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Abstract

Flows on normed spaces can be classified using flow equivalences — maps on the space

with the property that the structure of one flow is converted into the structure of another

flow. Of particular interest are classifications that arise from flow equivalences that are

either homeomorphisms or diffeomorphisms. It is possible to completely characterize such

classifications based solely on a few simple properties of flows, at least in the case of linear

flows on finite-dimensional normed spaces. Results concerning diffeomorphic classification

are well known and can be found in many textbooks that discuss continuous dynamical

systems. The situation is similar when it comes to homeomorphic classification of hyperbolic

flows, but for arbitrary (possibly nonhyperbolic) flows results concerning homeomorphic

classification are fairly obscure. This thesis aims to provide a complete discussion of the

homeomorphic and diffeomorphic classification of linear flows on finite-dimensional normed

spaces.
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1 Introduction

The word flow in common parlance elicits associations with streams, rivers, currents in a

lake, and so forth. One might imagine a collection of water molecules, each travelling along

its own path over time. The individual molecules may ultimately end up being completely

scattered, but one might expect similar short term behaviour. This conceptualization serves

as a reasonable illustration of mathematical flows as well.

In mathematics, a flow is a map on a space with certain special properties. These

properties have, at least from a geometric perspective, the effect of partitioning the space

into a collection of disjoint paths. Flows have a real ‘time’ variable, and one can use this

variable to travel forward and backward along the various paths. Although the basic flow

properties do not limit the long term relative behaviour of two nearby paths, such paths

are forced to behave similarly in the short term.

The concept of flows arose from the study of differential equations [6]. Initially the topic

of differential equations was approached from a fairly quantitative direction — the primary

concern was finding explicit solutions to various differential equations (often coming from

the study of physics) given some initial condition. This approach persisted until the time of

Poincaré (late nineteenth century) at which point there was a shift toward a more qualitative

study, and questions concerning the general behaviour of solutions to differential equations

gained prominence. Flows then arise as collections of solutions to differential equations,

where each path represents a specific solution for some initial condition. As flows capture

the behaviour of all solutions simultaneously, they are valuable considerations when it comes

to assessing the qualitative behaviour of solutions to differential equations.

When considering qualitative questions, it is often useful to introduce a notion of equiv-

alence. For example, two simple flows on the Euclidean plane might both consist of spirals

toward the origin, and from a qualitative perspective these flows may be viewed as essen-

tially the same. As such, it is worthwhile to consider some notion of flow equivalence. At

the most basic level, a flow equivalence between two flows is an automorphism of the space

that converts the behaviour of the first flow into the behaviour of the second, so paths of the

first flow are mapped into paths of the second, for instance. One can then add additional

structure to the notion of flow equivalence, which in turn preserves additional structure
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between flows. For example, one may consider a flow equivalence that is also a homeomor-

phism. Such an equivalence not only preserves basic flow properties but also very loosely

preserves the general shape of paths.

This thesis is focused on fully characterizing diffeomorphic and homeomorphic flow

equivalence for linear flows, a class of particularly well-behaved flows. The thesis consists of

three main parts. In Chapter 2 the notions of linear flows and flow equivalence are formalized

and a number of basic properties of linear flows are introduced. Then classification theorems

for diffeomorphic and homeomorphic flow equivalence are discussed and proved in Chapter 3,

with the caveat of a crucial assumption made regarding the existence of invariant subspaces

with certain properties in the proof of the general homeomorphic classification theorem.

Chapter 4, the final main chapter, is concerned with justifying this assumption.

Much of chapters 2 and 3 of this thesis is common knowledge in the theory of (continuous-

time) linear dynamical systems. Details regarding the linear and diffeomorphic classifica-

tions can be found in many standard textbooks (for example, [1], [2], and [11]) and the

same is true with regard to the homeomorphic classification of hyperbolic systems. On

the other hand, the general (i.e., non-hyperbolic) classification is less well-known. The two

pertinent articles, [8] and [9], are not as detailed as they could be and may contain minor

inaccuracies. The goal of this thesis is to present a complete, self-contained and detailled

account of the classification problem for linear flows. While standard terminology and tools

are used throughout, and while the ideas of [9] in particular are followed wherever possible,

some aspects of the proofs of the main results (Theorem 3.15 and its corollaries) have not

appeared in the literature before. The three appendices provide a short introduction to the

tools from linear analysis and algebra required for this thesis.

Notation

As usual N, Z, Q, R, and C denote the set of all natural, integer, rational, real, and complex

numbers. The natural numbers are the positive integers for the purposes of this thesis —

when necessary N0 is used to denote the nonnegative integers. There will be several instances

when only the positive real numbers are considered, so for simplicity they are represented

by R+. Similarly, R− represents the negative real numbers.
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This thesis is only concerned with flows on finite-dimensional normed spaces, and such

spaces are denoted primarily by X but also by Y and Z as necessary. The scalar field of

these vector spaces is always either R or C. Generally both scalar fields will work. It will

be made clear in the text when a specific scalar field is being considered; otherwise, K will

be used to denote the underlying scalar field. The choice of norm for a given space will

generally be irrelevant (as long as one is consistent in their choice throughout), so ‖·‖ will

be used to denote any arbitrary norm. It will be made clear in the text when a specific

choice of norm is required, and such norms will be differentiated from ‖·‖ with a subscript,

as in ‖·‖D for example. The only exception to this is the standard Euclidean norm on Kd,

which is denoted by |·| as usual. The unit sphere — that is, the set {x ∈ X : ‖x‖ = 1} —

appears occasionally and is denoted by S. If a specific choice of norm is used, then the unit

sphere with respect to that norm will be denoted using the same subscript, as in SD.

The dimension of a given normed space is denoted by d ∈ N0. Flows on a given vector

space are denoted primarily by ϕ but also by ψ and γ as necessary. Similarly, bounded

linear operators on a given normed space are denoted primarily by L but also by M and

N as necessary. In particular I and O (as compared to 0 denoting either the number zero

or the origin of a given normed space) are always used to represent the identity and zero

operators respectively, as the vector space on which they are acting will always be clear

from the context. It turns out that the set of all linear flows on a given normed space X

can be identified with L(X), the set of all bounded linear operators on X. A subscript will

sometimes be used to denote the bounded linear operator associated with a given flow (as in

Lϕ for example) but this subscript will be suppressed when it is clear from the context. It

will occasionally be necessary to consider a fixed basis of X, and in those situations a given

operator L and its matrix form with respect to that basis will be identified. In particular,

I and O will also represent appropriately sized identity and zero matrices as necessary. If

a matrix is block diagonal, say 
A1 O O

O A2 O

. . .

O O Am
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where the Ak are any combination of square matrices and scalars, then it will be denoted by

diag(A1, A2, . . . , Am). Diagonal matrices will frequently arise when a basis is chosen so that

the matrix form of an operator is in either real or complex Jordan canonical form. Complex

Jordan blocks of size d with eigenvalue λ will be denoted by Jd(λ). Real Jordan blocks of

size d with nonreal eigenvalue pair {λ, λ̄} will be denoted by J̃d(λ). It is often necessary

to consider the real and imaginary parts of a complex eigenvalue λ, denoted <λ and =λ

respectively. Finally, the notation σ(L) will be used to denote the set of all eigenvalues of

the bounded linear operator L.

It will often prove useful to consider
⊕m

k=1Xk, the direct sum of an appropriate collection

of subspaces Xk of a given normed space X. When X is isomorphic to
⊕m

k=1Xk, X will be

directly identified with
⊕m

k=1Xk, and X =
⊕m

k=1Xk will be written.

As this thesis can occasionally become notationally intense, with various different vari-

ables and indices all occurring simultaneously, it is worthwhile to attempt consistency in

using these various variables and indices. Generally r and c denote fixed constants in R and

C respectively. Elements of a space X or Y are denoted by x and y, while t and s are used to

represent variables in R. A subscript n is used to indicate a specific element of a sequence

and also as an index for countably infinite sets. Subscripts t and s are used for indices

associated with R, R+, or R−. A subscript k is used to indicate a specific component while

m denotes the total number of components as in
⊕m

k=1Xk. Other subscripts and variables

will be used as needed.

As final notes, given a space X =
⊕m

k=1Xk, the notation (x1, . . . , xm) is often used to

represent a vector x ∈ X in place of the standard vertical vector notation. It will sometimes

be necessary to consider the binary representation of a number. In such a situation < · >

will be used, so for example < 1010 > is the number ten represented in binary. It will also

sometimes be necessary to consider the floor and ceiling of some r ∈ R, denoted brc and dre

respectively, where the floor of r is the largest integer not larger than r while the ceiling of

r is the smallest integer not smaller than r.
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2 Basic Properties of Linear Flows

The first step toward classifying flows is to make precise the notion of linear flows. Moreover,

it is also necessary to develop a notion (several notions in this case) of flow equivalence.

One can then build upon these definitions to develop the basic properties of flows. In this

chapter most of the properties of linear flows required for the next chapter’s discussion of

flow classification are developed.

2.1 Linear Flows and Flow Equivalence

Definition 2.1 A flow on X is a continuous map ϕ : R×X → X that satisfies the following:

(i) ϕ(0, x) = x for all x ∈ X and

(ii) ϕ(s+ t, x) = ϕ(s, ϕ(t, x)) for all s, t ∈ R and x ∈ X.

A flow can be viewed geometrically as a collection of disjoint paths, where the set

ϕ(R, x) is the path through x. Points ϕ(t, x) for positive t can then be viewed as points

encountered along the path travelling from x, while ϕ(t, x) for negative t can be viewed

as points encountered along the path travelling to x. It is a simple consequence of the

preceding definition that any two non-disjoint paths are identical. If two paths ϕ(R, x)

and ϕ(R, y) are not disjoint, then ϕ(s1, x) = ϕ(s2, y) for some s1, s2 ∈ R. It follows that

ϕ(t, x) = ϕ(t− s1 + s2, y) ∈ ϕ(R, y) and ϕ(t, y) = ϕ(t− s2 + s1, x) ∈ ϕ(R, x) for all t ∈ R.

A trivial example of a flow is the map satisfying (t, x) 7→ x for all (t, x) ∈ R×X. It is

not difficult to construct other simple but less trivial flows as well.

Example 2.2 Consider the map ϕ on R×R2 given by ϕ(t, (x1, x2)) = (et(tx2 + x1), e
tx2).

This flow can be written in the form ϕ(t, (x1, x2)) = etM(t)(x1, x2) where M(t) is the 2× 2

matrix  1 t

0 1


for all t ∈ R. Continuity of ϕ is now clear as t 7→ etM(t) is clearly continuous. Moreover, it

is also clear that etM(t) = I when t = 0 so ϕ satisfies (i). Finally, it is easily verified that
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esM(s)etM(t) = es+tM(s+ t), so ϕ(s, ϕ(t, (x1, x2))) = ϕ(s+ t, (x1, x2)) for all s, t ∈ R and

(x1, x2) ∈ R2, and thus ϕ satisfies (ii) as well. �

Example 2.3 It is also easily verified that the map ϕ on R × R2 satisfying the equation

ϕ(t, (x1, x2)) = (sin(t)x2 + cos(t)x1, cos(t)x2 − sin(t)x1) is a flow. This is due to the fact

that ϕ is really just R(t)(x1, x2) where R(t) is the standard rotation matrix in R2 with t

in place of θ. The flow properties of ϕ are immediate consequences of the properties of

rotations of the Euclidean plane. �

Flows can also be viewed as families of automorphisms. Linear flows are then defined

simply by requiring that these automorphisms are all linear.

Definition 2.4 Let ϕ be a flow on X, and fix t ∈ R. The map ϕt : X → X given by

ϕt(x) := ϕ(t, x) is the time-t map of ϕ.

Definition 2.5 A flow on X is linear if its time-t maps are linear for all t ∈ R.

Examples 2.2 and 2.3 are clearly both linear, as for each fixed t ∈ R the maps ϕt are

both of the form Mx for some 2 × 2 matrix M . Linear flows have many useful properties

that do not hold for flows in general, several of which will be demonstrated throughout this

chapter. Of particular note is that the set of all linear flows can be identified with the set

of bounded linear operators in a canonical fashion. This will be proved in the next section.

For now though, it is a straightforward application of the basic flow properties to show that

the time-t maps of a flow are all homeomorphisms.

Proposition 2.6 Let ϕ be a flow on X. Then ϕt is a homeomorphism for all t ∈ R.

Proof. ϕt and ϕ−t inherit the continuity of ϕ for each t ∈ R. Flow property (ii) requires

that ϕt ◦ ϕ−t = ϕ0 = ϕ−t ◦ ϕt for each t ∈ R, and since flow property (i) requires that

ϕ0 = I, the invertibility of ϕt for each t ∈ R follows. �

Since X is assumed to be finite-dimensional, it follows that every time-t map of a linear

flow is a bounded linear operator.

Another essential notion required to discuss the classification of linear flows is that of flow

equivalence. Two flows are considered equivalent if there exists an invertible morphism that
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maps the paths of one flow into the paths of the other flow and conversely, in some structured

fashion. The exact properties of the morphism may lead to different classifications.

Definition 2.7 Let ϕ and ψ be flows on X and Y respectively. Then ϕ and ψ are flow

equivalent if there exists a bijection (a flow equivalence) h : X → Y such that

h(ϕ(t, x)) = ψ(t, h(x))

for all t ∈ R and x ∈ X. In particular, ϕ and ψ are homeomorphically equivalent (and h is

a homeomorphic flow equivalence) if h is a homeomorphism. Similarly, ϕ and ψ are diffeo-

morphically equivalent (and h is a diffeomorphic flow equivalence) if h is a diffeomorphism.

Finally, ϕ and ψ are linearly equivalent (and h is a linear flow equivalence) if h and h−1 are

linear.

The ‘flow’ of flow equivalence will often be dropped, as flow equivalence is the only notion

of equivalence that appears in this thesis. The requirement that h(ϕ(t, x)) = ψ(t, h(x)) is

related to the idea that h maps paths into paths since h(ϕ(R, x)) = ψ(R, h(x)). As t is

fixed here, this notion of equivalence does not admit much variation when it comes to how

the paths of one flow are mapped into the paths of the other flow. One could weaken

this definition to allow for more flexibility; for example, a common alternate definition of

equivalence is as above except that h(ϕ(t, x)) = ψ(rt, h(x)) for some fixed r ∈ R+. While

it is still true that h(ϕ(R, x)) = ψ(R, h(x)) under this weakened definition, the additional

factor r allows for a broader notion of equivalence.

Although Definition 2.7 allows for equivalences between flows on different spaces, this

thesis is primarily interested in equivalences between flows on the same space. With that

said, there are instances where equivalences between flows on different spaces lead to equiv-

alences between flows on the same space. These instances occur as equivalence is transitive.

More generally, flow equivalence is an equivalence relation, exactly as one would hope.

Theorem 2.8 Flow equivalence is an equivalence relation, as are homeomorphic, diffeo-

morphic, and linear flow equivalence.

Proof. For reflexivity, note that the identity map is trivially a flow equivalence between any

flow and itself. For symmetry, suppose that ϕ and ψ are two flow equivalent flows on X
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and Y respectively, so that there exists a flow equivalence h : X → Y between ϕ and ψ. It

follows that h−1 is a flow equivalence between ψ and ϕ since

h−1(ψ(t, y)) = h−1(ψ(t, h(h−1(y)))) = h−1(h(ϕ(t, h−1(y)))) = ϕ(t, h−1(y))

for all t ∈ R and y ∈ Y , so ψ and ϕ are flow equivalent. Finally, for transitivity, suppose ϕ,

ψ, and γ are three flows on X, Y , and Z respectively such that ϕ is flow equivalent to ψ,

and such that ψ is flow equivalent to γ. Then there exist two flow equivalences g : X → Y

and h : Y → Z between ϕ and ψ and between ψ and γ respectively. It follows that h ◦ g is

a flow equivalence between ϕ and γ since

(h ◦ g)(ϕ(t, x)) = h(ψ(t, g(x))) = γ(t, (h ◦ g)(x))

for all t ∈ R and x ∈ X, so ϕ and γ are flow equivalent. The proofs for the homeomorphic,

diffeomorphic, and linear cases are similar. �

To simplify the process of examining the various types of equivalence, it is worthwhile

to seek out relationships between these notions. For example, two diffeomorphically equiva-

lent flows are necessarily also homeomorphically equivalent, as differentiability implies con-

tinuity. The following proposition summarizes a number of similar relationships between

equivalences.

Proposition 2.9 Let ϕ and ψ be two flows on X and Y , respectively. If ϕ and ψ are linearly

equivalent, then they are also diffeomorphically equivalent. If ϕ and ψ are diffeomorphically

equivalent, then they are also homeomorphically equivalent.

Proof. The first statement follows since finite-dimensional linear maps are trivially differ-

entiable, as they are already the best linear approximations of themselves. The second

statement is a direct consequence of the fact that differentiability implies continuity. �

Note that Definition 2.7 does not require the flows to be linear. Note also that h need

not be unique — it follows immediately from Proposition 2.6 and flow property (ii) that

each ϕt is a flow equivalence between ϕ and itself. It simplifies matters if an equivalence

fixes the origin, and, at least for equivalent linear flows, it is always possible to find such

an equivalence.
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Proposition 2.10 Let ϕ and ψ be linear flows on X and Y , respectively. If ϕ and ψ are

homeomorphically (respectively, diffeomorphically or linearly) equivalent, then there exists

a homeomorphic (respectively, diffeomorphic or linear) equivalence h between ϕ and ψ such

that h(0) = 0.

Proof. If in particular ϕ and ψ are linearly equivalent, then any linear equivalence h will

work, as necessarily h(0) = 0. Otherwise, let h̃ be any homeomorphic equivalence between

ϕ and ψ, and let h : X → Y be given by h(x) = h̃(x)− h̃(0) for all x ∈ X.

The map h is clearly invertible with h−1 : Y → X given by h−1(y) = h̃−1(y + h̃(0)) for

all y ∈ Y . Also since ϕ and ψ are linear for each t ∈ R

h(ϕ(t, x)) = h̃(ϕ(t, x))− h̃(0)

= h̃(ϕ(t, x))− h̃(ϕ(t, 0))

= ψ(t, h̃(x))− ψ(t, h̃(0))

= ψ(t, h̃(x)− h̃(0))

= ψ(t, h(x))

for all t ∈ R and x ∈ X, so h is a flow equivalence; moreover, as a consequence of basic

properties of limits h is homeomorphic whenever h̃ is. Finally, h(0) = h̃(0)− h̃(0) = 0. The

diffeomorphic case is similar. �

As a consequence of the preceding proposition, from this point on it will be assumed

that all equivalences fix the origin.

2.2 Linear Flows and Bounded Linear Operators

It is often non-obvious, based solely on Definitions 2.1 and 2.7, whether or not two flows

are equivalent. As such, it is desirable to further develop the notion of flows; ideally, flows

could then be classified based solely on some easily determined properties. In the case of

linear flows, this can be achieved by identifying the set of flows with the set of bounded

linear operators. Questions concerning equivalence can then be answered by examining

the related operator. Toward this end it is first shown that linear operators induce linear

flows via the operator exponential. The operator exponential is defined based on the Taylor
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Series representation of the real exponential. All of the familiar properties of the real expo-

nential carry over to the operator exponential with only minor adjustments (adjustments

are needed to handle the fact that the algebra of linear operators is not commutative) and

the exponential of a bounded linear operator is itself a bounded linear operator. A more

detailed discussion of the operator exponential can be found in Appendix A.

Proposition 2.11 Let L ∈ L(X). The map ϕ : R ×X → X given by ϕ(t, x) := etLx is a

linear flow on X.

Proof. First fix (t0, x0) ∈ R×X and ε ∈ R+, and consider that by the triangle inequality

‖etLx− et0Lx0‖ ≤ ‖etL − et0L‖‖x− x0‖+ ‖etL − et0L‖‖x0‖+ ‖et0L‖‖x− x0‖

for all t ∈ R and x ∈ X. The map t 7→ etL is continuous (in fact, differentiable) so

there exists a δ̃ ∈ R+ such that ‖etL − et0L‖ < min{ ε
3‖x0‖+1 ,

√
ε
3} for all t ∈ R satisfying

|t − t0| < δ̃. Now set δ := min{δ̃, ε
3‖et0L‖}. It follows, for all (t, x) ∈ R × X satisfying

‖t − t0‖, ‖x − x0‖ < δ, that ‖etLx − et0Lx0‖ <
√

ε
3

√
ε
3 + ε

3‖x0‖+1‖x0‖ + ‖et0L‖ ε
3‖et0L‖ < ε.

Since (t0, x0) and ε were arbitrary, ϕ is continuous.

Flow properties (i) and (ii) are direct consequences of the basic properties of the expo-

nential, and the fact that ϕ is linear follows from the fact that the exponential of a bounded

linear operator is itself a bounded linear operator. �

When a flow ϕ is of the form etLx for some bounded linear operator L, then L is said to

generate the flow ϕ. It is easily seen that two different operators cannot generate the same

flow.

Proposition 2.12 Let ϕ be a linear flow on X generated by L,M ∈ L(X). Then L = M .

Proof. By assumption etLx = etMx for all (t, x) ∈ R×X. It follows that LetLx = MetMx

for all (t, x) ∈ R×X, by differentiating both sides with respect to t. In particular Lx = Mx

for all x ∈ X by fixing t = 0, and thus L = M . �

Proposition 2.11 states that every linear operator generates a linear flow in a canonical

fashion. This allows one to easily construct a wide variety of flows; the flows in Examples
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2.2 and 2.3 were constructed by applying Proposition 2.11 to

 1 1

0 1

 and

 0 1

−1 0



respectively. It is natural to ask if the converse is true — that is, are all linear flows

generated by linear operators? This is indeed the case. An elegant proof of this fact, as

outlined by my supervisor, makes use of the operator integral. The operator integral is

defined by naively applying Riemann integration to continuous maps f : R→ L(X). Given

a flow ϕ and numbers a, b ∈ R, one may then construct
∫ b
a ϕt dt. As was the case with

the operator exponential, the properties of the operator integral are similar to those of

the Riemann integral, and
∫ b
a ϕt dt is a bounded linear operator. Operator integration is

discussed further in Appendix B.

It is clear from the preceding discussion that a flow generated by some bounded linear

operator is necessarily differentiable, and the derivative at t = 0 is the operator that gener-

ates it. The idea then is to first show that every linear flow is differentiable at t = 0. From

there one shows that the flow generated by this derivative is in fact the original flow.

Lemma 2.13 Let ϕ be a linear flow on X. Then the map t 7→ ϕtx is differentiable at t = 0

for all x ∈ X.

Proof. Set Y := {x ∈ X : limt→0
1
t (ϕtx − x) exists}. Note that Y cannot be empty, as

limt→0
1
t (ϕt0 − 0) = 0. It follows from the fact that ϕt is linear for each t ∈ R and the

basic properties of limits that Y is in fact a subspace of X. By construction then Y is the

subspace of X for which the map t 7→ ϕt is differentiable at t = 0, so the goal is to show

that Y = X.

Define An ∈ L(X) by setting An := n
∫ 1
n
0 ϕt dt for each n ∈ N. Then limn→∞An = I,

so that for all x ∈ X the sequence {Anx}n∈N converges to x. Since Y is a subspace of a

finite-dimensional space, Y must be closed. As a consequence of the above two statements,

if it can be shown that Anx ∈ Y for all x ∈ X and n ∈ N, then Y = X. But this follows

11



from the various basic properties of the operator integral, as

lims→0
1

s
(ϕsAnx−Anx) = lims→0

n

s

(
ϕs

∫ 1
n

0
ϕt dt x−

∫ 1
n

0
ϕt dt x

)

= lims→0
n

s

(∫ 1
n

0
ϕs+t dt x−

∫ 1
n

0
ϕt dt x

)

= lims→0
n

s

(∫ s+ 1
n

s
ϕt dt−

∫ 1
n

0
ϕt dt

)
x

= lims→0
n

s

(∫ s+ 1
n

1
n

ϕt dt−
∫ s

0
ϕt dt

)
x

= n

(
lims→0

1

s

∫ s+ 1
n

1
n

ϕt dt− lims→0
1

s

∫ s

0
ϕt dt

)
x

= n(ϕ 1
n
− I)x

for all x ∈ X and n ∈ N. �

Recalling that the idea of flows arose from the study of differential equations, and

now armed with the knowledge that every linear flow is differentiable, it is possible to

demonstrate that every linear flow is the exponential of a linear operator; that is, every

linear flow is of the form described in Proposition 2.11.

Proposition 2.14 Let ϕ be a linear flow on X. There exists an Lϕ ∈ L(X) such that

ϕ(t, x) = etLϕx for all (t, x) ∈ R×X.

Proof. Set Lϕ := limt→0
1
t (ϕt−I). Now Lϕ is linear as a consequence of the basic properties

of limits, and since ϕt is linear for each t ∈ R by assumption. It then follows that Lϕ ∈ L(X),

as X is finite-dimensional.

Consider that limt→s
ϕt−ϕs
t−s = limt→s

ϕt−s−I
t−s ϕs = limt−s→0

ϕt−s−I
t−s ϕs = Lϕϕs for all s,

t ∈ R by the previous lemma. Thus ϕ is differentiable with respect to t for all t ∈ R with

derivative d
dtϕt = Lϕϕt. Now consider the map t 7→ e−tLϕϕt. This is differentiable with

derivative −Lϕe−tLϕϕt+ e−tLϕLϕϕt = 0, so e−tLϕϕt = C for some constant C ∈ L(X), and

consequently ϕt = Ce−tLϕ . But then ϕ0 = I, so C = I, and thus ϕt = etLϕ . The desired

result follows. �

The following theorem summarizes the relationship between linear flows and bounded

linear operators.

12



Theorem 2.15 Every linear flow on X can be uniquely identified with a bounded linear

operator on X and conversely.

Proof. This follows immediately from Propositions 2.11, 2.12, and 2.14. �

The identification between linear flows and linear operators is the foundation from which

the classification of linear flows can be meaningfully discussed. It will ultimately be shown

that the existence of an equivalence between two linear flows will depend entirely on the

relative properties of the underlying operators. In particular, operator spectra and the

subspaces they induce will prove essential to determining whether or not two linear flows

are homeomorphically equivalent. Furthermore, it is now possible to provide an initial

classification result for linear equivalence, the strongest notion of equivalence discussed in

this thesis. First it is necessary to provide a notion of similar operators.

Definition 2.16 Let L,M ∈ L(X). Then L and M are similar if there exists an invertible

N ∈ L(X) such that NLN−1 = M .

Theorem 2.17 Let ϕ and ψ be linear flows on X. Then ϕ and ψ are linearly equivalent if

and only if Lϕ and Lψ are similar.

Proof. Suppose first that ϕ and ψ are linearly equivalent. Then there exists an invertible

linear h : X → X such that hϕ(t, x) = ψ(t, hx) for all t ∈ R × X. Now h ∈ L(X) since

X is finite-dimensional, and ethLϕh
−1
hx = hetLϕx = hϕ(t, x) = ψ(t, hx) = etLψhx for all

(t, x) ∈ R×X as a consequence of Proposition 2.14. It follows from Proposition 2.12 that

hLϕh
−1 = Lψ, so Lϕ and Lψ are similar.

Conversely, suppose Lϕ and Lψ are similar. Then there exists an invertible N ∈ L(X)

such that NLϕN
−1 = Lψ. Set h : X → X so that h(x) = Nx for all x ∈ X. Then

h(ϕ(t, x)) = NetLϕx = etNLϕN
−1
Nx = etLψNx = ψ(t, h(x)) for all (t, x) ∈ R×X, and h is

clearly an invertible linear map. Thus ϕ and ψ are linearly equivalent. �

After fixing a basis for X, it is now straightforward to check if two linear flows are linearly

equivalent. First find the two operators that generate the flows by differentiating. These

two operators can be represented as matrices with respect to the chosen basis, and it is then

a simple exercise in verifying whether or not these two matrices are similar. Conversely one

can easily generate linearly equivalent linear flows using similar matrices.
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The remainder of this chapter is focused on developing additional properties of flows;

forms of equivalence aside from linear will be mostly ignored until the third chapter. In

particular, it will prove useful to represent flows in a specific form with respect to a given

basis. Now an arbitrary flow may not have the desired form with respect to an arbitrary

basis. With that said, it will always be possible to find a flow that has the desired form

via similar operators; in other words, given an arbitrary flow and basis, one can always

find a linearly equivalent flow that is of the desired form with respect to the basis. As a

consequence of Proposition 2.9, it is possible to assume that flows are always of the desired

form, regardless of the type of equivalence being investigated.

2.3 Flow Invariance

Although the identification between linear flows and linear operators will prove fundamental

to this discussion of the classification of linear flows, there are several other concepts that

will also prove useful. The first of these is invariance.

Definition 2.18 A subspace Y of X is invariant under L ∈ L(X) if L(Y ) ⊆ Y , and Y is

(flow) invariant under a linear flow ϕ on X if it is invariant under ϕt for all t ∈ R.

The notion of invariance under an operator is quite natural. In the context of flows,

invariance is the idea that any path through some subspace exists entirely within that

subspace; one cannot travel along a path either into or out of that subspace. Note that, while

equality is not required for invariance, in the case of flow invariance equality is automatic: if

ϕt(Y ) ⊆ Y for all t ∈ R, then ϕ−t(Y ) ⊆ Y for all t ∈ R, and thus Y = ϕt(ϕ−t(Y )) ⊆ ϕt(Y )

for all t ∈ R.

Invariance can be used to simplify the analysis of flows. The general idea is to consider

the behaviour of a linear flow along its various invariant subspaces. Every flow induces

component flows along these subspaces, and by working with specific well-chosen invariant

subspaces one can reduce the problem of classifying a flow to classifying certain component

flows. As some flows are significantly easier to classify than others, this can greatly simplify

the problem.
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Definition 2.19 Let L ∈ L(X), and let Y be a subspace of X invariant under L. The

map L|Y : Y → Y given by L|Y (y) := Ly for all y ∈ Y is the Y component of L. Similarly,

let ϕ be a linear flow on X, and let Y be a subspace of X invariant under ϕ. The map

ϕ|Y : R× Y → Y with ϕ|Y (t, y) := ϕ(t, y) for all (t, y) ∈ R× Y is the Y component of ϕ.

