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Abstract

Micro-scale deformation and fracture of a gypsum crystal under micro-indentation

loading was examined. Results indicate that the hardness decreases with increas-

ing load, on all axes, ranging from 216 kg/mm2 at 0.25 N to 91 kg/mm2 at 4.91

N on the (010) axis and from 122 kg/mm2 at 0.98 N to 75 kg/mm2 at 4.91 N on

the (011) and (110) preferred cleavage planes. Higher hardness values for lower

loads are attributed to dislocation saturation and localized necking which leads

to work-hardening and densification. Transmitted light microscopy revealed the

decrease in hardness for increasing load was related to an increase in subsurface

cracking along the (010) and (011) cleavage planes, enabling the indenter to pen-

etrate deeper into the crystal. Coupled with the increase in subsurface cracking

was an increase in surface smoothness as a result of increased plastic material flow

beneath the indenter, with surface dislocation densities decreasing from 34 % at

a 0.25 N load to 6 % at a 4.91 N loading. Raman spectroscopy revealed that this

material was mainly comprised of water-reduced forms of gypsum: hemihydrate
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and γ-CaSO4. Local temperatures required for the dehydration of gypsum range

from 118 to 142◦C [1], indicating such temperatures are reached during plastic

flow, and related heat generation, of the material beneath the indenter. Evapo-

rated water leaves behind voids in the crystal structure and enables the gypsum to

deform more easily.

Keywords: microscale deformation and fracture, Vickers testing, gypsum

dehydration, mineral processing, rock mechanics, scanning electron microscopy

1. Introduction

Understanding deformation and fracture mechanisms [2–5] in rocks and min-

erals is important in planetary science [6], blasting and mining industries [7], in

military and shielding applications [8, 9], and in manufacturing industries [10].

Fracture mechanisms can take many forms depending on scale; with the bulk

of the research being performed at scales >100 µm. Micro-scale deformation

and fracture mechanisms have received less attention despite their importance in

machining (e.g., sawing [11], drilling [12], grinding [13]), in abrasion and wear

applications [14, 15], and in comminution [16] and fragmentation [4]. Here we

report on the investigation of micro-scale deformation and fracture mechanisms

in gypsum crystals.

Gypsum is a soft, monoclinic mineral (Mohs hardness of 2 and Vickers hard-

ness of approximately 60 kg/mm2 [17, 18]) with a specific gravity of 2.31. It is

composed of calcium sulfate dihydrate, with the chemical formula CaSO4·2H20.

Gypsum is primarily used in finish boards for walls and ceilings (drywall), and

in plaster of Paris used in surgical splints and dental materials [19]. Gypsum

is moderately water-soluble (∼ 2.0-2.5 g/L at 25◦C) and gypsum crystals are
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found to contain anion water, making it an important indicator of water in an-

cient evaporitic lake beds on, for example, Mars [20]. Experimenting on single

crystals is important for engineering applications and in material science research

as crystal structure and orientation are closely related to strength properties of

the mineral [21]. Further, deformation and fracture characteristics are simplified

and measurements are more repeatable for single-crystal measurements [22], en-

abling a more detailed understanding of the mineral’s behaviour under controlled

experimental conditions.

The experimental study of the behaviour of rock and mineral deformation is

typically accomplished using conventional methods, such as split Hokpinson-bar

testing [23], tensile and compression testing [24, 25], through rebound tests (e.g.,

the Shore Scleroscope [26], the Schmidt Hammer [27]), and Charpy notch test-

ing [28]. Impact testing [9, 29, 30] and various machining techniques, including

sawing [11], drilling [12], and cutting using a waterjet [31], have also been de-

veloped to study deformation and fracture mechanisms. Of particular interest,

and used here to study the micro-scale deformation of a gypsum crystal, is the

microhardness indentation technique.

Microhardness tests have been a benchmark method for determining the hard-

ness and fracture characteristics of brittle materials [32, 33]. These can be used to

model sawing and grinding scenarios, as well as abrasion and wear applications.

