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ABSTRACT

Composite endpoints are increasingly popular outcomes in clinical trials of heart

failure. Uptake has outpaced guidance on their use and little consistency is seen in

their construction. We must consider how best to handle multiple outcomes statis-

tically and clinically, ie in a way that is both cogent for the clinical audience and

statistically powerful. The clinical interpretation of composites has been empha-

sised along with its straightforward analysis and presentation. However there is a

loss of information and a more thorough statistical analysis may offer advantages

that are not easily dismissed, most obviously a gain in statistical efficiency and

power. The modelling approach offers a number of other advantages: 1) adjust-

ment for covariates, 2) a simple test of heterogeneity as the interaction between

treatment and outcome, 3) analyses of the individual component endpoints are a

consequence of the model, 4) correlations among outcomes are acknowledged, 5)

recognises a constellation of risk factors or manifestations of the syndrome with-

out blending them, 6) clinical weights are easily incorporated, and 7) an overall

estimate of the effect is obtainable - making it comparable with the results from

a composite endpoint. Thus the multivariate modelling approach yields a more

powerful and thorough analysis without the loss of information that occurs when

multiple outcomes are reduced to a single univariate composite measure. We use

data simulations and real clinical trial data to illustrate and evaluate clinical com-

posite endpoints and multivariate modelling. We developed SAS macros for data

simulations and analysis methods which we make available.
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PREFACE

All papers included in this thesis have been submitted for publication. They are

authored by Paul Brown and Justin Ezekowtiz with the exception of the first paper

which includes authors Paul M. Brown, Kevin J. Anstrom, G. Michael Felker and

Justin A. Ezekowitz. The project to compare a selection of composite endpoints

was initiated by Dr Ezekowitz. The analysis including data simulations was con-

trived by Paul Brown and the paper was drafted by Paul Brown. Justin Ezekow-

tiz, Kevin J. Anstrom and Michael Felker provided feedback on the manuscript.

Developing and packaging the SAS macros as a tool for power estimation was ini-

tiated and run by Paul Brown who also wrote the manuscript. The ‘probability

index’ and ‘multitype recurrent events’ projects were initiated and run by Paul

Brown with Justin Ezekowitz providing feedback on the manuscripts. The overall

theme that compares composite endpoints and multivariate modelling was initiated

and carried out by Paul Brown with Justin Ezekowitz reviewing the manuscripts.

The Letter to the Editor regarding the clinical composite was initiated by Justin

Ezekowitz. The analysis was contrived by Paul Brown. Both authors contributed

to the write-up. The data for analysis come from the Acute Heart Failure - Emer-

gency Management (AHF-EM) study led by Justin Ezekowitz.
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“They are often defended in terms of ‘clinical relevance’, but in my opinion this

phrase is simply a mantra that is chanted to justify bad habits.”

- Stephen Senn, ‘Disappointing dichotomies’ (2003)
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CHAPTER 1

Introduction

Heart failure is the most common cause of hospitalisations in the elderly in

Canada[1]. Various rates of hospital readmission have been reported for patients

ranging from 10-20% at 30 days to 25%-50+% at 1 year[2, 3, 4, 5]. Most events

tend to occur in the months early after discharge or additionally death is linked

with increasing hospital readmissions[6, 7]. Heart failure has a complex presenta-

tion and pathophysiology and in clinical trials the patient’s response to treatment

is measured in multiple ways eg, time to death, hospital readmissions, percent

change in a biomarker etc. Thus, the analysis and handling of multiple outcomes

is a persistent issue, especially in early phase trials where a limited sample size

precludes the use of mortality (with a low event rate) as a primary outcome or

lowering the threshold for statistical significance to account for multiple testing.

There are several approaches to analysis: 1) analyse endpoints separately requir-

ing control of α, 2) derive a univariate measure that is a function of the endpoints

ie a composite endpoint, or 3) model the endpoints simultaneously allowing for

correlations between outcomes ie multivariate modelling.

Composites endpoints are a popular method for summarising patient out-

comes by reducing them to a single measure of response eg by ranking patients

according to the severity of response across a number of outcomes, or determining

the time from randomisation to the first occurrence of a number of adverse events.

Because they are often employed as the primary endpoint in clinical trials, they

affect current debates in cardiovascular medicine, such as the benefit of statin ther-

apies. They provide a useful topic for the PhD in Medicine by representing the

methodology/clinical interface. In addition, they have quickly attained a popular-
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ity that denies the slow process of introspection ie papers evaluating composites

appear some time after they are proposed and are in use. Hence, sufficient consid-

eration has not been given to the performance of composites relative to alternative

methods. This is important because if alternative methods (such as multivariate

modelling) are more efficient and produce more compelling results, then their use

implies better use of resources and speedier acquisition of data that inform patient

care.

In this thesis we are interested in evaluating composite endpoints, emphasising

their limitations, suggesting how they may be improved and ultimately promot-

ing an alternative analysis. For example, in Paper 1 we offer an extension of the

unmatched win-ratio; in Paper 2 we illustrate a thorough approach to power esti-

mation; and in Paper 3 we describe the probability index for communicating the

effect size and a simple graphical assessment for heterogeneity. Then, we shed light

on the multivariate modelling alternative in Papers 4-6. Often the term ‘composite

endpoint’ is used as a synonym for time-to-first or any-versus-none, reflecting their

prominence. Thus review articles have been limited in their scope ie criticism and

guidance has been largely restricted to these composites (especially the former).

We do not focus on any particular composite but instead cover those that are most

in use ie the average Z-score (Papers 1, 2, 3, 6), global rank (Papers 1, 2, 3, 6),

clinical composite (Papers 1 and 6), time-to-first (Papers 5 and 6), days-alive-and-

out-of-hospital (Paper 5 and 6) and the unmatched win-ratio (Papers 1, 5, 6). The

difference between these composites is the algorithm for amalgamating the rele-

vant outcomes. The algorithm is crucial for determing the consequent weighting

of the outcomes and it may incorporate clinical understanding. With multivariate

modelling no such algorithm needs to be specified and thus it is one factor that

sets these methods apart. We attempt to identify what these composites have in
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common and how multivariate modelling might address their inadequacies. (Paper

6 indicates the multivariate model that corresponds to each composite.)

Criticism of composites is not new (eg [8, 9, 10, 11]). However, our approach

is unique. We use data simulations and the probability index as an effect measure

to define ‘influence’ and evaluate how the construction of composites dictates the

weighting of outcomes (such a measure is needed to make the various compos-

ite endpoints comparable since, as explained, they employ differing algorithms for

combining outcomes and thus yield different scales eg trichotomous, ranks, contin-

uous data). Also, we seem to be among only a few authors who have contrasted

composites and their multivariate modelling counterparts. In Paper 5 we specif-

ically compare the multitype recurrent events model against several composite

endpoints. The multitype recurrent events model is a relatively new and interest-

ing class of model. Since the key paper by Abu-Libdeh et al. in 1990[12], there

has been scant development. As Chen et al. state in their 2012 review: “statistical

methods for handling multiple type recurrent events are relatively limited”[13].

Recent interest may reflect improvements in computer power in the intervening

period, and with some know-how, the model is now implementable in standard

software, as we illustrated using real study data (the Acute Heart Failure - Emer-

gency Management (AHF-EM) study).

The thesis consists of six papers which are related in a number of ways. The

overall theme is multiple outcomes, however, the papers could be categorised into

design (Paper 2), analysis (Paper 5) and presentation (Paper 3); composites end-

points (Papers 1-3) and multivariate modelling (Papers 4-6); and observational

studies (Paper 5) and prospective clinical trials (Paper 2). The papers are pre-

sented as they appear in the journals, minus formatting ie unedited. The order

of the papers reflects the progress of our thinking as we identify the limitations
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of composite endpoints and transition to the multivariate modelling alternative,

making a strong case for the latter in the final chapters. This is also the order for

intended reading eg the review paper on multitype recurrent events appears before

the research paper.

Papers 1 and 5 follow the traditional format of a research paper while the re-

mainder include an opinion piece (paper 6), a review paper (Paper 4), a coding pa-

per (Paper 2), a methods paper (Paper 3), and a letter to the editor (included as a

supplement to Paper 6). The SAS code described in Paper 2 was used to create the

results presented in Paper 1. However, the code was made more flexible (to allow

for various scenarios), user-friendly, and further validated against two large clinical

trials where the composites were employed as the primary outcome (see Paper 2

for details). Other SAS code has been made available as noted in the individual

papers. We make the full code (including derivation of time-to-event endpoints

for the AHF-EM study, and validation programs) available at the following link:

https://drive.google.com/drive/folders/0Bzar2XLEip5RVl9oVUdFVVplQlE?usp

=sharing. Because the papers appear mostly in medical journals, the statistical

details have often been moved to a supplementary document (presented here as a

section in the individual chapter). A full list of papers published during the PhD,

including those where the student is a co-author, is given in the Appendix.
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CHAPTER 2

Data simulations illustrate the limitations
PM Brown, KJ Anstrom, GM Felker & JA Ezekowitz. Canadian Journal of

Cardiology. 2016

2.1 Abstract

Composite end points are frequently used in clinical trials of investigational treat-

ments for acute heart failure, eg, to boost statistical power and reduce the overall

sample size. By incorporating multiple and varying types of clinical outcomes

they provide a test for the overall efficacy of the treatment. Our objective is to

compare the performance of popular composite end points in terms of statistical

power and describe the uncertainty in these power estimates and issues concern-

ing implementation. We consider several composites that incorporate outcomes

of varying types (eg, time to event, categorical, and continuous). Data are sim-

ulated for 5 outcomes, and the composites are derived and compared. Power is

evaluated graphically while varying the size of the treatment effects, thus describ-

ing the sensitivity of power to varying circumstances and eventualities such as

opposing effects. The average Z-score offered the most power, although caution

should be exercised when opposing effects are anticipated. Results emphasize the

importance of an a priori assessment of power and scientific basis for construction,

including the weighting of individual outcomes deduced from data simulations.

The interpretation of a composite should be made alongside results from the indi-

vidual components. The average Z-score offers the most power, but this should be

considered in the research context and is not without its limitations.

2.2 Introduction

Novel therapeutics are tested in randomized controlled trials (RCTs) of increasing

size and complexity with an overall purpose of providing high-quality evidence of
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efficacy. At the conclusion of an early-phase, ‘small’ clinical trial (eg, a phase II

study), a decision whether to proceed to a larger more costly phase III study is

needed. In such studies, depending on the disease being studied, statistical power

for an individual outcome (eg, mortality) may be limited because of the smaller

sample size and shorter follow-up, and results using ‘intermediate end points’ are

often overly encouraging and subsequently contradicted by more rigorous and size-

able phase III studies with mortality and morbidity (eg, cardiovascular death and

rehospitalization for heart failure) as the primary end point and a longer follow-

up. Thus, a measure of the treatment effect across multiple end point domains (eg,

biomarkers, imaging, clinical outcomes, quality of life) may be desired to aid the

decision process. The use of composite end points in cardiovascular trials is not

uncommon, with a recent survey showing approximately 50% of studies adopting

a composite[14].

In an RCT enrolling patients with acute heart failure, a time-to-first-event

composite of mortality and hospital readmission is often considered, and despite

the identified challenges is widely used[9, 15, 16, 17]. A comprehensive review of

end points in acute heart failure indicated that there is little consistency in the

use of end points and this “remains a major potential barrier to progress in the

field.”[18] Few articles have emphasized the limitations of composite end points

and power estimation[17, 19]. Sun et al.[20] illustrated the strength of the average

Z-score against a number of alternatives. Bakal et al.[21] compared a weighted

composite with the traditional time to first analysis.

The objective of this study is to compare several composite end points in the

context of acute heart failure. We focus on composite end points that combine

several or more disparate outcomes. Data simulations are used to estimate the

statistical power provided by the composites to determine which is most powerful
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and how this varies in differing circumstances. We focus on practical issues regard-

ing their derivation, implementation (eg, handling of missing data) limitations, and

interpretation.

2.3 Methods

We designed a theoretical early-phase RCT that would include the following 5

outcomes: mortality at 30 days, heart failure (HF)-related hospital readmission at

30 days, worsening heart failure (WHF) at day 7, dyspnea by 5-day area under

the curve (AUC) visual analogue scale (VAS), and percent change in a biomarker

(N-terminal of the prohormone brain natriuretic peptide [NT-proBNP]). In order

that all composites may be reasonably compared, we consider only those that

could incorporate all 5 outcomes of interest, ie, those able to include outcomes

of different types such as dichotomous, continuous, and so on. This precludes a

number of other composites, eg, those that do not extend beyond time-to-event

end points such as those described by Pocock et al.[15] Bakal et al.[21], and Clagget

et al.[22], or end points that derive patient response from particular outcomes such

as those used by Packer[23], or O’Brien’s rank-sum[24], and decision rules such as

that suggested by Hochberg[25].

The composite end points considered are listed in Table 1, including the global

rank, unmatched win-ratio, average Z-score, and clinical composite. Each of these

has been used in a recent or ongoing clinical trial, although there has been lim-

ited work evaluating the composites[26]. Two of these end points are intrinsically

weighted composites (the global rank and win-ratio), ie, they prioritize certain

outcomes over others according to a hierarchy. They use different decision rules;

moving to the next outcome in the hierarchy is dictated by the data (the win-ratio)

or is prespecified by the researcher (the global rank). Other distinguishing charac-

teristics are summarized in Table 1 (and Potential Limitations for Each Composite
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are described in the Supplementary Material). The null hypothesis for the rank-

based composites is that the distribution of ranks is equal for the treatment groups

and rejection of this hypothesis implies that the ranks are higher/lower for 1 of

the treatments. Each composite produces a score or rank for each patient that

summarizes their overall response to treatment.

Global rank

This composite incorporates data from multiple outcomes, including biomarkers

and clinical end points, and assigns ranks to patients that reflect their overall

response[27]. This is achieved by arranging outcomes in a meaningful order that

prioritizes them, with the most definitive and objective outcomes (ie, mortality)

at the top. For example, a patient with an early death has a lower (worse) rank

than a patient who remains alive but shows no improvement in dyspnea (a more

subjective outcome). We considered the following order for the 5 outcomes: mor-

tality, hospital readmission, WHF, dyspnea, and NT-proBNP levels. Patients are

ranked on an outcome if they fail on that outcome. Based on recent trials, we

used the following to define ‘failure’: mortality and hospital readmission within 30

days; dyspnea AUC VAS <936 (mm.h) indicating an average response of 8 mm;

NTproBNP percent change from baseline >30%, and yes for WHF. Ranks are then

assigned to patients so that the earliest mortality survival time receives a rank of 1

(worst response), and the highest rank is allocated to those patients who do not fail

on any of the outcomes and have a good response on NTproBNP (best response).

Unmatched win-ratio

We adapt a composite described by Finkelstein and Schoenfeld[28] for time-to-

event and longitudinal data. To derive the composite we must determine for each

patient how many of the other patients in the entire trial (ie, ignoring treatment

groups) have a worse response, a better response, and a tied response. The patient’s
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overall score is then the sum of the wins (1), losses (-1), and ties (0). For example,

the patient with the shortest survival time ‘loses’ against every other patient and

his or her score is therefore −(n− 1) (where n is the sample size). Alternatively,

a patient’s score will be positive if they have more wins than losses. We use all 5

outcomes when comparing patients and, per the global rank, a hierarchy is used

that favours certain outcomes. Unlike the global rank, however, we are not required

to define failure on each outcome; instead we proceed to the next outcome in the

hierarchy only if it is not possible to determine the winner/loser on that outcome

(eg, if neither patient dies, we then proceed to the next outcomedreadmissiondand

so on). For dyspnea, AUC VAS, and NT-proBNP levels, we define regions of

‘low,’ ‘medium,’ and ‘high’ in order that wins/losses/ties may be determined in

a meaningful way. The ranges adopted for dyspnea AUC VAS (mm.h) were <0

(low), 0-1000 (medium), and >1000 (high); for NTproBNP (%) they were <0

(low), 0-30 (medium), and >30 (high). This is a potential area for improvement of

the Finkelstein and Schoenfeld method. (See the Test Statistic for the Unmatched

Win-Ratio section of the Supplementary Material).

Table 1. Composite end points

Composite Described by Recent use Prioritizes
outcomes?

Criteria for
failure?

Computationally
intensive?

Measure/
analysis is by

Global
rank

Felker & Maisel,
2010[27]

FIGHT[29] Yes Yes Moderate Rank/Wilcoxon
rank-sum

Unmatched
win-ratio

Finkelstein &
Schoenfeld,
1999[28]

ACTIVATION[30] Yes No Most Sum/test statis-
tic is Z ∼ N (0,1)

Average
Z-score

Sun et al.,
2012[20]

BLAST-
AHF[31]

No No Moderate Average/Wilcoxon
rank-sum

Clinical
composite

Massie et al.,
2010[32]

PROTECT[32] No Yes Least Categorical/Cochran
Mantel-Haenszel
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Average Z-score

The average Z-score is described by Sun et al.[20] It places outcomes of different

types on par by converting responses to Z-scores before combining them by taking

the average (Z-scores are obtained by subtracting the overall mean and divid-

ing by the corresponding standard deviation). Z-scores of different outcomes are

aligned so that a positive Z-score represents a beneficial outcome and vice versa.

To calculate the Z-score for the time-to-event outcomes (mortality and hospital

readmission) we first convert to log-rank scores.

Clinical ordinal response (success, unchanged, failure)

In a large RCT of a novel acute heart failure therapy, Massie et al.[32] used a

clinical ordinal response end point as the primary end point, defining treatment

success, failure, or no change a priori. In this definition, patients were considered

to have failed if they died or were readmitted within 7 days, had WHF between

24 hours and 7 days/discharge, or worsening renal function. Success was defined

as moderate or marked improvement in dyspnea at both 24 and 48 hours, and not

a treatment failure.

We recreated this composite as follows: (1) failure - died or readmitted within

30 days or WHF within 7 days or no improvement in dyspnea or no reduction in

NT-proBNP levels; (2) successdnot a failure and dyspnea AUC VAS >936 (mm.h)

and NT-proBNP reduction ≥ 30%; (3) unchangeddneither a success nor a failure.

In other words, failure is based on failing 1 of the 5 outcomes.

Data simulations and comparing the composites

Simulations are required for an assessment of power and sample size estimation in

the planning stages if a composite end point is adopted for an RCT. Even if it is

not designated as the primary end point, an assessment of power is nevertheless

desirable. To estimate power, 1000 random samples were obtained (see the Details
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of the Data Simulations section in the Supplementary Material for details). The

power is the percentage of the random samples that yield a 2-tailed p-value less

than the significance level (set at a α = 0.05). The strength of the treatment differ-

ence across outcomes is varied to represent the uncertainty inherent in the values

assumed for the sample size calculation, an uncertainty that is in turn reflected in

the power estimates; see difference (∆) in Table 2. Because the resulting power

for a given composite may vary considerably across these scenarios, we compared

power between composites using box plots. Thus, power is evaluated under dif-

fering but equally plausible circumstances, and a limited spread (uncertainty) of

the power estimates is desirable. The clinical outcomes (mortality and hospital

readmission) have low event rates, and the largest treatment effect is expected for

the biomarker NT-proBNP. The assumed correlations between outcomes, achieved

through iteration, are based on in-house data and data from elsewhere) (See Paper

2 Table 5).

Note that all the values of ∆ in Table 2 indicate a difference in favour of

the investigational treatment. However, we also considered negative or ‘opposing

effects’ when comparing composites. A loss of power is well understood under

these circumstances[18, 33]. To illustrate the potential loss of power, we varied the

effect size (treatment difference divided by the standard deviation) assumed for

dyspnea, allowing it to become positive, ie, in favour of the standard treatment.

All other outcomes were held at the value in Table 2 that is most favourable to

the experimental treatment, thus in contrast with dyspnea. Dyspnea was chosen

because it is not the most or least sensitive outcome but is arguably the most

subjective.

