count were significantly changed but
were not undesirably affected by instrumentation, obtained by subtract-
ing λ from θ

It is now time to identify methods which may have been responsible for

the change in the count of system-calls in set δ. For each system-call s in set δ

and method m in the application’s source code, a question should be answered:

“Does method m invoke system-call s significantly more (or less) times

during the executions of version 1 compared to the executions of version 2?”

Retrieving sys callv1.i, method callv1.i, sys callv2.i, and method callv2.i

from database, we have three kinds of events: timestamped system-call in-

vocations, timestamped method starts, and timestamped method ends. Since

all these events are timestamped we could attribute the invocations of system-

calls to the methods. Using all this information, for each system-call s in set

δ and method m in the application’s source code, two tuples are constructed,

Hs.m.v1 and Hs.m.v2. Hs.m.v1 consists of 5 counts, each representing the number
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of times s is invoked by m in an execution of version 1, and Hs.m.v2 consists

of 5 counts, each representing the number of times s is invoked by m in an

execution of version 2. Finally we use Student’s T-Test and Bonferroni cor-

rection to determine if Hs.m.v1 is significantly different from Hs.m.v2. If they

are significantly different, then GreenAdvisor2.0 introduces m as a method to

blame for the change in counts of s.

While GreenAdvisor only uses counts of system-calls, GreenAdvisor2.0 re-

quires the timestamps for each system-call invocation, which is achieved by

running the strace listener with different option parameters; this, in effect,

simply involves changing the bash script that configures the strace execution

options.

Recording the timestamps at the beginning and the end of each method

invocation is a more complex endeavor. Since we are envisioning that the

GreenAdvisor2.0 is used by developers who have access to the source code,

GreenAdvisor2.0 uses a Java source file manipulation library that allows easy

parsing and formatting of methods within java source files. More specifically,

GreenAdvisor2.0 uses Roaster to instrument the source files of the applica-

tion under test. When this instrumented application is executed it emits a

log with the timestamps of the entry and exit boundaries of all method invo-

cations. In order to distinguish between these events, which are really close

to each other, timestamps must be recorded in absolute microseconds, which

is accomplished by instrumenting the beginning of each method with calls to

the System.currentTimeMillis() and System.nanoTime() methods. The former

reports the current absolute time in milliseconds, and the latter reports the

current time in nanoseconds, relative to the time of JVM boot up. Compos-

ing these two timestamps enables us to compute the times of all method-call

boundary hits in absolute microseconds. However, since the reference times-

tamp of this calculation has an actual accuracy of milliseconds, it is, in prin-

ciple, possible that all inferred timestamps contain a random error between 0

and 999 microseconds. This error is expected to decrease, since GreenAdvi-

sor2.0 executes the test script multiple times in order to get an average of

the system-call counts which is more reliable. Figure 3.6 shows an example
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method which was instrumented.

Figure 3.6: An Example of Instrumentation in a Method

As discussed in section 1, GreenAdvisor2.0 uses an application-level instru-

mentation to obtain timing information of method executions. By definition,

this means changing the application code which will most likely cause a change

in system-call and eventually energy profiles. This undesired impact is called

Heisenberg Effect.

The instrumentation could have three different effects on the number of

times system-call s is invoked:

No Effect on Either of the Versions: The instrumentation does

not change the count of s in runs of version 1 and 2. In this case, the

timestamped system-call profile produced could be trusted in the process of

blame assignment.

Same Effect on Both Versions: The instrumentation changes the count

of s in runs of version 1 and 2 but does not have a significantly different effect

on the runs of version 1 compared to the runs of version 2. In other words, the

difference between count of s in version 1 and count of s in version 2 before

the instrumentation is not significantly changed after the instrumentation.

Therefore, the timestamped system-call profile produced could again be
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trusted in the process of blame assignment.

Significantly Different Effect on the Two Versions: The problem

arises when the instrumentation has a significantly different effect on the

count of s in runs of version 1 compared to the runs of version 2. In this

case, if invocations of s is increased in method m, it is not clear whether the

increase is caused by the instrumentation or a change in the code of method

m. Therefore, the timestamped system-call profile produced could not be

trusted in the process of blame assignment.