It is clear that a component of a bounded linear operator is itself a bounded linear

operator. Similarly, a component of a linear flow is itself a linear flow.

It will often be the case that many invariant subspaces will be considered simultaneously.

If {Xk}mk=1 is a finite collection of subspaces of X invariant under some operator L or flow ϕ,

then Lk and ϕk will be written in place of L|Xk and ϕ|Xk respectively to simplify notation.

Given the identification between linear flows and linear operators, it is natural to exam-

ine the relationship between invariance under linear flows and under operators.

Proposition 2.20 Let ϕ be a linear flow on X, and let Y be a subspace of X. Then Y is

invariant under Lϕ if and only if Y is invariant under ϕ.

Proof. Suppose first that Y is invariant under Lϕ, and fix y in Y . Now by assumption

Lϕy ∈ Y ; moreover, if Lkϕy ∈ Y for some k ∈ N, then Lk+1
ϕ y ∈ Y . It follows by induction

on k that Lkϕy ∈ Y for all k ∈ N. This can be extended to N0 as L0
ϕy = Iy = y ∈ Y .

It follows that
∑n

k=0
1
k!(tLϕ)ky ∈ Y for all t ∈ R and n ∈ N, as Y is a subspace of

X. Furthermore, Y is closed since X is assumed to be finite-dimensional, and therefore

ϕty = limn→∞
∑n

k=0
1
k!(tLϕ)ky ∈ Y for all t ∈ R. Consequently Y is invariant under ϕ, as

y was arbitrary.

Suppose now that Y is invariant under ϕ and consider that Lϕx = [ ddtϕt]t=0x for all

x ∈ Y . On Y in particular [ ddtϕt]t=0y = [ ddt(ϕ|Y )t]t=0y, so Lϕy = [ ddt(ϕ|Y )t]t=0y for all

y ∈ Y . It follows from the definition of the derivative that [ ddt(ϕ|Y )t]t=0y ∈ L(Y ), and thus

Lϕy ∈ Y for all y ∈ Y , so Y is invariant under Lϕ. �

As a consequence of the preceding proposition, there is no need to distinguish between

invariance under a flow and the operator that generates it. As such, subspaces will often

be referred to as simply invariant, without reference to a specific operator or flow.

Now for invariance to be a valuable consideration when it comes to classifying flows, it

is important that invariance be preserved by equivalence, and this is indeed the case.
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Proposition 2.21 Let h be an equivalence between two linear flows ϕ and ψ on X and Y

respectively. Further let Z be an invariant subspace of X. If h(Z) is a subspace of Y , then

h(Z) is invariant under ψ; moreover, h|Z : Z → h(Z) is an equivalence between ϕ|Z and

ψ|h(Z).

Proof. Suppose y ∈ h(Z). Then y = h(z) for some z ∈ Z, and since Z is invariant under

ϕ it follows that ψty = ψth(z) = h(ϕtz) ∈ h(Z). This proves the first statement, as t

and y were arbitrary. The second statement is a consequence of the fact that h|Z inherits

the properties of h and h|Z(ϕ|Z(t, z)) = h(ϕ(t, z)) = ψ(t, h(z)) = ψ|h(Z)(t, h|Z(z)) for all

(t, z) ∈ R× Z. �

If h in the preceding proposition is a linear equivalence, then necessarily h(Z) is a

subspace of X, so the preceding proposition applies. Unfortunately the same cannot be

said for weaker forms of equivalence such as homeomorphic equivalence. When considering

homeomorphic equivalence it is necessary to seek out invariant subspaces for which the

image under a homeomorphic equivalence is itself a subspace. Of particular interest, then,

will be invariant subspaces defined by a specific property — a property that is preserved

by homeomorphic equivalence. Two important examples of this are the stable and unstable

subspaces of a flow.

Definition 2.22 Let ϕ be a linear flow on X. The stable subspace of ϕ, denoted X+
ϕ , is the

set of all x ∈ X that satisfy limt→+∞ ϕtx = 0. The unstable subspace of ϕ, denoted X−ϕ , is

the set of all x ∈ X that satisfy limt→−∞ ϕtx = 0. The stable and unstable components of

ϕ are denoted by ϕ+ and ϕ− respectively.

It is a simple consequence of the basic properties of limits, along with the fact that

ϕt is linear for each t ∈ R, that the stable and unstable subspaces of any linear flow are

indeed subspaces. These subspaces play a significant role in characterizing homeomorphic

equivalence and will be discussed in increasing detail throughout the remaining sections

of this chapter. First it is shown that these subspaces are always invariant. The proof is

straightforward.

Proposition 2.23 Let ϕ be a linear flow on X. Then X+
ϕ and X−ϕ are invariant under ϕ.
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Proof. Consider that limt→+∞ ϕtϕsx = limt→+∞ ϕsϕtx = ϕs(limt→+∞ ϕtx) = 0 for all

s ∈ R and x ∈ X+
ϕ . Thus, X+

ϕ is invariant under ϕ. The X−ϕ case is proved in a similar

fashion. �

As previously discussed, it is desirable that the defining property of the stable and

unstable subspaces be preserved by equivalence. This is indeed the case for homeomorphic

or stronger equivalence. Recall that homeomorphic equivalences are assumed to fix the

origin as a consequence of Proposition 2.10.

Proposition 2.24 Let h be a homeomorphic equivalence between two linear flows, ϕ and

ψ, on X. Then h(X+
ϕ ) = X+

ψ and h(X−ϕ ) = X−ψ .

Proof. As h is continuous limt→+∞ ψth(x) = limt→+∞ h(ϕtx) = h(limt→∞ ϕtx) = 0 for all

x ∈ X+
ϕ . Thus h(X+

ϕ ) ⊆ X+
ψ . On the other hand, since h−1 is also continuous it follows

that limt→+∞ ϕth
−1(x) = limt→+∞ h

−1(ψtx) = h−1(limt→+∞ ψtx) = 0 for all x ∈ X+
ψ .

Consequently X+
ψ ⊆ h(X+

ϕ ). The unstable case is proved similarly. �

One final useful property of the stable and unstable subspaces of a flow is that these

subspaces only ever intersect trivially. This can be seen by considering a flow restricted to

the intersection of its stable and unstable subspaces.

Proposition 2.25 Let ϕ be a linear flow on X. Then X+
ϕ ∩X−ϕ = {0}.

Proof. First note that f(Y ∩ Z) ⊆ f(Y ) ∩ f(Z) for all subsets Y and Z of X and for all

maps f : X → X. Since the intersection of any two subspaces is itself a subspace, it follows

that Y ∩ Z is invariant whenever Y and Z are invariant, and thus it is sensible to consider

the component ϕ|X+
ϕ ∩X−ϕ of ϕ. Since ϕ|X+

ϕ ∩X−ϕ is a flow on X+
ϕ ∩ X−ϕ , there exists some

L ∈ L(X+
ϕ ∩X−ϕ ) such that L generates ϕ|X+

ϕ ∩X−ϕ . Fix x ∈ X−ϕ ∩X+
ϕ . Now by assumption

limt→+∞ e
tLx = limt→−∞ e

tLx = 0, so there exists T+
x , T

−
x ∈ R such that ‖etLx‖ < 1 for all

t < T−x and ‖etLx‖ < 1 for all t > T+
x . Without loss of generality, it may be assumed that

T−x < T+
x . Since the map t 7→ ‖etLx‖ from [T−x , T

+
x ] to R is a continuous function on a closed

interval, it follows that supt∈R‖etLx‖ < ∞, and this in fact holds for every x ∈ X−ϕ ∩X+
ϕ

since x was arbitrary. Then by the uniform boundedness principle supt∈R‖etL‖ < ∞.

But ‖x‖ = limt→+∞‖x‖ = limt→+∞‖e−tLetLx‖ ≤ supt∈R‖etL‖ limt→+∞‖etLx‖ = 0 for all

x ∈ X+
ϕ ∩X−ϕ , so it must be that X+

ϕ ∩X−ϕ = {0}. �
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The preceding property is useful in that one can meaningfully consider X+
ϕ ⊕X−ϕ . This

leads nicely into the next section’s discussion on reducibility, as direct sums play a substan-

tial role.

2.4 Reducible Flows

The notion of component flows was introduced in the previous section, along with the idea of

simplifying the problem of classifying flows to classifying their various components. For this

technique to be useful, it is necessary that the classification of a flow is entirely determined

by classifying a small number of easily classified components. Unfortunately flows can have

numerous components; worse still, components may overlap, and they may end up being

overly complex in their own right. To deal with these issues, a notion of ‘recombining’

component flows is introduced.

The tool for this purpose is the direct sum. Given a space X, if {Xk}mk=1 is a finite

collection of subspaces of X, and if Xk ∩ (
∑k−1

j=1 Xj +
∑m

j=k+1Xj) = {0} for all k ≤ m,

then one may construct
⊕m

k=1Xk. If one is further given maps fk : Xk → Xk for each

k ≤ m, then one may construct the map
⊕m

k=1 fk :
⊕m

k=1Xk →
⊕m

k=1Xk defined by

setting (
⊕m

k=1 fk)(x) :=
∑m

k=1 fk(xk) for all x =
∑m

k=1 xk ∈
⊕m

k=1Xk. It is easily verified

that
⊕m

k=1 Lk is a bounded linear operator whenever all the Lk are likewise, and similarly⊕m
k=1 ϕk is a linear flow whenever all the ϕk are as well.

Proposition 2.26 Fix m ∈ N, and let {Xk}mk=1 be a collection of subspaces of X such

that Xk ∩ (
∑k−1

j=1 Xj +
∑m

j=k+1Xj) = {0} for all k ≤ m. Then
⊕n

k=1 Lk ∈ L(
⊕m

k=1Xk)

whenever Lk ∈ L(Xk) for each k ≤ m. Similarly,
⊕m

k=1 ϕk is a linear flow on
⊕m

k=1Xk

whenever ϕk is a linear flow on Xk for each k ≤ m.

Proof. Note first that(⊕m

k=1
Lk

)
(ax+ by) =

∑m

k=1
Lk(axk + byk)

=
∑m

k=1
(aLkxk + bLkyk)

= a
∑m

k=1
Lkxk + b

∑m

k=1
Lkyk

= a
(⊕m

k=1
Lk

)
x+ b

(⊕m

k=1
Lk

)
y
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for all a, b ∈ K and x, y ∈
⊕m

k=1Xk, so
⊕m

k=1 Lk is indeed linear. Now fix x ∈
⊕m

k=1Xk

along with a sequence {xn}n∈N in
⊕m

k=1Xk converging to x. Then for each k ≤ m the

sequence {xn,k}n∈N in Xk converges to xk. It follows by the continuity of each Lk that

limn→∞ Lkxn,k = Lkxk for all k ≤ m, so limn→∞
∑m

k=1 Lkxn,k =
∑m

k=1 Lkxk, and thus

limn→∞(
⊕m

k=1 Lk)xn = (
⊕m

k=1 Lk)x. As x and {xn}n∈N were arbitrary,
⊕m

k=1 Lk is contin-

uous, and therefore
⊕m

k=1 Lk ∈ L(
⊕m

k=1Xk).

It follows from the above that
⊕m

k=1 ϕk is linear for each fixed t ∈ R, and an argument

similar to the preceding continuity argument demonstrates that
⊕m

k=1 ϕk is also continuous.

Now (
⊕m

k=1 ϕk)(0, x) =
∑m

k=1 ϕk(0, xk) =
∑m

k=1 xk = x for all x ∈
⊕m

k=1Xk and(⊕m

k=1
ϕk

)
(s+ t, x) =

∑m

k=1
ϕk(s+ t, xk)

=
∑m

k=1
ϕk(s, ϕk(t, xk))

=
(⊕m

k=1
ϕk

)(
s,
∑m

k=1
ϕk(t, xk)

)
=
(⊕m

k=1
ϕk

)(
s,
(⊕m

k=1
ϕk

)
(t, x)

)
for all s, t ∈ R and x ∈

⊕m
k=1Xk. Thus

⊕m
k=1 ϕk is a linear flow on

⊕m
k=1Xk. �

Note that the various Xk are invariant under these constructions, so that the various

Lk and ϕk are components of
⊕m

k=1 Lk and
⊕m

k=1 ϕk respectively. It is constructions such

as these that allow one to classify a flow based on its components as the following lemma

demonstrates.

Lemma 2.27 Fix m ∈ N, and let {Xk}mk=1 and {Yk}mk=1 be collections of subspaces of X

such that Xk∩(
∑k−1

j=1 Xj+
∑m

j=k+1Xj) = {0} for all k ≤ m and similarly for {Yk}mk=1. If ϕk

and ψk are (homeomorphically or linearly) equivalent linear flows on Xk and Yk respectively

for each k ≤ m, then
⊕m

k=1 ϕk and
⊕

k=1 ψk are (respectively homeomorphically or linearly)

equivalent flows on
⊕m

k=1Xk and
⊕m

k=1 Yk respectively.

Proof. Let hk : Xk → Yk be equivalences between ϕk and ψk for each k ≤ m. It is easily

verified that
⊕m

k=1 hk has inverse
⊕m

k=1 h
−1
k . Now for all (t, x) ∈ R×

⊕m
k=1Xk necessarily

hk(ϕk(t, xk)) = ψk(t, hk(xk)), implying that
∑m

k=1 hk(ϕk(t, xk)) =
∑m

k=1 ψk(t, hk(xk)), and

thus (
⊕m

k=1 hk)((
⊕m

k=1 ϕk)(t, x)) = (
⊕m

k=1 ψk)(t, (
⊕m

k=1 hk)(x)). Now if all the hk are

continuous (respectively linear), then
⊕m

k=1 hk is also continuous (respectively linear) as per
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the argument in the previous proposition. Similarly, if the h−1k are continuous (respectively

linear), then
⊕m

k=1 h
−1
k is continuous (respectively linear). �

Given a linear flow, it is worthwhile to consider various direct sums of its component

flows. Of particular interest will be when a flow is completely represented by the direct

sum of some collection of component flows. This type of situation arises when one finds

invariant subspaces {Xk}mk=1 such that Xk ∩ (
∑k−1

j=1 Xj +
∑m

j=k+1Xj) = {0} for all k ≤ m,

while also satisfying the equation
∑m

k=1Xk = X. In such a situation
⊕m

k=1Xk can be

identified naturally with X. Whenever X =
⊕m

k=1Xk is written, it should be assumed that

Xk ∩ (
∑k−1

j=1 Xj +
∑m

j=k+1Xj) = {0} for all k ≤ m and
∑m

k=1Xk = X. Furthermore, as

such constructions are only of interest in the context of invariant subspaces, it should also

be assumed that Xk is invariant for all k ≤ m.

Proposition 2.28 Let X =
⊕m

k=1Xk, let L ∈ L(X), and let ϕ be a linear flow on X. If

{Xk}mk=1 is a collection of invariant subspaces of X under L, then L =
⊕m

k=1 Lk. Similarly,

if {Xk}mk=1 is a collection of invariant subspaces of X under ϕ, then ϕ =
⊕m

k=1 ϕk.

Proof. This follows from the definition of
⊕m

k=1 Lk and
⊕m

k=1 ϕk. For the operator case,

note that Lx = L
∑m

k=1 xk =
∑m

k=1 Lxk =
∑m

k=1 Lkxk = (
⊕m

k=1 Lk)x for all x ∈ X.

Similarly, ϕ(t, x) = ϕ(t,
∑m

k=1 xk) =
∑m

k=1 ϕ(t, xk) =
∑m

k=1 ϕk(t, xk) = (
⊕m

k=1 ϕk)(t, x) for

all (t, x) ∈ R×X as a consequence of the linearity of ϕ and ϕk for all k ≤ m. �

Note that the ordering of
⊕m

k=1Xk is irrelevant, as are the orderings of both
⊕m

k=1 Lk

and
⊕m

k=1 ϕk as long as they are consistent with the ordering of
⊕m

k=1Xk.

Lemma 2.27 and Proposition 2.28 combined demonstrate how one can classify flows

based on their components.

Theorem 2.29 Let ϕ and ψ be linear flows on X =
⊕m

k=1Xk =
⊕m

k=1 Yk where {Xk}mk=1

and {Yk}mk=1 are collections of subspaces of X invariant under ϕ and ψ respectively. If ϕk

and ψk (here ϕk = ϕ|Xk and ψk = ψ|Yk) are (homeomorphically or linearly) equivalent for

all k ≤ m, then ϕ and ψ are (respectively homeomorphically or linearly) equivalent.

Proof. This follows directly from Lemma 2.27 and Proposition 2.28. �
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As per the preceding note, the specific ordering of
⊕m

k=1 ψk is irrelevant. If necessary,

it can be reordered prior to applying Theorem 2.29.

To see the value of Theorem 2.29, consider the respective stable and unstable subspaces

of two flows, ϕ and ψ. As a consequence of Proposition 2.25, showing X+
ϕ + X−ϕ = X

and X+
ψ + X−ψ = X is sufficient to demonstrate that X+

ϕ ⊕ X−ϕ = X and X+
ψ ⊕ X

−
ψ = X

respectively. Under these conditions, if one can show that ϕ+ and ϕ− are homeomorphically

equivalent to ψ+ and ψ− respectively, then it immediately follows from Theorem 2.29 that ϕ

and ψ are homeomorphically equivalent. It turns out that checking whether or not ϕ+ and

ψ+ (and similarly ϕ− and ψ−) are homeomorphically equivalent is fairly straightforward,

as will be seen in Section 3.2, so flows for which X+
ϕ ⊕ X−ϕ = X have their own special

designation.

Definition 2.30 Let ϕ be a linear flow on some X 6= {0}. If X = X+
ϕ ⊕ X−ϕ , then ϕ is

hyperbolic. If X+
ϕ ⊕X−ϕ = {0}, then ϕ is central.

Note that, alternatively, ϕ is hyperbolic if ϕ = ϕ+ ⊕ ϕ− for nontrivial ϕ. Theorem

2.29 is of limited use if one cannot find a collection of invariant subspaces {Xk}mk=1 so that

X =
⊕m

k=1Xk. To this end a notion of reducibility is introduced.

Definition 2.31 L ∈ L(X) is reducible if there exist nontrivial invariant subspaces Y and

Z of X such that X = Y ⊕Z; otherwise, L is irreducible. Similarly, a linear flow ϕ on X is

reducible if there exist nontrivial invariant subspaces Y and Z of X such that X = Y ⊕ Z;

otherwise, ϕ is irreducible.

Note that L and ϕ are reducible if L = M ⊕ N and ϕ = ψ ⊕ γ respectively for some

nontrivial bounded linear operators M and N and nontrivial linear flows ψ and γ. More

generally, L and ϕ are reducible if L =
⊕m

k=1 Lk and ϕ =
⊕m

k=1 ϕk respectively for some

m > 1 with nontrivial bounded linear operators Lk and linear flows ϕk.

Irreducible flows essentially operate on invariant subspaces that do not contain any

further nontrivial invariant subspaces. In the previous section the relationship between

operator invariance and flow invariance was investigated; in particular, Proposition 2.20

states that a flow is invariant on some subspace if and only if the operator that generates

it is invariant on that subspace. A similar result holds for reducibility.
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Proposition 2.32 Let ϕ be a linear flow on X. Then ϕ is reducible if and only if Lϕ is

reducible.

Proof. Suppose first that Lϕ is reducible. Then there exist nontrivial subspaces Y and Z

of X such that Y and Z are invariant under Lϕ and X = Y ⊕ Z. It follows immediately

from Proposition 2.20 that both Y and Z are invariant under ϕ as well, so ϕ is reducible.

The converse is similar. �

As a consequence of the above proposition, ϕ is irreducible if and only if Lϕ is irreducible.

This proposition will prove useful in the next section as part of the discussion of irreducible

flows. Similar to invariance, as a consequence of this proposition, spaces will often be

referred to as reducible or irreducible without referencing a specific operator or flow, as it

will generally be clear from the context.

There are some basic results that provide invariant decomposition of spaces given some

operator. In light of Proposition 2.32, such results can be exploited to find decompositions

for linear flows.

Proposition 2.33 Let ϕ be a linear flow on X with K = C such that Lϕ has at least two

distinct eigenvalues. Then ϕ is reducible.

Proof. For each eigenvalue λk of Lϕ, let Xk := ker(Lϕ − λkI)d. By assumption these

subspaces are nontrivial. It is easily verified that Xk is invariant under Lϕ for all k ≤ m,

and it follows from a standard result of operator theory [7] that X =
⊕m

k=1Xk, and so

Lϕ =
⊕m

k=1 Lk. As a consequence of the previous proposition, ϕ =
⊕m

k=1 ϕk with nontrivial

ϕk, and thus ϕ is reducible. �

It follows immediately from the preceding proposition that for every complex irreducible

flow ϕ, it must hold that σ(Lϕ) = {λ} for some λ ∈ C. Abusing terminology somewhat, the

unique λ associated with an irreducible ϕ will be referred to as the eigenvalue of ϕ. The

situation is slightly more complicated when K = R, but the related real result is not needed

in this thesis.

With the idea of simplifying flows by reducing them to their components, it is reasonable

to attempt to reduce a flow as much as possible. Now any decomposition consisting entirely
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of irreducible components by definition cannot be further reduced. It turns out that such

a decomposition can be found for every linear flow. The requirement that the subspaces

be nontrivial in Definition 2.31 is important here, as every flow would be a reduction of

itself, so there would otherwise be no such thing as an irreducible flow. Requiring that the

reduction be nontrivial forces the subspaces to each have their dimension be strictly less

than that of the initial space.

Proposition 2.34 Let ϕ be a nontrivial linear flow on X. There exists a finite collection

{ϕk}mk=1 of nontrivial irreducible components of ϕ such that ϕ =
⊕m

k=1 ϕk.

Proof. Let {ϕk}mk=1 be a collection of nontrivial components of ϕ satisfying ϕ =
⊕m

k=1 ϕk

and with the property that, for some fixed n ∈ N, each ϕk is irreducible whenever dk > n

where dk is the dimension of Xk. Define a new finite collection {ϕ̃j}m̃j=1 of components

of ϕ based on {ϕk}mk=1 as follows. Include ϕk in {ϕ̃j}m̃j=1 for all k ≤ m such that dk 6= n.

Moreover include all irreducible ϕk with dk = n. For reducible ϕk with dk = n, reduce them

to nontrivial components ϕk,1 and ϕk,2 and include those as the final elements of {ϕ̃j}m̃j=1.

It is clear by construction that ϕ =
⊕m̃

j=1 ϕ̃j . Now the elements of {ϕ̃j}m̃j=1 with dj > n

are exactly the elements of {ϕk}mk=1 with dk > n, and are by assumption all irreducible.

Moreover, the elements of {ϕ̃j}m̃j=1 with dj = n are exactly the irreducible elements of

{ϕk}mk=1 with dk = n, as the reducible elements of {ϕk}mk=1 with dk = n were all reduced to

nontrivial elements of {ϕ̃j}m̃j=1 such that dj < n. Thus the elements of {ϕ̃j}m̃j=1 with dj = n

are also all irreducible. Consequently, {ϕ̃j}m̃j=1 is a finite collection of nontrivial components

of ϕ satisfying ϕ =
⊕m̃

j=1 ϕj and with the property that, for some fixed n ∈ N, each ϕj is

irreducible whenever dj > n− 1.

Now the collection {ϕ} satisfies the above construction for n = d trivially. By repeatedly

applying the above procedure d times, one acquires a finite collection {ϕk}mk=1 of nontrivial

components of ϕ satisfying ϕ =
⊕m

k=1 ϕk and with the property that ϕk is irreducible

whenever dk > 0. But the elements of {ϕk}mk=1 are nontrivial so dk > 0 for all k ≤ m, and

consequently {ϕk}mk=1 is a finite collection of nontrivial irreducible components of ϕ such

that ϕ =
⊕m

k=1 ϕk. �

With all the work that has gone into reducing flows to irreducible components, one might
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hope that irreducible components are indeed simpler to work with than general linear flows.

To demonstrate that this is indeed the case, irreducible flows are discussed in detail in the

next section.

2.5 Irreducible Flows

So far flows have been discussed without fixing a basis or scalar field for the underlying

normed space. It is often more elegant to work without a fixed basis, but it will become

necessary in future sections for linear flows to be in certain desirable forms with respect

to some basis. Now a consequence of Theorem 2.17 is that two linear flows are linearly

equivalent if and only if one flow is the same as the other after an appropriate change of

basis. Since linear equivalence is the strongest form of equivalence considered in this thesis,

it follows that the choice of basis has no effect when it comes to considering diffeomorphic

and homeomorphic equivalence. As such, one can always choose to work with a basis for

which the generating operator is in (real or complex) Jordan canonical form (see [5] and

[7]) and this motivates the following definition.

Definition 2.35 Let L ∈ L(X) with K = C (respectively R). Then L is of λ-Jordan-type

if its matrix with respect to an appropriate basis consists of a single complex (respectively

real) Jordan block with eigenvalue λ (respectively conjugate pair of eigenvalues {λ, λ̄}). In

other words for K = C, with respect to an appropriate basis, L is of the form

Jd(λ) =



λ 1 0 0 0

0 λ 1 0 0

0 0 λ 0 0

. . .

0 0 0 λ 1

0 0 0 0 λ


for some λ ∈ C. The situation is similar when K = R. In this case L is of the same form as
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above with respect to an appropriate basis for some λ ∈ R. Alternatively L is of the form

J̃d(λ) =



<λ =λ 1 0 0 0

−=λ <λ 0 1 0 0

0 0 <λ =λ 0 0

0 0 −=λ <λ 0 0

. . .

0 0 0 0 <λ =λ

0 0 0 0 −=λ <λ



with respect to an appropriate basis for some λ ∈ C \ R.

The complex case is clearly much easier to work with. The problem with real Jordan

blocks is that one cannot split conjugate pairs of eigenvalues while working solely with real

linear transformations, so real Jordan blocks with nonreal eigenvalues end up being much

more unwieldy. Still, real Jordan blocks fundamentally behave similarly to complex Jordan

blocks, so many results that hold for complex linear operators also hold for real ones. The

preferred strategy is to directly prove a result for the complex case, and then extend the

result to the real case via complexification. The concept of complexification (along with the

concept of realification) is discussed in more detail in Appendix C.

This previous definition is useful in that it completely characterizes irreducible flows

once a basis is fixed.

Proposition 2.36 Let L ∈ L(X). Then L is irreducible if and only if it is of λ-Jordan-type

for some λ ∈ C.

Proof. For simplicity, assume K = C.

Fix an appropriate basis for X so that L is in Jordan canonical form. Explicitly, L is of
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the form 

λ1 δ1 0 0 0

0 λ2 δ2 0 0

0 0 λ3 0 0

. . .

0 0 0 λd−1 δd−1

0 0 0 0 λd


with respect to this basis, where λn ∈ σ(L) for all n ≤ d and, for all n < d, where δn = 0

whenever λn 6= λn+1 and δn ∈ {0, 1} otherwise. If any of the δn are in fact zero, then L is

clearly reducible. Suppose now that L is irreducible. It follows from the contrapositive of

the preceding argument that δn = 1 for all n < d. Moreover, as necessarily δn = 0 whenever

λn 6= λn+1, it must further be the case that λ1 = λn for all n ≤ d. Consequently, L is a

single Jordan Block with eigenvalue λ1, so L is of λ1-Jordan-type. This proves the ‘only if’

part of the proposition.

To prove the ‘if’ part, suppose that L is reducible, in which case there exist invariant sub-

spaces X1 and X2 of X such that X = X1⊕X2. Fix an ordered basis {b1, . . . , bd1 , b̃1, . . . b̃d2}

where {b1, . . . , bd1} and {b̃1, . . . , b̃d2} are bases of X1 and X2 respectively. With respect to

this basis L is clearly block diagonal with at least two blocks. It follows that the Jordan

canonical form of L must consist of at least two blocks, and thus L cannot be of λ-Jordan-

type for any λ ∈ C. The argument when K = R is similar if somewhat unwieldy. �.

This result should not be too surprising when K = C in light of Proposition 2.33.

Considering the preceding proposition, it is not unreasonable to refer to the eigenvalue of

an irreducible linear flow when K = R as well, with the understanding that irreducible

linear flows on R really correspond to the conjugate pair {λ, λ̄} for λ ∈ C \ R.

Consequently every irreducible linear flow is generated by a single Jordan Block. But

every linear flow is generated by an operator in Jordan canonical form with respect to an

appropriate basis. Since the Jordan blocks of this operator correspond to irreducible com-

ponents of the flow, the uniqueness of the Jordan decomposition forces a form of uniqueness

on irreducible decompositions of the flow.
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Theorem 2.37 Every nontrivial linear flow ϕ on X has a decomposition ϕ =
⊕m

k=1 ϕk

for some m ∈ N where ϕk is a nontrivial irreducible component of ϕ for each k ≤ m.

Moreover, if
⊕l

k=1 ψk is another such decomposition, then l = m and (reordering {ψk}mk=1

as necessary) ϕk and ψk are linearly equivalent for all k ≤ m.

Proof. Proposition 2.34 demonstrates the existence of such a decomposition. For each

k ≤ m, let Xk be the invariant subspace of X associated with ϕk, and let Lk be the

bounded linear operator that generates ϕk. Further, fix a basis Bk for Xk for each k ≤ m.

By Proposition 2.36, Lk is a single Jordan Block of dimension dk and eigenvalue λk for each

k ≤ m. It follows by taking the basis elements of each Bk in order to form a basis B for X

that Lϕ is in Jordan canonical form with respect to that basis.

One may perform the same procedure on {ψj}lj=1 to form a second basis B̃. It follows

from the uniqueness of the Jordan canonical form that m = l and, upon reordering {ψk}mk=1

and B̃k as necessary, the matrices of Lϕ and Lψ with respect to B and B̃ respectively must

be identical. Now if {bj}dj=1 and {b̃j}dj=1 are the elements of the bases B and B̃ respectively

in order, then the change of basis determined by the map bj 7→ b̃j for all j ≤ d is clearly a

linear equivalence between ϕk and ψk when restricted to Xk for all k ≤ m. This completes

the proof. �

As a consequence of the above theorem, given two irreducible decompositions, the irre-

ducible components of each can be identified with each other in a natural way. This iden-

tification preserves important properties such as the dimension of each component (more

accurately, the dimension of its associated invariant subspace) and in the case of K = C

the eigenvalue of each component. More generally, irreducible decompositions are unique

up to a change of basis, so irreducible decompositions are unique with respect to properties

of operators that are independent of a specific choice of basis.

