The Effects of Elastic Size and Archwire Type on 3-Dimensional Force Systems When Using Class II Interarch Elastics

by

Joseph Stanley

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Medical Sciences - Orthodontics

University of Alberta

©Joseph Stanley, 2017

Abstract

Objectives: An orthodontic simulator (OSIM) device was used to compare the force systems generated by class II elastics on a ½ cusp class II malocclusion using four combinations of two elastic types and two archwire types.

Methods: 3-dimensional forces and moments due to class II elastics were measured individually for each tooth (7-7) using Damon Q brackets on the maxillary and mandibular arches. Four test groups (n=44) were compared, each of a different combination of two elastic types (3/16", 20z and 4.50z) and two archwire types (0.014" nickel titanium and 0.019" x 0.025" stainless steel).

Results: Only the upper canines and lower first molars recorded clinically significant forces $(\geq 0.3N)$ and moments $(\geq 5Nmm)$. 2oz and 4.5oz class II elastics produced clinically significant vertical extrusive forces and horizontal forces along the archwire to normalize a class II malocclusion. Stainless steel archwire minimized the extrusive forces of the 4.5oz elastics compared to nickel titanium archwire

Conclusions: 2oz and 4oz class II elastics produced clinically significant vertical extrusive forces and horizontal forces along the archwire. Archwire type had no effect on 2oz class II elastics whereas 0.019" x 0.025"stainless steel significantly reduced the vertical extrusive effects of the larger 4.5oz elastics.

Dedication

To Jennifer, this was a tag team effort. Without you none of this would be possible.

To Isaac, Elsa and Maud, you guys are my greatest accomplishment. I hope you can read this someday and be inspired to follow your dreams.

To Mom and Dad, your love and support over the years is immeasurable. I am forever grateful.

Acknowledgement

Dr. Paul Major

- Dr. Daniel Romanyk
- Dr. Tarek El-Bialy

Dr. Giseon Heo

Dr. Jason Carey

Table of Contents

Chapte	er 1 – Introduction and Literature Review1
1.1	Statement of the problem1
1.2	Introduction1
1.2	2.1 Forces
1.2	2.2 Center of Resistance, Center of Rotation and Moments
1.2	2.3 Couples7
1.2	2.4 Force Systems9
1.2	2.5 Class II Malocclusion
1.3 S	ignificance11
1.4 F	esearch Aims12
1.5 H	lypothesis12
1.6 L	iterature Review12
1.0	5.1 Class II Elastics
1.0	5.2 Quantitative and Qualitative Measurement of Force Systems
1.7 (Conclusion24
1.8 F	eferences25
Chapte	er 2: The Treatment of Class II Malocclusion Using Conventional Interarch Class II
Elastic	s: A Systematic Review
2.1 I	ntroduction
2.2 N	1ethods
2.3 R	esults

2.4 Discussion	41
2.5 Conclusions	46
2.6 References	47
Chapter 3 - The Effects of Elastic Size and Archwire Type on	3-Dimensional Force Systems
When Using Class II Interarch Elastics	50
3.1 Introduction	50
3.2 Materials and methods	51
3.2.1 Experimental design	51
3.2.2 Materials and Equipment	52
3.2.3 Preparing the OSIM	53
3.2.4 Testing	57
3.2.5 Statistical Analysis	57
3.3 Results	58
3.3.1 Minimum Clinical Threshold for Tooth Movement	58
3.3.2 Maxillary Canines	59
3.3.3 Mandibular First Molars	64
3.4 Discussion and Clinical Implications	69
3.5 Limitations of Study	73
3.6 Conclusions	75
3.7 References	76
Chapter 4 – General Discussion	
4.1 Final Discussion	80
4.2 Recommendations and Future Research	81

4.3 References
Bibliography
Chapter 1 References
Chapter 2 References91
Chapter 3 References94
Chapter 4 References98
Appendix A – Search Strategy for Systematic Review
Appendix B – Sample Size Calculation 100
Appendix C- Descriptive data for the maxillary arch for NitiH, NitiL, SSH and SSL
groups for all measured outputs (Fx, Fy, Fz, Mx, My and Mz) 101
Appendix D- Pairwise Comparisons for the Maxillary Teeth for NitiH, NitiL, SSH and SSL
Groups for all Measured Outputs (Fx, Fy, Fz, Mx, My and Mz) 109
Appendix E- Descriptive Data for the Mandibular Arch for NitiH, NitiL, SSH and SSL
Groups for all Measured Outputs (Fx, Fy, Fz, Mx, My and Mz) 130
Appendix F- Pairwise Comparisons for the Mandibular Teeth for NitiH, NitiL, SSH and
SSL Groups for all Measured Outputs (Fx, Fy, Fz, Mx, My and Mz) 138
Appendix G – Pairwise Comparisons of Lateral Deviations with Center Position 159
Appendix H – Pairwise Comparisons of Teeth 13 and 23 161

List of Tables

Table 2- 1: Summary of Uzel et al.(2007) article	38
Table 2- 2: Summary of Serbesis-Tsarudis and Pancherez (2008) article	39
Table 2- 3: Methodological quality checklist	40
Table 3- 1: Description and direction of forces and moments	56
Table 3-2: Mean values and mean differences for clinically significant findings from the	
maxillary arch. Clinical significance is 0.3N for force (Fx, Fy, Fz) and 5Nmm for moment (Ma	x,
My, Mz)	59

List of Figures

Figure 1-1: Approximate location of the center of resistance (Cres) for a multirooted tooth 3
Figure 1- 2: Three-dimensional diagram of forces and moments
Figure 1-3: Location of center of resistance (Cres) and center of rotation (Crot) for A) rotation
B) tipping C) root torque and D) translation movements
Figure 1- 4 Schematic representation of the moment that is created as a result of a couple located
at the bracket
Figure 2- 1: Flow chart for article exclusion
Figure 3- 1: OSIM in Plexiglas chamber set up for measurement of the mandibular arch53
Figure 3- 2: Brackets bonded to aluminum dowels
Figure 3- 3: OSIM setup for testing of maxillary arch with 0.019" x 0.025"
Figure 3- 4: Three-dimensional diagram of forces and moments
Figure 3- 5: Mean values of Fx on the maxillary arch for NitiL, NitiH, SSL and SSH test groups.
Figure 3-6: Mean values of Fy on the maxillary arch for NitiL, NitiH, SSL and SSH test groups
Figure 3-7: Mean values of Fz on the maxillary arch for NitiL, NitiH, SSL and SSH test groups
Figure 3- 8: Mean values of My on the maxillary arch for NitiL, NitiH, SSL and SSH test groups
Figure 3-9: Mean values of Fx on the mandibular arch for NitiL, NitiH, SSL and SSH test
groups

Figure 3- 10: Mean values of Fy on the mandibular arch for NitiL, NitiH, SSL and SSH test	
groups	. 66
Figure 3- 11: Mean values of Fz on the mandibular arch for NitiL, NitiH, SSL and SSH test	
groups	. 67
Figure 3- 12: Mean values of My on the mandibular arch for NitiL, NitiH, SSL and SSH test	
groups	. 68

Chapter 1 – Introduction and Literature Review

1.1 Statement of the problem

The correction of class II malocclusions is a common treatment goal for orthodontists. ¹ Of the many treatment modalities for class II correction, class II interarch elastics may be the most widely used due to its long history of clinical success, ease of implementation and low financial cost. However, no scientific data exists to guide the clinician in selecting the optimal protocol for class II elastic use. ² Many studies have shown that class II elastics are effective in the treatment of class II malocclusions. ³ However, outside of expert opinion, the clinician must rely on previous experience and anecdotal evidence when selecting the size and strength of elastics, the size of archwire, the location of elastic attachment and the timing of elastic usage.

1.2 Introduction

The following is an introduction to the basic concepts related to the study of force systems in orthodontics and more specifically, class II elastics. Force and moment are commonly used to describe orthodontic force systems. Understanding the relationship between force and moment is essential in orthodontics as a means to predict how a tooth might move when using orthodontic appliances. The type of tooth movement that occurs given a set of forces and moments can be described using the location of the movements center of rotation in relation to the tooth's center of resistance. These concepts of force, moment, center of rotation and center of resistance are discussed in detail below.

1.2.1 Forces

A force is a push or a pull on an object. Force is a vector quantity, thus it has both magnitude and direction. The magnitude of force in the SI system is measured in Newton's (N). A Newton is the amount of force required to give a 1 kg mass an acceleration of 1m/s^2 . The direction of a force is a combination of its line of action (the linear plane in which the force is oriented) and its sense (orientation of the force along the line of action). For the purpose of this thesis, the direction of force will be discussed using a 3-dimensional (3-D) X, Y, Z coordinate system. X is a force directed mesio-distally along the archwire, Y is a force directed bucco-lingually and Z is a force directed occluso-gingivally. Directions of all forces are illustrated in Figure 1-1. In orthodontics, forces are often quantified in terms of grams (g) or ounces (oz), however Newton's will be the measurement used throughout this project. 1N = 101.973 g or 3.6 oz.

1.2.2 Center of Resistance, Center of Rotation and Moments

The center of resistance (Cres), as defined in orthodontics, is the point in a tooth through which a single force will produce translation or bodily movement of the tooth where all points on the object will move equally in the same direction as the applied force. ⁴ If the line of action of an applied force does not pass through the Cres of a tooth, the object will tend to rotate. This rotational tendency is referred to as a moment of force. A moment is a twisting or turning about a point or a fixed fulcrum. ⁵ Like a force, a moment is described using both magnitude and direction. Moment (M) is calculated by multiplying the magnitude of the applied force (F) in Newton's by the perpendicular distance (d) between the line of action of the force and the Cres of the object, in millimeters (mm). M = F x d = Nmm. Since teeth are constrained within alveolar

bone, the Cres is approximately ¼ to ½ the distance from the alveolar crest to the root apex for single rooted teeth and approximately 1-2mm apical of the furcation of multirooted teeth (figure 1-1). ⁶ As such, the location of the Cres can vary substantially depending on the height of the alveolar bone. As the height of the alveolar bone migrates apically, the Cres migrates apically. As the Cres migrates apically away from the line of action of a force, the moment of force increases and the tendency for rotation increases. Similarly, as the line of action of a force moves away from the Cres, the moment increases yet the applied force remains the same.

Figure 1-1: Approximate location of the center of resistance (Cres) for a multirooted tooth

In orthodontics, the direction of the moment is generally labeled by describing the direction in which the crown or root will move. For example, lingual crown or buccal root moments can be used synonymously to describe the same rotational direction of a moment. Throughout this thesis, the direction of moments will be described using the same X,Y,Z

coordinate system used to describe forces except that the coordinates describe the axis around which the moment rotates. For example, force X (F_X) is the mesial-distal force along the long axis of the archwire whereas moment X (M_x) is the buccal or lingual crown tipping that occurs around the long axis of the archwire. M_Y is mesial or distal crown tipping. M_Z is rotation around the long axis of the tooth. Figure 1-2 is a diagrammatic representation of the 3-D forces and moments.

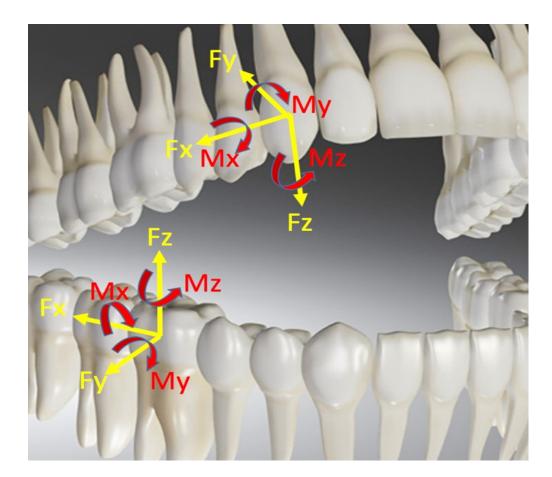


Figure 1-2: Three-dimensional diagram of forces and moments

When an object or tooth rotates, it does so around a single point. This point is called the center of rotation (Crot). The location of the Crot depends on the combination of translation and rotation that occurs as a result of an applied force. In pure rotation, the Crot exists at the Cres (figure 1-3A). As the Crot moves apically, the tooth begins to translate until pure translation occurs when the Crot is located at infinity (figure 1-3D). Root torqueing occurs when the Crot moves coronal to the Cres and is characterized by the root apex moving a greater distance than the coronal apex (figure 1-3C).

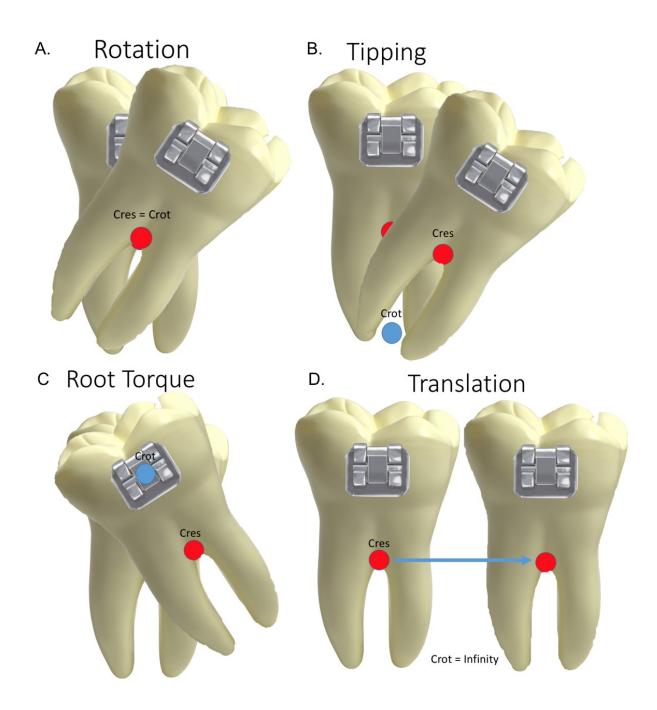


Figure 1- 3: Location of center of resistance (Cres) and center of rotation (Crot) for A) rotation B) tipping C) root torque and D) translation movements

1.2.3 Couples

A couple consists of two forces of equal magnitude with parallel but non-collinear lines of action and opposite senses. ⁶ A couple acting on a free body creates a moment that will produce pure rotation at the center of mass. The net moment produced by a couple is calculated by multiplying the magnitude of one of the forces by the distance between the two forces. The point of application of the couple on the body has no effect on the net moment that is produced by the couple. Therefore, unlike moments that are calculated as a function of their distance from the tooth's Cres, a couple is considered a "free vector" in that its position on the tooth is irrelevant.⁶ This concept is depicted in figure 1-4 where a two forces of 100 N are acting 5mm apart which creates a moment at the Cres of 500 Nmm.

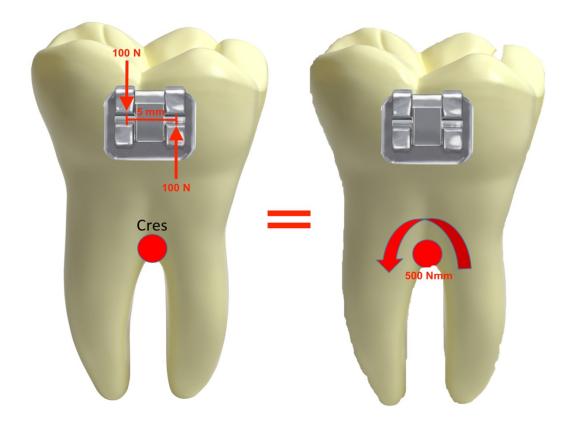


Figure 1- 4 Schematic representation of the moment that is created as a result of a couple located at the bracket.

In the previous sections, we discussed how changing the location of the line of action of a force in relation to the Cres would modify the degree to which a tooth is rotated or translated. In reality, the Cres of a tooth is located within the tooth root that is constrained within alveolar bone. Therefore, it is not possible to apply a single force directly to the Cres. We are limited to applying orthodontic forces to the exposed dental crown. As a result, any single force applied to the tooth causes some degree of rotation or moment due to the distance of the line of action of the force from the Cres.

To control for rotation, translation and tipping, orthodontists can apply a couple to the crown through fixed brackets and dimensional archwires. Orthodontic brackets contain a rectangular slot in to which dimensional archwires are inserted. When the archwire is rotated around its long axis (X-axis), the corners of the archwire will contact the occlusal and gingival walls of the bracket slot and produce a couple. First and second order couples are also created within the bracket when the archwire is rotated around the Y and Z-axis. When a couple is applied to an orthodontic bracket, the magnitude of that couple is equal to a moment of the same magnitude and direction located at the Cres. Therefore, a couple applied at the bracket can be used to control/counteract the moment of force that is produced as a result of applying a force away from the Cres. If the couple creates a moment (Mc) that is equal in magnitude to the moment of force (Mf) but opposite in direction (Mc/Mf=1), the couple and moment will cancel and the result will be pure translation with the Crot extending to infinity. If the moment of force is much larger than the moment of the couple (Mc/Mf=0), the Crot will be located near the Cres and uncontrolled tipping with result. To achieve torqueing of the root, where the root apex moves further than the crown, the moment of the couple must be greater than that of the moment of force (Mc/Mf >1). As such, the type of tooth movement that occurs is the result of a delicate

balancing act between the applied forces and their counter acting couples. Therefore, to achieve tight control of tooth movements, an accurate knowledge of the force systems applied to each tooth within the straight-wire appliance is extremely important.

1.2.4 Force Systems

If an object is either moving at a constant velocity or not moving at all, it is in a state of equilibrium where the sum of all forces acting upon it are zero. When continuous straight wire mechanics are used in orthodontics, in the absence of soft tissue or bone derived anchorage devices, the sum of the forces within the system is equal to zero. At the level of the tooth, the forces and moments applied via the orthodontic appliance are equal and opposite to the forces and moments applied via the supporting periodontal apparatus. Likewise, at the level of the orthodontic appliance, the forces or moments applied to one tooth must be balanced by the forces or moments elsewhere on the appliance via tooth, bone or soft tissue anchorage. Therefore, in the absence of bone or soft tissue anchorage, a force or moment applied to one tooth or multiple teeth will create a balancing set of forces and moments on the other teeth within the appliance. If we assume the force placed on one tooth is desirable we cannot however assume the balancing or reciprocal forces placed on the other teeth are desirable. For example, in the case of a high canine engaged in a continuous light wire, the desirable force is directed occlusally to extrude the canine to the plane of occlusion. Reciprocating the extrusive force on the canine will be an unwanted intrusive force on the adjacent teeth. This example is a highly simplified twodimensional analysis of an extremely complex three-dimensional system of forces and moments.

There are simple systems in orthodontics that are considered statically determinant, meaning that all the moments and forces can be readily discerned, measured and evaluated.⁷ Such systems are called "one-couple systems" as they involve a couple at one end and a single

force at the other. An example is an intrusion arch with a v-bend close to the molar tube. The molar tube will create a couple at the distal segment and a single intrusive force at the anterior segment.

If the system consists of 2 couples, the complexity of the system increases and it is considered to be statically indeterminate. An indeterminate system is too complex for precise calculation of all forces and moments involved in the equilibrium. ⁷ For orthodontic indeterminate systems, we are typically only able to determine the direction of net moments and approximate net force levels and directions.

1.2.5 Class II Malocclusion

Affecting between 15 and 30% of the population, class II malocclusion is the most prevalent malocclusion in Caucasian populations. ¹ The etiology of this malocclusion can be multifactorial, including a variety of skeletal and dentoalveolar factors which result in an anterior-posterior occlusal disharmony where the mandibular dentition is positioned posteriorly in relation to the maxillary dentition. Skeletally, retrognathia of the mandible associated with either an absolute mandibular length deficiency or a vertical direction of mandibular growth can precipitate class II malocclusion. The most common features associated with class II malocclusion includes, excessive overjet, deep bite, retrognathic mandible and convex soft tissue profile. ⁸ Due to the common nature of this malocclusion and the variability of its clinical presentation, there are a variety of appliances and treatment protocols that the clinician can employ to normalize a class II malocclusion. One of the most commonly used treatment protocols is full fixed appliances with class II interarch elastics.

Class II elastics have been used by orthodontists since the early 20th century. ⁹ A systematic review published in 2013 concluded that class II elastics where capable of predictably

correcting up to a ¹/₂ cusp class II malocclusion mainly through dentoalveolar movements. ⁶ A very basic examination of the force systems generated by class II elastics involves opposing horizontal and vertical forces on maxillary and mandibular arches. The horizontal forces serve to correct the anterior-posterior occlusal disharmony while the vertical forces can be attributed to generally less desirable extrusive forces on the upper canine and the lower first molar. Several other possible undesirable side effects have been reported, such as: proclining the mandibular incisors, ¹⁰retroclining maxillary incisors and extruding the mandibular molars and maxillary incisors, causing the occlusal plane to cant clockwise and the lower anterior face height to increase.^{8,11}A better understanding of the force systems created by class II elastics and how they can be modified via elastic size and archwire type may improve the orthodontists ability to minimize the undesirable side effect and maximize the desirable ones.

1.3 Significance

No research on the optimum class II elastic forces that are required for class II correction exists. ² However, it is generally agreed that light forces are more desirable than heavy forces to achieve predictable tooth movement while minimizing the potential for pain and root resorption that has been reported relating to heavy forces. ¹² The Tweed technique uses light elastics (1-2oz) with steel archwire. This suggests that light elastics can be effective in correcting class II malocclusion. However, the introduction of elastics into class II treatment is recommended to be delayed to work up to the rigid steel archwire. ^{8,13} Since elastics are patient compliance dependent, any steps that can be taken to increase compliance are valuable. Some have

while they are still excited and motivated opposed to later in treatment when compliance may wane due to "burn out". ¹⁴ The objective of this study was to provide the orthodontist with 3-dimensional force and moment data using light and heavy class II elastics on light and heavy archwires.

1.4 Research Aims

To evaluate forces measured at the teeth when using four configurations of class II elastics (2 elastic types and 2 wire types). Also, to make suggestions towards the most efficient, the most effective and the most comfortable treatment recommendations for the correction of class II using class II elastics

1.5 Hypothesis

 H_0 : There is no difference in 3-D forces and moments throughout the maxillary and mandibular arches between the four study groups: 1) light archwire with light elastics; 2) light archwire with heavy elastics; 3) heavy archwire with light elastics and 4) heavy archwire with heavy elastics.

1.6 Literature Review

1.6.1 Class II Elastics

In 1845, Stephen Perry patented the rubber band and by the early 1900's Baker was using interarch rubber bands to treat class II malocclusions.⁹In 1907, Angle popularized interarch elastics in his book Treatment of Malocclusion of the Teeth where he endorsed the use of interarch elastics to replace headgear in the treatment of maxillary dental protrusion.¹⁵

In 1938, Brodie published a series of class II patients treated with class II elastics. ¹⁶ He reported that pre and post treatment cephalograms showed that the majority of the class II

correction was achieved by mesialization of the lower dentition with little stimulation of mandibular growth or distalization of the upper dentition. As a result, various treatment protocols and schools of thought were developed to account for the excess anchorage loss in the mandibular dentition. Tweed developed a "dynamic anchorage" technique that involved tipping back the lower molars in an effort to decrease their mesial migration. ^{17,18} Fisher advocated for the use of headgear only, without the use of elastics for the correction of class II malocclusion. ¹⁹ However, in the first half of the 20th century, the majority of orthodontists were using a combination of headgear, class II elastics and either lingual holding arches or molar tip backs for lower molar anchorage. ¹⁷

Today, interarch elastics remain an important tool in the correction of class II malocclusions. However, Proffit encourages the orthodontist to exercise caution in selecting cases for the use of class II elastics to minimize the potentially negative side effects. ⁷ These negative effects refer to the tendency for class II elastics to produce proclination of the lower incisors, extrusion of the maxillary incisors, extrusion of the lower first molars and a clockwise rotation of the occlusal and mandibular plane.

In a long-term follow-up comparing Begg type class II elastic treatment and the Herbst appliance to an untreated class II control group, Nelson *et al.* (2007) found that both class II elastics and Herbst appliance produced retroclination of the maxillary incisors by 7 degrees and an improvement in jaw-base relationship but no improvement in mandibular projection compared to control group. ⁸ It was also found that class II elastics produced a short-term increase in lower face height and mandibular plane angle compared to Herbst, but the mandibular plane angle normalized over the long-term compared to both the Herbst and control group. Combrink *et al.* (2006) used heavier 4oz class II elastics and observed posterior

movement of A point (decrease in SNA of 1.5 degrees) and proclination of the lower incisors but there were no vertical changes in the lower face or steepening of the mandibular plane angle.²⁰

In 2013, Jansen *et al.* published a systematic review that investigated the correction of class II malocclusion with class II elastics. ³ The review included 11 studies which lead the authors to the following conclusions: 1) class II elastics are effective in correcting class II malocclusions up to an Angle ½ cusp class II; 2) the main effects of class II elastics are dentoalveolar, including lingual tipping, retrusion and extrusion of the maxillary incisors, labial tipping and intrusion of the mandibular incisors, and mesialization and extrusion of the mandibular to those produced by functional appliances from a skeletal and dentoalveolar perspective.

Of the 11 studies included in Jansen's review, only 5 provided the strength of elastics used during treatment. Meistrell *et al.* (1986) and Nelson *et al.* (2007) used the Begg inspired 1-2oz elastics protocol, ^{8,13} Serbesis-Tsarudis and Pancherz (2008) used 2.5oz elastics, ²¹ Uzel *et al.* (2007) used 3.5oz elastics²² and Combrink *et al.* (2006) used 4oz elastics. ²³ Comparing the results of the various strengths of elastics does not provide information that might guide an orthodontist toward using one strength over another. The two studies using 1-2oz elastics differed in their effect on lower face height (LFH) and mandibular plane (MP) angle. Nelson *et al.* (2007) reported an increase in LFH and MP angle whereas Meistrell *et al.* (1986) did not. Regarding the heavier elastics used in the other 3 studies, the 3.5oz elastics increased LFH but the 2.5oz and 4.0oz elastics had no effect on LFH. With respect to archwire, the results are also contradictory as the similar 3.5oz and 4.0oz studies both used 0.016" x 0.022" stainless steel (SS) wire but the 3.5oz elastic group had an increased LFH whereas the 4.0oz group did not.

The Jansen *et al.* (2013) review leaves the practitioner wondering if there is an optimal protocol for the use of class II elastics. Of the present studies with the highest available level of evidence we find that class II malocclusions of at least ½ cusp can be corrected using elastics that range in strength from 1-2oz to 4oz without a clinically significant increase in LFH. Oesterle *et al.* (2012) suggests that prescribing force levels for intermaxillary elastics might be more art than science.²

Angle was the first to promote the importance of light forces to create a physiologic tooth movement.¹⁵High forces are believed to be associated with excessive compression of the PDL and supporting bone, creating an area of ischemia and necrosis due to blocked blood vessels.²⁴ It is also well known that high force levels are more likely to cause pain and root resorption.⁷ As a result, an optimum force will be one that is high enough to cause physiologic tooth movement and low enough to minimize pain and root resorption. However, determining a single optimum level of force is probably not possible. Oesterle *et al.* (2012) states,

"Specific descriptions of optimal force magnitudes for interarch elastics are difficult to find in the literature and are found primarily in textbooks. Nanda stated, "An accurate measure of the optimal force eludes determination." Mulligan acknowledged the difficulty in defining optimal force values when he stated that "an acceptable range of response.... can vary greatly with each individual." Graber and Vanarsdall make a similar statement regarding optimal force magnitudes but provided no specific, measureable forces."²

Despite the complexities involved in determining optimal forces, many experts within the field of orthodontics have made recommendations. Proffit recommends using 250g (8.8oz) per side when using a larger rectangular archwire and half that (125g/4.4oz) when using light round wires.⁷ Stating that this force is required to displace one arch relative to the other, Proffit offers

no rationale for his recommendation. Langlade, using a more quantitative approach, multiplied the resorptive root surface area of the maxillary and mandibular dentition by the Ricketts recommended 150g of force per cm² of resorptive root surface area. ²⁵ The resulting force was calculated to be 318g (11.2oz) of force per side. These levels of force recommended by Proffit and Langlade are much higher than the 1-2oz used in Begg mechanics and the more recent recommendation of 2.5oz per side maximum by Pitts.^{14,26,27}Various published studies and case reports show that the correction of class II malocclusion is possible using either of the aforementioned protocols.³This leaves one to wonder how orthodontists decide how much force to use and on which archwire to use it.

Oesterle conducted a study to determine how closely the forces prescribed by orthodontists for interarch elastics conformed to the recommendations of the perceived experts.²Orthodontists were given a model of a ½ step class II malocclusion and a model of a ½ cusp class III malocclusion, each of which had bonded brackets. A questionnaire explained 2 scenarios for each model and each orthodontist was asked to provide the size of elastics and the location of elastic anchorage for each scenario. One scenario had a light 0.018" SS wire and the other scenario had a heavy 0.018" x 0.025" SS wire. Despite the wide variation of responses, the mean results for the class II malocclusion most closely conformed to Proffit's recommendations of 125g per side on light archwire and 250g per side on heavy archwire. One trend that was consistent across all orthodontists was the use of lighter forces when using light archwires and heavier forces when using heavy archwires. The theory behind this trend is that a larger and more rigid archwire will provide more anchorage and will therefore resist side effects localized to the anchor points of the elastics.⁷ Given the wide range of forces from 1oz to 11oz per side that are capable of correcting class II malocclusions, as evidenced by the literature, how does the

orthodontist choose the most appropriate level of force? Training, mentoring and personal experience probably play a major role.²

1.6.2 Quantitative and Qualitative Measurement of Force Systems

Various models and techniques have been developed and tested in an attempt to observe and quantify the complex force systems that are created by the straight wire orthodontic appliance. Improvements in technology have moved us from models using teeth in wax, to complicated computer programs capable of running very complex algorithms such as those used in the Finite Element Model (FEM) analysis. The following is a brief history of the study of orthodontic force systems.

The earliest attempts to understand the forces generated by the straight wire appliance were qualitative in nature. The goal was to observe the direction and location of the forces. Teeth placed in a typodont made of wax or other elastic materials were commonly used. The use of photo-elastic material allowed for visualization of the forces that are transmitted from the teeth to the supporting material surrounding the tooth roots.^{28,29}These studies provided a very generalized understanding of how orthodontic appliances might exert forces upon the supporting dentoalveolar structures. However, these over simplified models that used a single homogeneous material to represent the periodontal apparatus do not accurately replicate the heterogeneous structures such as the PDL and alveolar bone. In its most basic forms, alveolar bone can be categorized into cortical and medullary bone. However, the modulus of elasticity of cortical and medullary bone can vary depending on location within the mouth and is variable from person to person.

Holographic Interferometry

In 1981, Dermaut developed a model to study the forces of class II elastics on the maxilla and surrounding bones. ³⁰ Dermaut improved upon the typodont models by observing forces/stresses within dry skulls using a technique called Holographic Interferometry. When forces are placed upon the skull, the bone deforms. Holographic interferometry is capable of measuring the amount of boney displacement/deformation to an accuracy of ½ wavelength or 514nm. Using established norms for the elastic modulus of teeth, cancellous bone and cortical bone, Dermaut was able to quantify the forces responsible for the boney deformations. This model was a clear improvement over the previous typodont models; however, there were many limitations. For example, a dry skull will be similar to that of a living person in that the basic structure and trabecular patterns of the bone will be maintained; however, the dry skull is devoid of any cartilaginous or fibrous tissue.

Dermaut's model used a material of homogenous composition throughout the entire PDL. Araldit 208 and harder 965 were used to replicate modulus of elasticity of the PDL. However, PDL has been shown to exhibit variations in its modulus of elasticity at a single tooth. ³¹. Also, the synthetic PDL would have no effect on the tension side of the tooth whereas the natural PDL would exert tension on the supporting bone opposite the areas of pressure.

Finite element computer modeling

The finite element model (FEM) is a computer-generated model of a structure that has been subdivided into a finite number of 3-D units called elements. Each element is given properties, such as a modulus of elasticity and Poisson's ratio, which dictate how that element will respond to and interact with adjacent elements when the object is subject to forces or displacements. These models permit the estimation of the stresses generated within the different tissue structures, such as alveolar bone, periodontal ligament, and teeth as a result of orthodontic appliances. ³² For single tooth models a computer aided design (CAD) model can be obtained from a 3-D digital scan of a tooth. ³² For multiple teeth or full arch models, CBCT scans are used to create the CAD model. ³³

FEM is only as good as the accuracy with which the model and the properties ascribed to each element represent reality. Since the models cannot account for everything, there will be a discrepancy between FEM and reality. However, the availability of higher computing power, enhanced CAD (computer aided design), and CT imaging, allows for more anatomically accurate patient based models. Canales *et al.* (2012) increased the complexity of FEM models by incorporating a straight wire orthodontic appliance using a technique they developed called the "birth-death technique". ³⁴ CAD brackets are placed on four anatomically correct computer models of teeth (21, 22, 23, and 24) that allows for the virtual placement of active archwires into the bracket slot. FEM can then be used to analyze the effects of the appliance on the tooth and supporting structures. In past FEM studies, it was common to fuse the contacts between the teeth so they act as a unit. Canales used frictionless contact points that more closely approximate reality when compared to fused contacts. However, to decrease the computing requirements, the interaction between wire and bracket was deemed to be frictionless.³⁴

FEM is very good at simulating small models but it is difficult to account for all variables involved in the straight wire orthodontic appliance. The properties of the wire, the position of the bracket, the bracket-wire interaction within the slot and the transfer of forces through the bracket has to be accounted for to determine the amount of forces that are actually acting on the tooth prior to inputting these forces into the FEM to analyse the resulting forces acting on the tooth and supporting structures.

Orthodontic Simulators

Where the finite element method hopes to solve statically indeterminate force systems by approximating complicated mechanics, orthodontic simulators attempt to experimentally measure the actual forces and moments produced by an orthodontic appliance. An early example of such a device was developed in 1976 for the purpose of measuring uniplanar force systems within a statically indeterminate two-couple system. ³⁵ The researchers reported less than 2% error compared to theoretical calculations for cantilevers.

In 1991, the orthodontic measurement and simulation system (OMSS) was developed for the purpose of measuring the 3-D forces and moments of two-couple systems. ³⁶ They simulated a mesially tipped molar and compared the force systems of three types of molar uprighting mechanics. Using the force and moment data, they calculated how the teeth might move. They then reset the teeth into the new theoretical positions and tested the force system of the appliance again. This process was repeated until the molar was fully uprighted. They found that the modified Burstone uprighting spring prevented extrusion and produced a consistent force system throughout uprighting. The conventional uprighting spring produced excessive extrusion forces and lingual tipping moments. The straight wire appliance produced excessive extrusion forces and required twice as many simulation cycles to upright the molar.

A team at Indiana University developed a similar force measuring system. Custom models are created and up to two teeth are individually attached to force sensors. These two teeth are then detached from the model that allows the sensor to measure forces and moments placed upon those teeth. They have published studies comparing various T-loop and straight-wire techniques for space closure, in addition to studies comparing the forces and moments generated by pre-torqued and straight archwires on various popular bracket prescriptions (MBT, Roth, and

Edgewise). ^{37,38} The major limitation of this force measurement system is its inability to measure more than two teeth simultaneously. The authors stated that space constraints due to the size of the sensors and the high costs of the sensors where the main reason for this limitation.

In 2009, Badawi *et al.* developed the first full arch orthodontic simulator (OSIM) capable of measuring 3-D forces and moments of all 14 teeth within the dental arch simultaneously.³⁹ Many studies using data from the OSIM have since been published. Passive versus conventional ligation in a high canine model found that there were more unwanted forces associated with the conventional ligation.³⁹⁻⁴¹ Conventional ligation produced a lower level of the desirable extrusion force on the canine and produced an increase in the five other forces and moments. Most notably, conventional ligation produced an increased mesially directed force which may result in proclination of the anterior segment in a clinical situation.

Another OSIM study tested the differences between passive and conventional ligation involving a single lingually displaced lateral incisor. ⁴² It was found that conventional ligation produced statistically greater forces and moments for all forces and moments. The mean increase of mesiodistal and buccolingual forces for conventional ligation was also clinically significant. In addition, the forces and moments were found to propagate further along the arch from the displaced incisor compared to those of the passive ligation.

The OSIM was also used to study the effect of wire size in a simulated high canine model. ⁴³ It was found that changes in copper nickel titanium (CuNiTi) wire size did not affect the force/moment distribution in a linear relationship. An increase in wire size did not produce a proportional increase of the applied forces and moments. It was hypothesized that this non-linear relationship was due to the intrinsic non-linear material behavior of CuNiTi.

Researchers in Italy feel they have improved upon the aforementioned *in vitro* force testing mechanisms. ⁴⁴ Like the OSIM, they are able to measure 3-D forces and moments of all 14 teeth within the arch simultaneously. However, they use an actual cast model of a dental arch which has had the individual teeth sectioned. This allows the examiners to test orthodontic appliances on real world malocclusions. In their study they tested various superelastic archwires on a high canine model. They also tested the force system produced by placing a divot in a clear aligner to rotate a central incisor. The OSIM is very capable of reproducing a malocclusion but it is not yet able to test clear aligners.⁴⁵

In Vivo Testing

While in vitro simulations and finite element modeling are valuable orthodontic research tools that enable the researcher to conduct well-controlled and financially responsible studies, there are limitations in how closely the dynamic oral environment can be simulated. As such, the ideal orthodontic force measurement instrument would fit seamlessly into clinical orthodontic appliances and record and store real-time measurements to a remote device. Attempts to measure in vivo force systems have had minimal success.

In 1999, Friedrich *et al.* developed a novel system for measuring in vivo force systems that was capable of measuring the 3-D forces and moments at a single tooth.⁴⁶The two major components of this system included a 1) bracket that could be detached and reattached to the bracket base and an 2) extra oral instrument capable of clamping the bracket firmly in order to measure the forces acting upon it. To minimize movement of the head, the patient would be restrained within a chin cup and forehead support while biting on a bite fork. The measuring instrument would then clamp on to the detachable bracket. When the bracket was detached from

the bracket base, the measuring instrument then received the load from the bracket and the force and moment data was recorded.

There are many limitations with this method. The instrument is only capable of measuring the force system at one bracket at a time. The process involves many moving parts. For example, the bracket must be disengaged from the bracket base, which could cause minor movement of the bracket. Also, the patient is attached to the measuring device and despite the forehead and chin support and the bite fork there will inevitably be patient movement that can drastically affect the accuracy of the measurements. The researchers state that movements of the measuring systems as small as 0.04 mm could result in a clinically significant change in force of 1.5N.

Smart Brackets

The smart bracket is a concept that will allow real time in vivo measurement of forces and moments at each tooth simultaneously within the dental arch.^{47,48}Each bracket will contain a microelectronic stress sensor for 3D force and moments measurement. To date the smart bracket has undergone accuracy testing at the in vitro level. Researchers have compared the performance of the smart bracket to that of a finite element model and have found poor accuracy for forces in the buccal-lingual direction.⁴⁸ Another challenge facing the smart bracket is the transfer of data from the bracket in the in vivo setting. Current in vitro models transmit data via flexible cable. Due to the cumbersome nature of cables and the potential for cables to induce their own forces on the brackets, an ideal in vivo smart bracket would be capable of wireless data transmission. As such, the realization of a functional in vivo smart bracket is dependent on the advancement of micro-technologies.

1.7 Conclusion

Class II elastics have been used to correct class II malocclusions since the early 1900's and they have been shown to predictably correct up to a ¹/₂ cusp class II malocclusion. ³ Despite their long history in orthodontics, a consensus regarding the most effective protocol for their use has yet to be established.² Cases in the published literature have demonstrated the ability of elastics to correct class II malocclusion using sizes ranging from 1oz to 11oz per side while on a variety of archwire sizes. ^{8,13,25} To fully understand the differences between these treatment protocols one must understand the force systems that are generated by them. Since the force system of any straight-wire appliance is considered statically indeterminate, the ability of researchers to quantify the force systems created by class II elastics has not been possible. FEM analysis is a valuable tool in understanding how forces are passed from orthodontic appliances to teeth and ultimately to the periodontal apparatus. However, FEM analysis is a simplified simulation of an extremely complex system. As the power of computers and programming increase and our knowledge of the properties of the dentoalveolar complex improves, FEM analysis will become proportionately more accurate. Although we may never have the ability to measure the forces exerted on the periodontal apparatus in real-time, orthodontic simulators are advancing our understanding of the complex, statically indeterminate, force systems exerted on teeth by the straight-wire appliance. The ability to test actual orthodontic appliances and measure their force systems on teeth in real-time may move us closer to optimal treatment protocols for a number of appliances, including class II elastics.

1.8 References

1. Proffit WR, Fields HW, Jr, Moray LJ. Prevalence of malocclusion and orthodontic treatment need in the united states: Estimates from the NHANES III survey. *Int J Adult Orthodon Orthognath Surg.* 1998;13(2):97-106.

 Oesterle LJ, Owens JM, Newman SM, Shellhart WC. Perceived vs measured forces of interarch elastics. *Am J Orthod Dentofacial Orthop*. 2012;141(3):298-306. doi: 10.1016/j.ajodo.2011.08.027; 10.1016/j.ajodo.2011.08.027.

 Janson G, Sathler R, Fernandes TM, Branco NC, Freitas MR. Correction of class II malocclusion with class II elastics: A systematic review. *Am J Orthod Dentofacial Orthop*. 2013;143(3):383-392. doi: 10.1016/j.ajodo.2012.10.015; 10.1016/j.ajodo.2012.10.015.

4. Smith RJ, Burstone CJ. Mechanics of tooth movement. Am J Orthod. 1984;85(4):294-307.

5. Puri NN. *Fundamentals of linear systems for physical scientists and engineers*. Boca Raton: CRC Press; 2010:873. <u>http://marc.crcnetbase.com/isbn/9781439811580</u>.

6. Smith RJ, Burstone CJ. Mechanics of tooth movement. Am J Orthod. 1984;85(4):294-307.

7. Proffit WR, Fields H, Sarver D. Contemporary orthodontics. In: *Contemporary orthodontics*.5th Edition ed. Mosby; 2013.

 Nelson B, Hagg U, Hansen K, Bendeus M. A long-term follow-up study of class II malocclusion correction after treatment with class II elastics or fixed functional appliances. *Am J Orthod Dentofacial Orthop*. 2007;132(4):499-503. doi: 10.1016/j.ajodo.2005.10.027. 9. Baker HA. Treatment of protruding and receding jaws by the use of intermaxillary elastics. *International Dental Journal*. 1904;25:334.

10. Bishara SE. Mandibular changes in persons with untreated and treated class II division 1 malocclusion. *Am J Orthod Dentofacial Orthop*. 1998;113(6):661-673.

Proffit W, Fields H, Sarver D. *Contemporary orthodontics*. 5th ed. St. Louis: Elsevier;
 2013:569.

12. Jian F, Lai W, Furness S, et al. Initial arch wires for tooth alignment during orthodontic treatment with fixed appliances. *Cochrane Database Syst Rev.* 2013;4:CD007859. doi: 10.1002/14651858.CD007859.pub3 [doi].