Data simulations and power calculations were performed in SAS, Version 9.4

using SAS/IML macros created for this purpose.
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Table 2. Responses assumed for the different outcomes by treatment

Treatment Mortality (%),
30 days

Readmission
(%), 30 days

WHF (%),
7 days

Dyspnea
AUC VAS,
5 days

NT-proBNP
(%), after
baseline/baseline

Standard treatment 9 16 22 2000 70

Investigational
treatment

7, 8 14, 15 20, 21 2400, 2500 50, 60

Difference, ∆ 1, 2 1, 2 1, 2 400, 500 10, 20

x SD 0.018, 0.035 0.015, 0.028 0.012, 0.025 0.148, 0.185 0.260, 0.480

2.4 Results

Overall power comparison

Figure 1 summarizes the power for the 4 composite end points for increasing total

sample size (sample size in each group is n/2). It can be seen that the average

Z-score has greater power than the unmatched win-ratio, global rank, and clinical

composite and that its power increases more steeply as the total sample size is in-

creased. This is especially true when the sample size is small; the average Z-score

reaches 80% power with a sample size of 400, whereas the win-ratio, global rank,

and clinical composite never attain 80% power. This is not surprising given the

categorized clinical response and the hierarchical structure of the other composites,

ie, they prioritize clinical outcomes with low failure rates and consequently reflect

reduced power. However, Figure 1 also suggests a greater uncertainty with regard

to power for the average Z-score, ie, as assumptions about the size of the treatment

effects are varied (reflecting our natural uncertainty), the spread of power is great-

est for the average Z-score and global rank and least for the win-ratio and clinical

composite. It should be noted that the clinical composite and the unmatched win-

ratio perform particularly poorly with respect to power, and the average Z-score

and unmatched win-ratio are directly affected by censoring (ie, the follow-up time).
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Across the 1000 random samples of size consisting of 500 patients, the average Z-

score produced a median of 500 unique scores (ie, no ties in any sample) compared

with a median of 362 for the global rank and 152 for the win-ratio.

Figure 1. Power versus sample size when treatment effects are varied

Can a single outcome dominate a composite?

Figure 2 illustrates how influential the outcomes are for each composite (asmea-

sured by the change in power resulting from an increase in the assumed treatment

difference). This will depend on the effect size and how the composite is con-

structed. NTproBNP has the largest effect size (Table 2). Figure 2 indicates that

NT-proBNP exerts a strong influence on both the average Z-score and the global

rank (explaining why power estimates for these composites are strongly correlated

but show a weaker relationship with the win-ratio) (Supplemental Figure 4). The

equal weighting of the average Z-score allows outcomes to speak for themselves,

13



and thus NT-proBNP dominates, whereas the global rank positions NT-proBNP

last and thus inadvertently leans heavily on this outcome (between 57% and 63%

of patients are ranked on NT-proBNP depending on the cutoffs used (Supplemen-

tal Table 5). It may be that effect sizes are inversely related to their position in

the hierarchy, and thus 1 outcome will dominate (eg, a surrogate marker like NT-

proBNP that is sensitive to treatment). Although the cutoffs are a clinical decision,

this suggests that broader cutoffs should be used or that an unmatched win-ratio

approach is preferable. The win-ratio does a better job of favouring outcomes high

up in the hierarchy (such as mortality) because it does not use cutoffs that restrict

an outcomes influence. Conversely, it restricts the influence of outcomes that are

low in the hierarchy, in particular NT-proBNP.

Figure 2. Power added when the assumed treatment difference on outcomes is
increased.

What happens if outcomes are in opposite directions?

The average Z-score shows an appreciable loss of power: for n = 300 patients, it

drops from 84% (ie, sufficient power) to 47% as dyspnea swings from favouring
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the investigational treatment to standard treatment (Figure 3). For a null effect

(effect size = 0), the power for n = 300 drops to 66%, still much less than what is

deemed sufficient power (namely, 80%). We anticipated that the global rank would

better handle opposing effects; however it also shows considerable loss of power.20

If multiple outcomes had opposing effects or null effects, the loss of power would

be greater, although we can conclude that opposing effects on a single outcome are

sufficient to produce a considerable loss of power.

Figure 3. Power vs effect size on dyspnea area under the curve visual analogue
scale (AUC VAS) for n = 100, n = 200, up to n = 500.

Note that our simulations did not highlight the effects of missing data. Missing

data is a more pressing issue for the Z-score because if a single outcome is missing,

that patients average Z-score is missing, and hence that patient falls out of the

analysis. Hierarchical composites may simply proceed to the next outcome when

missing data are encountered. Also, the average Z-score does not handle competing
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risks as well as the hierarchical composites. From our results, we would not declare

that a single composite ought to be favoured but would note that the favoured

composite may depend on the situation (Table 3).

Table 3. Composite that may be preferred under various scenarios

Scenario Global
rank

Unmatched
win-ratio

Average
Z-score

Clinical
composite

Overall
Statistical power

√

Few outcomes
√

Many outcomes
√

Ease of construction
√

Weighting
√

Interpretability
√

Clinical input
√

Outcomes
Mixed types

√

Survival
√

Binary
√

Continuous
√

Data issues
Missing data

√

Censoring
√

Competing risks
√

Opposing effects − − − −
Ease of programming code

√

2.5 Discussion

Because clinical outcomes such as mortality occur at low rates, composite end

points have a role in early-phase research. We demonstrate that the 4 compos-

ites vary in power depending on the circumstances, although the average Z-score

appears to be the most powerful and additionally is not affected by idiosyncratic

definition. The average Z-score may not handle missing data and competing risks

adequately, but with outcomes measured within 30 days, the likelihood and rele-

vance of such issues is debatable. The average Z-score could incorporate weights

and prioritize mortality per the unmatched win-ratio and global rank, but the con-
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sequence would be a deflation of power and a more idiosyncratic end point. Suffice

it to say, in the typical scenario of small positive effects on clinical outcomes and

moderate positive effects on other outcomes (eg, biomarkers), the average Z-score

will appropriately lead us to declare the treatment worthy of further investiga-

tion with greater power than will the global rank and unmatched win-ratio. The

equal weighting of the average Z-score may not be preferred; however, the Z-score

provides transparency in how the outcomes have been weighted. Essentially, with

the global rank composite, the investigator is indirectly and often unknowingly as-

signing weights to outcomes as a consequence of the cutoffs and other parameters

used (the potential effect on power can only be understood by way of simula-

tions Supplemental Figure 5), and the win-ratio is dependent on the censoring

distribution[26].

Regarding the choice of end point, clearly the relevant end point is dictated

by the research question. Thus, it may be argued that it does not make sense to

compare weighted composites (global rank and win-ratio) and unweighted com-

posites (average Z-score) that are not answering the same question. However, it is

not unreasonable to suspect that investigators using these composites treat them

similarly, and it is important to note that in the same circumstances, 1 composite

can yield significantly more power than another (even if this is implied by their

construction). Certainly, investigators may use a different hierarchy for the global

rank owing to personal belief regarding the relative importance of outcomes while

nevertheless sharing the same research question. They may also be implicitly ex-

pressing their preference for differing type I and type II error rates. Allen et al.[18]

call for “greater standardization of end points,” but such bespoke composites with

a certain ordering of outcomes and cutoffs can only reduce the chances of the hoped

for consistency.
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Because of the belief that a comprehensive composite will lead to enhanced

statistical power, investigators may be inclined to include a composite as the pri-

mary end point. However, a more parsimonious and sensitive primary end point

could be favoured, and the composite can be useful as a secondary end point if

an overall impression of evidence is deemed useful. The more outcomes included

in the composite, the greater the number of estimates (assumptions) required to

derive power, the more extensive the discussion regarding how to construct the

composite, and the greater the possibility that 1 of them will show aberrant effects

leading to a loss of power. Also, data that contribute to the primary outcome ought

to receive greater scrutiny and validation, and thus extra effort is needed. There-

fore, if an average Z-score with 3 outcomes yields the same power as a global rank

with 5 outcomes, we may opt for the former as the primary outcome for the sake

of simplicity. In any case, the chosen composite should obviously be interpreted in

conjunction with analyses of the individual outcomes, including estimates of the

effect size.

The best composite depends on the circumstances and should be extensively

explored for each unique research question. Not all composites will provide an

equal result nor can they all be used in all research protocols. The average Z-score

offers the most power, but this should be considered in the research context and

is not without its limitations[34]. Evaluating the power for a composite end point

will often require data simulations and should be encouraged, as should exploring

the potential limitations inherent in the research environment.

2.6 Supplementary material

Details of the data simulations

Assumed treatment differences for each outcome are input into the SAS/IML macro

which are converted to normal variates eg log (odds) for dichotomous outcomes,
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log (hazard) for survival endpoints etc. Random samples of the normal variates

are then generated from a multivariate normal distribution using proc iml and

the randnormal function before being converted to the specified outcomes, eg ex-

ponential survival times are generated by log (u)
hazard

where u is from the standard

uniform distribution and lognormal outcomes are converted to percentage change

from baseline ie 100× (exp(x)− 1).

Correlations between outcomes are obtained via iteration since the covariance

specified for the normal variates using the SAS randnormal function will not ulti-

mately hold among the outcome variables of mixed type. To ensure the correlations

between outcomes are those specified by the user, correlations among the normal

variates are adjusted on subsequent iterations in order that they converge to the

desired values within a certain specified precision; iterations stop when the desired

accuracy is achieved (the maximum absolute difference between desired and ac-

tual correlations) or the maximum number of iterations is reached. Correlations

are determined using Pearson’s correlation coefficient from proc corr (including

binary outcomes since Pearson produces the same correlation as the apt biserial

point correlation). During iteration, correlation matrices that are not positive defi-

nite are identified and the nearest correlation matrix is determined using Higham’s

method.

Test statistic for the unmatched win-ratio

The unmatched win-ratio test statistic (T ) is the sum of the patient scores (Si)

for one of the treatment groups and under the null hypothesis this is normal with

variance[28]:

V =
n1× n2

N(N − 1)

N
∑

i=1

S2
i (1)

where n1 is the number of patients in treatment group 1 and N = n1 + n2 is the
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total sample size, and Si is the score for patient i in group 1, thus:

Z =
T√
V

(2)

is standard normal and the p-value is easily obtained.

Outputs referred to in the main text

Figure 4. Scatter plots of power for the composites compared

Table 4. Cut-offs used for the global rank in a sensitivity analysis

Outcome Cut-offs

Mortality 10, 20, 30 days

Hospital readmission 10, 20, 30 days

WHF No cut-off required

Dyspnea AUC VAS 800, 900, 1000 mm.h

NT-proBNP change from baseline 25, 30, 35 %
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Figure 5. Power for the global rank when varying cut-offs and order of outcomes

Potential limitations for each composite

Global Rank

There are limitations to this decision rule. First, for example, a patient who died

one day outside the window specified (eg day 31), and was never readmitted prior to

their death, may be ranked above a patient who remains alive but fails on dyspnea.

Second, a single categorical or dichotomous outcome, or an outcome giving rise to

censored data, is more inclined to produced tied scores than the other composites;

the treatment groups will then be drawn together reducing power. Third, patients

who do not fail and are missing data on the last outcome would presumably fall

out of the analysis (limiting the power of this method), and the outcomes could be

correlated such that a patient who dies is more likely to be missing data on this

outcome (potentially lab data) than one who does not die. Fourth, the proportion

of patients ranked on the last outcome varies according to the strictness of the

criteria imposed on the preceding outcomes. If the criteria are too strict, the final
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outcome may be given considerable weight (despite it being regarded as the least

definitive) and this allows for the possibility of results that are susceptible to the

somewhat arbitrary definitions of ‘failure’ that are decided by the trialists. In

addition, results are potentially sensitive to the ordering of outcomes (given the

differential contribution outcomes make): we may expect low failure rates on all

our outcomes except perhaps dyspnea and NT-proBNP, thus, if an outcome is

second-to-last, relatively few patients may be ranked by it, yet if it is last then a

significantly larger proportion of patients can be ranked on it. Even the make-up

of the hierarchy may vary with investigators disagreeing on which outcomes should

be included.

Unmatched win-ratio

The approach has been described by Pocock et al.[15] for time-to-event endpoints.

It is referred to as the ‘unmatched’ approach and it is more computationally in-

tensive than the ‘matched’ win-ratio (where patients are paired according to their

risk profile), and certainly the calculations required are more intricate than those

for the global rank. However, we agree that matching patients according to their

risk profile “may lend itself to conflicting results and interpretations”[35].

Like the global rank, the win-ratio may be sensitive to the regions defined for

dyspnea and NT-proBNP, and this composite would also be sensitive to the extent

of follow-up, with a longer follow-up implying lower censoring rates and greater

use of mortality and readmission data (in the unlikely case of no censoring, data on

subsequent outcomes would be almost completely neglected in the derivation of the

composite). In general, the contribution made by outcomes low in the hierarchy

could be negligible and is difficult to anticipate. But the global rank is not sensitive

in the same way.

Average Z-score

22



In the case that a time-to-event endpoint shows few failures many tied Z-scores

will result for that outcome. Also, if a patient is missing data on any of the five

outcomes their average Z-score will be missing and presumably they fall out of

the analysis. A sensitivity analysis to evaluate the influence of missing data would

then be required, especially considering, as noted above, that if a patient dies they

may be more likely to have missing data on other outcomes. Also note that if

censoring is high, as expected, there will be many tied Z-scores, whereas the influ-

ence of censoring on patient scores is obviated by the preceding two comprehensive

composites. These composites also handle competing risks more appropriately by

prioritising mortality over hospital readmission. In the case of the average Z-score

competing risks can lead to paradoxical log-rank scores: a patient who dies may

have a better Z-score on hospital readmission than one who does not die since a

patient who dies is less likely to have readmission (due to a lack of opportunity).

It is conceivable then that the Z-score for mortality may be somewhat counter-

acted by the Z-score on readmission, thus a time-to-first composite of mortality

and readmission may be considered.

Clinical ordinal response (success, unchanged, failure)

The trichotomous ordinal categories of ‘success’, ‘unchanged’ and ‘failure’ may

not prove sufficiently discriminating in comparison to the composites above which

calculate ranks or scores for each patient. Power will depend on how patients are

distributed across the categories with the potential for a small number to fall in

one of the categories. Also, it may be easier for a ‘softer’ endpoint to dominate the

composite unlike the win-ratio and global rank which employ a hierarchy favouring

hard endpoints. With any composite as different outcomes are combined a precise

interpretation of results is replaced by an overall assessment of efficacy. In the case

of the clinical composite, this loss of clarity may not be compensated by the hoped

23



for increase in statistical power.
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CHAPTER 3

Power estimation for composite endpoints
PM Brown & JA Ezekowitz. Journal of Modern Applied Statistical Methods.

2017

3.1 Abstract

Composite endpoints are a popular outcome in controlled studies. However, the

required sample size is not easily obtained due to the assortment of outcomes,

correlations between them and the way in which the composite is constructed.

Data simulations are required. We develop macros that enable sample size and

power estimation.

3.2 Introduction

Nonparametric composite endpoints which combine individual study outcomes into

a single univariate measure are becoming an increasingly popular primary endpoint

in controlled studies; a recent survey showed approximately 50% of studies adopted

a composite[10]. They may be favoured due to the increase in power offered over

the analysis of individual outcomes, or to calibrate potentially optimistic surrogate

endpoints with clinical outcomes that show lower event rates, and to obtain an

overall effect of the treatment or intervention.

Composites of the type described in this paper have been considered in various

fields of research such as psychology [36], HIV[28], oncology[37], brain injury[38],

limb ischemia[39] and heart failure[40]. However, a review of endpoints in acute

heart failure noted that the varied use of such endpoints “remains a major potential

barrier to progress in the field”[18], thus some guidance and consistency in use is

needed.

Several composites have been proposed and preference will depend on the

purpose of the study. Sun et al.[20] compared an eclectic mix of composites based
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on power estimates. But few papers have emphasised the limitations of composite

endpoints[17, 19] or described power calculations[41, 39] and thorough power as-

sessment that takes correlations among outcomes into account by using simulations

may be lacking.

Programs for sample size estimation are not readily available to the researcher

when designing a study that employs a composite of novel endpoints. Because

construction of the composite is to an extent ad hoc (eg how to weight or prioritise

outcomes, the number of outcomes etc.) the standard equations for sample size

estimation do not apply. This is especially the case for those composite endpoints

which are unrestricted in the number and type of outcomes they are composed of.

Such composites are the focus of this paper.

The objective of this paper is to describe SAS/IML macros we developed which

enable the derivation of two popular but quite different composite endpoints and

employ data simulations to obtain power and sample size estimates and hence

inform study design. With the use of the macros it becomes an easy matter to

evaluate the sensitivity of power to changes in the assumptions made, eg about

the size of the treatment effect on outcomes and the correlations among outcomes.

We used this code to plan a study in acute heart failure which is used to illustrate

the use of the macros and provide example output. We are not aware of macros

available elsewhere, either for derivation of the composites or the data simula-

tions required for power estimation, and thus we make our programs available for

download.

3.3 Methodology

The composite endpoints of interest are the global rank[27] and the average Z-

score[20]. These composites have been used in recent studies ie the Functional

Impact of GLP-1 for Heart Failure Treatment (FIGHT) study which compared
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Liraglutide and placebo groups using a global rank composite comprising mortality,

hospital readmission and time-averaged proportional change in N-terminal pro-

B-type natriuretic peptide (NTproBNP) level[29], and the BLAST-AHF (Biased

Ligand of the Angiotensin Receptor Study in Acute Heart Failure) study which

used an average Z-score to compare three dose groups and a placebo in acute

patients with heart failure[42].

The global rank assigns each patient a rank according to their responses across

a number of outcomes. A rank of 1 is allocated to the patient with the most severe

response (an early death for example) and a rank of n (where n is the sample size)

is allocated to the patient with the most favourable response. This is achieved

by arranging the relevant outcomes in a meaningful way, for example with the

most definitive (eg mortality) at the top and perhaps a surrogate endpoint at the

bottom. If the patient dies they are ranked based on their survival time. If the

patient does not die then they may be ranked according to their response on the

next outcome in the hierarchy; if they do not ‘fail’ on that outcome either, then

we move to the next outcome, and so forth down the hierarchy of outcomes until

the patient receives their rank.

The average Z-score, on the other hand, converts the response on each out-

come to a Z-score before combining these scores by taking the average (Z-scores

are obtained by subtracting the overall mean and dividing by the correspond-

ing standard deviation). Before taking the average, the Z-scores for the different

outcomes must be aligned so that eg a positive Z-score represents a beneficial out-

come. Thus, the global rank prioritises outcomes according to a hierarchy and thus

weights them, while the average Z-score does not. Analysis for both composites is

by the Wilcoxon rank sum test. The average Z-score, at least with regards power,

seems superior[20].
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The null hypothesis for the rank based composites is that the distribution of

ranks are equal for the treatment groups and rejection of this hypothesis implies

that the ranks are higher/lower for one of the treatments. Each composite produces

a score or rank per patient that summarises their response to treatment (in the

case of the global rank all outcome data are not necessarily taken into account

to determine the patients score). These composites were chosen because their

differences imply they will be apt or favoured according to the circumstances or

researcher, and comparable alternatives are scarce for the situation where various

types of outcomes are to be combined.

Composites amenable to this situation must be unrestricted with regard to

the number of outcomes they are derived from and therefore provide a broad

summary of efficacy. These composites may combine outcomes of varying types

eg dichotomous, survival, log normal etc. Their nature implies difficulties not

relevant for other composites eg data simulations are required for the estimation

of power and this is not straightforward when the outcomes must show certain

correlations ie iterations are needed. Our aim was to develop SAS macros flexible

enough to allow power estimation for the global rank and average Z-score which

incorporate any number of outcomes of any type and in any order (as required by

the hierarchical global rank), ie this is where SAS macros would prove most useful

because other composites are easily coded or less open to ad hoc construction.

SAS/IML macros described in the following section are available to download

here: paulmbrownprograms.blogspot.com. Macros were developed using SAS 9.4

and we refer to SAS procs below. The macros which derive the composite endpoints

may also be used independently of the simulations macro ie to derive and analyse

the composite endpoints at study completion.

Data simulations (%simul data)
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Assumed treatment differences for each outcome are input into the SAS/IML macro

(%simul data) which are converted to normal variates eg log(odds) for dichotomous

outcomes, log(hazard) for survival endpoints etc. (using eg the delta method for

the variance). Random samples of the normal variates are then generated from

a multivariate normal distribution using emphproc iml and the emphrandnormal

function before being converted to the specified outcomes, eg exponential survival

times are generated by

− log (u)

hazard
(3)

where u is from the standard uniform distribution[43] and lognormal outcomes are

converted to percentage change from baseline ie 100× (exp(x)− 1).

Correlations between outcomes are obtained via iteration (%iterat simul) be-

cause the covariance specified for the normal variates using the randnormal func-

tion will not ultimately hold among the outcome variables of mixed type. To

ensure the correlations between outcomes are those specified by the user, corre-

lations among the normal variates are adjusted on subsequent iterations in order

that they converge to the desired values within a certain precision specified by the

user; iterations stop when the desired accuracy is achieved (the maximum abso-

lute difference between desired and actual correlations) or the maximum number of

iterations is reached. Correlations are determined using Pearson’s correlation co-

efficient from proc corr (including binary outcomes because Pearson produces the

same correlation as the apt biserial point correlation). During iteration, correla-

tion matrices that are not positive definite are identified and the nearest correlation

matrix is determined using Higham’s method as per the NearestCorr function de-

scribed by Wicklin[44]. Multiple sources may inform what values to assume for

the correlations (see the illustrative example below).
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The resulting dataset includes two sets of variables for the nominal ‘active’

and ‘control’ groups based on the treatment differences specified for each outcome,

with the number of random samples and the size of the samples also dictated by

the user; it can easily be verified that the resulting outcomes have the properties

specified eg mean response etc. The run time for convergence and the accuracy

are outputted to a separate dataset containing the correlation matrices produced

at each iteration.