Having characterized irreducible operators with respect to an appropriate choice of basis,

it is worthwhile to consider the form of irreducible linear flows with respect to that basis.

It follows from Proposition 2.36 that every irreducible linear flow on X with K = C is of

27



the form

etJd(λ) = etλetJd(0) = etλ



1 t 1
2 t

2 1
(d−2)! t

d−2 1
(d−1)! t

d−1

0 1 t 1
(d−3)! t

d−3 1
(d−2)! t

d−2

0 0 1 1
(d−4)! t

d−4 1
(d−3)! t

d−3

. . .

0 0 0 1 t

0 0 0 0 1


for some λ ∈ C with respect to an appropriate basis. A similar (though again less pleasant)

situation arises when K = R, in which case the flow is either of the form described above

for some λ ∈ R or is of the form et<(λ)etJ̃(λ)x for some λ ∈ C \ R where etJ̃(λ) is similar to

the above matrix, except that each ai,j in the matrix is replaced with the 2× 2 block

ai,j ·

 cos(t=λ) sin(t=λ)

− sin(t=λ) cos(t=λ)


with the powers and factorials ranging only to d

2 − 1 instead of d− 1. Written in this form,

it is not hard to make some basic statements concerning the behaviour of irreducible linear

flows.

Proposition 2.38 Let ϕ be an irreducible linear flow on X with eigenvalue λ ∈ C. If

<λ < 0, then X = X+
ϕ . Similarly, if <λ > 0, then X = X−ϕ . Finally, if <λ = 0, then

X+
ϕ = X−ϕ = {0}.

Proof. Fix a basis for X, and assume K = C. As in Proposition 2.36, the K = R case is

similar but more unwieldy due to the sin(t=λ) and cos(t=λ) terms that appear, and it will

be omitted.

Suppose first that <λ < 0, and fix x ∈ X. Then ϕ has the form described above with

respect to an appropriate basis. Now the product etJx can be viewed as a vector consisting

of polynomials with respect to t. It follows that ‖etλetJx‖ ≤
∑d

j=1‖et<λpj(t)‖ where the

pj(t) are for each j ≤ d these polynomials. Clearly limt→+∞ e
t<λ = 0 and it follows that

limt→+∞ e
t<λpj(t) = 0 for all j ≤ d as the exponential behaviour will dominate the polyno-

mial behaviour regardless of the specific polynomials that occur. Thus limt→+∞ ϕ(t, x) = 0.
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As x was arbitrary, it follows that X = X+
ϕ . A similar argument demonstrates the second

statement.

Suppose now that <λ = 0, and further let x ∈ X such that limt→+∞ ϕ(t, x) = 0. In this

case there is no exponential term, and for this limit to hold, it must be the case that pj(t)

is constant zero for all j ≤ d. But this can only be the case if x = 0. Thus X+
ϕ = {0}. A

similar argument works for X−ϕ . �

This result leads to the construction of a third useful invariant subspace of X to go

along with the stable and unstable subspaces — a subspace generated by the parts of the

flow that are neither stable nor unstable.

Definition 2.39 Let ϕ be a flow on X with irreducible decomposition
⊕m

k=1 ϕk. If K is

the subset of {1, . . . ,m} consisting of those indices for which the irreducible component

is neither stable nor unstable, then the central subspace of X, denoted X0
ϕ is given by

X0
ϕ =

⊕
k∈K Xk, and the central part of ϕ, denoted ϕ0 is given by

⊕
k∈K ϕk.

It follows from the construction of the central part, along with Theorem 2.37, that

the behaviour of a linear flow is completely determined by its behaviour along its stable,

unstable, and central subspaces.

Theorem 2.40 Let ϕ be a linear flow on X. Then X = X−ϕ ⊕ X0
ϕ ⊕ X+

ϕ and similarly

ϕ = ϕ− ⊕ ϕ0 ⊕ ϕ+.

Proof. This follows directly from the preceding definition and Proposition 2.38 via an irre-

ducible decomposition of ϕ. �

There are a couple of additional handy results that will be proved before moving on

to discuss homeomorphic and diffeomorphic classification. To start with, it is desirable to

have a norm estimate for flows. This norm estimate will be constructed based on a norm

estimate for irreducible flows. The following proposition is a necessary step toward this

goal.

Proposition 2.41 Let ϕ be an irreducible linear flow on X with K = C. Then, for any

fixed ε ∈ R+, with respect to an appropriate basis ϕ is of the form etλetεJd(0)x, where λ is

the eigenvalue of ϕ.
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Proof. Now Lϕ can be written in the form of a single Jordan block with eigenvalue λ with

respect to an appropriate basis by Proposition 2.36. It follows that Lϕ = λI + Jd(0). But

then etLϕx = etλI+tJd(0)x = etλIetJd(0)x = etλetJd(0)x for all (t, x) ∈ R × X and the result

follows for ε = 1.

To allow for arbitrary values of ε ∈ R+, consider T (ε) := diag(1, ε, ε2, . . . , εd−1) with

respect to the chosen basis. Now T−1(ε)LϕT (ε) = λI + T−1(ε)Jd(0)T (ε). But it is easily

seen that T−1(ε)Jd(0)T (ε) = εJd(0). As T (ε) is clearly an invertible bounded linear operator

on X, the similarity transformation T−1(ε)LϕT (ε) can be viewed as a change of basis, and

it follows that ϕ(t, x) is of the form etλetεJd(0)x for all (t, x) ∈ R × X with respect to the

new basis. �

It is often useful to consider an irreducible flow in the above form with ε = 1. The ε is

only needed for the norm estimate, so that ε‖Jd(0)‖ can be made arbitrarily small.

Lemma 2.42 Let ϕ be an irreducible linear flow on X with K = C where λ is the eigenvalue

of ϕ, and fix r ∈ R large enough that r > <λ. Then ‖ϕ(t, x)‖ ≤ ert‖x‖ holds for all t ≥ 0

and x ∈ X, and consequently ‖ϕt‖ ≤ ert for all t ≥ 0.

Proof. Fix δ ∈ R+ sufficiently small that r − δ > <λ. Then ϕ(t, x) = etλetεJd(0)x under an

appropriate basis with ε ∈ R+ is chosen small enough that ε‖Jd(0)‖ ≤ δ, and consequently

‖ϕ(t, x)‖ ≤ et<λ‖etεJd(0)‖‖x‖ ≤ et(r−δ)etε‖Jd(0)‖‖x‖ ≤ et(r−δ)etδ‖x‖ = ert‖x‖ for all t ≥ 0

and x ∈ X. �

One might hope to extend this result to arbitrary linear flows by considering an irre-

ducible decomposition. Unfortunately there is no guarantee that an arbitrary norm will

behave well when a space is decomposed via an irreducible decomposition of a flow. With

that said, given an arbitrary norm, one can always construct a new norm that does behave

well when a space is decomposed in this fashion.

Proposition 2.43 Let ϕ be a linear flow on X, and fix r ∈ R large enough that r > <λ

for all λ ∈ σ(Lϕ). Then there exists a norm ‖·‖D on X such that ‖ϕ(t, x)‖D ≤ ert‖x‖D for

all t ≥ 0 and x ∈ X.

Proof. Suppose first that K = C, and let
⊕m

k=1 ϕk be an irreducible decomposition of ϕ.

By the preceding lemma ‖ϕk(t, xk)‖ ≤ ert‖xk‖ for all t ≥ 0 and xk ∈ Xk and k ≤ m. Now
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define the map ‖·‖D : X → R by setting ‖x‖D =
∑m

k=1‖xk‖. It is easily verified that ‖·‖d is

a norm on X; moreover, ‖ϕ(t, x)‖D =
∑m

k=1‖ϕk(t, xk)‖ ≤
∑m

k=1 e
rt‖xk‖ = ert‖x‖D for all

t ≥ 0 and x ∈ X.

In the case where K = R, consider the complexification ϕC of ϕ. As ϕC and ϕ have the

same eigenvalues, by the above argument there exists a norm ‖·‖D̃ on XC which satisfies

the property for ϕC. Define ‖·‖D to be the restriction of ‖·‖D̃ to X. It is easily verified

that ‖·‖D is indeed a norm on X and ‖ϕ(t, x)‖D = ‖ϕC(t, x)‖D̃ ≤ ert‖x‖D̃ = ert‖x‖D for

all t ≥ 0 and x ∈ X. �

The other useful result that will be needed in the upcoming discussion of flow classifi-

cations is the invertibility of certain matrices. To start with, recall the matrix T (ε) from

the proof of Proposition 2.41. This construction appears frequently (with ε replaced with

t) in the process of discussing homeomorphic equivalence of nonhyperbolic flows, so it is

worthwhile to give it a formal definition.

Definition 2.44 A t-rescaling, denoted Td(t), is the bounded linear operator on Kd given

by Td(t) := diag(1, t, t2, . . . , td−1).

Note that a Td(t) is invertible for all non-zero t ∈ R, with T−1d (t) = Td(t
−1). This

construction ends up being useful in many contexts. In particular, consider the matrix

form of an irreducible complex flow ϕ with respect to some appropriate basis so that ϕt is

of the form

etλ



1 t 1
2 t

2 1
(d−2)! t

d−2 1
(d−1)! t

d−1

0 1 t 1
(d−3)! t

d−3 1
(d−2)! t

d−2

0 0 1 1
(d−4)! t

d−4 1
(d−3)! t

d−3

. . .

0 0 0 1 t

0 0 0 0 1


for all t ∈ R. Given any z ∈ Z and constant d × d matrix M , one may introduce t into

M with the diagonal t pattern similar to the above matrix — that is, with the element at

position (j1, j2) multiplied by tz+j2−j1 — by considering tzT−1d (t)MTd(t). Conversely, given

any d× d matrix M(t) with this diagonal t pattern, one may apply t−zTd(t)M(t)T−1d (t) to
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remove the t pattern, resulting in a constant matrix. As an example of the usefulness of

t-rescalings, the notion is used in the proof of the following proposition.

Proposition 2.45 Let n ∈ N and let l ∈ N0 with l ≤ n. Then the matrix

Mn,l =



1
n!

1
(n+1)!

1
(n+2)!

1
(n+l)!

1
(n−1)!

1
n!

1
(n+1)!

1
(n+l−1)!

1
(n−2)!

!
(n−1)!

1
n!

1
(n+l−2)!

. . .

1
(n−l)!

1
(n−l+1)!

1
(n−l+2)!

1
n!


is invertible.

Proof. Instead of working with Mn,l directly, consider tnT−1l+1(t)Mn,lTl+1(t) for some nonzero

t ∈ R. It is easily seen that
p(t)

p′(t)
...

p(l)(t)

 =


c0

1
n! t

n + c1
1

(n+1)! t
n+1 + · · ·+ cl

1
(n+l)! t

n+l

c0
1

(n−1)! t
n−1 + c1

1
n! t

n + · · ·+ cl
1

(n+l−1)! t
n+l−1

...

c0
1

(n−l)! t
n−l + c1

1
(n−l+1)! t

n−l+1 + · · ·+ cl
1
n! t

n

 = 0

for any c ∈ Cl+1 such that tnT−1l+1(t)Mn,lTl+1(t)c = 0. Now consider the lth degree polyno-

mial q(t) := c0
1
n! + c1

1
(n+1)! t + · · ·+ cl

1
(n+l)! t

l. Now 0 = p(t) = tnq(t), so q(t) = 0 as t 6= 0.

But then 0 = p′(t) = ntn−1q(t) + tnq′(t) = tnq′(t), so q′(t) = 0 as t 6= 0. Continuing in this

fashion, q(j)(t) = 0 for all j ≤ l. It follows that q is constant zero, and thus c = 0. This

shows that tnT−1l+1(t)Mn,lTl+1(t) is invertible for all nonzero t ∈ R. But for all nonzero t ∈ R

clearly tnT−1l+1(t) and Tl+1(t) are both invertible. Therefore Mn,l is also invertible. �.

It is easily seen that these factorial-type matrices arise as submatrices of the matrix

form of an irreducible flow described on the previous page; see also Section 4.2.
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3 Classification Theorems

This chapter builds on the ideas and results of the previous chapter to provide characteriza-

tions for several notions of flow equivalence. So far only linear equivalence has been consid-

ered in detail (Theorem 2.17) — diffeomorphic and homeomorphic equivalence have yet to

be considered. It turns out that the stronger notions of flow equivalence display a substan-

tial degree of rigidity; diffeomorphic equivalence in fact coincides with linear equivalence.

The situation is not the same for homeomorphic equivalence. Characterizing homeomorphic

equivalence is substantially more challenging, so that its discussion is split into two parts.

A characterization for homeomorphic equivalence of hyperbolic flows is first provided, prior

to the discussion of the general case.

3.1 Diffeomorphic Equivalence

Proposition 2.9 demonstrates that linear (that is, finest) equivalence implies diffeomorphic

equivalence which in turn implies homeomorphic (that is, coarsest) equivalence. This simply

reflects the fact that every linear map is its own best linear approximation and is thus dif-

ferentiable, and every differentiable map is necessarily continuous; that is, L(X) ⊂ D(X) ⊂

C(X), where D(X) and C(X) are the spaces of differentiable and continuous maps on X

respectively. These inclusions are in general strict, and it is tempting to extend this addi-

tional fact to the chain of equivalences — that is, one might assume that linear equivalence

is strictly finer than diffeomorphic equivalence and so on. It turns out that this is not the

case. The following lemma demonstrates that diffeomorphic equivalence is at least as fine as

linear equivalence by generating a linear equivalence from the derivative of a diffeomorphic

equivalence.

Lemma 3.1 Let ϕ and ψ be linear flows on X. If ϕ and ψ are diffeomorphically equivalent,

then they are linearly equivalent.

Proof. Let h be a diffeomorphic equivalence between ϕ and ψ, and let H be the derivative

of h at 0, so that H := D0h. It follows immediately that H ∈ L(X). As a consequence

of the chain rule D0hD0h
−1 = Dh−1(0)hD0h

−1 = D0(h ◦ h−1) = D0I = I and similarly

D0h
−1D0h = I. Thus H is invertible.
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Now h ◦ etLϕ = etLψ ◦ h for all t ∈ R since h is an equivalence. Again as a consequence

of the chain rule HetLϕ = D0h ◦ etLϕ = D0e
tLψ ◦ h = etLψH for all t ∈ R. It follows that

etHLϕH
−1

= HetLϕH−1 = etLψ for all t ∈ R. But then Lψ = HLϕH
−1 by Proposition 2.12,

so Lϕ is similar to Lψ. Thus ϕ and ψ are linearly equivalent by Theorem 2.17. �

This lemma in combination with Proposition 2.9 demonstrates that diffeomorphic equiv-

alence and linear equivalence are in fact identical, so diffeomorphic equivalence may be

characterized in the same fashion as linear equivalence.

Theorem 3.2 Let ϕ and ψ be linear flows on X. The following are equivalent:

(i) ϕ are ψ are diffeomorphically equivalent;

(ii) ϕ and ψ are linearly equivalent;

(iii) Lϕ and Lψ are similar.

Proof. (i) =⇒ (ii) follows immediately from the previous lemma. (ii) =⇒ (i) follows from

Proposition 2.9. Finally, (ii) ⇐⇒ (iii) is just Theorem 2.17. �

When it comes to equivalences stronger than homeomorphic, diffeomorphic equivalence

is as fine as it gets; homeomorphic equivalence classes may break into several diffeomor-

phic equivalence classes, but smoother equivalence does nothing to break up those classes

further. The above theorem essentially reduces the problem of linearly, diffeomorphically,

and homeomorphically classifying flows to the linear and homeomorphic cases. Since linear

equivalence has already been characterized, all that remains is to characterize homeomor-

phic equivalence.

Before examining homeomorphic equivalence in detail, it is worthwhile to point out that

diffeomorphic equivalence is in fact strictly finer than homeomorphic equivalence. This

is true even in the case of hyperbolic linear flows, and moreover even when the space

is one-dimensional. It is not hard to construct an example of two linear flows that are

homeomorphically but not diffeomorphically equivalent.

Example 3.3 Consider flows etx and e3tx on R. The induced linear operators in this case

have eigenvalues 1 and 3 respectively, so the flows cannot be diffeomorphically equivalent.
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On the other hand, the map h : R → R given by h(x) = x3 is clearly a homeomorphism

with

h(etx) = e3tx3 = e3th(x)

for all x ∈ R and t ∈ R. It follows that the two flows are homeomorphically equivalent. �

3.2 Homeomorphic Equivalence of Hyperbolic Flows

Homeomorphic equivalence has so far only been discussed briefly, namely in Proposition

2.24, where it was demonstrated that a homeomorphic equivalence between two flows pre-

serves their respective stable and unstable subspaces. These subspaces were discussed in

more detail in the previous chapter. This section will build on Proposition 2.24 in con-

junction with various properties of the stable and unstable subspaces toward developing a

characterization of homeomorphic equivalence. Note that this section is based heavily on

Chapter 13 of [1].

In particular recall Proposition 2.38 — irreducible components of a linear flow ϕ are

either stable, unstable, or central if their eigenvalue λ satisfies <λ < 0, <λ > 0 , or <λ = 0

respectively. Consequently, ϕ+ and ϕ− consist of all the components of ϕ for which the

eigenvalue has a negative or positive real part respectively. It follows that dimX−ϕ is just

the sum of the sizes of the stable component flows, and similarly for dimX+
ϕ . In this

fashion Propositions 2.24 and 2.38 can be combined to produce a partial characterization

of homeomorphic equivalence.

Proposition 3.4 Let ϕ and ψ be two linear flows on X. If ϕ and ψ are homeomorphically

equivalent, then the following hold:

(i) dimX+
ϕ = dimX+

ψ and dimX−ϕ = dimX−ψ ;

(ii) Lϕ and Lψ have the same number of eigenvalues (counting algebraic multiplicities)

with negative real part and the same number of eigenvalues (counting algebraic multi-

plicities) with positive real part.

Proof. Since homeomorphisms preserve dimension [4], it follows from Proposition 2.24 that

dimX+
ϕ = dimh(X+

ϕ ) = dimX+
ψ and similarly that dimX−ϕ = dimX−ψ .
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For (ii), consider first ϕ+. It follows from Proposition 2.38 that the irreducible compo-

nents of ϕ in ϕ+ are exactly the components for which the real part of their eigenvalue is

negative. Given a irreducible decomposition, let K ⊆ {1, . . . ,m} be the indexes of these

components, so ϕ+ =
⊕

k∈K ϕk. As a consequence of Proposition 2.36 the ϕk correspond to

the Jordan blocks of Lϕ of size dk for which the eigenvalue has negative real part. It follows

that the number of eigenvalues with negative real part (counting algebraic multiplicities) is

the dimension of ϕ+; that is, the number of eigenvalues with negative real part (counting

algebraic multiplicities) is dimX+
ϕ . A similar statement holds for the number of eigenvalues

of negative real part for Lψ, and thus it follows from (i) that Lϕ and Lψ must have the

same number of eigenvalues (counting algebraic multiplicities) with negative real part. A

similar argument for eigenvalues with positive real part completes the proof of (ii). �

This may not seem like a strong foundation from which to construct a characteriza-

tion of homeomorphic equivalence — after all, knowledge of the dimensions of a couple

of subspaces can hardly be considered a substantial insight. Indeed, it is not particularly

challenging to construct two linear flows that are not homeomorphically equivalent despite

having appropriately-sized stable and unstable subspaces.

Example 3.5 Fix a basis for C3, consider the flows generated by

L =


1 0 0

0 −1 0

0 0 i

 and M =


1 0 0

0 −1 0

0 0 2i

 ,

and fix the point (t, x) = (π, (0, 0, 1)) ∈ R × C3. Further, let h be any homeomorphism of

C3. On one hand h(etMx) = h((0, 0, e2iπ)) = h((0, 0, 1)) = h(x), but on the other hand

etLh(x) = h(x) only if h(x) = 0. Now consider y = (0, 0, 2). Since h is invertible h(y) 6= 0,

and thus etLh(y) 6= h(y). Unfortunately, as in the case of x, y satisfies h(etMy) = h(y). It

follows that h is not an equivalence, let alone a homeomorphic equivalence. Since h was

an arbitrary homeomorphism, the flows generated by L and M are not homeomorphically

equivalent, despite each having one-dimensional stable and unstable subspaces. �

Beyond showing that the converse of Proposition 3.4 does not hold in general, the

preceding example serves to illustrate how periodic portions of a flow can make even basic
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equivalence impossible — note that the continuity of h was never required in the previous

example. The periodic aspects of two flows must line up in a very specific way to even allow

for the possibility of homeomorphic equivalence. This will be discussed in more detail in

future sections.

With that said, the flows in the preceeding example are clearly not hyperbolic. Some-

what surprisingly, the converse of Proposition 3.4 actually holds for hyperbolic linear flows;

in other words, identically-sized stable and unstable subspaces imply homeomorphic equiv-

alence in this case. As such, homeomorphic equivalence of hyperbolic linear flows can be

completely characterized based solely on the dimensions of stable and unstable subspaces.

Proving this fact rigorously is non-trivial, but the idea behind the proof is relatively straight-

forward.

It turns out that the nontrivial paths of irreducible hyperbolic linear flows are all spirals

about the origin; there is always an exponential component that ends up dominating the

behaviour of the flow. This exponential component arises from the real part of the eigen-

value of the induced operator (since the real part is nonzero) and the sign of the real part

determines whether the spirals are directed toward or away from the origin. More gener-

ally, the nontrivial paths of a stable or unstable flow are also (somewhat more complicated)

spirals toward or away from the origin.

The idea then is that one can homeomorphically straighten the nontrivial paths of the

stable (respectively unstable) part of a flow and then unstraighten those paths into the

nontrivial paths of the stable (respectively unstable) part of another flow, assuming the two

parts are the same size. The process of straightening paths consists of demonstrating that

every nontrivial path intersects a unit sphere at exactly one point. Assuming this is indeed

possible, one may take any point in X \ {0} to that sphere while storing the time t required

to get there. One then may proceed by following for time t the path of the flow generated

by either −I or I (whose paths consist of straight lines to or from the origin respectively)

as appropriate from the sphere.

Recall Proposition 2.43, which states that for every linear flow ϕ and r ∈ R satisfying

r > <λ for all λ ∈ σ(Lϕ) there exists a norm ‖·‖D such that ‖ϕ(t, x)‖D ≤ ert‖x‖D for all

t ≥ 0 and x ∈ X. One demonstrates that every nontrivial path of a stable or unstable linear
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flow — that is, a flow with <λ < 0 or <λ > 0 for all λ ∈ σ(Lϕ) respectively — intersects a

unit sphere at exactly one point using this norm and its associated unit sphere.

Lemma 3.6 Let ϕ be a stable or unstable linear flow on X. There exists a norm ‖·‖D on

X so that the map ϕ̃ : R× SD → X \ {0} given by ϕ̃(t, x) = ϕ(t, x) for all (t, x) ∈ R× SD

is a homeomorphism.

Proof. Assume first that ϕ is stable. Then <λ < 0 for all λ ∈ σ(Lϕ), and fix r ∈ R+ such

that λ < −r for all λ ∈ σ(Lϕ). Proposition 2.43 provides a norm ‖·‖D on X with the

property that ‖ϕ(t, x)‖D ≤ e−rt‖x‖D for all t ≥ 0 and x ∈ X, and this norm is in fact the

desired norm, although that remains to be proved. Now it follows that ‖etLϕ‖D ≤ e−rt for

all t ≥ 0. But then ‖x‖D = ‖etLϕe−tLϕx‖D ≤ e−rt‖e−tLϕx‖D for all t ≥ 0 and x ∈ X,

so ert‖x‖D ≤ ‖e−tLϕx‖D for all t ≥ 0 and x ∈ X. Replacing t with −t in the preceding

equation results in the reverse inequality ‖ϕ(t, x)‖D ≥ e−rt‖x‖D for all t ≤ 0 and x ∈ X.

To summarize, the following inequalities hold:

(i) ‖etLϕx‖D ≤ e−rt‖x‖D for all t ≥ 0 and x ∈ X and

(ii) ‖etLϕx‖D ≥ e−rt‖x‖D for all t ≤ 0 and x ∈ X.

Fix x ∈ X \ {0}. As a consequence of (i), one may choose a t ∈ R sufficiently large

that ‖etLϕx‖D < 1. Similarly, one may choose a t ∈ R sufficiently small that ‖etLϕx‖D > 1

as a consequence of (ii). It follows from the continuity of ϕ that ‖etLϕx‖D = 1 for some

t ∈ R. Since x was arbitrary, every non-trivial path of ϕ intersects SD at at least one point.

Now fix x ∈ SD. The above two inequalities imply that ‖etLϕx‖D < 1 for all t > 0 and

‖etLϕx‖D > 1 for t < 0. Since x was again arbitrary, it follows that every non-trivial path

of ϕ intersects SD at at most one point, so ‖etLϕx‖D = 1 for exactly one t ∈ R for every

x ∈ X \ {0}.

Again, fix x ∈ X \ {0}, and fix t ∈ R such that ‖etLϕx‖D = 1. It follows that

ϕ̃(−t, ϕ(t, x)) = ϕ(−t, ϕ(t, x)) = x for (−t, ϕ(t, x)) ∈ R × SD. Consequently ϕ̃ is sur-

jective, since x was arbitrary. On the other hand, consider points (s, x), (t, y) ∈ R × SD

such that ϕ̃(s, x) = ϕ̃(t, y). Then ‖e−sLϕϕ̃(s, x)‖D = ‖ϕ(−s, ϕ(s, x))‖D = ‖x‖D = 1 and

‖e−tLϕϕ̃(s, x)‖D = ‖etLϕϕ̃(t, y)‖D = ‖ϕ(−t, ϕ(t, y))‖D = ‖y‖D = 1, and, by the above,
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it must be that s = t. It follows that x = ϕ(−s, ϕ(s, x)) = ϕ(−t, ϕ(t, y)) = y since

ϕ(s, x) = ϕ̃(s, x) = ϕ̃(t, y) = ϕ(t, y). Thus ϕ̃ is injective, as (s, x) and (t, y) were arbitrary.

It remains to show that ϕ̃−1 is continuous, as the continuity of ϕ̃ follows immediately

from the continuity of ϕ. Consider a sequence {xn}n∈N ⊆ X \ {0} converging to some

x ∈ X \{0}. Necessarily there exists a sequence {(tn, yn)}n∈N ⊆ R×SD with xn = ϕ̃(tn, yn)

for all n ∈ N.

Now consider a subsequence {(tk, yk)} of {(tn, yn)}n∈N. It follows from (i) and (ii)

that ‖xk‖D = ‖etkLϕyk‖D ≤ e−rtk‖yk‖D = e−rtk whenever tk ≥ 0 and similarly it follows

that ‖xk‖D = ‖etkLϕyk‖D ≥ e−rtk‖yk‖D = e−rtk whenever tk ≤ 0, where {xk} is the

induced subsequence of {xn}n∈N. As {xk} is a subsequence of {xn}n∈N it also converges to

x ∈ X \ {0}, and thus for sufficiently large k it must be that ‖xk‖D is greater than, say,

1
2‖x‖D. But since ‖xk‖D ≤ e−rtk for all tk ≥ 0 there must exist an M ∈ R+ such that

tk ≤M for sufficiently large k. Similarly, it must be that ‖xk‖D is less than, say, 2‖x‖D for

sufficiently large k, and since ‖xk‖D ≥ e−rtk for all tk ≤ 0 there must also exist an m ∈ R−

such that tk ≥ m for sufficiently large k. Consequently {tk} is bounded.

Since SD is compact, and since {tk} is bounded, there exists a further subsequence

{(tj , yj)} of {(tk, yk)} that is convergent to some (t, y) ∈ R × SD. But the continuity of ϕ

forces (t, y) = ϕ̃−1(x). Since the subsequence {(tk, yk)} was arbitrary, every subsequence

of {(tn, yn)}n∈N = {ϕ̃−1(xn)}n∈N has a further subsequence converging to ϕ̃−1(x), and

consequently {ϕ̃−1(xn)}n∈N converges to ϕ̃−1(x). As {xn}n∈N was itself arbitrary, ϕ̃−1 is

continuous. This completes the proof for the stable case.

Suppose now that ϕ is unstable. Under an appropriate choice of r ∈ R+ Proposition 2.43

can be applied to the stable flow et(−Lϕ)x. It follows as above that ‖et(−Lϕ)x‖D ≤ e−rt‖x‖D

for all t ≥ 0 and x ∈ X, and similarly ‖et(−Lϕ)x‖D ≥ e−rt‖x‖D for all t ≤ 0 and x ∈ X. But

then ‖etLϕx‖D ≤ ert‖x‖D for all t ≤ 0 and x ∈ X, and similarly ‖etLϕx‖D ≥ ert‖x‖D for all

t ≥ 0 and x ∈ X. These two inequalities can be applied as in the stable case to complete

the proof for the unstable case. �

Applying the inverse of ϕ̃ as defined in the preceding lemma amounts to compressing

the nontrivial paths of a stable or unstable flow down to the points of an appropriate unit

sphere. It is tempting to now simply apply the preceding lemma to the flows generated by
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−I and I and then compose the two resulting homeomorphisms, but this approach has a

potential flaw: the unit sphere used for the first homeomorphism may not be the same as the

unit sphere used for the second one. Ultimately, since every unit sphere is homeomorphic

(as a consequence of the fact that all norms are equivalent for finite dimensional normed

spaces) this does not pose a significant problem. In fact the problem can be completely

circumvented, as it is easily seen that the flows generated by −I and I intersect any unit

sphere at exactly one point. This is due to the fact that for any norm ‖e±tIx‖ = e±t‖x‖ for

all (t, x) ∈ R×X.

