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Abstract

Recently, ZnS quantum dots have attracted a lot of attention since they can be a suitable

alternative for cadmium-based quantum dots, which are known to be highly carcinogenic

for living systems. Suitable optoelectronic properties and non-toxic nature of ZnS quan-

tum dots capacitate exiting applications for these nanomaterials especially in the field of

biomedical imaging. The ability to tune the optoelectronic properties of quantum dots based

solely on size of these nanoparticles, which is due to the quantum confinement effect, has

raised significant interest both in experimental and computational studies. Nevertheless,

the structural stability of nanocrystalline ZnS seems to be a challenging issue since they

potentially prone to autonomous structural evolutions in ambient conditions. Thus, it is

essential to build an understanding about governing factors controlling structural changes of

ZnS nanoparticle before they can be safely implemented, especially for in vivo applications.

Using the molecular dynamics technique, we have studied the structural evolution of

ZnS nanoparticles at bare and hydrated states. Accuracy of molecular dynamics simula-

tion highly depends on the reliability of the empirical potential it uses. Although multiple

empirical potentials have been suggested for ZnS, there was no comprehensive study on

comparing the performance of these potentials. Hence, this study started with a through

review of available empirical potentials of ZnS in literature. The performance of each po-

tential is tested through comparing the ZnS properties calculated using empirical potentials

with experimental or higher level first principle calculation results. Based on the obtained

results and the nature of our study which is focused on the noncrystalline ZnS, we chose

the proper potential.

The study of the structural evolution of 1 to 5 nm freestanding ZnS nanoparticles in

vacuum revealed that relaxed configurations of bare ZnS nanoparticles larger than 3 nm

consist of three regions: a) a crystalline core, b) a distorted network of 4-coordinated atoms

surrounding the crystalline core, and c) a surface structure entirely made of interconnected
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3-coordinated atoms. Decreasing the size of the ZnS nanoparticle to 2 nm causes the crys-

talline core to disappear. Further reducing the size makes all of the atoms to become

3-coordinated and adopt a bubble-like structure. The simulation results also showed that

polarity of nanoparticles is also affected by their structural evolutions. The non-polar ideal

initial structures change to polar structures after relaxation at 300 K. For NPs smaller than

3 nm, where surface structure is predominant, magnitude of dipole moment of zinc-blende

and wurtzite nanoparticles are similar due to the similarity of their surface structures. In-

creasing the size makes the crystalline core dominant so, dipole moments converge to the

bulk values. The bulk wurtzite structure at 300 K shows a natural dipole moment of 0.3855

D per ZnS along the unit cell c direction because of the slight C3v-distortion of the ele-

mentary ZnS tetrahedron. On the other hand, zinc-blende lattice does not have a polar

nature due to the Td symmetry. As a result, increasing the size makes bare zinc-blende and

wurtzite nanoparticles less and more polar, respectively.

Structural analyses of ZnS nanoparticle in water showed that the 3-phase structure of

bare nanoparticles is not formed in the hydrated state. Bulk of hydrated nanoparticles has

more crystalline structure, however, the inhomogeneity in their surface relaxation makes

them more polar comparing to bare nanoparticles. This inhomogeneity is more severe in

hydrated wurtzite nanoparticles, causing them to show larger dipole moments. Analyzing

the structure of water in the first hydration shell of the surface atoms show that water

is mainly adsorb to the nanoparticles’ surface through Zn-O interaction. This interaction

causes the structure of water in the first hydration shell to be discontinuous and positions of

water molecules have the same pattern as positions of Zn atoms on the surface of nanoparti-

cles. Long residence time of water molecules in the first hydration shell of surface Zn atoms,

can affect the interaction of nanoparticle with other nanoparticles and the arouse solution.
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parameters are in Å and mechanical properties are in GPa). . . . . . . . . 45

3.4 Born effective charges and high frequency dielectric constants. . . . . . . . . 46

3.5 (110) surface geometry parameters (as shows in figure 3.2). All distances are
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Chapter 1

Introduction

It might be an after-dinner lecture in 1959 by Richard Feynman (1918 - 1988), “There’s

Plenty of Room at the Bottom ”, which triggered an inspiration that has led to the rapidly

developing field of nanotechnology [18]. Although some have questioned the degree to which

Feynman influenced the rise of nanotechnology, it is without a doubt that the scientific world

has traveled toward Feynman’s vision of manipulating and controlling things at the atomic

scale in the last 60 years and still has far to go. Probably the most important product of

the fast developing field of nanotechnology are nanomaterials. In principle, nanomaterials

are a new class of materials with one, two or three external in the nano-domain dimen-

sions (1-100 nm). According to this definition, nanomaterials can be categorized into three

shapes: nanoparticles (NPs) which have their three dimensions in the nanoscale, nanoplates

which have one nano-sized dimension, and nanowires, nano-objects with two nano-sized di-

mensions and the third dimension being significantly longer [19]. In a different terminology,

nanoparticles, nanowires and nanoplates are called zero, one and two dimensional nanoma-

terials. Over the past 50 years, the rapid growth of the nanotechnology has enabled us to

fabricate nanomaterials in variety of shapes and sizes and propose exiting new applications.

The main feature of the nanomaterials in any shape is their large surface to volume ratio

which results in a large contribution of the surface in the system energy. On the nanoscale,

the thermodynamic effect of surface can lead to equilibrium atomic structures that differ

from of the material on larger scales. The reactivity of nanomaterials, due to their high

surface to volume ratio, can also differ from the bulk material greatly. This can lead to a

potential harm to environment and living organisms which might has been underestimated

during the rapid growth of nanotechnology. The first step to avoid these undesirable side

effects is to construct a detailed understating of physics of the nanoscale which enables us

to predict the properties of nanomaterilas and how they interact with their environment

[20].
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1.1 Atomistic Simulations

Despite of considerable development in nano-fabrication techniques in past decades, our

understanding of physics of the nano-level is still limited. Although, the development of

tools of experimental studies, specially the electron microscopy, has enhanced our general

understanding of nano-scale phenomena, there are still considerable details which are un-

touchable by these studies. Theoretical and numerical studies have shown to be a promising

approach to accompany the experiments and develop our understanding about nanomate-

rials.