Global rank (%derive GR)

As described above, the global rank is a hierarchical composite meaning that the

outcomes are arranged according to importance ie hard endpoints with low event

rates such as mortality are at the top with surrogate endpoints with higher re-

sponses typically at the bottom. Patients proceed down the hierarchy until they

fail on an outcome according to some criterion. (A decision rule employing criteria

for failure is not necessary for a global rank composite but we follow Felker &

Maisel’s approach here; ‘global rank’ is a generic term and various specifications

could fall under this label[45, 28, 46, 29, 15, 38]. The intention is to assign every

patient a rank which reflects the severity of response.

Computationally, it is straightforward: patients are ranked according to their

response on an outcome if they are among the subset who fail on that outcome; the

patient retains the rank that corresponds to the outcome highest in the hierarchy.

There is a question of how to rank patients who do not fail on any outcomes

and Felker & Maisel suggest ranking them on the outcome positioned last in the

hierarchy. There is a strong likelihood for tied ranks eg a dichotomous outcome

will generate ties; note that handling of ties will depend on the software used[47].

A simple equation yielding arbitrary values that rank patients could be given

as follows:
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where n is the total sample size, G is the total number of outcomes, δij = 1 if

patient i failed on outcome j and 0 otherwise, and rij is the rank for patient i on

outcome j (rank 1 being the worst response and n being the best). Patients who

fail on the last outcome are included in the first term and those who do not are

included in the second term, although it is not necessary to define a criterion for

failure on the last outcome.

The global rank composite is becoming increasingly popular in phase II re-

search (see the FIGHT study where the global rank was comprised of three

outcomes[29]). Its appeal is the simplicity of construction and openness to in-

put from researchers regarding prioritising outcomes.

Average Z-score (%derive ZS)

The average Z-score, on the other hand, is computationally intensive and statis-

tically rigorous more so than intuitive. It is an extension of O’brien’s well-known

rank sum composite (O’Brien, 1984) for outcomes of different types which must

be placed on par by first calculating Z-scores and then taking the average across

outcomes (we should also ensure that Z-scores are aligned so that eg bigger scores

represent better outcomes).

For survival endpoints this means first transforming to log-rank scores which

prolongs the run time of the program (we wrote a macro for this purpose called

%lrscores). The LR scores are calculated as

1− Λ̂(tj) (5)

for uncensored survival times, and
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−Λ̂(tj) (6)

for censored survival times, where

Λ̂(t) = − log Ŝ(t) (7)

is the cumulative hazard and Ŝ(t) may be obtained from proc lifetest (see eg [48,

49]). The code accounts for censoring by truncating the survival times generated

(in order not to over estimate power, especially considering the low event rates

often expected for clinical outcomes such as mortality, thus implying many tied

Z-scores and reduced power). The log-rank scores thus calculated can be validated

by checking they sum to the log-rank test statistic (also provided by proc lifetest).

Using the log rank scores, and for continuous and dichotomous variables too,

Z-scores are obtained by subtracting the mean across treatment groups and divid-

ing by the corresponding standard deviation; proc stdize is used for this purpose.

For dichotomous outcomes we want to avoid division by zero for small samples

with low event rates (ie when all patients have the same response). This macro,

as for %derive GR, uses Wilcoxon and proc npar1way (an output dataset includes

a p-value per random sample).

3.4 Results

Illustrative power calculation with sample output

When designing a clinical trial in acute heart failure we considered both the global

rank and the average Z-score as candidates for the primary endpoint. Given the

recruitment and funding feasibility of a pilot or phase II study and expected low

event rates for clinical outcomes, an increase in power obtained by combining

outcomes was obviously appealing. We deemed 80% power to be satisfactory and

planned to measure the following five outcomes: mortality at 30 days, heart failure
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related hospital readmission at 30 days, worsening heart failure at day 7, dyspnea

by 5-day area-under-the curve visual analogue scale, and percent change in NT-

proBNP (N-terminal of the prohormone brain natriuretic peptide). We would not

necessarily combine all five outcomes in the chosen composite. Instead we intended

to evaluate how many outcomes would be needed to achieve sufficient power.

Thus, our data include two survival endpoints and single dichotomous, contin-

uous and log-normal endpoints. The ordering of outcomes as listed above indicates

the hierarchy employed for the global rank, ie mortality and hospital readmission

at the top and the surrogate biomarker NT-proBNP (Nterminal of the prohormone

brain natriuretic peptide), which will potentially show the greatest effect of treat-

ment, at the bottom. The cut-offs employed for the global rank are also implied:

for example, 30 days for mortality and hospital readmission and 7 days for wors-

ening heart failure (as far as the code is concerned, the cut-off for dichotomous

outcomes is merely 1 indicating presence of disease). These cut-offs and the order

of outcomes for the global rank hierarchy are specified in the %derive GR macro

and the outcome type (ie dichotomous, survival etc.), and treatment differences

are specified in the %simul data macro.

Treatment responses on the control were based on available data, and modest

treatment effect sizes were assumed for the outcomes (2% for mortality, readmission

and worsening heart failure, 20% difference in change from baseline NT-proBNP

(N-terminal of the prohormone brain natriuretic peptide), and 500 for dyspnea vi-

sual analogue scale area under the curve). Correlations between outcomes deemed

plausible are shown in Table 5. These were based on in-house and published data

eg Sun et al. note that “there is a lack of correlation between treatment effects for

surrogate endpoints and those for symptom relief or outcome”[20]. The correlation

between dyspnea and worsening heart failure (WHF) is high because the latter is
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derived based on the former (among other data). Within the %iterat simul macro

we specified ‘criterion=0.05’ indicating that the maximum allowable difference be-

tween the resulting correlations and the desired correlations is 0.05. Initial working

correlations are specified in %simul data.

Table 5. Correlations assumed between component outcomes

Mortality Readmission WHF Dyspnea NTproBNP

Mortality 1 0.1 -0.06 0.05 0

Readmission 0.1 1 -0.03 0 0

WHF1 -0.06 -0.03 1 -0.6 0

Dyspnea 0.05 0 -0.6 1 0

NTproBNP 0 0 0 0 1

1The correlations with WHF are negative because 1=WHF and 0=no WHF.

With a composite endpoint, when contemplating power the question is not

merely: How many patients are needed?, but may also be: How many outcomes?,

with additional outcomes possibly providing additional power (it is not infrequently

the case that an outcome’s priority is inversely proportional to its sensitivity ie clin-

ical outcomes such as mortality with low event rates are favoured before sensitive

biomarkers, thus power increases as outcomes are added). There is incentive to

limit the outcomes contributing to the composite: missing data become more per-

vasive the more outcomes used, the interpretability of the composite may become

murky, and in terms of data cleaning and validation the outcomes relevant for the

primary endpoint ought to receive the most scrutiny which demands extra effort.

Thus, in the following SAS code we vary the sample size and the number of out-

comes to be incorporated in the composites, deriving for each patient their score

for the two composites and then conducting the Wilcoxon test (proc npar1way) to
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compare the nominal treatment groups:

%do varyn = 100 %to 500 %by 100;

%do varyvar = 3 %to 5 %by 1;

%iterat simul(n =&varyn, numvar =&varyvar, criterion=0.05,

out=randsamp);

%derive GR(indata=randsamp, outdata=globrnk);

%derive ZS(indata=randsamp, outdata=zscores);

%end;

%end;

Using 1000 simulated samples the power is then estimated as the percentage of

samples yielding a p-value < 0.05. The results are summarised in Figure 6. We can

see that to achieve 80% power we need to make use of all five outcomes and recruit

300 patients, if the average Z-score is adopted, or an additional 200 patients for

the global rank. We should inflate these numbers to account for potential missing

data, bearing in mind that the effect on power would be greater for the average

Z-score (if a patient is missing on a single outcome then the average is incalculable

and the patient falls out of the analysis, without imputation, which is not the

case for the global rank). The addition of a fifth outcome results in a steeper

increase in power for the average Z-score. It is obvious that the average Z-score

is preferable with regard to power, however some researchers may have a strong

preference for a global rank based statistic[33]. The higher power for the Z-score

is expected because it does not prioritise clinical outcomes with low event rates,

as the global rank does (and by doing so using the global rank we dampen the

chances of an optimistic result; Neaton et al. discuss weighted versus unweighted

composites[19]).

With any sample size calculation it is important to examine how sensitive the
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Figure 6. Power versus no. of outcomes by composite endpoint

power estimates are to changes in the assumptions made eg regarding the size of

the treatment effect. We varied the size of the treatment difference on each out-

come (including more pessimistic values), then re-evaluated power for the various

scenarios. The results are summarised in Figure 7. In this way uncertainty in the

assumptions is reflected in the spread of the box plots and we may now question

whether 300 patients are sufficient, depending on our confidence in the anticipated

treatment effect. We likewise varied the correlations assumed between mortality

and the other outcomes, considering only plausible values ie those with magnitude

0 and 0.1; the results are summarised in Figure 8. In this case uncertainty regard-

ing the strength of correlations between outcomes has a less pronounced effect on

power estimates, which might imply that a high degree of convergence (ie accuracy

∼ 0.01) is not essential. Although we can only say that correlations do not seem

important in this case and cannot extrapolate to other potential scenarios (the
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correlation between eg mortality and readmission is necessarily limited given that

patients who die have less opportunity to record hospital readmissions; although

simulated data should reflect this ie a patient is censored for hospital readmission

after death). We could also easily change the order of outcomes in the hierarchy

and assess what effect this has on power for the global rank, however the ordering

is a clinical decision rather than a statistical one.

Figure 7. Power versus sample size when treatment effect size is varied on outcomes

These plots can be time consuming to run because the number of scenarios

increases with the number of outcomes and sample sizes considered (for Figure 7

there are 5× 25 passes through the doloop, with larger sample sizes consuming

more time, owing especially to the derivation of log-rank scores). The above code

for Figure 6 completes reasonably quickly however with a single pass through taking

between 2.85 and 8.35 minutes (depending on the number of outcomes) for a sample

size of 100. We set the maximum number of iterations to 50, although correlations

37



often converge in less than 10 iterations, and in the absence of convergence, ie at

50 iterations, reasonable accuracy (∼0.05) was always achieved.

Figure 8. Power versus sample size when correlations between outcomes are varied

3.5 Conclusion

The code is limited to five outcomes. It could easily be extended to include an

increased number of outcomes although this may not be advisable. Increasing the

number of outcomes increases the possibility of opposing effects and this would

adversely affect power. Also, the cogency and clarity of the composite may be

weakened when disparate outcomes are combined. We believe five outcomes strikes

the right balance as a maximum. Also, macros for other composites could be de-

veloped: in our study we considered a modification of Finkelstein & Shoenfeld[28]

although this was not included here because the approach and resulting power is

similar to the global rank (in fact it is a global rank method with a different de-
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cision rule) and the handling of survival and non-survival endpoints is sufficiently

different to make generalising code difficult ie the flexibility of a general program

has less value. A ‘clinical composite’ may also be considered[32] although like the

Finkelstein & Schoenfeld endpoint it is too ad hoc to make a general program

useful, and it is easily coded. We do however include a macro for the unmatched

win-ratio composite (derive WR) at the web link above (see the supplementary

material to Pocock’s paper[15] although note the small error in the variance equa-

tion which should sum U2 from 1 to N). We validated our code in a number of ways

including reproducing power estimates for current trials such as FIGHT which uses

a global rank of three outcomes[29] and BLAST using an average Z-score for five

outcomes[31], both of which used data simulations for sample size estimation. The

macros have also been used to evaluate these composites[50]. We do not mean to

imply that the construction of a composite should be based entirely on statistical

reasoning eg the power attained; first and foremost it will be guided by clinical

reasoning[34]. When power estimates are based on a composite of multiple end-

points it implies multiple assumptions about eg event rates. It would be prudent

to plan an interim, blinded reassessment of power.

The SAS macros described allow the user to readily obtain power estimates

when designing a phase II trial based on an overall summary of efficacy, namely

the global rank and average Z-score. It is thus easy to compare the composites and

evaluate how sensitive power is to a change in their construction or assumptions

about the anticipated treatment effects and correlations between the outcomes

(such uncertainty ought to be reflected in the power estimates). We may also

easily change the order of outcomes in the hierarchical global rank, although the

order of outcomes is a clinical decision and should determine the power, rather

than vice versa. Appropriate design of clinical trials is aided by a strong statistical
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framework accounting for assumptions, prior data, estimated treatment effect and

our macro assists in that key design step.
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CHAPTER 4

How do we measure the effect size?
PM Brown & JA Ezekowitz. Circulation: Heart Failure. 2017

4.1 Abstract

Composite endpoints are popular outcomes in clinical trials of heart failure ther-

apies. For example, a global rank composite is typically analyzed using a Mann-

Whitney U test, and the results are summarized by the mean of ranks and a

corresponding p-value. The mean of ranks is uninformative, and a clinically mean-

ingful estimate of the treatment effect is needed to communicate study results

and facilitate an assessment of heterogeneity (the consistency of the effect across

outcomes). The probability index is intuitive for clinicians, easy to calculate, and

may be applied to various composites. We suggest a simple and familiar plot

to assess heterogeneity across outcomes, which should be routine when analyzing

composites. We think that the probability index provides an immediate and simple

solution to an overt problem.

4.2 Introduction

Composite endpoints are increasingly popular outcomes in clinical trials of heart

failure (HF) therapy[51, 52]. HF has a complex presentation, and pathophysiology

and the outcomes are diverse, leading to the inclusion of clinical events, as well as

symptom resolution and biomarker changes. Some composite endpoints amalga-

mate these outcomes of different types with the goal of increasing statistical power

and a more economical presentation of results. Hence, the analysis and handling

of composite endpoints is a current and persistent issue, especially in early phase

trials, where the sample size precludes the use of mortality as a primary outcome

or an adjusted signifcance level for multiple testing.
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However, composite outcomes may yield ambivalent results[53], and the up-

take of composites has outpaced guidance on their use. In particular, 2 issues are

commonly neglected when presenting trial results: (1) an effect measure summa-

rizing the magnitude of the treatment difference; and (2) an explicit assessment

of heterogeneity of this effect across the component outcomes. Regarding hetero-

geneity, some authors have described multiple testing; however, an advantage of

composite endpoints is that they obviate the issue of multiple testing by creating

a univariate outcome. An assessment of heterogeneity may imply multiple test-

ing; however, the composite is taken as the primary endpoint, and adjusting alpha

may mean statistical signifcance is unattainable for any single outcomes in phase

II research. Alternatively, Pogue et al[54, 55] described a statistically rigorous

assessment of heterogeneity; yet, such a modeling approach may not be easy to

implement or persuasive, and such a test is inappropriate for some composites, for

example, those that measure risk beneft.

In meta-analysis, a forest plot of odds ratios (OR; with each OR representing

a study) provides a visual inspection of heterogeneity. The OR is a measure that

summarizes the magnitude of the treatment difference, termed the effect size. We

require an analogous measure for composite endpoints to enable such a graphical

assessment of heterogeneity and to communicate study fndings.

4.3 Need for an effect size

The effect size should be “[t]he primary focus in interpreting therapeutic clinical

research data,”[56] which is also stipulated in ICH E9: “it is important to bear

in mind the need to provide statistical estimates of the size of treatment effects

together with confdence intervals (in addition to signifcance tests).” The Table

summarizes some well-known composites and their typical effect sizes, such as

the win-ratio[15] and days alive and out of hospital. The choice of effect size
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is less obvious for composites that combine noncommensurate outcomes (percent

change for biomarkers, survival endpoints, etc.), such as the global rank[27] and

the average Z-score[20]. The global rank composite is similar to an unmatched win-

ratio[15] and arranges outcomes in a hierarchy, with the most definitive at the top

and, accordingly, patients may be ranked from the most adverse response (rank=1,

eg, mortality) to the most favorable (rank=n, if there are no ties); see Figure 9

for an example which follows Felker & Maisel[27]. These ranks are analyzed using

a Wilcoxon-Mann-Whitney rank-sum test (U test). The average Z-score, unlike

the global rank, is unweighted and is calculated by frst translating each patient

response on each outcome to a Z-score and then taking the average across outcomes

for each patient. The average Z-scores obtained are analyzed in the same manner

as the global rank. These composites have been compared elsewhere[20, 50].

Table 6. Some well-known composite endpoints and their corresponding effect sizes

Outcome type Composite Analysis method Effect size

Binary
(eg, worsening symptoms)

Any versus none, eg,
MACE
Worsening heart
failure

For example, logistic
regression

For example, odds
ratio, number needed
to treat

Survival
(eg, mortality, hospital
readmission)

Time-to-frst
Win-ratio
Days-alive-and-out-of-
hospital

For example, propor-
tional hazards regres-
sion

Hazards ratio
Win-ratio
(wins/losses)
Difference between
means

Miscellaneous
(eg, binary, survival, lognor-
mal)

Global rank
Average Z-score

Wilcoxon-Mann-
Whitney rank-
sum test

Probability index
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Figure 9. Derivation of the global rank composite

Figure 9. Derivation of the global rank composite. Each patient is assigned a rank from

1 to n according to their response on several outcomes. These outcomes are arranged in

a hierarchy to ensure that a rank of 1 is assigned to the patient with the most adverse

response (an early death), and the rank of n is assigned to the patient with the most

favorable response (the patient does not fail on any of the criteria). There may be

tied ranks if patients’ outcomes are equally favorable. The analysis then involves a

comparison of these ranked values between the treatment groups. AUC indicates area

under the receiver operating curve; and NT-proBNP, N-terminal pro-B-type natriuretic

peptide.

Because these composites tend be rank based, we often see the sum[27] or

mean of ranks displayed by treatment group to summarize the main fndings, but

the former is misleading and the latter has little clinical meaning. This fails to

gauge the effect of the investigational drug in the way, for example, a hazard ratio

would for a time-to-frst event composite or an OR for a major adverse cardiac event

outcome. Consequently, p-values are emphasized,8 contradicting the guidance on
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the value of reporting an estimate of the treatment effect (and a confdence interval)

to supplement p-values.

As an example, consider 2 recent studies in HF, one for each of the compos-

ites of interest. The FIGHT study (Functional Impact of GLP-1 for Heart Failure

Treatment) compared Liraglutide and placebo groups using a global rank com-

posite comprising mortality, hospital readmission, and time-averaged proportional

change in N-terminal pro-B-type natriuretic peptide level[57]. The mean global

rank score was presented for each group (146 for Liraglutide and 156 for placebo)

without any group difference or confdence interval because a difference between

these rank scores (ie, 10) is not readily interpretable in terms of a clinical effect.

However, analyses of the component outcomes were summarized with effect sizes,

namely hazard ratios for time to death and time to frst hospital readmission, and

difference in percentage change from baseline for N-terminal pro-B-type natriuretic

peptide. The omission of an effect size for the overall composite in the table of

results makes the overall interpretation of this result challenging.

The BLAST-AHF study (Biased Ligand of the Angiotensin Receptor Study in

Acute Heart Failure) used an average Z-score as the primary outcome comparing

3 dose groups and a placebo in acute patients with HF[42]. The average Z-score

was an average across Z-scores for 5 outcomes: time to death (≤ 30 days), time to

HF-related hospitalization (≤ 30 days), worsening HF at 5 days, change in dyspnea

visual analogue scale area under the receiver operating curve, and length of hospital

stay. In this case, the results were presented for each outcome and for the overall

composite using the difference in mean Z-scores against the placebo group (this

difference was displayed with a confdence interval). This is an effect measure but

not an intuitive one. Clearly, a difference of zero indicates no difference between the

groups, and a positive difference favors the active treatment. But the magnitude of
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the effect measure is not informative. For example, is a difference of 1 compelling

and worthy of affecting clinical practice? It is not a quantity that allows us to

gauge the clinical beneft of the therapy. Clearly, a solution is needed, and we will

now describe an effect measure for HF composite endpoints.

4.4 Probability index (PI): an effect size for composite endpoints

A likely candidate for an effect size measure for rank-based composites is the prob-

ability index (PI), which ascribes a probability to the strength of superiority of

the investigational treatment over the control, that is, it represents the probability

that a randomly selected patient from the investigational treatment has a superior

response to a randomly selected patient from the control group. The PI has been

evaluated extensively, although mostly for the case of continuous data[58, 59, 60].