Lemma 3.7 For any norm ‖·‖ on X the maps h+, h− : R × S → X \ {0} given by

h+(t, x) = e−tIx and h−(t, x) = etIx respectively for all (t, x) ∈ R×S are homeomorphisms.

Proof. It is easily verified that h+ and h− are clearly bijections where h−1+ and h−1− are

given by h−1+ (x) = (− ln‖x‖, e− ln‖x‖Ix) and h−1− (x) = (ln‖x‖, e− ln‖x‖Ix) respectively for all

x ∈ X \ {0}. Moreover, h−1+ and h−1− are clearly both continuous, and h+ and h− are both

continuous as a restriction of the flows e−tIx and etIx. �

At this point, since Lemma 3.7 works for any unit sphere, Lemmas 3.6 and 3.7 can be

combined to produce a homeomorphism of the nontrivial paths of a stable or unstable flow

into the nontrivial paths of either of the flows generated by −I and I. This homeomorphism

can be extended to the entire space by simply fixing the origin, although the extension may

fail to be continuous at that point. It turns out that continuity at the origin depends on

the relative directions of the two flows. The extended map will fail to be continuous at

the origin if the nontrivial paths of the two flows are in opposite directions — that is, one

flow has nontrivial paths directed toward the origin while the nontrivial paths of the other

flow are directed away from the origin. For example, the extension of the homeomorphism

between a stable flow and the flow generated by I will fail to be bicontinuous at the origin.

On the other hand, the extended map will be bicontinuous at the origin if the nontrivial

paths of the two flows are in the same direction; better yet, the extended map in this case

turns out to be a homeomorphic equivalence.

Proposition 3.8 Every stable or unstable flow on X is homeomorphically equivalent to the

flow generated by −I or I respectively.
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Proof. Suppose that ϕ is a stable flow on X. Further let ‖·‖D be the norm on X guaranteed

to exists by Lemma 3.6, and consider the map h : X → X given by h(0) = 0 and h(x) = (h+◦

ϕ̃−1)(x) for all x ∈ X\{0}, where ϕ̃ and h+ are the homeomorphisms guaranteed by Lemmas

3.6 and 3.7 respectively. It follows from these lemmas that h|X\{0} is a homeomorphism,

and it is further clear that h is a bijection. It remains to be shown that h is bicontinuous

at 0 and is an equivalence.

Fix ε ∈ R+, and consider that h(x) = e−τ(x)Iχ(x) for all x ∈ X \ {0}, where τ : X → R

and χ : X → SD are the component functions of ϕ̃−1 : X → R× SD. Now ‖e−tIx‖D = e−t

for all t ∈ R and x ∈ SD. As such, there exists a tε ∈ R+ such that e−tIx ∈ Bε(0)

for all t ∈ (tε,+∞) and x ∈ SD. Consequently, if it is possible to choose δ ∈ R+ such

that ‖x‖D ∈ Bδ(0) \ {0} implies τ(x) ∈ (tε,+∞), then ‖x‖D ∈ Bδ(0) \ {0} further forces

h(x) = e−τ(x)Iχ(x) ∈ Bε(0), as χ(x) ∈ SD for all x ∈ X \ {0}.

It turns out that it is always possible to choose such a δ. Fix δ = ‖e−tεLϕ‖−1D . Then

‖e−tεLϕx‖D < 1 for all x ∈ Bδ(0), and, applying Proposition 2.43 with an appropriate

choice of r ∈ R+, it follows that ‖e(t−tε)Lϕx‖D ≤ ‖etLϕ‖D‖e−tεLϕx‖D < e−rt ≤ 1 for all

t ≥ 0 and x ∈ Bδ(0). The strict inequality in the above equation means that in particular

‖e(t−tε)Lϕx‖D 6= 1 for all t ∈ R+
0 and x ∈ Bδ(0). Since ‖e−τ(x)Lϕx‖D = 1 from the definition

of τ , it must be that −τ(x) 6= t − tε for all t ≥ 0 and x ∈ Bδ(0) \ {0}. It follows that

τ(x) ∈ (tε,+∞) for all x ∈ Bδ(0) \ {0}, and by the above argument, and since ε was

arbitrary, h is continuous. Continuity of h−1 is similar.

To see that h(ϕ(t, x)) = e−tIh(x), consider that this is trivially true for all t ∈ R when

x = 0. Using τ and χ as defined above

h(ϕ(t, x)) = h(ϕ(t, eτ(x)Lϕχ(x)))

= h(e(t+τ(x))Lϕχ(x))

= e−(t+τ(x))Iχ(x)

= e−tIe−τ(x)Iχ(x)

= e−tIh(x)

for all (t, x) ∈ R × X \ {0}. Thus h is a homeomorphic equivalence. The unstable case

proceeds similarly with some minor adjustments, as in (the proof of) Lemma 3.6. �
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Proposition 3.8, along with Lemmas 3.6 and 3.7, are constructive — the desired maps

are built explicitly as part of the proofs. As such, it is tempting to attempt to construct the

homeomorphic equivalence of Proposition 3.8 directly given a specific stable or unstable flow.

A problem arises here in that the equivalence constructed in Proposition 3.8 is based on the

inverse of the homeomorphism constructed in Lemma 3.6, rather than the homeomorphism

directly, and providing an explicit representation of that inverse can be non-trivial. The

following example demonstrates this, and it also shows how this issue can be overcome.

Example 3.9 Consider the stable flow ϕ generated by

Lϕ =

 −2 1

0 −2


on C2 with the standard basis and norm. It is unnecessary to work with a specially con-

structed norm in this case (as the flow is irreducible, so the required norm estimate follows

directly from Lemma 2.42) and by Lemma 3.6 the map ϕ̃ : R × S → X \ {0} given by

ϕ̃(t, x) = ϕ(t, x) is a homeomorphism. The inverse then is given by ϕ̃−1 = (τ(x), χ(x)) for

some τ : X \ {0} → R and χ : X \ {0} → S. χ is given by χ(x) = e−τ(x)Lϕx, but what is τ?

One could attempt to solve for τ using the norm, as

e−τ(x)Lϕx = e2τ(x)e−τ(x)J(0)x

= e2τ(x)

 1 −τ(x)

0 1

 x1

x2


= e2τ(x)(x1 − τ(x)x2, x2)

so e4τ(x)‖(x1 − τ(x)x2, x1)‖2 = ‖e−τ(x)Lϕx‖2 = 1. This works out to be the product of a

polynomial and an exponential and cannot be easily solved algebraically. Instead of working

from ϕ to e−tIx, consider working from e−tIx to ϕ — that is, consider h−1 rather than h.

In this case the inverse map is coming from e−tIx, and in particular τ(x) = − ln‖x‖ in

this case, as ‖e− ln‖x‖Ix‖ = 1 for all nonzero x ∈ X. Thus h−1 is given by h(0) = 0 and

h−1(x) = e− ln‖x‖Lϕe− ln‖x‖Ix = e− ln‖x‖e− ln‖x‖Lϕx for all nonzero x ∈ X. �

At this point it is possible to combine Propositions 3.4 and 3.8 to fully characterize

homeomorphic equivalence of hyperbolic linear flows.
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Theorem 3.10 Let ϕ and ψ be hyperbolic linear flows on X. The following are equivalent:

(i) ϕ and ψ are homeomorphically equivalent;

(ii) dimX+
ϕ = dimX+

ψ ;

(iii) dimX−ϕ = dimX−ψ .

Proof. (i) =⇒ (ii) and (i) =⇒ (iii) follow from Proposition 3.4. (ii) ⇐⇒ (iii) is a

simple consequence of the fact that X+
ϕ ⊕ X−ϕ = X = X+

ψ ⊕ X−ψ as ϕ and ψ are both

hyperbolic. To see that both (ii) and (iii) imply (i), suppose d1 = dimX+
ϕ = dimX+

ψ and

d2 = dimX−ϕ = dimX−ψ . Now ϕ+ and ψ+ are both homeomorphically equivalent to the

flow generated by −Id1 by Proposition 3.8, so by transitivity there exists a homeomorphic

equivalence h+ between ϕ+ and ψ+. Similarly there exists a homeomorphic equivalence h−

between ϕ− and ψ−. As ϕ and ψ are both hyperbolic, ϕ = ϕ+ ⊕ ϕ− and ψ = ψ+ ⊕ ψ−,

and it follows from Theorem 2.29 that ϕ and ψ are homeomorphically equivalent. �

Theorom 3.10 can easily be modified to characterize homeomorphic equivalence of hy-

perbolic linear flows based on properties of the induced operators rather than the unstable

and stable subspaces.

Corollary 3.11 Two hyperbolic linear flows ϕ and ψ on X are homeomorphically equivalent

if and only if the number of eigenvalues (counting algebraic multiplicity) of Lϕ with negative

(respectively positive) real part is the same as the number of eigenvalues (counting algebraic

multiplicity) of Lψ with negative (respectively positive) real part.

Proof. This follows immediately from Theorem 3.10 and the proof of Proposition 3.4. �

3.3 Homeomorphic Equivalence of General Linear Flows

With homeomorphic equivalence fully characterized for hyperbolic linear flows, it makes

sense to step back and consider homeomorphic equivalence of general linear flows. Many

results of the previous section do not require a hyperbolic flow, and thus still apply in

the general case. For example, Proposition 3.4 guarantees that the stable subspaces of
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two homeomorphically equivalent linear flows have the same dimension, and this is also

true for the unstable subspaces. Conversely, Proposition 3.8 guarantees that if the stable

subspaces of two linear flows have the same dimension, then the stable parts of the two flows

are homeomorphically equivalent, and the situation is similar for the unstable subspaces.

This is enough to completely characterize homeomorphic equivalence between flows that are

hyperbolic, as such flows are completely determined by their stable and unstable subspaces.

The problem that arises in the case of general linear flows is their central subspaces. It

is an immediate consequence of Proposition 3.4 that the central subspaces of two homeo-

morphically equivalent linear flows must have the same dimension. Unlike the stable and

unstable subspaces, the converse does not hold in general; that is, even if the central sub-

spaces of two linear flows have the same dimension, the central parts of the two flows need

not be homeomorphically equivalent. Recall Example 3.5, for instance. In that example it

was shown that the linear flows on C3 generated by

L =


1 0 0

0 −1 0

0 0 i

 and M =


1 0 0

0 −1 0

0 0 2i


were not homeomorphically equivalent. But the stable and unstable parts of these flows are

clearly homeomorphically equivalent, so it must be that the central parts are not. But it is

also clear that the central subspaces of the two flows have the same dimension.

As such, Theorem 3.10 cannot be trivially extended to general linear flows. With that

said, it turns out that there is a substantial degree of rigidity when it comes to the central

parts of two homeomorphically equivalent linear flows. It will be proved in the next chapter

that, given any linear flow ϕ on X with K = C, there exists a family {BCn,t(ϕ)}n∈N0,t∈R+

of subspaces of X such that for any homeomorphically equivalent linear flow ψ on X with

equivalence h the following two properties hold:

(i) h(BCn,t(ϕ)) = BCn,t(ψ) for all n ∈ N0 and t ∈ R+ and

(ii) the dimension of BCn,t(ϕ) is the number of irreducible components of ϕ of dimension

greater than n with eigenvalue either 0 or z2πi
t for some z ∈ Z, and similarly for

BCn,t(ψ).
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Specifically, this is Theorem 4.12. Now since homeomorphisms preserve dimension [4], (i)

guarantees that the number of irreducible components of ψ of size greater than n with

eigenvalue either 0 or z2πi
t for some nonzero z ∈ Z is the same as that of ϕ. Note that

both 0 and z2πi
t for all z ∈ Z and t ∈ R+ lie on iR, so only irreducible components of

the central part of a flow are ever counted by elements of this family. Conversely, every

irreducible component of the central part of a flow is counted by some element of this family,

as any λ ∈ iR \ {0} can be written as ±2πi
t by setting t = 2π

|λ| . In fact, if the dimensions

of the elements of {BCn,t(ϕ)}n∈N0,t∈R+ are known, then it is possible to almost completely

determine the irreducible decomposition of ϕ0 by taking advantage of property (ii).

The general idea behind this is straightforward, though the details can become finicky.

To start with, since ϕ is finite-dimensional, one can always select a t so that for all irreducible

components the eigenvalue does not satisfy λ = z2πi
t for any nonzero z ∈ Z. In this way only

irreducible components with eigenvalue 0 will be counted by BCn,t(ϕ) for this choice of t.

Now BCn,t(ϕ) is trivial for all n ≥ d, as it is impossible for an irreducible component to have

dimension greater than that of the total space. As such dim BCd−1,t(ϕ) is not simply the

number of irreducible components of dimension greater than d− 1; rather, dim BCd−1,t(ϕ)

is the number of irreducible components of dimension exactly d with eigenvalue 0. But

then dim BCd−2,t(ϕ)−dim BCd−1,t(ϕ) is the number of irreducible components of dimension

exactly d−1 with eigenvalue 0, dim BCd−3,t(ϕ)−dim BCd−2,t(ϕ) is the number of irreducible

components of dimension exactly d − 2 with eigenvalue 0, and so on. Continuing in this

fashion one can determine the number of irreducible components of every dimension with

eigenvalue 0 until reaching dim BC0,t(ϕ), the number of irreducible components of any

dimension with eigenvalue 0.

At this point one can select a different t — a t for which an irreducible component with

a nonzero eigenvalue is counted by BCn,t(ϕ), at least for sufficiently small n ∈ N0. Taking

care to subtract the number of irreducible components of each dimension with eigenvalue 0

from the new totals (as these components appear no matter the choice of t) one can then

determine the number of irreducible components of each dimension with this new eigenvalue.

This procedure is repeated for various values of t until the dimensions of all the irreducible

components of ϕ0 are known. Some care is needed when it comes to choosing each new value
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of t, as multiple nonzero eigenvalues can line up with the same t. An example illustrates

this technique in action.

Example 3.12 Suppose ϕ is a linear flow on X with K = C. As X is finite-dimensional, ϕ

has a finite collection of eigenvalues, say {0,−i, i, 2i, 3i,−4i, 5i, 6i}. As irreducible compo-

nents of ϕ with eigenvalue 0 will always contribute nontrivially to BCn,t(ϕ) for all t ∈ R+

and small n ∈ N0, the first goal is to choose a t0 ∈ R+ so that only the irreducible com-

ponents with eigenvalue 0 can possibly contribute to BCn,t0(ϕ) for any n ∈ N0. Consider

t0 = 2π
7 . If ϕk is an irreducible component of ϕ with eigenvalue λk, then ϕk can contribute

nontrivially to BCn,t0(ϕ) only if either λk = 0 or λk = z2πi
t0

= z7i for some nonzero z ∈ Z.

The latter case is clearly impossible here, as otherwise |λk| = |7z| ≥ 7.

Now ϕ must have at least one irreducible component with eigenvalue 0, so it must

be the case that dim BCn,t0(ϕ) > 0 for some small n ∈ N0, say dim BC0,t0(ϕ) = 1 and

dim BCn,t0(ϕ) = 0 for all n ≥ 1. In this case ϕ has exactly one irreducible component of

dimension one with eigenvalue 0 and no other irreducible components of any other dimension

with eigenvalue 0. Now fix t1 = 2π
6 . Clearly the irreducible component with eigenvalue 0

contributes to BCn,t1(ϕ) (at least when n = 0) but what other eigenvalues potentially

contribute? In this case the irreducible components with eigenvalue 6i also contribute for

sufficiently small n ∈ N0 as 6i = 6·2πi
2π = 2πi

t1
. No other irreducible components ϕk can

contribute, for otherwise |λk| = |6z| ≥ 6. Again, ϕ must have at least one irreducible

component with eigenvalue 6i, so it must be the case that dim BCn,t0(ϕ) > 0 for some small

n ∈ N0, say dim BC0,t0(ϕ) = 2 and dim BCn,t0(ϕ) = 0 for all n ≥ 1. It follows in this

case that ϕ also has exactly one irreducible component of dimension one with eigenvalue 6i

(recall that the 2 is counting the irreducible component with eigenvalue 0 as well) and no

other irreducible components of any other dimension with eigenvalue 6i.

One continues in this fashion by setting t2 = 2π
5 . Similar to above, only the irreducible

components with eigenvalue either 0 or with norm greater than or equal to five can poten-

tially contribute to BCn,t2(ϕ). Now by construction irreducible components with eigenvalue

5i definitely contribute, at least for small n, as 5i = 5·2πi
2π = 2πi

t2
. In this case irreducible

components with eigenvalue 6i cannot possibly contribute as that would imply 6
5 = z for

some nonzero z ∈ Z. Now fix t3 = 2π
4 . Repeating the previous arguments, one finds that
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only the irreducible component with eigenvalue 0 and any irreducible components with

eigenvalue −4i can possibly contribute to BCn,t3(ϕ).

Suppose BCn,t2(ϕ) and BCn,t3(ϕ) are such that ϕ has exactly one irreducible component

of dimension 1 with eigenvalues 5i and −4i respectively and no irreducible components of

any other dimension with either eigenvalue. Now fix t4 = 2π
3 . Following the preceding

argument, the irreducible component with eigenvalue 0 and any irreducible component

with eigenvalue 3i can possibly contribute to BCn,t3(ϕ). No other irreducible components

can possibly contribute, with the exception of irreducible components with eigenvalue 6i,

as 6i = 2·3·2πi
2π = 2·2πi

t4
. Now suppose dim BC0,t4(ϕ) = 3 and dim BCn,t4(ϕ) = 0 for all n ≥ 1.

Since it is already known that ϕ has exactly one irreducible component of dimension one

with eigenvalue 0 and exactly one irreducible component of dimension one with eigenvalue

6i, it must be the case that ϕ also has exactly one irreducible component of dimension

one with eigenvalue 3i and no irreducible components of any other dimension with that

eigenvalue.

Now fix t5 = 2π
2 . It is easily verified in the same fashion as above that the irreducible

components of ϕ that contribute to BCn,t5(ϕ) are exactly those components with eigenvalues

0, 6i, −4i, and 2i. Suppose in this case that dim BC0,t5(ϕ) = 6, dim BC1,t5(ϕ) = 3,

dim BC2,t5(ϕ) = 2, dim BC3,t5(ϕ) = 2, and dim BCn,t5(ϕ) = 0 for all n ≥ 4. Since in

particular dim BC4,t5(ϕ) = 0, the are no irreducible components of ϕ with dimension greater

than 4 and eigenvalue either 0, 6i, −4i, or 2i. Since dim BC3,t5(ϕ) = 2, it follows that there

are exactly two irreducible components of ϕ of dimension 4 with eigenvalue either 0, 6i, −4i,

or 2i. But it is already known that the only irreducible components of ϕ with eigenvalue

either 0, 6i, or −4i have dimension 1. Consequently, ϕ must have exactly two irreducible

components of dimension 4 with eigenvalue 2i. Now consider that dim BC2,t5(ϕ) = 2, so

ϕ has two irreducible components of dimension greater than 3 with eigenvalue either 0, 6i,

−4i, or 2i. As it is already known that ϕ has two irreducible components of dimension

4 with eigenvalue 2i, it must be that there are no irreducible components of dimension

3 with eigenvalue 2i (or 0, 6i, or −4i). Moving on to n = 1, as the only irreducible

components that contribute to BC1,t5(ϕ) are the two irreducible components of dimension

4 with eigenvalue 2i, and as it is already known that there are no irreducible components
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of dimension 2 with eigenvalue either 0, 6i, or −4i, it must be the case that there is exactly

one irreducible component of dimension 2 with eigenvalue 2i. At this point there are three

known irreducible components with eigenvalue 2i and exactly one irreducible component

for eigenvalues 0, 6i , and −4i respectively. Since dim BC0,t5(ϕ) = 6, it follows that there

are no irreducible components of ϕ of dimension 1 with eigenvalue 2i.

Finally, fix t6 = 2π. In this case every eigenvalue of ϕ contributes to BCn,t6(ϕ) for small

n ∈ N0. But this is not a problem since the irreducible components of every dimension

and all of the eigenvalues except for i and −i are already known at this point. Suppose

that dim BC0,t5(ϕ) = 10, dim BC1,t5(ϕ) = 4, dim BC2,t5(ϕ) = 2, dim BC3,t5(ϕ) = 2, and

dim BCn,t5(ϕ) = 0 for all n ≥ 4. As per the preceding discussion, ϕ must have exactly

one irreducible component of dimension 2 with eigenvalue either i or −i, and exactly three

irreducible components of dimension 1 with eigenvalue either i or −i. Unfortunately, one

cannot determine which of these irreducible components have eigenvalue i specifically. Still,

it has been shown in this example how knowing dim BCn,t(ϕ) for all n ∈ N0 and t ∈ R+ is

sufficient to completely determine the number of irreducible components of the central part

or ϕ along with their respective dimensions and eigenvalues up to complex conjugation. �

The arguments of the preceding example can easily be reapplied to other flows as long

as K = C, as the existence of {BCn,t(ϕ)}n∈N0,t∈R+ will only be proved for complex ϕ in

Chapter 4.

Lemma 3.13 Let ϕ be a flow on X with K = C, let
⊕m

k=1 ϕk be the irreducible decompo-

sition of ϕ0, and set bn,t = dim BCn,t(ϕ) for all n ∈ N0 and t ∈ R+. Then m, dk, and λk

(up to complex conjugation) are completely determined by the family {bn,t}n∈N0,t∈R+ for all

k ≤ m, where dk and λk are the dimension and eigenvalue respectively of ϕk.

Proof. As X is finite-dimensional, σ(Lϕ) is finite, so σ(Lϕ) ∩ iR is finite. Discard the

eigenvalue 0 (if it appears) along with exactly one eigenvalue for each conjugate pair of

eigenvalues in σ(Lϕ) ∩ iR (if such pairs appear) and arrange the remaining eigenvalues

descending in norm, thus yielding {λ̃j}lj=1. In this fashion λ̃1 is (one of) the nonzero

eigenvalue(s) of Lϕ with maximum norm while λ̃l is (one of) the nonzero eigenvalue(s) of

Lϕ with minimum norm. From this construct {tj}lj=0 by setting t0 = 2π
|λ̃1|+1

and tj = 2π
|λ̃j |
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for all 1 ≤ j ≤ l. If it is possible to completely determine m, dk, and λk for all k ≤ m from

the various bn,t with n ∈ N0 and t ∈ {tj}lj=0 taken in order, then the proposition follows.

With {tj}lj=0 constructed as above, bn,t0 is the number of irreducible components of

ϕ0 (note that only λ ∈ iR can possibly satisfy λ = z2πi
t for some z ∈ Z no matter the

choice of t ∈ R+) of dimension greater than n with eigenvalue 0, and bn,tj is the number

of irreducible components of ϕ0 of dimension greater than n with eigenvalue λ in the set

{0,±λ̃1, . . . ,±λ̃j} ∩ {z|λ̃j |i : z ∈ Z} for 1 ≤ j ≤ l. First suppose that λ = z2πi
t0

for some

nonzero z ∈ Z implies that λ = z(|λ̃1| + 1)i for some nonzero z ∈ Z by construction. It

follows that |λ| = n(|λ̃1| + 1) for some n ∈ N, so it must be that |λ| ≥ |λ̃1| + 1. But

by construction |λ̃j | ≤ |λ̃1| for all j ≤ l. Thus only irreducible components of dimension

greater than n with eigenvalue 0 are counted by bn,t0 . Now suppose λ = z2πi
tj

for some

nonzero z ∈ Z and 1 ≤ j ≤ l. Then by construction λ = z|λ̃j |i for some nonzero z ∈ Z. As

0 = 0|λ̃j |, this is sufficient to demonstrate the right-hand side of the intersection. To get

the left-hand side, take the norm of the previous equation to get that |λ| = n|λ̃j | for some

n ∈ N, so |λ| ≥ |λ̃j |. This inequality only holds for λ = λ̃J with J ≤ j by construction.

In particular this means that bn,tj is the number of irreducible components of ϕ0 of

dimension greater than n with eigenvalue in some subset of {0,±λ̃1, . . . ,±λ̃j} for each

1 ≤ j ≤ l. One may now completely determine the number of irreducible components

of ϕ0 along with their various dimensions and eigenvalues up to complex conjugation by

induction on j. The initial step is to determine the number of irreducible components of

ϕ0 with eigenvalue 0 along with their various dimensions. To this end, consider bn,t0 for

n ∈ N0. For each n ∈ N0, since bn,t0 and bn+1,t0 are the number of irreducible components

of ϕ0 of dimension greater than n and n+ 1 respectively with eigenvalue 0, it follows that

bn,t0−bn+1,t0 is the number of irreducible components of ϕ0 of dimension exactly n+1 with

eigenvalue 0. In this way the number of irreducible components of ϕ0 of dimension n with

eigenvalue 0 is completely determined for all n ∈ N. Note that these numbers may be all

zero if 0 6∈ σ(Lϕ).

Suppose now that the number of irreducible components of ϕ0 of dimension n with

eigenvalue λ ∈ {0,±λ̃1, . . . ,±λ̃j} is known for all n ∈ N for some fixed 1 ≤ j < l. It

is then possible to determine the number of irreducible components of ϕ0 of dimension n
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with eigenvalue ±λ̃j+1 for all n ∈ N by considering the various bn,tj . Similar to above

bn,tj+1 − bn+1,tj+1 is the number of irreducible components of ϕ0 of dimension exactly n+ 1

with eigenvalue in {0,±λ̃1, . . . ,±λ̃j+1} ∩ {z|λ̃j+1|i : z ∈ Z} for all n ∈ N. One then, for

each n ∈ N0, determines the number of irreducible components of ϕ0 of dimension exactly

n + 1 with eigenvalue λ̃j+1 by subtracting the number of irreducible components of ϕ0 of

dimension exactly n + 1 with eigenvalue in {0,±λ̃1, . . . ,±λ̃j} ∩ {z|λ̃j+1|i : z ∈ Z}, known

by assumption from bn,tj+1 − bn+1,tj+1 .

Once the number of irreducible components of ϕ0 of size n with eigenvalue λ is known

for all n ∈ N and λ ∈ σ(Lϕ), then one immediately gets the total number of irreducible

components of ϕ0. �

Unfortunately the preceding procedure cannot distinguish between irreducible compo-

nents of the same dimension with conjugate eigenvalues. This is due to the fact that, if

λ = z2πi
t for some nonzero z ∈ Z, then λ = −z2πi

t . This might seem like a let-down after

all the work that went into distinguishing the various irreducible component flows in the

first place. But for homeomorphic equivalence, this turns out to be a good thing, as two

irreducible linear flows with complex conjugate eigenvalues are easily seen to be homeomor-

phically equivalent.

Proposition 3.14 Let ϕ and ψ be irreducible linear flows on X and Y respectively where

X and Y are normed spaces over C with dimX = dimY . If λϕ = λψ, then ϕ and ψ are

homeomorphically equivalent.

Proof. Begin by fixing a basis {bn}dn=1 for X such that ϕ is of the form etλϕetJd(0)x. This is

possible by Proposition 2.41. Similarly fix a basis {b̂n}dn=1 for Y such that ψ is of the form

etλψetJd(0)x. Now consider h : X → Y given by h(x) = h(
∑d

n=1 cnbn) =
∑d

n=1 cnb̂n =: x for

all x ∈ X. Clearly h is invertible. Furthermore, h is a homeomorphism of X since the map

c 7→ c is continuous. Finally h(etλϕetJd(0)x) = etλϕetJd(0)x = etλϕetJd(0)x = etλψetJd(0)h(x)

for all (t, x) ∈ R × X, as Jd(0) is simply a Jordan block for eigenvalue 0 and as such

has no nonreal entries. Thus h is a homeomorphic equivalence between etλϕetJd(0)x and

etλψetJd(0)x, and the result follows. �

Of course, if ϕ and ψ are as in the previous lemma with λϕ = λψ, then they are not
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only homeomorphically equivalent but in fact linearly equivalent via the homeomorphism

h(x) = h(
∑d

n=1 cnbn) =
∑d

n=1 cnb̂n.

Returning to the discussion of {BCn,t(ϕ)}n∈N0,t∈R+ , consider property (ii). If ϕ and

ψ are two homeomorphically equivalent linear flows, then since homeomorphisms preserve

dimension, dim BCn,t(ϕ) = dimh(BCn,t(ϕ)) = dim BCn,t(ψ) for all n ∈ N0 and t ∈ R+. But

this means that applying the previously described procedure to either flow will result in the

same decomposition up to reordering and complex conjugation of individual irreducible

components. It turns out that this is sufficient to completely characterize homeomorphic

equivalence of linear flows. The following theorem and its corollaries are the main results of

this thesis. It is necessary to use complexifications ϕC and ψC of ϕ and ψ respectively here

as the family {BCn,t(ϕ)}n∈N0,t∈R+ is only constructed for complex flows ϕ; that is, flows on

X with K = C. Of course ϕC = ϕ and ψC = ψ for flows on X with K = C.

Theorem 3.15 Let ϕ and ψ be linear flows on X. Then ϕC and ψC are homeomorphically

equivalent if and only if the following three conditions hold:

(i) dimX+
ϕC = dimX+

ψC
;

(ii) dimX−ϕC = dimX−ψC
;

(iii) if
⊕m

k=1 ϕk and
⊕m

k=1 ψk are irreducible decompositions of ϕ0
C and ψ0

C respectively,

then (reordering
⊕m

k=1 ψk as necessary) dϕk = dψk and either λϕk = λψk or λϕk = λψk

for every k ≤ m.

Proof. Suppose first that the three conditions hold. It follows from (i) and (ii) that there

exist homoemorphic equivalences h+ between ϕ+
C and ψ+

C and h− between ϕ−C and ψ−C by

Theorem 3.10. Consider property (iii). Now for ϕk and ψk with λϕk = λψk it is clear

that ϕk and ψk are homeomorphically (in fact, linearly) equivalent. For ϕk and ψk with

λϕk = λψk it follows from Proposition 3.14 that ϕk and ψk are homeomorphically equivalent.

Thus (iii) guarantees the existence of a homeomorphic equivalence h0 between ϕ0
C and ψ0

C.

Consequently h+ ⊕ h0 ⊕ h− is a homeomorphic equivalence between ϕC and ψC. This

completes the proof of the ‘if’ case.