 Meistrell ME, Jr, Cangialosi TJ, Lopez JE, Cabral-Angeles A. A cephalometric appraisal of nonextraction begg treatment of class II malocclusions. *Am J Orthod Dentofacial Orthop*. 1986;90(4):286-295.

14. Pitts T. Begin with the end in mind: Bracket placement and early elastic protocols for smile arc protection. *Clinical Impressions*. 2009;17:4.

15. Angle EH. Chapter XVII - treatment of cases - class II, division 1. In: *The treatment of malocclusion of the teeth*. 7th ed. White Dental Manufacturing Co.; 1907:448.

16. Brodie AG, Goldstein A, Myer E. Cephalometric appraisal of orthodontic management of class II malocclusion. *Angle Orthodontist*. 1938;8:290.

17. Wein SL. The lingual arch as a source of anchorage in class II treatment. A cephalometric appraisal of forty treated cases. *Am J Orthod*. 1959;45(1):32-49. Accessed 21 May 2014.

 McLaughlin RP, Bennett JC. Evolution of treatment mechanics and contemporary appliance design in orthodontics: A 40-year perspective. *Am J Orthod Dentofacial Orthop*.
 2015;147(6):654-662. doi: 10.1016/j.ajodo.2015.03.012 [doi].

19. FISCHER B. Treatment of class II, division I (angle) differential diagnosis and an analysis of mandibular anchorage. *Am J Orthod*. 1948;34(6):461-490.

20. Combrink FJ, Harris AM, Steyn CL, Hudson AP. Dentoskeletal and soft-tissue changes in growing class II malocclusion patients during nonextraction orthodontic treatment. *SADJ*. 2006;61(8):344-350.

21. Serbesis-Tsarudis C, Pancherz H. "Effective" TMJ and chin position changes in class II treatment. *Angle Orthod*. 2008;78(5):813-818. doi: 10.2319/082707-391.1; 10.2319/082707-391.1.

22. Uzel A, Uzel I, Toroglu MS. Two different applications of class II elastics with nonextraction segmental techniques. *Angle Orthod*. 2007;77(4):694-700. doi: 10.2319/071006-283.

23. Combrink FJ, Harris AM, Steyn CL, Hudson AP. Dentoskeletal and soft-tissue changes in growing class II malocclusion patients during nonextraction orthodontic treatment. *SADJ*.
2006;61(8):344-350.

24. Reitan K. Tissue behavior during orthodontic tooth movement. *American Journal of Orthodontics*. 1960;46(12):881.

25. Langlade M. Optimization of orthodontic elastics. . 2000.

26. Pitts T. The 14 keys to pitts case management and active early concepts. *Pitt's Protocol*.2015;1:8.

27. Reddy P, Kharbanda OP, Duggal R, Parkash H. Skeletal and dental changes with nonextraction begg mechanotherapy in patients with class II division 1 malocclusion. *Am J Orthod Dentofacial Orthop*. 2000;118(6):641-648. doi: 10.1067/mod.2000.110584.

28. Caputo AA, Chaconas SJ, Hayashi RK. Photoelastic visualization of orthodontic forces during canine retraction. *Am J Orthod*. 1974;65(3):250-259.

29. Stewart CM, Chaconas SJ, Caputo AA. Effects of intermaxillary elastic traction on orthodontic tooth movement. *J Oral Rehabil*. 1978;5(2):159-166.

30. Dermaut LR, Beerden L. The effects of class II elastic force on a dry skull measured by holographic interferometry. *Am J Orthod*. 1981;79(3):296-304.

31. Toms SR, Eberhardt AW. A nonlinear finite element analysis of the periodontal ligament under orthodontic tooth loading. *Am J Orthod Dentofacial Orthop*. 2003;123(6):657-665. doi: 10.1016/S0889540603001641 [doi].

32. Gomez JP, Peña FM, Martínez V, Giraldo DC, Cardona CI. Initial force systems during bodily tooth movement with plastic aligners and composite attachments: A three-dimensional

finite element analysis. *Angle Orthod*. 2015;85(3):454-460. <u>http://dx.doi.org/10.2319/050714-</u> 330.1. doi: 10.2319/050714-330.1.

33. Knop L, Gandini LG, Shintcovsk RL, Gandini MREAS. Scientific use of the finite element method in orthodontics. *Dental Press J Orthod*. 2015;20(2):119-125. doi: 10.1590/2176-9451.20.2.119-125.sar [doi].

34. Canales C, Larson M, Grauer D, Sheats R, Stevens C, Ko CC. A novel biomechanical model assessing continuous orthodontic archwire activation. *Am J Orthod Dentofacial Orthop*.
2013;143(2):281-290. doi: 10.1016/j.ajodo.2012.06.019 [doi].

35. Solonche DJ, Burstone CJ, Vanderby R,Jr. A device for determining the mechanical behavior of orthodontic appliances. *IEEE Trans Biomed Eng.* 1977;24(6):538-539.

36. Drescher D, Bourauel C, Thier M. Application of the orthodontic measurement and simulation system (OMSS) in orthodontics. *Eur J Orthod*. 1991;13(3):169-178.

37. Chen J, Isikbay SC, Brizendine EJ. Quantification of three-dimensional orthodontic force systems of T-loop archwires. *Angle Orthod*. 2010;80(4):566-570. doi: 10.2319/082509-484.1 [doi].

38. Mittal N, Xia Z, Chen J, Stewart KT, Liu SS. Three-dimensional quantification of pretorqued nickel-titanium wires in edgewise and prescription brackets. *Angle Orthod*. 2013;83(3):484-490. doi: 10.2319/062812-532.1 [doi].

39. Badawi HM, Toogood RW, Carey JPR, Heo G, Major PW. Three-dimensional orthodontic force measurements. *American Journal of Orthodontics and Dentofacial Orthopedics*.

2009;136(4):518-528. doi:

http://dx.doi.org.login.ezproxy.library.ualberta.ca/10.1016/j.ajodo.2009.02.025.

40. Fok J, Toogood RW, Badawi H, Carey JP, Major PW. Analysis of maxillary arch force/couple systems for a simulated high canine malocclusion: Part 1. passive ligation. *Angle Orthod.* 2011;81(6):953-959. doi: 10.2319/012011-40.1 [doi].

41. Fok J, Toogood RW, Badawi H, Carey JP, Major PW. Analysis of maxillary arch force/couple systems for a simulated high canine malocclusion: Part 2. elastic ligation. *Angle Orthod*. 2011;81(6):960-965. doi: 10.2319/012011-41.1 [doi].

42. Seru S, Romanyk DL, Toogood RW, Carey JP, Major PW. Effect of ligation method on maxillary arch force/moment systems for a simulated lingual incisor malalignment. *Open Biomed Eng J.* 2014;8:106-113. doi: 10.2174/1874120701408010106 [doi].

43. Major PW, Toogood RW, Badawi HM, Carey JP, Seru S. Effect of wire size on maxillary arch force/couple systems for a simulated high canine malocclusion. *J Orthod*. 2014;41(4):285-291. doi: 10.1179/1465313314Y.0000000099 [doi].

44. Mencattelli M, Donati E, Cultrone M, Stefanini C. Novel universal system for 3-dimensional orthodontic force-moment measurements and its clinical use. *Am J Orthod Dentofacial Orthop*. 2015;148(1):174-183. doi: 10.1016/j.ajodo.2015.01.028 [doi].

45. Major PW, Toogood RW, Badawi HM, Carey JP, Seru S. Effect of wire size on maxillary arch force/couple systems for a simulated high canine malocclusion. *J Orthod*. 2014. doi: 10.1179/1465313314Y.0000000099.

46. Friedrich D, Rosarius N, Rau G, Diedrich P. Measuring system for in vivo recording of force systems in orthodontic treatment-concept and analysis of accuracy. *J Biomech*. 1999;32(1):8185. doi: S0021-9290(98)00112-2 [pii].

47. Lapatki BG, Paul O. Smart brackets for 3D-force-moment measurements in orthodontic research and therapy - developmental status and prospects. *J Orofac Orthop*. 2007;68(5):377-396. doi: 10.1007/s00056-007-0728-8 [doi].

48. Rues S, Panchaphongsaphak B, Gieschke P, Paul O, Lapatki BG. An analysis of the measurement principle of smart brackets for 3D force and moment monitoring in orthodontics. *J Biomech*. 2011;44(10):1892-1900. doi: 10.1016/j.jbiomech.2011.04.029 [doi].

Chapter 2: The Treatment of Class II Malocclusion Using Conventional Interarch Class II Elastics: A Systematic Review

2.1 Introduction

Class II malocclusions affect between 15 and 30% of the population.¹ Because of the associated features that often include excessive overjet, deep bite, retrognathic mandible and convex soft tissue profile, ² it is to no surprise that patients with a class II malocclusion commonly seek orthodontic treatment.

The morphology of class II malocclusions is of a variety of skeletal and dentoalveolar combinations that create an anterior-posterior occlusal disharmony between the teeth. ³ This large variety of associated conditions logically implies a similarly large number of treatment protocols to eliminate or improve this dentofacial disharmony. One such treatment option is the use of class II inter-arch elastics concomitant with fixed orthodontic appliances.

Class II elastics are small rubber or latex bands that are anchored between the upper and lower teeth either directly on bracket hooks or indirectly on hooks on the archwire or on distalizing appliances such as the Wilsons appliance or the Carriere appliance. The purpose of these elastics is to create the orthodontic force vectors necessary to correct the dentoalveolar anterior-posterior discrepancy, between the upper and lower jaws, that is characteristic of the class II malocclusion. Class II elastics have been shown to be able to normalize the dental, mainly, and skeletal relationships of class II subjects.² However, several possible undesirable side effects have been reported, such as: proclining the mandibular incisors, ⁴ retroclining maxillary incisors and extruding the mandibular molars and maxillary incisors, causing the occlusal plane to cant clockwise and the lower anterior face height to increase.^{3,5}

32

The most recent review of this topic was published in 2013; ⁶ however, its search of the databases was performed in August 2010. Supported by studies of low level evidence, the review concluded that class II elastics were not only effective in the treatment of class II malocclusion, but they were also equally effective as many popular functional appliances. Additionally, it was determined that the effects of class II elastics on soft tissues were poorly documented in the literature.

As the last review of this subject was conducted nearly four years ago, we felt that an updated review of the literature is warranted. Updated conclusions could be formulated based on the available new evidence. The objective of this systematic review is therefore to investigate the effectiveness of inter-arch class II elastics in the treatment of the dentoalveolar and skeletal presentations associated with a class II malocclusion.

2.2 Methods

The PRISMA checklist⁷ was used as a template.

Protocol and registration

No Protocol or systematic review registration was completed.

Eligibility criteria

Studies eligible for inclusion included controlled human retrospective and prospective clinical trials evaluating the non-surgical and non-extraction correction of class II malocclusion, using only full fixed appliances and class II interarch elastics, without limits on study date, language or publication status. Studies were also required to provide details regarding the strength, wear time and total duration of use.

Information sources and search

With aid from a health sciences librarian, a search strategy was developed and the following databases were searched: Pubmed, Embase via OvidSP, The Cochrane Library and Scopus via Elsevier. Appendix A contains the unique search strategy details for each database. The final search of the databases was conducted April 18, 2016.

Study selection

The screening process for selecting studies involved two examiners (JS and NN). Both examiners independently selected or eliminated studies based on the inclusion criteria denoted above after reading each abstract. If the two examiners arrived at differing conclusions regarding the inclusion/exclusion of a study, a third examiner (DL) was involved in resolving the conflict. The remaining articles were then read in full, utilizing the same described inclusion criteria and selection process to further eliminate articles that may look promising based on the abstract information, but when read in full it was clear that the articles should not be included.

Data items

The characteristics of each study, such as sample characteristics, orthodontic appliance characteristics, elastic prescription details, treatment duration, results and the conclusions drawn by each study are presented in Table 2-1.

Data collection process

The two examiners (JS, NN) independently extracted information from the articles, which was then compared for homogeneity. Discrepancies between the collected information were investigated collaboratively by the examiners to identify the correct information.

Risk of bias in individual studies

Each study was assessed individually for risk of bias using a non-validated methodologic checklist derived from Saltaji, *et al.*⁸ This checklist is consistent with the criteria proposed in the "Cochrane Handbook for Systematic Reviews of Interventions".⁹

Summary measures

The principal summary measures were mean changes in lateral cephalometric measurements, dental occlusion measurements and soft tissue profile measurements.

Data synthesis

If the available information warranted it, a meta-analysis was planned.

2.3 Results

Study Selection

The search results and the final number of studies selected is shown in Figure 2-1. From the 23 articles that were retrieved for in-depth screening, only two^{10,11} were finally selected for the review. Two studies met the majority of the criteria, but did not have control groups. ^{3,12} In fact, a lack of an untreated control group was the reason for rejection for the majority of the studies. Another common shortcoming among the 23 studies included for stage 2 was the use of additional appliances in conjunction with class II elastics, i.e. headgear.

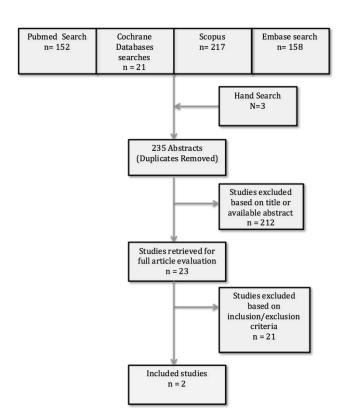


Figure 2-1: Flow chart for article exclusion

Risk of Bias Assessment

A methodological quality checklist⁸ was used to evaluate the articles Table 2-3 The articles scored 50% (Serbesis-Tsarudis) and 63% (Uzel *et al.* (2007)), which represents only a moderate quality methodological assessment score for both. A moderate risk of bias was therefore assumed.

Study Characteristics

Detailed characteristics and data for the two studies can be found in Table 2-1 and 2-2.

The Serbesis-Tsarudis and Pancherz (2008) study studied the effects of the Herbst appliance compared to class II interarch elastics on TMJ and chin position. They found that the class II elastics group had a statistically significant superior and posterior movement of the condylar point (Co) when the mandible was superimposed on stable bone structures of the mandible and an inferior movement of pogonion (Pg) when the head films were superimposed on the anterior cranial base. There was a statistically significant increase in anterior movement of Pg and posterior movement of Co in the Herbst and control group compared to the elastic group. Neither group exhibited significant mandibular growth rotation as measured from RL line (a line from the incisal edge of the lower central incisor to the distobuccal cusp of the first upper molar).

Article (Date of Publication)	Sample Characteristics	Description and Length of Treatment		Re	sults		Authors' Conclusion
Uzel et al.	-Class II div 1 malocclusion	-Roth Omni		Skeletal	Changes		-The correction of
(2007)	-Non-extraction treatment	brackets		Elastics	RMČC	Control	class II
	-Reduced or normal lower face	-0.016x0.022	ANB°	-1.1	-0.4	0	malocclusion in
Prospective	height with deep bite	inch SS	Pg-PTV	0.9	0.5	0.6	both treatment
Clinical Trial		archwires with	PP-FH°	-0.1	0.1	0.2	groups was
		utility hooks	LFH°	1.9**	1.7**	0.0	accomplished
		distal to Mx	FMA°	0.6	1.0	0.8	mainly through
		laterals		Dentoalveo	olar Changes	5	dentoalveolar
		-45 degree tip-		Elastics	RMCC	Control	changes.
		back bends in	U1-FH°	-7.4*	-6.4***	0.0	
		distal of Mx	U1-PTV	-2.7**	-2.1***	0.4	-Increased LFH° is
		arch.	IMPA°	4.0*	6.6**	-3.0	the only significant skeletal change for
	Elastics only	Elastics Only	L1-PTV	2.4*	2.5*	1.0	the treatment
	-15 subjects (7M, 8F)	-3.5 oz,	Overbite	-3.5***	-2.4**	0.2	groups compared to
	-Mean age 11.4 ± 1.3	24hr/day	Overjet	-5.2***	-4.7***	0.0	control
	-Micall age 11.4 \pm 1.5	-8.5 months	<u>U6-FH</u>	0.5	-0.4**	1.1	control
		wear	<u>U6-PTV</u>	-0.3**	-2.3***	0.8	-Increased
		wear	U6-FH°	-3.5***	-8.0***	0.0	labiomental angle
	Elastics + RMCC appliance	Elastics +	L6-MP°	-6.1	3.4*	-0.2	was the only soft
	-15 subjects (9M, 6F)	RMCC	<u>L6-MP</u>	1.7***	1.3**	0.0	tissue change in the
	-Mean age 13.2 ± 1.7	-3.5 oz	<u>L6-PTV</u>	1.7*	2.2**	0.7	treatment groups
	5	- Interarch	OP-FH°	3.2**	2.6**	-0.6	0 1
		elastics	Molar	-2.0**	-4.5***	0.5	-The RMCC group
	Control	Attached to	Relation				had greater change
	-15 untreated patients awaiting	hooks on Mx			ie Changes		in molar relation
	treatment (7F, 8M)	archwire when		Elasti		Control	and distalization
	-Mean age 11.2 ± 0.5	awake.			С		and distal tipping of
		Elastics	LL-E	-0.3	0.4	-0.5	the upper first
		attached to	Nasolabial°		-1.6	-2.0	molars
		RMCC when	Labiomenta			* -1.6	
		sleeping	RMCC – Reciprocal Mini-Chin Cup				-RMCC was
		-4.6 months	Underlined measurements are in mm				approx. twice as
		wear	 PVT – Vertical line though the most posterior point of the pterygomaxillary fissure and perpendicular to SN (+) – Indicates anterior or superior movement * P = 0.5, ** P = 0.01, *** P = 0.001 Bold italicized values – Significant difference 				fast as elastics in
							correcting class II
							malocclusion.
			between Elasti	ic and RMC	C groups		

Table 2- 1: Summary of Uzel *et al.*(2007) article

Article (Date of Publication)	Sample Characteristics	Description and Length of Treatment		Resul	ts		Authors' Conclusion	
Serbesis- Tsarudis and Pancherz (2008)	-At least ½ cusp class II molar in permanent dentition -At least ¾ cusp class II if E's still present		-All subjects in both groups finished treatment with class I occlusion, normal overbite and overjet				-Co moved more superiorly and posteriorly in the Herbst and control	
()	-No extractions			Elastic	Herbst	Control	group	
Retrospective Clinical Trial	-No syndromes Elastics	Elastics -multibracket - appliance in Mx and Md -2.5 oz elastics -2.6 years total Tx time	Vertical(mm) Co/RL	+6.7**	+7.5**	+7.5	-Pg moved more inferiorly and	
	-24 (9M, 15F) -Mean age 12.3 ± 3.1 -Selected from a pool of patients treated at the University of Giessen (Germany).		Pg/RL Horizontal ^A	-6.0***	-6.2**	-6.3	anteriorly in the Herbst and control group.	
			Co/RLp Pg/RLp	-1.1** +1.2~	-2.7** +3.8**	-3.5 +3.8		
			Rotation(mm) RL (°)	-0.1	+0.7	-0.3	-RL line rotated slightly clockwise	
	Herbst -40 (20M, 20F) -Mean age 12.4 ±1.3 -Seleted randomly from a pool of 118 patients treated at the University of Malmo(Sweden) <u>Control</u> -Bolton Standards group of 16M and 16F subjects with ideal occlusion measured at 12 and 15 years old.	Herbst -Herbst then Multibracket appliance Mx and Md -0.6 years with Herbst -2.0 years fixed brackets, no mention of class II elastics	P-value was not (+) – indicates an clockwise rotatio Co – Condylar pp RL – Line from i to distobuccal cu: RLp – Line perpe *** P <.001, ** H Bold italicized va between elastic an	in the Herbst group and slightly counterclockwise in the elastic and control groups				

Table 2-2: Summary of Serbesis-Tsarudis and Pancherez (2008) article

Uzel *et al.* (2007) observed a wide range of skeletal, dentoalveolar and soft tissue changes following the use of class II elastics or the use of the Reciprocal Mini-Chin Cup (RMCC) appliance in addition to class II elastics. They found that the majority of the class II correction came by way of significant dentoalveolar changes compared to those of the control group. Significant dentoalveolar changes were; retroclination of upper incisors, proclination of lower incisors, distalization, distal tipping and extrusion of upper first molars, mesialization, extrusion of lower first molars and clockwise rotation of the mandibular plane and occlusal plane. Compared to control, the only statistically significant skeletal and soft tissue change was an increased LFH° and an increased labiomental angle. When comparing treatment groups, there were three changes that were significantly greater towards the correction of class II for the RMCC group: the upper first molar tipped distally 2° more, there was 2.5mm more molar relation correction and the lower first molar tipped mesially in the RMCC group.

Methodologic Quality Item	Serbesis-Tsarudis & Pancherz (2008)	Uzel <i>et al.</i> (2007)
Eligibiligy Criteria – clearly described; adequate		✓
Sample size – Calculated; adequate	≠	≠
Timing—prospective; long-term follow-up		✓ -
Randomization or consecutive selection – stated	_	_
Blinding of assessor – stated	—	-
Intervention details – clearly described	1	1
Outcome measures – clearly described; appropriate		<i>J J</i>
Selective reporting – avoided	1	1
Withdrawls – reported	_	—
Data analysis – appropriate	_	1
Point estimates and variability – P value; variability measures, SD or CI	√ √	<i>√ √</i>
Quality score (Max. 15)	7.5 / 50%	9.5 / 63%

✓ Fulfilled satisfactorily the methodological criteria (1 check point)
 ≠ Partially fulfilled the methodological criteria (0.5 check point)

- Did not fulfill the methodological criteria (0 check point)

Table 2- 3: Methodological quality checklist

2.4 Discussion

The purpose of this review was to critically analyze the literature pertaining to the use of interarch class II elastics in the correction of class II malocclusions using a non-extraction approach. The results of our review found two studies^{10,11} that compared changes produced by interarch class II elastics to that of an untreated control group. Both studies report little or no skeletal changes due to interarch class II elastics and one of the studies reported that class II malocclusion was mainly corrected through dentoalveolar compensation.¹¹ Due to the stated methodological limitations, caution needs to be exercised when extrapolating these results into clinical practice.

Following a search of the databases, it was found that there are many published studies that employed interarch class II elastics for the correction of class II malocclusion; however, many of them used, either before or concomitantly, other class II approaches in conjunction with class II elastics or they lack a proper control group to account for normal growth changes. The two studies accepted for this review^{10,11} were deemed to be of moderate risk of bias. Common methodological issues between the two studies were lack of long term follow-up, randomization, assessor blinding and sample size calculations.

The Uzel *et al.* (2007) study is a prospective study that used a well-matched untreated class II control group compared to the less methodologically sound retrospective study of Serbesis-Tsarudis and Pancherz (2008) which utilized a control group that was drawn from a previous growth study of class I subjects with ideal occlusion.

41

Skeletal

Comparing the two selected studies, the change in anterior position of Pg in the class II elastic groups was very similar at 0.9mm¹¹ and 1.2mm¹⁰ but neither were statistically significant changes. These results are consistent with studies that were excluded due to lack of an untreated control group. These studies found an anterior change in Pg of 1.64mm¹⁴, 1.62mm¹⁵ and 2.1mm¹⁶.

The only statistically significant skeletal change compared to control was found in the vertical dimension in the form of an increased LFH^{o11} of 1.9mm in the Uzel *et al.* (2007) study . The Serbesis-Tsarudis and Pancherz (2008) study observed a 6.0mm inferior movement of Pg but there was no significant difference compared to the class I control group at 6.3mm. ¹⁰ These findings are very similar to the 6.18 mm of total inferior change of Pg found by Ellen *et al.* (1998)¹⁴

The Serbesis-Tsarudis and Pancherz (2008) study found that the horizontal changes in the position of Pg and Co were greater in both the Herbst and control group compared to the elastic group. These results suggest that class II elastics had negative impact on the anterior direction of mandibular growth. However, studies have shown that mandibular growth of untreated class II malocclusions can be 0.4 mm per year less than that of class I mandibular growth. ¹³ Therefore, the results of this study may imply that the interarch class II elastics did not stimulate (or inhibit) mandibular growth, and that the untreated class I control group exhibited more anterior movement of Pg than the class II elastic treatment group. This study also failed to calculate the P-value to compare the significance of the observed changes between the treatment and control groups.

42

Dentoalveolar

Only the Uzel *et al.* (2007) study quantified dentoalveolar changes¹¹. However, it is worth noting that the treatment group characteristics of the Serbesis-Tsarudis and Pancherz (2008) study included only subjects with ½ cusp class II molar relationships or greater. Since they reported that all subjects were treated to class I occlusion with normal overjet and overbite, one can speculate that this correction was achieved through dentoalveolar compensation, as there were no significant skeletal changes reported to account for this correction.

Significant treatment changes leading to class II correction in the Uzel *et al.* (2007) study included upper incisor retrusion and retroclination and lower incisor protrusion, proclination and intrusion leading to significant decreases in overjet (5.2mm) and overbite (3.5mm). The lower first molar was mesialized and extruded whereas the upper molar remained stable in the vertical and sagittal dimension, but did have a significant 3.5° distal tip. These dentoalveolar changes are also supported by excluded studies that have no control group. ^{14,16} However, the amount of extrusion of the first molars and mesialization of the lower first molars was greater in the Ellen *et al.* (1998) study.¹⁴

Soft tissue

Of the two included studies, Soft tissue changes were only recorded in the Uzel *et al.* (2007) study. Of the three recorded measurements, lower lip to E-line, nasolabial angle and labiomental angle, only the latter experienced significant change that resulted in a flattened labiomental fold.

General Considerations

Both of the selected studies had a second treatment group with class II occlusion. One group was treated with a fixed functional appliance (Herbst) and the other with an extra-oral anchorage appliance (RMCC). In both studies, class II elastics required more time to correct the class II malocclusion; 8.5 months versus 4.6 months for the RMCC group and 2.6 years versus 0.6 years for the Herbst group. Please note that the specific duration of class II elastic use was not stated for the 2.6 years of active treatment. In comparing inter-arch class II elastics to the RMCC group, the only statistically significant differences were an increase in the correction of molar relation of 4.5 mm versus 2.0 mm and an increase in the distalization of the first upper molar of 2.3 mm versus 0.3mm. The most significant difference between the Herbst treatment group and the class II elastic group was increased distal movement of the condyle and anterior movement of pogonion. The statistical significance of these differences, however, was not provided.

Mean sample ages of the selected studies were 11.4 ± 1.3 and 12.3 ± 3.1 years. It can be assumed that all or most of the subjects within the sample are, to some extent, growing and therefore, the observed effects of class II elastics in this review extend only to growing individuals. Unknown, is the stage of craniofacial growth of the individuals within the samples. This is important as chronological age is not a perfect predictor of stage of growth. ¹⁷ Not knowing the stage of craniofacial growth prevents us from making more precise recommendations regarding treatment timing. Our review did not find studies whose primary objective was to determine the amount of class II molar correction possible using class II elastics. As previously mentioned, the subjects in the Serbesis-Tsarudis and Pancherz (2008) treatment group where initially ½ cusp class II or greater and were all treated to class I molar relationship. There are three other studies with similar sample characteristics of ½ class II malocclusion or greater and mean ages between 13.7 and 12.2 years were also successful in correcting the malocclusion to class I molar.^{12,16,18} This evidence suggests that class II elastics are capable of correcting up to ½ cusp class II molar relationship in individuals who are approximately 12 to 14 years old.

It was found that the description of the elastics used and the method in which the elastics were used was incomplete. The Uzel *et al.* (2007) and the Serbesis-Tsarudis and Pancherz (2008) study described the strength of elastics but not the length/lumen diameter of the elastic or the average length to which the elastics which stretched during treatment. This information is important as it would provide us with the actual force levels generated by the elastics.

The information contained in this review closely reflect the conclusions made by a recently published systematic review on the same topic. ⁶ One observation/conclusion that is not found in this current review is the extrusion of maxillary incisors. In fact, the Uzel *et al.* (2007) study found that there was 0.6mm more extrusion of the maxillary incisors. Differences in the included studies between the two reviews may account for the variation in observations. The Janson *et al.* (2013) review accepted studies without untreated control groups; whereas, this study did not.⁶ This allowed the earlier review to include additional studies that compared the effects of class II interarch elastics to the effects of various class II functional appliances. The authors acknowledge that this is a valuable comparison; however, the goal of the present study

was to investigate the effects of class II elastics and the only way to properly accomplish that is to compare a class II treatment group with a comparable class II untreated control group. Prospective clinical trials with well-matched untreated control groups and double blinding are required to better support the findings of the two related systematic reviews.

2.5 Conclusions

The following conclusions are based on only two studies selected for this systematic review. The studies present a moderate risk of bias and therefore the conclusions should be considered with caution.

- Dentoalveolar changes are primarily responsible for class II correction with class II elastics
- Class II elastics can be used to correct up to ½ cusp class II malocclusions in adolescents.
- Class II elastics do not cause changes in sagittal skeletal growth
- An increase in LFH/Pg is the only vertical skeletal change produced by class II elastics.

2.6 References

1. Proffit WR, Fields HW, Jr, Moray LJ. Prevalence of malocclusion and orthodontic treatment need in the united states: Estimates from the NHANES III survey. *Int J Adult Orthodon Orthognath Surg.* 1998;13(2):97-106.

2. Bishara SE, Zaher AR, Cummins DM, Jakobsen JR. Effects of orthodontic treatment on the growth of individuals with class II division 1 malocclusion. *Angle Orthod*. 1994;64(3):221-230. doi: 2.

3. Nelson B, Hagg U, Hansen K, Bendeus M. A long-term follow-up study of class II malocclusion correction after treatment with class II elastics or fixed functional appliances. *Am J Orthod Dentofacial Orthop*. 2007;132(4):499-503. doi: 10.1016/j.ajodo.2005.10.027.

4. Bishara SE. Mandibular changes in persons with untreated and treated class II division 1 malocclusion. *Am J Orthod Dentofacial Orthop*. 1998;113(6):661-673.

5. Proffit W, Fields H, Sarver D. *Contemporary orthodontics*. 5th ed. St. Louis: Elsevier; 2013:569.

 Janson G, Sathler R, Fernandes TM, Branco NC, Freitas MR. Correction of class II malocclusion with class II elastics: A systematic review. *Am J Orthod Dentofacial Orthop*. 2013;143(3):383-392. doi: 10.1016/j.ajodo.2012.10.015; 10.1016/j.ajodo.2012.10.015.

 Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. *J Clin Epidemiol*.
 2009;62(10):1006-1012. doi: 10.1016/j.jclinepi.2009.06.005; 10.1016/j.jclinepi.2009.06.005. 8. Saltaji H, Altalibi M, Major MP, et al. Le fort III distraction osteogenesis versus conventional le fort III osteotomy in correction of syndromic midfacial hypoplasia: A systematic review. *Journal of Oral and Maxillofacial Surgery*. 2014;72(5):959-972. doi: http://dx.doi.org.login.ezproxy.library.ualberta.ca/10.1016/j.joms.2013.09.039.

9. Higgins J, Green S. *Cochrane handbook for systematic reviews of interventions*. Vol 5.1.0. The Cochrane Collaboration; March, 2011:June 2014. <u>www.cochrane-handbook.org</u>.

Serbesis-Tsarudis C, Pancherz H. "Effective" TMJ and chin position changes in class II treatment. *Angle Orthod*. 2008;78(5):813-818. doi: 10.2319/082707-391.1; 10.2319/082707-391.1.

 Uzel A, Uzel I, Toroglu MS. Two different applications of class II elastics with nonextraction segmental techniques. *Angle Orthod*. 2007;77(4):694-700. doi: 10.2319/071006-283.

 Meistrell ME, Jr, Cangialosi TJ, Lopez JE, Cabral-Angeles A. A cephalometric appraisal of nonextraction begg treatment of class II malocclusions. *Am J Orthod Dentofacial Orthop*. 1986;90(4):286-295.

13. Buschang PH, Tanguay R, Demirjian A, LaPalme L, Turkewicz J. Mathematical models of longitudinal mandibular growth for children with normal and untreated class II, division 1 malocclusion. *Eur J Orthod.* 1988;10(3):227-234. Accessed 3 July 2014.

14. Ellen EK, Schneider BJ, Sellke T. A comparative study of anchorage in bioprogressive versus standard edgewise treatment in class II correction with intermaxillary elastic force. *Am J Orthod Dentofacial Orthop*. 1998;114(4):430-436.

15. Gianelly AA, Arena SA, Bernstein L. A comparison of class II treatment changes noted with the light wire, edgewise, and frankel appliances. *Am J Orthod*. 1984;86(4):269-276.

16. Nelson B, Hansen K, Hagg U. Class II correction in patients treated with class II elastics and with fixed functional appliances: A comparative study. *Am J Orthod Dentofacial Orthop*. 2000;118(2):142-149. doi: 10.1067/mod.2000.104489.

17. Mellion ZJ, Behrents RG, Johnston LE, Jr. The pattern of facial skeletal growth and its relationship to various common indexes of maturation. *Am J Orthod Dentofacial Orthop*. 2013;143(6):845-854. doi: 10.1016/j.ajodo.2013.01.019; 10.1016/j.ajodo.2013.01.019.

18. Jones G, Buschang PH, Kim KB, Oliver DR. Class II non-extraction patients treated with the forsus fatigue resistant device versus intermaxillary elastics. *Angle Orthod*. 2008;78(2):332-338. doi: 10.2319/030607-115.1; 10.2319/030607-115.1.

Chapter 3 - The Effects of Elastic Size and Archwire Type on 3-Dimensional Force Systems When Using Class II Interarch Elastics

3.1 Introduction

Interarch elastics have been used in the treatment of class II malocclusion since the early 1900's. A recent systematic review has confirmed that class II elastics are effective in the treatment of class II malocclusion up to a ½ cusp correction. ^{1,2} Despite this longstanding history of success, an optimal treatment protocol regarding the use of class II elastics has yet to be determined. Variables in the treatment protocol include: timing of class II elastic implementation, location and method of elastic anchorage, type and size of archwire used in conjunction with class II elastics, and strength and size of the elastics. Orthodontic experts, such as Proffit and Ricketts, have made recommendations regarding ideal archwire type and elastic type, but little or no evidence has been provided for their conclusions and no research comparing these recommendations to other protocols exist. ^{3,4}

Side effects that have been attributed to class II elastics include: extrusion of maxillary incisors, mesial tipping and extrusion of mandibular molars, proclination of mandibular incisors, backward rotation of the occlusal plane and mandibular plane and lengthening of the lower 1/3 of the face, and pain and root resorption which are also common to all orthodontic treatments. ⁵⁻⁷ As originally suggested by Angle, light forces have been shown to reduce pain and root resorption, while moving the teeth as fast or faster than heavy forces through a more physiologic stimulation of bone-cells. ⁸ As a result, optimal forces for class II elastics should be large enough to produce tooth movement, but low enough to reduce potential pain and root resorption. In theory, the ideal protocol for class II elastics would produce only desirable forces that are light

and clinically significant while minimizing or eliminating undesirable forces. Attempts have been made to quantify the forces and moments exerted on teeth via orthodontic appliances in hopes of better understanding how these appliances work. Examples include *in vivo* force measurements at single teeth and computer modeling using finite element model analysis. ⁹⁻¹¹ However, limitations in measuring devices and overly simplistic models have not allowed for the measurement of force and moment for each individual tooth within the arch simultaneously.

The purpose of this study was to quantitatively compare four combinations of two elastic types and two archwire types on a ½ cusp class II model using a full arch orthodontic simulator device (OSIM) (figure 3-1). The OSIM is capable of measuring three-dimensional forces and moments at each tooth within the arch simultaneously. It was developed by researchers at the University of Alberta and is described in detail by Badawi *et al.* (2009)¹² It has previously been used to compare forces and moments produced by various ligation types on a high canine model and on a lingually displaced incisor model. ¹³⁻¹⁶

3.2 Materials and methods

3.2.1 Experimental design

Four treatment groups in a 2x2 design was used to compare the forces and moments of two archwire types (0.014" nickel titanium (Niti) and 0.019"x0.025" stainless steel (SS)) and two elastics types (2.0oz and 4.5oz, 3/16" non-latex) when simulating the correction of class II malocclusion.

A pilot study of 10 samples using the SS archwire and 4.5oz elastics and 7 samples using SS archwire and 2.0oz elastics was performed and the My data was used to calculate an appropriate sample size. The power was fixed at 90% and the type I error rate was fixed at 5%.

The difference to be detected among 4 groups was set at 0.2Nmm. The calculation (Appendix B) found a sample size of 44 to be adequate for this study.

3.2.2 Materials and Equipment

A set of Damon Q (ORMCO, Orange CA) maxillary and mandibular 7-7 brackets was used to passively ligate Damon arch form 0.019"x0.025" SS and 0.014" Niti archwires on an Orthodontic SIMulator (OSIM) device.¹² Ormco 2.0oz and 4.5 oz 3/16" non-latex elastics were stretched between the hooks on the maxillary canines to the hooks on the mandibular first molars to simulate a class II elastic configuration.

The OSIM is a single arch model of a human dentition consisting of 14 load cells representing 14 teeth that is capable 3-dimensional force and moment measurements at each tooth/load cell simultaneously. Each load cell/tooth assembly consists of an 1) aluminum peg to which orthodontic appliances can be bonded and a 2) horizontal (M-631.00 PI, Germany) and a 3) vertical micrometer (M-631.00 PI, Germany) which allows for horizontal and vertical positioning of the pegs. Since the brackets are bonded to the pegs at a distance from the Nano 17 load cell (ATI automation, NC), a coordinate measurement machine (Platinum 4ft FaroArm, Lake Mary, FL) was used to measure the position of each bracket relative to its corresponding load cell. This information was then entered into the custom OSIM software and a Jacobian transformation matrix was used to transform the force systems measured at each load cell into force systems measured at each bracket or point of application. The custom software displayed force and moment data in real time or exported real time measurements into Excel files.

3.2.3 Preparing the OSIM

Alignment of the brackets was accomplished by placing all brackets on a single straight 0.019"x0.025" SS wire. While engaged on the straight wire all brackets were bonded simultaneously to individual aluminum dowels using Lactate E-60HP Hysol Epoxy (Henkel, Dusseldorf Germany). The bonding surface of the dowels had 5 pre-torqued configurations to account for the torque within the bracket, thereby minimizing the bond thickness (figure 3-2).

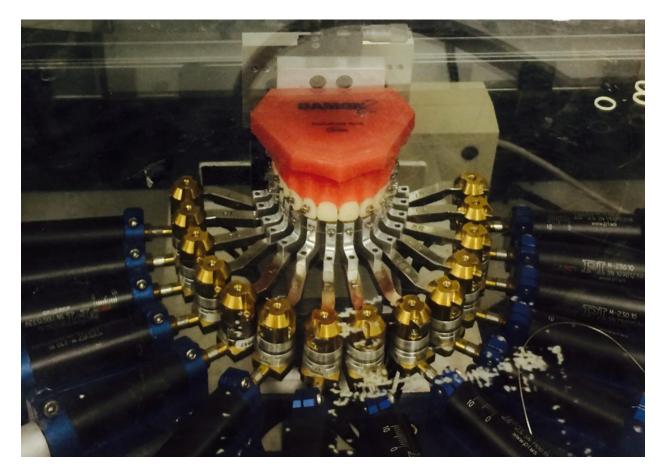


Figure 3-1: OSIM in Plexiglas chamber set up for measurement of the mandibular arch

The dowels were attached to the OSIM and the 0.019"x0.025" SS arch wire was used to align the pegs for rotations prior to final tightening of the dowels. An acrylic Odontoform of Damon arch form was affixed to a mounting jig capable of vertical and horizontal (side to side and front to back) movements. The mandibular odontoform was positioned over the OSIM to replicate a 1/2 cusp class II malocclusion with the opposing first molars oriented directly vertical to each other (figure 3-3). The vertical distance between opposing brackets was calculated based on 3mm of anterior opening which translates to 1.5 mm opening in the posterior (2:1 ratio). ^{3,17} To ensure that the position of the odontoform was fixed into a ½ cusp class II malocclusion and the coordinate measurement machine (Platinum 4ft FaroArm, Lake Mary, FL) was used to measure the distance between the post on the maxillary canine to the hook on the mandibular first molar. This measurement was consistent with distance measured between the maxillary canine and mandibular first molar when the odontoform was setup in ½ cusp class II relationship with the OSIM.



Figure 3- 2: Brackets bonded to aluminum dowels

The OSIM was placed in a Plexiglas chamber and warmed to 37 degrees Celsius for at least 1.5 hours (Figure 3-1). The micrometers were leveled and aligned by eye and a maxillary 0.019"x0.025" SS wire was placed into the bracket slots. The bracket doors were then closed and the position of the micrometers were adjusted until force outputs (Fx, Fy and Fz) were below 0.10N and moment outputs (Mx, My and Mz) were below 3.0Nmm. When testing of the 0.019"x0.025" SS wire was complete, a 0.014" Niti archwire was prepared for testing using the same procedure performed with the 0.019"x0.025" SS wire. Detailed descriptions of force and moment directions are provided in Table 3-1 and Figure 3-4

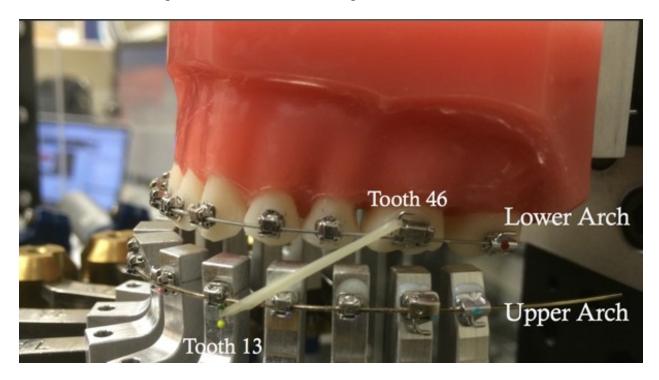


Figure 3- 3: OSIM setup for testing of maxillary arch with 0.019" x 0.025"

Preparation of the OSIM for the mandibular arch testing involved the same procedures identified for the maxillary archwires, except that a mandibular odontoform was replaced by a maxillary odontoform and the brackets were bonded on the dowels right-side up.