In order to deal with this challenge, GreenAdvisor2.0 takes several actions

to minimize the Heisenberg effect:

Keep Logs in Memory, Write Only Once: Instead of writing the

timing information of every method on disk at the time of method returns

like what Hao et al. did in their study of Elens [7], we tend to keep all the

information in memory and write everything only once after the test script is

finished executing. We expect that this optimization significantly decreases

the invocation of system-calls which are made for writing data on disk during

the execution of instrumented application.

Instrument Only Changed Methods: Instead of instrumenting all the

methods, we only instrument the ones whose code was touched since the

last version. This is reasonable because we only expect the methods whose

code was touched to be the cause of changes in system-call and energy profiles.

Do Not Blame Methods Based on System-calls on Which Instru-

mentation Had Significantly Different Effect: Finally, comparing

the effects of instrumentation on the count of system-calls in version 1 to

that of version 2, GreenAdvisor2.0 finds system-calls which were affected

undesirably due to the instrumentation and does not look for the cause of

any change on the count of these system-calls. This way we make sure when
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GreenAdvisor2.0 blames a method for increasing the count of a system-call,

it could not have been due to the instrumentation.

Towards correcting the testing procedure of GreenAdvisor, GreenAdvi-

sor2.0 uses use-case-specific manually written test scripts to execute the

application under test. A manually written script is a set of bash commands

that uses adb to interact with the emulator and sends tap, swipe and key-press

events to the application. We used Android Developer Options, found in

Android settings, to show pointer locations which helped us manually write

these scripts.

3.2.2 Architecture

Figure 3.7 shows a composition of different components in our implementation

of GreenAdvisor2.0 .

Figure 3.7: GreenAdvisor2.0 Components
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Core: This component provides the interface for working with GreenAd-

visor2.0 . It sits in the middle and talks with other components to offer

services like running test cycles, instrumenting projects, and retrieving profile

information and assigning blame to methods.

Java Instrumentor: This component is used to instrument a given set of

methods in a given project.

Device Communicator: This component uses adb (Android Debug Bridge)

to communicate with the emulator. It offers services such as downloading

or uploading files, installing or uninstalling applications, opening or closing

processes, and running shell commands on the emulator.

Emulator: This component is a virtual Android device, which is used for

developing and testing purposes.

Database: Implemented with SQLite, this is the repository of all informa-

tion, recorded through the execution of the various application versions.

Strace Package: This package contains the executable file of the strace

utility and a bash script that executes it with appropriate options to record

the system-call profile of the application under test.

Figure 3.8 shows an example output of GreenAdvisor2.0 blaming methods

for changing invocation count of a particular system-call.

3.3 Chapter Summary

This chapter, first reviews the original GreenAdvisor and then explains the

improvements applied by GreenAdvisor2.0.

The original GreenAdvisor predicted energy-consumption changes by look-

ing at the changes in the counts of system-calls and then attempts to find the
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Figure 3.8: An Example output of GreenAdvisor2.0

code responsible for those changes using verbal connections between the name

of system-calls and code of methods. GreenAdvisor2.0 refines the blame as-

signment procedure of its previous version, the original GreenAdvisor, by (a)

adding application-level instrumentation, and (b) performing a richer system-

call profiling. GreenAdvisor2.0 also controls for undesired impacts of the

instrumentation on the application’s energy profile by identifying the system-

calls whose count might have changed due to the instrumentation.
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Chapter 4

Evaluation

As discussed earlier, GreenAdvisor2.0 puts the selected Android application

under a test in order to obtain system-call and method-call profile data. We

established a number of criteria that our chosen application had to meet:

1. Our first criterion was that it had to be open-source. This was because

GreenAdvisor2.0 relies on source-code instrumentation.

2. Our second criterion was that the application had to be well-known.

This was because we wanted to avoid running into unexpected crashes

due to poor code quality as much as possible. We referred to the number

of active installs and user rating on Google Play as a measure of user

satisfaction which we thought could indirectly imply the quality of the

application.