Suppose now that ϕC and ψC are homeomorphically equivalent. Properties (i) and

(ii) follow directly from Proposition 3.4. To see that property (iii) also holds, consider
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that dim BCn,t(ϕC) = dimh(BCn,t(ϕ)) = dim BCn,t(ψ) for all n ∈ N0 and t ∈ R+ by

the construction of {BCn,t(ϕ)}n∈N0,t∈R+ and since homeomorphisms preserve dimension.

Property (iii) then follows as applying Lemma 3.13 to ϕC and ψC completely determines

the irreducible components of these flows up to conjugate eigenvalues. This completes the

proof of the ‘only if’ part. �

This theorem can be made more elegant by considering the cases where K = C and

K = R separately. The K = C case in particular follows almost directly from the previous

theorem, and it improves on property (iii) of the theorem by using the realifications of the

central subspaces.

Corollary 3.16 Let ϕ and ψ be linear flows on X with K = C. Then ϕ and ψ are

homeomorphically equivalent if and only if the following three conditions hold:

(i) dimX+
ϕ = dimX+

ψ ;

(ii) dimX−ϕ = dimX−ψ ;

(iii) ϕ0
R and ψ0

R are linearly equivalent.

Proof. As ϕC = ϕ and ψC = ψ, properties (i) and (ii) of this theorem are equivalent to

properties (i) and (ii) of Theorem 3.15. Thus it suffices to show that property (iii) of this

corollary is equivalent to property (iii) of Theorem 3.15. Note that ϕ0
C = ϕ0 and ψ0

C = ψ0,

let
⊕m

k=1 ϕk and
⊕m

k=1 ψk be irreducible decomposition of ϕ0 and ψ0 respectively, and let

(ϕk)R and (ψk)R be the realifications of ϕk and ψk respectively. Now if ϕk is of dimension

dk with eigenvalue 0, then (ϕk)R is the direct sum of two irreducible components of ϕ0
R, each

of dimension dk with eigenvalue 0 and conversely. If ϕk is of dimension dk with eigenvalue

λk ∈ iR \ {0}, then (ϕk)R is an irreducible component of dimension 2dk with conjugate

eigenvalue pair {λk, λk} and conversely. The situation is the same for the components ψk.

The desired result then follows by noting that (ϕk)R and (ψk)R have identical conjugate

eigenvalue pairs, even if the eigenvalue of ϕk is not identical but merely conjugate to the

eigenvalue of ψk . �

Oftentimes working in complex spaces is easier and provides more elegant proofs and

results than working in real spaces. For instance, C is algebraically closed while R is not.
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All differentiable complex-valued functions on C are analytic, but the same certainly cannot

be said for real-valued functions on R. Even in this thesis, the family {Bn,t(ϕ)}n∈N0,t∈R+

will only be constructed for flows ϕ on X with K = C, as dealing with real Jordan blocks

with nonreal eigenvalues is a hassle. Surprisingly, the characterization of homeomorphic

equivalence of real flows — that is, flows on X with K = R — is actually more elegant than

the complex case.

Corollary 3.17 Let ϕ and ψ be linear flows on X with K = R. Then ϕ and ψ are

homeomorphically equivalent if and only if the following three conditions hold:

(i) dimX+
ϕ = dimX+

ψ ;

(ii) dimX−ϕ = dimX−ψ ;

(iii) ϕ0 and ψ0 are linearly equivalent.

Proof. The ‘if’ part is clear as properties (i) and (ii) guarantee homeomorphic equivalence

between ϕ+ and ψ+ and between ϕ− and ψ− as per the proof of Theorem 3.15, while

property (iii) guarantees homeomorphic equivalence between ϕ0 and ψ0. For the ‘only if’

part, note that homeomorphic equivalence between ϕ and ψ guarantees that properties (i)

and (ii) hold as an immediate consequence of Proposition 3.4, while also guaranteeing ϕC

and ψC are homeomorphically equivalent. Thus it suffices to show that property (iii) of

Theorem 3.15 implies property (iii) of this corollary.

Let
⊕m

k=1 ϕk and
⊕m

k=1 ψ be irreducible decompositions of ϕ0
C and ψ0

C respectively.

Now each ϕk of dimension dk with eigenvalue λk ∈ iR \ {0} is generated by an irreducible

component of ϕ0 of dimension 2dk with conjugate eigenvalue pair {λk, λk}, so the irreducible

components ϕk of dimension dk with eigenvalue λk ∈ iR\{0} can be paired off exactly with

the irreducible components ϕj of dimension dj = dk with eigenvalue λj = λk. The situation

is the same for the irreducible components of ψ0
C. Reorder the ϕk and ψk as necessary so that

the pair of irreducible components of ϕC corresponding to a single irreducible component

of ϕ0 are all together while preserving property (iii) of Theorem 3.15. Now if nE,d,ϕ is the

number of irreducible components of ϕ0
C of dimension d with eigenvalue in E ⊂ C, then

n{λ,λ},d,ϕ = 2n{λ},d,ϕ = 2n{λ},d,ϕ by the preceding argument. The situation is the same
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for ψ0
C. Now property (iii) of Theorem 3.15 is itself equivalent to the requirement that

n{λ,λ},d,ϕ = n{λ,λ},d,ψ for all d ∈ N and λ ∈ iR \ {0} and consequently n{λ},d,ϕ = n{λ},d,ψ for

all d ∈ N and λ ∈ iR\{0}. But this means that
⊕m

k=1 ψk may be reordered so that dϕk = dψk

and λϕk = λψk for all k ≤ m; moreover, this reordering may be done so that pairs of ϕk

generated by a single irreducible component of ϕ0 line up with pairs of ψk generated by a

single irreducible component of ψ0. Let
⊕l

j=1 ϕ̂j and
⊕l

j=1 ψ̂j be irreducible decompositions

of ϕ0 and ψ0 respectively ordered based on the ordering of
⊕m

k=1 ϕk and
⊕m

k=1 ψm; that

is, for instance, ϕ̂1 generates either the first or the first pair of irreducible component(s) of

ϕ0
C as necessary, ϕ̂2 generates either the second or second pair of irreducible component(s)

as necessary, and so on. Then by construction dϕ̂j = dψ̂j and λϕ̂j = λψ̂j for all j ≤ l. It

follows that ϕ0 and ψ0 are linearly equivalent. �

Before closing out this chapter, it is worthwhile to consider characterizing the homeo-

morphic equivalence of linear flows in terms of their generating operators.

Corollary 3.18 Let ϕ and ψ be linear flows on X with K = C. Then ϕ and ψ are

homeomorphically equivalent if and only if the following three conditions hold:

(i) Lϕ and Lψ have the same number of eigenvalues with negative real part;

(ii) Lϕ and Lψ have the same number of eigenvalues with positive real part;

(iii) For each n ∈ N and λ ∈ iR, Lϕ and Lψ have the same number of Jordan blocks of

dimension n corresponding to λ or λ.

Proof. This follows from Corollary 3.16. First note that ϕ+ is the direct sum of all irreducible

components of ϕ+
k with eigenvalue λk such that <λk < 0. Thus dimX+

ϕ is the sum of the

dimensions of the irreducible components ϕ+
k of ϕ+. But each irreducible component is

a Jordan block Jdk(λk) with respect to an appropriate choice of basis. The situation is

similar for ψ+, and it follows that property (i) of this corollary is equivalent to property

(i) of Corollary 3.16. A similar argument demonstrates that property (ii) of this corollary

is equivalent to property (ii) of Corollary 3.16. Finally, property (iii) of this corollary is

also clearly equivalent to property (iii) of Corollary 3.16 by considering each irreducible

component of ϕ0 and ψ0 as a single Jordan block. �
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The real case of the preceding corollary is similar.

Corollary 3.19 Let ϕ and ψ be linear flows on X with K = R. Then ϕ and ψ are

homeomorphically equivalent if and only if the following three conditions hold:

(i) Lϕ and Lψ have the same number of eigenvalues with negative real part;

(ii) Lϕ and Lψ have the same number of eigenvalues with positive real part;

(iii) For each n ∈ N and λ ∈ iR, Lϕ and Lψ have the same number of Jordan blocks of

dimension n corresponding to λ.

Proof. This corollary is proved exactly as the proof of Corollary 3.18, but using Corollary

3.17 in place of Corollary 3.16. �

After proving the existence of the family {BCn,t(ϕ)}n∈N0,t∈R+ for flows ϕ on X with

K = C in Chapter 4, Chapter 5 includes a comparison between the complex and real

classifications of linear flows on normed spaces with small dimension, from which it will be

apparent that the complex situation is, well, more complex.
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4 Nonhyperbolic Flows

A complete characterization of homeomorphic equivalence of linear flows was presented in

Section 3.3. In demonstrating that characterization, the existence of a certain family of

subspaces {BCn,t(ϕ)}n∈N0,t∈R+ was assumed. This family had two significant properties:

every BCn,t(ϕ) was preserved by homeomorphic equivalence, and the dimension of each

BCn,t(ϕ) was the number of irreducible component flows ϕk of dimension dk > n with

eigenvalue λk satisfying either λk = 0 or λk = z2πi
t for some nonzero z ∈ Z. The purpose of

this chapter is to prove the existence of this family. This chapter is heavily based on [9].

4.1 Basic Constructions

The family {BCn,t(ϕ)}n∈N0,t∈R+ of a given linear flow ϕ is constructed by combining sim-

pler subspaces in various permutations. The desired properties of this family can then be

demonstrated based on the properties of these simpler subspaces. The fundamental build-

ing blocks that will be used in this construction are the strong and weak centres of a given

flow.

Definition 4.1 Let ϕ be a linear flow on X. The weak centre of ϕ on a subset Y of X,

denoted WC(ϕ, Y ), is the set of all y ∈ Y with the following property:

For every sequence {tn}n∈N in R with limn→∞|tn| = +∞ there exists a sequence {yn}n∈N
in Y converging to y such that the sequence {ϕ(tn, yn)}n∈N is bounded.

The strong centre of ϕ on Y , denoted SC(ϕ, Y ), is defined similarly to the weak centre,

except that the sequence {ϕ(tn, yn)}n∈N is required to converge to zero.

Clearly strong centres are contained in weak centres. It is a straightforward exercise to

verify that, when Y is a subspace of X, the strong centre and weak centre of a linear flow

are always themselves subspaces of that subspace. The specific nature of these subspaces

will be discussed in detail in the next section, but their crucial aspect is that, under the

right conditions, they end up being approximately half the size of the initial subspace.
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Example 4.2 Consider the linear flow ϕ on R2 generated by

L =

 0 1

0 0

 , so that ϕ(t, x) = etLx =

 1 t

0 1

 x1

x2

 .
Given any x1 ∈ R, and given any sequence {tn}n∈N in R such that limn→∞|tn| = +∞, the

sequence {(x1,−x1
tn

)}n∈N converges to (x1, 0); moreover, as ϕ(tn, (x1,−x1
tn

) = (0,−x1
tn

) by

direct calculation via the above matrix, limn→∞ ϕ(tn, (x1,−x1
tn

)) = limn→∞(0,−x1
tn

) = (0, 0),

so by definition (x1, 0) ∈ SC(ϕ,R2). As x1 was also arbitrary, span{(1, 0)} ⊆ SC(ϕ,R2).

On the other hand, suppose (x1, x2) ∈ WC(ϕ,R2), and again fix a sequence {tn}n∈N
in R with limn→∞|tn| = +∞. By definition there exists a sequence {(x1,n, x2,n)}n∈N in R2

converging to (x1, x2) such that {ϕ(tn, (x1,n, x2,n))}n∈N is bounded. In particular then the

sequence {x1,n + tnx2,n}n∈N, the first coordinate of the previous sequence, is also bounded.

Since {tn}n∈N is unbounded, the sequence {x2,n}n∈N must converge to zero, so x2 = 0.

Thus WC(ϕ,R2) ⊆ span{(1, 0)}. Since also SC(ϕ,R2) ⊆ WC(ϕ,R2), it therefore follows

that SC(ϕ,R2) = WC(ϕ,R2) = span{(1, 0)}. �

In the preceding example the strong and weak centres ended up being the same subspace,

but this is not always the case.

Example 4.3 Consider the flow ϕ on R given by ϕ(t, x) = x for all (t, x) ∈ R × R, and

consider the sequence {xn}n∈N in R given by xn = x for all n ∈ N. Since ϕt is the identity for

all t ∈ R, the induced sequence {ϕ(tn, xn)}n∈N is simply {xn}n∈N irrespective of the choice of

{tn}n∈N. This sequence is clearly bounded, so x ∈WC(ϕ,R). As x was arbitrary, it follows

that WC(ϕ,R) = R. On the other hand, given any sequence {xn}n∈N in R converging to

some x ∈ R, the induced sequence {ϕ(tn, xn)}n∈N is simply {xn}n∈N, as previously. It follows

that for x to be in SC(ϕ,R), it must be that x = 0, so SC(ϕ,R) = {0} 6= R = WC(ϕ,R). �

Since strong and weak centres on a subspace are always themselves subspaces, one may

consider constructions involving combinations of strong and weak centres. For instance,

one could consider the strong centre of a flow on the weak centre of the weak centre of that

flow. The iterated centres of a flow are formed by combinations of this type.

Definition 4.4 Let ϕ be a linear flow on X, and let n ∈ N0. Then n may be uniquely

written in the form n = δl2
l−1 + · · · + δ12

0 where the δj ∈ {0, 1} (δl must be 1, except in
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the case where l = 1 to allow for n = 0) are the digits of the binary representation of n,

written n =< δlδl−1 . . . δ1 >. The nth iterated centre of ϕ, denoted ICn(ϕ) is given by

ICn(ϕ) := δ̃l(ϕ, δ̃l−1(ϕ, . . . δ̃2(ϕ, δ̃1(ϕ,X)))),

where δ̃j(ϕ, Y ) = WC(ϕ, Y ) if δj = 0 and δ̃j(ϕ, Y ) = SC(ϕ, Y ) if δj = 1 for any subspace Y

of X.

Since strong and weak centres on a subspace are always themselves subspaces, and since

the iterated centres are finite combinations of these constructions, it follows that the iterated

centres are always subspaces as well. The iterated centres for n 6= 0 are made up of every

finite combination of strong and weak centres that ends with a strong centre. The pattern

is explicitly

nth iterated centre n in binary Construction

IC0(ϕ) < 0 > WC(ϕ,X)

IC1(ϕ) < 1 > SC(ϕ,X)

IC2(ϕ) < 10 > SC(ϕ,WC(ϕ,X))

IC3(ϕ) < 11 > SC(ϕ,SC(ϕ,X))

IC4(ϕ) < 100 > SC(ϕ,WC(ϕ,WC(ϕ,X)))

IC5(ϕ) < 101 > SC(ϕ,WC(ϕ, SC(ϕ,X)))

IC6(ϕ) < 110 > SC(ϕ,SC(ϕ,WC(ϕ,X)))

IC7(ϕ) < 111 > SC(ϕ,SC(ϕ,SC(ϕ,X)))

IC8(ϕ) < 1000 > SC(ϕ,WC(ϕ,WC(ϕ,WC(ϕ,X))))

and so on. The idea behind iterated centres is that each repeated weak and strong centre

reduces the size of the iterated centre, so that ICn(ϕ) becomes trivial for sufficiently large

n. One can then work backwards until ICn(ϕ) is nontrivial, revealing the largest irreducible

components of ϕ, and then continue to work backwards to find the next largest irreducible

components, and so on.

Example 4.5 Consider Example 4.3. By definition IC0(ϕ) = R. Furthermore, it is clear

that SC(ϕ, {0}) = {0} and WC(ϕ, {0}) = {0} (in fact, this is true for any ϕ) and it follows

that ICn(ϕ) = {0} for all n ∈ N, since a strong centre appears in the construction of all of

these iterated centres.
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Now consider Example 4.2 denoting the flow by ψ in this case. Again it immediately

follows from the construction of IC0 and IC1 that IC0(ψ) = IC1(ψ) = span{(1, 0)}. Fur-

thermore, IC2(ψ) = SC(ψ,WC(ψ,R2)) = SC(ψ, span{(1, 0)}) = {0} for the same reasons

that SC(ϕ,R) is trivial. More generally, ICn(ψ) will always end up with either span{(1, 0)}

or {0} before the final strong centre, so that ICn(ψ) = {0} for all n ≥ 2. �

Although close to the goal, iterated centres are not yet enough to count the various

central irreducible component flows as ultimately desired. The primary remaining issue is

that iterated centres have no way of distinguishing components by their eigenvalue; two

components of the same dimension and eigenvalue should be and are indistinguishable,

but for homeomorphic equivalence to work as described in Section 3.3 it is necessary to

distinguish two components of the same dimension but with different eigenvalues. This

leads to the final construction of this section.

Definition 4.6 Let ϕ be a linear flow on X. The family of subspaces {BCn,t(ϕ)}n∈N0,t∈R+

is given by

BCn,t(ϕ) = ICn(ϕ) ∩ ker(ϕt − I)

for all n ∈ N and t ∈ R+.

It is clear that this family can be constructed for any linear flow. Since iterated centres

are all subspaces, and since these kernels are all clearly subspaces, it follows that all of

these intersections are subspaces. As such, it is correct to refer to {BCn,t(ϕ)}n∈N0,t∈R+

as a family of subspaces. Demonstrating that {BCn,t(ϕ)}n∈N0,t∈R+ has the two desired

properties discussed previously will be done by building upon properties of strong and

weak centres. Having established properties of strong and weak centres, one may consider

the consequences of those properties when strong and weak centres are combined to form

iterated centres. From there, one considers the properties of ker(ϕt − I) in conjunction

with the properties of iterated centres. This process is demonstrated in the proof of the

following two propositions. First it will be shown that these constructions all behave well

with respect to flow decomposition. Then it will be shown that these constructions also

behave well with respect to homeomorphisms of the space.
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Proposition 4.7 Let ϕ be a linear flow on X with irreducible decomposition
⊕m

k=1 ϕk. The

following all hold:

(i) WC(ϕ,
⊕m

k=1 Yk) =
⊕m

k=1 WC(ϕk, Yk) for any collection {Yk}mk=1 of subspaces of X

with Yk ⊆ Xk for all k ≤ m;

(ii) SC(ϕ,
⊕m

k=1 Yk) =
⊕m

k=1 SC(ϕk, Yk) for any collection {Yk}mk=1 of subspaces of X with

Yk ⊆ Xk for all k ≤ m;

(iii) ICn(ϕ) =
⊕m

k=1 ICn(ϕk) for all n ∈ N0;

(iv) ker(ϕt − I) =
⊕m

k=1 ker((ϕk)t − I) for all t ∈ R+;

(v) BCn,t(ϕ) =
⊕m

k=1 BCn,t(ϕk) for all n ∈ N0 and t ∈ R+.

Proof. (i) and (ii) are consequences of the fact that a sequence is bounded or converges

to zero if and only if all its components are bounded or converge to zero respectively. For

each k ≤ m let Yk be a subspace of Xk, and suppose x ∈WC(ϕ,
⊕m

k=1 Yk). Fix a sequence

{tn}n∈N in R so that limn→∞|tn| = +∞. Then there exists a sequence {xn}n∈N in
⊕m

k=1 Yk

converging to x such that the induced sequence {ϕ(tn, xn)}n∈N is bounded. But then the

sequence {ϕk(tn, xn,k)}n∈N is bounded for each k ≤ m. Since each sequence {xn,k}n∈N in

Yk converges to xk, and since {tn}n∈N was arbitrary, it follows that xk ∈ WC(ϕk, Yk) for

every k ≤ m, and thus x ∈
⊕m

k=1 WC(ϕk, Yk).

Conversely, suppose x ∈
⊕m

k=1 WC(ϕk, Yk), and again fix a sequence {tn}n∈N in R so

that limn→∞|tn| = +∞. Then for each k ≤ m there exists a sequence {xn,k}n∈N in Yk

converging to xk such that the induced sequences {ϕk(tn, xn,k)}n∈N are bounded. These

sequences generate a sequence {xn}n∈N in Y converging to x such that the induced sequence

{ϕ(tn, xn)}n∈N is bounded. Since {tn}n∈N was arbitrary, x ∈WC(ϕ,
⊕m

k=1 Yk).

Since x was arbitrary, WC(ϕ,
⊕m

k=1 Yk) =
⊕m

k=1 WC(ϕk, Yk), and as Y was also arbi-

trary this is true for any collection {Yk}mk=1 of subspaces of X with Yk ⊆ Xk for all k ≤ m.

The proof of (ii) is similar.

Recall Definition 4.4, in which n is written in the form δl2
l−1 + · · ·+ δ12

0, where the δj

are the digits of the binary representation of n. Every value of n has a corresponding value

for l (though several n may share the same l value) so (iii) may be proved by induction on l.
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In the case where l = 1, then δ̃1(ϕ,X) is either WC(ϕ,X) or SC(ϕ,X), so as a consequence

of (i) and (ii) δ̃1(ϕ,X) =
⊕m

k=1 δ̃1(ϕk, Xk). Now suppose that, for some fixed L, the equality

δ̃L(ϕ, δ̃L−1(ϕ, . . . δ̃2(ϕ, δ̃1(ϕ,X)))) =
⊕m

k=1 δ̃L(ϕk, δ̃L−1(ϕk, . . . δ̃2(ϕk, δ̃1(ϕk, Xk)))) holds for

any combination of δ̃j , and fix some combination δ̃L+1(ϕ, δ̃L(ϕ, . . . δ̃2(ϕ, δ̃1(ϕ,X)))) of δ̃j .

Now δ̃L+1(ϕ, δ̃L(ϕ, . . . δ̃2(ϕ, δ̃1(ϕ,X)))) = δ̃L+1(ϕ,
⊕m

k=1 δ̃L(ϕk, . . . δ̃2(ϕk, δ̃1(ϕk, Xk)))) by

assumption. But then δ̃L+1(ϕ, . . . δ̃2(ϕ, δ̃1(ϕ,X))) =
⊕m

k=1 δ̃L+1(ϕk, . . . δ̃2(ϕk, δ̃1(ϕk, Xi)))

as a consequence of (i) and (ii) since δ̃L(ϕk, . . . δ̃2(ϕk, δ̃1(ϕk, Xk))) ⊆ Xk for all k ≤ m. This

argument works for any combination of δ̃j with j ≤ L + 1. It follows by induction over l

that ICn(ϕ) =
⊕m

k=1 ICn(ϕk).

(iv) is similar to (i) and (ii). Fix t ∈ R+, and suppose x ∈ ker(ϕt−I). Then ϕ(t, x) = x,

so that ϕi(t, xk) = xk for all k ≤ m, and thus xk ∈ ker((ϕk)t− I) for all k ≤ m. The reverse

situation is similar, and (iv) follows as t was arbitrary.

(v) is a straightforward consequence of (iii) and (iv), as it is straightforward to verify

that
(⊕m

k=1 ICn(ϕk)
)
∩
(⊕m

k=1 ker((ϕk)t − I)
)

=
⊕m

k=1

(
ICn(ϕk) ∩ ker((ϕk)t − I)

)
for all

n ∈ N0 and t ∈ R+. �

The previous proposition is immensely useful, as determining the properties of these

constructions on an arbitrary linear flow can be reduced to the properties of these con-

structions on its irreducible component flows. The next proposition demonstrates the first

of the two required properties of the family {BCn,t(ϕ)}n∈N,t∈R+ in a similar fashion to the

previous proposition.

Proposition 4.8 Let h be a homeomorphic equivalence between two linear flows ϕ and ψ

on X. The following all hold:

(i) h(WC(ϕ, Y )) = WC(ψ, h(Y )) for any subspace Y of X;

(ii) h(SC(ϕ, Y )) = SC(ψ, h(Y )) for any subspace Y of X;

(iii) h(ICn(ϕ)) = ICn(ψ) for all n ∈ N0;

(iv) h(ker(ϕt − I)) = ker(ψt − I) for all t ∈ R+;

(v) h(BCn,t(ϕ)) = BCn,t(ψ) for all n ∈ N0 and t ∈ R+.
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Proof. Suppose that x ∈ h(WC(ϕ, Y )). Then there exists a y ∈ WC(ϕ, Y ) satisfying

x = h(y). Fix a sequence {tn}n∈N in R with limn→∞|tn| = +∞. Then there exists a

sequence {yn}n∈N in Y converging to y such that {ϕ(tn, yn)}n∈N is bounded. Construct

a sequence {xn}n∈N in h(Y ) by taking xn = h(yn). Continuity of h guarantees that

{xn}n∈N converges to x. Now since {ϕ(tn, yn)}n∈N is bounded, it is entirely contained

in some compact ball Br(0) for some r ∈ R+. It follows again from the continuity of h

that {h(ϕ(tn, yn))}n∈N is contained in the compact set h(Br(0)). Thus {h(ϕ(tn, yn))}n∈N
is bounded. But h(ϕ(tn, yn)) = ψ(tn, h(yn)) = ψ(tn, xn) for all n ∈ N, so {xn}n∈N is a se-

quence in h(Y ) converging to x with the property that the induced sequence {ψ(tn, xn)}n∈N
is bounded. Since {tn}n∈N was arbitrary, x ∈WC(ψ, h(Y )). The converse argument is sim-

ilar, and thus (i) holds.

(ii) proceeds as in (i) except that in this case {ϕ(tn, yn)}n∈N converges to zero. Defining

{xn}n∈N in h(Y ) as in the proof of (i), it follows that ψ(tn, xn) = ψ(tn, h(yn)) = h(ϕ(tn, yn)),

and thus {ψ(tn, xn)}n∈N converges to zero as well. The rest of (ii) follows as in (i).

(iii) is proved using induction as in Proposition 4.7 - (iii). It follows from (i) and

(ii) that h(δ̃1(ϕ,X)) = δ̃1(ψ,X). Suppose that, for any combination of δj of length

L, h(δ̃L(ϕ, δ̃L−1(ϕ, . . . δ̃2(ϕ, δ̃1(ϕ,X))))) = δ̃L(ψ, δ̃L−1(ψ, . . . δ̃2(ψ, δ̃1(ψ,X)))). Then by (i)

and (ii) h(δ̃L+1(ϕ, δ̃L(ϕ, . . . δ̃2(ϕ, δ̃1(ϕ,X))))) = δ̃L+1(ψ, h(δ̃L(ϕ, . . . δ̃2(ϕ, δ̃1(ϕ,X))))) for

any combination of δ̃j of length L + 1. But then it follows from the previous assump-

tion that h(δ̃L+1(ϕ, δ̃L(ϕ, . . . δ̃2(ϕ, δ̃1(ϕ,X))))) = δ̃L+1(ψ, δ̃L(ψ, . . . δ̃2(ψ, δ̃1(ψ,X)))). (iii)

then follows by induction over l.

Fix t ∈ R+, and suppose x ∈ h(ker(ϕt − I)). Then x = h(y) for some y ∈ ker(ϕt − I).

But then ψt(x) = ψt(h(y)) = h(ϕt(y)) = h(y) = x, so x ∈ ker(ψt − I). The converse

argument is similar, proving (iv), as t was arbitrary.

Since h is, in particular, a bijection, h(U ∩ V ) = h(U)∩ h(V ) for all sets U, V in X. (v)

then follows from (iii) and (iv). �

Demonstrating the other desired property of {BCn,t(ϕ)}n∈N0,t∈R+ concerning the dimen-

sions of the various BCn,t(ϕ) requires more effort. First the structure of strong and weak

centres of certain subspaces will be investigated. This investigation will then be extended

to iterated centres and finally to {BCn,t(ϕ)}n∈N0,t∈R+ , culminating in Theorem 4.12.
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4.2 Strong and Weak Centres

Understanding strong and weak centres is the first step toward confirming the final prop-

erty of BCn,t(ϕ). To this end, several assumptions will be made throughout the next two

sections. In light of Proposition 4.7 it will be assumed that any given flow ϕ is irreducible.

Furthermore, it will be assumed that ϕ is central — that is, it will be assumed that the flow’s

eigenvalue lies on the imaginary axis — unless explicitly stated otherwise. The reasoning

behind this assumption will become clear in the next section. Perhaps most importantly, a

basis {b1, . . . , bd} for X will be fixed, and it will be assumed ϕ has matrix form etλetJd(0)x

with respect to that basis. Written explicitly, ϕt will be of the form

ϕt = etλ



1 t 1
2 t

2 1
(d−2)! t

d−2 1
(d−1)! t

d−1

0 1 t 1
(d−3)! t

d−3 1
(d−2)! t

d−2

0 0 1 1
(d−4)! t

d−4 1
(d−3)! t

d−3

. . .

0 0 0 1 t

0 0 0 0 1


with respect to that basis. This assumption is justified by Proposition 2.41.

To simplify notation, a chain of subspaces K0 ⊆ K1 ⊆ · · · ⊆ Kd is defined by setting K0

to be the trivial subspace {0}, and by setting Kj = span{b1, . . . , bj} for all 0 < j ≤ d. In

this section it will be shown that SC(ϕ,Kj) = Kb j
2
c and WC(ϕ,Kj) = Kd j

2
e for all j ≤ d.

Recall that, for any r ∈ R, brc denotes the largest integer not larger than r, while dre

denotes the smallest integer not smaller than r. Noting that Kd = X, the various Kj for

j ≤ d will be sufficient to fully describe ICn(ϕ) for all n ∈ N0 in the next section. Proving

that strong and weak centres behave in this fashion is long but straightforward. Note that

this proof uses t-rescalings Td(t) := diag(1, t, t2, . . . , td−1) as discussed in Section 2.5.

Theorem 4.9 Let ϕ be an irreducible central linear flow on X with K = C. Then the

following both hold for all j ≤ d:

(i) SC(ϕ,Kj) = Kb j
2
c;

(ii) WC(ϕ,Kj) = Kd j
2
e.
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Proof. First note that SC(ϕ,Kj) = SC(ϕ|Kj ,Kj) and WC(ϕ,Kj) = WC(ϕ|Kj ,Kj) for all

j ≤ d. Consequently, it may be assumed without loss of generality that j = d. Note also

that Kd = X, and that the result is trivial if d = 0.