Potentially inhibiting wider adoption is inconsistent terminology, including the

individual exceedance probability[61], nonparametric relative effects[62], relative

effect size[63], relative treatment effect[64], a measure of stochastic superiority[65],

the global treatment effect[66], generalized treatment effect[67], theta[68], the prob-

ability of concordance, and the common language effect size[69], and more explic-

itly, it is referred to as P(X>Y)[70].

The PI is easily derived from the Wilcoxon-Mann-Whitney U statistic (which

is the default approach to analysis as noted above) and is equivalent to a more

common measure, the area under the receiver operating curve. U may be thought of

as the number of wins resulting if every patient in the active group were compared

with every patient in the control group. The PI is this number divided by the total

number of such comparisons (ie, the number of patients in one group multiplied

by the number in the other). The PI is suitable for ranked data but has also

been described for normally distributed data[71], time-to-event data[72], and non-

normally distributed continuous data[64]. This is a key advantage of the PI because
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it allows the effect on outcomes to be estimated using the same measure, rather

than a mix of hazard ratios, differences between means, and so forth, and the

effects across outcomes are, thus, comparable and heterogeneity may be readily

assessed (ie, the inconsistency in the effect across outcomes). The PI has been

promoted in the statistical literature, but despite its intuitive appeal, it remains

underutilized in medical research.

The confdence intervals of PI require more computation. Newcombe[73]

evaluated several methods for obtaining confdence intervals, and we follow

their method 5, which was shown to be superior to alternatives and is in use

elsewhere[58, 70, 74, 75]. Note that a PI of 0.5 implies no difference between the

groups, and therefore, we are interested in testing the null hypothesis Ho: PI=0.5.

If the 95% confdence interval does not encompass 0.5, the null hypothesis is re-

jected (eg, we can say active treatment is superior to control). We assume that the

variance of responses in each group is roughly equal. An SAS macro that yields the

PI and its confdence interval is provided at the following link: https://paulmbrown-

programs.blogspot.com/.

4.5 Interpreting the Magnitude of PI

Unlike a hazards ratio or OR, the PI is bounded and falls between 0 and 1, with a

value of 0.5 implying no difference between the treatment groups and values above

and below this indicating supportive and negative results, respectively. Figure

10 shows the separation between density curves for different values of the PI for

a 3-tier global rank composite and a sample size of n=100; the closer PI is to

1, the stronger the beneft of the investigational treatment over the control. In

particular, note the separation of the peaks of the distributions. As a probability,

it is reminiscent of a p-value, and it is tempting to provide a threshold or region

indicating evidentiary strength, for example, a large effect. Acion[59] et al suggest
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0.7 is large, 0.64 is medium, and 0.56 is a small difference, but it is too simplistic

to apply such an interpretation across different study populations, end points,

follow-up, and outcomes.

Figure 10. The distribution of ranks for active and control groups for various values
of the probability index

Figure 10. The distribution of ranks for active and control groups for various values of

the probability index (PI). For the global rank composite with n=100. A rank of 1 indi-

cates the most adverse response, and a rank of 100 indicates the most favorable response

(assuming no ties). When PI is near 0.5, there is much overlap of the distributions and

no difference between groups is declared. For larger values of PI, the distributions begin

to separate, that is, the active group shows a preponderance of high ranks (favorable

responses), and patients in the control group are more likely to have lower ranks (unfa-

vorable responses). In this case, we would declare a difference between the groups. For

example, for a PI of 0.8, we may summarize the results as follows: the probability that

a randomly selected patient in the active group has a better response than a randomly

chosen patient from the control group is 0.8.

The interpretation of the magnitude of the PI will depend on the composite

being used and other design features that affect the variability of outcomes, for ex-

ample, eligibility criteria. If clinical outcomes, including mortality, are prioritized
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as per a global rank composite, then a PI of 0.6 would be impressive; however,

for an unweighted average Z-score potentially dominated by a biomarker, a value

of 0.6 may not be so compelling (for the average Z-score, the contribution of out-

comes is not limited in the way it is for the hierarchical global rank composite[50]).

But because these composites are essentially different outcomes, it stands to reason

that we interpret them differently (as we would for a hazard ratio that corresponds

to time to death versus a hazard ratio corresponding to time to hospital readmis-

sion). However, if for each of the component outcomes it is known what is deemed

a clinically important difference, then it is possible to gauge what this translates

to in terms of the PI for a particular composite using data simulations analogous

to an anchor-based approach[76]. For a composite end point, the magnitude of the

PI will of course depend on the strength of the treatment effect across the compo-

nent outcomes, and the effect an individual outcome has on the PI will be limited

according to the construction of the composite. One could use data simulations to

plot the PI for the component outcomes versus the PI for the composite to gauge

the influence of individual outcomes. The slope of the line would indicate how sen-

sitive the composite is to the effect on the outcome, that is, it would be suggestive

of the weighting or what Cordoba et al referred to as the inflation factor[77]. For

example, the average Z-score would show a more congruent relationship with the

individual outcomes because it is unweighted.

4.6 Assessing Heterogeneity Among Component Outcomes

For the summary of results for a composite and its component outcomes, tabula-

tions have been suggested[27, 17]. But this can seem cluttered and inadequate on

its own. As noted earlier, the beneft of the PI is that it may be applied to various

types of outcome, and hence, we may summarize results using a common measure.

We replicate the hypothetical phase II data of Felker & Maisel[27] for illus-
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tration (recall Figure 9). Figure 11 shows the familiar forest plot (typically used

for meta-analyses and subgroup analysis) with the PI estimates and their 95%

confdence intervals for each outcome and overall for the composites. We have con-

sidered 2 scenarios, that is, concordant effects and discordant effects (a negative

effect is included for dyspnea). The results are plausible, that is, most outcomes

are suggestive of an effect, but statistical signifcance is unattainable in the small

study sample. The PI for mortality is 0.515, which is equivalent to a hazard ratio

near 1.35 Thus, the optimism of a lone biomarker (pro-B-type natriuretic peptide

in this example) is dampened by a low mortality rate for the weighted composite

but proves influential in the unweighted composite (average Z-score), where the

result might be reported as a signifcant result by the investigators. Statistical sig-

nifcance is achieved for the composites, but the effect seems modest. For example,

for the average Z-score, we would report a PI of 0.639 (0.559, 0.710), which means

the probability that a randomly selected patient in the active arm has a superior

response to a patient in the control arm is 0.64, or in other words, the ranks on

active tend to be larger than those on control (higher ranks are better; as in Figure

10). When discordant effects are present, interpretation of the composite becomes

problematic[51]; note that the average Z-score remains statistically signifcant, and

the global rank does not. Claiming a positive result overall based on discordant

effects may give a false impression of the value of the treatment; thus, caution is

warranted, and the forest plot is recommended to enable a complete interpretation.
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Figure 11. Forest plot for assessment of heterogeneity

Figure 11. A typical forest plot as would often be used to summarize the results of a

meta-analysis of clinical studies. Here, instead of studies, effect sizes are presented for

each outcome. The effect size is the probability index (PI) and is displayed with 95%

confdence intervals. As with meta-analysis, the plot gives a sense of the extent of het-

erogeneity among the results. Two scenarios are displayed, that is, when effects across

outcomes are concordant and discordant (opposing effects for dyspnea AUC visual ana-

logue scale). The former may show quantitative heterogeneity and the latter qualitative

heterogeneity. Quantitative heterogeneity may be expected, while qualitative hetero-

geneity makes interpretation of the overall composite diffcult. Wilcoxon-Mann-Whitney

rank-sum test (Gehan’s generalized Wilcoxon for survival outcomes). N=200 (100 per

group). NTproBNP indicates N-terminal pro-B-type natriuretic peptide.

Adopting the hypothetical example of Felker & Maisel, we have suggested

an alternative or supplementary presentation of their results that allows a ready

assessment of heterogeneity of the effect across outcomes. This graphical assess-

ment could be applied routinely in the analysis of composite endpoints to aid the

interpretation of results. Few solutions have been offered for investigating hetero-

51



geneity in the context of composite end points. Pogue et al. describe a statistical

test for binary[55] and survival[54] outcomes; however, for the rank-based com-

posites that may measure risk beneft, we prefer a graphical assessment and think

that heterogeneity cannot be discerned by a hypothesis test with a yes/no dec-

laration at some signifcance level; clinical reasoning is needed. For these types

of composites, a certain amount of variation in the magnitude of the effect is ex-

pected, with some outcomes more sensitive than others (eg, N-terminal pro-B-type

natriuretic peptide in our illustration); yet, the components should demonstrate

directional concordance[78], and discussion regarding the presence of heterogene-

ity should not, therefore, be hinged to a single p-value testing homogeneity of

effects, especially given a likely lack of power for the test in phase II studies. We

would suggest even dropping the term heterogeneity in this context and instead

refer to discordant effects or opposing effects, that is, effects that are cunteracting,

or qualitative versus quantitative interactions between treatment and outcomes,

for clarity. Our method may also be simpler, familiar, and applicable in vary-

ing circumstances. The forest plot satisfes the recommendation that component

outcomes should be analyzed separately and appear alongside the results for the

overall composite[51, 52, 77, 79]. Such a display reiterates that statistical sig-

nifcance has not been achieved on the component outcomes and highlights that

treatment effects vary across components.

In the context of phase II research, a p-value aids the impending decision of

whether to proceed to phase III. However, the PI estimate and its confdence inter-

val provide an enhanced interpretation supplementary to a p-value regarding the

magnitude of the effect, distinguishing between statistical signifcance and clinical

signifcance. It is conceivable that a p-value may reach the threshold for signifcance

while the PI suggests a negligible effect, as we see for the global rank in Figure 11,
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where the p-value is borderline signifcant. We should then look at the estimates

for the component outcomes to see what is driving the result. This is a discus-

sion that cannot be informed by p-values alone; however, the PI, like composites

themselves, should be used when concordant effects are anticipated.

4.7 Potential Caveats and Critiques of the PI

The PI has been criticized[61, 80] because the estimate depends on the variance,

and thus, comparing results across studies is problematic. However, statisticians

have responded to the issues raised[58, 81, 82, 59], and research is ongoing. Nun-

ney et al[58] are looking at covariate adjustment when data are non-normally

distributed. Whether composite end points that combine disparate outcomes are

clinically and statistically meaningful may be questioned,36 especially for phase

III trials. However, in phase II trials, combining uncorrelated outcomes increases

the effciency of the composite, and they have become increasingly popular because

ranking patient responses using a set of HF end points has intuitive appeal in

early phase research. The forest plot described seems especially pertinent for such

composite end points where tentative conclusions are derived from a single sum-

mation of disparate outcomes. An assessment of the composite and its components

is needed[52], and the PI may facilitate communication between biostatisticians,

clinical trialists, cardiologists, and the wider patient and medical community. Pre-

vious evidence suggests that a physician’s willingness to prescribe is affected by

the way in which trial results are reported[83], and medical journals have requested

that study results include estimates to supplement p-values[84]. An SAS macro

is provided at the following link to enable ready calculation of the PI and its

confdence interval: https://paulmbrown-programs.blogspot.com/.

The PI is nonparametric and appropriate for ranked data such as the global

rank composites. We restricted attention to 2 particular composites, but the PI
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may be applied to a variety of composites, for example, time to frst event and days

alive and out of hospital[85], or those that are 3-tier composites, for example, com-

bining mortality, hospital readmission, and a biomarker (typically 3 or 4 outcomes

are combined[51]). In addition, some end points like days alive and out of hospital

may not be familiar to the entire readership; some readers may lack a sense of

what constitutes an important difference on this scale, and the PI can clarify this.

Finally, because the PI is derived from the test that is commonly applied (ie, the

Wilcoxon-Mann-Whitney U statistic), there is no change to the analysis.

4.8 Conclusions

The PI was described decades earlier[86, 87] but has been slow to appear in the

results of clinical trials using composite endpoints. Its value has been expressed in

statistics journals[59], although some have argued that the quantity is somewhat

convoluted and may not be easily grasped[61]. However, we and others[59, 82]

think that it is a value clinicians will fnd intuitive (more so than a hazards ratio[88])

because its interpretation is phrased in terms of individual patients rather than

population averages, and it is no more esoteric than the interpretation of a p-

value[89]. Califf et al[45] noted in 1990: “we have become interested in the use

of combined end points. ... The major disadvantage ... is that the scale that is

developed may not be readily interpretable.” Yet 25 years later, top-line results

are typically reported without meaningful effect estimates, and researchers have

noted that the presentation of results should improve[77]. Thus, the PI provides

an immediate solution to an overt problem, it is apt and easily calculated and

ought to gain wider use, especially when the end point is an amalgamation of

noncommensurate outcomes.
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CHAPTER 5

Frailty modelling for multitype recurrent events: A review
PM Brown & JA Ezekowitz. Statistical Modelling: An International Journal.

2017

5.1 Abstract

Recurrent event outcomes are ubiquitous among clinical trial data which encour-

ages a conventional approach to analysis. Yet a common feature of these data has

received less attention ie survival times often comprise multiple types of events

that may imply a disparity in cost and disease severity. Typically, we neglect this

feature of the data by combining event-types or analysing each type separately thus

ignoring any interdependence among them. This practice may reflect a dearth of

readily available methods and software that more appropriately acknowledge the

true data structure. We provide a review of the literature on multitype recurrent

events and frailty modelling which reflects a renewed interest in the topic over

the past decade and the emergence of software for estimation. Thus a review of

available methods seems timely, if not overdue.

5.2 Introduction and motivating examples

In clinical trials of chronic diseases we often have survival data including recur-

rent events that reflect disease progression and quality of life. The events may

be upsetting and inhibiting for patients, such as migraines, hypoglycemic episodes

in diabetes, hospital readmission in heart failure and so forth. These events may

be classified by type, for example according to severity for migraines, or whether

hypoglycemia occurs during the daytime or nighttime, or whether the heart fail-

ure patient is admitted to the emergency department or hospital. Note that in

all of these examples the occurrence of one type of event does not preclude the

subsequent occurrence of another ie they are not competing risks, yet event-types

55



may be interdependent. Recurrent events will often exhibit types (whether nomi-

nal or ordinal) in which case we can describe them as multitype recurrent events

(MTREs). To further illustrate this feature of survival data we describe several

instances of MTREs we have encountered in our work.

In the mid 1990s the Nambour Prevention Trial explored the effect of sunscreen

use and beta-carotene on the incidence of nonmelanoma skin cancer in a high risk

population in Northern Queensland, Australia[90]. About 1600 participants were

randomised in a 2x2 factorial design, with new skin cancers detected at regular

follow-up visits. Two types of skin cancers were noted: basal cell carcinoma (BCC)

and squamous cell carcinoma (SCC). These are distinct histological types with

different prognoses and implications (SCCs are a more serious and less common

lesion) and thus we may not want to combine these event-types using a time-

to-first BCC/SCC analysis. Thus event-types are analysed separately, using Cox

regression, despite the very low failure rate (high censoring rate) especially for

SCCs (>90%, possibly influenced by poor compliance), which renders statistical

significance unattainable.

A meta-analysis of nine parallel-group and crossover studies (1674 patients)

was carried out comparing rates of hypoglycemia between human insulin 30 and

biphasic insulin aspart 30 (an insulin analog) in patients with Type 2 diabetes[91].

Using negative binomial regression, hypoglycemic episodes were analysed over-

all and separately for major, minor and symptoms only, and also for nocturnal

and daytime hypoglycemia. Patients may experience multiple episodes during the

study period and the rate varies for the different event-types, for example major

episodes are less common than minor episodes. The inverse variance method was

used to combine treatment effect estimates from the parallel-group and cross-over

studies. Although rates of overall episodes were not significantly different between

56



the treatment groups, rates were considerably different for nocturnal and major

episodes (these are particularly worrying for patients), although their incidence is

low even in a meta-analysis of nine studies (14% and 2% respectively). Overall

this approach seems ambivalent and simplistic.

More recently we examined the prognostic value of ECG parameters with re-

spect to heart failure related readmissions in a Canadian cohort of 900 patients

with acute heart failure[92]. We have up to five years of readmissions data for pa-

tients who were recruited in the emergency department. Roughly 30% of patients

had at least one emergency department visit and 20% had at least one hospital

visit during the follow-up period (ie after discharge). The study design itself in-

sists a more than nominal distinction between emergency department and hospital

admissions, implying different costs, length of stay and severity. Using Cox regres-

sion to analyse time-to-events, patients with and without atrial fibrillation at the

index visit showed no difference in emergency department visits (p-value=0.40),

hospital readmissions (p-value=0.55) or when these event-types were combined (p-

value=0.23). In Figure 12 we provide a sample of these data. We will refer to this

study example throughout the sections below.

When confronted with data like those from these three studies, the statistician

will typically either 1) consider event-types separately, or 2) analyse them together.

Regarding 1), if event-types are not independent, ie if the occurrence of one type is

suggestive of the risk of another type, then separate analyses are inadequate. Also,

data may be sparse when separated out leading to equivocal results which may

tempt us to consider analysing types together. Regarding 2), although different

event-types may all reflect disease progression, treating them as identical denies

a potential disparity in cost, relationship to future outcomes and disease severity.

Also a strong treatment effect on one event-type will be diluted when combined
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Figure 12. Example heart failure readmissions data

with another event-type that shows a weaker effect. Thus both approaches seem

crude: we lose information if we analyse separately and we mask information if we

combine them together. A more optimal modelling approach is needed.

Although a number of review articles of recurrent events analysis are

available[93, 94, 95] as far as we can tell no such overview exists for MTREs. A

literature search reveals that models incorporating event-types are scarcely evident

in medical journals reporting the results of clinical trials, with the topic confined

to statistics journals. This implies limited uptake of the methods proposed; per-

haps they are considered too esoteric or difficult to implement? Even among the

statistics journals there appears to be a dearth of relevant research compared to

the long, continuous publication history for univariate recurrent events. Chen et

al. stated that “statistical methods for handling multiple type recurrent events
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are relatively limited”[13] and Zhu et al. noted that “there does not seem to exist

an established method”[96]. Although, with the publication of recent monographs

and programing code made available by authors, there now appears to be renewed

interest in the topic and fewer obstacles to implementation. We focus our atten-

tion on proportional hazards frailty models because they are prevalent and a simple

extension of more familiar models.

In the next section we introduce the concept of frailty modelling and present

an MTRE model by showing how it relates to common models for the analysis of

recurrent events data. (The literature on recurrent events is extensive and we do

not intend to provide an overview of that here.) In the third section we describe

multivariate frailty models for MTREs and then recent work regarding extensions

of these models for particular scenarios. Finally, we cover software applications

and use an example to illustrate how we would fit multivariate frailty model for

MTREs in SAS.

5.3 From Cox regression to MTRE modelling

Survival data are ubiquitous in clinical trials and this encourages a conventional

approach to analysis[7]. For example, a Cox proportional hazards regression

model[97] is typically used to examine the influence of covariates such as treat-

ment on survival outcomes.

h(t;x) = h0(t)exp(xβ) (8)

In the case of the heart failure study we may use a Cox model to analyse time-

to-first readmission, or more commonly a composite of time-to-first readmission

and death[15]. However, there is a growing demand to incorporate all hospital

readmissions into the analysis because doing so entails greater statistical power and

consequently a smaller required sample size or shorter follow-up[16, 95]. In this
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case, the a Cox regression analysis of time-to-first becomes difficult to justify and

readmissions may be analysed using a popular extension of this model described

by[98].

λ(t;x) = λ0(t)exp(xβ) (9)

Yet the Andersen-Gill model assumes events within a patient are independent and

gamma random effects (θi) may be introduced to account for patient heterogeneity.

These random effects have a multiplicative effect on the hazard leading to negative

binomial regression (see [99]), analogous to the way Poisson regression is extended

to negative binomial regression by including gamma random effects.

λi(t;xi) = θiλ0(t)exp(xiβ) (10)

Despite these extensions to the original Cox model an important feature of the

event data is still ignored: readmissions are comprised of different types (eg emer-

gency department and hospital visits), and the common approach of combining

them should be questioned. Thus we further extend our model by including ran-

dom effects for event-types, creating another mixed (fixed and random) effects

model; see Abu-Libdeh et al.[12].