Electronic structure methods based on quantum mechanic calculations (first-principle

methods) are the most accurate simulation tools available to us. The theory of quantum

mechanics relies on the fact that energy and all other related properties of a system can be

calculated by solving Schrödinger’s equation. For a theoretical materials scientist, develop-

ment of Schrödinger’s equation is probably the most exiting discovery happened in the world

of physics. This, in principle, gives us all we need to understand the matter as we now knew

the underlying equations that describe it. Unfortunately, exact solution of Schrödinger’s

equation is only feasible for the simplest systems. As a result, different electronic struc-

ture methods have been developed to estimate the solution of the Schrödinger’s equation

by means of different mathematical approximations [21]. Despite all the developments in

hardware and software technologies, the computational expense of the first-principle meth-

ods is still a crucial limitation which makes them technically impractical for systems beyond

hundreds of atoms and time scales over hundreds of picoseconds [22].

Atomistic simulations, in which we are only concerned with atoms, rather than electrons

and sub-atomic particles, are the best alternative offering a compromise between compu-

tational speed and accuracy. These sets of simulation methods which are also known as

molecular mechanics, use empirical potentials and laws of classical mechanics to model

atomic interactions. Molecular dynamics (MD) simulations in particular, enable the study

of dynamics and atomic level evolutions of relatively large systems (up to millions of atoms

or even more) in a practical time period (nanoseconds). This can result in calculation of

dynamical properties like heat and mass transfer, diffusion, surface absorption, and geom-

etry evolution of nanomaterials. Overall, MD enables the study of systems and processes

with more realistic dimensional and time scales. The accuracy of molecular mechanic meth-

ods, however, is greatly dependent on the reliability of the empirical potential they use to

model interatomic interactions. As a result, it is quite important to verify the reliability of

empirical potentials by testing their ability to reproduce different material properties.
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Figure 1.1: Different size colloidal QDs excited by ultraviolet light showing a wide range of
colours [1].

1.2 ZnS nanoparticles

Among all nanomaterials which have gradually found their ways into our daily lives, II-VI

semiconductor nanomaterials are of great technological interest due to their unique opto-

electronic properties. When the size of a zero-dimensional semiconductor nanomaterial is

small enough to exhibit quantum properties (generally sizes less than 5 nm), it is called

quantum dot (QD). The name was first proposed by Reed in late 1980s [23]. The most

exciting quantum mechanical property of QDs is the quantum confinement effect which

happens in semiconductor crystallite whose size is in the order of the size of its exciton

Bohr radius [24]. Due to the small size of QDs, the electrons are confined and the energy

levels can be modeled using the particle in a box model. In principle, as the size of the

QD decreases, the size of the band gap (the difference between the valence and conduction

bands energy) increases. Thus, more energy is needed to excite an electron (moving it from

valance to conduction band), so more energy would be released when the electron returns

to its ground state, consequently. This means that the optoelectronic properties of QDs are

highly tunable. Example of this is shown in Figure 1.1 which shows florescent QDs fluoresce

a wide range of colors when changing their sizes [1].

QDs show a promising future in variety of optoelectronic applications such as solar cells,

LEDs, diode lasers, quantum computing and biomedical imaging. The latter, especially, has

attracted a lot of attention recently where the wide absorption and luminescent efficiency, a

high resistance to photobleaching, and high chemical stability of quantum dots make them

an ideal candidate to substitute organic fluoroscopes [25, 26].

In spite of all promising properties of QDs, the rapid development of QD technology

has also raised serious concerns about safety, mainly because the most studied II-VI semi-

conductor nanomaterials contain cadmium (CdSe, CdTe and CdS), which is known to be

highly carcinogenic for living systems [27]. Various modifications such as adding a ZnS
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shell or polyethylene glycol (PEG) coating have been suggested to modify QDs with toxic

elements. However, the cytotoxicity of Cd containing QDs is still a major concern [28].

Zn-based QDs such as ZnS have been introduced as a suitable alternative since Zn is

inherently an essential biological element [29]. Furthermore, the band gap of ZnS is more

than 1 eV wider than the others in the II-VI family, which enables a wider spectrum to be

tuned by varying the size of ZnS nanostructures. Generally, the size of QDs for biomedical

applications is smaller than 5 nm for two main reasons: to get the best use out of the

quantum confinement effect and to avoid accumulation of QDs in the body. It has been

reported that large QDs are generally accumulated in the reticuloendothelial system, such

as liver, spleen and lymphatic system for several months, but the QDs with sizes less than

5 nm could be removed by kidney quickly [30]. Unfortunately, utilizing ZnS nanoparticles

in this size range has shown to be challenging since noncrystalline ZnS has the potential

to undergo uncontrolled structural changes in ambient conditions[20]. As a result, the

structural stability of ZnS NPs as a function of different factors such as size, environment,

aggregation, temperature, and pressure have been highlighted in experimental and numer-

ical studies. However, we still have a vague picture of details of the structural evolution of

these nanoparticles on which applicability of them is highly depended.

At standard temperature and pressure (STP: 298 K and 1 bar), bulk ZnS exists in two

crystal structures: zinc-blende (ZB : F43m) and wurtzite (WZ : P63mc). ZB which is also

known as sphalerite, is the stable phase of ZnS at standard condition while WZ is more sta-

ble above 1020 ◦C. If we consider the Zn and S atoms separately, they make FCC and HCP

arrangements in ZB and WZ structures, respectively. In both structures the Zn and S atoms

are connected through a tetrahedral bond structure to form the ZnS molecule. At higher

pressures (above 15 GPa), ZnS acquires the high density rocksalt structure (RS : Fm3m).

These three structure are shown in Figure 1.2.

The solid state phase transformation to RS phase is not technically significant as not

many high pressure applications suggested for ZnS NPs. Reversible and irreversible phase

transformations between ZB and WZ phases, or between each of these phases and the dis-

torted structure, however, have attracted a lot of attention, since they were observed to

occur under ambient conditions. One of the first experimental works on the structural sta-

bility on ZnS NPs is done by Qadri et al. [31]. They showed the XRD diffraction peaks

from the WZ phase, in the initially pure 30 Å ZB samples which were annealed at 400 ◦C in

vacuum for 45 minutes. The ZB-WZ phase transformation at 400 ◦C and in vacuum is also

reported for ZnS NPs in other studies [32]. Similar study was performed by Yang et al.

reported temperatures as low as 250 ◦C for ZB-WZ phase transformation when increasing

the pressure just for 1 GPa [33]. These temperatures are much lower than the bulk trans-
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(a) (b) (c)

Figure 1.2: Three phase structure of ZnS: (a) zinc-blende (ZB : F43m), (b) wurtzite
(WZ : P63mc), and (c) rocksalt (RS : Fm3m).

formation temperature of 1020 ◦C. One other important observation of all of these studies

was that the size of the ZnS NPs increased significantly after annealing. This suggests

agglomeration is one of the controlling factors in phase stability of ZnS NPs.