Fix a basis for X so that ϕ is in the matrix form described above. The proof of this

theorem is split over a number of cases. The first case considered is when d is even, so there

exists some l ∈ N satisfying d = 2l. Now ϕt may be written as

ϕt = etλ

 T−1l (t)ATl(t) tlT−1l (t)BTl(t)

O T−1l (t)ATl(t)

 ,

where λ is the eigenvalue of ϕ and A and B are real l × l matrices of the form

1 1 1
2

1
(l−2)!

1
(l−1)!

0 1 1 1
(l−3)!

1
(l−2)!

0 0 1 1
(l−4)!

1
(l−3)!

. . .

0 0 0 1 1

0 0 0 0 1


and



1
l!

1
(l+1)!

1
(l+2)!

1
(d−2)!

1
(d−1)!

1
(l−1)!

1
l!

1
(l+1)!

1
(d−3)!

1
(d−2)!

1
(l−2)!

1
(l−1)!

1
l!

1
(d−4)!

1
(d−3)!

. . .

1
2

1
6

1
24

1
l!

1
(l+1)!

1 1
2

1
6

1
(l−1)!

1
l!


respectively. Note that A and B are independent of t — that is, they are both constant

matrices.

First it will be shown that WC(ϕ,X) ⊆ Kl. Suppose x ∈ WC(ϕ,X). With respect to

the chosen basis x is of the form (y1, y2) for some y1, y2 ∈ Cl. Fix a sequence {tn}n∈N in R

such that limn→∞|tn| = +∞. It may be assumed without loss of generality the tn 6= 0 for

all n ∈ N. As x ∈WC(ϕ,X) there exist sequences {y1,n}n∈N and {y2,n}n∈N in Cl converging

to y1 and y2 respectively such that {etnλ(T−1l (tn)ATl(tn)y1,n + tlnT
−1
l (tn)BTl(tn)y2,n)}n∈N

is bounded. It follows immediately that {T−1l (tn)ATl(tn)yn,1 + tlnT
−1
l (tn)BTl(tn)y2,n}n∈N

is bounded, as |etnλ| = 1 for all n ∈ N since λ ∈ iR. Now {t−ln Tl(tn)}n∈N clearly converges

to zero, so it follows that {t−ln ATl(tn)y1,n + BTl(tn)y2,n}n∈N converges to zero. Consider

{t−ln ATl(tn)y1,n}n∈N. As the sequence {y1,n}n∈N converges to y1, it is in particular bounded.

As {t−ln Tl(tn)}n∈N converges to zero, and as A is independent of n, {t−ln ATl(tn)y1,n}n∈N
converges to zero, so {BTl(tn)y2,n}n∈N must also converge to zero. Now B is a matrix

of the form described by Proposition 2.45, so B is invertible, and thus {Tl(tn)y2,n}n∈N
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converges to zero. As {T−1l (tn)}n∈N is clearly bounded (in fact, convergent) it must be

that {y2,n}n∈N converges to zero. But by construction {y2,n}n∈N converges to y2, so by

uniqueness of limits y2 = 0, and consequently x ∈ Kl. Then WC(ϕ,X) ⊆ Kl as x was

arbitrary.

Next it will be shown that Kl ⊆ SC(ϕ,X). Suppose x ∈ Kl. Then x is of the form

(y, 0) for some y ∈ Cl with respect to the chosen basis. Fix a sequence {tn}n∈N such

that limn→∞|tn| = +∞, and define a sequence {xn}n∈N in X given by xn = (y, 0) for

n < N and xn = (y,−t−ln T−1l (tn)B−1ATl(tn)y) otherwise with respect to the chosen basis,

where N ∈ N is chosen sufficiently large that tn 6= 0 for all n ≥ N . Note that B−1

exists as was seen previously. Also note that, for all n ≥ N , each entry of the l × l matrix

t−ln T
−1
l (tn)B−1ATl(tn) is the product of some constant real number (independent of n) with

t−jn for some j ∈ N. Consequently {−t−ln T−1l (tn)B−1ATl(tn)y}n≥N converges to zero, and

thus {xn}n∈N converges to (y, 0) = x. But by construction,

ϕ(tn, xn) = ϕtn

 y

−t−ln T−1l (tn)B−1ATl(tn)y

 =

 0

−etnλt−ln T−1l (tn)AB−1ATl(tn)y


for all n ≥ N . It follows similarly to above that {−t−ln T−1l (tn)AB−1ATl(tn)y}n≥N con-

verges to zero. Now |etnλ| = 1 for all n ∈ N since λ ∈ iR, and consequently the sequence

{−etnλt−ln T−1l (tn)AB−1ATl(tn)y}n≥N converges to zero. It follows that {ϕ(tn, xn)}n∈N con-

verges to zero, and thus x ∈ SC(ϕ,X) as {tn}n∈N was arbitrary. Then Kl ⊆ SC(ϕ,X) as x

was arbitrary.

By the preceding arguments, WC(ϕ,X) ⊆ Kl and Kl ⊆ SC(ϕ,X). But necessarily

SC(ϕ,X) ⊆WC(ϕ,X), so WC(ϕ,X) = SC(ϕ,X) = Kl. As l = bd2c = dd2e, this completes

the proof of the theorem for even d.

Now consider the case where d is odd, so d = 2l + 1 for some l ∈ N0. It is easily seen

that the theorem holds for d = 1. In this case, ϕ is of the form etirx for some r ∈ R. But

then ‖ϕ(t, x)‖ = ‖x‖. Consequently, given any fixed x in X, any sequence {tn}n∈N in R

such that limn→∞|tn| = +∞, and any sequence {xn}n∈N in X converging to x, it must

be that the sequence {ϕ(tn, xn)}n∈N is bounded but can only converge to zero if x = 0.

Suppose now that d ≥ 3 so that l ≥ 1. This case is similar to the even case but somewhat

more complicated, and it is now necessary to handle the strong and weak centres separately.
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First it will be shown that WC(ϕ,X) = Kd d
2
e = Kl+1. Similarly to the even case, ϕt may

be written as

ϕt = etλ

 T−1l (t)ÃTl+1(t) tl+1T−1l (t)B̃Tl(t)

Õ tT−1l+1(t)C̃Tl(t)

 ,

where λ is the eigenvalue of ϕ and Ã, B̃, Õ, and C̃ are real l× (l+ 1), l× l, (l+ 1)× (l+ 1),

and (l + 1)× l matrices respectively satisfying

 Ã B̃

Õ C̃

 =



1 1 1
2

1
(l−1)!

1
l!

1
(l+1)!

1
(l+2)!

1
(l+3)!

1
(d−2)!

1
(d−1)!

0 1 1 1
(l−2)!

1
(l−1)!

1
l!

1
(l+1)!

1
(l+2)!

1
(d−3)!

1
(d−2)!

0 0 1 1
(l−3)!

1
(l−2)!

1
(l−1)!

1
l!

1
(l+1)!

1
(d−4)!

1
(d−3)!

. . .
. . .

0 0 0 1 1
2

1
6

1
24

1
120

1
(l+1)!

1
(l+2)!

0 0 0 1 1 1
2

1
6

1
24

1
l!

1
(l+1)!

0 0 0 0 1 1 1
2

1
6

1
(l−1)!

1
l!

0 0 0 0 0 1 1 1
2

1
(l−2)!

1
(l−1)!

0 0 0 0 0 0 1 1 1
(l−3)!

1
(l−2)!

. . .
. . .

0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 1



.

First it will be shown that WC(ϕ,X) ⊆ Kl+1. Suppose x ∈ WC(ϕ,X). With re-

spect to the chosen basis x is of the form (y1, y2) for some y1 ∈ Cl+1 and y2 ∈ Cl.

Fix a sequence {tn}n∈N in R such that limn→∞|tn| = +∞. It may be assumed without

loss of generality the tn 6= 0 for all n ∈ N. As x ∈ WC(ϕ,X) there exist sequences

{y1,n}n∈N in Cl+1 and {y2,n}n∈N in Cl converging to y1 and y2 respectively such that the

induced sequence {etnλ(T−1l (tn)ÃTl+1(tn)y1,n+ tl+1
n T−1l (tn)B̃Tl(tn)y2,n)}n∈N is bounded. It

follows immediately that {T−1l (tn)ÃTl+1(tn)yn,1 + tl+1
n T−1l (tn)B̃Tl(tn)y2,n}n∈N is bounded,

as |etnλ| = 1 for all n ∈ N since λ ∈ iR. Now {t−(l+1)
n Tl(tn)}n∈N clearly converges to

zero, so it follows that {t−(l+1)
n ÃTl+1(tn)y1,n + B̃Tl(tn)y2,n}n∈N converges to zero. Consider

{t−(l+1)
n ÃTl+1(tn)y1,n}n∈N. As the sequence {y1,n}n∈N converges to y1, it is in particular

bounded. As {t−(l+1)
n Tl+1(tn)}n∈N converges to zero, and as Ã is independent of n, it must

be that {t−(l+1)
n ÃTl+1(tn)y1,n}n∈N converges to zero, so {B̃Tl(tn)y2,n}n∈N must also converge
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to zero. Now B̃ is a matrix of the form described by Proposition 2.45, so B̃ is invertible,

and thus {Tl(tn)y2,n}n∈N converges to zero. As {T−1l (tn)}n∈N is clearly bounded, it must

be that {y2,n}n∈N converges to zero. But by construction {y2,n}n∈N converges to y2, so by

uniqueness of limits y2 = 0, and consequently x ∈ Kl+1. Then WC(ϕ,X) ⊆ Kl+1 as x was

arbitrary.

Next it will be shown that Kl+1 ⊆WC(ϕ,X). Suppose x ∈ Kl+1. Then x is of the form

(y, 0) for some y ∈ Cl+1 with respect to the chosen basis. Fix a sequence {tn}n∈N such that

limn→∞|tn| = +∞, and define a sequence {xn}n∈N in X given by xn = (y, 0) for n < N

and xn = (y,−t−(l+1)
n T−1l (tn)B̃−1ÃTl+1(tn)y) otherwise with respect to the chosen basis,

where N ∈ N is chosen sufficiently large that tn 6= 0 for all n ≥ N . Note that B̃−1 exists

as was seen previously. Also note that, for all n ≥ N , each entry of the l × (l + 1) matrix

t
−(l+1)
n T−1l (tn)B̃−1ÃTl+1(tn) is the product of some constant real number (independent of

n) with t−jn for some j ∈ N. Consequently {−t−(l+1)
n T−1l (tn)B̃−1ÃTl+1(tn)y}n≥N converges

to zero, and thus {xn}n∈N converges to (y, 0) = x. But similarly to the previous case

ϕ(tn, xn) =

 0

etnλ(Õy − t−ln T−1l+1(tn)C̃B̃−1ÃTl+1(tn)y)


by construction for all n ≥ N . While {−t−ln T−1l+1(tn)C̃B̃−1ÃTl+1(tn)y}n≥N does not con-

verge to zero, it does at least converge as the highest power of tn that appears is t0n, so

it is in particular bounded. As Õy is constant, {Õy − tlnT−1l+1(tn)C̃B̃−1ÃTl+1(tn)y}n≥N is

bounded, and so is {etnλ(Õy − t−ln T
−1
l+1(tn)C̃B̃−1ÃTl+1(tn)y}n≥N . It follows that the se-

quence {ϕ(tn, xn)}n∈N is bounded, and thus x ∈WC(ϕ,X) as {tn}n∈N was arbitrary. Then

Kl+1 ⊆WC(ϕ,X) as x was arbitrary.

By the preceding arguments, WC(ϕ,X) ⊆ Kl+1 and Kl+1 ⊆ WC(ϕ,X). Consequently

WC(ϕ,X) = Kl+1. As l + 1 = dd2e, this completes the proof of property (ii) for odd d.

Finally it will be shown that SC(ϕ,X) = Kb d
2
c = Kl when d is odd. As per above,

assume that d ≥ 3 so that l ≥ 1. In this case the matrix form of ϕt with respect to the

chosen basis is

ϕt = etλ

 T−1l+1(t)ÂTl(t) tlT−1l+1(t)B̂Tl+1(t)

O t−1T−1l (t)ĈTl+1(t)


where λ is the eigenvalue of ϕ and Â, B̂, and Ĉ are real (l + 1) × l, (l + 1) × (l + 1), and
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l × (l + 1) matrices respectively satisfying

 Â B̂

O Ĉ

 =



1 1 1
2

1
(l−2)!

1
(l−1)!

1
l!

1
(l+1)!

1
(l+2)!

1
(d−2)!

1
(d−1)!

0 1 1 1
(l−3)!

1
(l−2)!

1
(l−1)!

1
l!

1
(l+1)!

1
(d−3)!

1
(d−2)!

0 0 1 1
(l−4)!

1
(l−3)!

1
(l−2)!

1
(l−1)!

1
l!

1
(d−4)!

1
(d−3)!

. . .
. . .

0 0 0 0 1 1 1
2

1
6

1
l!

1
(l+1)!

0 0 0 0 0 1 1 1
2

1
(l−1)!

1
l!

0 0 0 0 0 0 1 1 1
(l−2)!

1
(l−1)!

0 0 0 0 0 0 0 1 1
(l−3)!

1
(l−2)!

0 0 0 0 0 0 0 0 1
(l−4)!

1
(l−3)!

. . .
. . .

0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 1



.

First it will be shown that SC(ϕ,X) ⊆ Kl. Suppose x ∈ SC(ϕ,X). With respect

to the chosen basis x is of the form (y1, y2) for some y1 ∈ Cl and y2 ∈ Cl+1. Fix a se-

quence {tn}n∈N in R such that limn→∞|tn| = +∞. It may be assumed without loss of

generality that tn 6= 0 for all n ∈ N. As x ∈ SC(ϕ,X) there exist sequences {y1,n}n∈N
in Cl and {y2,n}n∈N in Cl+1 converging to y1 and y2 respectively such that the induced

sequence {etnλ(T−1l+1(tn)ÂTl(tn)y1,n + tlnT
−1
l+1(tn)B̂Tl+1(tn)y2,n)}n∈N converges to zero, as

does {T−1l+1(tn)ÂTl(tn)yn,1 + tlnT
−1
l+1(tn)B̂Tl+1(tn)y2,n}n∈N. Now {t−ln Tl+1(tn)}n∈N is clearly

bounded, so it follows that {t−ln ÂTl(tn)y1,n + B̂Tl+1(tn)y2,n}n∈N converges to zero. Con-

sider {t−ln ÂTl(tn)y1,n}n∈N. As the sequence {y1,n}n∈N converges to y1, it is in particular

bounded. As {t−ln Tl(tn)}n∈N converges to zero, and as Â is independent of n, it must be

that {t−ln ÂTl(tn)y1,n}n∈N converges to zero, so {B̂Tl+1(tn)y2,n}n∈N must also converge to

zero. Now B̂ is a matrix of the form described by Proposition 2.45, so B̂ is invertible, and

thus {Tl+1(tn)y2,n}n∈N converges to zero. As {T−1l+1(tn)}n∈N is clearly bounded, it must be

that {y2,n}n∈N converges to zero. But by construction {y2,n}n∈N converges to y2, so by

uniqueness of limits y2 = 0, and consequently x ∈ Kl. Then SC(ϕ,X) ⊆ Kl as x was

arbitrary.

Next it will be shown that Kl ⊆ SC(ϕ,X). Suppose x ∈ Kl. Then x is of the form
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(y, 0) for some y ∈ Cl with respect to the chosen basis. Fix a sequence {tn}n∈N such that

limn→∞|tn| = +∞, and define a sequence {xn}n∈N in X given by xn = (y, 0) for n < N

and xn = (y,−t−ln T−1l+1(tn)B̂−1ÂTl(tn)y) otherwise with respect to the chosen basis, where

N ∈ N is chosen sufficiently large that tn 6= 0 for all n ≥ N . Note that B̂−1 exists as

was seen previously. Also note that, for all n ≥ N , each entry of the (l + 1) × l matrix

t−ln T
−1
l+1(tn)B̂−1ÂTl(tn) is the product of some constant real number (independent of n) with

t−jn for some j ∈ N. Consequently {−t−ln T−1l+1(tn)B̂−1ÂTl(tn)y}n≥N converges to zero, and

thus {xn}n∈N converges to (y, 0) = x. But by construction

ϕ(tn, xn) = ϕtn

 y

−t−ln T−1l+1(tn)B̂−1ÂTl(tn)y

 =

 0

−etnλt−(l+1)
n T−1l (tn)ĈB̂−1ÂTl(tn)y


for all n ≥ N . Similarly to a previous argument {−t−(l+1)

n T−1l (tn)ĈB̂−1ÂTl(tn)y}n≥N

converges to zero, as does {−etnλt−(l+1)
n T−1l (tn)ĈB̂−1ÂTl(tn)y}n≥N . It follows that the

sequence {ϕ(tn, xn)}n∈N converges to zero, and thus x ∈ SC(ϕ,X) as {tn}n∈N was arbitrary.

Then Kl ⊆ SC(ϕ,X) as x was arbitrary.

By the preceding arguments, SC(ϕ,X) ⊆ Kl and Kl ⊆ SC(ϕ,X). Consequently

SC(ϕ,X) = Kl. As l = bd2c, this completes the case for the strong centre with d odd.

Furthermore, this completes the proof as all cases have now been considered. �

Based on their definitions alone, one might view strong and weak centres as fairly com-

plicated constructions. Of course, defined as they are, it is a straightforward if tedious

exercise to verify that they are preserved by homeomorphic equivalence and decomposition,

as per Propositions 4.8 and 4.7. But the structure of the strong and weak centres of an

irreducible central linear flow on an arbitrary subspace is non-obvious from their definitions.

With that said, the preceding theorem demonstrates that the structure of strong and weak

centres on subspaces of the form Kj for some j ≤ d is very simple.

4.3 Block Counting

Iterated centres consist of various combinations of strong and weak centres. In light of

Proposition 4.9, an iterated centre would start with Kd, reduce that to Kb d
2
c or Kd d

2
e,

reduce that by approximately half, and so on, at least for irreducible central linear flows.
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It follows that every iterated centre ICn(ϕ) of such a flow ϕ is a subspace of the form Kj

for some j ∈ N; moreover, since every iterated centre (except the initial one) ends with a

strong centre, all iterated centres ICn(ϕ) for a sufficiently high n will be trivial as K0 = {0}.

The following proposition demonstrates that this sufficiently high n is in fact d, so that all

iterated centres for n ≥ d are trivial. As a consequence of the intersection of iterated centres

and ker(ϕt− I), it turns out that this is all that is needed to completely describe BCn,t(ϕ).

Proposition 4.10 Let ϕ be an irreducible central linear flow on X with K = C. Then

ICn(ϕ) = {0} if d ≤ n and ICn(ϕ) ⊇ K1 if d > n for all n ∈ N0.

Proof. Since Theorem 4.9 states that the strong and weak centres of an irreducible central

linear flow on subspaces of the form Kj for some j ∈ N are subspaces of the form Kj̃ for

some j̃ ∈ N, and since iterated centres consist solely of various combinations of strong and

weak centres starting with Kd = X, it follows that ICn(ϕ) = Kj for some j ∈ N for all

n ∈ N. Note that K0 = {0}. Also note that the case where d = 0 is trivial.

Recall that for iterated centres n was considered in its binary form δl2
l−1 + · · · + δ12

0

where the δj ∈ {0, 1} with δl = 1 unless n = 0. As in the case of Propositions 4.7 and 4.8,

this proposition is proved via induction on l.

Suppose first that l = 1 in which case n = 0 or n = 1. If n = 0, then n < d for all

d ∈ N. This leads to the desired conclusion, since IC0(ϕ) = WC(ϕ,X) = Kd d
2
e and dd2e ≥ 1

for all d ≥ 1. Similarly, if n = 1 and d > 1, then since IC1(ϕ) = SC(ϕ,X) = Kb d
2
c and

bd2c ≥ 1 for all d > 1, it follows that IC1(ϕ) ⊇ K1. Finally, if n = 1 and d = 1, then

IC1(ϕ) = SC(ϕ,X) = Kb d
2
c = K0. Thus the claim is correct for l = 1.

Fix L ∈ N and suppose that the proposition holds for all n with l ≤ L. Suppose further

that n ∈ N satisfies l = L+ 1. There are two main cases to be considered based on whether

n is even or odd. Then within each of these main cases are a number of sub-cases based on

whether d is even or odd and whether or not n ≥ d.

Suppose first that n is even. Then δ1 = 0, so n = 2l−1 + δl−12
l−2 + · · ·+ δ22. It follows

that n
2 = 2l−2 + δl−12

l−3 + · · · + δ2 so n
2 has length l − 1 = L. Moreover, it holds that

ICn(ϕ) = SC(ϕ, δ̃l−1(ϕ, . . . δ̃2(ϕ,Kd d
2
e))) = ICn

2
(ϕ|Kd d2 e

). Thus the proposition holds for

even n assuming it can be shown that n ≥ d if and only if n
2 ≥ d

d
2e. To see that this indeed

is the case, note that if d is even, then trivially n ≥ d if and only if n
2 ≥

d
2 = dd2e. If d is
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odd and n ≥ d, then necessarily n ≥ d + 1, so n
2 ≥

d+1
2 = dd2e. On the other hand, if d is

odd and n < d, then trivially n < d+ 1, so n
2 <

d+1
2 = dd2e. This completes the case where

n is even.

Suppose now that n is odd. Then n − 1 is even, and it follows similarly to above that

n−1
2 = 2l−2 + δl−12

l−3 + · · ·+ δ2 and is of length l− 1 = L. As δ1 = 1 in this case, it follows

that ICn(ϕ) = ICn−1
2

(ϕ|Kb d2 c
). Thus the proposition holds for odd n assuming it can be

shown that n ≥ d if and only if n−1
2 ≥ b

d
2c. Now if d is also odd then trivially n ≥ d if and

only if n−1
2 ≥ d−1

2 = bd2c. Otherwise if d is even and n ≥ d, then necessarily n − 1 ≥ d, so

n−1
2 ≥

d
2 = bd2c. Finally, if d is even and n < d, then trivially n− 1 < d, so n−1

2 < d
2 = bd2c.

This completes the case when n is odd, and the proposition follows by induction on l. �

The other major ingredients in the definition of the family {BCn,t(ϕ)}n∈N,t∈R+ are the

subspaces ker(ϕt − I) for t ∈ R+. These spaces are much simpler than strong, weak, and

iterated centres. They are often trivial; in particular, they are trivial for any hyperbolic

linear flow. It is for this reason that strong, weak, and iterated centres have only been

considered for (irreducible) central flows — the iterated centres of hyperbolic flows will

always reduce to {0} upon intersection with this kernel.

Proposition 4.11 Let ϕ be an irreducible central linear flow on X with K = C and eigen-

value λ. Then ker(ϕt − I) = {0} except when either λ = 0 or λ = z2πi
t for some nonzero

z ∈ Z, in which case ker(ϕt − I) = K1.

Proof. Fix a basis for X so that ϕ is of the form etλetJd(0)x as per Proposition 2.41. Consider

that etJd(0) = I +
∑d−1

j=1
1
j! t

jJd(0)j . Now
∑d−1

j=1
1
j! t

jJd(0)j is an upper diagonal matrix with

zeros along the diagonal, and this remains true if the matrix is multiplied by etλ. Thus, the

diagonal of etλetJd(0) − I is the same as the diagonal of etλI − I, and so ker(ϕt − I) = {0}

whenever etλ 6= 1. Now if λ 6∈ iR, then etλ 6= 1 for all t ∈ R+. Even if λ ∈ iR, then etλ 6= 1

unless λ = z2πi
t for some nonzero z ∈ Z.

Suppose now that either λ = 0 or λ = z2πi
t for some nonzero z ∈ Z so that etλ =

1. Since etλetJd(0) − I =
∑d−1

j=1
1
j! t

jJd(0)j , it is clear that K1 ⊆ ker(ϕt − I). Suppose

in turn that x ∈ ker(ϕt − I). Then
∑d−1

j=1
1
j! t

jJd(0)jx = 0. Since t is nonzero and

Jd(0)d = 0, multiplying this equation by Jd(0)d−2 demonstrates that Jd(0)d−1x = 0.
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Thus
∑d−2

j=1
1
j! t

jJd(0)jx = 0. But multiplying this equation by Jd(0)d−3 demonstrates

that Jd(0)d−2x = 0, so
∑d−3

j=1
1
j! t

jJd(0)jx = 0. Continuing inductively one concludes that

Jd(0)x = 0. As ker Jd(0) = K1, it follows that x ∈ K1. Thus ker(ϕt − I) = K1. �

What does this mean for the intersection between iterated centres and these kernels for

irreducible linear flows? If the flow is hyperbolic, then the intersection is always trivial due

to the kernel. If the flow is central, then the intersection is still trivial due to the kernel,

except in the case where the flow’s eigenvalue lines up appropriately with t. At this point

the iterated centre comes into play. Even with a central flow with appropriate eigenvalue,

the intersection is still trivial if d ≤ n. Only in the case where the flow is central with an

appropriate eigenvalue and n < d will the intersection be nontrivial. In such a situation

the kernel is K1 and the iterated centre contains K1 so the intersection is K1. This is what

gives the family {BCn,t(ϕ)}n∈N,t∈R+ its final property.

Theorem 4.12 Let ϕ be a linear flow on X with K = C. There exists a family of subspaces

of X, denoted {BCn,t(ϕ)}n∈N0,t∈R+, that satisfy the following two properties for all n ∈ N0

and t ∈ R+:

(i) If h is a homeomorphic equivalence, then h(BCn,t(ϕ)) = BCn,t(h ◦ ϕ);

(ii) The number of irreducible components of ϕ of dimension greater than n with eigenvalue

either 0 or z2πi
t for some nonzero z ∈ Z equals dim BCn,t(ϕ) .

Proof. The existence of this family of subspaces is clear from its construction. Property (i)

is just Proposition 4.8 - (v). It remains to prove (ii).

Fix n ∈ N0 and t ∈ R+. Let
⊕m

k=1 ϕk be the irreducible decomposition of ϕ guaranteed

by Theorem 2.37. Fix a basis B of X by combining in order the elements of bases Bk of Xk

for each k ≤ m constructed so that each ϕk(t, x) = etλketJdk (0)x with respect to Bk. This

can be done by Proposition 2.41. Now by Proposition 4.7 BCn,t(ϕ) =
⊕m

k=1 BCn,t(ϕk).

But dim BCn,t(ϕ) = dim
⊕m

k=1 BCn,t(ϕk) =
∑m

k=1 dim BCn,t(ϕk) from the basic properties

of dimensions. Now if ϕk is of dimension dk > n with eigenvalue λk either zero or of

the form z2πi
t for some nonzero z ∈ N, then BCn,t(ϕk) = ICn(ϕk) ∩ ker(ϕkt − I) = K1 by

Propositions 4.10 and 4.11, so that dim BCn,t(ϕk) = 1 in this case. Otherwise it follows from
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these propositions that BCn,t(ϕk) = {0}, so dim BCn,t(ϕk) = 0. Since each ϕk corresponds

to an irreducible component of ϕ, it follows that dim BCn,t(ϕ) is the number of irreducible

components of ϕ of dimension dk > n with eigenvalue either 0 or of the form z2πi
t for some

nonzero z ∈ Z. Since n and t were arbitrary, this completes the proof. �

This theorem is all that is necessary to complete the characterization of homeomorphic

equivalence discussed in Section 3.3.
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5 Examples and Other Considerations

With the theoretical work now complete, it is natural to turn toward more practical prob-

lems such as explicitly classifying particular flows. On normed vector spaces of small dimen-

sion, it is a straightforward exercise to provide a natural representative for all equivalence

classes of linear flows. It is also worthwhile to consider additional avenues of investigation

beyond this thesis, and this is discussed in the final section.

5.1 Examples

The diffeomorphic classification of flows on Kd is particularly simple as a consequence

of Theorem 3.2. Each distinct d × d Jordan canonical form matrix with coefficients in

K generates a unique equivalence class with respect to diffeomorphic equivalence, since

distinct Jordan canonical forms are nonsimilar, at least up to reordering the individual

Jordan blocks. On the other hand, the existance of a Jordan canonical form guarantees

that every d× d matrix with coefficients in K is diffeomorphically equivalent to a matrix in

Jordan canonical form. Consequently the distinct (up to reordering) d×d Jordan canonical

form matrices with coefficients in K act as a natural set of representatives for all of the

equivalence classes of linear flows with respect to diffeomorphic equivalence.

The situation is more interesting when it comes to the homeomorphic classification of

linear flows on Kd. Since diffeomorphic equivalence implies homeomorphic equivalence, it is

still worthwhile to start by considering d×d Jordan canonical form matrices with entries in

K as representatives of equivalence classes. However, in this case multiple distinct Jordan

canonical form matrices may generate homeomorphically equivalent flows. This can be seen

clearly when it comes to hyperbolic flows — in fact it will quickly become apparent that

the number of equivalence classes of hyperbolic linear flows is finite.

The simplest case is of course when d = 1. The linear flows on R are exactly the maps

(t, x) 7→ ertx for some r ∈ R. If r is negative, the flow is stable and thus equivalent to e−tx.

Similarly, if r is positive, then the flow is equivalent to etx. Finally, if r = 0, then the flow

cannot be equivalent to either e−tx or etx, so it generates its own single element equivalence
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class. It follows that the distinct equivalence classes of linear flows on R are exactly

[−I1], [I1], and [O1]

where, to simplify notation, [L] represents the equivalence class of the flow generated by

some L ∈ L(X). The situation is similar for linear flows on C. In this case the flows

are exactly the maps (t, x) 7→ ectx for some c ∈ C. In this case all flows with c in the

left open half-plane and the right open half-plane belong to the equivalence classes [−I1]

and [I1] respectively. All that remains is to deal with the situation when c ∈ iR. While

the two equivalence classes [−I1] and [I1] are sufficient to completely represent hyperbolic

flows, an uncountable collection of equivalence classes is required to deal with the remaining

nonhyperbolic flows. Each flow of the form eirtx is homeomorphically equivalent to e−irtx

for all r ∈ R but is in turn not homeomorphically equivalent to eir̃tx for any other r̃ ∈ R.