λij(t;xi) = θiξijλ0(t)exp(xiβ) (11)

The relatedness of the recurrent events models is apparent from their form, ie in-

tensity based, non-homogenous Poisson process models (NHPP); non-homogenous

because the intensity is not constant in time. The β are the regression coefficients

for the covariates that correspond to eg the treatment effect, and we may specify

a Weibull baseline intensity λ0(t) = ρδtδ−1 because it is a popular choice and em-

ployed by both Lawless and Abu-Libdeh et al. noted above. Note if δ = 1 then
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the intensity is constant and we have a time homogenous Poisson process. Note

also that instead of the hazard we are speaking of the ‘intensity’ which is similar

to the hazard, ie it is the instantaneous probability of at least one event, although

these terms may be used interchangeably. Other approaches could be noted (such

as multi-state models, marginal models) however the models above are instructive

because they lead us from the familiar Cox model to the model of interest with

only small additions such as random effects. These random effects are referred to

as ‘frailties’ and a number of monographs are available covering intensity-based

frailty modelling[100, 101, 102, 103]. We will now introduce the concept of frailty

modelling.

The assumption of independent events for the Andersen-Gill model (2nd model

above) is explicit as we can see that the baseline intensity is common for all events,

thus a new event is unaffected by earlier events experienced by the patient (an as-

sumption that is obviously violated in the context of heart failure hospitalisations).

This differs from the third model which includes random effects for patients (θi for

patient i) to account for unexplained heterogeneity, ie beyond that attributable

to the covariates. (If we fail to account for heterogeneity then standard errors for

β will be underestimated and show bias that “grows with the correlation and the

number of possible recurrences”[104].) These random effects are termed ‘frailties’

because a higher value means a higher hazard, and events now occur according

to each patient’s own hazard, ie events within a patient are correlated, with the

independent frailties mimicking some probability distribution (typically gamma is

assumed). The model is referred to as a ‘shared frailty’ model and is employed

when we have clustered data such as animal experiments where a litter could be

said to have a shared frailty, or in the heart failure study patients in the same site

may assume a common frailty (as per [105]) with academic versus non-academic
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hospitals). Thus we are concerned with describing associations between events.

Since these scenarios are analogous to the situation of recurrent events clustered

within a patient we may adopt a shared frailty model for the analysis of recurrent

events. An early and important paper making use of the shared frailty concept is

by Clayton[106] who considered the risk of chronic disease in families (although

the term ‘frailty’ was not used).

5.4 Multivariate frailty models for MTREs

The intensity-based frailty model (4th model above) was described by [12] (hence-

forth we will simply refer to Abu-Libdeh) for the analysis of non-melanoma skin

cancer incidence in a randomised clinical trial of selenium supplements and includes

random effects for patients (θi) and event-types (ξij for patient i and event-type j ).

This is the earliest and most relevant paper concerning random effects modelling

of multiple event-types, however there is no apparent evidence that the model has

since been employed in the recurrent clinical events setting. Incidentally, we may

consider a more parsimonious model without the cluster effect for patients (θi) such

that if event-types are equivalent ie ξij = ξi for j=1 ... J (where J is the number

of types of events) then we have the simple shared frailty model. Although in

this case the random effects for unexplained patient heterogeneity and dependence

among events are confounded. Note that when patient-level effects enter the model

it is natural to discuss random effects, rather than a fixed effect with very many

levels, and we must choose a probability distribution that describes the random

effects.

A number of probability distributions have been adopted in practice (see [107]

for some background). According to Cook & Lawless[108] considerations for the

choice of distribution include “tractability of the integral ..., properties of the full

intensity function, and the availability of software” (see section below) and for
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event-types we desire a multivariate distribution. Abu-Libdeh assumed a gamma

distribution for the patient effects (as per negative binomial regression) and a mul-

tivariate Dirichlet distribution for event-type effects (like the gamma distribution,

the Dirichlet distribution is often used as a prior in Bayesian statistics). With two

event-types (eg emergency department and hospitalisation) the Dirichlet reduces

to a beta distribution. However, it can be shown that, owing to the Dirichlet dis-

tribution (with
∑J

j=1 ξij = 1 for all i), identical treatment effect estimates would be

obtained using the simpler shared frailty model that ignores event-type (see Sup-

plementary material); Abu-Libdeh acknowledge as much when stating that “the

parameters of the Dirichlet mixing distribution can be treated separately from the

estimation of the other parameters”. The upside of this is that the Dirichlet en-

ables the marginal likelihood to be derived analytically, which was likely a relevant

concern when the paper was published 25 years ago. Nevertheless, an alternative

distributional choice is desired.

A good option for our purpose is the multivariate log-normal distribution

which is promoted and spelled out by Cook & Lawless[108] for multiple event-

types. It is more apt than the gamma when we have multivariate, correlated

frailties. The random effects reflect correlation among events for a patient and

the correlation between event-types is deduced from the multivariate distribution.

Consider then, this alternative model:

λij(t;xi) = λ0j(t)exp(xiβj + uij) (12)

where uij=logξij and the vector [ui1, ..., uiJ ] has a multivariate Normal distribution

thus allowing positive and negative frailties (see [109] and [110] for an example).

The approach is analogous to the so-called correlated lognormal frailty model which

does not restrict units within a cluster to have a shared frailty (perfect positive
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correlation) but rather correlated frailties (Wienke[100], Chapter 5). For example,

in twin studies there will be separate random effects for each set of twins (clusters)

yet we may desire that the individual frailties within a set of twins should be dif-

ferent but correlated ie via the multivariate lognormal distribution[111]. Similarly,

in the case of MTRE we do not want events within patients to have a shared frailty

but wish to specify separate but dependent frailties for the event-type processes.

Regarding the formulation of model, as in model [11], we may have a com-

mon β or separate regression coefficients for each event-type (βj) in the regression

component depending on whether the assumption of a common effect across event-

types is deemed reasonable. Likewise, we may have an event-type specific baseline

hazard. Also note that compared to model [11] the patient level random effects θi

are dropped in model [12] and thus patient and event-type variation is accounted

for in the random effects uij. Using a multivariate distribution for frailties uij we

get a sense of the correlation among event-types which we would not otherwise ob-

tain, thus providing new insights while accounting for the interdependence among

event-types. More to the point, a model that ignored these associations may be

inadequate or inefficient.

5.5 Other issues in MTREs: terminal event and other developments

In this review we have so far neglected the likely possibility of a terminal event

(competing risk) which adds further complexity to our model ie the follow-up time

cannot be treated as independent of the recurrent event process. In the examples

cited in the introduction it may be reasonable to treat deaths as uninformative

censoring in one case eg nonmelanoma skin cancer incidence (thus the competing

risk of death is absent in Abu-Libdeh’s analysis), but not in another eg repeat heart

failure related hospitalisations (see the Figure where death follows readmissions).

Such terminal events preclude further observations of the event of interest and in
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the latter example we should not treat these as censored survival times since the

likelihood of death increases with the number of emergency department and hospi-

tal visits[6], thus these processes are not independent and we would like to account

for the association between them (to avoid biased estimates). Other examples of

terminal events may include consequences of ineffective treatment such as dropout

due to adverse events or a switching of treatment. Liu et al.[112] state that “over

the past decade, there has been a growing research interest in modelling correlated

failure times in the presence of informative dropout or a dependent terminal event

such as death” which leads us again to the concept of frailty and random effects.

To introduce the ‘joint frailty’ model let us first consider the simple case with-

out multiple event-types. Joint frailty models are becoming increasingly popular as

a means of accounting for terminal events in heart failure (eg Rogers et al.[95] who

promote its use, and Greenberg et al.[113]), and thus frailty as a concept and means

of associating events is becoming familiar to clinicians. As Rogers et al. explain: “a

common frailty term, which can be thought of as an unmeasured indication of the

severity of illness that affects both hospitalisation rate and hazard for [cardiovas-

cular] death, induces an association between the two processes”[114]. Effectively

this means the processes are jointly modelled and thus our clinical understanding

of the recurrent events process and mortality is enhanced. Bear in mind we are

now accounting for dependence in three ways: between recurrent events within

patients, between different types of recurrent events and between recurrent events

and the terminal event. Rogers et al. employed a model for which “the individual-

specific frailties are assumed to affect the rate of heart failure hospitalisations and

the hazard for cardiovascular death in the same way” and this assumption could

be challenged[95]. However, a number of authors have described approaches that

allow the frailty to differ between these processes[115]. For the joint and shared
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frailty, both gamma[116, 95] and log-normal[117, 118] distributions are typically

assumed, perhaps gamma is more common because it yields “relatively tractable

likelihoods”[108] although with the extra complexity of this model the marginal

likelihood does not have a closed form and thus “using other distributions for the

frailty, such as log normal ... will not induce more difficulties” [119]. Suffice to say,

the choice tends to be a mathematical one rather than a biological one[120]. In any

case, authors have confirmed that results are robust to a misspecification of the

frailty distribution[117, 116, 121]. Note that if the processes are independent (or

rather dependence is entirely captured by the covariates) then the distributional

parameter will be close to zero and we may adopt the simpler model. Also, if the

terminal event rate is low we may opt for a more parsimonious model because eg

the results can be more easily presented.

For the case of MTREs and a terminal event see Cook & Lawless[108]. An

MTRE model like model [12] which incorporates a terminal event as a joint frailty

may be written as follows:

λij(t;xi) = λ0j(t)exp(xiβj + uij)
di(t;xi) = d0(t)exp(xiα+ γ1ui1 + γ2ui2)

(13)

where two event-types are assumed and γj determines the relationship between

event-types and the terminal event. Several illustrations are noteworthy eg a mul-

tivariate lognormal random effects model incorporating a terminal event has been

described by Mazroui et al.[115] for breast cancer data. Zhu et al.[96] considered

the incidence of two infection types (bacterial, the most common, and fungal or

viral) in acute myeloid leukemia with relapse, transplant or death as the termi-

nal event. Unlike Mazroui et al.’s model “the covariance effects on the terminal

event were left arbitrary” as was the dependence between recurrent events and

death. Zeng et al.[122] analysed bleeding and transfusion events in patients with
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myelodysplastic syndrome; separate random effects for event-types by patient and

patients were specified, the latter linking recurrent events and the informative

censoring. Zhao et al.[123] used a semi-parametric approach leaving the baseline

intensity unspecified and treating the patient level frailties as nuisance parameters

and thus no distributional form need be assumed (covariates were event-type spe-

cific with no event-type frailties); they analysed fever and other reaction rates (ie

two event-types) after platelet transfusion among hematology/oncology patients.

And Lin et al.[124] analysed cardiovascular events (coronary heart disease, stroke

and heart failure) with all-cause mortality as the terminal event. To simplify mat-

ters we could use a crude approach such as treating death as the last event[114, 95]

although when dealing with multiple types of events we must ask: which type of

event? And equating death with an event will only make sense in certain contexts

and if recurrent events are rare. Such analyses may be designated as supportive

or sensitivity analyses.

Further recent elaborations of the MTREs model have appeared in the lit-

erature such as the simultaneous modelling of longitudinal outcomes[125], time

varying coefficients[126], ratios of intensity functions for types[127], interval cen-

sored data[110], gap time analysis[128], a Bayesian approach[124] and handling of

missing event-types[109, 129, 130]. We may also require random effects for cluster-

ing levels such as patients within centres [131]. Typically such multi-level models

lead to intractable likelihoods with high dimensional integration, ie the frailty

terms cannot be integrated out to obtain a closed form of the marginal likelihood

(see Duchateau et al.[132] for multi-level frailty models). For these more complex

frailty modelling approaches we will want to know whether software is available

or the statistician must code their analysis from scratch according to their specific

requirements.
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5.6 Software for MTREs

These developments, which have appeared since the publication of Abu-Libdeh’s

original random effects model, coincide with the increasing availability of more

powerful statistical software required for the estimation of parameters. Although

“the current estimation methods for frailty proportional hazards models are not

very satisfactory”[112] and “available software is limited”[133]. A majority of the

papers cited above emerged in the recent literature ie within the last five years,

although the topic of MTREs has seen renewed interest over the past decade: the

statistical monograph of time-to-event data by Cook & Lawless[108] (cited above)

with a dedicated chapter on the topic is from 2007. Statistical software, naturally,

lags behind. However, in a simple case such as the heart failure study where there

are two event-types (emergency department and hospital), and with the baseline

intensity specified (eg Weibull), we can use standard likelihood methods to obtain

the parameter estimates and inference is straightforward, as follows.

The MTRE model[11] is a conditional model, events are independent given the

random effects (since the random effects explain the dependence between events),

and thus the conditional likelihood may be written out by hand as if the frailties

were observed. The marginal likelihood is obtained by integrating ie averaging over

the random effects (see Collett[48] Section 11.3) to obtain a likelihood equation that

contains the distributional parameters for the random effects and the parameters

of interest (ie β and the parameters of the Weibull). We then obtain maximum

likelihood estimates of these parameters using optimisation software (eg proc nlp

in SAS) employing numerical methods such as Newton-Raphson[134] and standard

errors for the estimates are obtained from the inverse of the Hessian of the marginal

likelihood. Abu-Libdeh use maximum likelihood estimation and provide the score

vector and sample information matrix in their appendix making their method easy

68



to implement[135]. We can obtain estimates of the random effects using Empirical

Bayes which may be useful for calculating residuals to assess model fit and in the

production of individual patient survival curves (with confidence intervals derived

using the delta method[48]).

In cases that are not so straightforward, eg when we have more event-types,

or multivariate lognormal frailties, or incorporating a terminal event, the marginal

likelihood contains high dimensional integrals, analytical integration is not possi-

ble and other more sophisticated methods (numerical integration or approxima-

tions) are required. The Bayesian approach seems a natural choice, a key feature

of which is that parameters are unknown and described by a probability distri-

bution (a prior distribution) like the random effects in the frailty model. Chen

et al.[110] postulate a model for interval censored data with multivariate lognor-

mal frailties and implemented according to a Gibbs sampling algorithm. Likewise

Lin et al (also cited above) with three event-types and a terminal event used a

Bayesian approach[124] (flat priors are assumed for eg β parameters). In this

case WinBUGS software is favoured[136] or proc mcmc in SAS. An alternative is

to use quadrature[137] to approximate integrals and then the likelihood is max-

imised. Liu et al.[112] applied Gaussian quadrature estimation using SAS proc

nlmixed [138] which we illustrate in the next section. A number of optimisation

algorithms are available in nlmixed for maximising the likelihood, although the

random statement is limited to Normally distributed random effects. Mazroui et

al. developed software that is capable of fitting the MTRE model ie an R package

named frailtypack [115, 139] with the penalised likelihood estimation for inference.

Ideally simulations should be exploited to compare the performance of the alter-

native estimation methods mentioned above. Liu et al. compared quadrature

with Monte Carlo EM and penalised partial likelihood approaches and concluded
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that quadrature is preferable[112]. Further simulations are needed to clarify these

results.

5.7 Illustration: heart failure readmissions

In this section we describe the thought process for planning an MTRE analysis.

Consider the heart failure study described in the Introduction with patients re-

cruited when they presented at the emergency department. Heart failure related

emergency department and hospital visits subsequent to discharge are the event-

types of interest. Emergency department visits are more subjective and we can

expect they will show a higher incidence. A simple analysis of such data using Cox

regression of time-to-first readmission or death has been presented elsewhere[92].

We can derive the likelihood for this scenario as follows. First note that the

probability density function for time to the next event is:

f(x; t) = λ(t+ x)× exp[−(Λ(t+ x)− Λ(t))] (14)

In general, the conditional likelihood is then of the form (as per Lawless[99]:

L =
n
∏

i=1

[mi
∏

j=1

λ(tij)
]

× exp[−Λ(Ti)] (15)

where Ti is the time period over which patienti is observed and this patient has mi

events. For the case of multitype events, given the random effects, the contribution

of the ith patient to the conditional likelihood is:

L =
J
∏

j=1

[Kij
∏

k=1

ξijλ0(tijk)e
xiβ

]

× exp[−ξijΛ0(Ti)e
xiβ] (16)

where ξij = euij (as before). For the heart failure data, the uij are bivariate Nor-

mal random effects (the multivariate Normal distribution being a popular choice)

and we adopt a Weibull form for the baseline intensity as per Abu-Libdeh ie
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λ0(t) = ρδtδ−1. We could consider alternatives for the baseline hazard, eg Liu

et al.[112] prefer a piecewise hazard, although the coding is longwinded and thus

more prone to errors. The marginal likelihood is obtained by integrating over the

random effects (see Section 6.3 of Cook & Lawless[108]).

Assuming a joint frailty for all-cause mortality as per model [13] above, max-

imum likelihood estimates of the model parameters can be obtained using proc

nlmixed in SAS. Implementation is straightforward because we need only write out

the integrand within nlmixed using if-then clauses for the different event-types with

the distribution for the random effects specified in the random statement (SAS code

for this hypothetical example is available at the following link: https://paulmbrown-

programs.blogspot.com). Initial estimates are important for convergence and could

be obtained by fitting a simple shared frailty model ie without the event-type ran-

dom effects. There is a lack of consensus regarding the use of adaptive quadrature

and non-adaptive quadrature (this is the method of integral approximation and

is specified in the proc statement in nlmixed). The statistician may opt to use

adaptive quadrature by default (this is more computationally intensive) and resort

to non-adaptive quadrature with limited q-points (eg 10) if difficulties with conver-

gence arise (although it is important to understand the cause of non-convergence).

Using the estimate statement in nlmixed we may obtain an estimate of the

correlation between event-type random effects as the covariance divided by the

square root of the product of the variances. Using additional estimate statements

we may test the null hypothesis of no association between mortality and the event

types eg γ1=0. Estimates of the random effects (or individual patient frailties)

are produced using the Empirical Bayes method which is specified in the ran-

dom statement. These estimates enable the statistician to calculate Martingale

residuals and evaluate the model fit (we would hope to see the residuals for each
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event-type centred around zero). They may also allow us to produce prediction

curves for patient survival; nlmixed has a predict statement which can be used for

the purpose. These additional insights are an advantage of the MTRE analysis.

(See SAS code at the weblink above for the full code including these estimate

statements.)

The heart failure data are simple in that we have only two event-types. We

may wish to extend our analysis of readmissions eg by including other primary

diagnoses rather than restricting to heart failure (since eg acute myocardial in-

farction increases the risk of heart failure[140] and heart failure may comprise less

than half of the total visits experienced[3]). Alternatively, readmissions may be

extended to three classifications: emergency department, emergency department

to hospital (transferred to hospital on the same day or the following day), and

hospital. In cardiovascular research in general we may encounter more than two

event-types eg transient ischemic attacks or stroke may be classified by location.

Likewise, Abu-Libdeh contemplated incorporating site of lesion into their analysis

of BCCs and SCCs. We would therefore need to extend the model for more than

two event-types, and perhaps considerably more. Data could become thin for these

additional types and convergence may become difficult to attain.

We are working on a simulation study to evaluate how multivariate frailty

models perform with regard to statistical power under various circumstances eg

if we increase the number of event-types, or the disparity in event rates between

event-types, or the consistency of the treatment group difference across event-types,

modify correlations among events etc.

5.8 Conclusion

The simple modelling approach, ie a Cox regression of time-to-first event, remains

a popular choice in clinical trials of chronic diseases. However, there is a recent

72



push to include all events in the analysis and this has prompted a comparison

of modelling strategies to identify which among them is optimal[95]. Models for

MTREs have been absent from this discussion even though recurrent events of-

ten imply some categorisation of events into types. There may be extraneous or

practical reasons that dissuade statisticians from allocating an MTRE model as

the primary analysis. For example, despite the assistance offered by recent pub-

lications and statistical programmers, the statistician is required to invest more

time in the early stages of the analysis. Also, a time-to-first analysis provides a

simple basis for a power calculation; an MTRE model on the other hand requires

data simulations. The time-to-first analysis, by amalgamating outcomes, obviates

the issue of multiple testing and the adjustment of the nominal significance level

(although an MTRE model could produce a weighted average across outcomes to

estimate the net effect too). There may also be some resistance to unfamiliar,

esoteric results when hoping to reach a broad audience.

Nevertheless, with the increasing relevance of recurrent events and MTREs

in various clinical contexts, and with implementation using standard software now

a straightforward matter, it will become increasingly difficult to neglect MTRE

modelling. By providing a more complete characterisation of the data and an

increase in statistical efficiency, MTRE modelling could alter the conclusions drawn

from clinical trial or registry data. If it is difficult to pre-specify a distribution for

the random effects for event-types, or convergence is a concern, then the MTRE

model could provide a supportive or sensitivity analysis, bearing in mind the trade-

off between statistical rigour and cogency of results. Ultimately of course it will

depend on the particular circumstances (eg the event rate, extent of follow-up,

reliability of data collection etc.) and the purpose of the analysis. A simulation

study evaluating how MTRE models perform under differing circumstances would
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certainly be informative and aid this decision.

In the introduction we quoted a Lancet paper where nonmelanoma skin can-

cers (SCC and BCC) were analysed separately, yet we see Abu-Libdeh analysing

nonmelanoma skin cancer incidence using an MTRE model. This inconsistency

implies more than a mere preference for one statistical approach over another.