The structural change in 3 nm ZnS NPs is also reported as a function of aggregation

states of NPs [34]. Reversible switching between distorted structure of dispersed or weakly

aggregated NPs and crystalline structure of strongly aggregated NPs in reported as a re-

sult of changing the aggregation state. Dispersed and aggregated states were achieved

using slow drying and ultrasonic agitation, respectively. More studies has been done in the

same research group at University of California-Berkley, focusing on structural stability of

ZnS NPs. They also reported the reversible structural transformations between distorted

and crystalline ZB structures induced at room temperature by absorption-desorption of

methanol and water [35, 36]. XRD results showed that the minimum energy structural con-

figuration of particles in methanol at room temperature does not have a crystalline nature.

However, binding of water leads to a dramatic structural modification, significantly reducing

distortions of the surface and interior and generating a structure close to that of ZB. They

also used the UVvis. absorption spectroscopy to show that there was no change in the on-

set of absorption, indicating that no coarsening occurred, and the structural enhancement

was a sole effect of water binding. Molecular dynamics simulations and thermodynamic

analysis were also used to complement the experimental results. The thermodynamic anal-

ysis, which makes use of surface energy data, showed that for sizes smaller than 7 nm WZ

nanoparticles are more thermodynamically stable than ZB and the ZB-WZ transformation

is thermodynamically possible in temperatures as low as 25 ◦C [2]. Molecular dynamics

simulation was also confirmed the enhancement of crystallinity by absorption of water to

5



(a) (b) (c)

Figure 1.3: Results of MD simulation of a free standing 3 nm ZB NP [2]. (a) Initial
configuration viewed along the [111] direction, (b) The energy-minimized structure obtained
by the MD, and (c) Potential energy evolution. The [001] hexagonal channels of WZ at
(b) were considered as the sign of ZB-WZ phase transformation. According to (c), the
activation energy of this phase transformation was reported to be 5 KJ/mol.

the surface of NPs. The MD simulations of Zhang et al. have one more interesting and at

the same time strange result too: they reported that a 3 nm free standing (in vacuum) ZB

ZnS NP experienced phase transformation WZ structure at 300 K [2] in a relatively short

(3.6 ns) MD simulation (Figure 1.3). Clear phase transformation from ZB-WZ in dispersed

ZnS NPs had been never reported experimentally. Moreover, observing a complete phase

change in a short MD simulation at room temperature, where kinetics is the controlling

factor, is extraordinary.

Using computational techniques, another group mainly based in the Royal Institution

of Great Britain have also studies the ZnS nanostructures excessively. In one of their

early studies, they introduced an interatomic potential for ZnS and surface energies of the

most observed surfaces of ZB and WZ structure were calculated using the lattice static

approach [37]. Using the calculated surface energies, they found the low energy crystal

morphologies following the Gibbs criteria, and predicted a dodecahedron shape for the ZB

phase and a prismatic shape for the WZ phase [20]. The derived interatomic potential

along with density functional theory (DFT) technique are used to perform global mini-

mization through the simulated annealing [38, 39] and genetic algorithm [40] procedures

to find the the best possible estimate of the global energy minimum of ZnS small clusters.

In the very small (ZnS)n clusters with 10 5 n 5 49 the minimum energy structure was

bubble-like cluster, a hollow spheroidal structures where all atoms are three-coordinated.

For 50 5 n 5 80 clusters, the global minimum energy structures are ”double bubbles” or

onion-like clusters in which one bubble is formed inside another one. Crystal structure of

large clusters (n = 256 and n = 512) obtained by global minimization, mainly consisted of

four-coordinated atoms but deviated from the two bulk phases of ZnS found in nature and
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(a) (b) (c)

Figure 1.4: Three structure observed for (ZnS)n clusters after global minimization [3]. (a)
bubble-like (10 5 n 5 49), (b) double-bubbles (50 5 n 5 80), and BCT (80 5 n 5 512).

were shown to be similar to the BCT zeolite structure. However, the energy of WZ clusters

were found to be so close to BCT ones and it was suggested that their relative energies may

be reversed by solvation effects [3]. The formation of bubble-like clusters was also reported

during early stages of ZnS formation in aqueous solution [41].

Another approach to predict stable configuration of a NP is to calculate frequent crys-

talline surface energies and construct the most stable shape using Wulff construction. Ap-

plying surface energies calculated using first-principle computer simulations, Barnard et al.

used this approach to study the effect of shape and size on stability of ZnS ZB [42] and

WZ [43] NPs. Similar to what suggested by the lattice static study of Hamad et al. [37],

they showed that ZB rhombic dodecahedron enclosed entirely by non-polar 110 facets is

the most stable ZnS shape regardless of the NP size. However adding polar facets to ZB

nanostructures will make core/shell crystalline/amorphous structure thermodynamically fa-

vorable. Furthermore, deviation from rhombic dodecahedron enables some thermodynamic

paths from ZB to WZ transformation by decreasing the size [43]. While this approach pro-

vides valuable thermodynamic information about phase stability of the ZnS NPs, it does

not come close to dynamics. Moreover, Wulff configurations can not be made in all sizes

and more realistic model of a NP would include imperfect facets, edges and corners which

affect the NP’s surface energy significantly.