Consequently each r ∈ R+ generates a distinct equivalence class, so that {[irI1]}r∈R+ is a

family of distinct equivalence classes. Note that it is not necessary to consider r ∈ R− as

[irI1] = [irI1] = [−irI1] for all r ∈ R. It follows that the distinct equivalence classes of

linear flows on C are exactly

[−I1], [I1], [O1], and the family {[irI1]}r∈R+ .

Handling the case when d = 2 comes with a small but nonnegligible increase in difficultly.

As it is now possible for a real matrix to have a variety of purely imaginary eigenvalues,

the set of equivalence classes of linear flows on R2 is no longer finite. With that said, the

situation for hyperbolic flows is still straightforward. A hyperbolic flow on R2 is either

completely stable, completely unstable, or a mix of stable and unstable, and the associated

equivalence classes are respectively [−I2], [I2], and [diag(−I1, I1)]. The situation for non-

hyperbolic flows with no zero eigenvalues is similar to the nonhyperbolic case on C. In this

case, by defining

Î =

 0 1

−1 0

 ,

each r ∈ R+ generates a distinct equivalence class [rÎ]. More finesse is required to handle

flows with a zero eigenvalue — two equivalence classes are required to handle flows which
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only have the eigenvalue 0, along with two distinct equivalence classes to handle flows with

the zero eigenvalue and a stable or unstable subspace. These equivalence classes are as

follows: [O2], [J2(0)], [diag(O1,−I1)], and [diag(O1, I1)]. Consequently, for linear flows on

R2, there are exactly seven specific equivalence classes, namely

[O2], [J2(0)], [diag(O1,−I1)], [diag(O1, I1)], [−I2], [diag(−I1, I1)], and [I2],

together with the family {[rÎ]}r∈R+ .

The first seven preceding matrices all also represent distinct equivalence classes when

it comes to linear flows over C2 and the reasoning is similar. Since it is now possible for

a flow to have a single purely imaginary eigenvalue (counting algebraic multiplicity), it is

necessary to include some additional families of equivalences to handle flows with a zero

and a purely imaginary eigenvalue, as well as to handle flows with a purely imaginary eigen-

value and a stable or unstable subspace. The required families are {[diag(O1, irI)]}r∈R+ ,

{[diag(−I1, irI)]}r∈R+ , and {[diag(I1, irI)]}r∈R+ . Again note that it is only necessary to

consider r ∈ R+ for the same reason as in the d = 1 case, and this will continue to be

true throughout these examples. The situation is also more complex than in the R2 case

for flows with two purely imaginary eigenvalues. It is necessary to construct a family of

representatives for when a flow consists of a single Jordan Block with a purely complex

eigenvalue. It is also necessary to construct a family (now ranging over two variables) to

handle flows consisting of two Jordan Blocks with purely imaginary eigenvalues. These two

families are {[J2(ir)]}r∈R+ and {[diag(ir1I1, ir2I1)]}r1,r2∈R+ . In combination with the pre-

viously discussed three families, these five families along with the seven matrices discussed

previously combine to form a complete set of distinct representatives of the equivalence

classes of linear flows on C2 with respect to homeomorphic equivalence.

The explicit representation of the homeomorphic classification of linear flows on R3 is

only just barely reasonable to write up fully, given how many equivalence classes and families

of equivalences that are required. Now fifteen fixed matrices are necessary to represent

the distinct equivalence classes for flows consisting of various combinations of stable and

unstable subspaces, along with subspaces associated with the zero eigenvalue. A full list is

as follows:
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[O3], [diag(O1, J2(0))], [J3(0)], [diag(O2,−I1)], [diag(O2, I1)], [diag(J2(0),−I1)],

[diag(J2(0), I1)], [diag(O1,−I2)], [diag(O1,−I1, I1)], [diag(O1, I2)], [−I3], [diag(−I2, I1)],

[diag(−I1, I2)], and [I3].

It is also now necessary to have three separate families, namely

{[diag(O1, rÎ)]}r∈R+ , {[diag(−I1, rÎ)]}r∈R+ , and {[diag(I1, rÎ)]}r∈R+ ,

to handle the combination of a central, stable, or unstable subspace with a subspace gen-

erated by a purely imaginary eigenvalue pair respectively. This is similar to how it was

necessary on C2 to have three cases to handle the combination of a purely imaginary eigen-

value with a stable and unstable space and with subspaces associated with a zero eigenvalue.

The case C3 is even worse than R3. The same fixed matrices as in the R3 case are required,

along with a fairly substantial number of families. In particular, seven families consisting

of a single purely imaginary eigenvalue combined with the various fixed matrices of the C2

case are required; for example, the family {[diag(O2, irI1)]}r∈R+ is needed. Also, for both

families associated with only purely imaginary eigenvalues (the single Jordan block and

dual Jordan block families) in the C2 case, there are now three associated families in the C3

case. For instance {[diag(O1, J2(ir))]}r∈R+ and {[diag(−I1, ir1I1, ir2I1)]}r1,r2∈R+ are both

required to completely represent the equivalence classes of linear flows on C3. And these

families are not yet sufficient; it is still necessary to handle flows on C3 with only purely

imaginary eigenvalues via the families {[J3(ir)]}r∈R+ , {[diag(ir1I1, J2(ir2))]}r1,r2∈R+ , and

{[diag(ir1I1, ir2I1, ir3I1)]}r1,r2,r3∈R+ .

It is perhaps becoming clear that homeomorphic classification for a given d = D can be

described by building upon the classifications for d < D. The pattern is sufficiently complex

that it is not worth stating explicitly. It should be clear that explicitly expressing repre-

sentatives for the equivalence classes of linear flows with d higher than 3 quickly becomes

tedious.

5.2 Other Considerations

This thesis has focused on the classification of linear flows on finite-dimensional normed

spaces based primarily on the specific notions of homeomorphic and diffeomorphic equiva-
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lence. These notions of equivalence are fairly natural choices to work with, but one could

certainly consider other notions as well. For instance, one could construct a notion of higher

order derivatives. If Dh : X → L(X) is the derivative of a diffeomorphic equivalence h,

then there may exist a map D2h : X → L(X,L(X)) that is the derivative of Dh, and so

on. One could then discuss Cn(X) equivalent flows for all n ∈ N0 where homeomorphic and

diffeomorphic equivalence are simply the n = 0 and n = 1 cases respectively. One could

even define a notion of smooth equivalence.

With that said, notions of equivalence based on higher order differentiability are not

particularly interesting. Consider that a linear equivalence x 7→ hx is always differentiable

with derivative x 7→ h. This derivative is a constant map, so higher order derivatives will

all exist and be the zero map from X to some appropriate space. Consequently, linear

equivalence implies smooth equivalence, which in turn imples Cn(X) equivalence for any

n ∈ N, finally implying diffeomorphic equivalence in particular. It would then follow from

Lemma 3.1 that all these notions of equivalence are identical to diffeomorphic equivalence.

Notions of equivalence weaker than diffeomorphic are potentially more interesting. For

instance, one can examine how diffeomorphic classification morphs into homeomorphic clas-

sification by considering α-Hölder continuity for various α ∈ (0, 1]. This approach is dis-

cussed in [10]. One may also consider notions of equivalence weaker than homeomorphic;

for example, one could consider flow equivalences that are bimeasurable rather than bi-

continuous. Even further, one could discuss basic flow equivalence, without any additional

structure on the equivalence. Now less structure results in fewer tools to work with to

analyze those equivalences, but there are still things that can be said. The two flows in Ex-

ample 3.5 are not flow equivalent even in the most basic sense, for instance, as bicontinuity

was not used in that example.

As mentioned when flow equivalence was first introduced, one may also consider equiv-

alences for which the time variable can vary; that is, given flows ϕ and ψ on X one

may consider bijections on X with the property that h(ϕ(t, x)) = ψ(h̃(t, x), h(x)) where

h̃ : R × X → R. Such constructions are sometimes referred to as conjugacies rather than

equivalences. This topic is discussed more in [9], but it is not too hard to see what hap-

pens when h̃(t, x) = rt for all (t, x) ∈ R × X where r is some fixed real number. When r
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is positive, diffeomorphic equivalence is made a little more flexible in that the underlying

operators of two flows now need only be similar up to some uniform rescaling. In essence

this introduces a single degree of freedom for diffeomorphic conjugacy that does not exist

for diffeomorphic equivalence. In the latter case the underlying operators of two flows must

have identical Jordan block structure once a basis is fixed. In the former case the Jordan

block structure must be similar, but the eigenvalues no longer need to be exactly the same

— it is now only necessary that the ratios between eigenvalues are the same. For example,

consider the two flows on C2 generated by matrices L and M with eigenvalues {i, 2i} and

{2i, 4i} respectively. These two flows clearly cannot be diffeomorphically equivalent, but

they are diffeomorphically conjugate, as the Jordan canonical form of the second matrix is

twice the Jordan canonical form of the first.

The situation is similar for homeomorphic conjugacy with a fixed positive r. Upon

rescaling the underlying operator by r, eigenvalues with positive real part still have positive

real part, eigenvalues with negative real part still have negative real part, and eigenvalues

with zero real part still have zero real part. Consequently, homeomorphic conjugacy behaves

identically to homeomorphic equivalence when it comes to the stable and unstable parts of

a flow, and it behaves similar to diffeomorphic conjugacy when it comes to the central part

of a flow, as homeomorphic equivalence functions are linearly equivalent for that part. The

situation is also similar for conjugacies with negative r. Negative r values not only rescale

time but also reverse the direction of paths. With that said, negative r values still only

allow for one degree of freedom — either all paths are reversed or none are.

Aside from considering forms of equivalence outside those discussed in this thesis, one

may also consider other types of flows. Less can be said about such situations here, as this

thesis relies heavily on the innate structural properties of linear flows on finite-dimensional

normed spaces. One could for example consider the case of nonlinear flows, but virtually

all of this thesis is predicated on the fact that all linear flows are of the form etLx for some

linear operator, and this clearly is not true for nonlinear flows. One could also consider

flows when the dimension is infinite. Properties of linear operators on finite-dimensional

normed spaces are used both explicitly and implicitly. While it may be possible to avoid

using these properties via more elegant arguments, this would be a substantial endeavour,
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would likely increase the complexity of proofs, and may not be possible everywhere. One

could even consider a notion of flows defined for discrete time (using say t ∈ Z rather than

t ∈ R), though the behaviour of discrete flows differs greatly from that of continuous flows.
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A Operator Exponential

The exponential of an operator is defined by naively applying the Taylor series expansion

of the real exponential to linear operators. For this definition to make sense, it is essential

that such a construction is always well-defined.

Proposition A.1 Let L ∈ L(X). The sequence of partial sums {
∑n

j=0
1
j!L

j}n∈N converges

in L(X).

Proof. As X is assumed to be a finite-dimensional normed space, X is in fact a Banach

space, and thus it is sufficient to prove that the sequence is absolutely convergent. But

L ∈ L(X) implies that ‖L‖ <∞, so limn→∞
∑n

j=0
1
j!‖L

j‖ ≤ e‖L‖ <∞. �

The following definition is now justified.

Definition A.2 Let L ∈ L(X). The exponential of L is eL :=
∑∞

j=0
1
j!L

j ∈ L(X).

As one might expect, many properties of exponentials of real numbers carry over to

exponentials of operators. For example, |et| ≤ e|t| for all t ∈ R, and it is easily seen that a

similar result holds for the operator exponential.

Proposition A.3 Let L ∈ L(X). Then ‖eL‖ ≤ e‖L‖.

Proof. It follows from the triangle inequality that ‖
∑n

j=0
1
j!L

j‖ ≤
∑n

j=0
1
j!‖L‖

j for all n ∈ N.

The desired result is obtained by taking n to ∞. �

Another basic property of exponentials of real numbers is that es+t = eset = etes

whenever s, t ∈ R. This property also extends to exponentials of operators but with a catch.

If L, M ∈ L(X) do not commute, then it is not necessarily true that eL+M = eLeM = eMeL.

This issue does not arise in the real case as commutativity is automatic.

Proposition A.4 Let L, M ∈ L(X) commute. Then eL+M = eLeM = eMeL.

Proof. For notational simplicity, set Ln =
∑n

j=0
1
j!L

j and Mn =
∑n

j=0
1
j1M

j . Now eL+M

is simply
∑∞

j=0
1
j!(L + M)j . By uniqueness of limits it is sufficient to show that for every

ε ∈ R+ there exists an N ∈ N so that ‖
∑n

j=0
1
j!(L + M)j − eLeM‖ < ε for all n ≥ N , and

similarly for eMeL.
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Fix ε ∈ R+. As a consequence of the binomial formula,∑n

j=0

1

j!
(L+M)j =

∑n

j=0

∑j

k=0

1

(j − k)!
Lj−k

1

k!
Mk

=
∑n

j=0

(∑j

k=0

1

k!
Lk
)

1

(n− j)!
Mn−j

=
∑n

j=0
Lj

1

(n− j)!
Mn−j

after an appropriate rearrangement and relabelling of the terms. Since, again by reordering,

Mn =
∑n

j=0
1

(n−j)!M
n−j , it follows that∑n

j=0

1

j!
(L+M)j − eLeM =

∑n

j=0
(Lj − eL)

1

(n− j)!
Mn−j + eL(Mn − eM ).

Now there exists an NM ∈ N such that ‖Mn − eM‖ < ε
3‖eL‖ whenever n ≥ NM . Similarly,

there exists an NL ∈ N so that ‖Ln − eL‖ < ε
3e‖M‖

for all n ≥ NL. Finally, ‖ 1j!M
j‖ must

converge to zero for the series
∑n

j=0
1
j!M

j to be absolutely convergent, and consequently

there exists an ÑM ∈ N so that ‖ 1j!M
j‖ < ε

3(NL+1)max0≤l≤NL‖Ll−e
L‖ whenever j ≥ ÑM .

Let N = max{NL + ÑM , NM}, and let n ≥ N . Then for all j ≤ NL it must be the

case that n − j ≥ ÑM , so
∑NL

j=0‖
1

(n−j)!M
n−j‖‖Lj − eL‖ < 1

3ε by the construction of ÑM .

Similarly, that
∑n

j=NL+1‖
1

(n−j)!M
n−j‖‖Lj − eL‖ < 1

3ε follows from the construction of NL,

and that ‖eL‖‖Mn − eM‖ < 1
3ε follows from the construction of NM . Now

‖
∑n

j=0

1

j!
(L+M)j − eLeM‖ ≤

∑NL

j=0
‖ 1

(n− j)!
Mn−j‖‖Lj − eL‖

+
∑n

j=NL−1
‖ 1

(n− j)!
Mn−j‖‖Lj − eL‖

+ ‖eL‖‖Mn − eM‖,

and consequently ‖
∑n

j=0
1
j!(L + M)j − eLeM‖ < ε. The desired result follows as n and ε

were arbitrary. The eMeL case is proved similarly. �

This thesis is primarily interested in exponentials of the form etL for t ∈ R and L ∈ L(X).

In this case the situation is more straightforward.

Corollary A.5 Let L ∈ L(X). Then e(s+t)L = esLetL for all s, t ∈ R.

Proof. As sL and tL necessarily commute for all s, t ∈ R, the result follows immediately

from the preceding proposition. �
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Another property of real exponentials that extends to operator exponentials is differen-

tiability — a property that plays a crucial role in this thesis.

Proposition A.6 Let L ∈ L(X). Then etL is differentiable with respect to t, and the

derivative of etL is given by LetL for each fixed t ∈ R.

Proof. Fix ε ∈ R+, and let δ = min{1, ε
e‖L‖‖L‖‖etL‖+1

} ∈ R+. For all h ∈ R \ {0} such that

|h| < δ it holds that∥∥∥∥1

h
(e(t+h)L − etL)− LetL

∥∥∥∥ ≤ ∥∥∥∥1

h
(ehL − I)− L

∥∥∥∥ ‖etL‖
= limn→∞

∥∥∥∥1

h

(∑n

j=0

1

j!
hjLj − I

)
− L

∥∥∥∥ ‖etL‖
= limn→∞

∥∥∥∥∑n

j=1

1

j!
hj−1Lj − L

∥∥∥∥ ‖etL‖
≤ limn→∞

∥∥∥∥∑n

j=1

1

j!
hj−1Lj−1 − I

∥∥∥∥ ‖L‖‖etL‖
= limn→∞

∥∥∥∥∑n−1

j=1

1

j + 1

1

j!
hjLj

∥∥∥∥ ‖L‖‖etL‖
≤ limn→∞

∑n

j=0

1

j!
|h|j‖L‖j‖L‖‖etL‖

< limn→∞
∑n

j=0

1

j!
δj‖L‖j‖L‖‖etL‖

≤ ε

by the definition of δ, noting that δ ≤ 1 guarantees δj ≤ δ for all j ∈ N. This completes

the proof as ε and t were arbitrary. �

There are some properties of the operator exponential that are not considered properties

of the real exponential, as they are trivial in the real case. The problem again is that

commutativity is automatic for real numbers. For example, the real exponential equivalent

of the following property is trivial.

Proposition A.7 Let L, M ∈ L(X) commute. Then eLM = MeL.

Proof. It is easily verified by induction on j that LjM = MLj for all j ∈ N0 as a consequence

of the commutativity of L and M (the j = 0 case is trivial) so
∑n

j=0
1
j!L

jM =
∑n

j=0
1
j!MLj

for all n ∈ N. The desired result then follows directly by taking limits on both sides, as the

M can be pulled out of the sums and limits. �
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The following proposition is another such example. Here the proposition does not even

require commutativity; rather the result is completely uninteresting with commutativity, so

it is never worth considering for real exponentials.

Proposition A.8 Let L, M ∈ L(X) with M invertible. Then eMLM−1
= MeLM−1.

Proof. It is easily verified by induction on j that (MLM−1)j = MLjM−1 for all j ∈ N0

(the j = 0 case is again trivial) and it is an immediate consequence of this fact that

eMLM−1
=
∑∞

j=0
1
j!(MLM−1)j =

∑∞
j=0

1
j!MLjM−1 = M(

∑∞
j=0

1
j!L

j)M−1 = MeLM−1. �

It is sometimes necessary in this thesis to calculate the exponential of an operator

with respect to some fixed basis. As a consequence of the previous proposition, since

similarity transformations are exactly changes of basis, it is sufficient to calculate the ex-

ponential of the operator’s Jordan canonical form. But any operator in Jordan canoni-

cal form is a block diagonal matrix, say tdiag(Jd1(λ1), . . . , Jdm(λm)), and it is clear that∑n
j=0

1
j! tdiag(Jd1(λ1), . . . , Jdm(λm)) = diag(

∑n
j=0 tJd1(λ1), . . . ,

∑n
j=0 tJdm(λm)) for all n ∈

N0 by induction on n (the j = 0 case is trivial as usual). Consequently, it follows that

etdiag(Jd1 (λ1),...,Jdm (λm)) = diag(etJd1 (λ1), . . . , etJdm (λm)), so it is really only necessary to cal-

culate the exponential of a single Jordan block.

When K = C, a Jordan block Jd(λ) is of the form

λ 1 0 0 0

0 λ 1 0 0

0 0 λ 0 0

. . .

0 0 0 λ 1

0 0 0 0 λ


for some λ ∈ C. But then etJd(λ) = etλI+tJd(0) = etλIetJd(0) as tλI and tJd(0) necessarily

commute for all t ∈ R. Since In = I for all n ∈ N0, it consequently must be the case that∑∞
j=0

1
j!(tλI)j =

∑∞
j=0

1
j! t

jλjI = (
∑∞

j=0
1
j! t

jλj)I = etλI, so etJd(λ) = etλeJd(0) for all t ∈ R.

Now it is easily verified by induction on n that Jd(0)n is a matrix with ones down the nth

super diagonal and zeros everywhere else whenever n < d; moreover Jd(0)n = O for all
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n ≥ d. It follows that etJd(λ) = etλ
∑d−1

j=0
1
j! t

jJd(0)j for all t ∈ R, and so is a real d × d

matrix of the form

etλ



1 t 1
2 t

2 1
(d−2)! t

d−2 1
(d−1)! t

d−1

0 1 t 1
(d−3)! t

d−3 1
(d−2)! t

d−2

0 0 1 1
(d−4)! t

d−4 1
(d−3)! t

d−3

. . .

0 0 0 1 t

0 0 0 0 1


.

If K = R, the situation is the same for Jordan blocks with λ ∈ R. The situation for Jordan

blocks with λ ∈ C \ R is similar as well, but more complex. In this case the Jordan block

is of the form

aI2 + bÎ I2 0 0 0

0 aI2 + bÎ I2 0 0

0 0 aI2 + bÎ 0 0

. . .

0 0 0 aI2 + bÎ I2

0 0 0 0 aI2 + bÎ


with Î =

 0 1

−1 0



where a = <λ and b = =λ. Applying similar reasoning as above, one concludes that

etJ̃d(λ) = etaI+tdiag(bÎ,...,Î)+tJd(0)
2

= etadiag(etbÎ , . . . , etbÎ)
∑ d

2
j=0

1
j! t

jJd(0)2j for all t ∈ R, and

thus it is a real 2d× 2d matrix of the form

eta



E(t, b) tE(t, b) 1
2 t

2E(t, b) 1
(d−2)! t

d−2E(t, b) 1
(d−1)! t

d−1E(t, b)

0 E(t, b) tE(t, b) 1
(d−3)! t

d−3E(t, b) 1
(d−2)! t

d−2E(t, b)

0 0 E(t, b) 1
(d−4)! t

d−4E(t, b) 1
(d−3)! t

d−3E(t, b)

. . .

0 0 0 E(t, b) tE(t, b)

0 0 0 0 E(t, b)


where

E(t, b) := etbÎ =

 cos(tb) sin(tb)

− sin(tb) cos(tb)

 .
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B Operator Integral

Operator integrals are defined and behave almost identically to the standard Riemann

integral of real-valued functions. As such, it is necessary to start by defining notions such

as the partition of an interval.

Definition B.1 A partition of [a, b] ⊂ R is a finite sequence {tn}Nn=0 of real numbers such

that {tn} is strictly increasing (so tn−1 < tn for all n ≤ N) and t0 = a and tN = b. A

tagged partition of [a, b] is a partition of [a, b] paired with a second finite sequence {t̂n}Nn=1

of real numbers such that t̂n ∈ [tn−1, tn] for all n ≤ N . The size of a partition P is given

by |P| := maxn≤N |tn − tn−1|. The size of a tagged partition P̂ is the size of its underlying

partition P.

Riemann sums of operators are also defined exactly as in the case of real-valued functions.

Definition B.2 Let f : R → L(X), and let P̂ be a tagged partition of [a, b] ⊂ R. The

Riemann sum of f over P̂ is given by S(f, P̂) :=
∑N

j=1 f(t̂j)(tj − tj−1).

The operator integral is then constructed using Riemann sums.

Definition B.3 Let f : R → L(X). Then f is integrable on [a, b] ⊂ R if there exists an

M ∈ L(X) such that, for every ε ∈ R+, one may choose a δ ∈ R+ so that ‖S(f, P̂)−M‖ < ε

for every tagged partition P̂ satisfying |P̂| < δ. The operator M is referred to as an

(operator) integral of f on [a, b] and is denoted
∫ b
a f(t) dt. If f is integrable on [a, b] for

every [a, b] ⊂ R, then f is integrable.

It is unsurprising that an operator integral is unique (for a given [a, b]) if it exists, and

the proof of this fact is similar to the standard proof of uniqueness of limits.

Proposition B.4 Let f : R→ L(X) be integrable on [a, b] ⊂ R. If M , M̃ ∈ L(X) are two

operator integrals of f on [a, b], then M = M̃ .

Proof. Note that ‖M − M̃‖ ≤ ‖M − S(f, P̂)‖+ ‖S(f, P̂)− M̃‖ for any tagged partition P̂

of [a, b]. In particular, given a fixed ε ∈ R+, by definition there exist δ, δ̃ ∈ R+ such that

|P̂| < min{δ, δ̃} implies that ‖S(f, P̂)−M‖ < ε
2 and ‖S(f, P̂)− M̃‖ < ε

2 , and consequently

‖M−M̃‖ < ε via an appropriate choice of tagged partition. Since ε was arbitrary, it follows

that M = M̃ . �
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For the purposes of this thesis it is essential that every linear flow be integrable. This is

indeed the case as demonstrated in the next proposition, but it is first necessary to prove

the following lemma.

Lemma B.5 Let f : R → L(X), and let [a, b] ⊂ R. Then f is integrable on [a, b] if and

only if for all ε ∈ R+ there exists a δ ∈ R+ such that ‖S(f, P̂)− S(f, Q̂)‖ < ε whenever P̂

and Q̂ are tagged partitions of [a, b] with |P̂|, |Q̂| < δ.

Proof. Suppose first that f is integrable on [a, b], and fix an ε ∈ R+. By definition there

exists a δ ∈ R+ such that any tagged partition P̂ of [a, b] with |P̂| < δ must satisfy

‖S(f, P̂) −
∫ b
a f(t) dt‖ < ε

2 . But then for two partitions P̂ and Q̂ such that |P̂|, |Q̂| < δ

it must be that ‖S(f, P̂) − S(f, Q̂)‖ ≤ ‖S(f, P̂) −
∫ b
a f(t) dt‖ + ‖S(f, Q̂) −

∫ b
a f(t) dt‖ < ε.

This is sufficient to prove the ‘only if’ case as ε was arbitrary.

Suppose now that for all ε ∈ R+ there exists a δ ∈ R+ such that ‖S(f, P̂)−S(f, Q̂)‖ < ε

whenever P̂ and Q̂ are tagged partitions of [a, b] with |P̂|, |Q̂| < δ. Then in particular

for any n ∈ N there exists a δn ∈ R+ such that ‖S(f, P̂) − S(f, Q̂)‖ < 1
n whenever P̂

and Q̂ are tagged partitions of [a, b] with |P̂|, |Q̂| < δn. It may be assumed without loss

of generality that {δn}n∈N converges to 0. Now construct a sequence of tagged partitions

{P̂n}n∈N of [a, b] such that |P̂n| < δn for all n ∈ N. The induced sequence of Riemann sums

{S(f, P̂n)}n∈N is clearly Cauchy by above, and since L(X) is a Banach space it follows that

{S(f, P̂)n}n∈N converges to some limit M ∈ L(X).

Fix an ε ∈ R+. As {S(f, P̂n)}n∈N converges to M , there exists a δn1 ∈ R+ such

that ‖S(f, P̂n) − M‖ < ε
2 whenever |P̂n| < δn1 . As {δn}n∈N converges to 0 there also

exists a δn2 ∈ R+ such that ‖S(f, Q̂) − S(f, P̂n)‖ < ε
2 whenever |Q̂|, |P̂n| < δn2 . Set

δ = min{δn1 , δn2}. Then for all tagged partitions Q̂ of [a, b] with |Q̂| < δ it must be that

‖S(f, Q̂)−M‖ ≤ ‖S(f, Q̂)− S(f, P̂n)‖+ ‖S(f, P̂n)−M‖ for any P̂n. As this holds for all

P̂n, this is in particular true for P̂n such that |P̂n| < δ, in which case ‖S(f, Q̂) −M‖ < ε.

As ε was arbitrary, this proves the ‘if’ case. �

The standard approach to proving that every continuous real-valued map is integral

uses upper and lower sums. Such constructs do not make sense in the context of Banach-

valued maps, so an alternative approach is required. The preceding lemma demonstrates
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that integrability on an interval is equivalent to requiring that all Riemann sums satisfy a

Cauchy-type property. Using the preceding lemma, it is now possible to demonstrate that

every continuous Banach-valued map is integrable, simply by showing that every such map

satisfies this Cauchy-type property for every [a, b] ⊂ R.

Proposition B.6 Let f : R→ L(X) be continuous. Then f is integrable.

Proof. Fix ε ∈ R+, and fix [a, b]. Since f is continuous, and since [a, b] is compact, there

exists a δ ∈ R+ such that ‖f(t) − f(s)‖ < ε
2(b−a) whenever |t − s| < δ. Let P̂ and Q̂ be

two partitions of [a, b] such that |P̂|, |Q̂| < δ. Define the partition R of [a, b] to be the

finite sequence {rn}NRn=0 generated by the distinct elements of {tn}NPn=0 and {sn}
NQ
n=0 taken in

increasing order. Then form a tagged partition R̂ usingR in combination with any sequence

{r̂n}NRn=1. Note that necessarily |R̂| < δ. It is sufficient to show that ‖S(f, P̂)−S(f, R̂)‖ < ε
2 ,

as ‖S(f, P̂)− S(f, Q̂)‖ ≤ ‖S(f, P̂)− S(f, R̂)‖+ ‖S(f, R̂)− S(f, Q̂)‖.

The idea now is to take advantage of the fact that the sequence {tn}NPn=0 is contained in

{rn}NRn=0. Construct a sequence {t̂′n}
NR
n=1 by setting t̂′n = t̂j whenever rn ∈ (tj−1, tj ] for all

j ≤ NP and n ≤ NR. Then S(f, P̂) =
∑NR

j=0 f(t̂′j)(rn − rn−1), and it follows that

‖S(f, P̂)− S(f, R̂)‖ =

∥∥∥∥∑NR

n=1
f(t̂′n)(rn − rn−1)−

∑NR

n=1
f(r̂n)(rn − rn−1)

∥∥∥∥
=

∥∥∥∥∑NR

n=1
(f(t̂′n)− f(r̂n))(rn − rn−1)

∥∥∥∥
≤
∑NR

n=1
‖f(t̂′n)− f(r̂n)‖(rn − rn−1)

<
∑NR

n=1

ε

2(b− a)
(rn − rn−1)

=
ε

2

since
∑NR

n=1(rn − rn−1) = b − a. As ε was arbitrary, it follows from Lemma B.5 that f is

integrable on [a, b]. This completes the proof, as [a, b] was arbitrary. �

Not only are continuous maps all integrable as in the case of real integrals, but many

of the basic properties of operator integrals are similar to properties of real integrals. For

example, operator integrals behave well under operator addition and scalar multiplication.

Proposition B.7 Let f , g : R → L(X) be continuous, let [a, b] ⊂ R, and let x, y ∈ K.