3. Our third and last criterion was that it had to be large in size and it

had to have a relatively high complexity. This was because we wanted

the application to already have a rich system-call profile and energy

consuming features so that our synthetic additions of code will not be

the only cause of system-call invocations and energy consumption. We

relied on our own subjective judgment as software engineers to decide

whether or not an Android project is large in size and contain enough

energy-consuming features.

The Android application we selected for this purpose is called AntennaPod.

It is a podcast manager and player that gives the user instant access to millions
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of free and paid pod-casts. This application provides some potentially energy-

consuming features, including live streaming, downloading, audio playback,

and management of a cache of local library of episodes and pod-casts. These

features rely on network access, disk management, and IO control (e.g. phone

speaker). By the time we conducted our experiments, AntennaPod was rated

4.6 by 12K users on Google play and had been actively installed on between

100K to 500K Android devices.

The test we wrote, is a usual use-case of the application that invokes 165

unique methods out of a total of 729 unique methods which existed in the

source code of the latest version of application by the date we performed the

experiments (Feb 2017). We argue that the application developer is best suited

for creating this test because they know what part of the application interface

they should interact in order to cover the method whose energy change they

are about to assess.

The flow of this test is as follows:

1 Sta r t the main a c t i v i t y
2 Tap on S u bs c r i p t i on s
3 Tap on Add Podcast button
4 Tap o f Search From Itunes button
5 Tap on the f i r s t item in the l i s t
6 Tap on Subscr ibe button
7 Tap on back arrow
8 Tap on back arrow
9 Tap on back arrow

10 Tap on Podcast to open
11 Tap on the f i r s t t rack
12 Tap on the Stream button to s t a r t l i s t e n i n g

For each experiment, we selected 10 application methods for injecting sys-

tem-call-free code snippets. We call this set A. we injected each method in

set A with one of the code snippets described below:

(a) Append 100 String values to an ArrayList object 100 times

(b) Insert at the beginning of an ArrayList object and shift
all items 100 times

(c) Sort an Array of 100 Integers 100 times using bubble-sort
algorithm
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(d) Sort an Array of 100 Strings 100 times using bubble-sort
algorithm

(e) Put 100 elements in a HashMap and traverse the map 100
times

(f) Multiply two 10x10 matrices 100 times

(g) Add 100 elements to a PriorityQueue and pop all of them 100
times

(h) Calculate Fibonacci of 1000 using array implementation 100
times

(i) Find and replace a certain String in a list of 100 Strings
100 times

(j) Append a list of 100 Strings to a String 100 times

We also selected 10 application methods for injecting system-call-producing

code snippets. We call that set B. Methods in set A and B are invoked

anywhere from 1 to 85 times during each execution of the test script.

Since the goal of GreenAdvisor2.0 is to point to the methods which actually

impact the system-call profile, for each experiment, GreenAdvisor2.0 injects

the same system-call-producing code snippet to all methods in set B. This is

to make sure that all methods in set B are equally involved in any impact on

the system-call profile. Therefore, our experiments are characterized by the

choice of system-call-producing code snippets we injected in the methods of

set B.

It is now clear that in every experiment, GreenAdvisor2.0 should blame

all the methods in set B and not blame any method in set A. The reason

for this, is all methods in set B contain system-call-producing code snippets

which will make changes to the system-call profile where as the system-call

profile of methods in set A should not have been changed. As a result, True-

Positive, False-Positive, True-Negative, and False-Negative outcomes for each

experiment can be counted and is defined as follows:

True-Positive: If a method in set B is blamed for increasing the invocations

of any system-call in δ

False-Positive: If a method in set A is blamed for increasing the invocations
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of any system-call in δ

True-Negative: If a method in set A is not blamed for increasing the

invocations of any system-call in δ

False-Negative: If a method in set B is not blamed for increasing the

invocations of any system-call in δ

Using the counts above, we then calculate Accuracy, Precision, Recall

and F1 measures:

Accuracy: Out of all decisions regarding blaming or not blaming a method,

what percentage are actually true decisions

Precision: Out of all blames, what percentage are actually true blames

Recall: Out of all those decisions which should have been a blame, what

percentage were actually a blame

F1: This measure conveys a balance between Precision and Recall.