Direction	Fx	Fy	Fz	Mx	Му	Mz
Positive	Distal	Buccal	Occlusal	Lingual	Mesial	Mesial in/Distal out
				Crown Tip	Crown Tip	rotation
Negative (-)	Mesial	Lingual	Gingival	Buccal Crown	Distal Crown	Distal in/Mesial out
		_	_	Tip	Tip	rotation

 Table 3- 1: Description and direction of forces and moments

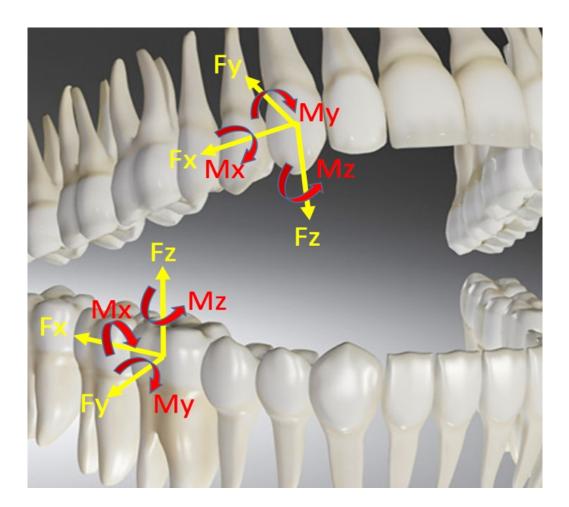


Figure 3- 4: Three-dimensional diagram of forces and moments

3.2.4 Testing

The sequence of testing light and heavy elastics was randomly generated. Each trial involved the following steps: 1) Micrometers were zeroed 2) 100 baseline measurements were recorded over a period of approximately 3 seconds 3) 1 new, unused elastic were attached between the hooks on the maxillary 3 and mandibular 6 on both the right and left side 4) 100 experimental measurements were recorded over a period of approximately 3 seconds 5) The elastics were removed and discarded.

44 LE samples and 44 HE samples were tested on both the SS and Niti archwires for both the maxillary and mandibular arch.

3.2.5 Statistical Analysis

Statistical analysis was carried out using IBM's SPSS v22 software with a statistical significance level of $\alpha = 0.05$. Repeated measures multivariate analysis of variance (MANOVA) was used to determine mean differences in forces (Fx, Fy and Fz) and moments (My) between the four treatment groups for each tooth. Assumptions testing involved box plots and Kolmogorov-Smirnov test to test for normal distribution of the data and Box's M test for equality of covariance matrices. Despite a lack of normal distribution and a significant Box's M test, we continued with the repeated measures MANOVA as it is robust to violations in normality if the sample sizes are large and of equal size. A Tamhane correction was used during post hoc testing.

3.3 Results

3.3.1 Minimum Clinical Threshold for Tooth Movement

Due to the large amount of data collected using OSIM, only clinically significant loads of interest are reported here. Full force and moment data for all teeth are provided in Appendix B-E. Clinically effective torque has been reported to be 5-20Nmm, whereas minimum force for tipping is suggested to be 0.35N.^{3,18-20} Therefore, for inclusivity, we selected the minimum threshold for clinical relevance to be 0.3N for forces and 5Nmm for moments.

The only teeth to measure clinically relevant forces and moments were teeth that directly anchored the class II elastics, upper canines and lower first molars. The exception was tooth 2.4 that measured slightly over the clinical threshold for Fy at -0.32N and -0.39N for Niti-heavy elastic (NitiH) and SS-heavy elastic (SSH) groups respectively.

3.3.2 Maxillary Canines

Table 3-2 provides force and moment measurements for the maxillary canines. Figure 3-5, 3-6, 3-7 and 3-8 graphically displays Fx, Fy, Fz and My for all maxillary teeth.

Variable	Tooth	NitiH Mean (SD)	SSH Mean (SD)	Mean Difference [95% C.I.]	NitiL Mean (SD)	SSL Mean (SD)	Mean Difference [95% C.I.]
Fx (N)	13	<u>1.24</u> (0.15)	1.12 (0.11)	0.12 (p<.001) [.06,.18]	0.48 (0.05)	0.43 (0.07)	0.05 (p=.141) [01,.11]
	23	1.5 (0.17)	1.56 (0.13)	0.06 (p=.150) [12,.01]	0.56 (0.06)	0.54 (0.06)	0.01 (p>.99) [05 , .08]
	13	-0.43 (0.08)	<u>-0.78</u> (0.22)	0.35 (p<.001) [44 ,27]	-0.13* (0.04)	-0.13* (0.18)	0.01 (<i>p</i> >.99) [08 , .09]
Fy (N)	23	-0.41 (0.07)	<u>-0.62</u> (0.13)	0.21 (p<.001) [27 ,11]	-0.11* (0.02)	-0.19* (0.16)	0.08 (p=.005) [.02 , .14]
	24	-0.32 (0.04)	<u>-0.39</u> (0.14)	0.07 (p=.005) [13 ,02]	-0.15* (0.02)	-0.13* (0.13)	0.02 (p>.99) [03 , .08]
Fz	13	1.12 (0.15)	1.07 (0.10)	0.05 (p=.106) [01,.10]	0.36 (0.04)	0.41 (0.06)	0.05 (p=.118) [10,.01]
(N)	23	<u>0.89</u> (0.11)	0.81 (0.08)	0.08 (p<.001) [.04,.12]	$0.30 \\ (0.03)$	0.26* (0.06)	0.05 (p=.026) [.00,.09]
Mx	13	0.69 (0.13)	1.17 (0.16)	0.48 (p<.001) [.55,.41]	0.09 (0.06)	0.23 (0.12)	0.13 (p<.001) [.06 , .20]
(Nmm)	23	0.07 (0.10)	0.38 (0.31)	0.31 (p<.001) [.21 , .42]	-0.01 (0.11)	0.15 (0.14)	0.16 (p=.05 [.05 , .27])
My (Nm)	13	-8.40 (1.04)	-8.44 (0.79)	0.04 (p>.99) [45 , .36]	-2.72* (0.30)	-3.02* (0.45)	0.31 (p=.262) [10,.71]
	23	-4.91 (0.64)	-4.73 (0.46)	0.17 (p=.331) [41 , .07]	-1.59* (0.17)	-1.41* (0.24)	0.19 (p=235) [05 , .43]
Mz	13	-2.73 (0.50)	-5.77 (2.98)	3.05 <i>(p<.001)</i> [2.09 , 4.00]	-0.80 (0.24)	-0.95 (1.43)	0.14 (p>.99) [81 to 1.09]
(Nmm)	23	-0.23 (0.31)	-1.08 (0.91)	0.85 (p<.001) [.49 , 1.21]	0.29 (0.07)	-0.79 (0.81)	1.09 (p<.001) [.73 , 1.45]

Bold Text = Statistically larger (p<.05) Italics* = Below clinical significance

Table 3- 2: Mean values and mean differences for clinically significant findings from the maxillary arch. Clinical significance is 0.3N for force (Fx, Fy, Fz) and 5Nmm for moment (Mx, My, Mz).

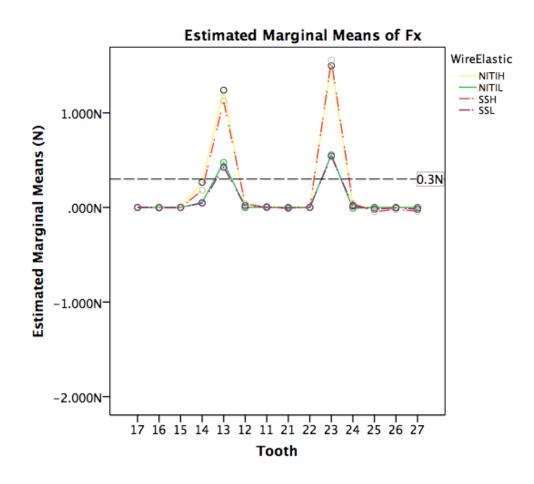


Figure 3- 5: Mean values of Fx on the maxillary arch for NitiL, NitiH, SSL and SSH test groups.

All measures for Fx at tooth 1.3 and tooth 2.3 were distalizing forces in the range of 1.55N to 1.12N for the 4.5oz/heavy elastic (HE) groups and 0.55N to 0.42N for the 2.0oz/light elastic (LE) groups. (Figure 3-3)

Within the HE groups, Niti produced a statistically significant larger distalizing force at the 1.3 compared to SS (p<.001), whereas at tooth 2.3, SS did not produce a significantly larger (p=.150) distalizing force.

The LE groups were not statistically different at 1.3 (p=.141) or 2.3 (p=1.0).

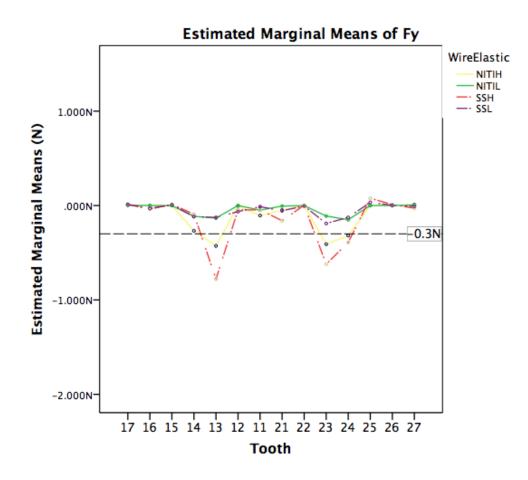


Figure 3- 6: Mean values of Fy on the maxillary arch for NitiL, NitiH, SSL and SSH test groups

All measures for Fy at 1.3, 2.3 and 2.4 were negative and in the lingual direction (Figure 3-4). When using HE, the SS archwire produced significantly larger forces compared to Niti at tooth 1.3 (p<.001)], tooth 2.3 (p<.001)] and tooth 2.4 (p=.005)]. There were no clinically significant outputs for Fy when using LE.

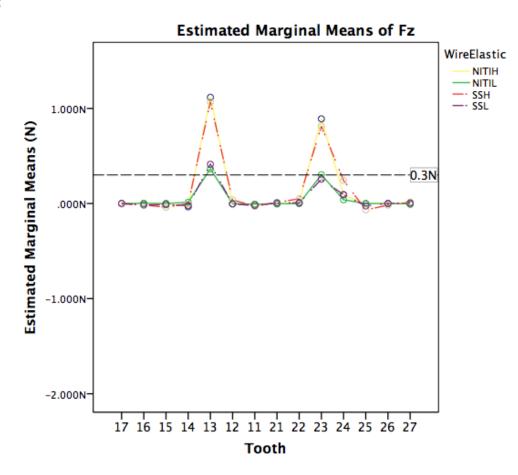


Figure 3-7: Mean values of Fz on the maxillary arch for NitiL, NitiH, SSL and SSH test groups

Fz is the vertical force measured in the occluso-gingival direction. Occlusal is positive and gingival is negative. For all groups, Fz at 1.3 and 2.3 was positive and in the occlusal direction. (Figure 3-5) The mean difference [.08N] between Niti and SS was only statistically significant (p<.001) at tooth 2.3 with HE.

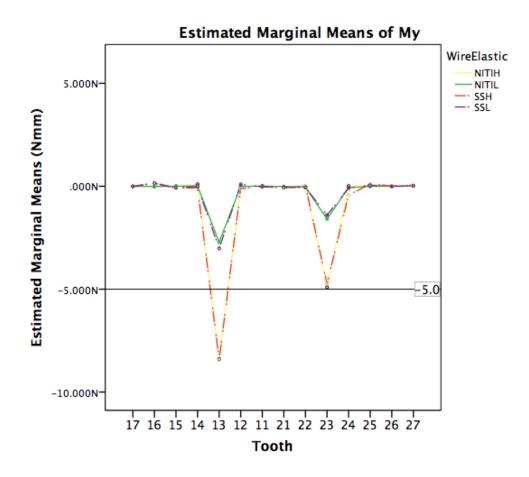


Figure 3- 8: Mean values of My on the maxillary arch for NitiL, NitiH, SSL and SSH test groups

My is the moment of mesial-distal tipping. Mesial crown tip is positive and distal crown tip is negative. For all groups, My at 1.3 and 2.3 was negative due to distal crown tipping. (Figure 3-6) Only the HE groups produced clinically significant moments above the 5Nmm threshold. My was significantly larger (p=0.049) with SS compare to Niti archwire, but not significant for tooth 2.3.

Table 3-3 provides force and moment measurements for the mandibular first molars.

Figure 3-9, 3-10, 3-11 and 3-12 graphically displays Fx, Fy, Fz and My for all mandibular teeth.

Variable	Tooth	NitiH Mean (SD)	SSH Mean (SD)	Mean Difference [95% C.I.]	NitiL Mean (SD)	SSL Mean (SD)	Mean Difference [95% C.I.]
Fx (N)	46	-1.58 (0.08)	-1.56 (0.14)	0.09 (p>.99) [07 to .03]	-0.54 (0.05)	-0.54 (0.04)	-0.01 (<i>p</i> >.99) [06 to .04]
	36	<u>-1.60</u> (0.08)	-1.53 (0.13)	-0.08 (p<.001) [12 to03]	55 (.04)	-0.52 (0.05)	-0.03 (p=.441) [08 to .02]
Fy (N)	46	-0.21 (0.01)	<u>-0.34</u> (0.04)	-0.14 (p<.001) [15 to12]	-0.07* (0.01)	-0.13* (0.02)	0.06 (p<0.001) [08 to05]
	36	-0.33 (0.06)	<u>-0.76</u> (0.11)	-0.43 (p<.001) [47 to39]	-0.12* (0.02)	-0.24* (0.05)	0.12 (p<0.001) [47 to -/39]
Fz (N)	46	<u>1.16</u> (0.06)	1.07 (0.11)	0.10 (p<0.001) [.06 to .14]	0.38 (0.04)	0.35 (0.04)	0.03 (p=.326) [01 to .07]
	36	1.09 (0.10)	1.07 (0.10)	0.03 (p=.838) [02 .07]	0.37 (0.04)	0.39 (0.06)	0.02 (p=.982) [02 to .07]
Mx (Nmm)	46	5.27 (0.37)	5.19 (0.51)	0.09 (p>.99) [15 to .32]	1.72 0(.47)	1.76 (0.26)	0.03 (p>.99) [27 to .20]
	36	-0.88 (0.24)	-0.34 (0.15)	0.53 (p<0.001) [.63 to .4.3]	34 (0.14)	31 (0.16)	0.04 (<i>p</i> >.99) [14 to .07)]
My (Nmm)	46	6.14 (0.32)	<u>6.44</u> (.60)	0.30 (p=.001) [.09 to .50]	2.09* (.19)	2.23* (0.20)	0.14 (p=.51) [426 to -3.84]
	36	<u>4.27</u> (0.26)	4.04 (0.35)	0.23 (p<.001) [.09 to .37]	1.39* (0.13)	1.31* (0.19)	0.08 (p=.732) [06 to .22]
Mz (Nmm)	46	2.46 (0.13)	3.27 (0.33)	0.52 (p<0.001) [.63 to .41]	1.04 (0.09)	1.27 (0.12)	0.23 (p<0.001) [.34 to .12]
	36	-0.19 (0.12)	0.12 (0.10)	0.31 (p<0.001) [.37 to .26]	-0.05 (0.05)	0.05 (0.11)	0.11 (p<0.001) [.16 to .05]

3.3.3 Mandibular First Molars

Bold Text = Statistically larger (p<.05) *Italics** = Below clinical significance

Table 3 - 3: Mean values and mean differences for clinically significant findings from the mandibular arch. Clinical significance is 0.3N for force (Fx, Fy, Fz) and 5Nmm for moment (Mx, My, Mz).

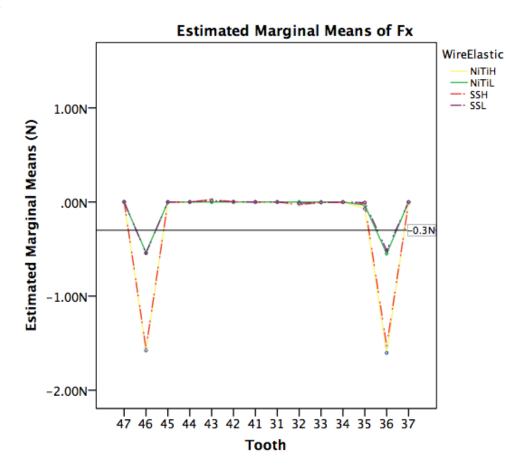


Figure 3- 9: Mean values of Fx on the mandibular arch for NitiL, NitiH, SSL and SSH test groups

Values for Fx were clinically significant for both HE and LE at 3.6 and 4.6 in the mesial direction. (Figure 3-7) Fx was only significantly larger at tooth 36 with Niti wire compared to SS wire (p<0.001).

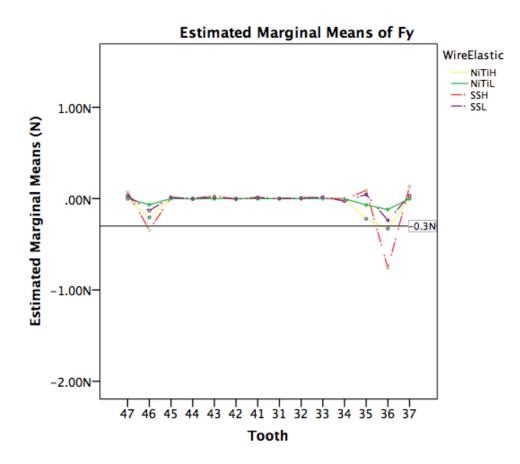


Figure 3- 10: Mean values of Fy on the mandibular arch for NitiL, NitiH, SSL and SSH test groups

The negative values of Fy on the mandibular dentition indicate a lingually directed force. The only clinically significant Fy outputs on the mandibular arch occurred at 3.6 and 4.6 when using HE. (Figure 3-8) Values for LE at 3.6 and 4.6 were larger with SS compared with Niti wire (p<0.001).

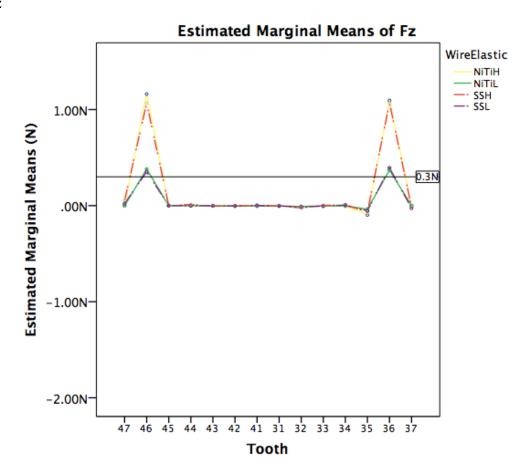


Figure 3- 11: Mean values of Fz on the mandibular arch for NitiL, NitiH, SSL and SSH test groups

Positive values for Fz at 36 and 46 indicate an occlusal direction of force for all groups. (Figure 3-9) Both HE and LE produced clinically significant forces at 3.6 and 4.6. Tooth 4.6 showed significantly larger Fz with Niti wire compared with SS wire (p<0.001), however significant difference was not identified for tooth 3.6 (p=0.838).

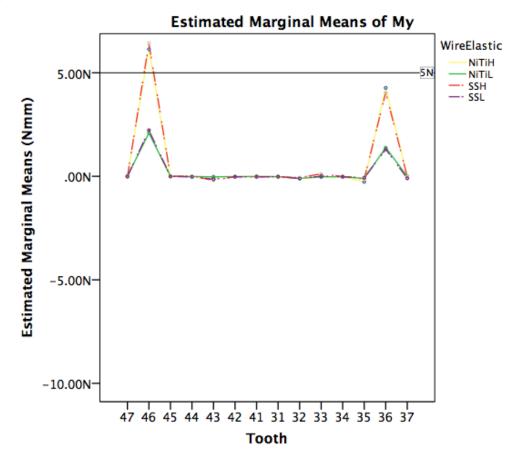


Figure 3- 12: Mean values of My on the mandibular arch for NitiL, NitiH, SSL and SSH test groups

Positive values for My at 3.6 and 4.6 indicate a mesial crown tipping moment for all groups. (Figure 3-10) Clinically significant moments were only observed at 4.6 when using HE with SS producing a statistically significant larger force than Niti (p=.001).

3.4 Discussion and Clinical Implications

It is well established that class II elastics are an effective tool used for the correction of class II malocclusions, however, evidence pertaining to an optimal protocol for the use of class II elastics is weak or non-existent.^{2,17} There are no known clinical trials that attempt to directly compare any two protocols based on timing of elastic implementation, strength or size of elastics, location of elastic anchorage or types of archwires used. The best protocols we have are guidelines based solely on expert opinion. The current study is an attempt to provide the practitioner with quantitative data related to two possible class II elastic protocols. The specific protocols used for this study were selected in an attempt to study and compare the more extreme boundaries of class II elastic use. A 0.014" Niti is often the smallest and lightest wire in an orthodontists' armamentarium, whereas a 0.019"x0.025" SS is often the largest and most rigid. In the same fashion, 2oz elastics are often the lightest and 4.5oz are often the heaviest used during class II correction. As such, protocols using materials with properties intermediary to those used in this study will hypothetically produce results that lie within our data.

There were many trends in our data that are worthy of highlighting. Although the magnitudes varied slightly, the general trends observed at the upper canines and lower first molars were similar. The largest magnitude of force for all groups was the horizontal force along the archwire (Fx) in a distal direction for upper canines and mesial direction for lower first molars. This is reassuring because the goal of class II elastics is to correct an anterior-posterior discrepancy between the dental arches. Similar to Fx in magnitude was Fz, the vertical component of force in the occlusal or extrusive direction. This data confirms that the vertical component of force, which is often considered an unwanted side effect of class II elastics, is a reasonable concern and must be accounted for during treatment planning of patients presenting

with minimal overjet and vertical growth tendencies. One such option is the use of a posterior bite block that may help control eruption of the molars while allowing the extrusive forces on the upper canines to express. This vertical force could also be beneficial in the correction of deep bites or when an increase in maxillary incisal display is desirable.

When heavy elastics were used, there was a trend for reduced extrusive effects of class II elastics in both the upper canines and lower first molars with SS archwires. However, this difference was only statistically significant on one side with a mean difference of 0.1N. 0.1N is well below our minimum level of force for clinical significance of 0.3N.

Both heavy and light Class II elastics resulted in clinically relevant lingual tipping forces (Fy) for NiTi as well as SS wire. However, the force was close to the clinically relevant threshold with light elastics and may not represent a clinical concern. Lingual tipping force (Fy) was significantly higher with SS wire when using heavy elastics. This effect may limit the ability of the archwire to expand the arch width during class II correction.

Mandibular molar mesial crown tipping (Fx) and maxillary distal crown tipping force (Fx) was clinically significant for heavy elastics, but not with light elastics. Based on these results, unwanted mesial crown tipping of the mandibular first molar and unwanted distal crown tipping of the maxillary canine can be avoided with light elastics.

When light elastics were used, SS and Niti archwire produced statistically similar results for each output variable. The lone exception being Fz at 2.3 for which Niti has weak statistical evidence (p=.026) for being larger than SS with a mean difference of only .05N. The meaning of this significant result at 2.3 is minimized by results at 1.3 which show a larger Fz (but not statistically significant) force for SS compared to Niti with the same mean difference of 0.05N. Also, despite the statistical significance, the mean difference of only 0.05N is not clinically significant. Therefore, we will assume that Niti and SS archwire produce similar forces for all output variables when using light elastics.

Unlike heavy elastics, light elastics did not produce clinically significant values for every output variable. LE's only produced clinically significant values at Fx and Fz which means that LE's may reduce lingual tipping (Fy) or mesial-distal tipping (My). The clinically significant values for Fx and Fz were approximately 1N less than the values produced by heavy elastics. Since the lowest effective force is desirable, using light elastics appears to be advantageous over heavy elastics, as it eliminates the lingual force and mesial-distal tipping moment while producing a minimal yet clinically effective force at Fz and most importantly Fx.

It is readily apparent when analysing the force and moment figures that there are asymmetries in the the data when comparing the same tooth on the left and right sides of the arch. If the model was setup perfectly symmetrical one would expect the two sides to be mirror images of each other. Since the data is asymmetric, we can assume that our model is slightly asymmetric. Perhaps the odontoform was not centered perfectly in relation to the opposing OSIM arch. This can change the angle at which the elastic is anchored which will change the direction of the applied force. Imperfect placement of the odontoform could also result in asymmetric distances between the anchor teeth, which could result in an asymmetry in the applied forces due to differential length of elastic stretch. Another possible explanation for the asymmetry in the data could be due to the location of the wire within the bracket slot when the OSIM is zeroed. Since the brackets are passive ligation, it is possible that the wire is sitting passively within the bracket slot but it is biased towards one of the internal walls of the bracket. When a force is applied, the bracket might engage the wire earlier compared to the contralateral

tooth that has received the same applied force. The tooth that engages the wire first will produce a lower force reading as some of the force is being transferred to the wire.

To test the effects of odontoform position in relation to the OSIM, a sensitivity test was performed by moving the odontoform laterally to the left and to the right by 1mm and 2mm from center when using the SS archwire and heavy elastics. Appendix G contains the pairwise comparisons for the lateral sensitivity test where outputs for teeth 13 and 23 at 1mm and 2mm lateral deviations are compared to the center (0mm) position. Appendix H is a table of pairwise comparisons of the outputs of teeth 13 and 23 from the main study data. The asymmetries observed between 13 and 23 in the experimental data (Appendix H) are similar to the mean differences at 13 and 23 when there is a lateral deviation of 2mm (Appendix G). For example, the mean difference between teeth 13 and 23 at Fx was .43N for the experimental data. Whereas, the mean difference between center position and a 2mm deviation was .59N. This shows that a deviation in the position of the odontoform could at least partially explain the side to side asymmetries observed within a single arch. This test modified the position of the odontoform in one plane only. Realistically the position of the odontoform could be off from center in all 3 planes of space which would have an even greater impact on the symmetry of the data. However, the observed asymmetries in this tightly controlled *in vitro* experiment are minor compared to the dynamic oral environment where asymmetries in both form and function are the norm, not the exception.

In summary, when heavy elastics are used, both Nit and SS produce clinically significant forces for the desirable Fx vector and similar moments for My. However, SS minimizes the vertical Fz component while Niti minimizes the lingual horizontal component Fy. Therefore, the most appropriate choice of archwire to use with heavy elastics will depend largely on the

treatment goals of each specific case. Archwire type has no effect on the measured outcomes for light elastics. This suggests that light elastics can be used on any archwire during treatment and have similar effects. light elastics minimizes Fy and My below clinical relevance while producing Fx and Fz forces that are only slightly above the clinical threshold for tooth movement thereby facilitating a more physiologic tooth movement which is believed to reduce root resorption and pain.⁷

3.5 Limitations of Study

As with any *in vitro* study, one must be mindful when applying the results to an *in vivo* model. This *in vitro* model lacks many important elements that constitute the natural human oral environment. Such elements include: the lubricating and elastic degrading effects of saliva; the forces created by the oral musculature; the continuously changing relationship between the dental arches due to movement of the mandible and the forces of occlusion, and most importantly, the movement of the teeth as a result of the applied orthodontic forces. This model represents a snapshot in time before orthodontic movement has occurred. Once tooth movement occurs, the system has changed and as a result the force systems will change. One would expect that as teeth begin to move and the bracket begins to engage and deflect the archwire, the type of archwire will have a greater effect on the propagation of forces throughout the arch. The more rigid, full dimension archwire will engage the bracket earlier in tooth movement and will disperse the forces from the class II elastics more readily to the adjacent teeth. The smaller, less rigid archwire will deflect much more easily and will transfer less force to the adjacent teeth as a tooth moves. This could be problematic if this movement is unwanted.

The malocclusion for this model is a well-aligned ½ cusp class II. This is a good representation of a clinical scenario where dimensional SS archwires would be used, but rarely

are light Niti archwires used in a well-aligned dentition. Also, specific to this model are the brand and slot dimension of the brackets; the material type, dimension and arch form of the wires, and the size and strength of the elastics. It is not known how changing any of these variables would affect the result. However, our results suggest that archwire type and dimension have little effect when LE are used, so one could assume that any wire between an 0.014" and 0.019"x0.025" dimension with load defection curves that fall between Niti and SS would produce similar results in our test model.

The accuracy of the OSIM limits our ability to make precise conclusions or clinical recommendations. The error of the transducers for force is 1% at a range of +/- 25N. The error for moment is 1.75% at a range of +/-250Nmm. That is an error of +/- 0.025N for force and +/- 4.38Nmm for moment. The error in force measurement is less than 10% of the clinically relevant value for tooth movement. This is an adequate level of precision for the purposes of this study. The error in moment measurement is almost 90% of the clinically relevant value for tooth movement. As such, it may be wise to use the moment data to observe trends within the overall data opposed to detailed comparisons of the mean values.

A final noteworthy limitation is that the OSIM lacks interproximal contacts between pegs. Without interproximal contact, horizontal forces in the direction of the long axis of the archwire (Fx) are less likely to propagate throughout the arch. For this reason, values for Fx at the elastic anchor teeth could be inflated while values at neighboring teeth could be minimized.

3.6 Conclusions

An orthodontic simulator was used to simultaneously measure forces and moments at each individual tooth within a ½ cusp class II malocclusion model to quantitatively compare two class II elastic sizes and two archwire types. Within this model, both heavy and light elastics produced clinically sufficient horizontal forces along the archwire to move the teeth towards a class I relationship. SS archwire minimized the vertical extrusive effects of HE's. Archwire type had no effect when using light elastics which suggests that light class II elastics may be used on light archwire without consequence. However, this study describes the initial forces and moments and does not predict how the teeth will move once the initial tooth positions have changed.

3.7 References

1. Baker HA. Treatment of protruding and receding jaws by the use of intermaxillary elastics. *International Dental Journal*. 1904;25:334.

 Janson G, Sathler R, Fernandes TM, Branco NC, Freitas MR. Correction of class II malocclusion with class II elastics: A systematic review. *Am J Orthod Dentofacial Orthop*.
 2013;143(3):383-392. doi: 10.1016/j.ajodo.2012.10.015; 10.1016/j.ajodo.2012.10.015.

Proffit WR, Fields H, Sarver D. Contemporary orthodontics. In: *Contemporary orthodontics*.
 5th Edition ed. Mosby; 2013.

Ricketts RM, Bench RW, Gugino CF, Hilgers JJ, Schulhof RJ. *Bioprogressive therapy*.
 Denver, Colorado: Rocky Mountain Orthodontics; 1979.

 Nelson B, Hansen K, Hagg U. Class II correction in patients treated with class II elastics and with fixed functional appliances: A comparative study. *Am J Orthod Dentofacial Orthop*. 2000;118(2):142-149. doi: 10.1067/mod.2000.104489.

6. Ellen EK, Schneider BJ, Sellke T. A comparative study of anchorage in bioprogressive versus standard edgewise treatment in class II correction with intermaxillary elastic force. *Am J Orthod Dentofacial Orthop.* 1998;114(4):430-436.

7. Motokawa M, Sasamoto T, Kaku M, et al. Association between root resorption incident to orthodontic treatment and treatment factors. *Eur J Orthod*. 2012;34(3):350-356. doi: 10.1093/ejo/cjr018 [doi].

 Weltman B, Vig KW, Fields HW, Shanker S, Kaizar EE. Root resorption associated with orthodontic tooth movement: A systematic review. *Am J Orthod Dentofacial Orthop*.
 2010;137(4):462-76; discussion 12A. doi: 10.1016/j.ajodo.2009.06.021 [doi].

 9. Friedrich D, Rosarius N, Rau G, Diedrich P. Measuring system for in vivo recording of force systems in orthodontic treatment-concept and analysis of accuracy. *J Biomech*. 1999;32(1):81-85. doi: S0021-9290(98)00112-2 [pii].

10. Sung SJ, Jang GW, Chun YS, Moon YS. Effective en-masse retraction design with orthodontic mini-implant anchorage: A finite element analysis. *Am J Orthod Dentofacial Orthop*. 2010;137(5):648-657. doi: 10.1016/j.ajodo.2008.06.036 [doi].

11. Canales C, Larson M, Grauer D, Sheats R, Stevens C, Ko CC. A novel biomechanical model assessing continuous orthodontic archwire activation. *Am J Orthod Dentofacial Orthop*.
2013;143(2):281-290. doi: 10.1016/j.ajodo.2012.06.019 [doi].

12. Badawi HM, Toogood RW, Carey JPR, Heo G, Major PW. Three-dimensional orthodontic force measurements. *American Journal of Orthodontics and Dentofacial Orthopedics*.
2009;136(4):518-528. doi:

http://dx.doi.org.login.ezproxy.library.ualberta.ca/10.1016/j.ajodo.2009.02.025.

13. Fok J, Toogood RW, Badawi H, Carey JP, Major PW. Analysis of maxillary arch
force/couple systems for a simulated high canine malocclusion: Part 1. passive ligation. *Angle Orthod.* 2011;81(6):953-959. doi: 10.2319/012011-40.1; 10.2319/012011-40.1.

14. Fok J, Toogood RW, Badawi H, Carey JP, Major PW. Analysis of maxillary arch force/couple systems for a simulated high canine malocclusion: Part 2. elastic ligation. *Angle Orthod.* 2011;81(6):960-965. doi: 10.2319/012011-41.1 [doi].

 Major PW, Toogood RW, Badawi HM, Carey JP, Seru S. Effect of wire size on maxillary arch force/couple systems for a simulated high canine malocclusion. *J Orthod*. 2014;41(4):285-291. doi: 10.1179/1465313314Y.0000000099 [doi].

16. Seru S, Romanyk DL, Toogood RW, Carey JP, Major PW. Effect of ligation method on maxillary arch force/moment systems for a simulated lingual incisor malalignment. *Open Biomed Eng J.* 2014;8:106-113. doi: 10.2174/1874120701408010106 [doi].

17. Oesterle LJ, Owens JM, Newman SM, Shellhart WC. Perceived vs measured forces of interarch elastics. *Am J Orthod Dentofacial Orthop*. 2012;141(3):298-306. doi: 10.1016/j.ajodo.2011.08.027; 10.1016/j.ajodo.2011.08.027.

18. Harzer W, Bourauel C, Gmyrek H. Torque capacity of metal and polycarbonate brackets with and without a metal slot. *Eur J Orthod*. 2004;26(4):435-441.

19. Badawi HM, Toogood RW, Carey JP, Heo G, Major PW. Torque expression of self-ligating brackets. *Am J Orthod Dentofacial Orthop*. 2008;133(5):721-728. doi:

10.1016/j.ajodo.2006.01.051 [doi].

20. Partowi S, Keilig L, Reimann S, Jager A, Bourauel C. Experimental analysis of torque characteristics of orthodontic wires. *J Orofac Orthop*. 2010;71(5):362-372. doi: 10.1007/s00056-010-1028-2 [doi].

21. Fok J, Toogood RW, Badawi H, Carey JP, Major PW. Analysis of maxillary arch
force/couple systems for a simulated high canine malocclusion: Part 1. passive ligation. *Angle Orthod.* 2011;81(6):953-959. doi: 10.2319/012011-40.1 [doi].

Chapter 4 – General Discussion

4.1 Final Discussion

Orthodontists strive to treat patients in the most efficient manner possible while maximizing functional, occlusal and esthetic goals and minimizing side effects, such as pain and root resorption. Although optimum force levels have yet to be determined, there is a wellestablished causal link between the magnitude of force and the rate of tooth movement, pain and root resorption. Oesterle *et al.* (2012) argues that a universal "sweet spot" for orthodontic forces may not exist due to the inherent anatomical and physiological differences that exist not only between individual patients, but also between individual teeth within a patient's mouth.¹ As such, Angle's suggestion that light forces should be used to facilitate tooth movement and minimize the potential for adverse side effects hold true 100+ years after its conception.²

Class II elastics are a commonly used treatment option for the correction of class II malocclusion.³ Our systematic review of the literature concluded that class II elastics are an effective option for the correction of up to a ½ cusp class II malocclusion. However, there are no evidence based protocols for class II elastics that take into account the actual magnitude and direction of forces placed on the teeth.¹ The fabrication of an *in vitro* orthodontic simulator (OSIM) has allowed us to measure the initial 3D forces and moments experienced by teeth within a full dental arch simultaneously and in real-time while using four combinations of class II elastics and archwires.⁴ It was found that both light (2oz) and heavy (4.5oz) elastics produced clinically significant forces to distalize and extrude the upper canines and to mesialize and extrude the lower first molars; however, the values for light elastics were approximately 1N less than heavy elastics. To minimize the potential side effects of heavy forces, this data may encourage the practitioner to opt for the lighter elastics. In regards to archwire, there were no

statistical differences between archwire types (0.014 NiTi and 0.019 x 0.025 SS) when using light elastics. Since archwire appears to have no effect on the force systems generated by light elastics, the use of light elastics early in treatment while using light archwire can be rationalized. Pitts reasons that elastics should be started when patient compliance is greatest, which is early in treatment. ⁵ When using heavy elastics, the larger SS archwire statistically reduced the extrusive force on the upper canines and lower first molars. This should caution the practitioner to limit the use of heavier class II elastics while on light archwires, especially when the treatment goals do not include extrusion of the upper canines or lower first molars.

4.2 Recommendations and Future Research

To reduce the laborious task of manually zeroing the OSIM, a software program could be developed that would allow the OSIM to perform an automated self-zeroing procedure. If this procedure can be completed quickly, efficiently and accurately the time required for data collection would be reduced. An automated zeroing capability may also allow for the addition of tooth-to-tooth interproximal contacts, which may otherwise be impossible to zero manually. The addition of interproximal contacts to the OSIM would greatly increase the accuracy to which the OSIM model comports with reality. In the current OSIM model, a force applied to a single tooth in the X axis (Fx, along the long axis of the archwire) will not transfer any force to the adjacent teeth, except for a minor amount of friction from the archwire.

The current study measures only the initial force systems produced by an appliance. An interesting exercise would be to follow in the footsteps of Drescher *et al.* (1991) to use the data from the OSIM and input it into an FEM analysis to theorize how the teeth will move. ⁶ The teeth on the OSIM could then be moved accordingly and the force systems measured again.

Using this method, the correction of the malocclusion could be followed to completion. This would allow us to compare the treatment results and treatment efficiency of various appliances.

Finally, to reduce time spent moving data between spreadsheets and to minimize potential user errors, a program capable of populating a single spreadsheet with the mean outputs of all samples within a single group could be developed.

Future research related to this project could involve the study and quantification of alternative configurations of class II elastic use. For example, a triangle configuration (upper canines to lower second premolars and first molars) or a box configuration (upper canines and first premolars to lower second premolars and first molars) for class II elastics could be compared to the, upper canine to lower first molar, configuration that was used in this study. Various other class II correctors (Forsus, Twin Force, Wilson Distalizer, etc.) could be tested and quantified using the OSIM.

4.3 References

1. Oesterle LJ, Owens JM, Newman SM, Shellhart WC. Perceived vs measured forces of interarch elastics. *Am J Orthod Dentofacial Orthop*. 2012;141(3):298-306. doi: 10.1016/j.ajodo.2011.08.027; 10.1016/j.ajodo.2011.08.027.

2. Angle EH. Chapter XVII - treatment of cases - class II, division 1. In: *The treatment of malocclusion of the teeth*. 7th ed. White Dental Manufacturing Co.; 1907:448.

 Janson G, Sathler R, Fernandes TM, Branco NC, Freitas MR. Correction of class II malocclusion with class II elastics: A systematic review. *Am J Orthod Dentofacial Orthop*.
 2013;143(3):383-392. doi: 10.1016/j.ajodo.2012.10.015; 10.1016/j.ajodo.2012.10.015.

4. Badawi HM, Toogood RW, Carey JPR, Heo G, Major PW. Three-dimensional orthodontic force measurements. *American Journal of Orthodontics and Dentofacial Orthopedics*. 2009;136(4):518-528. doi:

http://dx.doi.org.login.ezproxy.library.ualberta.ca/10.1016/j.ajodo.2009.02.025.

5. Pitts T. Begin with the end in mind: Bracket placement and early elastic protocols for smile arc protection. *Clinical Impressions*. 2009;17:4.

6. Drescher D, Bourauel C, Thier M. Application of the orthodontic measurement and simulation system (OMSS) in orthodontics. *Eur J Orthod*. 1991;13(3):169-178.

Bibliography

Chapter 1 References

1-1. Proffit WR, Fields HW, Jr, Moray LJ. Prevalence of malocclusion and orthodontic treatment need in the united states: Estimates from the NHANES III survey. *Int J Adult Orthodon Orthognath Surg.* 1998;13(2):97-106.

1-2. Oesterle LJ, Owens JM, Newman SM, Shellhart WC. Perceived vs measured forces of interarch elastics. *Am J Orthod Dentofacial Orthop*. 2012;141(3):298-306. doi: 10.1016/j.ajodo.2011.08.027; 10.1016/j.ajodo.2011.08.027.

1-3. Janson G, Sathler R, Fernandes TM, Branco NC, Freitas MR. Correction of class II malocclusion with class II elastics: A systematic review. *Am J Orthod Dentofacial Orthop*. 2013;143(3):383-392. doi: 10.1016/j.ajodo.2012.10.015; 10.1016/j.ajodo.2012.10.015.

1-4. Smith RJ, Burstone CJ. Mechanics of tooth movement. Am J Orthod. 1984;85(4):294-307.

1-5. Puri NN. Fundamentals of linear systems for physical scientists and engineers. Boca Raton:
 CRC Press; 2010:873. <u>http://marc.crcnetbase.com/isbn/9781439811580</u>.

1-6. Smith RJ, Burstone CJ. Mechanics of tooth movement. Am J Orthod. 1984;85(4):294-307.

1-7. Proffit WR, Fields H, Sarver D. Contemporary orthodontics. In: *Contemporary orthodontics*. 5th Edition ed. Mosby; 2013.

1-8. Nelson B, Hagg U, Hansen K, Bendeus M. A long-term follow-up study of class II malocclusion correction after treatment with class II elastics or fixed functional appliances. *Am J Orthod Dentofacial Orthop*. 2007;132(4):499-503. doi: 10.1016/j.ajodo.2005.10.027.

1-9. Baker HA. Treatment of protruding and receding jaws by the use of intermaxillary elastics. *International Dental Journal*. 1904;25:334.

1-10. Bishara SE. Mandibular changes in persons with untreated and treated class II division 1 malocclusion. *Am J Orthod Dentofacial Orthop*. 1998;113(6):661-673.

1-11. Proffit W, Fields H, Sarver D. *Contemporary orthodontics*. 5th ed. St. Louis: Elsevier;2013:569.

1-12. Jian F, Lai W, Furness S, et al. Initial arch wires for tooth alignment during orthodontic treatment with fixed appliances. *Cochrane Database Syst Rev.* 2013;4:CD007859. doi: 10.1002/14651858.CD007859.pub3 [doi].

1-13. Meistrell ME, Jr, Cangialosi TJ, Lopez JE, Cabral-Angeles A. A cephalometric appraisal of nonextraction begg treatment of class II malocclusions. *Am J Orthod Dentofacial Orthop*.
1986;90(4):286-295.

1-14. Pitts T. Begin with the end in mind: Bracket placement and early elastic protocols for smile arc protection. *Clinical Impressions*. 2009;17:4.

1-15. Angle EH. Chapter XVII - treatment of cases - class II, division 1. In: *The treatment of malocclusion of the teeth*. 7th ed. White Dental Manufacturing Co.; 1907:448.

1-16. Brodie AG, Goldstein A, Myer E. Cephalometric appraisal of orthodontic management of class II malocclusion. *Angle Orthodontist*. 1938;8:290.