In addition to alternating optoelectronic properties of a single NP, structural and config-

urational changes can also affect intrinsic forces between NPs. Semiconductor NPs interac-

tions can be decomposed into coulomb and van der Waals components. Although NPs are

generally charge neutral, they exhibit large static permanent dipoles causing considerable

coulomb interactions [44]. Dipole-Dipole interactions are of a great importance as they are

shown to be the governing factor in agglomeration [45], oriented attachment [46], and sta-
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bilization of superlattice structures [47] of non-metallic NPs. There has been considerable

number of studies on finding the origin of large permanent dipole in ionic NPs. Large DM

is expected in WZ NPs due to the polar nature of WZ lattice but should be absent in ZB

NPs due to the Td symmetry of ZB lattice. Li and Alivisatos’s study on CdSe nanorods has

shown a permanent DM was proportional to the volume of nanorods. They considered the

origin of the DM was due to the natural polar character of the WZ structure [48]. Nann

and Schneider have also shown that a small crystallographic deviations from the ideal WZ

structure could result in a large permanent dipole moment [49]. On the other hand, Shim

and Guyot-Sionnest have shown a linear dependence of the large DM to the radius of both

WZ CdSe and ZB ZnSe nano crystals [44]. Since the large DM has been observed for both

ZB and WZ structures, they concluded that this linear size dependence is not due to the

polar character of the WZ lattice but due to the faceted surface structure of nano crystals.

Later study of Shanbhag and Kotov showed that minor deviations from a symmetric tetra-

hedral shape of ZB CdS nanocrystals could result in large DMs [50]. Cho et al. has shown

that dipole moment of PbSe nanocrystals with centrosymmetric rocksalt lattice was large

enough to result in the formation of nanowires through oriented attachment of nanocrystals

[51]. Considering a random distribution of polar facets and probability of lacking of central

symmetry, they showed that about 89% of possible shapes of PbSe nanocrystals were polar.

Self-assembly of ZnS nanocrystals into ellipsoidal shapes has also been explained by charge-

charge, charge-dipole, and dipole-dipole interactions of non-symmetric ZnS NCs along the

[111] direction [52]. ZnS nanowires with length as long as 10 µm have been also successfully

fabricated via oriented attachment of ZnS nanocrystals [53].

1.3 Objectives of this study

The background mentioned above shows that in spite of the numerous theoretical and exper-

imental researches on ZnS NPs in the past two decades, our understanding of the structural

evolution in these important nanomaterials is still not complete. This is more crucial in

studies based on atomistic simulations as their results are sometime contradictory. Some

other challenges like the particle-particle interactions and the effect of the structural evo-

lutions on them have remained almost untouched. Regarding to the increasing interest in

potential applications of ZnS NPs, it seems necessary to enhance our knowledge about the

reliability of these materials. The post fabrication structural evolutions of these nanostruc-

tures is one of the main factors governing their applicability.

As mentioned in Section 1.1, a reliable interatomic potential is essential for an accurate

atomistic simulation. Some conflicts in the atomistic simulation studies of ZnS are due to

the inaccurate potentials. Due to the lack of a comprehensive study on available empirical

potentials in the literature, a sound decision can not be made about choosing an appropriate

one. Thus, this work started by a comprehensive study which aimed to address advantages
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and disadvantages of each empirical potential of ZnS proposed in literature. After choosing

the suitable interatomic potential, molecular dynamics was used as the main simulation tool

to study the structure of the ZnS NPs. NPs with different initial structures and size were

simulated in different environments. Simulation were performed in comparable length and

time scales to the experimental conditions. The structure of NPs was examined in details

with different analytical methods. The effect of size and environment on particle-particle

interactions have also been studied. At the end of this study, we hope to provide an insight

of dynamics of structural evolutions of ZnS NPs which can help to find a proper fabrication

and post-fabrication treatments to render best performance of ZnD NPs in their future

applications.
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Chapter 2

Methodology

2.1 Interatomic potential

Basically, all simulation methods in the atomic scale start with the calculation of the in-

ternal energy. The internal energy of a solid is a many-body quantity explicitly depended

on the positions and momenta of electrons and nucleus of all atoms in the system. The

calculation of the ground state internal energy requires to solve the Schrödinger’s equation

for the collection of atoms of interest. However, exact solution of Schrödinger’s equation is

only feasible for the simplest systems. As mentioned in section 1, variety of first-principle

methods have been developed to estimate the solution of the Schrödinger’s equation by

means of different mathematical approximations. However, this is still an intractable prob-

lem to solve and the computational expense of the first-principle methods is still a crucial

limitation which makes them technically impractical for systems beyond hundreds of atoms.

Thus approximations must be made to simplify the situation. Atomistic simulation meth-

ods, tackle this problem by subsuming the effect of the electrons and nuclei into interatomic

interactions. Depending on the nature of the system, different kinds of interatomics inter-

action might be considered to model the internal energy of the system accurately. The

parameter of the interatomic interaction are derived empirically by fitting different proper-

ties of the system to the experimental or higher level first-principle calculation results. The

collection of all interatomic interactions which defines the system under the study is called

interatomic potential or force field. As explained in section 1, The accuracy of an atom-

istic simulation method is highly depended on the interatomic potential used to model the

interaction of atoms. Interatomic interactions can be divided into to main groups: bonded

and non-bonded interactions. Bonded interactions which act between covalently bonded

atoms usually are not considered for ionic crystalline solids. Instead, a model which was

first introduced by Born and Mayer [54] is used which assumes that the interatomic po-

tential of ionic-bonding materials consists of two main non-bonded interactions: long-range

electrostatic and short-range. Here we explain different components of the Born model.
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2.1.1 Electrostatic interaction

The charged nature of the ionic species gives rise to the Coulombic interaction which can

typically represent up to 90% of the total energy. Electrostatic energy between two charged

atoms is represented by Coulomb’s law:

Uc(rij) =
qiqj

4πε0rij
(2.1)

where ε0 is the permitting of free space, qi and qj are the charges on atoms i and j, and rij

is their distance. Despite the simplest form of the Coulomb energy, it is in fact the most

complicated atomic interaction to evaluate in an atomistic simulation. It is because Coulomb

energy shows a slow decay in respect to separation distance of atoms due to the 1
r term,

which makes it the long-range component of the interatomic potential. For finite clusters,

like nanoparticles in vacuum, it may be practical to calculate the pure Coulomb interaction

between all atoms, but, this approach is not technically possible for infinite periodic systems.

The most applied solution to overcome ill-defined Coulomb energy problem is proposed by

Ewald [55].

Ewald summation

The heart of the Ewald’d idea to overcome convergence problem is a technique that sepa-

rates Coulomb term into two components, one of which is rapidly convergent in real space,

and the second decays quickly in reciprocal space. Here we provide a simplified overview of

the Ewald method, mainly based on description provided by Kittle [56]. For more details

readers are encouraged to read Ref. [55] and Ref. [57].