4.0.1 Results and Analysis

Below we examine the research questions mentioned earlier and then analyze

the result of supporting experiment(s) for each:

Q1: Does the new approach of blame assignment work when the

system-call profile is impacted by a re-factoring commit which

synchronously consumes more energy?

The GreenAdvisor2.0 works based on the Rule of Thumb, which correlates

the changes in energy profile to that of system-call profile. Therefore, if more

energy is consumed during the life-time of a method, this change should be

reflected in the application’s system-call profile throughout the execution of

that method. Since GreenAdvisor2.0 records the times of both system-calls

and method-calls, it should be able to attribute the invocation of system-calls

to method-calls and eventually find out which methods where involved in a

change of counts of a system-call.
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In order to support our theoretical answer for the question Q1, we designed

experiment I in which we injected a code snippet that makes a long list of

system-calls to perform a ls (list segments) command. This code invokes a

ls command 10 times in a loop. Each time a ls command is issued, a new

process is forked, one (or more) context switches occurs, and finally the result is

accessed by reading the process InputStream. These steps involve a number of

OS operations which significantly impact the application’s system-call profile.

We ensured that the energy is consumed synchronously in this case by waiting

for the forked process to finish.

The calculated measures for this experiment is reported in Table 4.1.

Table 4.1: Calculated Measures for Experiment I
Method Accuracy Precision Recall F1
GA2.0 92% 89% 96% 92%
GA 54% 93% 10% 18%
Random 49% 49% 49% 49%

In this table and future tables, GA2.0 refers to GreenAdvisor2.0, GA

refers to the original GreenAdvisor, and finally Random is a method in which

for every system-call s in δ and method m we flipped a coin to randomly

decide whether or not m should be blamed for changing counts of s.

Q2: Does the new approach of blame assignment work when the

system-call profile is impacted by a re-factoring commit which

asynchronously consumes more energy?

To answer this question, we argue that the asynchronous energy can be of

two types: Interior, and Exterior. Interior asynchronous energy-consumption

is when the consumption of energy may happen outside the life time of

the method but is bound to the context of application. For example, in

multi-thread programming, threads are owned by the application’s process

and whatever impact they might have on the system-call profile can be

captured using profilers like strace. However, Exterior asynchronous
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energy-consumption is when the consumption of energy happens outside the

context of application. For example, Android lets developers set event-handler

methods for receiving GPS location update interrupts. Such cases are not

reflected in the application’s system-call profile and thus cannot be captured

using profilers like strace. Therefore, we admit that GreenAdvisor2.0 fails

in identifying the cause of exterior asynchronous energy-consumption.

In order to support our theoretical answer for the question Q2, we de-

signed experiments II in which we injected a code snippet that requests a

single GPS location update 10 times in a loop. We believe that the energy

is consumed asynchronously in this case because Android requires passing an

interrupt handler method to deal with GPS location updates, thus system-call

profile is impacted outside the lifetime of the method that passes the interrupt

handler to the Android interface. The calculated measures for this experiment

is reported in Table 4.2.

Table 4.2: Calculated Measures for Experiment II
Method Accuracy Precision Recall F1
GA2.0 42% 20% 5% 8%
GA 61% 90% 25% 39%
Random 49% 49% 49% 49%

Q3: Does the new approach of blame assignment work when the

system-call profile is impacted by a re-factoring commit which

we may not be able to categorize as completely synchronous or

asynchronous

If the energy-consumption of an asynchronously coded task changes, it

is not guaranteed that the change is reflected and can be captured in the

system-call profile of the method that wraps the task. Therefore, the GreenAd-

visor2.0 might make mistake in deciding whether or not a method increases

invocations of a system-call.

Another potential problem is that if the system-call profile of the whole

application significantly changes during an execution of a test, it is likely that
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a set of methods evenly contribute to this significant change and the system-

call profile of none of these methods has changed significantly.