1-17. Wein SL. The lingual arch as a source of anchorage in class II treatment. A cephalometric appraisal of forty treated cases. *Am J Orthod*. 1959;45(1):32-49. Accessed 21 May 2014.

1-18. McLaughlin RP, Bennett JC. Evolution of treatment mechanics and contemporary appliance design in orthodontics: A 40-year perspective. *Am J Orthod Dentofacial Orthop*. 2015;147(6):654-662. doi: 10.1016/j.ajodo.2015.03.012 [doi].

1-19. FISCHER B. Treatment of class II, division I (angle) differential diagnosis and an analysis of mandibular anchorage. *Am J Orthod*. 1948;34(6):461-490.

1-20. Combrink FJ, Harris AM, Steyn CL, Hudson AP. Dentoskeletal and soft-tissue changes in growing class II malocclusion patients during nonextraction orthodontic treatment. *SADJ*.
2006;61(8):344-350.

1-21. Serbesis-Tsarudis C, Pancherz H. "Effective" TMJ and chin position changes in class II treatment. *Angle Orthod*. 2008;78(5):813-818. doi: 10.2319/082707-391.1; 10.2319/082707-391.1.

1-22. Uzel A, Uzel I, Toroglu MS. Two different applications of class II elastics with nonextraction segmental techniques. *Angle Orthod*. 2007;77(4):694-700. doi: 10.2319/071006-283. 1-23. Combrink FJ, Harris AM, Steyn CL, Hudson AP. Dentoskeletal and soft-tissue changes in growing class II malocclusion patients during nonextraction orthodontic treatment. *SADJ*. 2006;61(8):344-350.

1-24. Reitan K. Tissue behavior during orthodontic tooth movement. *American Journal of Orthodontics*. 1960;46(12):881.

1-25. Langlade M. Optimization of orthodontic elastics. . 2000.

1-26. Pitts T. The 14 keys to pitts case management and active early concepts. *Pitt's Protocol*.2015;1:8.

1-27. Reddy P, Kharbanda OP, Duggal R, Parkash H. Skeletal and dental changes with nonextraction begg mechanotherapy in patients with class II division 1 malocclusion. *Am J Orthod Dentofacial Orthop*. 2000;118(6):641-648. doi: 10.1067/mod.2000.110584.

1-28. Caputo AA, Chaconas SJ, Hayashi RK. Photoelastic visualization of orthodontic forces during canine retraction. *Am J Orthod*. 1974;65(3):250-259.

1-29. Stewart CM, Chaconas SJ, Caputo AA. Effects of intermaxillary elastic traction on orthodontic tooth movement. *J Oral Rehabil*. 1978;5(2):159-166.

1-30. Dermaut LR, Beerden L. The effects of class II elastic force on a dry skull measured by holographic interferometry. *Am J Orthod*. 1981;79(3):296-304.

1-31. Toms SR, Eberhardt AW. A nonlinear finite element analysis of the periodontal ligament under orthodontic tooth loading. *Am J Orthod Dentofacial Orthop*. 2003;123(6):657-665. doi: 10.1016/S0889540603001641 [doi].

1-32. Gomez JP, Peña FM, Martínez V, Giraldo DC, Cardona CI. Initial force systems during bodily tooth movement with plastic aligners and composite attachments: A three-dimensional finite element analysis. *Angle Orthod*. 2015;85(3):454-460. <u>http://dx.doi.org/10.2319/050714-330.1</u>. doi: 10.2319/050714-330.1.

1-33. Knop L, Gandini LG, Shintcovsk RL, Gandini MREAS. Scientific use of the finite element method in orthodontics. *Dental Press J Orthod*. 2015;20(2):119-125. doi: 10.1590/2176-9451.20.2.119-125.sar [doi].

1-34. Canales C, Larson M, Grauer D, Sheats R, Stevens C, Ko CC. A novel biomechanical model assessing continuous orthodontic archwire activation. *Am J Orthod Dentofacial Orthop*. 2013;143(2):281-290. doi: 10.1016/j.ajodo.2012.06.019 [doi].

1-35. Solonche DJ, Burstone CJ, Vanderby R,Jr. A device for determining the mechanical behavior of orthodontic appliances. *IEEE Trans Biomed Eng.* 1977;24(6):538-539.

1-36. Drescher D, Bourauel C, Thier M. Application of the orthodontic measurement and simulation system (OMSS) in orthodontics. *Eur J Orthod*. 1991;13(3):169-178.

1-37. Chen J, Isikbay SC, Brizendine EJ. Quantification of three-dimensional orthodontic force systems of T-loop archwires. *Angle Orthod*. 2010;80(4):566-570. doi: 10.2319/082509-484.1[doi].

1-38. Mittal N, Xia Z, Chen J, Stewart KT, Liu SS. Three-dimensional quantification of pretorqued nickel-titanium wires in edgewise and prescription brackets. *Angle Orthod*. 2013;83(3):484-490. doi: 10.2319/062812-532.1 [doi].

1-39. Badawi HM, Toogood RW, Carey JPR, Heo G, Major PW. Three-dimensional orthodontic force measurements. *American Journal of Orthodontics and Dentofacial Orthopedics*.
2009;136(4):518-528. doi:

http://dx.doi.org.login.ezproxy.library.ualberta.ca/10.1016/j.ajodo.2009.02.025.

1-40. Fok J, Toogood RW, Badawi H, Carey JP, Major PW. Analysis of maxillary arch force/couple systems for a simulated high canine malocclusion: Part 1. passive ligation. *Angle Orthod*. 2011;81(6):953-959. doi: 10.2319/012011-40.1 [doi].

1-41. Fok J, Toogood RW, Badawi H, Carey JP, Major PW. Analysis of maxillary arch force/couple systems for a simulated high canine malocclusion: Part 2. elastic ligation. *Angle Orthod*. 2011;81(6):960-965. doi: 10.2319/012011-41.1 [doi].

1-42. Seru S, Romanyk DL, Toogood RW, Carey JP, Major PW. Effect of ligation method on maxillary arch force/moment systems for a simulated lingual incisor malalignment. *Open Biomed Eng J.* 2014;8:106-113. doi: 10.2174/1874120701408010106 [doi].

1-43. Major PW, Toogood RW, Badawi HM, Carey JP, Seru S. Effect of wire size on maxillary arch force/couple systems for a simulated high canine malocclusion. *J Orthod*. 2014;41(4):285-291. doi: 10.1179/1465313314Y.0000000099 [doi].

1-44. Mencattelli M, Donati E, Cultrone M, Stefanini C. Novel universal system for 3dimensional orthodontic force-moment measurements and its clinical use. *Am J Orthod Dentofacial Orthop*. 2015;148(1):174-183. doi: 10.1016/j.ajodo.2015.01.028 [doi].

1-45. Major PW, Toogood RW, Badawi HM, Carey JP, Seru S. Effect of wire size on maxillary arch force/couple systems for a simulated high canine malocclusion. *J Orthod*. 2014. doi: 10.1179/1465313314Y.000000099.

1-46. Friedrich D, Rosarius N, Rau G, Diedrich P. Measuring system for in vivo recording of force systems in orthodontic treatment-concept and analysis of accuracy. *J Biomech*.
1999;32(1):81-85. doi: S0021-9290(98)00112-2 [pii].

1-47. Lapatki BG, Paul O. Smart brackets for 3D-force-moment measurements in orthodontic research and therapy - developmental status and prospects. *J Orofac Orthop*. 2007;68(5):377-396. doi: 10.1007/s00056-007-0728-8 [doi].

1-48. Rues S, Panchaphongsaphak B, Gieschke P, Paul O, Lapatki BG. An analysis of the measurement principle of smart brackets for 3D force and moment monitoring in orthodontics. *J Biomech*. 2011;44(10):1892-1900. doi: 10.1016/j.jbiomech.2011.04.029 [doi].

Chapter 2 References

2-1. Proffit WR, Fields HW, Jr, Moray LJ. Prevalence of malocclusion and orthodontic treatment need in the united states: Estimates from the NHANES III survey. *Int J Adult Orthodon Orthognath Surg.* 1998;13(2):97-106.

2-2. Bishara SE, Zaher AR, Cummins DM, Jakobsen JR. Effects of orthodontic treatment on the growth of individuals with class II division 1 malocclusion. *Angle Orthod*. 1994;64(3):221-230. doi: 2.

2-3. Nelson B, Hagg U, Hansen K, Bendeus M. A long-term follow-up study of class II malocclusion correction after treatment with class II elastics or fixed functional appliances. *Am J Orthod Dentofacial Orthop*. 2007;132(4):499-503. doi: 10.1016/j.ajodo.2005.10.027.

2-4. Bishara SE. Mandibular changes in persons with untreated and treated class II division 1 malocclusion. *Am J Orthod Dentofacial Orthop*. 1998;113(6):661-673.

2-5. Proffit W, Fields H, Sarver D. *Contemporary orthodontics*. 5th ed. St. Louis: Elsevier;2013:569.

2-6. Janson G, Sathler R, Fernandes TM, Branco NC, Freitas MR. Correction of class II malocclusion with class II elastics: A systematic review. *Am J Orthod Dentofacial Orthop*. 2013;143(3):383-392. doi: 10.1016/j.ajodo.2012.10.015; 10.1016/j.ajodo.2012.10.015.

2-7. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. *J Clin Epidemiol*.
2009;62(10):1006-1012. doi: 10.1016/j.jclinepi.2009.06.005; 10.1016/j.jclinepi.2009.06.005.

2-8. Saltaji H, Altalibi M, Major MP, et al. Le fort III distraction osteogenesis versus conventional le fort III osteotomy in correction of syndromic midfacial hypoplasia: A systematic review. *Journal of Oral and Maxillofacial Surgery*. 2014;72(5):959-972. doi: <u>http://dx.doi.org.login.ezproxy.library.ualberta.ca/10.1016/j.joms.2013.09.039</u>.

2-9. Higgins J, Green S. *Cochrane handbook for systematic reviews of interventions*. Vol 5.1.0. The Cochrane Collaboration; March, 2011:June 2014. <u>www.cochrane-handbook.org</u>.

2-10. Serbesis-Tsarudis C, Pancherz H. "Effective" TMJ and chin position changes in class II treatment. *Angle Orthod*. 2008;78(5):813-818. doi: 10.2319/082707-391.1; 10.2319/082707-391.1.

2-11. Uzel A, Uzel I, Toroglu MS. Two different applications of class II elastics with nonextraction segmental techniques. *Angle Orthod*. 2007;77(4):694-700. doi: 10.2319/071006-283.

2-12. Meistrell ME,Jr, Cangialosi TJ, Lopez JE, Cabral-Angeles A. A cephalometric appraisal of nonextraction begg treatment of class II malocclusions. *Am J Orthod Dentofacial Orthop*.
1986;90(4):286-295.

2-13. Buschang PH, Tanguay R, Demirjian A, LaPalme L, Turkewicz J. Mathematical models of longitudinal mandibular growth for children with normal and untreated class II, division 1 malocclusion. *Eur J Orthod.* 1988;10(3):227-234. Accessed 3 July 2014.

2-14. Ellen EK, Schneider BJ, Sellke T. A comparative study of anchorage in bioprogressive versus standard edgewise treatment in class II correction with intermaxillary elastic force. *Am J Orthod Dentofacial Orthop*. 1998;114(4):430-436.

2-15. Gianelly AA, Arena SA, Bernstein L. A comparison of class II treatment changes noted with the light wire, edgewise, and frankel appliances. *Am J Orthod*. 1984;86(4):269-276.

2-16. Nelson B, Hansen K, Hagg U. Class II correction in patients treated with class II elastics and with fixed functional appliances: A comparative study. *Am J Orthod Dentofacial Orthop*. 2000;118(2):142-149. doi: 10.1067/mod.2000.104489.

2-17. Mellion ZJ, Behrents RG, Johnston LE, Jr. The pattern of facial skeletal growth and its relationship to various common indexes of maturation. *Am J Orthod Dentofacial Orthop*. 2013;143(6):845-854. doi: 10.1016/j.ajodo.2013.01.019; 10.1016/j.ajodo.2013.01.019.

2-18. Jones G, Buschang PH, Kim KB, Oliver DR. Class II non-extraction patients treated with the forsus fatigue resistant device versus intermaxillary elastics. *Angle Orthod*. 2008;78(2):332-338. doi: 10.2319/030607-115.1; 10.2319/030607-115.1.

Chapter 3 References

3-1. Baker HA. Treatment of protruding and receding jaws by the use of intermaxillary elastics. *International Dental Journal*. 1904;25:334.

3-2. Janson G, Sathler R, Fernandes TM, Branco NC, Freitas MR. Correction of class II malocclusion with class II elastics: A systematic review. *Am J Orthod Dentofacial Orthop*. 2013;143(3):383-392. doi: 10.1016/j.ajodo.2012.10.015; 10.1016/j.ajodo.2012.10.015.

3-3. Proffit WR, Fields H, Sarver D. Contemporary orthodontics. In: *Contemporary orthodontics*. 5th Edition ed. Mosby; 2013.

3-4. Ricketts RM, Bench RW, Gugino CF, Hilgers JJ, Schulhof RJ. *Bioprogressive therapy*. Denver, Colorado: Rocky Mountain Orthodontics; 1979.

3-5. Nelson B, Hansen K, Hagg U. Class II correction in patients treated with class II elastics and with fixed functional appliances: A comparative study. *Am J Orthod Dentofacial Orthop*.
2000;118(2):142-149. doi: 10.1067/mod.2000.104489.

3-6. Ellen EK, Schneider BJ, Sellke T. A comparative study of anchorage in bioprogressive versus standard edgewise treatment in class II correction with intermaxillary elastic force. *Am J Orthod Dentofacial Orthop*. 1998;114(4):430-436.

3-7. Motokawa M, Sasamoto T, Kaku M, et al. Association between root resorption incident to orthodontic treatment and treatment factors. *Eur J Orthod*. 2012;34(3):350-356. doi: 10.1093/ejo/cjr018 [doi].

3-8. Weltman B, Vig KW, Fields HW, Shanker S, Kaizar EE. Root resorption associated with orthodontic tooth movement: A systematic review. *Am J Orthod Dentofacial Orthop*. 2010;137(4):462-76; discussion 12A. doi: 10.1016/j.ajodo.2009.06.021 [doi].

3-9. Friedrich D, Rosarius N, Rau G, Diedrich P. Measuring system for in vivo recording of force systems in orthodontic treatment-concept and analysis of accuracy. *J Biomech*. 1999;32(1):81-85. doi: S0021-9290(98)00112-2 [pii].

3-10. Sung SJ, Jang GW, Chun YS, Moon YS. Effective en-masse retraction design with orthodontic mini-implant anchorage: A finite element analysis. *Am J Orthod Dentofacial Orthop*. 2010;137(5):648-657. doi: 10.1016/j.ajodo.2008.06.036 [doi].

3-11. Canales C, Larson M, Grauer D, Sheats R, Stevens C, Ko CC. A novel biomechanical model assessing continuous orthodontic archwire activation. *Am J Orthod Dentofacial Orthop*. 2013;143(2):281-290. doi: 10.1016/j.ajodo.2012.06.019 [doi].

3-12. Badawi HM, Toogood RW, Carey JPR, Heo G, Major PW. Three-dimensional orthodontic force measurements. *American Journal of Orthodontics and Dentofacial Orthopedics*.
2009;136(4):518-528. doi:

http://dx.doi.org.login.ezproxy.library.ualberta.ca/10.1016/j.ajodo.2009.02.025.

3-13. Fok J, Toogood RW, Badawi H, Carey JP, Major PW. Analysis of maxillary arch force/couple systems for a simulated high canine malocclusion: Part 1. passive ligation. *Angle Orthod*. 2011;81(6):953-959. doi: 10.2319/012011-40.1; 10.2319/012011-40.1.

3-14. Fok J, Toogood RW, Badawi H, Carey JP, Major PW. Analysis of maxillary arch force/couple systems for a simulated high canine malocclusion: Part 2. elastic ligation. *Angle Orthod*. 2011;81(6):960-965. doi: 10.2319/012011-41.1 [doi].

3-15. Major PW, Toogood RW, Badawi HM, Carey JP, Seru S. Effect of wire size on maxillary arch force/couple systems for a simulated high canine malocclusion. *J Orthod*. 2014;41(4):285-291. doi: 10.1179/1465313314Y.0000000099 [doi].

3-16. Seru S, Romanyk DL, Toogood RW, Carey JP, Major PW. Effect of ligation method on maxillary arch force/moment systems for a simulated lingual incisor malalignment. *Open Biomed Eng J.* 2014;8:106-113. doi: 10.2174/1874120701408010106 [doi].

3-17. Oesterle LJ, Owens JM, Newman SM, Shellhart WC. Perceived vs measured forces of interarch elastics. *Am J Orthod Dentofacial Orthop*. 2012;141(3):298-306. doi: 10.1016/j.ajodo.2011.08.027; 10.1016/j.ajodo.2011.08.027.

3-18. Harzer W, Bourauel C, Gmyrek H. Torque capacity of metal and polycarbonate brackets with and without a metal slot. *Eur J Orthod*. 2004;26(4):435-441.

3-19. Badawi HM, Toogood RW, Carey JP, Heo G, Major PW. Torque expression of self-ligating brackets. *Am J Orthod Dentofacial Orthop*. 2008;133(5):721-728. doi:
10.1016/j.ajodo.2006.01.051 [doi].

3-20. Partowi S, Keilig L, Reimann S, Jager A, Bourauel C. Experimental analysis of torque characteristics of orthodontic wires. *J Orofac Orthop*. 2010;71(5):362-372. doi: 10.1007/s00056-010-1028-2 [doi].

3-21. Fok J, Toogood RW, Badawi H, Carey JP, Major PW. Analysis of maxillary arch force/couple systems for a simulated high canine malocclusion: Part 1. passive ligation. *Angle Orthod.* 2011;81(6):953-959. doi: 10.2319/012011-40.1 [doi].

Chapter 4 References

4-1. Oesterle LJ, Owens JM, Newman SM, Shellhart WC. Perceived vs measured forces of interarch elastics. *Am J Orthod Dentofacial Orthop*. 2012;141(3):298-306. doi: 10.1016/j.ajodo.2011.08.027; 10.1016/j.ajodo.2011.08.027.

4-2. Angle EH. Chapter XVII - treatment of cases - class II, division 1. In: *The treatment of malocclusion of the teeth*. 7th ed. White Dental Manufacturing Co.; 1907:448.

4-3. Janson G, Sathler R, Fernandes TM, Branco NC, Freitas MR. Correction of class II malocclusion with class II elastics: A systematic review. *Am J Orthod Dentofacial Orthop*. 2013;143(3):383-392. doi: 10.1016/j.ajodo.2012.10.015; 10.1016/j.ajodo.2012.10.015.

4-4. Badawi HM, Toogood RW, Carey JPR, Heo G, Major PW. Three-dimensional orthodontic force measurements. *American Journal of Orthodontics and Dentofacial Orthopedics*.
2009;136(4):518-528. doi:

http://dx.doi.org.login.ezproxy.library.ualberta.ca/10.1016/j.ajodo.2009.02.025.

4-5. Pitts T. Begin with the end in mind: Bracket placement and early elastic protocols for smile arc protection. *Clinical Impressions*. 2009;17:4.

4-6. Drescher D, Bourauel C, Thier M. Application of the orthodontic measurement and simulation system (OMSS) in orthodontics. *Eur J Orthod*. 1991;13(3):169-178.

Appendix A – Search Strategy for Systematic Review.

Database	Search Strategy	Total
PubMed	class[All Fields] AND (ii[All Fields] OR 2[All Fields]) AND	152
	(elastic[All Fields] OR elastics[All Fields] OR ("rubber"[MeSH	
	Terms] OR "rubber"[All Fields]) OR ("elastomers"[MeSH Terms] OR	
	"elastomers"[All Fields] OR "elastomer"[All Fields])) AND	
	("malocclusion"[MeSH Terms] OR "malocclusion"[All Fields])	
	OR	
	((elastic[All Fields] OR elastics[All Fields] OR ("rubber"[MeSH	
	Terms] OR "rubber"[All Fields]) OR ("elastomers"[MeSH Terms] OR	
	"elastomers"[All Fields] OR "elastomer"[All Fields])) AND (class[All	
	Fields] AND (ii[All Fields] OR 2[All Fields]))) AND	
	(("overbite"[MeSH Terms] OR "overbite"[All Fields] OR "overjet"[All	
	Fields]) OR "angle class ii"[All Fields] OR "Malocclusion, Angle	
	Class II"[Mesh])	
Ovid/Embase	((class II.mp. OR Class 2.mp.) OR (overbite.mp. OR overjet.mp.))	158
	AND (elastic*.mp OR exp latex/ OR rubber*.mp OR elastomer*.mp)	
	AND malocclusion.mp.	
SCOPUS	TITLE-ABS-KEY(class AND (ii OR 2) AND (elastic* OR rubber*	217
	OR elastomer*) AND (malocclusion OR overjet OR overbite))	
Cochrane	class and 2 and elastic and malocclusion	21
	class and ii and elastic and malocclusion	

Appendix B – Sample Size Calculation

The sample size was estimated based on pilot data. My for tooth 1.3 with SS archwire & light elastic (7 trials) as well as tooth 1.3 with SS archwire & heavy elastic (10 trials). The power was fixed at 90% and type I error rate was fixed at 5%. The My difference among 4 groups to be detected was set at least 0.2Nmm. The minimum sample size was 44 per group is estimated from the Table 3.4.1 on page 71 of the text book, Sample size calculations in clinical research.¹

References

Chow S, Shao J, Wang H. Table 3.4.1. In: *Sample size calculations in clinical research*. CRC
 Press. Taylor & Francis Group; 2003:71.

Appendix C- Descriptive data for the maxillary arch for NitiH, NitiL, SSH and SSL groups for all measured outputs (Fx, Fy, Fz, Mx, My and Mz).

- Fx, Fy and Fz measured in Newton's (N)
- Mx, My and Mz measured in Newton-millimeters (Nmm)

WireI	Elastic	Ν	Minimum	Maximum	Mean	Std. Deviation
NITIH	Fx17	44.00	.00	.00	.00	.00
	Fy17	44.00	.00	.01	.00	.00
	Fz17	44.00	01	.01	.00	.00
	Mx17	44.00	26	.24	.02	.15
	My17	44.00	07	.06	.00	.03
	Mz17	44.00	09	.12	.01	.06
	Fx16	44.00	.00	.00	.00	.00
	Fy16	44.00	.00	.00	.00	.00
	Fz16	44.00	01	.01	.00	.00
	Mx16	44.00	09	.19	.05	.08
	My16	44.00	07	.03	01	.02
	Mz16	44.00	07	.02	01	.02
	Fx15	44.00	.00	.00	.00	.00
	Fy15	44.00	03	.02	.00	.01
	Fz15	44.00	02	.01	.00	.01
	Mx15	44.00	92	.56	03	.30
	My15	44.00	02	.04	.01	.02
	Mz15	44.00	02	.08	.02	.03
	Fx14	44.00	.05	.48	.27	.08
	Fy14	44.00	42	09	27	.08
	Fz14	44.00	16	.09	03	.07
	Mx14	44.00	24	.49	.13	.22
	My14	44.00	13	.45	.10	.13
	Mz14	44.00	49	.79	.25	.32
	Fx13	44.00	.46	1.42	1.24	.15
	Fy13	44.00	57	13	43	.08
	Fz13	44.00	.35	1.28	1.12	.15
	Mx13	44.00	.12	.89	.69	.13
	My13	44.00	-9.49	-2.67	-8.40	1.04
	Mz13	44.00	-3.79	84	-2.73	.50
	Fx12	44.00	01	.01	.00	.00
	Fy12	44.00	04	.00	.00	.01
	Fz12	44.00	.00	.00	.00	.00
	Mx12	44.00	16	.14	06	.06
	My12	44.00	24	.13	01	.04
	Mz12	44.00	37	.23	.00	.07

Fx11	44.00	.00	.02	.01	.00
Fy11	44.00	15	.00	11	.03
Fz11	44.00	03	.01	01	.01
Mx11	44.00	98	.40	33	.32
My11	44.00	05	.07	.02	.03
Mz21	44.00	02	.29	.20	.07
Fx21	44.00	.00	.01	.00	.00
Fy21	44.00	08	.00	05	.02
Fz21	44.00	01	.00	.00	.00
Mx21	44.00	21	.11	06	.07
My21	44.00	05	.03	02	.01
Mz21	44.00	02	.10	.04	.03
Fx22	44.00	.00	.00	.00	.00
Fy22	44.00	.00	.00	.00	.00
Fz22	44.00	01	.03	.01	.01
Mx22	44.00	60	.28	15	.15
My22	44.00	15	.11	04	.04
Mz22	44.00	02	.05	.01	.02
Fx23	44.00	.58	1.75	1.50	.17
Fy23	44.00	50	12	41	.07
Fz23	44.00	.33	1.09	.89 07	.11 .10
Mx23 My23	44.00 44.00	19 -6.16	.35 -1.71	.07 -4.91	.10 .64
My23 Mz23	44.00	-0.16 -1.07	-1.71 .39	-4.91 23	.64 .31
Fx24	44.00	-1.07	.14	25	.03
Fy24	44.00	02 40	.14 16	32	.03
Fz24	44.00	01	.16	.09	.04
Mx24	44.00	46	.14	06	.12
My24	44.00	18	.17	.02	.09
Mz24	44.00	71	23	59	.09
Fx25	44.00	.00	.00	.00	.00
Fy25	44.00	.00	.00	.00	.00
Fz25	44.00	01	.00	.00	.00
Mx25	44.00	33	.13	02	.09
My25	44.00	03	.02	.00	.01
Mz25	44.00	03	.02	.00	.01
Fx26	44.00	.00	.01	.00	.00
Fy26	44.00	01	.01	.00	.00
Fz26	44.00	01	.02	.00	.00
Mx26	44.00	31	.28	02	.16
My26	44.00	36	.21	01	.09
Mz26	44.00	34	.18	01	.08
Fx27	44.00	01	.00	.00	.00
Fy27	44.00	.00	.02	.01	.00
Fz27	44.00	01	.00	01	.00
Mx27	44.00	45	.50	02	.26
My27	44.00	20	.27	.03	.13

	Mz27	44.00	12	.22	.04	.09
NITIL	Fx17	44.00	.00	.00	.00	.00
	Fy17	44.00	.00	.01	.00	.00
	Fz17	44.00	01	.01	.00	.00
	Mx17	44.00	22	.25	.01	.16
	My17	44.00	06	.06	.00	.03
	Mz17	44.00	09	.09	.00	.06
-	Fx16	44.00	.00	.00	.00	.00
	Fy16	44.00	.00	.00	.00	.00
	Fz16	44.00	01	.01	.00	.00
	Mx16	44.00	11	.36	.06	.09
	My16	44.00	04	.03	01	.02
	Mz16	44.00	04	.04	01	.02
-	Fx15	44.00	.00	.00	.00	.00
	Fy15	44.00	02	.01	.00	.01
	Fz15	44.00	02	.01	.00	.00
	Mx15	44.00	74	.50	06	.28
	My15	44.00	07	.05	.00	.02
	Mz15	44.00	07	.12	.01	.03
-	Fx14	44.00	01	.10	.05	.02
	Fy14	44.00	20	05	11	.04
	Fz14	44.00	02	.06	.01	.02
	Mx14	44.00	21	.22	04	.09
	My14	44.00	08	.12	.02	.05
_	Mz14	44.00	33	.32	.00	.19
	Fx13	44.00	.38	.60	.48	.05
	Fy13	44.00	20	07	13	.04
	Fz13	44.00	.28	.44	.36	.04
	Mx13	44.00	03	.23	.09	.06
	My13	44.00	-3.52	-1.99	-2.72	.30
-	Mz13	44.00	-1.30	40	80	.24
	Fx12	44.00	.00	.00	.00	.00
	Fy12	44.00	01	.01	.00	.00
	Fz12	44.00	.00	.00	.00	.00
	Mx12	44.00	19	.16	05	.08
	My12	44.00	05	.06	01	.02
-	Mz12	44.00	04	.08	.00	.02
	Fx11	44.00	.00	.01	.00	.00
	Fy11	44.00	08	.00	05	.02
	Fz11	44.00	02	.01	01	.01
	Mx11	44.00	96	.52	25	.33
	My11	44.00	08	.08	.00	.04
-	Mz21	44.00	07	.24	.09	.06
	Fx21	44.00	.00	.00	.00	.00
	Fy21	44.00	03	.02	01	.01
	Fz21	44.00	.00	.00	.00	.00
	Mx21	44.00	18	.10	07	.06
	My21	44.00	07	.02	01	.01
-	Mz21 Ex22	44.00	06	.05	.00	.02
	Fx22 Fy22	44.00 44.00	.00 .00	.00 .00	.00 .00	.00 .00
	гудд	44.00	.00	.00	.00	.00

						.
	Fz22	44.00	01	.01	.00	.01
	Mx22	44.00	43	.21	18	.14
	My22	44.00	12	.08	05	.04
	Mz22	44.00	02	.05	.01	.02
	Fx23	44.00	.45	.67	.56	.06
	Fy23	44.00	16	04	11	.02
	Fz23	44.00	.24	.38	.30	.03
	Mx23	44.00	26	.25	01	.11
	My23	44.00	-1.92	-1.31	-1.59	.17
	Mz23	44.00	.17	.54	.29	.07
	Fx24	44.00	02	.01	01	.01
	Fy24	44.00	18	12	15	.02
	Fz24	44.00	.00	.07	.04	.02
	Mx24	44.00	29	.13	02	.10
	My24	44.00	15	.02	07	.03
	Mz24	44.00	39	24	33	.03
	Fx25	44.00	.00	.00	.00	.00
	Fy25	44.00	.00	.00	.00	.00
	Fz25	44.00	.00	.00	.00	.00
	Mx25	44.00	17	.12	02	.08
	My25	44.00	02	.02	.00	.01
	Mz25	44.00	03	.03	.00	.01
	Fx26	44.00	.00	.00	.00	.00
	Fy26	44.00	.00	.00	.00	.00
	Fz26	44.00	01	.01	.00	.00
	Mx26	44.00	22	.25	01	.14
	My26	44.00	11	.11	.00	.06
	Mz26	44.00	10	.10	.00	.05
	Fx27	44.00	01	.01	.00	.00
	Fy27	44.00	.00	.02	.01	.00
	Fz27	44.00	01	.01	.00	.00
	Mx27	44.00	41	.42	01	.26
	My27	44.00	21	.24	.01	.14
	Mz27	44.00	13	.19	.02	.09
SSH	Fx17	44.00	01	.01	.00	.00
	Fy17	44.00	03	.03	.01	.02
	Fz17	44.00	02	.01	.00	.01
	Mx17	44.00	15	.28	.05	.13
	My17	44.00	07	.09	.00	.04
	Mz17	44.00	15	.15	01	.08
	Fx16	44.00	01	.01	.00	.00
	Fy16	44.00	06	.00	04	.02
	Fz16	44.00	10	.01	01	.04
	Mx16	44.00	-3.95	.28	72	1.48
	My16	44.00	08	.76	.14	.25
	Mz16	44.00	14	.71	.08	.25
	Fx15	44.00	02	.07	.00	.02
	Fy15	44.00	03	.08	.01	.02
	Fz15	44.00	08	.02	04	.02
	Mx15	44.00	90	.46	07	.30
	My15	44.00	38	.01	08	.11
	-	- '				

	Mz15	44.00	.00	.13	.05	.03
-	Fx14	44.00	.02	.37	.18	.08
	Fy14	44.00	28	.43	09	.18
	Fz14	44.00	21	.19	.00	.08
	Mx14	44.00	24	.49	.23	.15
	My14	44.00	27	.19	08	.09
	Mz14	44.00	60	.38	.13	.24
-	Fx13	44.00	.90	1.54	1.12	.11
	Fy13	44.00	-1.28	51	78	.22
	Fz13	44.00	.88	1.33	1.07	.10
	Mx13	44.00	.85	1.55	1.17	.16
	My13	44.00	-10.43	-7.09	-8.44	.79
	Mz13	44.00	-13.79	-3.19	-5.77	2.98
-	Fx12	44.00	10	.20	.04	.07
	Fy12	44.00	13	.15	05	.07
	Fz12	44.00	07	.15	.04	.05
	Mx12	44.00	28	.38	10	.14
	My12	44.00	58	.45	12	.23
	Mz12	44.00	-2.14	2.12	.76	.83
-	Fx11	44.00	01	.01	.00	.01
	Fy11	44.00	19	.04	05	.05
	Fz11	44.00	10	.04	03	.03
	Mx11	44.00	93	.55	25	.31
	My11	44.00	11	.14	01	.05
	Mz21	44.00	07	.41	.09	.11
-	Fx21	44.00	06	.06	01	.03
	Fy21	44.00	34	.07	16	.08
	Fz21	44.00	06	.07	.01	.02
	Mx21	44.00	37	.26	11	.13
	My21	44.00	26	.08	10	.06
	Mz21	44.00	-1.79	2.31	.42	.86
-	Fx22	44.00	02	.02	.00	.01
	Fy22	44.00	12	.11	.00	.04
	Fz22	44.00	01	.13	.05	.04
	Mx22	44.00	54	.19	15	.19
	My22	44.00	14	.19	.03	.08
	Mz22	44.00	06	.13	.03	.04
-	Fx23	44.00	1.32	1.94	1.55	.13
	Fy23	44.00	-1.10	38	62	.13
	Fz23	44.00	.66	1.06	.81	.08
	Mx23	44.00	24	1.05	.38	.31
	My23	44.00	-5.86	-3.98	-4.73	.46
_	Mz23	44.00	-3.39	.43	-1.08	.91
	Fx24	44.00	04	.08	.04	.03
	Fy24	44.00	67	03	39	.14
	Fz24	44.00	.07	.44	.24	.08
	Mx24	44.00	40	.24	08	.16
	My24	44.00	84	.25	43	.25
_	Mz24	44.00	-2.68	.03	81	.63
	Fx25	44.00	16	.07	04	.05
	Fy25	44.00	07	.33	.08	.08

			• • •			
	Fz25	44.00	23	.02	07	.05
	Mx25	44.00	08	.51	.17	.13
	My25	44.00	54	.67	.11	.30
	Mz25	44.00	-1.60	.44	33	.50
	Fx26	44.00	13	.01	02	.04
	Fy26 Fz26	44.00 44.00	01 09	.03 .03	.01 02	.01 .03
	Mx26	44.00	09	.03	02	.03
	My26	44.00	35 16	.33	02 .02	.18
	My20 Mz26	44.00	10 19	.18	01	.08
	Fx27	44.00	14	.04	04	.05
	Fy27	44.00	08	.02	03	.03
	Fz27	44.00	03	.07	.01	.02
	Mx27	44.00	57	.47	04	.29
	My27	44.00	18	.35	.05	.13
	Mz27	44.00	20	.41	.10	.12
SSL	Fx17	44.00	01	.00	.00	.00
	Fy17	44.00	01	.03	.01	.01
	Fz17	44.00	.00	.01	.00	.00
	Mx17	44.00	19	.42	.05	.15
	My17	44.00	08	.03	01	.03
	Mz17	44.00	15	.11	02	.07
•	Fx16	44.00	02	.00	.00	.00
	Fy16	44.00	05	01	03	.01
	Fz16	44.00	16	.02	02	.05
	Mx16	44.00	-6.51	.22	80	1.74
	My16	44.00	04	1.17	.16	.31
	Mz16	44.00	07	1.08	.11	.30
	Fx15	44.00	02	.01	.00	.01
	Fy15	44.00	01	.06	.01	.02
	Fz15	44.00	07	.03	01	.02
	Mx15	44.00	59	.39	10	.26
	My15	44.00	48	.04	08	.15
	Mz15	44.00	05	.11	.01	.04
•	Fx14	44.00	.00	.10	.05	.02
	Fy14	44.00	22	.08	12	.10
	Fz14	44.00	07	.00	02	.02
	Mx14	44.00	23	.17	.02	.09
	My14	44.00	24	.24	01	.07
	Mz14	44.00	13	.50	.14	.09
	Fx13	44.00	.32	.50	.43	.07
	Fy13	44.00	51	.09	13	.18
	Fz13	44.00	.31	.54	.41	.06
	Mx13	44.00	.04	.54	.23	.12
	My13	44.00	.04 -4.06	-2.35	-3.02	.12 .44
	Mz13	44.00	-4.00 -4.46	-2.35	-3.02 95	1.43
	Fx12	44.00	28	.11	.02	.06
	Fx12 Fy12	44.00	28	.11	.02 06	.00
	Fy12 Fz12	44.00	20 10	.20	00	.11
	1.717	44.00	10	.00	01	.04

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Mz21 44.00 23 .22 .02 .07 Fx21 44.00 10 .03 01 .02 Fy21 44.00 16 .03 06 .04 Fz21 44.00 01 .03 .01 .01 Mx21 44.00 01 .03 .01 .01 Mx21 44.00 33 1.18 07 .21 My21 44.00 11 .04 05 .03 Mz21 44.00 62 2.40 .16 .40	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Fy21 44.00 16 .03 06 .04 Fz21 44.00 01 .03 .01 .01 Mx21 44.00 33 1.18 07 .21 My21 44.00 11 .04 05 .03 Mz21 44.00 62 2.40 .16 .40	
Fz21 44.00 01 .03 .01 .01 Mx21 44.00 33 1.18 07 .21 My21 44.00 11 .04 05 .03 Mz21 44.00 62 2.40 .16 .40	
Mx21 44.00 33 1.18 07 .21 My21 44.00 11 .04 05 .03 Mz21 44.00 62 2.40 .16 .40	
My21 44.00 11 .04 05 .03 Mz21 44.00 62 2.40 .16 .40	
Mz21 44.0062 2.40 .16 .40	
Fx22 44.0001 .02 .00 .01	
Fy22 44.0010 .0601 .03	
Fz22 44.0002 .06 .01 .02	
Mx22 44.0062 .1223 .17	
My22 44.0020 .0506 .06	
Mz22 44.0013 .13 .01 .05	
Fx23 44.00 .41 .71 .54 .06	
Fy23 44.0049 .1819 .16	
Fz23 44.00 .08 .39 .26 .06	
Mx23 44.0012 .49 .15 .14	
My23 44.00 -2.0673 -1.40 .24	
Mz23 44.00 -2.25 .6379 .81	
Fx24 44.0002 .08 .01 .02	
Fy24 44.0047 .0413 .13	
Fz24 44.0001 .25 .09 .06	
Mx24 44.0039 .1408 .12	
My24 44.0051 .4308 .16	
Mz24 44.00 -1.84 .5626 .48	
Fx25 44.0030 .0802 .05	
Fy25 44.0007 .26 .03 .06	
Fz25 44.0017 .0303 .04	
Mx25 44.0018 .45 .02 .12	
My25 44.0031 .59 .05 .21	
Mz25 44.00 -1.21 .8014 .37	
Fx26 44.0007 .0201 .01	
Fy26 44.0002 .02 .00 .01	
Fz26 44.0004 .03 .00 .02	
Mx26 44.0024 .4201 .16	
My26 44.0025 .16 .00 .08	
Mz26 44.0014 .0901 .06	
Fx27 44.0019 .0402 .03	
Fy27 44.0009 .0401 .02	
Fz27 44.0002 .05 .01 .01	

Mx27	44.00	43	.32	02	.24
My27	44.00	19	.40	.02	.11
Mz27	44.00	16	.36	.02	.09

Appendix D- Pairwise Comparisons for the Maxillary Teeth for NitiH, NitiL, SSH and SSL Groups for all Measured Outputs (Fx, Fy, Fz, Mx, My and Mz)

- Fx, Fy and Fz measured in Newton's (N)
- Mx, My and Mz measured in Newton-millimeters (Nmm)

								ence Interval ference
			Wire	Mean	Std.		Lower	Upper
Measure	Tooth	WireElastic	Elastic	Difference	Error	Sig.	Bound	Bound
Fx	17	NITIH	NITIL	.00	.00	1.000	.00	.00
1 A	17	111111	SSH	.00	.00	.658	.00	.00
			SSL	.00	.00	1.000	.00	.00
		NITIL	NITIH	.00	.00	1.000	.00	.00
		TUTTL	SSH	.00	.00	.912	.00	.00
			SSL	.00	.00	1.000	.00	.00
		SSH	NITIH	.00	.00	.658	.00	.00
		5511	NITIL	.00	.00	.912	.00	.00
			SSL	.00	.00	.566	.00	.00
		SSL	NITIH	.00	.00	1.000	.00	.00
		552	NITIL	.00	.00	1.000	.00	.00
			SSH	.00	.00	.566	.00	.00
	16	NITIH	NITIL	.00	.00	1.000	.00	.00
	10		SSH	.00	.00	.000	.00	.01
			SSL	.00	.00	.000	.00	.01
		NITIL	NITIH	.00	.00	1.000	.00	.00
			SSH	.00	.00	.000	.00	.01
			SSL	.00	.00	.000	.00	.01
		SSH	NITIH	.00	.00	.000	01	.00
			NITIL	.00	.00	.000	01	.00
			SSL	.00	.00	1.000	.00	.00
		SSL	NITIH	.00	.00	.000	01	.00
			NITIL	.00	.00	.000	01	.00
			SSH	.00	.00	1.000	.00	.00
	15	NITIH	NITIL	.00	.00	1.000	01	.00
			SSH	.00	.00	.095	.00	.01
			SSL	.00	.00	1.000	01	.00
		NITIL	NITIH	.00	.00	1.000	.00	.01
			SSH	.00	.00	.035	.00	.01
			SSL	.00	.00	1.000	.00	.00
		SSH	NITIH	.00	.00	.095	01	.00
			NITIL	.00	.00	.035	01	.00
			SSL	01	.00	.020	01	.00