In a lattice of non-overlapping, spherical ions of positive or negative charges, the elec-

trostatic potential, ψ, felt by the ion i can be written as:

ψi =
∑
j 6=i

qj
rij

(2.2)

where qi is the charge of ion j at the distance of rij from ion i. Note that the 1
4πε0

coefficient

is omitted in this definition. Considering the entire system is charge neutral and contains

an infinite number of positive and negative charges situated at distances r+
ij and r−ij from

ion i, respectively, Equation 2.2 can be rewritten as:
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Figure2.1: TherepresentationoftheEwaldsummationin1D.
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Nowconsiderthatweaddtwochargedistributions,likeGaussiandistribution,toeachlat-

ticesiteinawaythatdistribution1hasthesignsameasthepointchargeatthatlattice

siteanddistribution2hastheoppositesign.Similarly,wecandefinetwoauxiliarylattices

suchlattice1includesdistribution1andlattice2containsdistribution2andpointcharges.

Whenthesetwocomponentsarecombinedtheyreducetotheoriginalsetofpointcharges.

Definitionoflattice1andlattice2areillustratedinFigure2.1.

Accordingly, wecandefine ψ1andψ2correspondingtothecontributionsoflattice1

and2tothetotalpotentialenergy,ψ.Figure2.1showsthatchargedistributioninlattice

2isdominatedbypointchargesandresemblesdelta-likechargedistribution. Therefore,its

effectonthepotentialcanbecomputedmorerapidlyintherealspaceandconvergencewill

befasteriftheGaussianwidthofthechargedistributionisnarrower. Ontheotherhand,

potentialoflattice1is moreconvenientlycalculatedinreciprocalspacewhereitconverges

fasterwhenGaussiandistributionsarewider.Therefore,anoptimumwidthoftheGaussian

peaksaswellascut-offdistancesinrealandreciprocalspacesshouldbecalculated. One

wellknownapproachistodefinetheseparametersby minimizingthetotalnumberofreal

andFouriertermstobeevaluatedforagivenspecifiedaccuracy[58]whichleadsto
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ηopt =

(
Nπ3

V 2

) 1
3

(2.4)

rmax =

(
−ln(A)

η

) 1
2

(2.5)

Gmax = 2η
1
2 (−ln(A))

1
2 (2.6)

where η is the peak width parameter, N is the total number of charges, V is the unit cell

volume, A is the level or the accuracy and rmax and Gmax are cut-offs in real and reciprocal

spaces, respectively. The definition of the potential dictates that the charge distribution at

the reference point does not contribute to ψ1 or ψ2. Therefore, we can rewrite the potential

of lattice 1 as

ψ1 = ψrecip − ψself (2.7)

where ψrecip is the potential of the continuous series of Gaussian distribution in the recipro-

cal space and ψself is the potential caused by the charge distribution at the reference point.

ψrecip as well as its associated charge density can be expanded in terms of Fourier series

ψrecip =
∑
G

cGei(G.r) (2.8)

ρ =
∑
G

ρGei(G.r) (2.9)

where cG and ρG are Fourier coefficients and G is a reciprocal lattice vector (where the

special case G = 0 is excluded). The potential energy can be related to its charge distribu-

tion through Poisson’s equation

O2ψrecip = −4πρ (2.10)

combing Equations 2.8, 2.9 and 2.10 we can write

cG = 4π
ρG
G2 (2.11)

Our basic assumption is that each ion j with poison of r in the lattice is the centre of a

13



Gaussian charge distribution whose density is

ρ(r) = qj

(η
π

) 3
2
e−ηr

2
(2.12)

Now, to evaluate ρG, we multiple both sides of the 2.9 by e−i(G.r) and integrate over the

volume of the cell. The charge distribution to be considered in this case is that originating

on the ion points within the cell and also that of the tails of the distributions originating in

all other cells. However, it can be shown that the integral of the total charge times e−i(G.r)

over a single unit cell is equal to the integral of the charge density originating in a single

cell times e−i(G.r) over all space. Accordingly, we have

ρG

∫
cell

ei(G.r).e−i(G.r) = ρG.Vcell

=

∫
all space

∑
j

qj

(η
π

) 3
2
e−η(r−rj)2e−i(G.r)dr

=
∑
j

qj

(η
π

) 3
2
e−i(G.rj)

∫
all space

e−(iG.ζ+ηζ2)dζ

=

∑
j

qje
−i(G.rj)

 e
−G2

4η

= S(G)e
−G2

4η

(2.13)

where S(G) is the structural factor of the unit cell under consideration. Using the calcu-

lated value for ρG, we can now calculate cG through Equation 2.11 and substituting cG
in Equation 2.8 gives

ψrecip =
4π

V

∑
G

S(G)G−2e
i(G.r)−G2

4η (2.14)

ψself at the reference ion point, i, due to the central Gaussian distribution is

ψself =

∫ ∞
0

ρ

r
(4πr2)dr = 2qi

(η
π

) 1
2

(2.15)

and so

ψ1 =
4π

V

∑
G

S(G)G−2e
i(G.r)−G2

4η − 2qi

(η
π

) 1
2

(2.16)

ψ2 can be partitioned into three contributions from each ion in respect to the reference
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point: contributions from the point charge of ion j, from the part of the Gaussian distribu-

tion centred on j and lying inside a sphere of radius rj , and from that part falling outside

the sphere, respectively.

ψ2 =
∑
j

qj

[
1

rj
− 1

rj

∫ rj

0
ρ(r)dr−

∫ ∞
rj

ρ(r)

r
dr

]
(2.17)

substituting ρ(r) and carrying out some mathematical manipulations, we have

ψ2 =
∑
j

qj
rj
ercf(η

1
2
rj ) (2.18)

where erfc(x) is the complimentary error function. Finally, we can write the total potential

of the reference ion i in the field of all the other ions in the crystal as

ψ(i) =
4π

V

∑
G

S(G)G−2e
i(G.r)−G2

4η − 2qi

(η
π

) 1
2

+
∑
j

qj
rj
ercf(η

1
2
rj ) (2.19)

and the total electrostatic energy of the system can be calculated as

Ues =
1

2
× 1

4πε0

∑
i

qiψi (2.20)

2.1.2 Short-range interactions

As implied in their name, short-range interactions have a fast converging nature which

makes it tractable to use cut-off to evaluate them. In a many-atom system, short-range

interaction can be considered between two, three or more atoms.