Depending on the way a task is handled by Android, the energy of the

task may be consumed synchronously or asynchronously. Examples of this

would be sending HTTP requests and accessing memory stick for read and

write operations. For the case of sending HTTP requests, Android only allows

asynchronous programming (i.e. Threads) in order for the UI to be responsive

during the life-time of HTTP requests. However, for the case of accessing

memory-stick, Android does not necessarily require asynchronous program-

ming. It is also worth mentioning that the system-call profile of a task is

not necessarily stable every time the task is executed. Agarwal et al. also

recognized this issue in their study [1].

In conclusion, it can not be expected that GreenAdvisor2.0 works 100%

accurate in case of all the common Java API calls since it is not always guar-

anteed that the change in energy profile is reflected in the system-call profile.

In order to support our theoretical answer for the question Q3, we de-

signed experiments III and IV. In experiment III, we injected a code snippet

that makes a HTTP GET request to a RESTful API 10 times in a loop and in

experiment IV, we injected a code snippet that writes a string in a file on disk

10 times in a loop. The calculated measures for experiments II and III are

reported in Tables 4.3 and 4.4 respectively.

Table 4.3: Calculated Measures for Experiment III
Method Accuracy Precision Recall F1
GA2.0 78% 91% 62% 74%
GA 54% 100% 8% 15%
Random 49% 49% 49% 49%

Table 4.4: Calculated Measures for Experiment IV
Method Accuracy Precision Recall F1
GA2.0 69% 90% 41% 57%
GA 53% 100% 6% 11%
Random 49% 49% 49% 49%

The reported values for the Accuracy across all four experiments suggest
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that GreenAdvisor2.0 makes sensibly more correct decisions than the other

two methods if the change in energy profile is reflected in the system-call profile

and the energy is consumed synchronously.

The reported values for Precision of both GreenAdvisor and GreenAd-

visor2.0 across the first three experiments are quite high. However, the

high Precision of the GreenAdvisor is less valuable than that of GreenAd-

visor2.0, since the GreenAdvisor’s Recall is always very low which means that

it rarely blames methods which should have been blamed. The reported F1

measures across the first three experiments suggest that making a balance

between Precision and Recall, our method is better than random guess and

definitely better than GreenAdvisor in those specific cases.

4.1 Chapter Summary

This chapter, evaluates the effectiveness of GreenAdvisor2.0 by presenting

the results of four synthetic experiments that are designed to support the

theoretical answers to the questions explored in this research.

The results reported for these experiments suggest that GreenAdvi-

sor2.0 makes sensibly more correct decisions compared to the original

GreenAdvisor and random guess if the change in energy profile is reflected

in the system-call profile.
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Chapter 5

Threats to Validity

In this work, internal validity in threatened by the choice of application that

we perform our experiments on. In particular, we subjectively decided whether

the application we are testing is large in size and already consists of enough

energy-consuming use-cases which might become problematic as testing a not

complex enough application might bias the decisions made by GreenAdvi-

sor2.0 towards correct ones. Another threat to internal validity was our use of

Java Virtual Machine absolute boot-up-time as the basis for converting rela-

tive times of system-call and method-call invocations to more accurate absolute

times. This may have resulted in a global shift of at most 999 microseconds

in all recorded timestamps which might lead into failure in identification of

method(s) invoking a system-call. Internal validity is also jeopardized in cases

where Linux kernel moves the code of a frequently used system-call routine

to the application’s space. In these cases, the application does not require to

make a call to the kernel code thus the evidence of energy-consumption (e.g.

system-call profile) is compromised.

External validity is threatened by our choice of system-call-producing code

snippets injected in cases described by the research questions. For example, the

behaviour of ls command in experiment I cannot be generalized to all kinds of

other re-factoring commits which synchronously consume more energy. In fact,

system-call profile is not a very stable metric by nature. Agarwal et al. ad-

mitted this issue in their study [1] as well. Another threat to external validity

is our choice of number of methods to inject system-call-free and system-call-
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producing code snippets. In particular, we subjectively chose the size of 10

for sets A and B. In fact, there is no guarantee that the results observed for

size 10 of sets A and B can be generalized to other re-factoring commits which

affect different number of methods with system-call-free and system-call-pro-

ducing code snippets. External validity is also threatened by our choice of size

of loop each code snippet is executed in. For example, there is no guarantee

that the results observed for sending an HTTP request 10 times generalizes to

other re-factoring commits which adds different number of HTTP requests to

methods.
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Chapter 6

Conclusion and Future Work

In this thesis, we presented our work on enhancing the ability of GreenAdvi-

sor to recognize the cause for increases in the energy-consumption of an evolv-

ing Android application. The original GreenAdvisor uses system-call profiling

to detect changes in the energy profile of Android applications and then uses a

naive bag-of-words method to identify the code parts that caused the change.