-	SSL	NITIH	.00	.00	1.000	.00	.01
	SSL	NITIL	.00	.00	1.000	.00	.01
		SSH	.01	.00	.020	.00	.01
14	NITIH	NITIL	.21	.01	.000	.18	.25
		SSH	.08	.01	.000	.05	.12
		SSL	.22	.01	.000	.19	.25
	NITIL	NITIH	21	.01	.000	25	18
		SSH	13	.01	.000	16	10
		SSL	.01	.01	1.000	03	.04
	SSH	NITIH	08	.01	.000	12	05
		NITIL	.13	.01	.000	.10	.16
	SSL	SSL NITIH	.14	.01 .01	.000 .000	.10	.17 19
	55L	NITIL	22 01	.01	1.000	23 04	.03
		SSH	14	.01	.000	17	10
13	NITIH	NITIL	.76	.01	.000	.71	.82
		SSH	.12	.02	.000	.06	.18
		SSL	.81	.02	.000	.76	.87
	NITIL	NITIH	76	.02	.000	82	71
		SSH	65	.02	.000	71	59
		SSL	.05	.02	.141	01	.11
	SSH	NITIH	12	.02	.000	18	06
		NITIL	.65	.02	.000	.59	.71
		SSL	.70	.02	.000	.64	.76
	SSL	NITIH	81	.02	.000	87	76
		NITIL	05	.02	.141	11	.01
12	NITIH	SSH NITIL	70 .00	.02 .01	.000 1.000	76 03	64 .03
12	NIIII	SSH	04	.01	.001	05	01
		SSL	02	.01	.316	05	.01
	NITIL	NITIH	.00	.01	1.000	03	.03
		SSH	04	.01	.001	06	01
		SSL	02	.01	.282	05	.01
	SSH	NITIH	.04	.01	.001	.01	.06
		NITIL	.04	.01	.001	.01	.06
		SSL	.02	.01	.366	01	.04
	SSL	NITIH	.02	.01	.316	01	.05
		NITIL	.02	.01	.282	01	.05
11	NUTILI	SSH	02	.01	.366	04	.01
11	NITIH	NITIL SSH	.00 .01	.00 .00	.000 .00	.00 .00	.01 .01
		SSL	.01	.00	.00	.00	.01
	NITIL	NITIH	.00	.00	.000	01	.01
		SSH	.00	.00	.738	.00	.00
		SSL	.00	.00	.061	.00	.00
	SSH	NITIH	01	.00	.000	01	.00
		NITIL	.00	.00	.738	.00	.00

			SSL	.00	.00	1.000	.00	.00
		SSL	NITIH	01	.00	.000	01	.00
			NITIL	.00	.00	.061	.00	5.86E-5
			SSH	.00	.00	1.000	.00	.00
-	21	NITIH	NITIL	.00	.00	1.000	01	.01
			SSH	.01	.00	.011	.00	.02
			SSL	.01	.00	.150	.00	.02
		NITIL	NITIH	.00	.00	1.000	01	.01
			SSH	.01	.00	.024	.00	.02
			SSL	.01	.00	.276	.00	.02
		SSH	NITIH	01	.00	.011	02	.00
			NITIL	01	.00	.024	02	.00
		SSL	SSL NITIH	.00	.00 .00	1.000 .150	01	.01
		55L	NITIH	01 01	.00	.130	02 02	.00
			SSH	01	.00	1.000	02 01	.00
-	22	NITIH	NITIL	.00	.00	1.000	.00	.00
			SSH	.00	.00	1.000	.00	.00
			SSL	.00	.00	1.000	.00	.00
		NITIL	NITIH	.00	.00	1.000	.00	.00
			SSH	.00	.00	1.000	.00	.00
			SSL	.00	.00	1.000	.00	.00
		SSH	NITIH	.00	.00	1.000	.00	.00
			NITIL	.00	.00	1.000	.00	.00
			SSL	.00	.00	.241	.00	.00
		SSL	NITIH	.00	.00	1.000	.00	.00
			NITIL	.00	.00	1.000	.00	.00
-	22		SSH	.00	.00	.241	.00	.00
	23	NITIH	NITIL SSH	.94	.02	.00	.88	1.01 .01
			SSH SSL	06 .96	.02 .02	.150 .000	12 .89	1.02
		NITIL	NITIH	94	.02	.000	-1.01	88
		TATTLE	SSH	-1.00	.02	.000	-1.06	93
			SSL	.01	.02	1.000	05	.08
		SSH	NITIH	.06	.02	.150	01	.12
			NITIL	1.00	.02	.000	.93	1.06
			SSL	1.01	.02	.000	.95	1.08
		SSL	NITIH	96	.02	.000	-1.02	89
			NITIL	01	.02	1.000	08	.05
-			SSH	-1.01	.02	.000	-1.08	95
	24	NITIH	NITIL	.03	.01	.000	.02	.04
			SSH	02	.01	.000	04	01
			SSL	.01	.01	1.000	01	.02
		NITIL	NITIH	03	.01	.000	04	02
			SSH	05	.01	.000	07	04
		SSH	SSL NITIH	02	.01 .01	.000 .000	04	01 .04
		221	NITIH	.02	.01	.000	.01	.04

	•		NITIL	.05	.01	000	.04	.07
			SSL	.03	.01	.000	.04	.07
		SSL	NITIH	01	.01	1.000	02	.04
		55L	NITIL	.02	.01	.000	.01	.01
			SSH	03	.01	.000	04	01
	25	NITIH	NITIL	.00	.01	1.000	04	.02
	25	NIT III	SSH	.00	.01	.000	.03	.02
			SSL	.04	.01	.108	.00	.00
		NITIL	NITIH	.02	.01	1.000	02	.04
		INTIL	SSH	.00	.01	.000	.03	.02
			SSL	.04	.01	.109	.00	.00
		SSH	NITIH	04	.01	.000	06	03
		5511	NITIL	04	.01	.000	06	03
			SSL	04	.01	.002	05	01
		SSL	NITIH	02	.01	.108	04	.00
		551	NITIL	02	.01	.108	04	.00
			SSH	.02	.01	.002	.01	.00
	26	NITIH	NITIL	.00	.00	1.002	01	.03
	20		SSH	.02	.00	.000	.01	.03
			SSL	.02	.00	.983	01	.02
		NITIL	NITIH	.00	.00	1.000	01	.01
			SSH	.02	.00	.000	.01	.03
			SSL	.01	.00	1.000	01	.02
		SSH	NITIH	02	.00	.000	03	01
		2011	NITIL	02	.00	.000	03	01
			SSL	02	.00	.002	03	.00
		SSL	NITIH	01	.00	.983	02	.01
			NITIL	01	.00	1.000	02	.01
			SSH	.02	.00	.002	.00	.03
	27	NITIH	NITIL	.00	.01	1.000	02	.02
			SSH	.04	.01	.000	.02	.06
			SSL	.02	.01	.041	.00	.04
		NITIL	NITIH	.00	.01	1.000	02	.02
			SSH	.04	.01	.000	.02	.06
			SSL	.02	.01	.032	.00	.04
		SSH	NITIH	04	.01	.000	06	02
			NITIL	04	.01	.000	06	02
			SSL	02	.01	.008	04	.00
		SSL	NITIH	02	.01	.041	04	.00
			NITIL	02	.01	.032	04	.00
			SSH	.02	.01	.008	.00	.04
Fy	17	NITIH	NITIL	.00	.00	1.000	01	.01
			SSH	01	.00	.011	01	.00
			SSL	01	.00	.000	02	.00
		NITIL	NITIH	.00	.00	1.000	01	.01
			SSH	01	.00	.003	01	.00
		CCII	SSL NITIH	01	.00	.000	02	.00
		SSH	NITIH	.01	.00	.011	.00	.01

SSL .00 .00 1.000 .001 .00 SSL NITH .01 .00 .000 .00 .02 SSH .00 .00 1.000 .00 .00 .01 16 NITH NITH .01 .00 .00 .03 .04 SSH .03 .00 .000 .03 .04 .03 .04 SSH .03 .00 .000 .03 .04 .03 .04 NITH .01 .00 .000 .03 .04 .03 .04 SSH .01 .00 4.52EF .04 .03 .04 SSH NITH .04 .00 4.56F .04 .03 SSL NITH .00 .00 4.52EF .04 .03 SSL NITH .03 .00 6.866F .04 .03 SSL NITH .01 .00 .000 .			NITH	01	00	.003	00	01
SSL NITIH .01 .00 .000 .000 .00 .02 I6 NITIH NITIL .00 .00 .000 .00 .01 I6 NITIH NITIL .00 .00 .000 .00 .01 I6 NITIL .03 .00 .000 .03 .04 SSL .03 .00 .000 .03 .04 NITIL NITIH .00 .00 .03 .04 SSH .04 .00 .000 .03 .04 SSH .04 .00 .000 .03 .04 SSL .01 .00 .02 .04 03 SSL .01 .00 .00 .04 .03 NITIL .03 .00 6.866E .04 .03 SSH .01 .00 .000 .00 .01 SSH .01 .00 .00 .00 .00			NITIL SSI	.01	.00		.00	.01
NITIL .01 .00 .000 .000 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .01 16 NITH .00 .00 .00 .03 .04 SSH .03 .00 .000 .03 .04 NITH .00 .00 .000 .03 .04 SSH .01 .00 .000 .03 .04 SSH .03 .00 .000 .03 .04 SSH .011 .00 4.526E: .04 .03 SSL .01 .00 .000 .01 .00 SSL NITH .03 .00 6.366E: .04 .03 SSH .01 .00 .00 .01 .00 .01 .01 SSL .01 .00 .00 .01 <th></th> <th>122</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		122						
SSH .00 .00 1.000 .00 .01 16 NITH NITH .01 .00 1.000 .01 .01 SSH .03 .00 .000 .03 .04 NITIL NITH .00 .00 .03 .04 NITIL NITH .00 .00 .03 .04 SSL .03 .00 .000 .03 .04 SSL .03 .00 .000 .03 .04 SSL .03 .00 .000 .03 .04 SSL .03 .00 .6866E .04 .03 SSL .01 .00 .00 .01 .00 SSL .01 .00 .00 .01 .01 SSH .01 .00 .00 .01 .01 SSH .01 .00 .00 .01 .01 SSL .01 .00 .01		DDL						
16 NITH NITH NITH 0.00 1.000 01 0.01 SSL .04 .00 .000 .03 .04 NITH NITH .00 .000 .03 .04 NITH NITH .00 .00 .000 .03 .04 SSH .04 .00 .000 .03 .04 SSH .04 .00 .000 .03 .04 SSH .01 .00 4.526E 04 03 SSL NITH 04 .00 4.526E 04 03 SSL NITH 03 .00 6.866E 04 03 SSL NITH 03 .00 1.00 .00 0.00 SSL NITH 03 .00 1.00 .00 .01 SSL 0.01 .00 .000 .00 .01 .01 SSL 0.01 .00 .000 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	NITIH						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								
NITIL NITIH .00 .00 1.000 01 .01 SSH .04 .00 .000 .03 .04 SSH NITIL 04 .00 4.08E- 04 03 NITIL 04 .00 4.08E- 04 03 SSL 01 .00 .000 .01 .00 SSL 01 .00 6.866E- .04 03 NITIL 03 .00 6.866E- .04 03 NITIL 03 .00 6.866E- .04 03 SSH .01 .00 .000 .00 .01 SSH .01 .00 .00 .01 .03 SSH .01 .00 .000 .01 .02 .00 SSH 01 .00 .000 .001 .02 .00 SSH NITIH .01 .00 .001 .02 .00 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		NITIL	NITIH	.00	.00	1.000	01	.01
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			SSH	.04	.00	.000	.03	.04
$\begin{array}{c c c c c c c c c c c c c c c c c c c $.03	.00		.03	.04
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		SSH	NITIH	04	.00		04	03
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			NITIL	04	.00		04	03
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			SSL	01	.00	.000	01	.00
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		SSL	NITIH	03	.00		04	03
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			NITIL	03	.00		04	03
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			SSH	.01	.00	.000	.00	.01
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	15	NITIH	NITIL	.00	.00	1.000	01	.01
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		NITIL						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0011						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		55H						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		SSL						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		SSE						
14 NITIH NITIL 15 .02 .000 22 09 SSH 18 .02 .000 24 11 SSL 15 .02 .000 24 11 SSL 15 .02 .000 24 11 NITIL NITIH .15 .02 .000 .22 08 NITIL NITIH .15 .02 .000 .09 .22 SSH 02 .02 1.000 09 .04 SSL .00 .02 1.000 06 .07 SSH NITIH .18 .02 .000 .11 .24 NITIL .02 .02 1.000 04 .09 SSL .03 .02 1.000 04 .09 SSL .03 .02 1.000 07 .06 SSH 03 .02 1.000 09 .04								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	NITIH						
NITIL NITIH .15 .02 .000 .09 .22 SSH 02 .02 1.000 09 .04 SSL .00 .02 1.000 06 .07 SSH NITIH .18 .02 .000 .11 .24 NITIL .02 .02 1.000 04 .09 SSH NITIH .18 .02 .000 .11 .24 NITIL .02 .02 1.000 04 .09 SSL .03 .02 1.000 04 .09 SSL NITIH .15 .02 .000 .08 .21 NITIL .00 .02 1.000 07 .06 SSH 03 .02 1.000 09 .04 13 NITIH NITIL 29 .03 .000 38 21 SSH .35 .03 .000 .27 .				18	.02	.000	24	
SSH 02 .02 1.000 09 .04 SSL .00 .02 1.000 06 .07 SSH NITIH .18 .02 .000 .11 .24 NITIL .02 .02 1.000 04 .09 SSL NITIL .02 .02 1.000 04 .09 SSL .03 .02 1.000 04 .09 SSL NITIH .15 .02 .000 .08 .21 NITIL .00 .02 1.000 07 .06 SSH 03 .02 1.000 07 .06 SSH 03 .02 1.000 09 .04 13 NITIH NITIL 29 .03 .000 38 21 SSH .35 .03 .000 .27 .44			SSL	15	.02	.000	21	08
SSL .00 .02 1.000 06 .07 SSH NITIH .18 .02 .000 .11 .24 NITIL .02 .02 1.000 04 .09 SSL .03 .02 1.000 04 .09 SSL .03 .02 1.000 04 .09 SSL NITIH .15 .02 .000 .08 .21 NITIL .00 .02 1.000 07 .06 SSH 03 .02 1.000 09 .04 13 NITIH NITIL 29 .03 .000 38 21 SSH .35 .03 .000 .27 .44		NITIL		.15	.02	.000	.09	.22
SSH NITIH .18 .02 .000 .11 .24 NITIL .02 .02 1.000 04 .09 SSL .03 .02 1.000 04 .09 SSL .03 .02 1.000 04 .09 SSL NITIH .15 .02 .000 .08 .21 NITIL .00 .02 1.000 07 .06 SSH 03 .02 1.000 09 .04 13 NITIH NITIL 29 .03 .000 38 21 SSH .35 .03 .000 .27 .44								
NITIL .02 .02 1.000 04 .09 SSL .03 .02 1.000 04 .09 SSL NITIH .15 .02 .000 .08 .21 NITIL .00 .02 1.000 07 .06 SSH 03 .02 1.000 09 .04 13 NITIH NITIL 29 .03 .000 38 21 SSH .35 .03 .000 .27 .44								
SSL .03 .02 1.000 04 .09 SSL NITIH .15 .02 .000 .08 .21 NITIL .00 .02 1.000 07 .06 SSH 03 .02 1.000 09 .04 13 NITIH NITIL 29 .03 .000 38 21 SSH .35 .03 .000 .27 .44		SSH						
SSL NITIH .15 .02 .000 .08 .21 NITIL .00 .02 1.000 07 .06 SSH 03 .02 1.000 09 .04 13 NITIH NITIL 29 .03 .000 38 21 SSH .35 .03 .000 .27 .44								
NITIL .00 .02 1.000 07 .06 SSH 03 .02 1.000 09 .04 13 NITIH NITIL 29 .03 .000 38 21 SSH .35 .03 .000 .27 .44		CCI						
SSH 03 .02 1.000 09 .04 13 NITIH NITIL 29 .03 .000 38 21 SSH .35 .03 .000 .27 .44		ാവ						
13 NITIH NITIL 29 .03 .000 38 21 SSH .35 .03 .000 .27 .44								
SSH .35 .03 .000 .27 .44	13	NITIH						
SSL30 .03 .0003922			SSL	30	.03	.000	39	22
NITIL NITIH .29 .03 .000 .21 .38		NITIL						
SSH .65 .03 .000 .56 .73			SSH	.65	.03	.000	.56	.73
SSL01 .03 1.00009 .08								
<u>SSH</u> NITIH35 .03 .0004427		SSH	NITIH	35	.03	.000	44	27

		NUTU	(5	02	000	70	5.0
		NITIL SSL	65 65	.03 .03	.000 .000	73 74	56 57
	SSL	NITIH	.30	.03	.000	.22	.39
	SSL	NITIL	.01	.03	1.000	08	.09
		SSH	.65	.03	.000	.57	.74
12	NITIH	NITIL	.00	.01	1.000	04	.03
12	NIT III	SSH	.04	.01	.011	.01	.03
		SSL	.06	.01	.000	.02	.10
	NITIL	NITIH	.00	.01	1.000	03	.04
		SSH	.05	.01	.004	.01	.08
		SSL	.06	.01	.000	.03	.10
	SSH	NITIH	04	.01	.011	08	01
		NITIL	05	.01	.004	08	01
		SSL	.02	.01	1.000	02	.05
	SSL	NITIH	06	.01	.000	10	02
		NITIL	06	.01	.000	10	03
		SSH	02	.01	1.000	05	.02
11	NITIH	NITIL	06	.01	.000	08	04
		SSH	06	.01	.000	08	04
		SSL	09	.01	.000	11	07
	NITIL	NITIH	.06	.01	.000	.04	.08
		SSH	.00	.01	1.000	02	.02
	~~~~	SSL	04	.01	.000	06	02
	SSH	NITIH	.06	.01	.000	.04	.08
		NITIL	.00	.01	1.000	02	.02
	0.01	SSL	03	.01	.000	05	01
	SSL	NITIH	.09	.01	.000	.07	.11
		NITIL SSH	.04 .03	.01 .01	.000 .000	.02 .01	.06 .05
21	NITIH	NITIL	04	.01	.000	07	02
21	INI I III	SSH	04	.01	.000	.09	.14
		SSL	.01	.01	1.000	02	.03
	NITIL	NITIH	.04	.01	.000	.02	.07
		SSH	.15	.01	.000	.13	.18
		SSL	.05	.01	.000	.02	.08
	SSH	NITIH	11	.01	.000	14	09
		NITIL	15	.01	.000	18	13
		SSL	11	.01	.000	13	08
	SSL	NITIH	01	.01	1.000	03	.02
		NITIL	05	.01	.000	08	02
		SSH	.11	.01	.000	.08	.13
22	NITIH	NITIL	.00	.01	1.000	02	.02
		SSH	01	.01	1.000	02	.01
		SSL	.00	.01	1.000	01	.02
	NITIL	NITIH	.00	.01	1.000	02	.02
		SSH	.00	.01	1.000	02	.01
	0011	SSL	.00	.01	1.000	01	.02
	SSH	NITIH	.01	.01	1.000	01	.02
		NITIL	.00	.01	1.000	01	.02
	001	SSL	.01	.01	.654	01	.02
	SSL	NITIH	.00	.01	1.000	02	.01

		NUTU	0.0	0.1	1 000	0.0	01
		NITIL	.00	.01	1.000	02	.01
23	NITIH	SSH	01 30	.01	.654	02	.01
25	NIIII	NITIL SSH	30	.02 .02	.000 .000	36 .15	24 .27
		SSL	22	.02	.000	28	16
	NITIL	NITIH	.30	.02	.000	.24	.36
	INI I IL	SSH	.50	.02	.000	.24 .45	.57
		SSL	.08	.02	.000	.43	.14
	SSH	NITIH	21	.02	.000	27	15
	5511	NITIL	51	.02	.000	57	45
		SSL	43	.02	.000	49	37
	SSL	NITIH	.22	.02	.000	.16	.28
	552	NITIL	08	.02	.005	14	02
		SSH	.43	.02	.000	.37	.49
24	NITIH	NITIL	17	.02	.000	22	11
		SSH	.07	.02	.005	.02	.13
		SSL	19	.02	.000	25	14
	NITIL	NITIH	.17	.02	.000	.11	.22
		SSH	.24	.02	.000	.18	.30
		SSL	02	.02	1.000	08	.03
	SSH	NITIH	07	.02	.005	13	02
		NITIL	24	.02	.000	30	18
		SSL	26	.02	.000	32	21
	SSL	NITIH	.19	.02	.000	.14	.25
		NITIL	.02	.02	1.000	03	.08
		SSH	.26	.02	.000	.21	.32
25	NITIH	NITIL	.00	.01	1.000	03	.03
		SSH	08	.01	.000	11	05
		SSL	03	.01	.015	06	.00
	NITIL	NITIH	.00	.01	1.000	03	.03
		SSH	08	.01	.000	11	05
	0.011	SSL	03	.01	.015	06	.00
	SSH	NITIH	.08	.01	.000	.05	.11
		NITIL	.08	.01	.000	.05	.11
	SSL	SSL NITIH	.04	.01	.001 .015	.01	.07 .06
	SSL	NITIH	.03	.01 .01	.015	.00 .00	.06 .06
		SSH	04	.01	.013	.00 07	01
26	NITIH	NITIL	.04	.01	1.000	.00	.00
20		SSH	01	.00	.000	01	01
		SSL	.01	.00	.450	01	.01
	NITIL	NITIH	.00	.00	1.000	.00	.00
		SSH	01	.00	.000	01	01
		SSL	.00	.00	.782	01	.00
	SSH	NITIH	.01	.00	.000	.01	.01
		NITIL	.01	.00	.000	.01	.01
		SSL	.01	.00	.000	.00	.01
	SSL	NITIH	.00	.00	.450	.00	.01
		NITIL	.00	.00	.782	.00	.01
		SSH	01	.00	.000	01	.00
 27	NITIH	NITIL	.00	.00	1.000	.00	.01

l			CCII	04	00	000	02	05
			SSH SSL	.04 .02	.00 .00	.000 .000	.03 .01	.05 .03
		NITIL	NITIH	.02	.00	1.000	01	.03
		INITIL	SSH	.00	.00	.000	.03	.00
			SSL	.04	.00	.000	.03	.04
		SSH	NITIH	04	.00	.000	05	03
		5511	NITIL	04	.00	.000	04	03
			SSL	02	.00	.000	03	01
		SSL	NITIH	02	.00	.000	03	01
			NITIL	02	.00	.000	02	01
			SSH	.02	.00	.000	.01	.03
Fz	17	NITIH	NITIL	.00	.00	1.000	.00	.00
			SSH	.00	.00	.001	.00	.01
			SSL	.00	.00	.235	.00	.00
		NITIL	NITIH	.00	.00	1.000	.00	.00
			SSH	.00	.00	.000	.00	.01
			SSL	.00	.00	1.000	.00	.00
		SSH	NITIH	.00	.00	.001	01	.00
			NITIL	.00	.00	.000	01	.00
			SSL	.00	.00	.000	01	.00
		SSL	NITIH	.00	.00	.235	.00	.00
			NITIL	.00	.00	1.000	.00	.00
			SSH	.00	.00	.000	.00	.01
	16	NITIH	NITIL	.00	.01	1.000	02	.02
			SSH	.02	.01	.117	.00	.03
			SSL	.02	.01	.084	.00	.03
		NITIL	NITIH	.00	.01	1.000	02	.02
			SSH	.02	.01	.087	.00	.03
		COLL	SSL	.02	.01	.062	.00	.04
		SSH	NITIH	02	.01	.117	03	.00
			NITIL	02 .00	.01 .01	.087 1.000	03	.00
		SSL	SSL NITIH	02	.01	.084	02 03	.02
		35L	NITIL	02	.01	.084	03 04	.00
			SSH	.02	.01	1.002	04	.00
-	15	NITIH	NITIL	.00	.00	1.000	01	.02
	15	111111	SSH	.04	.00	.000	.03	.05
			SSL	.01	.00	.012	.00	.02
		NITIL	NITIH	.00	.00	1.000	01	.01
			SSH	.04	.00	.000	.03	.05
			SSL	.01	.00	.002	.00	.02
		SSH	NITIH	04	.00	.000	05	03
			NITIL	04	.00	.000	05	03
			SSL	03	.00	.000	04	02
		SSL	NITIH	01	.00	.012	02	.00
			NITIL	01	.00	.002	02	.00
			SSH	.03	.00	.000	.02	.04
-	14	NITIH	NITIL	05	.01	.001	08	02
			SSH	03	.01	.033	06	.00
			SSL	01	.01	1.000	05	.02
		NITIL	NITIH	.05	.01	.001	.02	.08

				1			
		SSH	.01	.01	1.000	02	.05
		SSL	.03	.01	.033	.00	.07
	SSH	NITIH	.03	.01	.033	.00	.06
		NITIL	01	.01	1.000	05	.02
		SSL	.02	.01	.644	01	.05
	SSL	NITIH	.01	.01	1.000	02	.05
		NITIL	03	.01	.033	07	.00
12		SSH	02	.01	.644	05	.01
13	NITIH	NITIL	.75	.02	.000	.70	.81
		SSH	.05	.02	.106	01	.10
	NUTU	SSL	.70	.02	.000	.65	.76
	NITIL	NITIH	75	.02	.000	81	70
		SSH	70	.02	.000	76	65
	0011	SSL	05	.02	.118	10	.01
	SSH	NITIH	05	.02	.106	10	.01
		NITIL	.70	.02	.000	.65	.76
	661	SSL	.65	.02	.000	.60	.71 65
	SSL	NITIH	70	.02	.000	76	
		NITIL SSH	.05 65	.02 .02	.118 .000	01 71	.10 60
12	NITIH	NITIL	.00	.02	1.000	02	.02
12	INI I III	SSH	04	.01	.000	02 06	02
		SSL	04	.01	1.000	00	.02
	NITIL	NITIH	.00	.01	1.000	01	.02
	INTIL	SSH	04	.01	.000	02	02
		SSL	.00	.01	1.000	02	.02
	SSH	NITIH	.00	.01	.000	.02	.02
	5511	NITIL	.04	.01	.000	.02	.06
		SSL	.04	.01	.000	.03	.06
	SSL	NITIH	.00	.01	1.000	02	.01
	552	NITIL	.00	.01	1.000	02	.02
		SSH	04	.01	.000	06	03
11	NITIH	NITIL	.00	.00	1.000	01	.01
		SSH	.02	.00	.000	.01	.03
		SSL	.01	.00	.009	.00	.03
	NITIL	NITIH	.00	.00	1.000	01	.01
		SSH	.02	.00	.000	.01	.03
		SSL	.01	.00	.005	.00	.03
	SSH	NITIH	02	.00	.000	03	01
		NITIL	02	.00	.000	03	01
		SSL	01	.00	.637	02	.00
	SSL	NITIH	01	.00	.009	03	.00
		NITIL	01	.00	.005	03	.00
		SSH	.01	.00	.637	.00	.02
21	NITIH	NITIL	.00	.00	1.000	01	.01
		SSH	02	.00	.000	02	01
		SSL	01	.00	.001	02	.00
	NITIL	NITIH	.00	.00	1.000	01	.01
		SSH	01	.00	.000	02	01
		SSL	01	.00	.010	02	.00
	SSH	NITIH	.02	.00	.000	.01	.02

			NUTU	01	00	000	01	02
			NITIL SSL	.01 .00	.00 .00	.000 .712	.01 .00	.02 .01
		SSL	NITIH	.00	.00	./12	.00	.01
		33L	NITIL	.01	.00	.001	.00 .00	.02
			SSH	.00	.00	.712	01	.02
-	22	NITIH	NITIL	.00	.00	.093	.00	.00
			SSH	04	.00	.000	05	03
			SSL	.00	.00	1.000	01	.02
		NITIL	NITIH	01	.00	.093	02	.00
			SSH	05	.00	.000	06	04
			SSL	01	.00	.692	02	.00
		SSH	NITIH	.04	.00	.000	.03	.05
			NITIL	.05	.00	.000	.04	.06
			SSL	.04	.00	.000	.03	.06
		SSL	NITIH	.00	.00	1.000	02	.01
			NITIL	.01	.00	.692	.00	.02
			SSH	04	.00	.000	06	03
-	23	NITIH	NITIL	.59	.02	.000	.54	.63
			SSH	.08	.02	.000	.03	.12
			SSL	.63	.02	.000	.59	.68
		NITIL	NITIH	59	.02	.000	63	54
			SSH	51	.02	.000	55	47
			SSL	.05	.02	.026	.00	.09
		SSH	NITIH	08	.02	.000	12	03
			NITIL	.51	.02	.000	.47	.55
			SSL	.56	.02	.000	.51	.60
		SSL	NITIH	63	.02	.000	68	59
			NITIL	05	.02	.026	09	.00
-	24	N LUTELLI	SSH	56	.02	.000	60	51
	24	NITIH	NITIL	.05	.01	.000	.02	.08
			SSH	15	.01	.000 1.000	18	12
		NITIL	SSL	.00	.01		03	.03
		NITIL	NITIH SSH	05 20	.01 .01	.000 .000	08 23	02 17
			SSL	05	.01	.000	23	17
		SSH	NITIH	.15	.01	.000	.12	.18
		5511	NITIL	.20	.01	.000	.12	.13
			SSL	.15	.01	.000	.12	.18
		SSL	NITIH	.00	.01	1.000	03	.03
			NITIL	.05	.01	.000	.02	.08
			SSH	15	.01	.000	18	12
-	25	NITIH	NITIL	.00	.01	1.000	02	.02
			SSH	.07	.01	.000	.05	.08
			SSL	.02	.01	.002	.01	.04
		NITIL	NITIH	.00	.01	1.000	02	.02
			SSH	.07	.01	.000	.05	.08
			SSL	.02	.01	.001	.01	.04
		SSH	NITIH	07	.01	.000	08	05
			NITIL	07	.01	.000	08	05
			SSL	04	.01	.000	06	02
		SSL	NITIH	02	.01	.002	04	01

1			NUTU	02	01	0.01	04	01
			NITIL SSH	02	.01	.001 .000	04	01
	26	NITIH		.04	.01		.02	.06
	20	NITH	NITIL SSH	.00	.00	1.000 .000	01 .01	.01 .03
			SSH SSL	.02	.00 .00	1.000	.01 01	.03 .01
		NITIL	NITIH	.00	.00	1.000	01	.01
		NITIL	SSH	.00	.00	.000	01 .01	.01
			SSL	.02	.00	1.000	.01 01	.03
		SSH	NITIH	02	.00	.000	03	01
		5511	NITIL	02	.00	.000	03	01
			SSL	02	.00	.000	03	01
		SSL	NITIH	.00	.00	1.000	01	.01
		55L	NITIL	.00	.00	1.000	01	.01
			SSH	.00	.00	.000	.01	.01
	27	NITIH	NITIL	.02	.00	1.000	01	.00
	27		SSH	02	.00	.000	01	01
			SSL	02	.00	.000	02	.00
		NITIL	NITIH	.00	.00	1.000	.02	.00
		INTIL	SSH	02	.00	.000	03	01
			SSL	01	.00	.012	02	.00
		SSH	NITIH	.02	.00	.000	.01	.03
		2011	NITIL	.02	.00	.000	.01	.03
			SSL	.01	.00	.031	.00	.02
		SSL	NITIH	.01	.00	.000	.00	.02
			NITIL	.01	.00	.012	.00	.02
			SSH	01	.00	.031	02	.00
Mx	17	NITIH	NITIL	.02	.03	1.000	07	.10
			SSH	02	.03	1.000	11	.06
			SSL	03	.03	1.000	11	.05
		NITIL	NITIH	02	.03	1.000	10	.07
			SSH	04	.03	1.000	12	.04
			SSL	05	.03	.849	13	.04
		SSH	NITIH	.02	.03	1.000	06	.11
			NITIL	.04	.03	1.000	04	.12
			SSL	01	.03	1.000	09	.08
		SSL	NITIH	.03	.03	1.000	05	.11
			NITIL	.05	.03	.849	04	.13
			SSH	.01	.03	1.000	08	.09
	16	NITIH	NITIL	01	.24	1.000	66	.64
			SSH	.77	.24	.011	.12	1.42
			SSL	.84	.24	.004	.19	1.49
		NITIL	NITIH	.01	.24	1.000	64	.66
			SSH	.78	.24	.010	.13	1.43
			SSL	.85	.24	.004	.20	1.50
		SSH	NITIH	77	.24	.011	-1.42	12
			NITIL	78	.24	.010	-1.43	13
		~~-	SSL	.07	.24	1.000	58	.72
		SSL	NITIH	84	.24	.004	-1.49	19
			NITIL	85	.24	.004	-1.50	20
	1.5	11/20111	SSH	07	.24	1.000	72	.58
	15	NITIH	NITIL	.03	.06	1.000	13	.20

SSL         .07         .06         1.000        09         .24           NITIL         NITIH        03         .06         1.000        20         .13           SSH         .01         .06         1.000        13         .20           SSH         .01         .06         1.000        13         .20           SSH         .011         .06         1.000        13         .20           SSH         .011         .06         1.000        21         .12           NITIL        01         .06         1.000        24         .09           SSL         .03         .06         1.000        24         .09           NITIL        04         .06         1.000        24         .09           SSL         .03         .000         .09         .26           SSH        03         .06         1.000        24         .09           SSH        10         .03         .000         .03         .20           NITIL         .18         .03         .000        26         .09           SSL        20         .03         .001         .			SSH	.04	.06	1.000	12	.21
NITIL         NITIH        03         .06         1.000        20         .13           SSH         .01         .06         1.000        15         .17           SSH         NITIH        04         .06         1.000        13         .20           SSH         NITIL        01         .06         1.000        21         .12           NITIL        01         .06         1.000        24         .09           SSL         .03         .06         1.000        24         .09           SSL         .03         .06         1.000        20         .13           SSL         .03         .06         1.000        20         .13           SSH        03         .06         1.000        20         .13           SSH        03         .06         1.000        20         .13           SSH        10         .03         .000         .20         .21           SSH        12         .03         .000        26        09           SSL        28         .03         .000         .20         .18           NITIL <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		NITIL						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		SSH						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		2211						
SSL         NITIH NITIL        07 .04         .06         1.000        24         .09           SSH        03         .06         1.000        20         .13           SSH        03         .06         1.000        19         .14           14         NITIH         NITIL         .18         .03         .000         .09         .26           SSL         .12         .03         .001         .03         .20           NITIL         NITIH        18         .03         .000        26        09           SSL         .12         .03         .000        36        19         .336        14         .02           SSH        28         .03         .000        36        19         .36         .14         .02           SSH         SSL        22         .03         .000         .13         .30           SSL         NITIL         .12         .03         .001        20         .03           SSL         NITIL         .22         .03         .000        53         .67           SSL         NITIL         .06         .03         .000								
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		SSL			-			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					.06			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				03	.06	1.000		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	14	NITIH	NITIL	.18	.03	.000	.09	.26
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			SSH	10	.03	.009	18	02
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			SSL	.12	.03	.001	.03	.20
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		NITIL	NITIH	18	.03	.000	26	09
SSH         NITIH         .10         .03         .009         .02         .18           NITIL         .28         .03         .000         .19         .36           SSL         .22         .03         .000         .13         .30           SSL         NITIH        12         .03         .001        20        03           NITIL         .06         .03         .336        02         .14           SSH        22         .03         .000        30        13           13         NITIH         NITIL         .60         .03         .000        55        41           SSL         .46         .03         .000        55        41           SSL         .46         .03         .000        67        53           SSL         .13         .03         .000        115         -1.01           SSL        13         .03         .000        20        06           SSH         NITIL         1.08         .03         .000         .41         .55           NITIL         1.08         .03         .000         .20        39			SSH	28	.03	.000	36	19
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			SSL	06	.03	.336	14	.02
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		SSH	NITIH	.10	.03	.009	.02	.18
SSL         NITIH        12         .03         .001        20        03           NITIL         .06         .03         .336        02         .14           SSH        22         .03         .000        30        13           13         NITIH         NITIL         .60         .03         .000        55        41           SSH        48         .03         .000        55        41           SSL         .46         .03         .000        55        41           SSL         .46         .03         .000        57        53           NITIL         NITIH        60         .03         .000        67        53           SSH        13         .03         .000        15         -1.01           SSL        13         .03         .000        20        06           SSH         NITIL         1.08         .03         .000         .41         .55           NITIL         1.08         .03         .000         .41         .55           SSL         .95         .03         .000         .53        39 <th></th> <th></th> <th>NITIL</th> <th>.28</th> <th>.03</th> <th>.000</th> <th>.19</th> <th>.36</th>			NITIL	.28	.03	.000	.19	.36
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			SSL	.22	.03	.000	.13	.30
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		SSL						03
13         NITIH         NITIL         .60         .03         .000         .53         .67           SSH        48         .03         .000        55        41           SSL         .46         .03         .000         .39         .53           NITIL         NITIH        60         .03         .000        57        41           SSL         .46         .03         .000        57        53           NITIL         NITIH        60         .03         .000        67        53           SSH         -1.08         .03         .000        115         -1.01           SSL        13         .03         .000        115         -1.01           SSH         NITIL         1.08         .03         .000         .41         .55           NITIL         1.08         .03         .000         1.01         1.15           SSL         .95         .03         .000        53        39           NITIL         .13         .03         .000        67         .03           SSH        95         .03         .000        07         .06								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
SSL         .46         .03         .000         .39         .53           NITIL         NITIH        60         .03         .000        67        53           SSH         -1.08         .03         .000         -1.15         -1.01           SSL        13         .03         .000        20        06           SSH         NITIH         .48         .03         .000         .41         .55           NITIL         1.08         .03         .000         .41         .55           NITIL         1.08         .03         .000         .88         1.02           SSL         .95         .03         .000         .88         1.02           SSL         NITIH        46         .03         .000         .66         .20           SSL         NITIL         .13         .03         .000         .66         .20           SSH        95         .03         .000        07         .06           SSH         .05         .02         .381        02         .11           SSL        03         .02         1.000        09         .04	13	NITIH						
NITIL         NITIH        60         .03         .000        67        53           SSH         -1.08         .03         .000         -1.15         -1.01           SSL        13         .03         .000         -20        06           SSH         NITIH         .48         .03         .000         .41         .55           NITIL         1.08         .03         .000         1.01         1.15           SSH         NITIL         1.08         .03         .000         .41         .55           NITIL         1.08         .03         .000         .41         .55           SSL         .95         .03         .000         .88         1.02           SSL         NITIH        46         .03         .000        53        39           NITIL         .13         .03         .000         .66         .20           SSH        95         .03         .000        07         .06           SSH         .05         .02         .381        02         .11           SSL        03         .02         1.000        09         .04								
SSH         -1.08         .03         .000         -1.15         -1.01           SSL        13         .03         .000        20        06           SSH         NITIH         .48         .03         .000         .41         .55           NITIL         1.08         .03         .000         1.01         1.15           SSL         .95         .03         .000         .88         1.02           SSL         NITIH        46         .03         .000         .88         1.02           SSL         NITIH        46         .03         .000         .66         .20           SSL         NITIL         .13         .03         .000        53        39           NITIL         .13         .03         .000         .66         .20           SSH        95         .03         .000         -1.02        88           12         NITIH         NITIL         .00         .02         1.000        07         .06           SSH         .05         .02         .381        02         .11           SSL        03         .02         1.000        09					-			
SSL        13         .03         .000        20        06           SSH         NITIH         .48         .03         .000         .41         .55           NITIL         1.08         .03         .000         1.01         1.15           SSL         .95         .03         .000         .88         1.02           SSL         NITIH        46         .03         .000         .53        39           NITIL         .13         .03         .000         .66         .20           SSH        95         .03         .000        66         .20           SSH        95         .03         .000        66         .20           SSH        95         .03         .000        66         .20           SSH        95         .03         .000        06         .20           SSH         .05         .02         .381        02         .11           SSL        03         .02         1.000        09         .04		NITIL						
SSH         NITIH         .48         .03         .000         .41         .55           NITIL         1.08         .03         .000         1.01         1.15           SSL         .95         .03         .000         .88         1.02           SSL         .95         .03         .000         .88         1.02           SSL         NITIH        46         .03         .000        53        39           NITIL         .13         .03         .000         .06         .20           SSH        95         .03         .000        66         .20           SSH        95         .03         .000        06         .20           SSH        95         .03         .000        06         .20           SSH         .05         .02         1.000        07         .06           SSH         .05         .02         .381        02         .11           SSL        03         .02         1.000        09         .04								
NITIL         1.08         .03         .000         1.01         1.15           SSL         .95         .03         .000         .88         1.02           SSL         NITIH        46         .03         .000        53        39           NITIL         .13         .03         .000         .66         .20           SSH        95         .03         .000         -1.02        88           12         NITIH         NITIL         .00         .02         1.000        07         .06           SSH         .05         .02         .381        02         .11           SSL        03         .02         1.000        09         .04		0.011			-			
SSL         .95         .03         .000         .88         1.02           SSL         NITIH        46         .03         .000        53        39           NITIL         .13         .03         .000         .66         .20           SSH        95         .03         .000         -1.02        88           12         NITIH         NITIL         .00         .02         1.000        07         .06           SSH         .05         .02         .381        02         .11           SSL        03         .02         1.000        09         .04		SSH						
SSL         NITIH        46         .03         .000        53        39           NITIL         .13         .03         .000         .06         .20           SSH        95         .03         .000         -1.02        88           12         NITIH         NITIL         .00         .02         1.000        07         .06           SSH         .05         .02         .381        02         .11           SSL        03         .02         1.000        09         .04								
NITIL         .13         .03         .000         .06         .20           SSH        95         .03         .000         -1.02        88           12         NITIH         NITIL         .00         .02         1.000        07         .06           SSH         .05         .02         .381        02         .11           SSL        03         .02         1.000        09         .04		0.01			-			
SSH        95         .03         .000         -1.02        88           12         NITIH         NITIL         .00         .02         1.000        07         .06           SSH         .05         .02         .381        02         .11           SSL        03         .02         1.000        09         .04		SSL						
12         NITIH         NITIL         .00         .02         1.000        07         .06           SSH         .05         .02         .381        02         .11           SSL        03         .02         1.000        09         .04								
SSH         .05         .02         .381        02         .11           SSL        03         .02         1.000        09         .04	10	MITHI						
SSL03 .02 1.00009 .04	12	NIII						
		NITIL	NITIH	.00	.02	1.000	06	.07
NTHE         NTHE         .00         .02         1.000        00         .07           SSH         .05         .02         .243        01         .11								
SSL02 .02 1.00009 .04								
SSH         NITIH        05         .02         .381        11         .02		SSH						
NITIL05 .02 .24311 .01		2211						
SSL07 .02 .0151401								
SSL         NITIH         .03         .02         1.000        04         .09		SSL						
NITIL .02 .02 1.00004 .09								
SSH .07 .02 .015 .01 .14								
11 NITIH NITIL08 .07 1.00026 .10	11	NITIH						
SSH08 .07 1.00026 .10								
SSL11 .07 .58930 .07					.07			
NITIL NITIH .08 .07 1.00010 .26					07			26

			-				_
		SSH	.00	.07	1.000	18	.18
		SSL	04	.07	1.000	22	.15
	SSH	NITIH	.08	.07	1.000	10	.26
		NITIL	.00	.07	1.000	18	.18
		SSL	04	.07	1.000	22	.15
	SSL	NITIH	.11	.07	.589	07	.30
		NITIL	.04	.07	1.000	15	.22
		SSH	.04	.07	1.000	15	.22
21	NITIH	NITIL	.01	.03	1.000	06	.08
		SSH	.05	.03	.563	03	.12
		SSL	.01	.03	1.000	07	.08
	NITIL	NITIH	01	.03	1.000	08	.06
		SSH	.04	.03	1.000	04	.11
		SSL	.00	.03	1.000	08	.07
	SSH	NITIH	05	.03	.563	12	.03
		NITIL	04	.03	1.000	11	.04
		SSL	04	.03	.906	11	.03
	SSL	NITIH	01	.03	1.000	08	.07
		NITIL	.00	.03	1.000	07	.08
		SSH	.04	.03	.906	03	.11
22	NITIH	NITIL	.02	.04	1.000	07	.12
		SSH	.00	.04	1.000	10	.09
		SSL	.07	.04	.239	02	.17
	NITIL	NITIH	02	.04	1.000	12	.07
		SSH	03	.04	1.000	12	.07
		SSL	.05	.04	.976	05	.15
	SSH	NITIH	.00	.04	1.000	09	.10
		NITIL	.03	.04	1.000	07	.12
		SSL	.08	.04	.182	02	.17
	SSL	NITIH	07	.04	.239	17	.02
		NITIL	05	.04	.976	15	.05
		SSH	08	.04	.182	17	.02
23	NITIH	NITIL	.07	.04	.412	03	.18
		SSH	31	.04	.000	42	<u>21</u>
		SSL	09	.04	.172	19	.02
	NITIL	NITIH	07	.04	.412	18	.03
		SSH	39	.04	.000	49	28
		SSL	16	.04	.000	27	05
	SSH	NITIH	.31	.04	.000	.21	.42
		NITIL	.39	.04	.000	.28	.49
		SSL	.23	.04	.000	.12	.33
	SSL	NITIH	.09	.04	.172	02	.19
		NITIL	<u>.16</u>	.04	.000	.05	.27
		SSH	23	.04	.000	33	12
24	NITIH	NITIL	04	.03	.765	11	.03
		SSH	.02	.03	1.000	05	.09
		SSL	.02	.03	1.000	05	.09
	NITIL	NITIH	.04	.03	.765	03	.11
		SSH	.06	.03	.184	01	.13
		SSL	.06	.03	.118	01	.13
	SSH	NITIH	02	.03	1.000	09	.05

			NUTU	07	02	104	10	0.1
			NITIL	06	.03	.184	13	.01
	-	COL	SSL	.00	.03	1.000	07	.08
		SSL	NITIH	02	.03	1.000	09	.05
			NITIL	06	.03	.118	13	.01
	25	NUTILI	SSH	.00	.03	1.000	08	.07
	25	NITIH	NITIL	.00	.02	1.000	06	.06
			SSH	20	.02	.000	26	14
	-	NUTU	SSL	05	.02	.292	11	.02
		NITIL	NITIH	.00	.02	1.000	06	.06
			SSH SSL	20	.02 .02	.000 .291	26	14
	-	CCII		05			11	.02
		SSH	NITIH	.20	.02	.000	.14	.26
			NITIL	.20	.02	.000	.14	.26
	-	COL	SSL	.15	.02	.000	.09	.21
		SSL	NITIH	.05	.02	.292	02	.11
			NITIL	.05	.02	.291	02	.11
	26	NITHI	SSH	15	.02	.000	21 10	09
	20	NITIH	NITIL SSH	01 .00	.03 .03	1.000 1.000	10 10	.08 .09
			SSL	01	.03	1.000	10 10	.09
	-	NITIL	NITIH	.01	.03	1.000	10	.10
		INTTIL	SSH	.01	.03	1.000	08	.10
			SSL	.01	.03	1.000	08	.10
	-	SSH	NITIH	.00	.03	1.000	09	.10
		5511	NITIL	01	.03	1.000	10	.10
			SSL	01	.03	1.000	10	.08
	-	SSL	NITIH	.01	.03	1.000	08	.10
		SSL	NITIL	.00	.03	1.000	09	.09
			SSH	.01	.03	1.000	08	.10
	27	NITIH	NITIL	01	.06	1.000	16	.10
	21	1,11111	SSH	.02	.06	1.000	13	.17
			SSL	.00	.06	1.000	15	.15
	-	NITIL	NITIH	.01	.06	1.000	14	.16
			SSH	.03	.06	1.000	12	.18
			SSL	.01	.06	1.000	14	.16
	-	SSH	NITIH	02	.06	1.000	17	.13
			NITIL	03	.06	1.000	18	.12
			SSL	02	.06	1.000	17	.13
	-	SSL	NITIH	.00	.06	1.000	15	.15
			NITIL	01	.06	1.000	16	.14
			SSH	.02	.06	1.000	13	.17
Му	17	NITIH	NITIL	.00	.01	1.000	02	.02
-			SSH	.00	.01	1.000	02	.02
			SSL	.01	.01	1.000	01	.03
	_	NITIL	NITIH	.00	.01	1.000	02	.02
			SSH	.00	.01	1.000	02	.02
			SSL	.01	.01	1.000	01	.03
	-	SSH	NITIH	.00	.01	1.000	02	.02
			NITIL	.00	.01	1.000	02	.02
	-		SSL	.01	.01	1.000	01	.03
		SSL	NITIH	01	.01	1.000	03	.01

				1			
		NITIL	01	.01	1.000	03	.01
16		SSH	01	.01	1.000	03	.01
16	NITIH	NITIL	.00	.04	1.000	12	.11
		SSH	15	.04	.004	26	03
		SSL	17	.04	.000	28	06
	NITIL	NITIH	.00	.04	1.000	11	.12
		SSH	14	.04	.006	26	03
		SSL	17	.04	.001	28	05
	SSH	NITIH	.15	.04	.004	.03	.26
		NITIL	.14	.04	.006	.03	.26
	0.01	SSL	02	.04	1.000	14	.09
	SSL	NITIH	.17	.04	.000	.06	.28
		NITIL	.17	.04	.001	.05	.28
1.5	NUTILI	SSH	.02	.04	1.000	09	.14
15	NITIH	NITIL	.01	.02	1.000	04	.06
		SSH	.09	.02	.000	.04	.14
	NUTH	SSL	.09	.02	.000	.04	.14
	NITIL	NITIH	01	.02	1.000	06	.04
		SSH	.08	.02	.000	.03	.13
	CCII	SSL	.08	.02	.001	.03	.13
	SSH	NITIH	09	.02	.000	14	04
		NITIL	08 .00	.02	.000	13	03
	SSL	SSL	09	.02	1.000	05	.05
	55L	NITIH NITIL	09 08	.02	.000 .001	14 13	04 03
		SSH	08 .00	.02			
14	NITIH	NITIL	.00	.02 .02	1.000	05 .03	.05
14	NIIII	SSH	.08	.02	.000	.03	.14 .23
		SSL	.18	.02	.000	.13	.23
	NITIL	NITIH	08	.02	.000	14	03
	INTIL	SSH	08	.02	.000	14 .04	.15
		SSL	.03	.02	1.000	03	.08
	SSH	NITIH	18	.02	.000	23	13
	5511	NITIL	09	.02	.000	15	04
		SSL	07	.02	.005	12	04
	SSL	NITIH	11	.02	.000	16	06
	SSE	NITIL	03	.02	1.000	08	.00
		SSH	.05	.02	.005	.00	.12
13	NITIH	NITIL	-5.68	.15	.000	-6.08	-5.28
10		SSH	.04	.15	1.000	36	.44
		SSL	-5.38	.15	.000	-5.78	-4.97
	NITIL	NITIH	5.68	.15	.000	5.28	6.08
		SSH	5.72	.15	.000	5.32	6.13
		SSL	.31	.15	.262	10	.71
	SSH	NITIH	04	.15	1.000	44	.36
		NITIL	-5.72	.15	.000	-6.13	-5.32
		SSL	-5.42	.15	.000	-5.82	-5.02
	SSL	NITIH	5.38	.15	.000	4.97	5.78
		NITIL	31	.15	.262	71	.10
		SSH	5.42	.15	.000	5.02	5.82
12	NITIH	NITIL	.00	.03	1.000	08	.07
		-	-	-	-	-	-

			0.011			0.01		
			SSH	.11	.03	.001	.03	.19
		NUTTI	SSL	11	.03	.002	19	03
		NITIL	NITIH	.00	.03	1.000	07	.08
			SSH	.12	.03	.001	.04	.19
		0011	SSL	10	.03	.004	18	02
		SSH	NITIH	11	.03	.001	19	03
			NITIL	12	.03	.001	19	04
		0.01	SSL	22	.03	.000	30	14
		SSL	NITIH	.11	.03	.002	.03	.19
			NITIL	.10	.03	.004	.02	.18
-	11	NUTTI	SSH	.22	.03	.000	.14	.30
	11	NITIH	NITIL	.02	.01	.149	.00	.04
			SSH	.03	.01	.002	.01	.05
		NUTU	SSL	.05	.01	.000	.02	.07
		NITIL	NITIH	02	.01	.149	04	.00
			SSH	.01	.01	.912	01	.04
		0011	SSL	.03	.01	.009	.00	.05
		SSH	NITIH	03	.01	.002	05	01
			NITIL	01	.01	.912	04	.01
		0.01	SSL	.02	.01	.448	01	.04
		SSL	NITIH	05	.01	.000	07	02
			NITIL	03	.01	.009	05	.00
-	21	NUTILI	SSH	02	.01	.448	04	.01
	21	NITIH	NITIL	01	.01	.381	03	.01
			SSH	.07	.01	.000	.05 .00	.09
		NITIL	SSL	.02	.01	.034 .381		.04
		NITIL	NITIH SSH	.01	.01 .01	.000	01 .07	.03
			SSL	.09	.01	.000	.07	.06
		SSH	NITIH	07	.01	.000	09	05
		5511	NITIL	07	.01	.000	11	03
			SSL	05	.01	.000	07	07
		SSL	NITIH	02	.01	.034	04	.00
		SSE	NITIL	04	.01	.000	06	02
			SSH	.05	.01	.000	.03	.02
-	22	NITIH	NITIL	.01	.01	1.000	03	.04
			SSH	07	.01	.000	10	03
			SSL	.02	.01	.683	01	.05
		NITIL	NITIH	01	.01	1.000	04	.03
			SSH	07	.01	.000	11	04
			SSL	.01	.01	1.000	02	.05
		SSH	NITIH	.07	.01	.000	.03	.10
			NITIL	.07	.01	.000	.04	.11
			SSL	.09	.01	.000	.05	.12
		SSL	NITIH	02	.01	.683	05	.01
			NITIL	01	.01	1.000	05	.02
			SSH	09	.01	.000	12	05
-	23	NITIH	NITIL	-3.32	.09	.000	-3.56	-3.08
			SSH	17	.09	.331	41	.07
			SSL	-3.50	.09	.000	-3.74	-3.26
						.000	3.08	3.56