Usr =
1

2

N∑
i,j

Uij +
1

6

N∑
i,j,k

Uijk + ... (2.21)

The first and second terms in Equation 2.21 are two- and three-body interactions, respec-

tively. The two-body or the pair potential is described by two atomic interactions: repulsive

and attractive. The physical origin of the repulsive term is related to the Pauli principle:

when the electronic clouds surrounding the atoms starts to overlap, the energy of the sys-

tem increases abruptly. Thus, this term dominates in short atomic distances. At the large

atomic distances, however, attractive part is dominating to assure the cohesion of the sys-

tem. This attraction is described by van der Waals dispersion forces. Combining attractive

and repulsive interactions, two-body potential will have a form like Figure 2.2.
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Figure 2.2: Two-body short-range interaction.

There is no doubt that the simplest and the most widely used pair potential model is

the Lennard-Jones potential

ULJ = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]

(2.22)

where ε is the depth of the potential well (potenital value at the equilibrium atomic dis-

tance) and σ is the distance at which the potential equals to zero. For ionic solids the most

commonly used pair potential is the Buckingham potential

UBuckingham = Ae

(
−
rij
ρ

)
− C

rij
(2.23)

where A, rho, and C are potential parameters. There has been a constant debate about

advantages and disadvantages of these two formulations. As explained by Buckingham in

his original paper [59], the Buckingham potential describes the repulsion term from the

Pauli principle by a more realistic exponential function, comparing to the inverse twelfth

power used by the Lennard-Jones potential. On the other hand, some point out that the

Buckingham potential remains finite even at the very small atomic distances which can

cause the infamous ”Buckingham catastrophe” at short range. This is especially more

important when it is used in simulations of charged systems with small atomic distances.

Moreover, the Lennard-Jones potential is quicker to compute due to the simple formulation.

The three-body term is often used to take into account the semicovalent nature of the

semiconductors atomic bonds. The simplest and the most frequently used formulation is
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the harmonic angle potential

Uθijk =
k

2
(θijk − θ0)2 (2.24)

where k is the harmonic constant and θ0 is the equilibrium angle between atoms i, j, and k.

Generally, higher order interactions like 4-body potentials are avoided because they require

high computational time which technically makes simulations time consuming.

2.1.3 Polarizability

The Coulomb interaction introduced previously assumes the electronic orbitals are fixed

and changing the lattice conditions has no effect on them or in other words, atoms are not

polarizable. An atom or ion is polarizable if it develops a dipole moment when placed in an

electric field. It is generally unreasonable to assume that the dipole moment of an atom is

fixed, since both the magnitude and direction readily alter depending on the nature of the

system being studied. The simplest and most successfully implemented method for taking

into account the polarization of ions within the Born model is the shell model developed by

Dick and Overhauser [60]. In this model, an ion (qion = qc + qs) is considered to have two

parts: the core, which carries atomic mass and part of the total charge (qc), and the mass-

less shell, which takes the polarizable charge (qs). The shell and core are electrostatically

screened from each other but connected through a harmonic spring. The shell is allowed to

move relative to the core, forming a dipole, and the degree of polarisation is dependent on

the value of the harmonic spring constant and the shell charge.

Vcore−shell =
1

2
ksr

2 (2.25)

When polarizable ions are modeled using shell model, short-range interaction are considered

to act only between shells while Coulomb interaction acts on both shells and cores [61]. The

physical basis of this consideration is that the short-range interactions are a result of elec-

tron cloud interactions and since shells mimic the valence electrons, the short range-forces

must act between them.

There are two ways to implement shell model in the molecular dynamics (MD) simula-

tion. One approach is to treat shells as massless species like the original definition of the

shell model. In this implementation which is usually called relaxed shell model [62], the

shell cannot be treated dynamically and instead the procedure is first to relax the shell by

applying the force minimization at each time step and then integrate the motion of the

finite mass core by conventional molecular dynamics. Since an additional minimization is
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qs

qion = qc + qs

Figure 2.3: Representation of the shell model of Dick and Overhauser.

required in each time step, the computational cost per time step for this algorithm is con-

siderably high. Another approach which is more popular in molecular dynamics simulations

is the adiabatic shell model of Mitchell and Fincham [63]. In this method the shell is given

a small portion of ion mass and its motion is integrated by conventional molecular dynam-

ics technique. The shell mass should be small enough to ensure that the core-shell spring

frequency is well above the vibrational frequencies of the lattice. From classical mechanics,

the frequency of core-shell spring can be calculated as

υ =
1

2π

√
ks

x(x− 1)M
(2.26)

where x is the fraction of the ion mass assigned to shell and M is the ion mass. Equation

2.26 shows that smaller shell constants require smaller shell masses to satisfy adiabatic

conditions. Technically, this means much smaller MD time steps are required to capture

the fast movement of the light shells.

2.2 Lattice Dynamics

Lattice dynamics is based on the study of the vibrations of the atoms in a crystal. Un-

derstanding lattice dynamics in essential to have a complete picture vibrational frequencies

and effect of these vibration on thermodynamic properties of crystalline materials. In these

study, lattice dynamic simulations are used to calculate the phonon dispersion of ZnS lat-

tices which are represented in chapter 3. Owing much to Dove [61], we represent the lattice

dynamics calculation of a very simple system here, which can be a base of understanding

these calculations for more complicated systems.
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un−2 un−1 un un+1 un+2

J

a

Figure 2.4: Linear chain model. J is the harmonic force constant, u represents the displace-
ment, and a in the equilibrium lattice constant.

The simplest model can be used to explain the atomic vibrations is a linear chain of

atoms with unit mass m which are separated by lattice constant a (Figure 2.4).

Here we just consider nears-neighbor interaction which means each atom is just feel the

force of its immediate neighborer. If the energy between to atoms separated by distance a

is φ(a), the total energy of a chain of N atoms will be

E = Nφ(a) (2.27)

Now, consider that each atom moves by finite displacement u. If u is small enough in

comparison with a, the energy of the atomic chain can be calculated using Taylor series

E = Nφ(a) +
∑
s≥1

1

s!