Exploring deformation and fracture mechanisms using microhardness measure-

ments has been undertaken in many different materials since early works by Ta-

bor [17] and Mott [34]. For example, limestone [22], marble [22], anhydrite [22],

artificial rock salt [22, 35], soda-lime glass [33, 36], TiC crystals [37], olivine [38],

and quartz [38, 39] have all been studied using a form of microhardness testing.
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Microhardness indentation techniques offer many advantages over more conven-

tional test arrangements, including: economy in material and time, reproducibil-

ity of results, simplicity in experimentation, capacity to survey an inhomogeneous

surface for micro-strength variations and residual stresses, and sampling bulk and

single grain properties. The objective of the present study is to investigate the

response of gypsum crystals under micro-indentation loading. Micro-scale de-

formation and fracture mechanisms are characterized using transmitted light mi-

crscopy and field emission scanning electron microscope. Raman spectroscopy is

used to determine phase transformations.

2. Experimental Setup

Vickers microhardness experiments on a single gypsum crystal were performed

at the University of New Brunswick using a Leitz Vickers tester under a 17 second

loading cycle. A photograph of the gypsum crystals and corresponding principal

axes definitions are shown in Figure 1. In the Vickers microhardness test, a dia-

mond pyramid (136◦ apical angle) is pressed under known load into a flat surface.

A pyramid indenter is preferable over spherical indenters because of the symme-

try of the residual stress field left by the indenter when the load is removed [17].

The indentation results in a complex stress field [22], which promotes a variety of

irreversible deformation modes such as plastic flow, structural densification [33],

and ensuing microfracturing, both at the surface [22, 33] (as median and radial

cracking) and below the indenter as Hertzian (lateral) cracking [40–43]. Loads of

0.25 N to 4.91 N (25 g to 500 g) were applied at room temperature on the (010),

(110) and (011) axes (red circles in Figure 1).

Experiments were randomized and performed at 300 µm spacing such that
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all diagonal indenters had the same orientation on the plane of interest. Each

load was performed six times on the (010) axis and three times each on (110)

and (011). Secondary electron (SE) and back-scattered electron (BSE) images

of the indentation characteristics were obtained using a Hitachi SU-70 analytical

Field Emission Scanning Electron Microscope (FESEM). The acceleration volt-

age range was 5 kV to 8 kV with a beam current of a few nano-amperes. The

FESEM is ideally suited for characterizing micro-scale indentation tests because

of its high magnification and three-dimensional resolution.

Raman spectroscopy measurements were obtained using a Renishaw inVia

micro-Raman spectrometer at the Planetary and Space Science Centre (PASSC),

University of New Brunswick. The fully automated Raman spectrometer is equipped

with a 514.5 nm Ar+ excitation laser. The spectrometer was used in backscattering

geometry. The laser beam was focused through the microscope objectives (50x)

down to a 2 µm area on the sample and the backscattered light was collected

through the same objective. The spectra were recorded via a Peltier cooled CCD

detector. The system is coupled with a high powered transmitted light microscope

equipped with a precision motor-controlled X, Y, Z stage.

3. Experimental Results

3.1. Hardness Measurements

Vicker’s hardness tests characterize a material’s resistance to deformation,

densification, displacement, and fracture, and is defined as [17]:

Hv = 1.854
P

d2
(1)
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where P (kg) is the load and d (mm) is the average diagonal length of the in-

dentation. Ultra-high resolution scanning electron microscope images were used

to determine the indentation length and hardness values computed for the (010),

(011), and (110) axes. Shown in Figure 2a are the mean hardness values, with bars

denoting one standard deviation, for all axes. For all cases, Hv decreases with in-

creasing load, ranging from 216 kg/mm2 at 0.25 N to 91 kg/mm2 at 4.91 N for

(010) and from 122 kg/mm2 at 0.98 N to 75 kg/mm2 at 4.91 N for the other axes.

The decreasing trend and plateau is consistent with previous investigations and is

known as the ”indentation size effect” [44–50]. Hardness values are higher than

those presented by Taylor [18] of 60 kg/mm2 at 0.49 N and are likely associated

with his acknowledged uncertainty with the accuracy of his measurements. In his

study, Taylor [18] used an optical microscope and had difficulty identifying the in-

dentation edges in the translucent soft gypsum. Lower values of Hv on (011) and

(110) are related to the increase in indentation length as a result of the increased

depth of penetration when the tests were performed along cleavage planes.