It implies a contradictory understanding of the clinical condition. Today with

increasing attention given to the associations among event-types, the justifica-

tion for analysing separately may no longer be readily accepted. A 2002 paper

by the eminent cardiologist Dr. Salam Yusuf was titled “Choice of clinical out-

comes in randomized trials of heart failure therapies: disease-specific or overall

outcomes?”[141] One concern being that when all hospitalisations are combined

it can mask a treatment effect that would be seen on disease-specific outcomes.

Although it seems there is a third option we are neglecting ie the MTRE model.

5.9 Supplementary material

Derivation of the likelihood for Abu-Libdeh model

Building the model of Abu-Libdeh et al.[12] and deriving its likelihood and partial

derivatives required for the Newton-Raphson procedure.

Where m is the number of events, the pdf for the Poisson distribution with

parameter λ is:

Pr(M = m) =
λm

m!
e−λ (17)

where λ is the mean number of events. Note, Pr(M = 0) = e−λ

For the nonhomogenous Poisson process (ie λ is a function of time) the number

of events occurring in the time interval x has a Poisson distribution with mean (Cox

& Lewis p28[142]):
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∫ t+x

t
λ(u)du = Λ(t+ x)− Λ(t) (18)

where λ(t) is the conditional intensity at time t (see Lawless 1995 Eqn 2.1), and

Λ(t) is the cumulative intensity.

The probability that there are m events within the interval x is then (see

Ciampi et al. Eqn 1.2[143]):

Pr(M(t, t+ x) = m) =
{Λ(t+ x)− Λ(t)}m

m!
× exp{−(Λ(t+ x)− Λ(t))} (19)

And the probability that there are no events in the interval is simply:

Pr(M(t, t+ x) = 0) = exp{−(Λ(t+ x)− Λ(t))} (20)

Thus the larger the interval x, the smaller the probability. (Note, S(t) = exp−Λ(t),

which is the survivorship function.)

Note, λ(t)(f(t))/(S(t) ie f(t) = λ(t)S(t) and it follows that the pdf of the

time to the next event is (Cox & Lewis p28 Eqn 23, or Ciampi et al. Eqn 1.4):

f(x; t) = λ(t+ x)× exp{−(Λ(t+ x)− Λ(t))} (21)

The likelihood would then be (as per Lawless 1987[99]):

L =
n
∏

i=1

{mi
∏

j=1

λ(tij)
}

× exp{−Λ(Ti)} (22)

where Ti is the time period over which patient i is observed and this patient has

mi events. (Also cf Duchateau & Janssen Eqn 1.2[144].)

If we allow the intensity to be of the form λ(t;x) = λ0(t)exp(βx) where λ0(t)

is the baseline intensity and using exp(βx) implies proportional intensities. We

may further specify the baseline intensity as Weibull ie λ0(t) = ρδt(δ−1) so that
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the model becomes: λ(t;x) = ρδt(δ−1)exp(βx). Note when δ = 1 the intensity is

constant and we have a time-homogenous Poisson process. Also, as per Lawless

(1987), we allow ρ to be absorbed as an intercept term in the regression function

(βx) to obtain δt(δ−1)exp(βx). This illustrates the proportional hazards property

of the Weibull model ie we can see from the hazard function that the survival

times are Weibull with shape parameter unchanged as δ and the scale parameter

now exp(βx). Thus, as Duchateau & Janssen note (p22), all patients “are Weibull

distributed with the same shape parameter ... but differ with respect to the scale

parameter.”

Including random effects (θi) which have a multiplicative effect on the base-

line intensity we have λ(t;x) = θiδt
(δ−1)exp(βx) which is referred to as a shared

frailty model. Given the frailty (θi) survival times are Weibull ie W (θiexp(βx), δ);

see Duchateau & Janssen (2008) Eqn 2.25. Assume the (θi) are from a gamma

distribution with scale parameter γ and shape parameter ν, leading to a negative

binomial regression model; the gamma distribution here is referred to as a mixing

distribution since the negative binomial is a mixture of Poissons with the gamma

mixing distribution. Gamma is thus a convenient option and accounts for extra

Poisson variation (ie patient heterogeneity).

The importance of Abu-Libdeh’s model is the inclusion of the additional ran-

dom effects for event type (ξij, corresponding to event j in patient i). Given the

random effects θi and ξij, consider the contribution of the ith patient to the condi-

tional likelihood, ie if the values of the random effects were known likelihood would

be (see Abu-Libdeh et al. Section 2.1)

L =
J
∏

j=1

[Kij
∏

k=1

θiξijλ0(tijk)e
xiβ

]

× exp[−θiξijΛ0(Ti)e
xiβ] (23)

Assuming ξij are from a Dirichlet distribution with parameter αj, then the
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marginal likelihood is obtained by integrating out θi and ξij (ie since “the [random

effects] are not known but are realisations of a random variable ... we integrate

the likelihood over possible values of the random effects” (Collett p322), and the

likelihood function then includes the distributional parameters, see Abu-Libdeh et

al. Eqn 1):

[

Γ(
∑J

j=1 αj)

Γ(Ki. +
∑J

j=1 αj)

J
∏

j=1

Γ(Kij + αj)

Γ(αj)

]

×
[

Γ(Ki. + ν)

Γ(ν)

J
∏

j=1

Kij
∏

k=1

tδ−1
ijk

[δγexp(xiβ)]
Ki.

[γT δ
i exp(xiβ) + 1]Ki.+ν

]

(24)

This marginal likelihood approach is also known as empirical Bayes (see Carlin

& Louis 2000 Eqn 3.2[145]). This is the key feature of the Bayesian approach ie

parameters are unknown and described by a probability distribution. Notice, as

Abu-Libdeh et al. do, that “[s]ince the mixing distributions for ξi and θi are taken

to be independent, the problem of estimating the parameters of the Dirichlet

mixing distribution can be treated separately ” ie according to the two terms in

the likelihood above. We obtain the log-likelihood as per Abu-Libdeh and then

estimate the parameter estimates by maximising the log-likelihood as follows.

Relationship between shared frailty and Abu-Libdeh models

Contention: The MLEs of β for the Abu-Libdeh model will be the same as those

produced by a simpler frailty model (since the event specific random effects fall

out of the second term of the conditional likelihood due to the property of the

Dirichlet distribution:
∑J

j=1 ξij = 1 for all i). Others who have commented on the

Abu-Libdeh model have not made this criticism (eg Cai et al.[146], Chen et al.[13]

and Cook & Lawless, p246[108]).

Proof: Consider the following intensity for a proportional hazards shared frailty

model (see for example Nielsen et al. 1992[147] or Duchateau & Janssen Chp

2[132]):
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λi(t;x) = θiλ0(t)exp(xβ) (25)

where β are the parameters of interest and λ0(t) is the baseline intensity. This

model is typically used when data are clustered eg litters in an animal experiment

share the same fraility (θi) which has a multiplicative effect on the baseline in-

tensity. In the case of recurrent events we may consider that events are clusted

within a patient. The contribution of patient i to the conditional likelihood is (cf.

Duchateau & Janssen Eqn 2.4[132]):

Li(β|θi) =
Ki
∏

k=1

{

θiλ0(tik)e
xiβ

}

× exp
{

−θiΛ0(Ti)e
xiβ

}

(26)

where Ki is the number of events for patient i over the follow-up time Ti, and Λ0(t)

is the cumulative baseline intensity. Rearranging this equation gives:

Li(β|θi) =
{

Ki
∏

k=1

λ0(tik)

}

× exp
{

Kixiβ

}

× θKi
i × exp

{

−θiΛ0(Ti)e
xiβ

}

(27)

Taking the random effects θi to be gamma G(ν, γ) : p(θ|ν, γ) = θν−1e
−θ
γ

γνΓ(ν)
we use the

empirical Bayes method to obtain the marginal likelihood by integrating out the

random effects (see Berger et al. Eqn 25[148]), ie:

L(β) =
∫

L(β, θ)π(θ)dθ (28)

and the contribution of the ith patient to the marginal likelihood is (cf Duchateau

& Janssen Eqn 2.5):

Lmarg,i =
∫

∞

0

{

Ki
∏

k=1

λ0(tik)

}

×exp
{

Kixiβ

}

×θKi
i ×exp

{

−θiΛ0(Ti)e
xiβ

}

×θν−1
i e

−θi
γ

γνΓ(ν)
dθi

(29)
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We further specify the baseline intensity as Weibull ie λ0(t) = δtδ−1Λ0(t) = T δ (see

Lawless 1987 Eqn 2.5[99]). After rearranging we then have:

∫

∞

0

{

Ki
∏

k=1

δtδ−1
ik

}

× exp
{

Kixiβ

}

× θKi+ν−1
i ×

exp
{

−θi(T
δ
i e

xiβ + 1
γ
)
}

Γ(ν)γν
dθi (30)

To simplify integration define (see Duchateau & Janssen, p45-46):

z = T δ
i e

xiβ +
1

γ
(31)

Therefore:

{

Ki
∏

k=1

δtδ−1
ik

}

exp{Kixiβ}
zKi+νΓ(ν)γν

∫

∞

0
zθKi+ν−1

i exp{−zθi}d(zθi) (32)

Note, since Γ(t) =
∫

∞

0 xt−1e−xdx, the marginal likelihood becomes:

Lmarg,i =

{

Ki
∏

k=1

δtδ−1
ik

}

exp{Kixiβ} × Γ(Ki + γ)

(T δ
i e

xiβ + 1
γ
)Ki+νΓ(ν)γν

(33)

Cf. Duchateau & Janssen Eqn 2.6 (although they use the one parameter gamma

distribution) or Nielsen et al. Eqn 10[147]. Rearranging:

Lmarg,i =

{

Ki
∏

k=1

tδ−1
ik

}

[δγexp{xiβ}]Ki × Γ(Ki + γ)

(γT δ
i e

xiβ + 1)Ki+νΓ(ν)
(34)

The log-likelihood is then (ignoring terms not involving β since they vanish when

subsequently differentiating by β):

l = Ki{log(δγ) + xiβ} − (Ki + ν)log{γT δ
i e

xiβ + 1} (35)

If we want the score function for β we differentiate the log-likelihood with respect

to β (noting that deu

dx
= eu du

dx
, and if y = ln(u), where u is some function of x, then

dy

dx
= u′

u
):
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δl

δβ
=

n
∑

i=1

{

Kixi − (Ki + ν)
γT δ

i xie
xiβ

γT δ
i e

xiβ + 1

}

(36)

Conclusion: This score function for β is indentical to Abu-Libdeh Eqn 5[12], in-

dicating that the MLE of β (and its standard error) for the more parsimonious

shared frailty model above would be the same as that obtained using Abu-Libdeh’s

model for multi-type events ie including random effects for event-types does not

affect the estimates of β (corresponding to the covariates). More generally, note

that the second term in Eqn 1 of Abu-Libdeh matches that above and thus the

other parameters of the model would also be the same. As noted, this is a con-

sequence of using the Dirichlet, ie this is the downside, the upside is a tractable

marginal likelihood - a relevant concern when the paper was published in 1990

perhaps (the authors used Fortran to program the Newton-Raphson procedure),

but with more powerful software now available alternative multivariate distribu-

tions for event-type random effects should be considered (see simulation methods

described by Chen et al. [110]).
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CHAPTER 6

Illustration of a new modelling approach and comparison with familiar
composite endpoints

PM Brown & JA Ezekowitz. Circulation: Cardiovascular Quality and Outcomes.
2017

6.1 Abstract

Background: Heart failure related hospital readmissions and mortality are often

outcomes in clinical trials. Patients may experience multiple hospital readmissions

over time with mortality acting as a dependent terminal event. Univariate com-

posite endpoints are used for the analysis of readmissions. We may amend these

approaches to include emergency department (ED) visits as a further outcome. An

alternative multivariate modelling approach that categorises hospital readmissions

and ED visits as separate event-types is proposed.

Methods & results: We seek to compare the modelling approach which handles

event-types as separate, correlated endpoints against composites that amalgamate

them to create a unified endpoint. Using a heart failure dataset for illustration, a

model with random effects for event-types is estimated. The time-to-first event,

unmatched win-ratio and days-alive-and-out-of-hospital composites are derived for

comparison. The model provides supplementary statistics such as the correlation

among event-types and yields considerably more power than the competing com-

posite endpoints.

Conclusions: The effect on individual outcomes is lost when they are intermingled

to form a univariate composite. Simultaneously modelling different outcomes pro-

vides an alternative or supplementary analysis that may yield greater statistical

power and additional insights. Improvements in software have made the multitype

events model easier to implement and thus a useful, more efficient option when

analysing heart failure hospital readmissions and ED visits.
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6.2 Introduction

Urgent heart failure (HF) visits including emergency department (ED) visits are

important[149]. They do not always result in a hospital admission but are linked to

subsequent hospitalisations and/or death[150]. Since many years may elapse before

death and hospital and ED visits are amenable to interventions[3], these outcomes

provides a metric for disease progression and quality of life and more attainable

sample sizes. Therefore, how best to analyse HF-related hospital readmissions,

ED visits and death is important for clinical outcome studies and we would like to

consider the alternative methods of analysis for these data.

These outcomes are ubiquitous in clinical research which can encourage a

conventional approach to analysis[7]. Typically a Cox regression model is used to

analyse time-to-first hospital readmission, or a composite of time-to-first readmis-

sion and death[15]. However, we ought to incorporate all hospital readmissions in

the analysis because doing so entails greater statistical power, or in other words,

a smaller sample size[16, 114]. A number of authors have compared methods for

analysing repeat hospital readmissions[114, 94, 151]. However, if our data also

include ED visits so that we have multitype events, then we require a method that

distinguishes between them.

This becomes even more important when a therapy may have a different effect

on the types of events. With multitype event data the standard approach is to

analyse event-types separately or combined (ie not distinguish between them).

If analysed separately, the analysis may be underpowered to show a meaningful

difference, and would neglect any interdependence among types (ie if one event-

type affects the risk of another type). On the other hand, if analysed together, as

if the same event, then we ignore the possibility that they reflect different degrees

of disease severity. This may lead to a ‘gain’ in power but a loss of fidelity and the
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risk of not showing a difference due to a dilution of effect. A more sophisticated

approach is needed.

When recurrent events are ‘types’ they can be described as multitype recurrent

events (MTREs). In many instances we expect the event-types to be correlated ie

they are not independent processes, and these survival times may be truncated by

a dependent terminal event (eg death). Composite endpoints are popular in HF

clinical trials however they merge event-types which leads to a loss of information

and does not provide event-specific estimates of the effect. MTRE modelling is

an alternative which does not require us to mesh outcomes and has been used

elsewhere[12] but not in HF. The objective of this study was to demonstrate the use

of MTRE in a patient population with HF, and additionally, qualitatively compare

this to popular composite endpoints which are easily extended to incorporate ED

visits.

6.3 Methods

Study data

We applied the MTRE model and composite endpoints to study data of 816 pa-

tients with HF from the Acute Heart Failure Emergency Management (AHF-EM)

study. The median follow-up was 39 months. Roughly 30% of patients had at least

one ED visit and 20% had at least one hospital visit during this follow-up; 13%

and 6% respectively had two or more events; and all-cause mortality was 46%.

The analysis dataset includes, for each patient, the time to each visit after

index discharge and a classification of these visits as ED, or hospital; events oc-

curring on the same day or subsequent days were aggregated (thus there are no

tied survival times within a patient). A selection of the data can be seen in Figure

13. We expect ED and hospital visits to be correlated but we are not sure of the

magnitude of that association and of the association with mortality. To illustrate
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the difference in outcome, the presence (n=523) or absence (n=293) of atrial fib-

rillation was chosen as the comparator. This comparison was pre-specified because

it was likely to prove instructive.

Figure 13. Sample of AHF-EM heart failure readmissions data

In addition to analysing these data, we bootstrapped this study sample (ie

took random samples with replacement) to estimate the statistical power avail-

able for event-types for a fixed sample size for the various composites and MTRE

methods.

Multitype recurrent events (MTRE)

The MTRE model is characterised by the use of individual patient random effects

for event-types. These random effects are often termed ‘frailties’ because they

reflect the proneness of the individual to experience events (a ‘large’ frailty implies

an elevated risk for the event). We assume the frailties are sampled from some
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distribution - a bivariate Normal distribution in this instance because we have two

event types (ED and hospital visits). The bivariate distribution implies a potential

correlation between these endpoints, thus linking them.

To handle mortality as a dependent terminal event we use a joint frailty which

yields additional insight regarding the association between event-types and mortal-

ity. For the baseline hazard we assume a Weibull form as per other researchers[12]

(alternatively, Liu et al. consider a piecewise constant[112]). The full model speci-

fication can be found in the Supplemental Material (with submodels for event-types

and mortality).

The model is estimated using proc nlmixed in SAS[112] (the code is made

available elsewhere [see Chapter 3]) Empirical Bayes estimates of the frailties may

be used to evaluate the fit of the MTRE model[117].

Alternative analytic approaches: Composite endpoints

A number of composites have been proposed that combine readmissions and mor-

tality data, such as time-to-first event[16], the unmatched win-ratio[15] and days-

alive-and-out-of-hospital (DAOH)[85]. These composites have been compared

elsewhere[20, 50]. Each composite employs a different algorithm for combining

outcomes, as follows.

The unmatched win-ratio prioritises outcomes in a hierarchy in order to de-

termine whether one patient ‘wins’ (has a favourable response) compared to other

patients. For HF readmissions the ordering of outcomes is: mortality - hospital

readmission - repeat ED visit. This implies that a patient with a hospital visit

‘loses’ against a patient with an ED visit (and no hospital visit); since inpatient

visits imply greater cost and a more severe, less subjective outcome. A patient

with an early death ‘loses’ against all patients in the sample and patients with no

hospital readmissions or ED visits who remain alive ‘win’ against most patients
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in the sample. If the winner/loser cannot be determined on an outcome (due to

censored data) then we move to the next outcome in the hierarchy. With the wins

(+1), losses (-1) and ties (0) summed for each patient a test statistic is derived as

the sum of these scores for one of the treatment groups (the relevant formulae are

given by Pocock et al.[15] and Finkelstein and Schoenfeld[28]).

DAOH is the proportion of the total potential follow-up in which a patient

is both alive and out of hospital. If a patient dies then the duration from death

to study termination is subtracted from the total potential follow-up (ie from

discharge at the index visit to study termination). If a patient is lost to follow-

up then the total potential follow-up is from discharge to the last available visit.

Unlike the win-ratio, DAOH does not distinguish between ED and hospital visits

explicitly, only by virtue of their nature ie by taking length-of-stay into account

which in a sense accounts for the discrepancy. Both DAOH and the unmatched

win-ratio, give greater weight to hospital visits (inadvertently and intentionally,

respectively). Analysis of the DAOH is by the Wilcoxon rank sum test.

The time-to-first composite treats recurrent events as if they were non-

recurring events (ie terminal events) and we analyse this outcome using Cox re-

gression. In the case of readmissions data this composite must either combine ED

and hospital events together (ie the time from discharge to either an ED or hospital

visit) or analyse them separately. The time-to-first composite has been criticised6

but remains a recent choice for the primary outcome of HF readmissions[152].

6.4 Results

The results for the three composites, the individual outcomes (displayed under

time-to-first) and the MTRE model are displayed in Figure 14. The MTRE and

the time-to-first analyses are displayed by event-type; DAOH and the win-ratio

combine outcome data and thus yield a single overall result. The wider 95%
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confidence intervals for the MTRE are to be expected (owing to the random effects

ie patient heterogeneity). The MTRE produces a p-value below the threshold

for statistical significance allowing us to conclude that patients with AF at the

index visit have a higher rate of repeat ED visits than those without AF (HR:

1.47, p-value=0.018). Hospital readmissions are more similar between these groups

however (HR: 1.24, p-value=0.259). The combined ED/hospital MTRE analysis

(assuming a common effect across outcomes) also produces a statistically significant

result (p-value=0.010), despite the absence of an effect for hospital visits.

Figure 14. Comparison of results: p-values and hazard ratios with 95% confidence
intervals

The effect for repeat ED visits is diluted by the weaker effect observed for hos-

pital readmissions, producing no effect overall (DAOH p-value=0.580, unmatched

win-ratio p-value=0.542). For the time-to-first composite the differential ED visit

rates for AF and non-AF groups is diminished by neglecting recurrent events and
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intermingling the effect on ED visits with a smaller or indifferent effect on mortal-

ity (the p-value for mortality from the MTRE model is 0.273, HR: 1.23). Unlike

the MTRE, the time-to-first composite does not show an effect for the combined

ED/hospital outcome (which treats ED and hospital event-types as the same).