∂sφ

∂us

∑
n

(un − un+1)s (2.28)

where un is the displacement of the nth atom so displacement between atoms n and n+ 1

will be r = a + (un − un+1). Thus the derivative of φ in respect to u is equivalent to the

derivative with respect to r. Since a is the equilibrium lattice constant (distance at which

there is no force on atoms), the first term in Equation 2.28 (s = 1) is zero. As u is small to

a we may expect the dominant contribution comes from the quadratic term. Considering

only the quadratic term (s = 2) and neglecting all higher terms is called harmonic approxi-

mation. The higher order terms which are neglected here are called anharmonic terms. The

second derivative of φ in respect to u, j = ∂2φ
∂u2

, is called harmonic force constance. Now,

we can write the Newton equation of motion for the nth atom as

m
∂2un
∂t2

= − ∂E
∂un

= −J(2un − un+1 − un−1) (2.29)

Harmonic equation equation of motion has a known solution which is a sinusoidal wave.

Thus, the motion of the whole system will be a set of traveling waves. The aim of lattice
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Figure 2.5: Dispersion curve for the one-dimensional mono atomic chain.

dynamics calculations is to find the set of frequencies of these waves. The mathematical

representation of time-dependent motion of nth which is a linear superposition of each of

traveling waves can be written as

nn(t) =
∑
k

ũkexp(i[kx− ωkt]) (2.30)

where k is the wave vector (k = 2π/λ), ωk is the corresponding angular frequency (ωk =

2πν), ũk is the amplitude, and x is the displacement which is restricted to values x = na.

By substituting Equation 2.30 into Equation 2.29 and applying some simple mathematical

manipulations we can obtain an expression for the angular frequency as a function of wave

vector

ωk =

(
4J

m

)1/2

|sin(ka/2)| (2.31)

by taking only positive roots we obtain the behaviour of the angular frequency as shown

in Figure 2.5 which is called dispersion curve.
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When k approaches to zero, we can take the linear approximation of Equation 2.31 and

write

ωk(k −→ 0) = a

(
4J

m

)1/2

|k| (2.32)

This give the phase velocity c, which is equivalent to the velocity of sound in the crystal

c =
ω

k
= a

(
4J

m

)1/2

(2.33)

Because of this relation, a vibrational mode as Figure 2.5, which goes to zero in the

limit of small k, is called acoustic mode. If the atomic chain consists of two atom types

with different masses the corresponding solution of the wave equation will result in two

simultaneous equations. In addition to the acoustic mode, solving this system of equations

gives rise to the optic mode. Frequencies in optic mode are flat at small k but not equal

to zero. They are large in respect to acoustic branch and vary weakly with k. We will not

representing the lattice dynamic formulations for more complicated cases here. For detailed

explanation of the lattice dynamic formulation for more complicated systems, reader are

referred to reference [61].

2.3 Molecular Dynamics

The molecular dynamics simulation method is based on Newtons second law or the equa-

tion of motion, F = ma. Knowing the force on each atom, it is possible to determine the

acceleration of each atom in the system. Integrating the equations of motion then yields a

trajectory that describes the microscopic state of a system as it varies with time. A micro-

scopic state of a system is described by Hamiltonian, H, as a sum of the kinetic (K) and

the potential (U) energies, which are functions of the Cartesian momentum and coordinate

of each particle, respectively

H = K(p) + U(r) (2.34)

where p = (p1, ...,pN ) and r = (r1, ..., rN ) are sets of atomic positions and momenta, re-

spectively. We discussed the potential energy in Section 2.1 and we know that the kinetic

energy takes the familiar quadratic form
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K =

N∑
i=1

1

2mi
(p2
ix + p2

iy + p2
iz) (2.35)

where mi is the mass of particle i, and pix, piy, piz are the x, y, and z components of its mo-

mentum. From the classical mechanics the Hamiltons equations of motion can be written as

−∂H(r, p)

∂ri
=
dpi
dt

= fi (2.36)

−∂H(r, p)

∂pi
=
dri
dt

=
pi
mi

(2.37)

The first expression in Hamiltonian’s equations of motion gives us the force acting on each

atom which can provide us with the trajectory of the atom by applying the Newton’s second

law. The second term gives the velocity of each atom which leads to the temperature of

the system. The Hamiltonian’s equations of motion is integrated in each time step to move

particles to new positions and to get new velocities at these new positions. As a result, not

only is the configuration space of the system explored but information about the dynamics

of the system is also gathered during the MD simulation.

At the heart of each MD simulation, there is a numerical integration method which

integrates the 6N first order differential equations resulted by Hamiltonian’s equations of

motion. The performance of the simulation and accuracy of results are highly depended on

the integrator. The Verlet algorithm [64], which is both time reversible and simple, is com-

monly used to perform the numerical integration. In this work, we used one variant of this

algorithm called leapfrog Verlet. The name leapfrog comes from one of the ways to write

this algorithm, where positions and velocities “leap over” each other. The leapfrog Verlet

algorithm requires values of position r and force f vectors at time t while the velocities v

are half a time step behind (t− 1
2∆t). The first step is to calculate the velocities at t+ 1

2∆t

by integration of the force:

v(t+
1

2
∆t) = v(t− 1

2
∆t) +

∆t

m
f(t) (2.38)

The positions are then calculated using the new velocities:

r(t+ ∆t) = r(t) + ∆tv(t+
1

2
∆t) (2.39)

It is usually required to have the velocity at time t because properties such as total energy
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of the system are depended on both position and velocity of atoms. In the leapfrog Verlet

algorithm, the velocity at t is calculated by taking average of v(t− 1
2∆t) and v(t+ 1

2∆t).

2.3.1 Simulation at different ensembles

In statistical mechanics, an ensemble is defined as a collection of all possible systems which

have different microscopic states but have an identical macroscopic or thermodynamic state.

Similarly, an ensemble average is the average taken over a large number of ensembles of the

system considered simultaneously. Molecular dynamics provides the time evolution of the

microscopic state of the system under the study. On the other hand, an experimental

observable is usually obtained from a large number of replicas of the macroscopic sample

which provides ensemble average of an observable. The connection between MD results

and experiments can be made through the ergodic hypothesis, which states that over long

periods of time, the time average of observable A equals its ensemble average :

Aobs = 〈A〉ens = lim
t→∞
〈A〉t (2.40)

This means that to make a relation between MD results and experiments, it is necessary

to let the simulated system evolve in the phase space for a sufficiently long time and fulfill

the quasi-ergodic theorem. Considering different thermodynamic parameters we can define

four ensembles:

• Microcanonical ensemble (NVE) : The thermodynamic state characterized by a fixed

number of atoms, N, a fixed volume, V, and a fixed energy, E which corresponds to

an isolated system.