Following methods outlined by Nix and Gao [51], the depth dependence of

hardness can be characterized by:

H

H0

=

√

1 +
h∗

h
(2)

where H is the hardness at a given depth, h, H0 is the hardness limit at infinite

depth and h∗ is a characteristic length that depends on the shape of the indenter,

shear modulus and H0 [51]. Shown in Figure 2c is a plot of the (H/H0)
2 against

the inverse of the depth (determined from geometry of the tool and the measured

indentation lengths) for each axis. The slope of the curve-fit line to this plot
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is equal to h∗. Values of H0=91 kg/mm2 and h∗=15.0 µm are obtained for the

(010) axis, H0=77 kg/mm2 and h∗=10.3 µm for (110), and H0=75 kg/mm2 and

h∗=11.5 µm for (011).

3.2. Transmitted Light Microscopy

Despite numerous investigations on the effects of hardness upon fracture, there

has been less attention given to the effects of cracking and their importance as a

deformation component in indentation testing [36, 52]. Shown in Figure 3 are ex-

amples of transmitted light microscopy images for each load on (010). The inden-

tation diagonals of the pyramid indenter are aligned with the vertical and horizon-

tal orientation of all images. For brevity, only this axis is considered henceforth.

For loads of 0.49 N and 0.98 N, subsurface cracking is shallow, as is suggested

by the small depth of focusing below the indentations (Figure 3a and b). As the

load is increased to 1.96 N (Figure 3c), more damage occurs in the vicinity of

the indentation and surface concentric cracking and subsurface cracking along the

(011) cleavage plane become more predominant. As the load is increased further

to 2.94 N and to 4.91 N, subsurface cracking along the principal (110) cleav-

age plane (in Figure 3e) increases in both crack density and length. In addition,

radial and concentric cracking accompany the dominant (110) subsurface crack-

ing. Cracking along (110) occurs at 40◦ and 50◦ with respect the Vickers indenter

edges, indicating that these cracks are initiated by the shearing of this cleavage

plane. The median cracks developed at higher loads beneath the indentation en-

able the indenter to penetrate deeper, thereby producing larger indentations and

reduced hardness [45].
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3.3. Indentation Characteristics and Failure Modes

Backscattered electron (BSE) images on the (010) axis are shown in Figure 4.

The use of backscatter electron microscopy is of value here as it is allows varying

compositions, (e.g., cracks, densities, material compositions) to be differentiated.

For example, materials with higher densities will appear darker in an BSE image.

A highly fractured zone of fragments is observed on the sample’s surface beneath

the indenter for a load of 0.25 N (Figure 4a). The coalescence of concentric

cracking and dislocations along (011) near the outer edge of the indentation results

in the generation of blocky gypsum fragments. At this scale, surface cracking

along (011) occurs more than along (110) (both are highlighted in Figure 4a).

When the load is increased to 0.49 N, the surface beneath the indenter becomes

smoother and darker (Figure 4b). The slightly darker portion indicates a different

localized composition, which is likely more dense than its surrounding material.

Radial cracking (labelled in Figure 4b) accompanies surface cracking along (011)

and (110), as well as concentric cracking.

Shown in Figure 4c is an example of an indentation at a load of 0.98 N. Frag-

mentation in the vicinity of the indenter centre is observed at this load, as well

as concentric cracking. Substantially larger surface cracks on (011) and (110)

radiate at approximately 45◦ from the indenter edges, which are aligned with the

vertical and horizontal axes of the images. These indicate shear stress failure in

the soft gypsum material. When the load is increased further to 1.96 N, material at

the outer edge of the indentation becomes raised above the original surface. This

is known as pile-up (highlighted in Figure 4d), which contributes to supporting

the load of the indenter [53]. Further increasing the load to 2.94 N (Figure 4e)

results in an increase in pile-up. In addition, a ring of displacement material is
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observed at the outer edge of the indentation for the 2.94 N load. This material is

displaced upwards and out from the centre of the indenter during loading, as was

noted by Tabor [17]. The surface of the indentation also becomes smoother. Fur-

ther increasing the load to 4.91 N results in an increase in displacement material

surrounding the indentation. The displaced material is a direct result of increased

plastic flow of the material, leading to an increase in smoothness of the surface

beneath the indenter.