The bag-of-words approach is based on verbal connections between the name

of the increased system-call and the tokens in code. GreenAdvisor2.0 refines

the blame assignment procedure of its previous version, the original GreenAd-

visor, by (a) adding application-level instrumentation, and (b) performing a

richer system-call profiling. As a result, GreenAdvisor2.0 produces and stores

time-stamped records of the method-calls and system-calls during the execu-

tion of the application under test. Finally these records are composed and

Student’s T-Test is used to determine what method(s) are to blame for the

changes in the application’s energy profile.

GreenAdvisor2.0 also controls for undesired impacts of the instrumentation

on the application’s energy profile by identifying the system-calls whose count

might have changed due to the instrumentation. GreenAdvisor2.0 then takes

three actions to minimize False-Positive outcomes in its decisions.

GreenAdvisor2.0’s effectiveness in identification and localization of the

changes in the application’s energy profile were evaluated in three conditions: a

re-factoring commit that synchronously consumes more energy, a re-factoring

commit that asynchronously consumes more energy, and two common Java
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API calls. Evaluation of each condition starts with a theoretical reasoning

which is followed by one or two supporting experiments. For each experiment,

four measures were computed and used to compare GreenAdvisor2.0 against

the original GreenAdvisor and random guess in that particular condition. The

reported values computed for these measures across all experiments suggest

that GreenAdvisor2.0 makes sensibly more correct decisions than the other

two methods if the change in energy profile is reflected in the system-call

profile.

In this work, we used only times and counts of system-calls to talk about

energy and eventually monitored times of method-calls to talk about blames.

We observed that these metrics are limited and cannot be used to fully iden-

tify asynchronous energy-consumption cases. This work can be extended by

using more metrics and evidence for talking about energy and blame. A pos-

sible direction of research could be using system-call parameters for capturing

asynchronous energy-consuming changes.

39



Bibliography

[1] K. Aggarwal, A. Hindle, and E. Stroulia. Greenadvisor: A tool for analyz-
ing the impact of software evolution on energy consumption. In Software
Maintenance and Evolution (ICSME), 2015 IEEE International Confer-
ence on, pages 311–320, Sept 2015.

[2] Karan Aggarwal, Chenlei Zhang, Joshua Charles Campbell, Abram Hin-
dle, and Eleni Stroulia. The power of system call traces: Predicting the
software energy consumption impact of changes. In Proceedings of 24th
Annual International Conference on Computer Science and Software En-
gineering, CASCON ’14, pages 219–233, Riverton, NJ, USA, 2014. IBM
Corp.

[3] Thomas Ball and James R. Larus. Efficient path profiling. In Proceedings
of the 29th Annual ACM/IEEE International Symposium on Microarchi-
tecture, MICRO 29, pages 46–57, Washington, DC, USA, 1996. IEEE
Computer Society.

[4] Lingfeng Bao, David Lo, Xin Xia, Xinyu Wang, and Cong Tian. How an-
droid app developers manage power consumption?: An empirical study
by mining power management commits. In Proceedings of the 13th In-
ternational Conference on Mining Software Repositories, MSR ’16, pages
37–48, New York, NY, USA, 2016. ACM.

[5] C. A. Chan, W. Li, S. Bian, C. L. I, A. F. Gygax, C. Leckie, M. Yan, and
K. Hinton. Assessing network energy consumption of mobile applications.
IEEE Communications Magazine, 53(11):182–191, November 2015.

[6] Shaiful Alam Chowdhury and Abram Hindle. Greenoracle: Estimating
software energy consumption with energy measurement corpora. In Pro-
ceedings of the 13th International Conference on Mining Software Repos-
itories, MSR ’16, pages 49–60, New York, NY, USA, 2016. ACM.