The MTRE model provides additional insights regarding the association be-

tween outcomes (not presented in the figure). For example, there is a signifi-

cant relationship between mortality and hospital readmissions (p-value=0.011),

although there is no evidence of such a relationship between mortality and ED

visits (p-value=0.814). Also, the MTRE reveals a high correlation between ED

and hospital visits (0.88, with 95% confidence interval 0.80-0.97) indicating that

the risk of event-types is interdependent eg patients with a high risk for ED visits

tend to have a correspondingly high risk for hospital readmission. Incidentally, the

Weibull shape parameter for the baseline hazard is <1 indicating that event times

are highly skewed right.

The martingale residuals of the model appear adequate with the mean close

to zero for both event-types (Supplemental Material). The full results can be seen

in the Table in the Supplemental Material.

The AHF-EM study sample was bootstrapped to obtain estimates of the sta-

tistical power for the various methods for a fixed sample size of n=800 (Figure 15).

There is a considerable gain in power for the MTRE approach (for the combined

effect ED/hospital a weighted average across outcomes is used). The different

methods answer slightly different research questions which partly explains the dif-

ference in power obtained. In particular, the win-ratio and DAOH emphasise

mortality and hospital readmissions over repeat ED visits, whereas the time-to-

first analysis does not make any distinction between ED and hospital visits for the

combined ED/hospital analysis. With the hospital outcome less sensitive to the
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effect, the difference on ED visits is diluted when events are combined, leading to

a loss of power for the MTRE ED/hospital.

Figure 15. Estimated power for n=800: multivariate modelling versus composite
endpoints

6.5 Discussion

The main benefit of MTRE is that we can examine associations between the events

(in our case, mortality, hospital readmission and repeat ED visits) and obtain

event-specific estimates of the effect in contrast with composite endpoints which

blend individual outcomes in their construction. Focusing on the first event, a

single type of event, or combining event-types together, limits the analysis and

its conclusions regarding the burden and cost of disease and can mask effects on

individual outcomes. Although the potential for an increase in power is also note-

worthy it should be emphasised that statistical power is not the sole consideration

when selecting the primary outcome for a trial[34]. Potential advantages of the

MTRE approach are summarised in Table 7.

More appropriate analyses should be encouraged while questioning crude
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Table 7. Benefits of random effects modelling over univariate composites

• popular alternatives, ie certain composite endpoints, have been criticised (see text for references)

• analyses of component outcomes (event-types) are a consequence of the model (with the inclusion
of an interaction between outcome and treatment)

• the model acknowledges correlations among outcomes and leads to greater power

• the model can easily adjust for covariates

• recurrent events are accounted for which some composite endpoints discard

• provides an estimate of the treatment effect as the familiar hazard ratio (rank-based composites
emphasise p-values)

• mortality (censoring) is handled appropriately

• the weighting of outcomes may become irrelevant since outcomes are not amalgamated as they
are in composite endpoints

• the model provides additional insights, such as the association between event-types and the
terminal event (mortality) and the correlation between event-types

• the model allows an assessment of heterogeneity by testing the consistency of the effect across
outcomes

• the model simultaneously recognises various manifestations of the syndrome which may be a
motivation for using a composite

• advances in software mean the MTRE model has become straightforward to implement

methods such as time-to-first which remains in recent use when event-types are

not of equal severity[153, 154]. The reason often given for combining outcomes

to form a composite endpoint is a hoped for gain in statistical power afforded

by the increase in events. Likewise, we may speculate on a possible increase in

power offered by MTRE modelling (depending on the strength of the correlation

between event-types for example) without the need to convert multiple outcomes

to a univariate endpoint. We investigated power using bootstrapping but future

research could investigate how power is affected by the event rate, events per pa-

tient, the disparity in event rates between event-types, the number of event-types,

missing data or the consistency of the group difference across event-types. This
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could inform the design of future trials and extensions to other applications e.g.

acute coronary syndrome, or transient ischemic attacks and stroke which may be

classified by location.

The popularity of the time-to-first composite as a primary outcome in HF

clinical trials may be explained by the ease with which a power calculation can

be performed on this endpoint with other methods such as the MTRE requir-

ing data simulations. However, with continued improvements in software and

estimation[139] the MTRE model should be more widely adopted for the analysis

of multivariate survival data. MTRE may provide an informative secondary anal-

ysis with a composite endpoint designated as the primary outcome. In this case, a

composite that handles event-types differently (such as the hierarchical win-ratio

or DAOH) should be favoured over composites that treat event-types as the same

event (such as time-to-first-event).

6.6 Supplementary material

Model specification

• λij(t) = λ0j(t)exp(xijβj + uij)

• bivariate Normal random effects (uij) or ‘frailties’, j=Hospital/ED visit,
i=patient
−β are the regression coefficients for the covariates (ie atrial fibrillation in
the illustration) with hazard ratio=eβ

− correlation (ρ) calculable from covariance matrix
− could assume a common effect for event-types (β) or test Ho : β1 = β2

• mortality: di(t) = d0(t)exp(xijα + γ1ui1 + γ2ui2)

• γj determines the relationship between Hospital/ED visit and death

• estimation: Gaussian quadrature, adaptive (proc nlmixed)

• baseline hazard, λ0j(t) : Weibull(αj, δj)
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Additional outputs

Table 8. Full results: popular composites versus MTRE model

Analysis method1 Hospital
readmission

ED visit Mortality Outcomes
combined

Time-to-first, HR 1.06 (0.87, 1.29)
p=0.5505

1.08 (0.90, 1.30)
p=0.3955

1.02 (0.83, 1.26)
p=0.8240

1.11 (0.93, 1.33)
p=0.2291

3-tier unmatched win-ratio, PI 0.487 (0.446, 0.528)
p=0.5423

DAOH, PI 0.488 (0.447, 0.530)
p=0.5797

MTRE model, HR2 1.24 (0.78, 1.70)
p=0.2590

1.47 (1.00, 1.93)
p=0.0183

1.53 (1.04, 2.01)
p=0.0096

Mortality, γ3 1.14 (0.26, 2.01)
p=0.0112

-0.07 (-0.65, 0.51)
p=0.8144

1.23 (0.78, 1.68)
p=0.2731

1Probability index (PI) for DAOH and WR, hazard ratio (HR) for time-to-first and MTRE. Time-to-1st: Cox regression.
DAOH and WR: Wilcoxon rank-sum test. DAOH=days-alive-and-out-of-hospital. WR=unmatched win-ratio

2The correlation for bivariate frailties is 0.88 (0.80-0.97). The model includes A.Fib. covariate only.
3See model specification above.

Figure 16. Assessment of the goodness of it
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Another benefit of the MTRE model is the production of individual patient sur-

vival curves obtainable from empirical Bayes estimates of the random effects or

individual patient ‘frailties’. Thus, it is possible to estimate the risk of a particular

event-type given the patient’s event history, with confidence intervals derived using

the delta method. Such prediction, the forte of machine learning, is available as

a byproduct of the MTRE analysis (confidence intervals may be provided for the

estimates using the delta method).

Figure 17. Individual survival curves for patients
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CHAPTER 7

A case for the more sophisticated alternative
PM Brown & JA Ezekowitz. Pharmaceutical Statistics. 2017

7.1 Abstract

Introduction: In conditions such as heart failure where multiple endpoints char-

acterise disease progression, composites endpoints are often favoured as a primary

outcome in prospective clinical research despite their limitations.

Discussion: The limitations of composite endpoints include a loss of power and

inadvertent weighting of outcomes. The multivariate modelling alternative reme-

dies these difficulties yet is not often favoured as an analytical technique. We

provide a review of the literature and describe some popular composites and their

multivariate modelling counterparts.

Conclusion: We suggest that multivariate modelling is an alternative to commonly

used composite endpoints, at least as a secondary, supportive analysis. Selection

of the analytical technique and primary endpoint should not be idiosyncratic but

rather driven by the best science and chosen in order to answer the question asked

by a clinical trial.

7.2 Introduction

With enhancements in technology and data collection and the development of

biomarkers that quantify disease severity, the tendency is towards a growing num-

ber of endpoints for researchers to choose from. Failure to incorporate new and

relevant endpoints can limit the value of the trial. The Medical Research Council

guideline on Developing and Evaluating Complex Interventions states: “A sin-

gle primary outcome, and a small number of secondary outcomes, is the most

straightforward from the point of view of statistical analysis. However, this may
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not represent the best use of the data, and may not provide an adequate assess-

ment of the success or otherwise of an intervention which may have effects across

a range of domains”[155]. This leads to discussion regarding the best methods to

handle multiple endpoints.

There is a shift away from designating a single endpoint as the primary out-

come of a clinical trial for disease states that have a low event rate. When the

disease condition can be represented by multiple endpoints, allowing conclusions

to be dictated by a significance test on one of these alone is inadequate. This

dilemma is more apparent when the statistical power endowed by endpoints is in-

versely proportional to their importance. For example, in heart failure trials, the

clinical outcomes with low incidence (such as mortality) yield impractical sample

sizes, yet a sensitive biomarker which provides sufficient power remains a surrogate

outcome. Therefore, combining endpoints to form a univariate outcome that mea-

sures total benefit has been the trend. Potentially, this ‘composite endpoint’ (CE)

offers reasonable statistical power while tracking the treatment response across a

constellation of symptoms and obviating the normal issues that arise from multiple

testing ie an inflated α.

Composite endpoints and the multivariate modelling alternative

The selection of endpoints to form the CE is not restricted and is somewhat ar-

bitrary. The component outcomes will all reflect the underlying clinical condition

but they should not be too highly correlated with each other in which case the

information gain is minimal. Also, the anticipated effect of treatment should be

in the same direction across all component outcomes, but not necessarily of the

same magnitude. Thus CEs are ad hoc and will vary in their attempt to maximise

clinical meaning while retaining statistical power. There seems to be a necessary

trade-off in this regard, with an increase in statistical efficiency coinciding with
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a decrease in clinical relevance, and vice versa (roughly speaking). See Figure

18. The CEs proposed by clinicians are infused with clinical understanding and

are thus more subjective and compelling, while the thorough statistical approach,

represented by multivariate modelling (MM) or the average Z-score, is perhaps

more efficient than it is cogent. This distinguishing feature is not coincidental: the

construction of a CE demands clinical reasoning, whereas with MM there is no

need to contrive a univariate response and thus no such clinical input is elicited.

Deciding where to position ourselves on the spectrum in Figure 18 prompts a ne-

gotiation between statistical and clinical colleagues with current acceptance of CE

and relatively limited use of MM.

In this paper we review the relevant literature and seek to understand why

MM methods reside quietly in statistics journals while CEs are used widely for

clinical trials[51, 52]. We hope to promote an understanding of the MM alternative,

currently neglected when designing clinical trials, despite offering a number of

advantages and satisfying the requirements that perpetuate the use of CEs.

Figure 18. Various composite endpoints illustrate a trade-off between efficiency
and cogency

7.3 Discussion

The problems with composite endpoints (CEs)

There are a number of motivating factors for employing a CE. For example, a CE

may be contrived to handle missing data[28] or competing risks[15]; or yield phase
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II results that better predict phase III[27]; or offer a more succinct clinically mean-

ingful measure[23]; or capture risk-benefit (eg renal function and dyspnea); or in-

crease statistical power[20]. Various algorithms for constructing a CE from certain

component outcomes have been described and may reveal such an impetus. Some of

the CEs combine endpoints of the same type ie time-to-event or binary, while others

combine miscellaneous types. The former often simply collapse relevant endpoints

eg time-to-first (time to the first event[156]) and any-versus-none (patient experi-

enced at least one of the events of interest versus none at all[157]) of a number of

adverse events. The latter, on the other hand, may attempt to rank patients from

the most adverse response to the most favourable, while bearing in mind a select

group of prioritised outcomes eg the global rank and unmatched win-ratio[15, 27]

(the unmatched win-ratio was described for time-to-event outcomes but is easily

adapted for multiple noncommensurate outcomes[50]). Other CEs unify outcomes

to create a measure that is itself intrinsically meaningful eg days-alive-and-out-of-

hospital (DAOH)[85] and a trichotomous clinical composite[23]. Finally, there are

those CEs that standardise responses from disparate outcomes before taking a sum

or average across components (eg using Z-scores[20, 158]). More than simply being

proposed, CEs of disparate outcomes are becoming increasingly common primary

outcomes in important randomised controlled trials[57, 42, 159]. We do not intend

to compare the available CEs here, this has been done elsewhere[20, 50].

A survey revealed that approximately 50% of cardiovascular clinical trials

adopted a CE[10]. Although the research environment is not entirely similar and

new CEs have emerged, the conclusions of a literature review conducted over 20

years ago regarding the use of CEs rings true today: “There are serious deficien-

cies in the methodology currently used in the construction of [CEs]. First, many

authors develop ad hoc arbitrarily constructed [CEs] for immediate use (often as
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a primary outcome measure) in descriptive or comparative studies. Construc-

tion of such ad hoc [CEs] without evaluation of their measurement properties is

scientifically debatable”[160]. Papers proposing new CEs rarely run data simula-

tions to evaluate their performance; these normally appear in the literature much

later[20, 161]. However, both the use of CEs and criticism highlighting their limi-

tations has been presented[52, 50, 10, 17]. In fact, the European Medicines Agency

guideline on research in acute heart failure specifically recommends against the use

of CEs that comprise disparate outcomes[162].

Some of the most notable problems with CEs are listed in Table 9. Basically,

CEs are complex constructions that often yield limited (ordinal) responses. There

may be other issues that pertain to certain CEs but we focus here on those issues

that are general and may be remedied by MM. Regarding the weighting of com-

ponent outcomes, researchers often declare that no weighting has been employed.

However, weighting can be implied by the construction of the CE and also data-

dependent. What is normally meant by ‘weighting’ are the numerical coefficients

specified by an investigator to yield a weighted estimate of the treatment effect.

However, any time outcomes are prioritised there is a weighting mechanism at play.

For example, a global rank may ignore completely those outcomes given low prior-

ity or, conversely, it may be dominated by them[50]. Even time-to-first is favouring

those outcomes with the higher incidence rate. For example, a moderate difference

on mortality may be drowned out by another less important event-type where no

difference is observed. Clearly any masking of effects implies some weighting of

outcomes or favouritism is going on. Thus, there is a disproportionate representa-

tion of outcomes in the CE, and it is difficult to anticipate, inadvertent and often

unknown.

To illustrate this point, we used data simulations to evaluate the average Z-
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Table 9. Notable problems with composite endpoints

• qualitative heterogeneity1 of the effect across outcomes is problematic but there is no
agreement on how it should be assessed(see Paper 3[163])

• missing data can be a problem for some CEs that employ a summary statistic across
outcomes (eg the average Z-score)

• intermingling outcomes can mask effects on single outcomes and CEs can be misinterpreted
due to quantitative heterogeneity1 where some component outcomes show a null effect[77]

• the construction of CEs is ad hoc and subjective (eg which outcomes to include and how to
prioritise them) making results across studies less comparable

• the weighting of component outcomes and statistical power is sensitive to the construction
and difficult to anticipate[50]

• CEs encourage an overall interpretation yet there is no accepted effect size measure to
summarise the magnitude of the treatment difference for some CEs[163]

• adjusting for covariates is not straightforward for rank-based CEs (a stratified Wilcoxon rank
sum is an option)

• estimating an interaction is also no longer straightforward, eg a 2x2 factorial design using a
global rank as the primary outcome when we wish to power on the interaction[164]

1When the effect is in opposing directions we will call it ‘qualitative heterogeneity’, while ‘quantitative

heterogeneity’ describes an appreciable difference in the magnitude of the effect only.

score and global rank CEs comprised of the same outcomes (mortality, dyspnea,

troponin, creatinine, NT-proBNP) for a hypothetical clinical trial in heart failure.

See Figure 19. The probability index[59] is used as an effect measure with the

assumed effect size of the individual component plotted on the horizontal axis and

the resulting effect size for the CE on the vertical axis. Thus, we may define the

slope of the line as the ‘influence’ of the component outcome. The investigator

could explore such a plot when designing a trial to get a sense of how the CE is

weighting the components eg whether some components can overwhelm the CE

while others are suppressed. An estimate of the slope which quantifies Influence

could be reported, although it is dependent upon the assumed effect sizes and not

just the definition of the CE. For example, in a global rank the outcomes will
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be favoured according to the hierarchy that prioritises them, but the extent to

which outcomes with lower priority are ignored depends on the data. In Figure

19 we can see that the global rank CE is insensitive to the biomarker NT-proBNP

(in the hierarchy of outcomes it is given the lowest priority) and more influenced

by dyspnea AUC VAS, a subjective outcome (large variance) which is prioritised

after mortality (a low death rate is assumed). On the other hand, the average

Z-score shows a more congruent relationship with the individual outcomes because

it is a straight average of Z-scores. This weighting or Influence is not explicit and

barely intentional. It can also be shown that Influence is sensitive to the arbitrary

construction of the CE (see Supplementary Material Figure).

Figure 19. Examining the contribution a single outcome makes to the composite

Since an unmatched win-ratio or global rank of multiple endpoints is attempt-

ing to arrange patients according to their overall response, we might say that the

relative contribution of each outcome to the CE is beside the point. However, if
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after statistical analysis we have declared the new treatment to be superior, we

would like to know what is driving this result. If the mortality and hospital read-

mission rates are low, then the result may well be dominated by a biomarker, ie

the composite would be very highly correlated with an endpoint which is obviously

considered tenuous otherwise it would have been deemed the primary outcome.

Since we do not know exactly what the outcome is, ie what the CE is made up

of, we cannot make sense of the result. We should of course look at the results

from separate (under-powered) analyses of the components but this can give rise

to contentious discussion when it becomes clear that effects have been masked or

subdued or are counteracted in the CE.

Weighting and power are inextricably linked and although a hoped for increase

in statistical power is a common justification for employing a CE (eg [55]), it is

hardly persuasive. As Sun et al. showed, a single outcome can yield more power

than a clinical composite of multiple outcomes[20]. This is partly because CEs

discard data with seeming indifference during their construction eg time-to-first

ignores recurrent events, event-types (and hence the correlations among them)

and event severity, and adding an outcome does not necessarily compensate for

this loss if the additional outcome is not sensitive to treatment[165, 166]. Often

clinical windows are imposed on the data and consequently events that exceed the

cut-off time are dismissed as irrelevant. Also, CEs are in the habit of reducing

continuous variables to a dichotomous yes/no eg the trichotomous composite, a

practice which has been criticised[167]. Berger defined ‘information preserving

composite endpoints’[168] which exemplifies the loss of information for the any-

versus-none CE.

Hence we are whittling down the richness of our data into a single value that

is meant to quantify the totality of the benefit of treatment. It is not surprising if
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statisticians are less inclined to promote CEs which demand such a lack of respect

for data (Figure 18). Thus, a loss of power seems almost inevitable and is linked to

arbitrary decisions embedded in the definition of the CE (see Paper 1 Supplemen-

tary Figure). This may not be readily discerned because power estimates based on

CEs can be crude and unreliable; data simulations are required, especially when

the number of component outcomes is large (>3 say). Guesstimates for the cor-

relations among outcomes will be assumed for the simulation and are obtainable

from previous study data or registry data. Power estimates should also consider a

range of plausible effect sizes, however, it can be difficult to anticipate discordant

effects (qualitative heterogeneity), and the more outcomes included in the CE, the

greater the risk of discordant effects and a loss of power[50] or ambivalent results.

In any case, statistical power should not be the driving factor when selecting a

CE anyway[34]; the ultimate justification has to be a clinical one. Thus, it feels

disingenuous to claim a CE has been employed to enhance power, especially when

the MM alternatives are likely to offer superior power and are paid little heed.

The multivariate modelling (MM) alternative

One might think our impulse would be to use multivariate methods on multivari-

ate data but instead we find ourselves discoursing on the best way to compress

multivariate data into a nonparametric univariate analysis. However, alongside

the expanding literature that simultaneously promotes and condemns CEs, we are

beginning to see some researchers explicitly rejecting the use of a CE in favour of

MM in their clinical trials[169, 170]. And, at this moment, when CEs have become

the default thinking, we are encouraged to consider whether MM remedies those

issues tied to CEs or whether it merely introduces problems of its own. After all,

when we choose a CE for the primary analysis we are implicitly dismissing the

MM alternative.
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The characteristic feature of the MM approach is the simultaneous modelling

of correlated outcomes that collectively measure disease progression (assuming for

the moment that outcomes are of the same type). There is no intermingling or

prepping of outcomes and a subsequent loss of information as with the CE. Thus,

separate estimates of the treatment effect, and an assessment of heterogeneity, are a

consequence of the model (reporting these statistics has been widely recommended

as essential for interpretation of CEs[51, 52, 77, 79] although they may often be

absent[171]). The model could assume a common effect across outcomes if this was

deemed plausible. Otherwise an estimate of the overall effect could be calculated

as a contrast of the individual estimates and thus incorporate weights. Unlike

CEs, the weighting is not inherent ie a consequence of the algorithm for deriving

the CE, it is instead applied after the model has been fitted and is therefore made

explicit. This is important given the subjectivity of weighting outcomes, eg patients

and clinicians may prioritise outcomes differently[154]. Although weighting tends

to lead to a reduction in power (with less sensitive definitive outcomes receiving

greater weight) and is not necessarily desirable.