The nature of the indentation surface is investigated further in Figure 5 for

loads of 0.25 N, 0.49 N, 1.96 N, and 4.91 N. Cracking is commonly noted, but

crack lengths and indentation features are often not typically characterized during

micro-indentation experiments [54]. The visible crack density (i.e., the percentage

of the surface that contain visible cracks) on the surface of the indentation zone

decreases substantially as the load is increased. Imaging analysis was used to

determine the total percentage of the indentation area that was associated with

cracking (the dark area of the image). Results indicate that the indentation at 0.25

N is composed of 34 % crack density. Cracks are primarily aligned with the (011)

axis. The crack density decreases to 17 % at 0.49 N, to 13 % at 1.96 N, and

finally to 6 % at 4.91 N, where surface cracks have no preferable orientation. The

decrease in crack density, and the increase in surface smoothness, is related to the

increase in plastic flow of the surface material as the load is increased.

3.4. Raman Spectroscopy

Spatially distributed Raman spectroscopy measurements, beginning at the in-

dentation centre and progressing away, are used to characterize the deformation in

the gypsum crystal for loads of 0.98 N (Figures 6) and 4.91 N (Figures 7). These

two loads are chosen because they characterize the transitional behaviour of the
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gypsum in and near the indentation for both low and higher loads. Raman mea-

surements along a line from the indentation centre to beyond the outer edge of the

indentation are shown Figure 6a over wavelengths of 980 cm−1 to 1040 cm−1 for

a load of 0.98 N. As reference, typical Raman spectra for undeformed gypsum

is shown in Figure 6b. Gypsum has a dominant peak at 1008 cm−1 and minor

intensity peaks at 415 cm−1, 494 cm−1, 671 cm−1, 691 cm−1, and 1136 cm−1.

Peaks found here are consistent with previous authors [55]. The dominant peak

at 1008 cm−1 represents ν1(SO4), which is the first symmetric stretching mode of

the sulfate ions in the gypsum. The locations of the Raman measurements from

the plot in Figure 6(a) are shown in an optical microscope image in (c) and a

scanning electron microscope image in (d). The Raman spectra in Figure 6a in-

dicate that a single narrowband peak at 1008 cm−1 dominates the spectra at the

centre of the indentation (location indicated by the circle in all sub-figures of Fig-

ure 6). The spectra becomes more broadband and a second peak at 1015 cm−1

begins to form near the edge of the indentation (location denoted by the hexagon).

The Raman band at 1015 cm−1 increases and becomes dominant in the increas-

ingly broadband spectra at the outer edge of the indentation (location denoted

by the square). Raman spectra are plotted for Raman bands at 1008 cm−1 and

1015 cm−1 in Figure 6a for observing a micro-scale Raman shift. The peak at

1015 cm−1 corresponds to the water-reduced form of gypsum: hemihydrate, or

bassanite (CaSO4·0.5H2O) [1, 55]. A backscatter electron image of the material

near the outer edge (hexagon and square locations) is shown in Figure 6e. The

region is deformed and highly fractured. The peak intensity at 1015 cm−1 gradu-

ally reduces and the peak at 1008 cm−1 increases as moving away from the region

of fractured gypsum (denoted by the square) until a single peak at 1008 cm−1
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dominates the narrowband spectra on the original surface of the gypsum crystal

(location denoted by the star). This indicates that the hemihydrate phase is mainly

distributed near the outer rim of the indentation.

Linear Raman mapping results from an indentation at 4.91 N is shown in Fig-

ure 7. Locations of the Raman measurements are shown in: (b) an optical mi-

croscope image and (c) a secondary electron image. The spectra at the centre

location (denoted by a circle in all sub-figures) has an intense peak correspond-