		~~~~				• • •	
		SSH	3.14	.09	.000	2.90	3.38
		SSL	19	.09	.235	43	.05
	SSH	NITIH	.17	.09	.331	07	.41
		NITIL	-3.14	.09	.000	-3.38	-2.90
		SSL	-3.33	.09	.000	-3.57	-3.09
	SSL	NITIH	3.50	.09	.000	3.26	3.74
		NITIL	.19	.09	.235	05	.43
		SSH	3.33	.09	.000	3.09	3.57
24	NITIH	NITIL	.09	.03	.059	.00	.18
		SSH	.45	.03	.000	.36	.54
	NUTT	SSL	.11	.03	.012	.02	.20
	NITIL	NITIH	09	.03	.059	18	.00
		SSH	.37	.03	.000	.28	.46
	0.011	SSL	.02	.03	1.000	07	.11
	SSH	NITIH	45	.03	.000	54	36
		NITIL	37	.03	.000	46	28
	GGI	SSL	35	.03	.000	44	26
	SSL	NITIH	11	.03	.012	20	02
		NITIL	02	.03	1.000	11	.07
	NUTILI	SSH	.35	.03	.000	.26	.44
25	NITIH	NITIL	.00	.04	1.000	11	.10
		SSH	11	.04	.032	21	01
	NUTU	SSL	05	.04	1.000	16	.05
	NITIL	NITIH	.00	.04	1.000	10	.11
		SSH	11	.04	.036	21	.00
	COLL	SSL	05	.04	1.000	16	.05
	SSH	NITIH	.11	.04	.032	.01	.21
		NITIL SSL	.11 .06	.04 .04	.036 .910	.00	.21
	SSL	NITIH	.00	.04	1.000	05 05	.16 .16
	33L	NITIL	.03	.04	1.000	05	.16
		SSH	06	.04	.910	16	.05
26	NITIH	NITIL	00	.04	1.000	06	.03
20		SSH	01	.02	.629	07	.03
		SSL	01	.02	1.000	05	.02
	NITIL	NITIH	.01	.02	1.000	03	.05
		SSH	02	.02	1.000	06	.00
		SSL	.00	.02	1.000	04	.05
	SSH	NITIH	.03	.02	.629	02	.07
	5511	NITIL	.02	.02	1.000	03	.06
		SSL	.02	.02	1.000	03	.06
	SSL	NITIH	.01	.02	1.000	03	.05
		NITIL	.00	.02	1.000	05	.04
		SSH	02	.02	1.000	06	.03
27	NITIH	NITIL	.02	.02	1.000	05	.09
		SSH	02	.03	1.000	10	.05
		SSL	.01	.03	1.000	07	.08
	NITIL	NITIH	02	.03	1.000	09	.05
		SSH	04	.03	.754	11	.03
		SSL	01	.03	1.000	09	.06
	SSH	NITIH	.02	.03	1.000	05	.10
		-	-	-	-	-	- •

			NITIL	.04	.03	.754	03	.11
			SSL	.03	.03	1.000	04	.10
		SSL	NITIH	01	.03	1.000	08	.07
			NITIL	.01	.03	1.000	06	.09
			SSH	03	.03	1.000	10	.04
Mz	17	NITIH	NITIL	.01	.01	1.000	03	.05
			SSH	.02	.01	1.000	02	.06
			SSL	.03	.01	.468	01	.07
		NITIL	NITIH	01	.01	1.000	05	.03
			SSH	.01	.01	1.000	03	.05
			SSL	.02	.01	1.000	02	.06
		SSH	NITIH	02	.01	1.000	06	.02
			NITIL	01	.01	1.000	05	.03
			SSL	.01	.01	1.000	03	.05
		SSL	NITIH	03	.01	.468	07	.01
			NITIL	02	.01	1.000	06	.02
_			SSH	01	.01	1.000	05	.03
	16	NITIH	NITIL	.00	.04	1.000	12	.11
			SSH	10	.04	.133	21	.01
			SSL	12	.04	.018	23	01
		NITIL	NITIH	.00	.04	1.000	11	.12
			SSH	09	.04	.178	20	.02
			SSL	12	.04	.026	23	01
		SSH	NITIH	.10	.04	.133	01	.21
			NITIL	.09	.04	.178	02	.20
			SSL	03	.04	1.000	14	.08
		SSL	NITIH	.12	.04	.018	.01	.23
			NITIL	.12	.04	.026	.01	.23
_			SSH	.03	.04	1.000	08	.14
	15	NITIH	NITIL	.01	.01	.637	01	.03
			SSH	03	.01	.002	05	01
			SSL	.01	.01	1.000	01	.02
		NITIL	NITIH	01	.01	.637	03	.01
			SSH	04	.01	.000	06	02
			SSL	01	.01	1.000	03	.01
		SSH	NITIH	.03	.01	.002	.01	.05
			NITIL	.04	.01	.000	.02	.06
			SSL	.03	.01	.000	.01	.05
		SSL	NITIH	01	.01	1.000	02	.01
			NITIL	.01	.01	1.000	01	.03
_			SSH	03	.01	.000	05	01
	14	NITIH	NITIL	.25	.05	.000	.12	.38
			SSH	.12	.05	.067	.00	.25
			SSL	.11	.05	.152	02	.24
		NITIL	NITIH	25	.05	.000	38	12
			SSH	12	.05	.071	25	.01
			SSL	14	.05	.029	27	01
		SSH	NITIH	12	.05	.067	25	.00

		NUTU	12	0.5	071	01	1 25
		NITIL	.12	.05	.071	01	.25
	0.01	SSL	02	.05	1.000	14	.11
	SSL	NITIH	11	.05	.152	24	.02
		NITIL	.14	.05	.029	.01	.27
12	NITHI	SSH	.02	.05	1.000	11	.14 97
13	NITIH	NITIL SSH	-1.92 3.05	.36 .36	.000 .000	-2.88 2.09	4.00
		SSL	-1.78	.36	.000	-2.73	83
	NITIL	NITIH	1.92	.36	.000	.97	2.88
	INTITL	SSH	4.97	.36	.000	4.02	5.92
		SSL	.14	.36	1.000	81	1.09
	SSH	NITIH	-3.05	.36	.000	-4.00	-2.09
	5511	NITIL	-4.97	.36	.000	-5.92	-4.02
		SSL	-4.83	.36	.000	-5.78	-3.88
	SSL	NITIH	1.78	.36	.000	.83	2.73
	222	NITIL	14	.36	1.000	-1.09	.81
		SSH	4.83	.36	.000	3.88	5.78
12	NITIH	NITIL	.00	.13	1.000	34	.35
		SSH	76	.13	.000	-1.10	41
		SSL	.21	.13	.648	14	.55
	NITIL	NITIH	.00	.13	1.000	35	.34
		SSH	76	.13	.000	-1.10	41
		SSL	.21	.13	.664	14	.55
	SSH	NITIH	.76	.13	.000	.41	1.10
		NITIL	.76	.13	.000	.41	1.10
		SSL	.97	.13	.000	.62	1.31
	SSL	NITIH	21	.13	.648	55	.14
		NITIL	21	.13	.664	55	.14
		SSH	97	.13	.000	-1.31	62
11	NITIH	NITIL	.11	.02	.000	.07	.16
		SSH	.11	.02	.000	.07	.16
		SSL	.18	.02	.000	.13	.22
	NITIL	NITIH	11	.02	.000	16	07
		SSH	.00	.02	1.000	04	.05
		SSL	.07	.02	.000	.02	.11
	SSH	NITIH	11	.02	.000	16	07
		NITIL	.00	.02	1.000	05	.04
		SSL	.07	.02	.001	.02	.11
	SSL	NITIH	18	.02	.000	22	13
		NITIL	07	.02	.000	11	02
		SSH	07	.02	.001	11	02
21	NITIH	NITIL	.04	.10	1.000	23	.31
		SSH	38	.10	.002	65	11
	NUTU	SSL	12	.10	1.000	39	.15
	NITIL	NITIH	04	.10	1.000	31	.23
		SSH	42	.10	.000	69	15
	CCII	SSL	16	.10	.654	43	.11
	SSH	NITIH	.38	.10	.002	.11	.65

NITIL 42 1.0 0.00 1.5 6.5 SSL NITIH 1.12 1.00 1.00 15 39 NITIH 1.6 1.00 6.54 11 43 SSL 22 1.00 0.80 52 0.2 22 NITIH NITIL 0.00 0.01 1.000 02 0.2 SSL 00 0.01 1.000 02 0.2 0.2 NITIL NITIH 0.00 0.01 1.000 02 0.2 SSL 0.00 0.01 1.000 02 0.2 0.2 SSH 02 0.1 0.84 00 0.01 1.000 02 0.2 SSL 0.01 0.1 1.000 02 0.2 0.2 SSL NITIH 0.01 0.01 1.000 02 0.2 SSL NITIL 1.37 1.3 0.00 17 1.3 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
SSL NITHH NITTL .12 .10 1.000 15 .39 SSH 25 .10 .654 11 .43 SSH 22 .10 .080 52 .02 22 NITH NITH .000 .01 1.000 02 .02 SSL .00 .01 1.000 02 .02 .02 NITH NITH .00 .01 1.000 02 .02 SSL .00 .01 1.000 02 .02 .02 SSL .00 .01 1.000 02 .02 SSL .01 .01 .00 .01 .00 SSL .01 .01 .00 .02 .02 SSL .01 .01 .00 .01 .00 .02 SSL .02 .01 .01 .00 .02 .02 SSL .02 .03 .00								
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$								
SSH 25 .10 .080 52 .02 22 NITIH NITIL .00 .01 1.000 02 .02 SSH 02 .01 1.000 02 .02 NITIL NITIH .00 .01 1.000 02 .02 NITIL NITIH .00 .01 .000 .02 .02 SSH 02 .01 .084 04 .00 SSL .00 .01 1.000 02 .02 SSL .01 .01 .361 01 .03 SSL .01 .01 .000 02 .02 SSL .01 .001 .030 .01 .033 SSL .01 .01 .000 .02 .02 SSL .56 .13 .000 .173 .17 SSL .55 .13 .000 .73 1.45 SSL		SSL						
22 NITH NITH 0.00 0.1 1.000 -0.2 0.2 SSH -0.2 0.1 2.04 04 0.0 SSH -0.0 0.1 1.000 02 0.2 NITIL NITH 0.0 0.1 1.000 02 0.2 SSH -0.0 0.1 1.000 02 0.2 SSH 0.00 0.1 1.000 02 0.2 SSH NITH 0.2 0.1 0.84 00 0.4 NITH 0.2 0.1 0.84 00 0.4 SSH NITH 0.0 0.1 1.000 02 0.2 SSH NITH 0.0 0.1 1.000 02 0.2 SSL 0.1 0.1 3.61 01 3.61 01 SSL NITH 52 1.3 0.00 1.21 28 SSL SSH 1.37 .1						(
SSH 02 .01 .204 04 .00 NITIL NITIH 0.00 .01 1.000 02 .02 NITIL NITIH 0.00 .01 1.000 02 .02 SSH 02 .01 .084 04 .00 SSH NITIH .02 .01 .204 .00 .04 SSL .01 .01 .204 .00 .04 SSL .01 .01 .361 01 .03 SSL .01 .01 .361 01 .03 SSL .01 .01 .100 02 .02 SSH .01 .01 .361 03 .01 23 NITH NITH .52 .13 .000 .49 1.21 SSL .56 .13 .000 .177 .88 .177 SSL NITH .52 .13 .000 .1.73		-						
SSL .00 .01 1.000 02 .02 NITIL NITIL NITIL 0.01 1.000 02 .02 SSH 02 .01 1.084 04 .00 SSH .00 .01 1.000 02 .02 SSH NITIL .02 .01 .044 .00 .04 NITIL .02 .01 .084 .00 .04 SSL .01 .01 .361 01 .03 SSL .01 .01 .361 02 .02 NITIH .00 .01 1.000 02 .02 SSL .01 .01 .361 01 .01 23 NITIH NITIL .52 .13 .000 .12 .92 NITIL NITIH .52 .13 .000 .1.21 .49 SSH 1.37 .13 .000 .1.21 .49	22	NITIH						
NITIL NITIH 0.00 0.01 1.000 02 0.02 SSH -0.20 0.01 1.000 02 0.02 SSH NITIH 0.02 0.01 2.04 0.00 0.04 NITIL 0.22 0.01 2.04 0.00 0.04 SSL 0.01 0.01 2.04 0.00 0.04 SSL 0.01 0.00 01 0.02 0.02 SSL 0.01 0.01 1.000 02 0.02 NITIL 0.00 0.01 1.000 02 0.02 SSL NITIH 0.00 0.01 1.000 02 0.02 SSL SSH 01 0.01 3.61 03 0.01 23 NITIH NITIL SSH 3.5 0.001 17 .88 SSH 1.37 1.3 0.000 -1.21 49 NITIL NITIH 56 1.3					.01			
SSH 02 .01 .084 04 .00 SSH NITH .02 .01 1.000 02 .02 SSH NITH .02 .01 .204 .00 .04 SSL .01 .01 .361 01 .03 SSL NITH .00 .01 1.000 02 .02 NITH .00 .01 1.000 02 .02 .02 NITH .00 .01 1.000 02 .02 .02 SSL .01 .01 .361 03 .01 .01 23 NITH NITH .52 .13 .001 .17 .88 .55 .13 .000 .21 .92 NITH .55 .13 .000 .1.21 .49 SSH NITH .56 .13 .000 .1.21 .44 NITH .137 .13 .000					.01	1.000		
SSL .00 .01 1.000 02 .02 SSH NITIH .02 .01 .204 .00 .04 NITIL .02 .01 .084 .00 .04 SSL NITIH .00 .01 1.084 .00 .02 SSL NITIH .00 .01 1.000 02 .02 NITIH .00 .01 .361 012 .02 SSH 01 .01 .361 02 .02 SSH .56 .13 .000 .49 1.21 SSH .56 .13 .000 .17 .88 SSH .56 .13 .000 .17 .88 SSH .137 .13 .000 .1.73 .45 SSH NITH 56 .13 .000 .1.73 .145 SSH .28 .13 .209 .64 .07 SSH		NITIL			.01	(
SSH NITH .02 .01 .204 .00 .04 NITIL .02 .01 .084 .00 .04 SSL NITH .00 .01 .361 01 .03 SSL NITH .00 .01 1.000 02 .02 SSH 01 .01 .361 03 .01 23 NITH NITIL .52 .13 .000 .49 1.21 SSL .56 .13 .000 .21 .92 NITIL NITH .52 .13 .000 1.02 1.73 SSH 1.37 .13 .000 .121 .49 NITIL -1.37 .13 .000 -1.21 .49 NITIL -1.37 .13 .000 -1.21 .49 NITIL -1.37 .13 .000 -1.45 .73 SSH NITIH 56 .13 .000 <t< th=""><th></th><th></th><th>SSH</th><th>02</th><th>.01</th><th>.084</th><th>04</th><th>.00</th></t<>			SSH	02	.01	.084	04	.00
NITIL .02 .01 .084 .00 .04 SSL .01 .01 .361 01 .03 SSL NITIH .00 .01 1.000 02 .02 SSL NITIL .00 .01 1.000 02 .02 SSH 01 .01 .361 03 .01 23 NITIL .52 .13 .001 88 17 SSH .85 .13 .000 .49 1.21 SSH .85 .13 .000 .21 .92 NITIL NITIL .52 .13 .000 1.02 1.73 SSH .137 .13 .000 -1.21 49 NITIL -1.37 .13 .000 -1.21 49 NITIL -1.37 .13 .000 92 21 NITIL -1.39 .13 .000 92 21			SSL	.00	.01	1.000	02	.02
SSL .01 .01 .361 01 .03 SSL NITH .00 .01 1.000 02 .02 NITIL .00 .01 1.000 02 .02 SSH .01 .361 03 .01 23 NITIH NITIL 52 .13 .001 88 17 SSH .85 .13 .000 .49 1.21 SSL .56 .13 .000 .102 1.73 SSL .56 .13 .000 1.02 1.73 SSH 1.37 .13 .000 -1.21 49 NITIL .137 .13 .000 -1.21 49 NITIL -1.37 .13 .000 17.3 102 SSL .28 .13 .209 64 .07 SSL NITIH 56 .13 .000 45 .102 SSH		SSH			.01			
SSL NITIH .00 .01 1.000 02 .02 NITIL .00 .01 1.000 02 .02 SSH 01 .01 .361 03 .01 23 NITIH NITIL SSH .85 .13 .000 .49 1.21 SSL .56 .13 .000 .21 .92 NITIL NITIH NITIH .52 .13 .000 .17 .88 SSH 1.07 .13 .000 .73 1.45 SSH NITIL 137 .13 .000 173 -1.02 SSH NITIL 137 .13 .000 -1.21 49 NITIL 137 .13 .000 -1.45 73 SSL 28 .13 .209 07 .64 NITIH NITIL 26 .08 .016 48 03 SSH .22			NITIL	.02	.01	.084	.00	.04
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			SSL		.01	.361	01	.03
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		SSL	NITIH	.00	.01	1.000	02	.02
23 NITIH NITIL 52 .13 .001 88 17 SSH .85 .13 .000 .49 1.21 SSL .56 .13 .000 .21 .92 NITIL NITIH .52 .13 .001 .17 .88 SSL 1.09 .13 .000 1.02 1.73 SSH 1.09 .13 .000 -1.21 49 NITIL -1.37 .13 .000 -1.73 -1.02 SSL .28 .13 .000 -1.21 49 NITIL -1.09 .13 .000 -1.22 73 SSL .28 .13 .209 64 .07 SSH .28 .13 .209 07 .64 24 NITIH NITIL -1.09 .13 .000 25 SSL 33 .08 .001 .55 10			NITIL	.00	.01	1.000	02	.02
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		•	SSH	01	.01	.361	03	.01
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	23	NITIH	NITIL	52	.13	.001	88	17
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$.13	.000	.49	1.21
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.13	.000		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		NITIL	NITIH	.52	.13	.001	.17	.88
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			SSH	1.37	.13	.000	1.02	1.73
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			SSL	1.09	.13	.000	.73	1.45
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		SSH	NITIH	85	.13	.000	-1.21	49
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				-1.37	.13	.000	-1.73	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			SSL	28	.13	.209	64	.07
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		SSL	NITIH	56	.13	.000	92	21
24 NITIH NITIL 26 .08 .016 48 03 SSH .22 .08 .063 01 .45 SSL 33 .08 .001 55 10 NITIL NITIH .26 .08 .016 .03 .48 SSH .48 .08 .000 .25 .70 SSL 07 .08 1.000 29 .16 SSH .111 22 .08 .063 45 .01 NITIL .48 .08 .000 29 .16 SSH NITIH 22 .08 .063 45 .01 NITIL 48 .08 .000 70 25 SSL 55 .08 .000 77 32 SSL NITIL .07 .08 1.000 16 .29 SSH .55 .08 .000 .32					.13	(73
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			SSH	.28	.13	.209	07	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	24	NITIH						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.001		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		NITIL						
SSH NITIH 22 .08 .063 45 .01 NITIL 48 .08 .000 70 25 SSL 55 .08 .000 77 32 SSL NITIH .33 .08 .001 .10 .55 NITIL .07 .08 1.000 16 .29 SSH .55 .08 .000 .32 .77 25 NITIH NITIL .00 .07 1.000 18 .18 SSH .55 .08 .000 .15 .51 SSH .33 .07 .000 .15 .51 SSL .14 .07 .191 03 .32 NITIL NITIH .00 .07 1.000 18 .18 SSH .33 .07 .000 .15 .51 SSH .33 .07 .000 .15 .51								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		SSH						
SSL NITIH .33 .08 .001 .10 .55 NITIL .07 .08 1.000 16 .29 SSH .55 .08 .000 .32 .77 25 NITIH NITIL .00 .07 1.000 18 .18 SSH .33 .07 .000 .15 .51 SSL .14 .07 .191 03 .32 NITIL NITIH .00 .07 1.000 18 .18 SSL .14 .07 .191 03 .32 NITIL NITIH .00 .07 1.000 18 .18 SSH .33 .07 .000 .15 .51 SSH .33 .07 .000 .15 .51 SSL .15 .07 .179 03 .32								
NITIL .07 .08 1.000 16 .29 SSH .55 .08 .000 .32 .77 25 NITIH NITIL .00 .07 1.000 18 .18 SSH .33 .07 .000 .15 .51 SSL .14 .07 .191 03 .32 NITIL NITIH .00 .07 1.000 18 .18 SSL .14 .07 .191 03 .32 NITIL NITIH .00 .07 1.000 18 .18 SSH .33 .07 .000 .15 .51 SSH .33 .07 .000 .15 .51 SSH .33 .07 .000 .15 .51 SSL .15 .07 .179 03 .32								
SSH .55 .08 .000 .32 .77 25 NITIH NITIL .00 .07 1.000 18 .18 SSH .33 .07 .000 .15 .51 SSL .14 .07 .191 03 .32 NITIL NITIH .00 .07 1.000 18 .18 SSL .14 .07 .191 03 .32 NITIL NITIH .00 .07 1.000 18 .18 SSH .33 .07 .000 .15 .51 SSH .33 .07 .000 .15 .51 SSH .33 .07 .000 .15 .51 SSL .15 .07 .179 03 .32		SSL						
25 NITIH NITIL .00 .07 1.000 18 .18 SSH .33 .07 .000 .15 .51 SSL .14 .07 .191 03 .32 NITIL NITIH .00 .07 1.000 18 .18 SSL .14 .07 .191 03 .32 NITIL NITIH .00 .07 1.000 18 .18 SSH .33 .07 .000 .15 .51 SSL .15 .07 .179 03 .32								
SSH .33 .07 .000 .15 .51 SSL .14 .07 .191 03 .32 NITIL NITIH .00 .07 1.000 18 .18 SSH .33 .07 .000 .15 .51 SSH .33 .07 .000 18 .18 SSH .33 .07 .000 .15 .51 SSL .15 .07 .179 03 .32		.			1			
SSL .14 .07 .191 03 .32 NITIL NITIH .00 .07 1.000 18 .18 SSH .33 .07 .000 .15 .51 SSL .15 .07 .179 03 .32	25	NITIH						
NITILNITIH.00.071.00018.18SSH.33.07.000.15.51SSL.15.07.17903.32								
SSH .33 .07 .000 .15 .51 SSL .15 .07 .179 03 .32								
SSL .15 .07 .17903 .32		NITIL						
<u>SSH</u> NITIH33 .07 .0005115					1			
		SSH	NITIH	33	.07	.000	51	15

			_	_		_	<u>.</u>
		NITIL	33	.07	.000	51	15
		SSL	18	.07	.036	36	01
	SSL	NITIH	14	.07	.191	32	.03
		NITIL	15	.07	.179	32	.03
		SSH	.18	.07	.036	.01	.36
26	NITIH	NITIL	01	.02	1.000	05	.03
		SSH	01	.02	1.000	05	.04
		SSL	.00	.02	1.000	04	.04
	NITIL	NITIH	.01	.02	1.000	03	.05
		SSH	.01	.02	1.000	03	.05
		SSL	.01	.02	1.000	03	.05
	SSH	NITIH	.01	.02	1.000	04	.05
		NITIL	01	.02	1.000	05	.03
		SSL	.01	.02	1.000	04	.05
	SSL	NITIH	.00	.02	1.000	04	.04
		NITIL	01	.02	1.000	05	.03
		SSH	01	.02	1.000	05	.04
27	NITIH	NITIL	.02	.02	1.000	04	.08
		SSH	07	.02	.014	12	01
		SSL	.01	.02	1.000	05	.07
	NITIL	NITIH	02	.02	1.000	08	.04
		SSH	08	.02	.001	14	03
		SSL	01	.02	1.000	06	.05
	SSH	NITIH	.07	.02	.014	.01	.12
		NITIL	.08	.02	.001	.03	.14
		SSL	.08	.02	.002	.02	.13
	SSL	NITIH	01	.02	1.000	07	.05
		NITIL	.01	.02	1.000	05	.06
		SSH	08	.02	.002	13	02

Appendix E- Descriptive Data for the Mandibular Arch for NitiH, NitiL, SSH and SSL Groups for all Measured Outputs (Fx, Fy, Fz, Mx, My and Mz).

- Fx, Fy and Fz measured in Newton's (N)
- Mx, My and Mz measured in Newton-millimeters (Nmm)

WireElastic	Ν	Minimum	Maximum	Mean	Std. Deviation
NiTiH Fx47	44.00	.00	.00	.00	.00
Fy47	44.00	01	.00	.00	.00
Fz47	44.00	.00	.00	.00	.00
Mx47	44.00	20	.19	03	.11
My47	44.00	04	.04	.00	.02
Mz47	44.00	09	.09	.00	.05
Fx46	44.00	-1.75	-1.42	-1.58	.08
Fy46	44.00	23	18	21	.01
Fz46	44.00	1.04	1.29	1.16	.06
Mx46	44.00	4.66	6.63	5.27	.37
My46	44.00	5.44	6.90	6.14	.32
Mz46	44.00	2.45	3.04	2.76	.13
Fx45	44.00	.00	.00	.00	.00
Fy45	44.00	03	.02	.00	.01
Fz45	44.00	01	.00	.00	.00
Mx45	44.00	99	.50	02	.31
My45	44.00	02	.02	.00	.01
Mz45	44.00	13	.09	.00	.04
Fx44	44.00	01	.00	.00	.00
Fy44	44.00	02	.00	01	.00
Fz44	44.00	02	.00	.00	.00
Mx44	44.00	-1.19	.24	09	.20
My44	44.00	10	.10	02	.05
Mz44	44.00	06	.49	.02	.08
Fx43	44.00	.00	.00	.00	.00
Fy43	44.00	.00	.00	.00	.00
Fz43	44.00	01	.00	.00	.00
Mx43	44.00	17	.11	07	.06
My43	44.00	06	.04	02	.02
Mz43	44.00	05	.06	.00	.02
Fx42	44.00	.00	.00	.00	.00
Fy42	44.00	.00	.00	.00	.00
Fz42	44.00	01	.00	.00	.00
Mx42	44.00	29	.05	13	.07
My42	44.00	07	.03	02	.02

			l		
Mz42		03	.04	01	.02
Fx41	44.00	.00	.00	.00	.00
Fy41	44.00	.00	.00	.00	.00
Fz41	44.00	02	.02	.00	.01
Mx41	44.00	63	.76	14	.32
My41	44.00	06	.04	01	.03
Mz41	44.00	12	.06	02	.03
Fx31	44.00	.00	.00	.00	.00
Fy31	44.00	01	.00	.00	.00
Fz31	44.00	01	.00	.00	.00
Mx31	44.00	58	.06	14	.10
My31	44.00	13	.02	02	.02
Mz31	44.00	17	.05	01	.03
Fx32	44.00	.00	.00	.00	.00
Fy32	44.00	01	.00	.00	.00
Fz32	44.00	02	.00	01	.01
Mx32	44.00	87	.16	40	.24
My32	44.00	25	.04	10	.06
Mz32	44.00	07	.03	.01	.02
Fx33	44.00	.00	.00	.00	.00
Fy33	44.00	.00	.00	.00	.00
Fz33	44.00	01	.00	.00	.00
Mx33	44.00	27	.15	09	.10
My33	44.00	10	.05	03	.04
Mz33	44.00	02	.04	.00	.02
Fx34	44.00	.00	.00	.00	.00
Fy34	44.00	02	.00	01	.01
Fz34	44.00	01	.00	.00	.00
Mx34	44.00	33	.16	10	.12
My34	44.00	08	.04	02	.03
Mz34	44.00	05	.05	01	.02
Fx35	44.00	18	.03	07	.04
Fy35	44.00	39	08	22	.08
Fz35	44.00	31	.07	10	.11
Mx35	44.00	.36	.89	.64	.14
My35	44.00	46	10	27	.08
Mz35	44.00	15	.29	.04	.13
Fx36	44.00	-1.75	-1.43	-1.60	.08
Fy36	44.00	44	22	33	.06
Fz36	44.00	.90	1.30	1.09	.10
Mx36	44.00	-1.37	20	88	.24
My36	44.00	3.77	4.82	4.27	.26
Mz36	44.00	40	.03	19	.12
Fx37	44.00	.00	.00	.00	.00
Fy37	44.00	01	.00	.00	.00
Fz37	44.00	01	.00	.00	.00
				- '	•

Mx37	44.00	37	.26	01	.20
	44.00	14	.17	.00	.08
My37 Mz37	44.00	14	.17	.00	.08
NiTiL Fx47	44.00	.00	.00	.00	.00
Fy47	44.00	.00	.00	.00	.00
Fz47	44.00	.00	.00	.00	.00
Mx47	44.00	25	.00	.00	.11
My47 My47	44.00	05	.08	.01	.02
Mz47	44.00	10	.03	.01	.02
Fx46	44.00	67	43	54	.04
Fy46	44.00	07	45	07	.05
Fy40 Fz46	44.00	08 .31	00 .49	.38	.01 .04
Mx46	44.00	.31 45	2.77	1.72	.04 .47
Mx40 My46	44.00			2.09	.47
		1.67	2.53 1.22		.19 .09
Mz46	44.00 44.00	.80		1.04	
Fx45		.00	.00	.00	.00
Fy45	44.00	02	.02	.00	.01
Fz45	44.00	01	.00	.00	.00
Mx45	44.00	77	.42	02	.29
My45	44.00	03	.01	.00	.01
Mz45	44.00	09	.07	.00	.04
Fx44	44.00	.00	.00	.00	.00
Fy44	44.00	01	.01	.00	.00
Fz44	44.00	01	.02	.00	.00
Mx44	44.00	25	1.25	01	.23
My44	44.00	08	.17	01	.04
Mz44	44.00	30	.05	.00	.05
Fx43	44.00	.00	.00	.00	.00
Fy43	44.00	.00	.00	.00	.00
Fz43	44.00	.00	.00	.00	.00
Mx43	44.00	21	.06	06	.06
My43	44.00	08	.02	02	.02
Mz43	44.00	04	.03	01	.02
Fx42	44.00	.00	.00	.00	.00
Fy42	44.00	.00	.00	.00	.00
Fz42	44.00	01	.00	.00	.00
Mx42	44.00	24	.06	11	.07
My42	44.00	07	.01	01	.02
Mz42	44.00	06	.02	01	.02
Fx41	44.00	.00	.00	.00	.00
Fy41	44.00	.00	.00	.00	.00
Fz41	44.00	02	.02	.00	.01
Mx41	44.00	71	.56	20	.28
My41	44.00	07	.04	01	.02
Mz41	44.00	08	.08	01	.03
Fx31	44.00	.00	.00	.00	.00

	Fy31	44.00	.00	.00	.00	.00
	Fz31	44.00	01	.00	.00	.00
	Mx31	44.00	27	.03	12	.07
	My31	44.00	05	.03	02	.01
	Mz31	44.00	06	.06	01	.02
	Fx32	44.00	.00	.00	.00	.00
	Fy32	44.00	.00	.00	.00	.00
	Fz32	44.00	02	.00	01	.01
	Mx32	44.00	82	.11	40	.22
	My32	44.00	20	.04	10	.06
	Mz32	44.00	04	.03	.00	.02
	Fx33	44.00	.00	.00	.00	.00
	Fy33	44.00	.00	.00	.00	.00
	Fz33	44.00	01	.00	.00	.00
	Mx33	44.00	31	.07	08	.10
	My33	44.00	13	.05	02	.04
	Mz33	44.00	04	.05	.01	.02
	Fx34	44.00	.00	.00	.00	.00
	Fy34	44.00	01	.00	.00	.00
	Fz34	44.00	01	.00	.00	.00
	Mx34	44.00	35	.10	08	.11
	My34	44.00	08	.03	02	.02
	Mz34	44.00	03	.03	.00	.01
	Fx35	44.00	07	.00	03	.01
	Fy35	44.00	11	02	07	.03
	Fz35	44.00	08	.03	04	.03
	Mx35	44.00	01	.44	.22	.10
	My35	44.00	15	03	10	.03
	Mz35	44.00	06	.11	.00	.04
	Fx36	44.00	66	45	55	.04
	Fy36	44.00	17	09	12	.02
	Fz36	44.00	.30	.48	.37	.04
	Mx36	44.00	68	08	34	.14
	My36	44.00	1.14	1.71	1.39	.13
	Mz36	44.00	17	.06	05	.05
	Fx37	44.00	.00	.00	.00	.00
	Fy37	44.00	01	.00	.00	.00
	Fz37	44.00	01	.00	.00	.00
	Mx37	44.00	42	.25	.03	.18
	My37	44.00	18	.15	01	.07
	Mz37	44.00	16	.09	.00	.05
SSH	Fx47	44.00	.00	.02	.01	.00
	Fy47	44.00	.00	.10	.07	.02
	Fz47	44.00	.00	.13	.06	.04
	Mx47	44.00	14	.30	.08	.13
	My47	44.00	18	.22	02	.11
	Mz47	44.00	26	.00	11	.06
	-					