Table 10 summarises some CEs and their potential MM counterparts. Since

both approaches yield an estimate of overall benefit it is instructive to compare

the results. For example, Mascha et al. contrasted a population average (gener-

alised estimating equation (GEE)) MM with the any-versus-none CE for multiple

binary outcomes: complications classified by organ system for patients undergoing

surgery[157]. The model is readily implemented in statistical software. An odds

ratio (OR) was estimated for the CE and a weighted average OR was derived

from the MM. The latter was more extreme, ie further from 1, and statistically

significant, while the CE OR was not significant (the p-value shifted from 0.169 to

0.023). Advantages of MM noted by the authors include “use of more information

103



per subject, ability to apply clinical importance weights, and in most cases greater

statistical power” (also correlations among outcomes are estimable). Power de-

pended for example on the number of outcomes, the strength of the correlations

among them and the extent of heterogeneity (with power waning as heterogeneity

increases). Unlike the MM, power for the CE was sensitive to baseline frequencies

which are difficult to anticipate; hence powering on MM when designing a study

may be preferable[172]. The authors acknowledged the importance of examining

heterogeneity of the effect among outcomes and Pogue et al. have evaluated tests

of heterogeneity from this MM[55].

Table 10. Summary of composite endpoints and their multivariate modelling al-
ternatives

Outcome type(s) Composite endpoint Multivariate model

binary (eg worsening symptoms) any-versus-none population average
(GEE)

survival (eg mortality, hospital time-to-first, win-ratio, multivariate frailty
readmission) days-alive-and-out-of-hospital

survival and longitudinal outcomes global rank joint model

miscellaneous (eg binary, survival, average Z-score, clinical latent variable model
lognormal) composite, global rank,

unmatched win-ratio

See text for references

Often our data includes the time to adverse events, rather than merely binary

indicator variables. In this case the GEE model could be replaced by a random

effects MM with individual patient effects (frailties) that follow an assumed dis-

tribution and with results summarised by the familiar hazard ratio. For example,

Brown & Ezekowitz (manuscript submitted for publication) analysed heart failure

related readmissions classified as emergency department (ED) visits and hospitali-

sations. Random effects for these event-types were assumed to follow a multivariate
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Normal distribution and the model was implemented in SAS. Popular CEs were

included for comparison, namely time-to-first, the unmatched win-ratio and days-

alive-and-out-of-hospital. By bootstrapping study data, it was shown that the MM

offers considerably more power than any of the CEs. The MM also allowed for an

assessment of the associations among outcomes which is missing from the CE anal-

ysis (ie between mortality, ED visits and re-hospitalisations). Other authors have

discussed CE and MM for time-to-event data, eg Wu & Pocock (time-to-first and

Wei, Lin and Weissfeld marginal model)[173] and Rogers et al. (win-ratio and joint

frailty model)[114] who both make a strong case for the more thorough analysis

with the treatment effect underestimated by the CE.

Sometimes, in addition to time-to-event data we have a longitudinal outcome

(typically a biomarker). In this scenario a global rank CE[57] or a random effects

joint model[174] could be used. Joint modelling has received much attention in

statistical journals recently although a comparison against the CE is not appar-

ent. The MM has been shown to reduce bias and lead to more efficient estimates

which implies a smaller required sample size according to the strength of the as-

sociation between biomarker and time-to-event outcomes[175]. Random effects

MM have been described for more eclectic outcomes[176] however we may wish to

turn our attention to latent variable models in this case. For example, Teixeira-

Pinto & Mauri used a latent variable MM to analyse outcomes after coronary

stenting[177] and highlighted the advantages over a CE with attention given to

missing data[178]. Although MM cannot provide a meaningful estimate of overall

benefit across disparate outcomes and a strong case could be made for CEs under

these circumstances.
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7.4 Conclusions

We have described how MM can remedy some of the difficulties of CEs in differ-

ent scenarios, for example: examining heterogeneity and adjusting for covariates

is straightforward; weights are made explicit and adding an outcome does not

require much deliberation; correlations among outcomes are acknowledged and as-

sociations between outcomes provide additional insights; it handles the competing

risk of mortality; there is no intermingling of outcomes and masking of effects and

outcome-specific estimates are available eg for meta-analysis; a more thrifty use of

pertinent data means more efficient estimates ie power.

Why then have MM been neglected when presenting top line results? Why do

eg joint models seldom appear in medical journals when statisticians are writing

about them profusely? Firstly, statistical power should not have the ultimate say

in deciding the primary analysis, unless all options are considered equally cogent

and relevant for the study objective (Figure 18 suggests this is not the case). Also,

although MM are easily implemented in standard software, such complex models

can give rise to convergence issues and it is not always possible to pre-specify

exactly how one will code the analysis. Thus MMs may be considered esoteric

and their specification uncertain. A simpler analysis implying fewer assumptions

is appealing.

Yet the construction of a CE is also uncertain and contentious eg which out-

comes to include, how to prioritise them and how to combine them and a CE such

as the unmatched win-ratio can require lengthy code that is susceptible to errors

and time consuming to validate. It seems an MM should be included at least as a

secondary, supportive analysis, ie in order to gain familiarity with the method and

its implementation in statistical software, to evaluate its performance and inform

future study design and analysis, and even to aid interpretation of the primary
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CE analysis. (Authors often recommend analysing the components of a CE as

secondary analyses, however they are suggesting univariate analyses which will be

underpowered instead of MM.)

It is easy to find fault with CEs when they appear cobbled together and ad

hoc; the criticisms are well-known[17, 24]. Yet CEs remain a favoured approach

and can serve a meaningful role in clinical trials. However, advances in software

enjoin statisticians to adopt new and better methods and acknowledge that the

demand for simplicity may not be extraneous (eg dictated by regulatory authorities

or clients or the wider medical community) but self-imposed.

7.5 Supplementary material

Letter to editor (JA Ezekowitz & PM Brown. Circulation. 2017 ):

We read with great interest the historical perspective of what is termed a hier-

archical composite endpoint (HCE). There are a number of issues that should be

considered before adoption of this endpoint not fully elucidated by the author[179].

Not surprisingly, almost all the trials quoted have been neutral in the primary HCE

outcome and one needs to look at the actual components to understand the totality

of the effect. There is in an inherent attraction to capture the totality of effect in

one place but the HCE may not be it.

First, the construction of the HCE can inadvertently place more emphasis

on some outcomes over others (Figure 20). For example, a slight change to the

definition of the HCE can impact the extent to which the mortality effect is repre-

sented in the overall result: when the mortality assessment time-window is short,

the influence or contribution of mortality on the composite is diminished relative

to dyspnea, despite its obvious importance. The authors’ prior publication which

used a HCE as the primary endpoint overwhelmed a late 33% excess hazard for

mortality[180]. There is a ‘weighting’ of outcomes and it is arbitrary and likely
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unknown.

Second, using often artificial definitions (eg creatinine change or dyspnea

change) is putting an opinion-based definition in a primary endpoint. These may

be extremely sensitive to small changes (eg moving creatinine change from 0.3 to

0.4 mg/dl) that is not usually considered. Crude calculations without statistical

modelling on robust datasets that account for correlations among outcomes etc.

may lead to unreliable power estimates. Also, ad hoc composites that are sensitive

to construction are unlikely to enhance the reproducibility of study findings.

Third, the HCE is similar to the any-versus-none composite (with the ‘none’

category split into ‘success’ and ‘no change’). However, it combines disparate

events into the ‘any’ category and thus fails to distinguish between eg worsening

symptoms and mortality. Differences across outcomes can cancel out leading to

a null result (eg the group with longer survival has more opportunity to present

with worsening symptoms). The extent of the trade-off between events within the

detail of the computation is not apparent.

Fourth, there is a loss of information and a simultaneous loss of statistical

power because the HCE discards data and does not sufficiently discriminate be-

tween responses. In studies comparing an assortment of composite endpoints using

data simulations, the HCE proved to have the least statistical power[20, 50]. A

multivariate modelling alternative is also likely to offer superior power[157]. And

power, like Influence described above, is sensitive to the construction.

Because composite endpoints are often employed in phase II trials, a ‘negative’

result can discourage further research of a worthwhile drug. If the field of acute

heart failure is to progress, then we should be willing to invest in the development

of the best way to assess the outcome of a new therapy, rather than assuming that

endpoints used in the past are acceptable.
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Figure 20. Sensitivity of ‘Influence’ and statistical power to the cut-off used for
mortality

Figure 20. Sensitivity of ‘Influence’ and statistical power to the cut-off used for mor-

tality. The effect an individual component has on the composite is constrained by the

construction of the HCE and may be difficult to anticipate. One would hope that as

the assumed difference between treatment groups increases on an individual component,

a proportionate difference between groups is manifested on the HCE. To evaluate the

HCE, we define ‘influence’ as the slope of the line obtained when the effect size for the

HCE is plotted against the effect size for the individual component (not shown). The

slope of the line indicates how sensitive the composite is to the assumed effect on the

individual component; the steeper the slope, the greater the influence of the component.

The slope, determined via data simulations, is thus a summary statistic to aid evalua-

tion of the sensitivity of a composite. To illustrate this, we created a HCE comprised

of mortality, hospital readmission, WHF, dyspnea and BNP and used the probability

index (PI) as the effect size. The figure shows the influence of mortality and dyspnea

against the clinical window for mortality (ie death within 15 days, 30 days and so forth).

Mortality becomes increasingly influential as the time window is extended and there is

a simultaneous slight attenuation of the influence of dyspnea. This indicates that when

a brief clinical window is employed for mortality, dyspnea dominates but as the window

becomes more generous the effect on mortality is better reflected in the HCE. Influence

is less than 0.5 indicating that the PI for HCE is insensitive to treatment differences ap-

pearing on the component outcomes in general. Note that there is also a corresponding

increase in statistical power, from insufficient (<80%) to sufficient (=80%), assuming a

sample size of 1000 (500 per group) and a Cochran-Mantel-Heanszel test and moderate

correlations among outcomes. 109
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CHAPTER 8

Summary and future work

8.1 Summary

Ordinarily, we would adopt a primary endpoint for our clinical trial that is well

established. Composites endpoints seemingly obviate this demand. Our results

show that the Influence of individual outcomes that comprise a composite are

not well anticipated. This is slightly analogous to data-dependent methods of

covariate adjustment eg stepwise methods. In the analysis plan or protocol we

can describe the algorithm for selecting covariates to retain in the model, but

we cannot say what the analysis will ultimately adjust for. This is one reason

why such methods are out of favour. As Senn says: “the wisest course open to

the frequentist is to make a list of covariates suspected to be important and

to fit these regardless”[181]. Likewise with composite endpoints: if an analysis

plan states that the primary endpoint is a global rank of several outcomes, or

time-to-first of a number of adverse events, etc, we are informed of the algorithm

only. The degree to which the amalgamated outcome represents the component

outcomes is speculation. In other words, we cannot even articulate exactly what

our primary outcome is. We allow the weights to be determined by the data, ie by

happenstance.

This is unprecedented, and we are apparently quite content with the situation.

Yet it is an obvious slight of hand: there is a gain in power while appearing to use

clinical outcomes. Bear in mind, there is no obligation to specify post-hoc what

the contribution of the individual outcomes turned out to be. In other words,

what the primary endpoint turned out to be. (It is not obvious how we could

determine the consequent weights eg what portion of the sample were ranked on

each outcome.) If our audience were informed of this, would it not affect their
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interpretation of the findings? Will it not affect the reproducibility of the results

because in one study population the event rate is one thing and in another study

population it is another? (Note that Felker & Maisel[27] promoted the global

rank on the basis that it will produce early phase results that better predict late

phase results.) It will not be too surprising if such analyses lead to ambiguous

and contentious results. Eg, it is conceivable that our global rank reduces to a

biomarker, ie is highly correlated with it. Or a time-to-first endpoint completely

neglects mortality. And we learn this only after huge investment of resources in

the trial.

There ought to be some awareness of this risk, and also the risk of oppos-

ing effects. Influence, as we have defined it, could be gauged using data simula-

tions at the design stage to highlight the issues. Previously, power estimation for

composite endpoints has not been done in a rigorous way. Using our simulation

code researchers can obtain a more reliable understanding of the power offered by

composites and, importantly, how this is sensitive to the algorithm assumed for

construction. The intended analysis must be pre-specified in detail eg the size of

the probability index that is deemed clinically important[182], whether there will

be any adjustment for covariates, how missing data will be handled[183], how het-

erogeneity will be evaluated (eg, as per the forest plot we have recommended) and

researchers should explain why they chose the outcomes included in the composite

and any clinical windows (this is rarely done[77]). Separate analyses of the com-

ponent outcomes should be reported. These may be obtained from a multivariate

model which could be listed as a supplementary analysis.

8.2 Implications

To avoid confusion, and for the sake of brevity, it is typical in an analysis plan or

protocol to specify the method of analysis that will be employed matter-of-factly
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(if a reference is given for the method, it is likely the paper that proposes it, rather

than the subsequent papers that scrutinise it). Why this method is preferred

instead of some other method is therefore not documented. Composite endpoints

have become a default choice, in which case alternatives are implicitly discarded.

Using a default method does not preclude the need to justify the choice. Circular

reasoning such as, ‘we use it because it is what is used’, is not sufficient. We hope

our work has made defending this choice a little more difficult, and the need to

do so more obvious. This will therefore make explicit the reasons for selecting one

method over another and allude to any trade off eg cogency versus power.

For example, if a motivating factor is the desire to enhance the communication

of study findings, then let it be stated. While this may sound laudable it contra-

dicts the use of a global rank which, without the probability index, makes no effort

to communicate the effect size at all. Also, a consequence of blended outcomes

is (necessarily) less transparent results. Meanwhile, the multivariate modelling

alternative produces the familiar hazard ratio for outcome-specific estimates. If

instead the motivation is a desire to imbue our method with clinical understand-

ing, then let it be known that we are flirting with Bayesianism and our bespoke

endpoints are contributing to the lack of consistency of study outcomes, and thus

making results less comparable. We would also need to explain why a composite

with an unknown weighting of outcomes is preferable to a modelling approach that

makes weights explicit. And how will an ethics committee view our choice when

it is understood that the alternative is more powerful because it is less wasteful

with data? Frankly, these endpoints feel like the remnants of ‘old-school’ practicing

statisticians who were fumbling for ways to cope with missing data. And they have

lingered, incongruously, into a period of seemingly uninhibited computer power.

Admittedly, each of the multivariate models described in this thesis has its
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particular difficulties and lumping them together denies this. Also, it is obviously

not sensible to reject composite endpoints wholesale when it depends on the con-

text of the study e.g. if recurrent event rates are expected to be low and event-types

are of equal importance, then a simpler time-to-first analysis may suffice. And the

win-ratio and global rank handle competing risks elegantly. Also, the global rank

is a neat and intuitive solution if we can consider the ranking to be an approxi-

mation of a hypothetical ranking of patients that would be achieved by pouring

over the entirety of outcome data. An estimate of the probability index based

on the global rank feels cogent compared to a weighted average across outcomes

from a multivariate model. We could even ask whether such a weighted average

across disparate outcomes is meaningful. On the other hand, when considering

a trichotomous composite we may note that it is too succinct and opaque with

effects likely counteracting quietly within the mechanism of the calculation. And

because this composite is inclined to reduce outcomes to the binary scale anyway,

could we simply apply the GEE model described above? Whether multivariate

modelling is superior to composite endpoints is not the point (an assertion that is

too broad). The point is that such discussion and examination of our habits must

take place.

Our concern is that convention becomes a safeguard for suboptimal methods.

This is seen in drug development and the ‘slow march to market’ where conven-

tion often entails the efficient (repeated) use of inefficient methods. Perhaps this

is partly explained by a supposed safety in what is familiar: if the results are

contentious it should not be because the statistical method employed is esoteric

or demands implausible assumptions about the data. Also, convention and sim-

plicity make statisticians and programmers efficient and their work less prone to

error. Interestingly, though, composite endpoints have been promoted largely by
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clinicians because a clinical understanding is needed to inform the construction

of the composite (how outcomes are prioritised etc). Statistics journals have paid

little heed[184]; they belatedly publish data simulations to identify the faults with

certain composites. It seems that statisticians are either indifferent, reluctant to

take them seriously, or failing to influence the discussion. Statisticians should dis-

cuss joint modelling and multivariate methods with clinicians rather than quietly

promoting them in their journals (thus we published our work in medical journals).

In the past this hankering for efficiency and convention has allowed crude

analyses that are susceptible to bias to survive as a preferred method for decades.

A good example is last-observation-carried-forward for missing data which was

perpetuated despite guidelines specifically recommending against its use. (The

analogy is especially apt considering that missing data may have been an early

motivation for a global rank[46].) Such is the strength of our apparent fondness

for parsimony and cutting-and-pasting. Composite endpoints, which remain a go-

to primary outcome, feel like another instance of persisting with what is simple

and familiar. Since the analysis of composites is straightforward, they tend to give

the impression of a succinct and lucid outcome when in fact they are opaque, mis-

understood and suboptimal. Last-observation-carried-forward is now out of favour

and has been supplanted by more sophisticated methods (eg mixed modelling and

multiple imputation methods). Perhaps we are seeing the beginnings of a likewise

shift from composites towards multivariate modelling. This shift towards the more

sophisticated and more thorough alternative, although delayed, is inexorable[185].

8.3 Future directions

More than twenty-five years have passed since Abu-Libdeh’s paper and little

progress was seen in that time. However, papers tackling the issue of multitype

recurrent events are beginning to appear[186] and the development of biomark-
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ers is drawing attention towards joint modelling (in the presence of a survival

endpoint)[187]. It would be interesting to see an accelerated failure time model

specification[188]. There are a number of other interesting developments that we

may expect. Enhancements in software for estimation for example. The SAS

nlmixed proc is restricted to multivariate normal frailties. Transformations have

been described[189] but the extra work and expertise required will remain a hin-

drance. Individual researchers have written code for implementing frailty models,

usually in R, however we find it disconcerting to borrow so heavily from other

programmers with no guarantee or knowledge of how the programs have been vali-

dated. Also, using such macros like a ‘black box’ does not promote understanding

of the method.

Regarding the probability index, we envisage that the measure will gain wider

use and further attention could be given to covariate adjustment[190]. Ten years

ago, when referring to the probability index, Newcombe claimed that “the wider

research community remains unaware of its usefulness as a widely applicable mea-

sure, more informative than a p-value”[82]. This comment is telling given the

criticism heaped on the p-value in 2016 which prompted the American Statisti-

cal Association to release a statement[191]. The probability index certainly seems

under-utilised given the requirement for an estimate of the treatment effect; ICH

E9 on composite endpoints: “The method of combining the multiple measure-

ments should be specified in the protocol, and an interpretation of the resulting

scale should be provided in terms of the size of a clinically relevant benefit.” [192]

Regarding composite endpoints, there is now talk of ‘optimally weighted com-

posites’ (weights are selected to maximise efficiency ie power[193]). This thinking

is quite new and is not evident in heart failure research (yet). We should be ex-

tremely averse to this idea because it is the counterpoint to the clinically contrived
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composite with a total fixation on statistical efficiency. As others have explained,

we are interested in whether groups are different on some meaningful measure. We

are not in a hunt to find the measure that maximally separates the groups[34].

Also, because composites are a ‘hot topic’, there is currently an unfortunate and

curious tendency to expand composite endpoints to handle additional detail such

as multitype events[194]. In doing so, composites become more complex and aban-

don maybe the only advantage they had over multivariate modelling. We would be

more interested to know, for example, how composites might handle risk-benefit or

difficulties in running meta-analyses or the growing interest in incorporating pa-

tient preference[154]. In any case, there is a need for guidance and standardisation

of use in general.

Statisticians have a professional duty to stay abreast of these developments

and, when possible, contribute to the discussion. The need for better methods

will not go away. With advances in cardiovascular medicine, drugs must show

incremental benefit which is increasingly difficult to detect against a backdrop of

‘standard care’. This should lead us towards more efficient statistical methods.
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