ing to 1008 cm−1. The intensity of the peak increases in relative magnitude away

from the centre to the outer edge of indentation. This is likely associated with

an increase in the smoothness of the surface. The Raman band at 1008 cm−1 be-

comes broader, and a peak at 1015 cm−1 begins to form near the outer edge of

the indentation (location denoted by the hexagon). The contribution to the Ra-

man band at 1015 cm−1 further increases as measurements approach the outer

edge of the indentation. In addition, a third Raman band at 1024 cm−1 appears

at the outer edge (location of the final measurement and denoted by a star). The

peak at 1024 cm−1 corresponds to the water-reduced form of gypsum: soluble

anhydrite (γ-CaSO4) [1, 55]. Raman spectra lines at 1008 cm−1, 1015 cm−1 and

1024 cm−1 are plotted in Figure 7a for clarity. A broad Raman spectrum and

secondary electron microscope image at the outer edge of the indentation (Fig-

ure 7d and e) indicate that that much of the material is highly deformed as a result

of the plastic flow beneath the indenter, with some material being spheroidal in

shape. The material comprises of hemihydrate and γ-CaSO4 phases (Figure 7d),

indicating that it primarily comprises water-reduced forms of gypsum.
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3.5. Nanooscale Features of the Deformation of Gypsum

Nanoscale features of the deformation and fracture of gypsum are shown in

Figure 8. Shown in Figure 8a is an area of deformation for the 0.25 N load. Most

cracks are oval in shape, with cross-crack dimensions ranging from 35 nm to 188

nm. There is also evidence of plastic deformation in the form of necking across

cracks. Necking likely occurred following the initial compression of the material

and is brought on by frictional forces that are generated between surfaces and

along grain boundaries during fracture [22, 29].

Shown in Figure 8b is a more clear example of spheroid formation at the outer

edge of the indentation for a load of 4.91 N. The average diameter of the spheroid

is approximately 130 to 180 nm. These are formed as a result of the large fric-

tional forces at the micro-scale resulting in subsequent plastic deformation and

heat generation of the material displaced beneath the indenter. Evidence of the

formation of a string of gypsum spheroid is shown in Figure 8c. The string is ap-

proximately 152 nm in diameter and 2,470 nm in length. This feature was found

located between adjacent fragmented surfaces in a location of highly fractured

and melted gypsum Figure 4c. The string is composed of numerous spheroids,

suggesting that the agglomeration of smaller spheroids was the mechanism be-

hind its formation. Elevated temperatures needed to ”fuse” individual spheroids

to form the cylindroid would need to be high enough that the material experienced

localized melting (1400◦C [56]). Lastly, shown in Figure 8d is a scanning elec-

tron microscope image of the smallest spheroid located near a dislocation. The

spheroid is approximately 69 nm in diameter and the dislocation is approximately

38 nm across the centre. The spacing between dislocations is 133 nm. The small-

est spheroid located is consistent with minimum values obtained by Osterwalder
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et al. [57] who studied the nano-preparation of gypsum. More specifically, this is

the limit at which fragments can form in gypsum, also known as the comminution

limit.

4. Summary and Discussion

The deformation and fracture of gypsum under micro-indentation loading has

been studied. Hardness values were found to decrease with increasing load, rang-

ing from 216 kg/mm2 at 0.25 N to 91 kg/mm2 at 4.91 N for (010) and from

122 kg/mm2 at 0.98 N to 75 kg/mm2 at 4.91 N on (011), and (110). These val-

ues are larger than those presented by Taylor [18] of 60 kg/mm2 at 0.49 N. Loads

<0.25 N did not produce any significant indentations and full elastic recovery

is assumed. Scanning electron microscopy allows indentation lengths to be mea-

sured more accurately in comparison to optical microscopy, especially when other

effects such as pile-up [53] and cracking occur as a result of the indentation test.

Lower values of Hv on (011) and (110) are related to the increased depth of pene-

tration when the tests are performed, such that the indenter penetrated along cleav-

age planes. The observed inverse relationship between hardness and the load, or

indentation size, is known as the ”indentation size effect” and this has been ob-

served and studied in other indentation experiments [44–50]. Size effects have

also been observed in machining [58], uniaxial micro-scale compression experi-

ments [59], thin foils in bending [60], copper wires in tension and torsion [61],

and in thin-film mechanics [62–64].