[7] Shuai Hao, Ding Li, W.G.J. Halfond, and R. Govindan. Estimating mo-
bile application energy consumption using program analysis. In Software
Engineering (ICSE), 2013 35th International Conference on, pages 92–
101, May 2013.

[8] Abram Hindle, Alex Wilson, Kent Rasmussen, E. Jed Barlow,
Joshua Charles Campbell, and Stephen Romansky. Greenminer: A hard-
ware based mining software repositories software energy consumption
framework. In Proceedings of the 11th Working Conference on Mining
Software Repositories, MSR 2014, pages 12–21, New York, NY, USA,
2014. ACM.

40



[9] Ding Li and William G. J. Halfond. An investigation into energy-saving
programming practices for android smartphone app development. In Pro-
ceedings of the 3rd International Workshop on Green and Sustainable Soft-
ware, GREENS 2014, pages 46–53, New York, NY, USA, 2014. ACM.

[10] Ding Li, Shuai Hao, Jiaping Gui, and W.G.J. Halfond. An empirical study
of the energy consumption of android applications. In Software Mainte-
nance and Evolution (ICSME), 2014 IEEE International Conference on,
pages 121–130, Sept 2014.

[11] Ding Li, Shuai Hao, William G. J. Halfond, and Ramesh Govindan. Cal-
culating source line level energy information for android applications. In
Proceedings of the 2013 International Symposium on Software Testing and
Analysis, ISSTA 2013, pages 78–89, New York, NY, USA, 2013. ACM.

[12] Mario Linares-Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas, Rocco
Oliveto, Massimiliano Di Penta, and Denys Poshyvanyk. Mining energy-
greedy api usage patterns in android apps: An empirical study. In Pro-
ceedings of the 11th Working Conference on Mining Software Repositories,
MSR 2014, pages 2–11, New York, NY, USA, 2014. ACM.

[13] Q. Lu, T. Wu, J. Yan, J. Yan, F. Ma, and F. Zhang. Lightweight method-
level energy consumption estimation for android applications. In 2016
10th International Symposium on Theoretical Aspects of Software Engi-
neering (TASE), pages 144–151, July 2016.

[14] Radhika Mittal, Aman Kansal, and Ranveer Chandra. Empowering de-
velopers to estimate app energy consumption. In Proceedings of the 18th
Annual International Conference on Mobile Computing and Networking,
Mobicom ’12, pages 317–328, New York, NY, USA, 2012. ACM.

[15] Abhinav Pathak, Y. Charlie Hu, and Ming Zhang. Where is the en-
ergy spent inside my app?: Fine grained energy accounting on smart-
phones with eprof. In Proceedings of the 7th ACM European Conference
on Computer Systems, EuroSys ’12, pages 29–42, New York, NY, USA,
2012. ACM.

[16] Abhinav Pathak, Abhilash Jindal, Y. Charlie Hu, and Samuel P. Midkiff.
What is keeping my phone awake?: Characterizing and detecting no-sleep
energy bugs in smartphone apps. In Proceedings of the 10th International
Conference on Mobile Systems, Applications, and Services, MobiSys ’12,
pages 267–280, New York, NY, USA, 2012. ACM.

[17] Gustavo Pinto, Fernando Castor, and Yu David Liu. Mining questions
about software energy consumption. In Proceedings of the 11th Working
Conference on Mining Software Repositories, MSR 2014, pages 22–31,
New York, NY, USA, 2014. ACM.

[18] S. Schubert, D. Kostic, W. Zwaenepoel, and K. G. Shin. Profiling software
for energy consumption. In 2012 IEEE International Conference on Green
Computing and Communications, pages 515–522, Nov 2012.

[19] C. Wilke, S. Richly, S. Gtz, C. Piechnick, and U. Amann. Energy con-
sumption and efficiency in mobile applications: A user feedback study.
In 2013 IEEE International Conference on Green Computing and Com-
munications and IEEE Internet of Things and IEEE Cyber, Physical and
Social Computing, pages 134–141, Aug 2013.

41