Then
∫ b
a xf(t) + yg(t) dt = x

∫ b
a f(t) dt+ y

∫ b
a g(t) dt.
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Proof. Let P̂ be a tagged partition of [a, b]. It is clear that S(xf + yg, P̂) = xS(f, P̂) +

yS(g, P̂) holds, so ‖
∫ b
a xf(t) + yg(t) dt− (x

∫ b
a f(t) dt+ y

∫ b
a g(t) dt)‖ is less than or equal to

‖
∫ b
a xf(t) + yg(t) dt− S(xf + yg, P̂)‖+ |x|‖S(f, P̂)−

∫ b
a f(t) dt‖+ |y|‖S(g, P̂)−

∫ b
a g(t) dt‖

by the triangle inequality. It follows that ‖
∫ b
a xf(t) + yg(t) dt− (x

∫ b
a f(t) dt+ y

∫ b
a g(t) dt)‖

may be made arbitrarily small by choosing a tagged partition P̂ of [a, b] with |P̂| sufficiently

small. �

Proposition B.8 Let f : R→ L(X) be continuous, let [a, b] ⊂ R, and let L ∈ L(X). Then

L
∫ b
a f(t) dt =

∫ b
a Lf(t) dt and

∫ b
a f(t) dtL =

∫ b
a f(t)Ldt.

Proof. Note that for any tagged partition P̂ of [a, b] it must hold that S(Lf, P̂) = LS(f, P̂)

and S(fL, P̂) = S(f, P̂)L. The rest of the proof follows similarly to the proof of the previous

proposition. �

It is often useful to manipulate the intervals of a real integral, and these techniques

extend to the operator integral as well.

Proposition B.9 Let f : R→ L(X) be continuous. Then
∫ b
a f(t) dt =

∫ c
a f(t) dt+

∫ b
c f(t) dt

for any c ∈ (a, b).

Proof. Let P̂ be any tagged partition of [a, b] so that c appears in the sequence {tn}Nn=0.

Then P̂ splits into two partitions P̂1 and P̂2 of [a, c] and [c, b] respectively, and necessarily

S(f, P̂) = S(f, P̂1) + S(f, P̂2). Now ‖
∫ b
a f(t) dt − (

∫ c
a f(t) dt +

∫ b
c f(t) dt)‖ is less than or

equal to ‖
∫ b
a f(t) dt−S(f, P̂)‖+ ‖S(f, P̂1)−

∫ c
a f(t) dt‖+ ‖S(f, P̂2)−

∫ b
c f(t) dt‖. It follows

that ‖
∫ b
a f(t) dt− (

∫ c
a f(t) dt+

∫ b
c f(t) dt)‖ can be made arbitrarily small by choosing P̂ as

above with |P̂| sufficiently small. �

Proposition B.10 Let f : R → L(X) be continuous. Then
∫ a+b
a f(t) dt =

∫ b
0 f(t + a) dt

for all a ∈ R and b ∈ R+.

Proof. Consider that any tagged partition P̂ of [0, b] generates a tagged partition Q̂ of

[a, a + b] by setting sn = tn + a for all 0 ≤ n ≤ N and ŝn = t̂n + a for all 1 ≤ n ≤

N ; moreover |P̂| = |Q̂| and S(f, Q̂) = S(f̃ , P̂) where f̃(t) := f(t + a). It must hold

that ‖
∫ a+b
a f(t) dt−

∫ b
0 f(t+ a) dt‖ ≤ ‖S(f, Q̂)−

∫ a+b
a f(t) dt‖+ ‖S(f̃ , P̂)−

∫ b
0 f(t+ a) dt‖,
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so ‖
∫ a+b
a f(t) dt −

∫ b
0 f(t + a) dt‖ can be made arbitrarily small by choosing P̂ with |P̂|

sufficiently small . �

For the purposes of this thesis, it is essential to prove the following proposition.

Proposition B.11 Let f : R → L(X) be continuous. Then lims→0
1
s

∫ a+s
a f(t) dt = f(a)

for all a ∈ R.

Proof. Fix ε ∈ R+. By continuity there exists a δ ∈ R+ such that ‖f(t) − f(a)‖ < ε
2

whenever |t− a| < δ. Let s < δ. Now for any tagged partition P̂ of [a, a+ s] it must hold

that∥∥∥∥1

s

∫ a+s

a
f(t) dt− f(a)

∥∥∥∥ ≤ ∥∥∥∥∫ a+s

a

1

s
f(t) dt− S(

1

s
f, P̂)

∥∥∥∥+

∥∥∥∥S(
1

s
f, P̂)− 1

s
f(a)s

∥∥∥∥
=

∥∥∥∥∫ a+s

a

1

s
f(t) dt− S(

1

s
f, P̂)

∥∥∥∥
+

∥∥∥∥∑N

n=1

1

s
f(t̂n)(tn − tn−1)−

∑N

n=1

1

s
f(a)(tn − tn−1)

∥∥∥∥
=

∥∥∥∥∫ a+s

a

1

s
f(t) dt− S(

1

s
f, P̂)

∥∥∥∥
+

1

s

∥∥∥∥∑N

n=1
(f(t̂n)− f(a))(tn − tn−1)

∥∥∥∥
≤
∥∥∥∥∫ a+s

a

1

s
f(t) dt− S(

1

s
f, P̂)

∥∥∥∥
+

1

s

∑N

n=1
‖f(t̂n)− f(a)‖(tn − tn−1)

<

∥∥∥∥∫ a+s

a

1

s
f(t) dt− S(

1

s
f, P̂)

∥∥∥∥+
ε

2
.

In particular this is true for any tagged partition with |P̂| sufficiently small that P̂ satisfies

‖
∫ a+s
a

1
sf(t) dt− S(1sf, P̂)‖ < ε

2 , so ‖1s
∫ a+s
a f(t) dt− f(a)‖ < ε

2 + ε
2 = ε. As ε was arbitrary,

the result follows as a and s were also arbitrary. �

C Complexification and Realification

It is often the case that complex normed spaces are easier to work with than real normed

spaces. As such, when working with real normed spaces, it is desirable to be able to in some

sense convert the spaces to complex normed spaces prior to analyzing them. This conversion
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can be done in a canonical fashion called complexification, wherein a real normed space is

viewed as being embedded in a complex normed space.

Definition C.1 The complexification of X with K = R, denoted XC, is given by the set

{(x1, x2) : x1, x2 ∈ X} equipped with notions of addition and (complex) scalar multipli-

cation, where addition is given by (x1, x2) + (y1, y2) = (x1 + y1, x2 + y2) for all (x1, x2),

(y1, y2) ∈ XC and scalar multiplication is given by (a+ ib)(x1, x2) := (ax1− bx2, ax2 + bx1)

for all a+ ib ∈ C and (x1, x2) ∈ XC.

For simplicity XC := X for X with K = C. As such, it is only interesting to consider

X with K = R, so this will be assumed to be the case until stated otherwise. In either case

XC is a finite-dimensional normed space over C.

Proposition C.2 XC is a normed space over C with dimCXC = dimRX.

Proof. First it is shown that XC is a vector space over C. It is clear from the definition that

x + y ∈ XC for all x, y ∈ XC, and similarly that cx ∈ XC for all c ∈ C and x ∈ XC. The

associativity and commutativity of addition follow from the definition of addition and the

fact that X is a vector space; moreover, it is clear that 0C is given by (0, 0) and −x is given

by (−x1,−x2) for all x = (x1, x2) ∈ XC. To see that scalar multiplication also behaves

properly, first note that clearly 1x = x for all x ∈ XC. Scalar multiplication is associative,

since

c1(c2x) = (a1 + ib1)(a2x1 − b2x2, a2x2 + b2x1)

= (a1a2x1 − a1b2x2 − b1a2x2 − b1b2x1, a1a2x2 + a1b2x1 + b1a2x1 − b1b2x2)

= ((a1a2 − b1b2) + i(a1b2 + b1a2))(x1, x2)

= (c1c2)x

for all x = (x1, x2) ∈ XC and c1 = a1 + ib1, c2 = a2 + ib2 ∈ C. Finally,

c(x+ y) = (a+ ib)(x1 + y1, x2 + y2)

= (ax1 + ay1 − bx2 − by2, ax2 + ay2 + bx1 + by1)

= (ax1 − bx2, ax2 + bx1) + (ay1 − by2, ay2 + by1)

= cx+ cy
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for all x = (x1, x2), y = (y1, y2) ∈ XC and c = a+ ib ∈ C, and

(c1 + c2)x = ((a1 + a2) + i(b1 + b2))(x1, x2)

= (a1x1 + a2x1 − b1x2 − b2x2, a1x2 + a2x2 + b1x1 + b2x1)

= (a1x1 − b1x2, a1x2 + b1x1) + (a2x1 − b2x2, a2x2 + b2x1)

= c1x+ c2x

for all x = (x1, x2) ∈ XC and c1 = a1 + ib1, c2 = a2 + ib2 ∈ C, so addition and scalar

multiplication distribute appropriately.

To see that XC is a normed space, consider the map ‖·‖C : XC → R defined by setting

‖x‖C = supθ∈[0,2π]‖cos(θ)x1 + sin(θ)x2‖ for all x = (x1, x2) ∈ XC. Clearly ‖x‖C ≥ 0 for

all x ∈ XC with ‖0‖C = 0. If ‖x‖C = 0 for some x = (x1, x2) ∈ XC, then it must be that

cos(θ)x1 + sin(θ)x2 = 0 for all θ ∈ [0, 2π]. In particular, this must be true for θ = 0 and

θ = π
2 , so x1 = 0 and x2 = 0, and consequently x = 0. Now

‖x+ y‖C = ‖(x1 + y1, x2 + y2)‖C

= supθ∈[0,2π]‖cos(θ)x1 + cos(θ)y1 + sin(θ)x2 + sin(θ)y2‖

≤ supθ∈[0,2π](‖cos(θ)x1 + sin(θ)x2‖+ ‖cos(θ)y1 + sin(θ)y2‖)

≤ supθ∈[0,2π]‖cos(θ)x1 + sin(θ)x2‖+ supθ∈[0,2π]‖cos(θ)y1 + sin(θ)y2‖

= ‖x‖C + ‖y‖C

for all x = (x1, x2), y = (y1, y2) ∈ XC. Finally,

‖cx‖C = ‖(rc cos(θc)x1 − rc sin(θc)x2, rc cos(θc)x2 + rc sin(θc)x1)‖C

= supθ∈[0,2π]‖rc cos(θ) cos(θc)x1 − rc cos(θ) sin(θc)x2

+ rc sin(θ) cos(θc)x2 + rc sin(θ) sin(θc)x1‖

= rc supθ∈[0,2π]‖cos(θ − θc)x1 + sin(θ − θc)x2‖

= |rc(cos(θc) + i sin(θc))| supθ∈[0,2π]‖cos(θ)x1 + sin(θ)x2‖

= |c|‖x‖C

for all x = (x1, x2) ∈ XC and c = rc(cos(θc) + i sin(θc)) ∈ C. It follows that ‖·‖C is a norm

on XC.
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Now let {bn}dn=1 be a basis for X, and consider {(bn, 0)}dn=1 in XC. Given a point

x = (x1, x2) ∈ XC, there exists an, ãn ∈ R for n ≤ d such that x1 =
∑d

n=1 anbn and

x2 =
∑d

n=1 ãnbn since {bn}dn=1 is a basis for X. Now define {cn}dn=1 in C by cn = an + iãn.

Then

x = (x1, x2) = (
∑d

n=1
anbn,

∑d

n=1
ãnbn) =

∑d

n=1
(anbn, ãnbn) =

∑d

n=1
cn(bn, 0),

and thus {(bn, 0)}dn=1 spans XC since x was arbitrary. On the other hand, suppose that∑d
n=1 cn(bn, 0) = 0 for some cn = an + iãn ∈ C. Then (0, 0) = (

∑d
n=1 anbn,

∑d
n=1 ãnbn).

Since {bn}dn=1 is a basis for X, it must be that an = ãn = 0 for all n ≤ d. But then

cn = 0 for all n ≤ d. It follows that {(bn, 0)}dn=1 is linearly independent, and consequently

{(bn, 0)}dn=1 is a basis for XC. Thus dimCXC = dimRX <∞. �

It makes sense to write x1 + ix2 in place of (x1, x2) ∈ XC. Identifying X with the

subspaces {(x, 0) : x ∈ X} and {(0, x) : x ∈ X}, it follows that XC can be viewed as

X ⊕ iX. While it took some work to construct a norm on XC built from a norm on X, it is

easily seen that the restriction any norm on XC induces a norm on X. Now that it is clear

that XC is a complex finite-dimensional normed space as desired, one may also define the

complexification of a map in a straightforward fashion.

Definition C.3 Let f : X → Y . The complexification of f , denoted fC : XC → YC,

is given by fC(x) = f(x1) + if(x2), where x1, x2 ∈ X such that x = x1 + ix2. Let ϕ

be a flow on X. The complexification of ϕ, denoted ϕC : R × XC → XC, is given by

ϕC(t, x) = ϕ(t, x1) + iϕ(t, x2), where x1, x2 ∈ X such that x = x1 + ix2.

Many properties of maps are preserved by their complexifications. For example the

complexification of a continuous map is itself continuous.

Proposition C.4 Let f : X → Y be continuous. Then fC is continuous.

Proof. Let x0 ∈ XC, and let {xn}n∈N be a sequence in XC converging to x0. Then there

exists x0,1, x0,2 ∈ X and sequences {xn,1}n∈N and {xn,2}n∈N in X such that x0 = x0,1+ix0,2

and xn = xn,1 + ixn,2 for all n ∈ N. It follows from the convergence of {xn}n∈N that the

sequences {xn,1}n∈N and {ixn,2}n∈N converge to x0,1 and ix0,2 respectively, and thus the
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sequence {xn,2}n∈N converges to x0,2. Consequently,

limn→∞ fC(xn) = limn→∞(f(xn,1) + if(xn,2))

= limn→∞ f(xn,1) + i limn→∞ f(xn,2)

= f(x0,1) + if(x0,2)

= fC(x0),

and fC is therefore continuous as {xn}n∈N and x0 were arbitrary. �

A similar result holds for linear operators.

Proposition C.5 Let L ∈ L(X,Y ). Then LC ∈ L(XC, YC).

Proof. Continuity of LC follows from the previous proposition, so it suffices to demonstrate

linearity. Let x, y ∈ XC, and let c1, c2 ∈ C. Then there exist x1, x2, y1, y2 ∈ X and a1, b1,

a2, b2 ∈ R such that x = x1 + ix2, y = y1 + iy2, c1 = a1 + ib1, and c2 = a2 + ib2. It follows

that

LC(c1x+ c2y) = LC((a1x1 − b1x2) + i(a1x2 + b1x1) + (a2y1 − b2y2) + i(a2y2 + b2y1))

= LC((a1x1 − b1x2 + a2y1 − b2y2) + i(a1x2 + b1x1 + a2y2 + b2y1))

= L(a1x1 − b1x2 + a2y1 − b2y2) + iL(a1x2 + b1x1 + a2y2 + b2y1)

= a1Lx1 − b1Lx2 + a2Ly1 − b2Ly2 + i(a1Lx2 + b1Lx1 + a2Ly2 + b2Ly1)

= (a1 + ib1)(Lx1 + iLx2) + (a2 + ib2)(Ly1 + iLy2)

= c1LCx+ c2LCy,

so LC is linear (over C) as x, y, c1, and c2 were all arbitrary. �

Not only does the complexification of a linear operator result in a linear operator, but

in fact the complexification of a linear combination of linear operators results in a linear

operator that is simply the linear combination of the complexifications of the linear operators

in the linear combination.

Proposition C.6 Let L, M ∈ L(X), and let r, s ∈ R. Then (rL+ sM)C = rLC + sMC.
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Proof. Let x ∈ XC. There exist x1, x2 ∈ X such that x = x1 + ix2. Now

(rL+ sM)Cx = (rL+ sM)x1 + i(rL+ sM)x2

= rLx1 + sMx2 + i(rLx2 + sMx2)

= r(Lx1 + iLx2) + s(Mx1 + iMx2)

= rLCx+ sMCx,

so (rL+ sM)C = rLC + sMC as x was arbitrary. �

Note that any linear operator L can be viewed as a real matrix once a basis has been

fixed. If this matrix is instead viewed as a complex matrix (with entries that happen to be all

real) then iL = Li, and consequently LCx = Lx1 + iLx2 = Lx1 +Lix2 = L(x1 + ix2) = Lx,

so the matrix representation of LC is the same as the matrix representation of L once a

basis is fixed.

Proposition C.7 Let ϕ be a flow on X. Then ϕC is a flow on XC.

Proof. Let x ∈ XC. Then there exists x1, x2 ∈ X such that x = x1 + ix2. But then

ϕC(0, x) = ϕ(0, x1) + iϕ(0, x2) = x1 + ix2 = x. Also

ϕC(s, ϕC(t, x)) = ϕC(s, ϕ(t, x1) + iϕ(t, x2))

= ϕ(s, ϕ(t, x1)) + iϕ(s, ϕ(t, x2))

= ϕ(s+ t, x1) + iϕ(s+ t, x2)

= ϕC(s+ t, x)

for all s, t ∈ R. As x was arbitrary, it remains to show that ϕC is continuous. This is proved

similarly to the proof of Proposition C.4. �

It follows from Proposition C.5 that the complexification of a linear flow is itself a linear

flow. Furthermore, it is easily seen that the complexification of a linear flow is generated

by the complexification of the operator that generates the original flow.

Proposition C.8 Let ϕ be a linear flow on X. If L ∈ L(X) generates ϕ, then ϕC is a

linear flow on XC generated by LC.
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Proof. Linearity follows from Proposition C.5. To show that ϕC is generated by LC, it

suffices to show that the complexification of etL is really just etLC . Let x ∈ XC. There exists

x1, x2 ∈ X such that x = x1 + ix2. Note first that (LC)j = (Lj)C for all j ∈ N by induction

on j, since (LC)j+1x = (LC)jLCx = (Lj)C(Lx1 + iLx2) = Lj+1x1 + iLj+1x2 = (Lj+1)Cx if

(LC)j = (Lj)C, so (LC)j+1 = (Lj+1)C as x was arbitrary. Let t ∈ R. It now follows from

Proposition C.6 that

(etL)Cx = etLx1 + ietLx2

= limn→∞
∑n

j=0

1

j!
tjLjx1 + i limn→∞

∑n

j=0

1

j!
tjLjx2

= limn→∞
∑n

j=0

1

j!
tj(Ljx1 + iLjx2)

= limn→∞
∑n

j=0

1

j!
tj(Lj)Cx

= limn→∞
∑n

j=0

1

j!
tj(LC)jx

= etLCx

and thus (etL)C = etLC as x and t were arbitrary. �

Even flow equivalence is preserved by complexification.

Proposition C.9 Let h be a flow equivalence between flows ϕ and ψ on X and Y respec-

tively. Then hC is a flow equivalence between ϕC and ψC.

Proof. First it is shown that hC is a bijection. Let y ∈ YC. Then y = y1 + iy2 for some

y1, y2 ∈ Y , but then y = h(x1) + ih(x2) = hC(x1 + ix2) for some x1, x2 ∈ X, and

consequently y = hC(x) for some x ∈ XC. Thus hC is surjective. Let x, x̂ ∈ XC. There

exists x1, x2, x̂1, x̂2 ∈ X such that x = x1 + ix2 and x̂ = x̂1 + ix̂2. If hC(x) = hC(x̂),

then h(x1) + ih(x2) = h(x̂1) + ih(x̂2), and thus h(x1) = h(x̂1) and h(x2) = h(x̂2). It then

follows from the injectivity of h that x1 = x̂1 and x2 = x̂2, so x = x̂. Thus hC is injective.

Finally, let x ∈ XC. There exists x1, x2 ∈ X such that x = x1 + ix2. It follows directly

from the Definition C.3, along with the fact that h is an equivalence between ϕ and ψ, that

hC(ϕC(t, x)) = ψC(t, hC(x)) for all t ∈ R. This is sufficient to complete the proof as x was

arbitrary. �
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It follows from Proposition C.4 that the complexification of a homeomorphic equivalence

is iteself a homeomorphic equivalence. Similarly, it follows from Proposition C.5 that the

complexification of a linear equivalence is itself a linear equivalence.

Not only are many properties of maps preserved by complexification, but decompositions

are preserved by complexification as well.

Proposition C.10 If X =
⊕m

k=1Xm, then XC =
⊕m

k=1(Xk)C. Let L ∈ L(X). If L can be

written as
⊕m

k=1 Lk for some Lk ∈ L(Xk), then LC =
⊕m

k=1(Lk)C. Let ϕ be a linear flow on

X. If ϕ can be written as
⊕m

k=1 ϕk for some linear flows ϕk on Xk, then ϕC =
⊕m

k=1(ϕk)C.

Proof. It is easily verified that XC =
∑m

k=1(Xk)C. Now fix k ≤ m. Given some point

x ∈ (Xk)C ∩
∑

j 6=k(Xj)C, then there must exist some xj,1, xj,2 ∈ Xj for j ≤ m such that

xk,1 + ixk,2 = xk =
∑

j 6=k xj,1 + ixj,2. But then xk,1 =
∑

j 6=k xj,1 and xk,2 =
∑

j 6=k xj,2. As

by assumption Xk ∩
∑

j 6=kXj = {0}, it follows that x = 0. Thus XC =
∑m

k=1(Xk)C = {0},

as x was arbitrary. As k was also arbitrary, this holds for all k ≤ m, and this is sufficient

to prove the first statement.

For the other two statements, let x ∈ XC. There exist y, z ∈ X such that x = y + iz.

Now

LCx = Ly + iLz

=
(⊕m

k=1
Lk

)
y + i

(⊕m

k=1
Lk

)
z

=
∑m

k=1
Lkyk + i

∑m

k=1
Lkzk

=
∑m

k=1
(Lkyk + iLkzk)

=
∑m

k=1
(LK)Cxk

=
(⊕m

k=1
(Lk)C

)
x

and a similar argument works for ϕC. �

So many things are preserved by complexification that one may wonder what isn’t pre-

served. It turns out that irreducibility is not preserved by complexification. Of course

the irreducible decomposition of a flow necessarily generates a decomposition of the com-

plexification by the preceding proposition, but this decomposition need not be irreducible.
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Consider an irreducible flow ϕ of dimension d with eigenvalue λ. As has been demonstrated

ϕC is generated by LC where L is the operator that generates ϕ. Since ϕ is irreducible, L

takes the form of a single real Jordan block J̃d(λ) under an appropriate choice of basis. But

under that basis LC has the same form. Now if λ is real, then LC (and consequently ϕC) is

also irreducible as complex Jordan blocks with a real eigenvalue are the same as real Jordan

blocks with a real eigenvalue. However, real Jordan blocks with a nonreal eigenvalue are

constructed from conjugate pairs of complex Jordan blocks, so with an appropriate change

of basis LC = diag(J d
2
(λ), J d

2
(λ̄)). Note that d

2 makes sense as d must be even for a real

Jordan block with a nonreal eigenvalue. But this means that ϕC reduces to the flows gener-

ated by J d
2
(λ) and J d

2
(λ̄). Consequently, given a real flow ϕ, each irreducible component of

ϕ of dimension d with eigenvalue λ ∈ R corresponds to an irreducible component of ϕC of

dimension d with eigenvalue λ, while each irreducible component of ϕ of dimension d with

conjugate pair of eigenvalues {λ, λ̄} corresponds to a pair of irreducible components of ϕC

of dimension d
2 with eigenvalue λ and λ̄ respectively.

One might wonder if complexification can be reversed; that is, given the complexification

of a space, can one reconstruct the original space? Unfortunately this is not possible. The

problem is that there is an infinite collection of subspaces of a complex normed space that

can be viewed as embedded real normed spaces, and there is no way to tell which one is

the original space. With that said, considering Definition C.1, complexification amounts

to introducing multiplication by i to a real normed space. One can reverse this idea — in

effect one can forget multiplication by i in a complex normed space — to construct a real

normed space from a complex normed space. This process is called realification.

Definition C.11 The realification of X with K = C, denoted XR, is given by the set

{x : x ∈ X} equipped with notions of addition and (real) scalar multiplication, where

addition is simply the addition of X and scalar multiplication is simply the (complex)

scalar multiplication of X restricted to the real numbers.

For simplicity XR = X for X with K = R. Similar to complexification the case where

K = R is entirely uninteresting, so it will be assumed from here on that K = C. In many

respects realification is a simpler process than complexification. This can be seen in the

proof that XR is a real finite-dimensional normed space for X with K = C.
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Proposition C.12 XR is a normed space over R with dimRXR = 2 dimCX.

Proof. That XR is a vector space is a trivial consequence of the fact that X is a vector

space and R is a subfield of C. It is also clear that, given any norm ‖·‖ on X, the map

‖·‖R : XR → R given by ‖x‖R = ‖x‖ for all x ∈ XR is a norm on XR. Let {bn}dn=1 be

any basis for X, and consider {b̂n}2dn=1 given by b̂n = bn whenever n ≤ d and b̂n = ibn−d

whenever d < n ≤ 2d. If x ∈ XR, then x =
∑d

n=1 cnbn =
∑d

n=1(an + iãn)bn for some

cn = an + iãn ∈ C. But then x =
∑d

n=1 anbn +
∑2d

n=d+1 iãn−dbn−d =
∑2d

n=1 rnb̂n where

rn = an ∈ R whenever n ≤ d and rn = ãn−d ∈ R whenever d < n ≤ 2d. It follows that

{b̂n}2dn=1 spans XR since x was arbitrary. On the other hand, suppose
∑2d

n=1 rnb̂n = 0 for

some rn ∈ R, and define {cn}dn=1 by setting cn = rn + irn+d ∈ C. Then it must be that∑d
n=1 cnbn =

∑2d
n=d+1 rnb̂n = 0. Since {bn}dn=1 is a basis for X, it follows that cn = 0 for

all n ≤ d, and consequently rn = 0 for all n ≤ 2d. Thus {b̂n}2dn=1 is linearly independent,

and it follows that {b̂n}2dn=1 is a basis for XR, so dimRXR = 2 dimCX <∞. �.

It turns out that XR and X can be identified with each other in a very strong sense.

Proposition C.13 The map ιX : XR → X given by ιX(x) = x is a homeomorphism with

ιX and ι−1X both R-linear.

Proof. This is clear from the definition in light of the proof of Proposition C.12

One then defines the realification of a map between complex normed spaces based on

this identification.

Definition C.14 Let f : X → Y with KX = KY = C. The realification of f , denoted

fR : XR → YR, is given by fR(x) = ι−1X (f(ιX(x))). Let ϕ be a flow on X. The realification

of ϕ, denoted ϕR : R×XR → YR, is given by ϕR(t, x) = ι−1X (ϕ(t, ιX(x))).

Previously it was shown that complexification preserves many properties of maps, and

the situation is the same when it comes to realification — in fact, many of the proofs in

this case are essentially trivial. For instance, fR is continuous whenever f is continuous, as

fR is just a composition of continuous functions. The only result that requires care is the

following proposition.
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Proposition C.15 Let ϕ be a linear flow on X. If ϕ is generated by L ∈ L(X), then ϕR

is a linear flow on XR generated by LR.

Proof. Note that (LR)k = (Lk)R for all k ∈ N by induction on k since if (LR)k = (Lk)R,

then

(LR)k+1x = (LR)kLRx

= (Lk)Rι
−1
X (LιX(x))

= ι−1X (LkιX(ι−1X (LιX(x))))

= ι−1X (Lk+1ιX(x))

= (Lk+1)Rx

for all x ∈ XR, so (LR)k+1 = (Lk+1)R. It follows that

(etL)Rx = ι−1X (etLιX(x))

= ι−1X

(
limn→∞

∑n

j=0

1

j!
tjLjιX(x)

)
= limn→∞

∑n

j=0

1

j!
tjι−1X (LjιX(x))

= limn→∞
∑n

j=0

1

j!
tj(Lj)Rx

= limn→∞
∑n

j=0

1

j!
tj(LR)jx

= etLRx

for all x ∈ XR and t ∈ R. The desired result then follows. �

The only other result that needs to be considered is how realification affects decompo-

sitions. Unsurprisingly, just as with complexification, the realification of a decomposition

decomposes over the realifications of the various components.

Proposition C.16 If X =
⊕m

k=1Xm, then XR =
⊕m

k=1(Xk)R. Let L ∈ L(X). If L can be

written as
⊕m

k=1 Lk for some Lk ∈ L(Xk), then LR =
⊕m

k=1(Lk)R. Let ϕ be a linear flow on

X. If ϕ can be written as
⊕m

k=1 ϕk for some linear flows ϕk on Xk, then ϕR =
⊕m

k=1(ϕk)R.

Proof. Let Bk be a basis for Xk for each k ≤ m. Then B :=
⋃m
k=1 Bk is a basis for X, and

using this basis to construct XR the first statement then follows from the definition. It is
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also clear using this basis that ιX((Xk)R) ⊆ Xk and ι−1X (Xk) ⊆ (Xk)R, and the other two

statements follow from the definition of LR and ϕR. �

As in the case of complexification, it is worthwhile to consider what happens to irre-

ducible components under realification. As previously, this amounts to determining what

happens to Jordan Blocks Jd(λ) under realification. If ϕ is generated by L = Jd(λ) with

respect to a basis B, then one can determine LR by direct calculation of Lx for x ∈ X. If

λ ∈ R, then order the basis B ∪ iB of XR by taking the elements of B in order followed

by the elements of iB again in order. With the basis in this form, direct calculation of LR

determines that LR = diag(Jd(λ), Jd(λ)) — that is, ϕR is reducible with irreducible compo-

nents both generated by Jd(λ). If λ ∈ C \ R, then order B ∪ iB by taking the first element

of B followed by the first element of iB followed by the second element of B followed by the

second element of iB and so on. Direct calculation of LR determines that LR = J̃2d(λ), so in

this case ϕR is still irreducible. Therefore, given a linear flow ϕ, each irreducible component

of ϕ of size d with eigenvalue λ ∈ R corresponds to a pair of irreducible components of ϕR

of size d with eigenvalue λ, and each irreducible component of ϕ of size d with eigenvalue

λ ∈ C\R corresponds to an irreducible component of ϕR of size 2d with conjugate eigenvalue

pair {λ, λ}.
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