Many associate the higher hardness, or strengths, with the saturation of dislo-

cations [59] (i.e., no more dislocations can occur) in small volumes. This leads

to non-uniform strains and associated large strain gradients [51, 65–70], thus pro-
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moting local work-hardening. Gerberich et al. [65] proposed a theory in terms of

a surface work and plastic volume work concept for depths below several hundred

nanometers, while atomistic simulations [59] suggest that the ”size effect” pre-

vails at nano-scales regardless of strain gradients. Scanning electron microscopy

indicates localized necking between cracks accompany the micro-scale deforma-

tion processes. This contributes to increased plastic flow and work hardening of

the material as outlined by previous authors [51, 65–70]. Scanning electron mi-

croscopy also indicate localized material densification for lower loads.

Transmitted light microscopy reveals that shear-driven subsurface fracture along

the other (110) cleavage plane increases in both crack density and length as the

load is increased. The cracks beneath the indentation enable the indenter to pen-

etrate deeper, thereby producing larger indentations and reduced hardness [45].

Coupled with an increase in shear-driven subsurface cracking was an increase in

material flow beneath the indenter. This led to a decrease in crack density on the

indentation surface as the load was increased, ranging from 34 % at 0.25 N to 6 %

at 4.91 N. Material flow beneath the indenter results in the formation of spheroids.

These were 130 to 180 nm in average size, with the smallest ones being 69 nm.

These are formed as a result of the large frictional forces at the micro-scale and

subsequent plastic deformation and heat generation of the material displaced be-

neath the indenter. Large inter-grain frictional forces also result in the formation

and agglomeration of spheroids to form cylindroids. Temperatures needed to fuse

individual spheroids together to form the cylindroid need to be high enough that

the material experiences some melting (1400◦C [56]).

Raman spectroscopy measurements presented here indicated dehydration of

gypsum as a part of the deformation process under micro-indentation loading con-
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ditions. Phase transformations through, for example, dehydration are important

in efficiently processing minerals [71, 72]. Thermo-Raman analysis by Chang

et al. [1] showed that the dehydration of gypsum (CaSO4·2H2O) is a two step

consecutive reaction into anhydrite, with hemihydrate (CaSO4·0.5H2O) being the

intermediate step. Within the temperature range of 118 to 142◦C [1], gypsum

transforms to hemihydrate, and then to anhydrate. Over this temperature range,

water molecules are evaporated from the CaSO4·2H2O phase and concentrations

of CaSO4·0.5H2O and CaSO4 increase. Prasad et al. [55] noted an appreciable

decrease in the peak intensity of the Raman measurements as a result of dehydra-

tion. This is to say that the peak intensity value at 1008 cm−1 is greater than the

peak intensity value at 1015 cm−1 when the gypsum undergoes dehydration. The

evaporated water molecules leave behind voids in the crystal structure, thereby

allowing the material to deform easier. This contributed to the flow of surface

material beneath the indenter and to the formation of spheroids observed in these

experiments.

5. Conclusions

The micro-scale deformation and fracture of gypsum crystals from indentation

loading has been examined. Simultaneous complex elastic, plastic, and fracture

behaviour of gypsum exists for all loads. Results indicate that the hardness de-

creases with increasing load on all axes. Higher hardness values for lower loads

is attributed to dislocation saturation and localized necking, which leads to work-

hardening and densification. Transmitted light microscopy revealed that the de-

crease in hardness for increasing load was related to an increase in subsurface

cracking along (110) and (011) cleavage planes, enabling the indenter to pene-
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trate deeper. Coupled with an increase in subsurface cracking, was an increase in

surface smoothness as a result of an increase in displaced material beneath the in-

denter (34 % crack density at 0.25 N in comparison to 6 % crack density at 4.91 N).

Raman spectroscopy revealed that the material mainly comprises water-reduced

forms of gypsum: hemihydrate and γ-CaSO4. Local temperatures required for

the dehydration of gypsum range from 118 to 142◦C [1], indicating such temper-

atures are reached during plastic flow, and subsequent heat generation, beneath

the indenter. Evidence of spheroid formation was also observed. Evaporated wa-

ter leaves behind voids in the crystal structure and enables the gypsum to deform

more easily. The formation of a string of spheroids indicates localized melting

temperatures (1400◦C [56]) are achieved between adjacent surfaces during frac-

ture. The ease of transformation to allied water-reduced phases (hemihydrate and

anhydrite) under nominally low temperatures conditions should be borne in mind

for industrial processing applications.
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