Fx46	44.00	-1.79	83	-1.56	.14
Fy46	44.00	41	17	34	.04
Fz46	44.00	.55	1.24	1.07	.11
Mx46	44.00	2.73	6.07	5.19	.51
My46	44.00	3.50	7.39	6.44	.60
Mz46	44.00	1.68	3.82	3.27	.33
Fx45	44.00	.00	.00	.00	.00
Fy45	44.00	02	.05	.01	.02
Fz45	44.00	.00	.01	.00	.00
Mx45	44.00	72	.70	05	.33
My45	44.00	03	.03	01	.01
Mz45	44.00	13	.05	02	.04
Fx44	44.00	.00	.00	.00	.00
Fy44	44.00	.00	.00	.00	.00
Fz44	44.00	01	.04	.01	.01
Mx44	44.00	23	.04	09	.06
My44	44.00	06	.10	.02	.05
Mz44	44.00	03	.11	.01	.02
Fx43	44.00	01	.08	.03	.02
Fy43	44.00	.00	.07	.03	.01
Fz43	44.00	02	.01	.00	.01
Mx43	44.00	30	03	16	.06
My43	44.00	36	05	20	.07
Mz43	44.00	05	.68	.48	.12
Fx42	44.00	.00	.02	.00	.00
Fy42	44.00	03	.02	01	.01
Fz42	44.00	02	.00	.00	.00
Mx42	44.00	37	.04	12	.07
My42	44.00	15	.02	02	.03
Mz42	44.00	12	.05	01	.02
Fx41	44.00	.00	.01	.00	.00
Fy41	44.00	01	.05	.02	.01
Fz41	44.00	03	.04	.00	.01
Mx41	44.00	-1.03	.91	16	.38
My41	44.00	09	.02	03	.03
Mz41	44.00	11	.05	01	.03
Fx31	44.00	.00	.00	.00	.00
Fy31	44.00	06	.05	.00	.02
Fz31	44.00	01	.00	.00	.00
Mx31	44.00	25	01	14	.05
My31	44.00	05	.01	02	.01
Mz31	44.00	10	.07	01	.03
Fx32	44.00	08	.00	03	.02
Fy32	44.00	03	.07	.01	.02
Fz32	44.00	04	01	02	.01
Mx32	44.00	-1.01	.01	46	.19
My32	44.00	24	.11	06	.07

1		44.00	1.5	< 7	10	
		44.00	17	.67	.19	.17
	Fx33	44.00	02	.03	.00	.01
	Fy33	44.00	11	.07	.01	.03
	Fz33	44.00	03	.06	.00	.02
	Mx33	44.00	33	02	13	.07
	My33	44.00	10	.31	.12	.12
	Mz33	44.00	28	.23	.04	.09
	Fx34	44.00	03	.01	.00	.01
	Fy34	44.00	05	.17	01	.04
	Fz34	44.00	09	.04	.01	.02
	Mx34	44.00	31	.10	10	.09
	My34	44.00	13	.09	01	.04
	Mz34	44.00	09	.24	.00	.06
	Fx35	44.00	07	.02	02	.02
	Fy35	44.00	31	.22	.09	.08
	Fz35	44.00	20	.03	07	.05
	Mx35	44.00	05	.77	.23	.13
	My35	44.00	37	.14	13	.14
	Mz35	44.00	.08	1.54	1.07	.25
	Fx36	44.00	-1.74	88	-1.53	.13
	Fy36	44.00 44.00	97 .60	26 1.21	76	.11 .10
	Fz36 Mx36	44.00 44.00	.60 64	02	1.07 34	.10 .15
	My36	44.00	04 2.37	02 4.66	34 4.04	.13
	Mz36	44.00	33	.30	4.04 .12	.33
	Fx37	44.00	07	.02	01	.02
	Fy37	44.00	07	.02	.13	.02
	Fz37	44.00	08	.03	02	.03
	Mx37	44.00	34	.33	.11	.17
	My37	44.00	37	.39	02	.19
	Mz37	44.00	67	08	40	.11
SSL	Fx47	44.00	.00	.01	.00	.00
SSE	Fy47	44.00	.00	.05	.03	.01
	Fz47	44.00	01	.08	.02	.02
	Mx47	44.00	23	.17	.00	.11
	My47	44.00	11	.11	02	.04
	Mz47	44.00	23	02	13	.06
	Fx46	44.00	64	47	54	.04
	Fy46	44.00	17	09	13	.02
	Fz46	44.00	.27	.43	.35	.04
	Mx46	44.00	1.20	2.26	1.76	.26
	My46	44.00	1.91	2.73	2.23	.20
	Mz46	44.00	1.04	1.58	1.27	.12
	Fx45	44.00	.00	.00	.00	.00
	Fy45	44.00	02	.05	.01	.02
	Fz45	44.00	.00	.01	.00	.00
	Mx45	44.00	83	.73	05	.36

		1			
•	44.00	04	.02	.00	.01
Mz45	44.00	10	.10	03	.05
Fx44	44.00	.00	.00	.00	.00
Fy44	44.00	.00	.00	.00	.00
Fz44	44.00	02	.02	.00	.01
Mx44	44.00	69	.04	11	.11
My44	44.00	26	.06	03	.05
Mz44	44.00	08	.05	01	.03
Fx43	44.00	.00	.03	.01	.01
Fy43	44.00	02	.03	.02	.01
Fz43	44.00	01	.01	.00	.01
Mx43	44.00	24	01	13	.07
My43	44.00	31	01	14	.07
Mz43	44.00	.12	.33	.24	.05
Fx42	44.00	.00	.01	.00	.00
Fy42	44.00	02	.02	01	.01
Fz42	44.00	01	.00	.00	.00
Mx42	44.00	32	.01	13	.07
My42	44.00	09	.08	02	.03
Mz42	44.00	09	.08	02	.03
Fx41	44.00	01	.01	.00	.00
Fy41	44.00	01	.03	.01	.01
Fz41	44.00	02	.03	.00	.01
Mx41	44.00	72	.64	08	.33
My41	44.00	08	.03	02	.02
Mz41	44.00	08	.14	01	.04
Fx31	44.00	.00	.00	.00	.00
Fy31	44.00	01	.02	.00	.01
Fz31	44.00	01	.00	.00	.00
Mx31	44.00	26	.02	15	.06
My31	44.00	06	.01	02	.01
Mz31	44.00	06	.02	01	.02
Fx32	44.00	04	.00	01	.01
Fy32	44.00	03	.04	.00	.02
Fz32	44.00	03	.00	01	.01
Mx32	44.00	79	.09	46	.19
My32	44.00	22	.06	11	.07
Mz32	44.00	16	.19	.05	.09
Fx33	44.00	03	.01	01	.01
Fy33	44.00	03	.09	.02	.03
Fz33	44.00	03	.01	.00	.01
Mx33	44.00	30	.10	13	.09
My33	44.00	11	.23	.01	.08
Mz33	44.00	10	.26	.05	.08
Fx34	44.00	01	.01	.00	.01
Fy34	44.00	07	.09	03	.03

Fz34	44.00	04	.04	.01	.02
Mx34	44.00	32	.13	14	.11
My34	44.00	10	.09	02	.04
Mz34	44.00	10	.16	03	.04
Fx35	44.00	04	.01	01	.01
Fy35	44.00	03	.13	.05	.04
Fz35	44.00	12	.02	05	.04
Mx35	44.00	24	.21	.01	.11
My35	44.00	30	.15	07	.09
Mz35	44.00	01	.73	.23	.14
Fx36	44.00	64	41	52	.05
Fy36	44.00	32	12	24	.05
Fz36	44.00	.27	.51	.39	.06
Mx36	44.00	70	.00	31	.16
My36	44.00	.99	1.74	1.31	.19
Mz36	44.00	12	.34	.05	.11
Fx37	44.00	03	.02	.00	.01
Fy37	44.00	.00	.07	.03	.02
Fz37	44.00	09	.03	03	.03
Mx37	44.00	37	.34	03	.19
My37	44.00	47	.20	10	.16
Mz37	44.00	31	.07	10	.08

Appendix F- Pairwise Comparisons for the Mandibular Teeth for NitiH, NitiL, SSH and SSL Groups for all Measured Outputs (Fx, Fy, Fz, Mx, My and Mz).

- Fx, Fy and Fz measured in Newton's (N)
- Mx, My and Mz measured in Newton-millimeters (Nmm)

				Pairwise Com	parisons			
			_				95% Confiden	
		Wire	Wire	Mean	Std.		Diffe	
Measure		Elastic	Elastic	Difference	Error	Sig.	Lower Bound	Upper Bound
Fx	47	NiTiH	NiTiL	.00	.00	1.000	.00	.00
			SSH	01	.00	.000	01	.00
	_		SSL	.00	.00	.001	.00	.00
		NiTiL	NiTiH	.00	.00	1.000	.00	.00
			SSH	01	.00	.000	01	.00
	_		SSL	.00	.00	.000	.00	.00
		SSH	NiTiH	.01	.00	.000	.00	.01
			NiTiL	.01	.00	.000	.00	.01
			SSL	.00	.00	.000	.00	.00
	_	SSL	NiTiH	.00	.00	.001	.00	.00
			NiTiL	.00	.00	.000	.00	.00
			SSH	.00	.00	.000	.00	.00
	46	NiTiH	NiTiL	-1.04	.02	.000	-1.09	99
			SSH	02	.02	1.000	07	.03
			SSL	-1.03	.02	.000	-1.08	98
	_	NiTiL	NiTiH	1.04	.02	.000	.99	1.09
			SSH	1.02	.02	.000	.97	1.07
			SSL	.01	.02	1.000	04	.06
	_	SSH	NiTiH	.02	.02	1.000	03	.07
			NiTiL	-1.02	.02	.000	-1.07	97
			SSL	-1.01	.02	.000	-1.06	96
	_	SSL	NiTiH	1.03	.02	.000	.98	1.08
			NiTiL	01	.02	1.000	06	.04
			SSH	1.01	.02	.000	.96	1.06
	45	NiTiH	NiTiL	.00	.00	1.000	.00	.00
			SSH	.00	.00	.485	.00	.00
			SSL	.00	.00	.573	.00	.00
	_	NiTiL	NiTiH	.00	.00	1.000	.00	.00
			SSH	.00	.00	.634	.00	.00
			SSL	.00	.00	.743	.00	.00
	-	SSH	NiTiH	.00	.00	.485	.00	.00

			NiTiL	.00	.00	.634	.00	.00
			SSL	.00	.00	1.000	.00	.00
		SSL	NiTiH	.00	.00	.573	.00	.00
		222	NiTiL	.00	.00	.743	.00	.00
			SSH	.00	.00	1.000	.00	.00
-	44	NiTiH	NiTiL	.00	.00	1.000	.00	.00
			SSH	.00	.00	1.000	.00	.00
			SSL	.00	.00	.813	.00	.00
		NiTiL	NiTiH	.00	.00	1.000	.00	.00
			SSH	.00	.00	.477	.00	.00
			SSL	.00	.00	1.000	.00	.00
		SSH	NiTiH	.00	.00	1.000	.00	.00
			NiTiL	.00	.00	.477	.00	.00
			SSL	.00	.00	.106	.00	.00
		SSL	NiTiH	.00	.00	.813	.00	.00
			NiTiL	.00	.00	1.000	.00	.00
			SSH	.00	.00	.106	.00	.00
	43	NiTiH	NiTiL	.00	.00	1.000	01	.01
			SSH	03	.00	.000	03	02
			SSL	01	.00	.000	02	01
		NiTiL	NiTiH	.00	.00	1.000	01	.01
			SSH	03	.00	.000	03	02
		COLL	SSL	01	.00	.000	02	01
		SSH	NiTiH	.03 .03	.00	.000 .000	.02	.03 .03
			NiTiL SSL	.03	.00. .00	.000	.02 .01	.03
		SSL	NiTiH	.01	.00	.000	.01	.02
		55L	NiTiL	.01	.00	.000	.01	.02
			SSH	01	.00	.000	02	01
	42	NiTiH	NiTiL	.00	.00	1.000	.00	.00
			SSH	.00	.00	.000	.00	.00
			SSL	.00	.00	.000	.00	.00
		NiTiL	NiTiH	.00	.00	1.000	.00	.00
			SSH	.00	.00	.000	.00	.00
			SSL	.00	.00	.000	.00	.00
		SSH	NiTiH	.00	.00	.000	.00	.00
			NiTiL	.00	.00	.000	.00	.00
			SSL	.00	.00	1.000	.00	.00
		SSL	NiTiH	.00	.00	.000	.00	.00
			NiTiL	.00	.00	.000	.00	.00
			SSH	.00	.00	1.000	.00	.00
	41	NiTiH	NiTiL	.00	.00	1.000	.00	.00
			SSH	.00	.00	1.000	.00	.00
			SSL	.00	.00	1.000	.00	.00
		NiTiL	NiTiH	.00	.00	1.000	.00	.00
			SSH	.00	.00	1.000	.00	.00
			SSL	.00	.00	1.000	.00	.00

		SSH	NiTiH	.00	.00	1.000	.00	.00
			NiTiL	.00	.00	1.000	.00	.00
			SSL	.00	.00	1.000	.00	.00
	-	SSL	NiTiH	.00	.00	1.000	.00	.00
			NiTiL	.00	.00	1.000	.00	.00
			SSH	.00	.00	1.000	.00	.00
-	31	NiTiH	NiTiL	.00	.00	1.000	.00	.00
			SSH	.00	.00	1.000	.00	.00
	-		SSL	.00	.00	1.000	.00	.00
		NiTiL	NiTiH	.00	.00	1.000	.00	.00
			SSH	.00	.00	1.000	.00	.00
			SSL	.00	.00	1.000	.00	.00
		SSH	NiTiH	.00	.00	1.000	.00	.00
			NiTiL	.00	.00	1.000	.00	.00
			SSL	.00	.00	1.000	.00	.00
		SSL	NiTiH	.00	.00	1.000	.00	.00
			NiTiL	.00	.00	1.000	.00	.00
-	22	21,00,11	SSH	.00	.00	1.000	.00	.00
	32	NiTiH	NiTiL	.00	.00	1.000	01	.01
			SSH SSL	.03 .01	.00 .00	.000	.02	.04 .02
		NiTiL	NiTiH	.01	.00	.000 1.000	.01	.02
		INTIL	SSH	.03	.00	.000	.02	.01
			SSL	.01	.00	.000	.02	.04
		SSH	NiTiH	03	.00	.000	04	02
		5511	NiTiL	03	.00	.000	04	02
			SSL	02	.00	.000	02	01
		SSL	NiTiH	01	.00	.000	02	01
			NiTiL	01	.00	.000	02	01
			SSH	.02	.00	.000	.01	.02
-	33	NiTiH	NiTiL	.00	.00	1.000	.00	.00
			SSH	.00	.00	.022	.00	.01
			SSL	.01	.00	.002	.00	.01
		NiTiL	NiTiH	.00	.00	1.000	.00	.00
			SSH	.00	.00	.024	.00	.01
			SSL	.01	.00	.002	.00	.01
		SSH	NiTiH	.00	.00	.022	01	.00
			NiTiL	.00	.00	.024	01	.00
			SSL	.00	.00	1.000	.00	.00
		SSL	NiTiH	01	.00	.002	01	.00
			NiTiL	01	.00	.002	01	.00
	2.4	NI:TT'II	SSH	.00	.00	1.000	.00	.00
	34	NiTiH	NiTiL	.00	.00	1.000	.00	.00
			SSH	.00 .00	.00	.002 .705	.00	.01 .00
		NITI	SSL Nitih		.00		.00	
		NiTiL	NiTiH SSH	.00 .00	.00 .00	1.000 .002	.00 .00	.00 .01
			330	.00	.00	.002	.00	.01

	•		SSL	.00	.00	.572	.00	.00
		SSH	NiTiH	.00	.00	.002	01	.00
			NiTiL	.00	.00	.002	01	.00
			SSL	.00	.00	.262	.00	.00
		SSL	NiTiH	.00	.00	.705	.00	.00
			NiTiL	.00	.00	.572	.00	.00
			SSH	.00	.00	.262	.00	.00
	35	NiTiH	NiTiL	04	.01	.000	05	02
			SSH	05	.01	.000	07	04
			SSL	06	.01	.000	08	05
		NiTiL	NiTiH	.04	.01	.000	.02	.05
			SSH	01	.01	.025	03	.00
			SSL	03	.01	.000	04	01
		SSH	NiTiH	.05	.01	.000	.04	.07
			NiTiL	.01	.01	.025	.00	.03
			SSL	01	.01	.079	03	.00
		SSL	NiTiH	.06	.01	.000	.05	.08
			NiTiL	.03	.01	.000	.01	.04
			SSH	.01	.01	.079	.00	.03
	36	NiTiH	NiTiL	-1.05	.02	.000	-1.10	-1.01
			SSH	07	.02	.000	12	03
			SSL	-1.09	.02	.000	-1.14	-1.04
		NiTiL	NiTiH	1.05	.02	.000	1.01	1.10
			SSH	.98	.02	.000	.93	1.03
			SSL	03	.02	.441	08	.02
		SSH	NiTiH	.07	.02	.000	.03	.12
			NiTiL	98	.02	.000	-1.03	93
			SSL	-1.01	.02	.000	-1.06	96
		SSL	NiTiH	1.09	.02	.000	1.04	1.14
			NiTiL	.03	.02	.441	02	.08
			SSH	1.01	.02	.000	.96	1.06
	37	NiTiH	NiTiL	.00	.00	1.000	01	.01
			SSH	.01	.00	.000	.01	.02
			SSL	.00	.00	1.000	01	.01
		NiTiL	NiTiH	.00	.00	1.000	01	.01
			SSH	.01	.00	.000	.01	.02
			SSL	.00	.00	1.000	01	.01
		SSH	NiTiH	01	.00	.000	02	01
			NiTiL	01	.00	.000	02	01
			SSL	01	.00	.000	02	01
		SSL	NiTiH	.00	.00	1.000	01	.01
			NiTiL	.00	.00	1.000	01	.01
			SSH	.01	.00	.000	.01	.02
Fy	47	NiTiH	NiTiL	.00	.00	1.000	01	.00
			SSH	07	.00	.000	08	07
		NI:T'T	SSL	03	.00	.000	04	03
		NiTiL	NiTiH SSH	.00	.00	1.000	.00	.01
			SSH	07	.00	.000	08	07

		SSL	03	.00	.000	04	03
-	SSH	NiTiH	.07	.00	.000	.07	.08
		NiTiL	.07	.00	.000	.07	.08
		SSL	.04	.00	.000	.04	.05
-	SSL	NiTiH	.03	.00	.000	.03	.04
	222	NiTiL	.03	.00	.000	.03	.04
		SSH	04	.00	.000	05	04
46	NiTiH	NiTiL	14	.00	.000	15	13
10		SSH	.14	.01	.000	.12	.15
		SSL	08	.01	.000	09	06
-	NiTiL	NiTiH	.14	.01	.000	.13	.15
	INTIL	SSH	.28	.01	.000	.26	.29
		SSL	.06	.01	.000	.05	.08
-	SSH	NiTiH	14	.01	.000	15	12
	5511	NiTiL	28	.01	.000	29	26
		SSL	20	.01	.000	29	20
-	CCI		.08			.06	.09
	SSL	NiTiH		.01	.000		
		NiTiL	06	.01	.000	08	05
4.5	NI , L , L	SSH	.21	.01	.000	.20	.22
45	NiTiH	NiTiL	.00	.00	1.000	01	.01
		SSH	01	.00	.002	02	.00
-		SSL	01	.00	.000	02	01
	NiTiL	NiTiH	.00	.00	1.000	01	.01
		SSH	01	.00	.001	02	.00
-		SSL	01	.00	.000	02	01
	SSH	NiTiH	.01	.00	.002	.00	.02
		NiTiL	.01	.00	.001	.00	.02
-		SSL	.00	.00	1.000	01	.01
	SSL	NiTiH	.01	.00	.000	.01	.02
		NiTiL	.01	.00	.000	.01	.02
		SSH	.00	.00	1.000	01	.01
44	NiTiH	NiTiL	.00	.00	.000	01	.00
		SSH	01	.00	.000	01	01
_		SSL	01	.00	.000	01	.00
	NiTiL	NiTiH	.00	.00	.000	.00	.01
		SSH	.00	.00	.000	.00	.00
_		SSL	.00	.00	.001	.00	.00
	SSH	NiTiH	.01	.00	.000	.01	.01
		NiTiL	.00	.00	.000	.00	.00
_		SSL	.00	.00	1.000	.00	.00
	SSL	NiTiH	.01	.00	.000	.00	.01
		NiTiL	.00	.00	.001	.00	.00
		SSH	.00	.00	1.000	.00	.00
43	NiTiH	NiTiL	.00	.00	1.000	01	.01
		SSH	03	.00	.000	04	03
		SSL	02	.00	.000	02	01
-	NiTiL	NiTiH	.00	.00	1.000	01	.01
		SSH	03	.00	.000	04	03
		SSL	02	.00	.000	02	01
-	SSH	NiTiH	.03	.00	.000	.03	.04

		SSL	.02	.00	.000	.01	.02
-	SSL	NiTiH	.02	.00	.000	.01	.02
		NiTiL	.02	.00	.000	.01	.02
		SSH	02	.00	.000	02	01
42	NiTiH	NiTiL	.00	.00	1.000	.00	.00
		SSH	.01	.00	.000	.00	.01
		SSL	.01	.00	.006	.00	.01
-	NiTiL	NiTiH	.00	.00	1.000	.00	.00
		SSH	.01	.00	.000	.00	.01
		SSL	.01	.00	.005	.00	.01
-	SSH	NiTiH	01	.00	.000	01	.00
	2211	NiTiL	01	.00	.000	01	.00
		SSL	.00	.00	1.000	01	.00
-	SSL	NiTiH	01	.00	.006	01	.00
	SSE	NiTiL	01	.00	.005	01	.00
		SSH	.00	.00	1.000	.00	.00
41	NiTiH	NiTiL	.00	.00	1.000	.00	.00
71	INIT III	SSH	02	.00	.000	02	01
		SSL	01	.00	.000	02	01
-	NiTiL	NiTiH	.00	.00	1.000	.00	.01
	INTIL.	SSH	02	.00	.000	02	01
		SSL	02	.00	.000	02	01
-	SSH	NiTiH	.02	.00	.000	.01	.02
	5511	NiTiL	.02	.00	.000	.01	.02
		SSL	.02	.00	.000	.01	.02
-	SSL	NiTiH	.00	.00	.008	.00	.01
	35L	NiTiL	.01	.00	.000	.01	.02
		SSH	.01	.00	.000	01	.02
31	NiTiH	NiTiL	.00	.00	1.000	01	.00
51		SSH	.00	.00	1.000	01	.01
		SSL	.00	.00	1.000	01	.01
-	NiTiL	NiTiH	.00	.00	1.000	01	.00
	INITIL	SSH	.00	.00	1.000	01	.01
		SSL	.00	.00	1.000		.01
-	SSH	NiTiH	.00	.00	1.000	01	
	551	NiTiL		1		01	.01
		SSL	.00 .00	.00 .00	1.000 1.000	01	.01 .00
-	SSL	NiTiH	.00	.00		.00	.00
	55L		.00	1	1.000 1.000	.00	
		NiTiL	.00	.00 .00	1.000	.00	.01 .01
22	NITII	SSH	.00				.01
32	NiTiH	NiTiL		.00	1.000	01	
		SSH	01	.00	.000	02	01
-	NT.	SSL	01	.00	.530	01	.00
	NiTiL	NiTiH	.00	.00	1.000	01	.01
		SSH	01	.00	.000	02	01
-	COLL	SSL	.00	.00	.698	01	.00
	SSH	NiTiH	.01	.00	.000	.01	.02
		NiTiL	.01	.00	.000	.01	.02
-	0.01	SSL	.01	.00	.020	.00	.02
	SSL	NiTiH	.01	.00	.530	.00	.01
		NiTiL	.00	.00	.698	.00	.01

		SSH	01	.00	.020	02	.00
33	NiTiH	NiTiL	.00	.00	1.000	01	.01
		SSH	01	.00	.874	02	.01
		SSL	02	.00	.003	03	.00
-	NiTiL	NiTiH	.00	.00	1.000	01	.01
		SSH	01	.00	.892	02	.01
		SSL	02	.00	.003	03	.00
-	SSH	NiTiH	.01	.00	.874	01	.02
		NiTiL	.01	.00	.892	01	.02
		SSL	01	.00	.247	02	.00
-	SSL	NiTiH	.02	.00	.003	.00	.03
		NiTiL	.02	.00	.003	.00	.03
		SSH	.01	.00	.247	.00	.02
34	NiTiH	NiTiL	.00	.01	1.000	02	.01
		SSH	.00	.01	1.000	01	.01
		SSL	.02	.01	.000	.01	.04
-	NiTiL	NiTiH	.00	.01	1.000	01	.02
	111112	SSH	.00	.01	1.000	01	.02
		SSL	.03	.01	.000	.01	.04
-	SSH	NiTiH	.00	.01	1.000	01	.01
	5511	NiTiL	.00	.01	1.000	02	.01
		SSL	.02	.01	.000	.01	.01
-	SSL	NiTiH	02	.01	.000	04	01
	SSL	NiTiL	03	.01	.000	04	01
		SSH	02	.01	.000	03	01
35	NiTiH	NiTiL	15	.01	.000	19	12
55		SSH	31	.01	.000	35	12
		SSL	27	.01	.000	30	23
-	NiTiL	NiTiH	.15	.01	.000	.12	.19
	INTI IL	SSH	16	.01	.000	19	12
		SSL	11	.01	.000	15	12
-	SSH	NiTiH	.31	.01	.000	.27	.35
	5511	NiTiL	.16	.01	.000	.12	.19
		SSL	.04	.01	.000		.08
-	SSL	NiTiH	.04	.01	.000	.01 .23	.08
	227		.11		.000	.23	
		NiTiL SSH	04	.01 .01	.000	08	.15
36	NiTiH	NiTiL	04	.01	.000	25	17
50	111111	SSH	.43	.01	.000	.39	.47
		SSL	09	.01	.000	13	05
-	NiTiL	NiTiH	.21	.01	.000	.17	.25
	INTIL	SSH	.21 .64	.01	.000	.60	.23
		SSH SSL	.04	.01	.000	.00	.08
_	CCU				-		
	SSH	NiTiH NiTii	43	.01	.000 .000	47	39
		NiTiL	64 52	.01		68	60
-	CCT	SSL	52	.01	.000	56	48
	SSL	NiTiH	.09	.01	.000	.05	.13
		NiTiL	12	.01	.000	16	08
		0.017	<i></i>	0.1	000	40	F (
37	NiTiH	SSH NiTiL	.52	.01	.000	.48	.56

			SSL	03	.00	.000	04	02
	•	NiTiL	NiTiH	.00	.00	1.000	01	.01
			SSH	13	.00	.000	14	12
			SSL	03	.00	.000	04	02
	•	SSH	NiTiH	.13	.00	.000	.13	.14
		5511	NiTiL	.13	.00	.000	.12	.14
			SSL	.10	.00	.000	.09	.11
	•	SSL	NiTiH	.03	.00	.000	.02	.04
		SSE	NiTiL	.03	.00	.000	.02	.04
			SSH	10	.00	.000	11	09
Fz	47	NiTiH	NiTiL	.00	.00	1.000	01	.01
12	- 77	101111	SSH	06	.00	.000	07	05
			SSL	02	.00	.000	03	01
		NiTiL	NiTiH	.00	.00	1.000	01	.01
		INITIL	SSH	06	.00	.000	07	05
			SSL	02	.00	.000	07	01
	•	CCII					.05	
		SSH	NiTiH	.06	.00	.000		.07
			NiTiL	.06	.00	.000	.05	.07
		CCI	SSL	.04	.00	.000	.02	.05
		SSL	NiTiH	.02	.00	.000	.01	.03
			NiTiL	.02	.00	.000	.01	.03
	10	NI, LI	SSH	04	.00	.000	05	02
	46	NiTiH	NiTiL	.78	.01	.000	.74	.82
			SSH	.10	.01	.000	.06	.14
	•	N1'TT'I	SSL	.81	.01	.000	.77	.85
		NiTiL	NiTiH	78	.01	.000	82	74
			SSH	69	.01	.000	72	65
		COLL	SSL	.03	.01	.326	01	.07
		SSH	NiTiH	10	.01	.000	14	06
			NiTiL	.69	.01	.000	.65	.72
		0.01	SSL	.71	.01	.000	.67	.75
		SSL	NiTiH	81	.01	.000	85	77
			NiTiL	03	.01	.326	07	.01
	4.5	21,00,11	SSH	71	.01	.000	75	67
	45	NiTiH	NiTiL	.00	.00	.584	.00	.00
			SSH	.00	.00	.001	.00	.00
		NT:D:T	SSL	.00	.00	.003	.00	.00
		NiTiL	NiTiH	.00	.00	.584	.00	.00
			SSH	.00	.00	.143	.00	.00
		COLL	SSL	.00	.00	.366	.00	.00
		SSH	NiTiH	.00	.00	.001	.00	.00
			NiTiL	.00	.00	.143	.00	.00
		0.07	SSL	.00	.00	1.000	.00	.00
		SSL	NiTiH	.00	.00	.003	.00	.00
			NiTiL	.00	.00	.366	.00	.00
	4.4	3.110017.7	SSH	.00	.00	1.000	.00	.00
	44	NiTiH	NiTiL	.00	.00	1.000	01	.00
			SSH	01	.00	.000	02	01
			SSL	.00	.00	.394	01	.00
		NiTiL	NiTiH	.00	.00	1.000	.00	.01
			SSH	01	.00	.000	02	01

		SSL	.00	.00	1.000	01	.00
-	SSH	NiTiH	.01	.00	.000	.01	.02
		NiTiL	.01	.00	.000	.01	.02
		SSL	.01	.00	.000	.01	.01
-	SSL	NiTiH	.00	.00	.394	.00	.01
	222	NiTiL	.00	.00	1.000	.00	.01
		SSH	01	.00	.000	01	01
43	NiTiH	NiTiL	.00	.00	1.000	.00	.00
15		SSH	.00	.00	1.000	.00	.00
		SSL	.00	.00	1.000	.00	.00
-	NiTiL	NiTiH	.00	.00	1.000	.00	.00
	TUTIL	SSH	.00	.00	.832	.00	.01
		SSL	.00	.00	1.000	.00	.00
-	SSH	NiTiH	.00	.00	1.000	.00	.00
	5511	NiTiL	.00	.00	.832	01	.00
		SSL	.00	.00	.832	01	.00
-	CCI					.00	
	SSL	NiTiH	.00	.00	1.000		.00
		NiTiL	.00	.00	1.000	.00	.00
10		SSH	.00	.00	.802	.00	.01
42	NiTiH	NiTiL	.00	.00	1.000	.00	.00
		SSH	.00	.00	1.000	.00	.00
-		SSL	.00	.00	1.000	.00	.00
	NiTiL	NiTiH	.00	.00	1.000	.00	.00
		SSH	.00	.00	.245	.00	.00
-		SSL	.00	.00	1.000	.00	.00
	SSH	NiTiH	.00	.00	1.000	.00	.00
		NiTiL	.00	.00	.245	.00	.00
-	~~~	SSL	.00	.00	.550	.00	.00
	SSL	NiTiH	.00	.00	1.000	.00	.00
		NiTiL	.00	.00	1.000	.00	.00
		SSH	.00	.00	.550	.00	.00
41	NiTiH	NiTiL	.00	.00	1.000	.00	.01
		SSH	01	.00	.003	01	.00
-		SSL	01	.00	.073	01	.00
	NiTiL	NiTiH	.00	.00	1.000	01	.00
		SSH	01	.00	.000	01	.00
-		SSL	01	.00	.006	01	.00
	SSH	NiTiH	.01	.00	.003	.00	.01
		NiTiL	.01	.00	.000	.00	.01
-		SSL	.00	.00	1.000	.00	.01
	SSL	NiTiH	.01	.00	.073	.00	.01
		NiTiL	.01	.00	.006	.00	.01
		SSH	.00	.00	1.000	01	.00
31	NiTiH	NiTiL	.00	.00	.742	.00	.00
		SSH	.00	.00	1.000	.00	.00
-		SSL	.00	.00	1.000	.00	.00
	NiTiL	NiTiH	.00	.00	.742	.00	.00
		SSH	.00	.00	1.000	.00	.00
-		SSL	.00	.00	.184	.00	.00
	SSH	NiTiH	.00	.00	1.000	.00	.00
		NiTiL	.00	.00	1.000	.00	.00

		SSL	.00	.00	1.000	.00	.00
-	SSL	NiTiH	.00	.00	1.000	.00	.00
		NiTiL	.00	.00	.184	.00	.00
		SSH	.00	.00	1.000	.00	.00
32	NiTiH	NiTiL	.00	.00	1.000	.00	.00
		SSH	.01	.00	.000	.01	.02
		SSL	.01	.00	.000	.00	.01
-	NiTiL	NiTiH	.00	.00	1.000	.00	.00
		SSH	.01	.00	.000	.01	.02
		SSL	.01	.00	.000	.00	.01
-	SSH	NiTiH	01	.00	.000	02	01
		NiTiL	01	.00	.000	02	01
		SSL	01	.00	.000	01	01
-	SSL	NiTiH	01	.00	.000	01	.00
		NiTiL	01	.00	.000	01	.00
		SSH	.01	.00	.000	.01	.01
33	NiTiH	NiTiL	.00	.00	1.000	01	.00
		SSH	01	.00	.022	01	.00
		SSL	.00	.00	1.000	.00	.01
-	NiTiL	NiTiH	.00	.00	1.000	.00	.01
		SSH	01	.00	.071	01	.00
		SSL	.00	.00	1.000	.00	.01
-	SSH	NiTiH	.01	.00	.022	.00	.01
		NiTiL	.01	.00	.071	.00	.01
		SSL	.01	.00	.003	.00	.01
-	SSL	NiTiH	.00	.00	1.000	01	.00
		NiTiL	.00	.00	1.000	01	.00
		SSH	01	.00	.003	01	.00
34	NiTiH	NiTiL	.00	.00	1.000	01	.01
		SSH	01	.00	.003	02	.00
		SSL	01	.00	.004	02	.00
-	NiTiL	NiTiH	.00	.00	1.000	01	.01
		SSH	01	.00	.022	02	.00
		SSL	01	.00	.032	02	.00
	SSH	NiTiH	.01	.00	.003	.00	.02
		NiTiL	.01	.00	.022	.00	.02
		SSL	.00	.00	1.000	01	.01
	SSL	NiTiH	.01	.00	.004	.00	.02
		NiTiL	.01	.00	.032	.00	.02
		SSH	.00	.00	1.000	01	.01
35	NiTiH	NiTiL	06	.01	.000	10	02
		SSH	03	.01	.150	07	.01
-		SSL	04	.01	.015	08	01
	NiTiL	NiTiH	.06	.01	.000	.02	.10
		SSH	.03	.01	.225	01	.07
-		SSL	.02	.01	1.000	02	.05
	SSH	NiTiH	.03	.01	.150	01	.07
		NiTiL	03	.01	.225	07	.01
-		SSL	01	.01	1.000	05	.03
-	SSL	NiTiH	.04	.01	.015	.01	.08
		NiTiL	02	.01	1.000	05	.02

			SSH	.01	.01	1.000	03	.05
	36	NiTiH	NiTiL	.72	.02	.000	.68	.77
			SSH	.02	.02	.838	02	.07
			SSL	.70	.02	.000	.66	.75
		NiTiL	NiTiH	72	.02	.000	77	68
			SSH	70	.02	.000	74	65
			SSL	02	.02	.982	07	.02
		SSH	NiTiH	02	.02	.838	07	.02
			NiTiL	.70	.02	.000	.65	.74
			SSL	.68	.02	.000	.63	.72
		SSL	NiTiH	70	.02	.000	75	66
			NiTiL	.02	.02	.982	02	.07
			SSH	68	.02	.000	72	63
	37	NiTiH	NiTiL	.00	.00	1.000	01	.01
			SSH	.02	.00	.004	.00	.03
			SSL	.02	.00	.000	.01	.04
		NiTiL	NiTiH	.00	.00	1.000	01	.01
			SSH	.02	.00	.001	.01	.03
			SSL	.03	.00	.000	.01	.04
		SSH	NiTiH	02	.00	.004	03	.00
		5511	NiTiL	02	.00	.001	03	01
			SSL	.01	.00	.465	.00	.02
		SSL	NiTiH	02	.00	.000	04	01
		SSE	NiTiL	03	.00	.000	04	01
			SSH	01	.00	.465	02	.00
Mx	47	NiTiH	NiTiL	03	.00	.899	10	.03
10174	• •	1011111	SSH	10	.02	.000	17	04
			SSL	03	.02	1.000	09	.03
		NiTiL	NiTiH	.03	.02	.899	03	.10
			SSH	07	.02	.028	13	.00
			SSL	.00	.02	1.000	06	.07
		SSH	NiTiH	.10	.02	.000	.04	.17
		5511	NiTiL	.07	.02	.028	.00	.13
			SSL	.07	.02	.016	.01	.14
		SSL	NiTiH	.03	.02	1.000	03	.09
		-	NiTiL	.00	.02	1.000	07	.06
			SSH	07	.02	.016	14	01
	46	NiTiH	NiTiL	3.55	.09	.000	3.31	3.78
			SSH	.08	.09	1.000	15	.32
			SSL	3.51	.09	.000	3.28	3.75
		NiTiL	NiTiH	-3.55	.09	.000	-3.78	-3.31
			SSH	-3.46	.09	.000	-3.70	-3.23
			SSL	03	.09	1.000	27	.20
		SSH	NiTiH	08	.09	1.000	32	.15
			NiTiL	3.46	.09	.000	3.23	3.70
			SSL	3.43	.09	.000	3.19	3.67
		SSL	NiTiH	-3.51	.09	.000	-3.75	-3.28
			NiTiL	.03	.09	1.000	20	.27
			SSH	-3.43	.09	.000	-3.67	-3.19
	45	NiTiH	NiTiL	.00	.07	1.000	18	.18
			SSH	.02	.07	1.000	16	.21

		SSL	.03	.07	1.000	16	.21
-	NiTiL	NiTiH	.00	.07	1.000	18	.18
		SSH	.03	.07	1.000	16	.21
		SSL	.03	.07	1.000	15	.21
	SSH	NiTiH	02	.07	1.000	21	.16
	5511	NiTiL	03	.07	1.000	21	.16
		SSL	.00	.07	1.000	18	.18
-	SSL	NiTiH	03	.07	1.000	21	.16
	SSE	NiTiL	03	.07	1.000	21	.15
		SSH	.00	.07	1.000	18	.18
44	NiTiH	NiTiL	08	.07	.153	17	.01
	101111	SSH	.00	.04	1.000	10	.09
		SSL	.00	.04	1.000	07	.12
-	NiTiL	NiTiH	.02	.04	.153	01	.12
	INITIL	SSH	.08	.04	.176	02	.17
		SSL	.10	.04	.022	.01	.20
-	SSH	NiTiH	.00	.04	1.000	09	.10
	5511	NiTiL	08	.04	.176	17	.02
		SSL	.03	.04	1.000	07	.12
-	SSL	NiTiH	02	.04	1.000	12	.07
	33L	NiTiL	10	.04	.022	12	01
		SSH	03	.04	1.000	12	.07
43	NiTiH	NiTiL	01	.04	1.000	05	.07
43	INITIO	SSH	.09	.01	.000	.05	.12
		SSL	.09	.01	.000	.03	.09
-	NiTiL	NiTiH	.00	.01	1.000	02	.09
	INITIL	SSH	.10	.01	.000	02 .07	.14
		SSL	.07	.01	.000	.07	.14
-	SSH	NiTiH	09	.01	.000	12	05
	5511	NiTiL	10	.01	.000	12	07
		SSL	03	.01	.000	07	.00
-	SSL	NiTiH	06	.01	.000	09	02
	55L	NiTiL	07	.01	.000	10	03
		SSH	.03	.01	.060	.00	.07
42	NiTiH	NiTiL	02	.01	1.000	06	.07
72	101111	SSH	01	.01	1.000	04	.02
		SSL	.00	.01	1.000	03	.04
-	NiTiL	NiTiH	.02	.01	1.000	02	.06
	TUTIL	SSH	.01	.01	1.000	03	.05
		SSL	.01	.01	.774	02	.06
-	SSH	NiTiH	.01	.01	1.000	03	.04
	5511	NiTiL	01	.01	1.000	05	.03
		SSL	.01	.01	1.000	03	.05
-	SSL	NiTiH	.00	.01	1.000	04	.03
	SSE	NiTiL	02	.01	.774	06	.02
		SSH	01	.01	1.000	05	.02
41	NiTiH	NiTiL	.06	.01	1.000	12	.25
71	111111	SSH	.00	.07	1.000	16	.23
		SSL	06	.07	1.000	25	.13
-	NiTiL	NiTiH	06	.07	1.000	25	.13
	INI I IL	SSH	04	.07	1.000	23	.12
		221	04	.07	1.000	23	.13

		SSL	12	.07	.489	31	.06
-	SSH	NiTiH	02	.07	1.000	21	.16
		NiTiL	.04	.07	1.000	15	.23
		SSL	08	.07	1.000	27	.10
-	SSL	NiTiH	.06	.07	1.000	13	.25
		NiTiL	.12	.07	.489	06	.31
		SSH	.08	.07	1.000	10	.27
31	NiTiH	NiTiL	02	.02	1.000	06	.02
		SSH	.00	.02	1.000	04	.04
		SSL	.01	.02	1.000	03	.05
-	NiTiL	NiTiH	.02	.02	1.000	02	.06
		SSH	.02	.02	1.000	02	.06
		SSL	.03	.02	.422	01	.07
-	SSH	NiTiH	.00	.02	1.000	04	.04
		NiTiL	02	.02	1.000	06	.02
		SSL	.01	.02	1.000	03	.05
-	SSL	NiTiH	01	.02	1.000	05	.03
		NiTiL	03	.02	.422	07	.01
		SSH	01	.02	1.000	05	.03
32	NiTiH	NiTiL	.00	.05	1.000	12	.12
		SSH	.06	.05	1.000	06	.18
		SSL	.06	.05	1.000	06	.18
-	NiTiL	NiTiH	.00	.05	1.000	12	.12
		SSH	.06	.05	.995	06	.18
		SSL	.06	.05	1.000	06	.18
-	SSH	NiTiH	06	.05	1.000	18	.06
	5511	NiTiL	06	.05	.995	18	.06
		SSL	.00	.05	1.000	12	.12
-	SSL	NiTiH	06	.05	1.000	18	.06
		NiTiL	06	.05	1.000	18	.06
		SSH	.00	.05	1.000	12	.12
33	NiTiH	NiTiL	01	.02	1.000	06	.04
		SSH	.04	.02	.184	01	.09
		SSL	.04	.02	.202	01	.09
-	NiTiL	NiTiH	.01	.02	1.000	04	.06
		SSH	.05	.02	.045	.00	.10
		SSL	.05	.02	.051	.00	.10
-	SSH	NiTiH	04	.02	.184	09	.01
		NiTiL	05	.02	.045	10	.00
		SSL	.00	.02	1.000	05	.05
-	SSL	NiTiH	04	.02	.202	09	.01
		NiTiL	05	.02	.051	10	.00
		SSH	.00	.02	1.000	05	.05
34	NiTiH	NiTiL	01	.02	1.000	08	.05
		SSH	.00	.02	1.000	06	.07
		SSL	.04	.02	.620	02	.10
-	NiTiL	NiTiH	.01	.02	1.000	05	.08
	_	SSH	.02	.02	1.000	04	.08
		SSL	.05	.02	.144	01	.11
-	SSH	NiTiH	.00	.02	1.000	07	.06

SSL NITH NITH 04 .02 .620 .10 .02 35 NITH NITH 03 .02 .861 10 .03 35 NITH NITH 42 .03 .000 .35 .49 SSL .63 .03 .000 .35 .49 SSL .63 .03 .000 .49 35 NITH NITH 42 .03 .000 .49 35 SSL .21 .03 .000 .49 35 SSH NITH 42 .03 .000 .49 35 SSL .21 .03 .000 .70 57 SSL .22 .03 .000 .28 14 SSL .22 .03 .000 .63 43 SSL 57 .04 .000 .63 43 SSL .53 .04 .000 .63				SSL	.03	.02	.861	03	.10
NTTIL 05 .02 .144 11 .01 35 NTTH A2 .03 .000 .35 .49 SSH A2 .03 .000 .35 .49 SSH A2 .03 .000 .57 .70 NTTL NTTH 42 .03 .000 .49 .35 SSH .00 .03 1.000 .07 .06 .35 SSH .00 .03 1.000 .49 .35 NTTH .42 .03 .000 .49 .35 SSH .01 .03 .000 .49 .35 NTTH .63 .03 .000 .49 .35 SSL .171H .63 .03 .000 .28 .14 SSH .22 .03 .000 .63 .43 SSL .57 .04 .000 .63 .43 SSL .53		-	SSL						
SSH 03 .02 .861 10 .03 35 NITH NITH .42 .03 .000 .35 .49 SSL .63 .03 .000 .35 .49 SSL .63 .03 .000 .57 .70 NITH .42 .03 .000 .49 .35 SSL .21 .03 .000 .49 .35 SSH NITH .42 .03 .000 .49 .35 NITH .42 .03 .000 .49 .35 NITH .42 .03 .000 .70 .57 NITH .63 .03 .000 .28 .14 SSL .22 .03 .000 .28 .14 SSH .53 .04 .000 .63 .43 SSH .53 .04 .000 .43 .63 SSH .53 .04			SSE						
35 NiTiH NITIL 42 03 000 35 49 SSL 63 03 000 35 49 NITIL NITIH -42 03 000 -77 70 NITIL NITH -42 03 1000 -49 -35 SSH 00 03 1000 -49 -35 SSH 00 03 1000 -49 -35 SSH 00 03 1000 -49 -35 SSL 22 03 000 -49 -35 SSL 22 03 000 -52 -14 SSH -22 03 000 -63 -43 SSH -53 04 000 -63 -43 SSH -53 04 000 -63 -43 SSH 00 04 1000 -10 10 SSH 00 04 1000<							1		
SSH 42 03 000 .35 .49 NITIL NITIH NITH .42 03 .000 .57 .70 NITIL NITH .42 03 .000 .49 .35 SSH .00 .000 .14 .28 SSH NITH .42 .03 .000 .49 .35 NITH .42 .03 .000 .15 .29 SSL NITH .63 .03 .000 .70 .57 NITH .21 .03 .000 .29 .15 36 NITH NITH .53 .04 .000 .63 .43 SSH .53 .04 .000 .43 .63 .63 SSH .00 .04 1.000 .14 .07 SSH .00 .04 1.000 .14 .07 SSH .00 .04 1.000 .14 .07 <th></th> <th>35</th> <th>NiTiH</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		35	NiTiH						
SSL 63 03 000 .57 .70 NITIL NITIH 42 .03 .000 49 35 SSL .21 .03 .000 .14 .28 SSH NITIH 42 .03 .000 49 35 SSL .21 .03 .000 49 35 SSL .22 .03 .000 49 35 SSL .22 .03 .000 57 .714 SSL .757 .04 .000 63 43 SSL 57 .04 .000 63 43 SSL 57 .04 .000 63 43 SSL 53 .04 .000 63 43 SSL 03 .04 .000 10 .10 SSH NITIL .03 .04 .000 .43 .63 SSL .03		55							
NiTiL NiTiH 42 0.0 0.00 49 35 SSH .00 .03 1.000 07 .06 SSH .21 .03 .000 49 .23 SSH NiTiH 42 .03 .000 49 .23 NITIL .00 .03 1.000 66 .07 SSL NITIH 63 .03 .000 29 .21 SSL NITIH 63 .03 .000 29 15 36 NITIH NITIL .53 .04 .000 67 47 NITIL NITIH .53 .04 .000 67 47 NITIL NITIH .53 .04 .000 67 47 NITIL NO .04 .000 .43 .63 SSH .00 .04 .000 .14 .07 SSL NITIH .57							1		
SSH .00 .03 1.000 07 06 SSH NiTiH 42 .03 .000 14 28 SSH NiTiL .00 03 1.000 49 35 NiTiL .00 03 1.000 66 07 SSL 22 03 .000 70 57 NITIL 21 03 .000 28 14 SSH 22 03 .000 29 15 36 NITH NITIL 53 .04 .000 63 43 SSL 57 .04 .000 63 43 63 SSH 03 .04 1.000 14 07 63 SSL 03 .04 1.000 14 07 63 SSL 03 .04 1.000 07 64 63 SSH 03 <td< th=""><th></th><th>-</th><th>NiTil</th><th></th><th></th><th></th><th></th><th></th><th></th></td<>		-	NiTil						
SSL .21 .03 .000 .14 .28 SSH NiTiH .42 .03 .000 .49 .35 SSL .22 .03 .000 .15 .29 SSL NiTiH .63 .03 .000 .70 .57 NITH .63 .03 .000 .22 .14 SSH .22 .03 .000 .22 .15 36 NITH NITIL .21 .03 .000 .63 .43 SSL .57 .04 .000 .63 .43 .63 SSH .03 .04 .000 .41 .00 SSH .03 .04 .000 .43 .63 SSH .03 .04 .000 .41 .00 SSH .03 .04 .000 .41 .00 SSL .03 .04 .000 .07 .14 SSL			TUTIL						
SSH NiTiH 42 .03 .000 49 35 NITIL .00 .03 1.000 06 .07 SSL NiTiH 63 .03 .000 70 57 NITIL 21 .03 .000 28 14 SSL NITIL 53 .04 .000 63 43 SSL 57 .04 .000 63 43 SSL 57 .04 .000 63 43 SSL 03 .04 .000 64 .03 .63 SSL 03 .04 .000 14 .07 .03 .04 .000 .04 .001 .10 .03 .04 .000 .04 .001 .04 .001 .04 .001 .04 .001 .04 .001 .04 .001 .04 .001 .04 .001 .04 .021 .041 .021							1		
NiTiL .00 .03 1.000 06 .07 SSL .22 .03 .000 .15 .29 SSL NiTiL 21 .03 .000 70 .57 NiTiL .21 .03 .000 28 14 SSH 22 .03 .000 63 43 SSE .57 .04 .000 63 43 SSL 57 .04 .000 63 43 SSL 57 .04 .000 63 .63 SSL 03 .04 .000 .63 .63 SSL 03 .04 .000 .14 .07 SSH NiTiL .00 .04 .000 .10 .01 SSL .03 .04 .000 .13 .07 SSL NiTiL .03 .04 .000 .01 .04 SSL .03		-	SSH						
SSL .22 .03 .000 .15 .29 SSL NiTiH .63 .03 .000 70 57 NiTiL .22 .03 .000 28 14 SSH .522 .03 .000 29 15 36 NiTiH NiTiL 53 .04 .000 63 43 SSL .57 .04 .000 63 43 SSL .57 .04 .000 43 .63 SSH .00 .04 1.000 10 .10 SSL .03 .04 .000 .43 .63 SSH .00 .04 1.000 10 .10 SSL .03 .04 1.000 11 .10 SSL .03 .04 1.000 15 .06 SSH .13 .04 .000 .15 .06 SSH .13			5511						
SSL NiTiH 63 .03 .000 70 57 NITIL 21 .03 .000 28 14 SSH 52 .03 .000 29 15 36 NITIH NITIL 53 .04 .000 63 43 SSH 57 .04 .000 63 43 SSH .57 .04 .000 67 47 NITIL NITIH .53 .04 .000 61 .07 SSH .00 .04 1.000 10 .10 .07 SSH .03 .04 .000 .43 .63 NITIL .00 .04 1.000 10 .10 SSL .03 .04 1.000 07 .14 SSL .03 .04 1.000 07 .13 37 NITH SSH .03 .04 1.000 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>									
NiTiL 21 .03 .000 28 14 36 NiTiH NiTiL 53 .04 .000 63 43 36 NiTiH NiTiL 53 .04 .000 63 43 SSL 57 .04 .000 63 43 SSL 57 .04 .000 63 43 NiTiL NiTiH .53 .04 .000 67 47 NiTiL .00 .04 1.000 14 .07 SSH .00 .04 1.000 14 .07 SSL 03 .04 1.000 10 .10 SSL .03 .04 1.000 17 .14 SSL .03 .04 1.000 .07 .13 37 NiTiH NiTiL .04 .004 .008 .23 02 SSH .03 .04 .1000		-	122						
SSH 22 .03 .000 29 15 36 NiTiH NiTiL 53 .04 .000 63 43 SSL 57 .04 .000 63 43 SSL 57 .04 .000 67 47 NiTiL NiTiH .53 .04 .000 .43 .63 SSL 03 .04 1.000 10 .10 .03 SSH NiTiL .00 .04 1.000 .14 .07 SSH NiTiL .00 .04 1.000 .10 .10 SSL .03 .04 1.000 .10 .10 .10 SSL NiTiL .03 .04 1.000 .07 .14 SSL .01 .04 1.000 .02 .02 SSL .01 .04 1.000 .05 .16 SSH .13 .04 .008 </th <th></th> <th></th> <th>551</th> <th></th> <th></th> <th></th> <th>1</th> <th></th> <th></th>			551				1		
36 NiTiH NiTiL 53 .04 .000 63 43 SSH 57 .04 .000 63 43 NITIL NITIL NITIH .57 .04 .000 63 43 NITIL NITIH .53 .04 .000 .43 .63 SSH .00 .04 1.000 10 .10 .10 SSH .00 .04 1.000 14 .07 SSH NITIH .53 .04 .000 .43 .63 NITIH .53 .04 .000 .43 .63 NITIL .00 .04 1.000 14 .07 SSL .03 .04 1.000 .07 .14 SSH .03 .04 1.000 .07 .14 SSH .03 .04 .000 .05 .06 SSH .13 .04 .008 .23<							1		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		36	NiTiH						
SSL 57 .04 .000 67 47 NiTiL NiTiH .53 .04 .000 .43 .63 SSH .00 .04 1.000 10 .10 SSH .03 .04 1.000 14 .07 SSH NiTiH .53 .04 .000 .43 .63 NiTiL .00 .04 1.000 10 .10 SSH NiTiH .57 .04 .000 .43 .63 NiTiH .57 .04 .000 17 .07 .07 SSL .03 .04 1.000 07 .13 .07 NiTiH SSH .03 .04 1.000 07 .13 37 NiTiH NiTiL 04 .04 1.000 02 .23 SSH .03 .04 .000 09 .12 .01 .04 .000 .02 .2		50							
NiTiL NiTiH .53 .04 .000 .43 .63 SSH .00 .04 1.000 10 .10 SSH .03 .04 1.000 14 .07 SSH NiTiH .53 .04 .000 .43 .63 NITIL .00 .04 1.000 10 .10 SSL 03 .04 1.000 13 .07 SSL 03 .04 1.000 13 .07 SSL NiTiH .57 .04 .000 .47 .67 NiTiL .03 .04 1.000 07 .14 SSH .03 .04 1.000 06 .15 SSH .13 .04 .008 .22 .23 NiTiL NiTiH .04 .04 .000 .05 .16 SSH 09 .04 .173 02 .19 .23 <tr< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>1</th><th></th><th></th></tr<>							1		
SSH .00 .04 1.000 10 .10 SSL 03 .04 1.000 14 .07 SSH NiTiH .53 .04 .000 .43 .63 NiTiL .00 .04 1.000 13 .07 SSL NiTiH .57 .04 .000 .47 .67 NiTiL .03 .04 1.000 07 .14 SSH .03 .04 1.000 07 .13 37 NiTiH NiTiL .04 .04 .008 23 02 SSL .01 .04 .000 05 .12 .01 NiTiL NiTiH .04 .04 .008 23 02 SSL .01 .04 .000 05 .16 SSH NiTiL .04 .000 05 .16 SSL .05 .04 .1000 16 .0		-	NiTiL						
SSL 03 .04 1.000 14 .07 SSH NiTiH .53 .04 .000 .43 .63 NiTiL .00 .04 1.000 10 .10 SSL 03 .04 1.000 13 .07 SSL NiTiH .57 .04 .000 .47 .67 NiTiL .03 .04 1.000 07 .14 SSH .03 .04 1.000 07 .14 SSH .03 .04 1.000 07 .13 37 NiTiH NiTiL 04 .04 1.000 05 SSL .01 .04 1.000 06 .15 SSL .01 .04 1.000 06 .15 SSL .05 .04 1.000 05 .16 SSH NiTiH .13 .04 .03 .03 .24 SSL <th></th> <th></th> <th>101112</th> <th></th> <th></th> <th></th> <th>1</th> <th></th> <th></th>			101112				1		
SSH NiTiH .53 .04 .000 .43 .63 NITIL .00 .04 1.000 10 .10 SSL 03 .04 1.000 13 .07 SSL NITIH .57 .04 .000 .47 .67 NITIL .03 .04 1.000 07 .14 SSH .03 .04 1.000 07 .13 37 NITIH NITIL 04 .04 1.000 07 .13 37 NITIH NITIL 04 .04 1.000 07 .13 37 NITIL NITIH .01 .04 .008 23 02 SSL .01 .04 .000 06 .15 .05 SSH NITIH .13 .04 .008 .02 .23 NITIL NITH .01 .04 .003 .03 .24									
NiTiL .00 .04 1.000 10 .10 SSL 03 .04 1.000 13 .07 SSL NiTiH .57 .04 .000 .47 .67 NiTiL .03 .04 1.000 07 .14 SSH .03 .04 1.000 07 .14 SSH .03 .04 1.000 07 .13 37 NiTiH NiTiL 04 .04 1.000 07 .13 37 NiTiH NiTiL .04 .008 23 02 SSL .01 .04 1.000 06 .15 SSL .01 .04 1.000 06 .15 SSL .01 .04 .000 .06 .15 SSL .01 .04 .000 .06 .16 SSL .05 .04 .003 .03 .24 SSL		-	SSH						
SSL 03 .04 1.000 13 .07 SSL NiTiH .57 .04 .000 .47 .67 NiTiL .03 .04 1.000 07 .14 SSH .03 .04 1.000 07 .13 37 NiTiH NiTiL 04 .04 1.000 07 .13 37 NiTiH NiTiL 03 .04 1.000 07 .13 37 NiTiH NiTiH .04 .04 1.000 02 .02 SSL .01 .04 1.000 06 .15 SSH .05 .04 1.000 06 .15 SSH NiTiH .13 .04 .003 .02 .23 NiTiL .09 .04 .173 .19 .02 .16 SSH NiTiH .13 .04 .003 .03 .24 SSL Ni			5511						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
NiTiL .03 .04 1.000 07 .14 SSH .03 .04 1.000 07 .13 37 NiTiH NiTiL 04 .04 1.000 07 .13 37 NiTiH NiTiL 04 .04 1.000 15 .06 SSH 13 .04 .008 23 02 NiTiL NiTiH .04 .000 06 .15 NiTiL NiTiH .04 .04 1.000 06 .15 SSL .05 .04 1.000 05 .16 SSH NiTiL .09 .04 .173 02 .19 SSL .05 .04 .003 .03 .24 SSL NiTiL .09 .04 .173 02 .19 SSL .14 .04 .003 .24 03 My 47 NiTiH NiTiL <		-	SSL						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			222				1		
37 NiTiH NiTiL 04 .04 1.000 15 .06 SSH 13 .04 .008 23 02 SSL .01 .04 1.000 09 .12 NiTiL NiTiH .04 .04 1.000 06 .15 SSL .05 .04 1.000 06 .15 SSH .09 .04 .173 19 .02 SSL .05 .04 1.000 05 .16 SSH NiTiH .13 .04 .008 .02 .23 NiTiL .09 .04 .173 02 .19 SSL .14 .04 .003 .03 .24 SSL NiTiH 01 .04 1.000 16 .05 My 47 NiTiH NiTiL .00 .01 1.000 04 .03 SSH .02 .01 .379							1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		37	NiTiH						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	NiTiL						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							1		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	SSH						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $.09	.04	.173		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.14	.04			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-	SSL		01	.04	1.000	12	.09
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				NiTiL	05	.04	1.000	16	.05
SSH .02 .01 .379 01 .06 SSL .02 .01 .905 02 .05 NiTiL NiTiH .00 .01 1.000 03 .04 SSH .03 .01 .167 01 .06 SSL .02 .01 .450 01 .06 SSL .02 .01 .450 01 .06 SSL .02 .01 .450 01 .06 SSH NiTiH 02 .01 .379 06 .01 NiTiL 03 .01 .167 06 .01 NiTiL 03 .01 .167 06 .01 SSL 01 .01 1.000 04 .03 SSL NiTiH 02 .01 .905 05 .02				SSH	14	.04	.003	24	03
SSL .02 .01 .905 02 .05 NiTiL NiTiH .00 .01 1.000 03 .04 SSH .03 .01 .167 01 .06 SSL .02 .01 .450 01 .06 SSH NiTiH 02 .01 .379 06 .01 NiTiL 03 .01 .167 06 .01 SSH NiTiH 02 .01 .379 06 .01 SSL 01 .01 1.167 06 .01 .03 SSL 01 .01 .167 06 .01 .03 SSL NiTiH 02 .01 .905 05 .02	Му	47	NiTiH	NiTiL	.00	.01	1.000	04	.03
NiTiL NiTiH .00 .01 1.000 03 .04 SSH .03 .01 .167 01 .06 SSL .02 .01 .450 01 .06 SSH NiTiH 02 .01 .379 06 .01 NiTiL 03 .01 .167 06 .01 SSL .02 .01 .379 06 .01 SSL 03 .01 .167 06 .01 SSL 01 .01 1.000 04 .03 SSL NiTiH 02 .01 .905 05 .02				SSH	.02	.01	.379	01	.06
SSH .03 .01 .167 01 .06 SSL .02 .01 .450 01 .06 SSH NiTiH 02 .01 .379 06 .01 NiTiL 03 .01 .167 06 .01 SSL 01 .01 1.000 04 .03 SSL NiTiH 02 .01 .905 05 .02				SSL	.02	.01	.905	02	.05
SSL .02 .01 .450 01 .06 SSH NiTiH 02 .01 .379 06 .01 NiTiL 03 .01 .167 06 .01 SSL 01 .01 1.000 04 .03 SSL NiTiH 02 .01 .905 05 .02		_	NiTiL	NiTiH	.00	.01	1.000	03	.04
SSH NiTiH 02 .01 .379 06 .01 NiTiL 03 .01 .167 06 .01 SSL 01 .01 1.000 04 .03 SSL NiTiH 02 .01 .905 05 .02				SSH	.03	.01	.167	01	.06
NiTiL 03 .01 .167 06 .01 SSL 01 .01 1.000 04 .03 SSL NiTiH 02 .01 .905 05 .02				SSL	.02	.01	.450	01	.06
SSL 01 .01 1.000 04 .03 SSL NiTiH 02 .01 .905 05 .02		•	SSH	NiTiH	02	.01	.379	06	.01
SSL NiTiH02 .01 .90505 .02				NiTiL	03	.01	.167	06	.01
				SSL	01	.01	1.000	04	.03
		-	SSL	NiTiH	02	.01	.905	05	.02
NiTiL02 .01 .45006 .01				NiTiL	02	.01	.450	06	.01

		SSH	.01	.01	1.000	03	.04
46	NiTiH	NiTiL	4.05	.08	.000	3.84	4.25
		SSH	30	.08	.001	50	09
		SSL	3.91	.08	.000	3.71	4.12
•	NiTiL	NiTiH	-4.05	.08	.000	-4.25	-3.84
		SSH	-4.34	.08	.000	-4.55	-4.14
		SSL	13	.08	.508	34	.07
	SSH	NiTiH	.30	.08	.001	.09	.50
		NiTiL	4.34	.08	.000	4.14	4.55
		SSL	4.21	.08	.000	4.00	4.42
	SSL	NiTiH	-3.91	.08	.000	-4.12	-3.71
		NiTiL	.13	.08	.508	07	.34
		SSH	-4.21	.08	.000	-4.42	-4.00
45	NiTiH	NiTiL	.00	.00	1.000	01	.01
		SSH	.00	.00	1.000	.00	.01
		SSL	.00	.00	1.000	.00	.01
	NiTiL	NiTiH	.00	.00	1.000	01	.01
		SSH	.00	.00	1.000	.00	.01
		SSL	.00	.00	1.000	.00	.01
	SSH	NiTiH	.00	.00	1.000	01	.00
		NiTiL	.00	.00	1.000	01	.00
		SSL	.00	.00	1.000	01	.00
	SSL	NiTiH	.00	.00	1.000	01	.00
		NiTiL	.00	.00	1.000	01	.00
		SSH	.00	.00	1.000	.00	.01
44	NiTiH	NiTiL	01	.01	1.000	03	.02
		SSH	03	.01	.004	06	01
		SSL	.01	.01	1.000	01	.04
	NiTiL	NiTiH	.01	.01	1.000	02	.03
		SSH	03	.01	.037	05	.00
		SSL	.02	.01	.305	01	.05
-	SSH	NiTiH	.03	.01	.004	.01	.06
		NiTiL	.03	.01	.037	.00	.05
-		SSL	.05	.01	.000	.02	.07
	SSL	NiTiH	01	.01	1.000	04	.01
		NiTiL	02	.01	.305	05	.01
		SSH	05	.01	.000	07	02
43	NiTiH	NiTiL	.00	.01	1.000	03	.03
		SSH	.17	.01	.000	.14	.20
		SSL	.11	.01	.000	.08	.14
	NiTiL	NiTiH	.00	.01	1.000	03	.03
		SSH	.17	.01	.000	.14	.20
		SSL	.11	.01	.000	.08	.14
	SSH	NiTiH	17	.01	.000	20	14
		NiTiL	17	.01	.000	20	14
		SSL	06	.01	.000	09	03
	SSL	NiTiH	11	.01	.000	14	08
		NiTiL	11	.01	.000	14	08
		SSH	.06	.01	.000	.03	.09
42	NiTiH	NiTiL	.00	.00	1.000	02	.01
		SSH	.00	.00	1.000	01	.01

		SSL	.01	.00	1.000	01	.02
•	NiTiL	NiTiH	.00	.00	1.000	01	.02
		SSH	.00	.00	1.000	01	.02
		SSL	.01	.00	.347	.00	.02
	SSH	NiTiH	.00	.00	1.000	01	.01
		NiTiL	.00	.00	1.000	02	.01
		SSL	.00	.00	1.000	01	.02
•	SSL	NiTiH	01	.00	1.000	02	.01
		NiTiL	01	.00	.347	02	.00
		SSH	.00	.00	1.000	02	.01
41	NiTiH	NiTiL	.00	.01	1.000	01	.02
		SSH	.02	.01	.000	.01	.04
		SSL	.01	.01	.050	.00	.03
	NiTiL	NiTiH	.00	.01	1.000	02	.01
	111112	SSH	.02	.01	.002	.01	.03
		SSL	.01	.01	.149	.00	.03
	SSH	NiTiH	02	.01	.000	04	01
	5511	NiTiL	02	.01	.002	03	01
		SSL	01	.01	.872	02	.01
•	SSL	NiTiH	01	.01	.050	03	.00
	SSE	NiTiL	01	.01	.149	03	.00
		SSH	.01	.01	.872	01	.00
31	NiTiH	NiTiL	.00	.00	1.000	01	.00
51		SSH	.00	.00	1.000	01	.00
		SSL	.00	.00	1.000	01	.01
	NiTiL	NiTiH	.00	.00	1.000	.00	.01
	INITIL	SSH	.00	.00	1.000	01	.01
		SSL	.00	.00	1.000	01 01	.01
	SSH	NiTiH	.00	.00	1.000	01	.01
	5511	NiTiL	.00	.00	1.000	01	.01
		SSL	.00	.00	1.000	01 01	.01
•	SSL	NiTiH	.00	.00	1.000	01	.01
	331	NiTiL	.00	.00	1.000	01	.01
		SSH	.00	.00	1.000	01 01	.01
32	NiTiH	NiTiL	.00	.00	1.000	01	.01
52	1111111	SSH	04	.01	.025	04	.04
		SSL	.00	.01	1.000	03	.00
	NiTiL	NiTiH	.00	.01	1.000	03	.04
	INITIL	SSH	04	.01	.035	04	.04
		SSL	.00	.01	1.000	08	.00
	SSH	NiTiH	.00	.01	.025	.00	.04
	5511	NiTiL	.04	.01	.025	.00	.08
		SSL	.04	.01	.033	.00	.08
	SSL	NiTiH	.04	.01	1.000	04	.08
	33L	NiTiL	.00	.01	1.000	04 04	.03
		SSH	04	.01	.014	04 08	01
33	NiTiH	NiTiL	.00	.01	1.000	08	01
33		SSH		t.			
			15	.02	.000	19	10
•	NLT:I	SSL	04	.02	.189	08	.01
	NiTiL	NiTiH	.00	.02	1.000	04	.05
		SSH	14	.02	.000	18	10

		SSL	03	.02	.359	08	.01
-	SSH	NiTiH	.15	.02	.000	.10	.19
		NiTiL	.14	.02	.000	.10	.18
		SSL	.11	.02	.000	.06	.15
_	SSL	NiTiH	.04	.02	.189	01	.08
	SSE	NiTiL	.03	.02	.359	01	.08
		SSH	11	.02	.000	15	06
34	NiTiH	NiTiL	.00	.01	1.000	02	.02
51		SSH	02	.01	.205	04	.00
		SSL	01	.01	1.000	03	.01
-	NiTiL	NiTiH	.00	.01	1.000	02	.02
	ITTL	SSH	01	.01	.654	03	.02
		SSL	.00	.01	1.000	02	.01
-	SSH	NiTiH	.00	.01	.205	.00	.02
	3511	NiTiL	.02	.01	.654	01	.04
-	CCI	SSL	.01	.01	.941	01	.03
	SSL	NiTiH	.01	.01	1.000	01	.03
		NiTiL	.00	.01	1.000	02	.02
	21/27/11	SSH	01	.01	.941	03	.01
35	NiTiH	NiTiL	17	.02	.000	22	11
		SSH	14	.02	.000	20	09
-		SSL	20	.02	.000	25	15
	NiTiL	NiTiH	.17	.02	.000	.11	.22
		SSH	.02	.02	1.000	03	.08
-		SSL	03	.02	.564	09	.02
	SSH	NiTiH	.14	.02	.000	.09	.20
		NiTiL	02	.02	1.000	08	.03
_		SSL	06	.02	.027	11	.00
	SSL	NiTiH	.20	.02	.000	.15	.25
		NiTiL	.03	.02	.564	02	.09
		SSH	.06	.02	.027	.00	.11
36	NiTiH	NiTiL	2.89	.05	.000	2.75	3.03
		SSH	.23	.05	.000	.09	.37
_		SSL	2.97	.05	.000	2.83	3.11
	NiTiL	NiTiH	-2.89	.05	.000	-3.03	-2.75
		SSH	-2.65	.05	.000	-2.79	-2.51
		SSL	.08	.05	.732	06	.22
	SSH	NiTiH	23	.05	.000	37	09
		NiTiL	2.65	.05	.000	2.51	2.79
		SSL	2.73	.05	.000	2.60	2.87
_	SSL	NiTiH	-2.97	.05	.000	-3.11	-2.83
		NiTiL	08	.05	.732	22	.06
		SSH	-2.73	.05	.000	-2.87	-2.60
37	NiTiH	NiTiL	.00	.03	1.000	07	.08
		SSH	.02	.03	1.000	06	.09
		SSL	.10	.03	.004	.02	.17
-	NiTiL		.00	.03	1.000	08	.07
-	NiTiL	NiTiH	.00 .01	.03 .03	1.000	08 06	.07 .09
-	NiTiL	NiTiH SSH	.01	.03	1.000	06	.09
-	NiTiL SSH	NiTiH					

			SSL	.08	.03	.028	.01	.16
		SSL	NiTiH	10	.03	.004	17	02
			NiTiL	09	.03	.007	17	02
			SSH	08	.03	.028	16	01
Mz	47	NiTiH	NiTiL	02	.01	.793	05	.01
			SSH	.11	.01	.000	.08	.14
			SSL	.12	.01	.000	.09	.15
	-	NiTiL	NiTiH	.02	.01	.793	01	.05
			SSH	.12	.01	.000	.09	.15
			SSL	.14	.01	.000	.11	.17
		SSH	NiTiH	11	.01	.000	14	08
			NiTiL	12	.01	.000	15	09
			SSL	.01	.01	1.000	01	.04
	-	SSL	NiTiH	12	.01	.000	15	09
			NiTiL	14	.01	.000	17	11
			SSH	01	.01	1.000	04	.01
	46	NiTiH	NiTiL	1.71	.04	.000	1.60	1.82
			SSH	52	.04	.000	63	41
			SSL	1.48	.04	.000	1.37	1.59
	-	NiTiL	NiTiH	-1.71	.04	.000	-1.82	-1.60
		IIIIE	SSH	-2.23	.04	.000	-2.34	-2.12
			SSL	23	.04	.000	34	12
		SSH	NiTiH	.52	.04	.000	.41	.63
		5511	NiTiL	2.23	.04	.000	2.12	2.34
			SSL	2.00	.04	.000	1.89	2.11
		SSL	NiTiH	-1.48	.04	.000	-1.59	-1.37
		DDL	NiTiL	.23	.04	.000	.12	.34
			SSH	-2.00	.04	.000	-2.11	-1.89
	45	NiTiH	NiTiL	.00	.04	1.000	02	.03
	- J		SSH	.03	.01	.024	.00	.05
			SSL	.03	.01	.024	.00	.05
		NiTiL	NiTiH	.00	.01	1.009	03	.03
		INTTIL	SSH	.00	.01	.068	.00	.02
			SSL	.02	.01		.00	.05
		SSH	NiTiH	03	.01	.028 .024	05	.03
		550	NiTiL	03	.01	.024	05 05	.00
			SSL	02	.01	1.000	03	.00
		SSL	NiTiH	03	.01	.009	02	01
		SSL	NiTiL	03	.01	.009	05 05	01
			SSH	03	.01	1.000	03	.00
	44	NiTiH	NiTiL	.00	.01	.065	03	.02
	-++		SSH	.03	.01		.00 01	.06
			SSH SSL		.01	.638		.05
		NET:I		.04		.010	.01	
		NiTiL	NiTiH	03	.01	.065	06	.00
			SSH	01	.01	1.000	04	.02
		COLL	SSL	.01	.01	1.000	02	.04
		SSH	NiTiH	02	.01	.638	05	.01
	-		NiTiL	.01	.01	1.000	02	.04

		SSL	.02	.01	.716	01	.05
-	SSL	NiTiH	04	.01	.010	06	01
		NiTiL	01	.01	1.000	04	.02
		SSH	02	.01	.716	05	.01
43	NiTiH	NiTiL	.00	.01	1.000	03	.04
		SSH	49	.01	.000	52	45
		SSL	24	.01	.000	28	20
-	NiTiL	NiTiH	.00	.01	1.000	04	.03
		SSH	49	.01	.000	53	45
		SSL	25	.01	.000	28	21
-	SSH	NiTiH	.49	.01	.000	.45	.52
		NiTiL	.49	.01	.000	.45	.53
		SSL	.24	.01	.000	.21	.28
-	SSL	NiTiH	.24	.01	.000	.20	.28
		NiTiL	.25	.01	.000	.21	.28
		SSH	24	.01	.000	28	21
42	NiTiH	NiTiL	.00	.00	1.000	01	.01
		SSH	.00	.00	1.000	01	.02
		SSL	.01	.00	.143	.00	.02
-	NiTiL	NiTiH	.00	.00	1.000	01	.01
		SSH	.00	.00	1.000	01	.02
		SSL	.01	.00	.078	.00	.02
•	SSH	NiTiH	.00	.00	1.000	02	.01
		NiTiL	.00	.00	1.000	02	.01
		SSL	.01	.00	.703	01	.02
-	SSL	NiTiH	01	.00	.143	02	.00
		NiTiL	01	.00	.078	02	.00
		SSH	01	.00	.703	02	.01
41	NiTiH	NiTiL	01	.01	.992	03	.01
		SSH	01	.01	1.000	03	.01
		SSL	01	.01	1.000	03	.01
-	NiTiL	NiTiH	.01	.01	.992	01	.03
		SSH	.00	.01	1.000	01	.02
		SSL	.00	.01	1.000	01	.02
-	SSH	NiTiH	.01	.01	1.000	01	.03
		NiTiL	.00	.01	1.000	02	.01
		SSL	.00	.01	1.000	02	.02
-	SSL	NiTiH	.01	.01	1.000	01	.03
		NiTiL	.00	.01	1.000	02	.01
		SSH	.00	.01	1.000	02	.02
31	NiTiH	NiTiL	.00	.01	1.000	02	.01
		SSH	.00	.01	1.000	01	.01
		SSL	.00	.01	1.000	02	.01
	NiTiL	NiTiH	.00	.01	1.000	01	.02
		SSH	.00	.01	1.000	01	.02
		SSL	.00	.01	1.000	01	.01
-	SSH	NiTiH	.00	.01	1.000	01	.01

		SSL	.00	.01	1.000	02	.01
-	SSL	NiTiH	.00	.01	1.000	01	.02
		NiTiL	.00	.01	1.000	01	.01
		SSH	.00	.01	1.000	01	.02
32	NiTiH	NiTiL	.00	.02	1.000	05	.06
		SSH	19	.02	.000	24	14
		SSL	04	.02	.269	09	.01
-	NiTiL	NiTiH	.00	.02	1.000	06	.05
		SSH	19	.02	.000	24	14
		SSL	04	.02	.218	10	.01
-	SSH	NiTiH	.19	.02	.000	.14	.24
		NiTiL	.19	.02	.000	.14	.24
		SSL	.15	.02	.000	.09	.20
-	SSL	NiTiH	.04	.02	.269	01	.09
		NiTiL	.04	.02	.218	01	.10
		SSH	15	.02	.000	20	09
33	NiTiH	NiTiL	.00	.01	1.000	04	.03
		SSH	03	.01	.080	07	.00
		SSL	05	.01	.001	08	02
-	NiTiL	NiTiH	.00	.01	1.000	03	.04
		SSH	03	.01	.104	07	.00
		SSL	05	.01	.002	08	01
-	SSH	NiTiH	.03	.01	.080	.00	.07
		NiTiL	.03	.01	.104	.00	.07
		SSL	02	.01	1.000	05	.02
_	SSL	NiTiH	.05	.01	.001	.02	.08
		NiTiL	.05	.01	.002	.01	.08
		SSH	.02	.01	1.000	02	.05
34	NiTiH	NiTiL	01	.01	1.000	03	.01
		SSH	.00	.01	1.000	02	.02
_		SSL	.03	.01	.005	.01	.05
	NiTiL	NiTiH	.01	.01	1.000	01	.03
		SSH	.01	.01	1.000	02	.03
_		SSL	.03	.01	.000	.01	.06
	SSH	NiTiH	.00	.01	1.000	02	.02
		NiTiL	01	.01	1.000	03	.02
-		SSL	.03	.01	.003	.01	.05
	SSL	NiTiH	03	.01	.005	05	01
		NiTiL	03	.01	.000	06	01
<u> </u>		SSH	03	.01	.003	05	01
35	NiTiH	NiTiL	.04	.03	1.000	05	.13
		SSH	-1.03	.03	.000	-1.12	94
-		SSL	19	.03	.000	28	10
	NiTiL	NiTiH	04	.03	1.000	13	.05
		SSH	-1.07	.03	.000	-1.16	98
-		SSL	23	.03	.000	32	14
	SSH	NiTiH	1.03	.03	.000	.94	1.12
		NiTiL	1.07	.03	.000	.98	1.16

		SSL	.84	.03	.000	.75	.93
	SSL	NiTiH	.19	.03	.000	.10	.28
		NiTiL	.23	.03	.000	.14	.32
		SSH	84	.03	.000	93	75
36	NiTiH	NiTiL	14	.02	.000	20	08
		SSH	31	.02	.000	37	26
		SSL	24	.02	.000	30	19
	NiTiL	NiTiH	.14	.02	.000	.08	.20
		SSH	17	.02	.000	23	12
		SSL	10	.02	.000	16	05
	SSH	NiTiH	.31	.02	.000	.26	.37
		NiTiL	.17	.02	.000	.12	.23
		SSL	.07	.02	.007	.01	.13
	SSL	NiTiH	.24	.02	.000	.19	.30
		NiTiL	.10	.02	.000	.05	.16
		SSH	07	.02	.007	13	01
37	NiTiH	NiTiL	.00	.02	1.000	04	.05
		SSH	.40	.02	.000	.36	.44
		SSL	.10	.02	.000	.05	.14
	NiTiL	NiTiH	.00	.02	1.000	05	.04
		SSH	.40	.02	.000	.35	.44
		SSL	.10	.02	.000	.05	.14
	SSH	NiTiH	40	.02	.000	44	36
		NiTiL	40	.02	.000	44	35
		SSL	30	.02	.000	35	26
	SSL	NiTiH	10	.02	.000	14	05
		NiTiL	10	.02	.000	14	05
		SSH	.30	.02	.000	.26	.35

Appendix G – Pairwise Comparisons of Lateral Deviations with Center Position

- Fx, Fy and Fz measured in Newton's (N)
- My measured in Newton-millimeters (Nmm)

	-	_	-				95% Con	fidence
							Interva	al for
				Mean			Differ	ence ^b
		Deviation	Deviation	Difference	Std.		Lower	Upper
Measure	Tooth	(I)	(J)	(I-J)	Error	Sig. ^b	Bound	Bound
Fx	13	0mm	L1mm	08*	.03	.04	17	.00
			L2mm	15*	.03	.00	23	07
			R1mm	07	.03	.14	15	.01
			R2mm	02	.03	1.00	10	.06
	23	0mm	L1mm	01	.33	1.00	98	.96
			L2mm	07	.33	1.00	-1.04	.90
			R1mm	11	.33	1.00	-1.08	.86
			R2mm	.59	.33	.80	38	1.56
Fy	13	0mm	L1mm	.00	.04	1.00	12	.12
			L2mm	.05	.04	1.00	08	.17
			R1mm	.11	.04	.12	01	.23
			R2mm	.10	.04	.24	03	.22
	23	0mm	L1mm	.02	.07	1.00	20	.23
			L2mm	.12	.07	1.00	10	.33
			R1mm	01	.07	1.00	22	.20
			R2mm	15	.07	.42	36	.06
Fz	13	0mm	L1mm	01	.03	1.00	11	.08
			L2mm	08	.03	.23	17	.02
			R1mm	06	.03	.69	16	.04
			R2mm	.00	.03	1.00	10	.09
	23	0mm	L1mm	.00	.05	1.00	15	.14
			L2mm	08	.05	1.00	23	.07
			R1mm	01	.05	1.00	16	.13
			R2mm	.02	.05	1.00	13	.17
My	13	0mm	L1mm	.31	.24	1.00	41	1.04

		L2mm	$.88^{*}$.24	.01	.16	1.61
		R1mm	.39	.24	1.00	33	1.11
		R2mm	.00	.24	1.00	72	.72
23	0mm	L1mm	05	.86	1.00	-2.60	2.50
		L2mm	.27	.86	1.00	-2.28	2.82
		R1mm	.12	.86	1.00	-2.43	2.67
		R2mm	-1.85	.86	.37	-4.40	.70

Appendix H – Pairwise Comparisons of Teeth 13 and 23

- Fx, Fy and Fz measured in Newton's (N)
- My measured in Newton-millimeters (Nmm)

	-	_	_				050/ Ca	nfidence
								al for
		- 1	- 1	Mean	~ 1			rence ^b
		Tooth	Tooth	Difference	Std.	ar h	Lower	Upper
Measure	WireElastic	(I)	(J)	(I-J)	Error	Sig. ^b	Bound	Bound
Fx	NITIH	13	23	26*	.02	.00	30	22
		23	13	.26*	.02	.00	.22	.30
	NITIL	13	23	08*	.02	.00	12	04
		23	13	$.08^{*}$.02	.00	.04	.12
	SSH	13	23	43*	.02	.00	47	39
		23	13	.43*	.02	.00	.39	.47
	SSL	13	23	12*	.02	.00	16	08
		23	13	.12*	.02	.00	.08	.16
Fy	NITIH	13	23	02	.03	.53	08	.04
		23	13	.02	.03	.53	04	.08
	NITIL	13	23	02	.03	.45	08	.04
		23	13	.02	.03	.45	04	.08
	SSH	13	23	16*	.03	.00	21	10
		23	13	.16*	.03	.00	.10	.21
	SSL	13	23	.06*	.03	.03	.01	.12
		23	13	06*	.03	.03	12	01
Fz	NITIH	13	23	.23*	.02	.00	.20	.26
		23	13	23*	.02	.00	26	20
	NITIL	13	23	.06*	.02	.00	.03	.09
		23	13	06*	.02	.00	09	03
	SSH	13	23	.26*	.02	.00	.23	.29
		23	13	26*	.02	.00	29	23
	SSL	13	23	.16*	.02	.00	.13	.19
		23	13	16*	.02	.00	19	13
Му	NITIH	13	23	-3.49*	.10	.00	-3.70	-3.29

	23	13	3.49*	.10	.00	3.29	3.70
NI	TIL <u>13</u>	23	-1.13*	.10	.00	-1.33	92
	23	13	1.13*	.10	.00	.92	1.33
SS	SH <u>13</u>	23	- 3.71 [*]	.10	.00	-3.91	-3.50
	23	13	3.71*	.10	.00	3.50	3.91
SS	SL <u>13</u>	23	-1.62*	.10	.00	-1.82	-1.41
	23	13	1.62*	.10	.00	1.41	1.82