• Canonical Ensemble (NVT): Thermodynamic state in which number of atoms, N,

volume, V, and a temperature, T are fixed.

• Isobaric-Isothermal Ensemble (NPT): This ensemble is characterized by a fixed num-

ber of atoms, N, a fixed pressure, P, and a fixed temperature, T.

• Grand canonical Ensemble (µVT): The ensemble characterized by a fixed chemical

potential, µ, a fixed volume, V, and a fixed temperature, T.

Handling the NVE ensemble is tractable since MD by definition enables the conservation

of energy. However, some modifications are necessary to fix other thermodynamic quantities,

e.g. the temperature or pressure. There are three distinguished approaches to control the

thermodynamic ensembles in MD:

1. Strong-coupling control: the system variable couples to the thermodynamic quantity

is scaled to give exact preset derived value
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2. Weak-coupling control: the system variable couples to the thermodynamic quantity

is corrected at each integration step to move the system towards derived value of the

thermodynamic quantity

3. Stochastic control: some degrees of freedom are added to the equation of motion and

they are modified in order to give desire distribution to the system variable.

4. Extended system methods: variables representing an external system which fix the

desired thermodynamic quantity are added to the Hamiltonian and the equations of

motion are derived from the extended Hamiltonian.

The first two method are deterministic, stable and easy to implement, but they can-

not capture the fluctuations of thermodynamic quantities. It means the sampling of the

system is not accurate which is troublesome when the dynamics of the system is of inter-

est. Stochastic thermostats are safer options and there is still ongoing research in this field

mostly because these thermostats are proven to satisfy ergodicity. However, the common

stochastic thermostats, like Andersen thermostat, are disable to preserve the kinetics of the

system yet. The extended system methods are the most accurate and implemented con-

trols which can rigorously prob dynamics in the course of MD simulations. In this study,

temperature and pressure are controlled in this scheme using Nosé-Hoover thermostat and

barostat.

Nosé-Hoover thermostat

The Nosé-Hoover thermostat is a name given to the algorithm proposed by Hoover [65] to

improve the original Nosé formulation for the NVT ensemble [66]. Let’s first review the

idea of Nosé to simulate canonical ensemble.

Nosé showed that the canonical distribution can be generated with smooth, determin-

istic, and time-reversible trajectories [65]. He assigned additional generalized coordinate s

and its conjugate momentum ps to the heat bath. s is defined to be the scaling factor of

velocities

v = s
dr

dt
= s

p

m
(2.41)

the kinetic and potential energies associated with s also are defined as

Us = (Nf + 1)kBT0lns, Ks =
1

2
Q
ds

dt
=

p2
s

2Q
(2.42)

where Q is effective mass of the thermostat, T0 is the temperature of the heat bath (desired
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temperature) and Nf is the number of degrees of freedom in the system. Nosé’s augmented

Hamiltonian then can be written as

HNosé = K(p) + U(r) +
1

2
Q
ds

dt
+
p2
s

2Q
(Nf + 1)kBT0lns (2.43)

Accordingly, the Hamiltonian equations of motion for the extended system would be

dri
dt

=
pi
mis2

dpi
dt

= fi

ds

dt
=
ps
Q

dps
dt

=
∑
i

pi
mis3

− (Nf + 1)
kBT0

s

(2.44)

The Nosé thermostat treats the extended system as an NVE ensemble. He proved that it

yields NVT ensemble for the system in (r, p/s) coordinates, which was of course the whole

point of the definitions of additional coordinates (s,ps). The Nosé’s Hamiltonian can gen-

erate canonical ensemble independent of Q however, this parameter controls the efficiency

and accuracy of coupling.

Nosé thermostat was a major advance but it has one problem: the scaling of velocity

with s leads to scaling of time. The Hoover improvement to the Nosé formulation was to

avoid time scaling by replacing s with thermodynamic friction coefficient ζ = ps/Q. Nosé

added one degree of freedom to the system by introducing s. Hoover removed that degree

of freedom by taking the formulation back to the real time. The equation of motion in

Hoover’s version after applying ζ and replacing Nosé’s (Nf + 1) with Nf is read

dri
dt

=
pi
mi

dpi
dt

= fi − ζpi
dζ

dt
=

1

Q

(∑ p2

m
−NfkBT0

)
≡ 1

τ2
T

(
T (t)

T0
− 1

) (2.45)

The effective mass of thermostat is usually defined as Q = NfkBTτ
2
T where τT is the time

constant of thermostat. The friction coefficient, ζ, is controlled by the first order differen-

tial equation which is a function of velocity, v. As a result, it is important to let v reach

self consistency through more iterations when implementing Nosé-Hoover thermostat in a

leapfrog scheme. Corresponding Hamiltonian to the Hoover formulation which is equivalent
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to the Helmholtz free energy can be written as

HNV T = A = K(p) + U(r) +
1

2
Qζ2 +NfKBT

∫ t

0
ζ(t′)dt′ (2.46)

In this study this formulation which is called Nosé-Hoover thermostat is used in all molecular

dynamics simulation to control the temperature.

Nosé-Hoover barostat

The idea of extended system can also be applied to include external constant pressure. This

idea was first developed by Anderson [67]. In the original Andersen method, the isotropic

simulation cell is allowed to change its size but not the shape to control the system pres-

sure. Parrinello-Rahman extended the Anderson method to allow the cell shape change [68].

Similar to his thermostat, Nosé added a new degree of freedom to the Andersen dynamics

which generates NPT ensemble through scaling of time. Hoover proposed a straightforward

method to extend his formulation for canonical ensemble to the isothermal-isobaric case

[65]. This was done by introducing a new reduced coordinate x ≡ r
V 1/D for D dimensional

system. The equation of motion 2.45 now can be extended as

dxi
dt

=
pi

miV 1/D

dpi
dt

= fi − (η + ζ)pi

dζ

dt
=

1

τ2

(
T (t)

T0
− 1

)
dη

dt
=

1

Q
V (P (t)− P0)

dV

dt
= DηV

(2.47)

While the canonical case is well reproduced by Hoover formulation, the NPT simulation

using Equation 2.47 results in a distribution function which does not sample exactly the

NPT ensemble. Melchionna et al. solved this problem by modifying Hoover formulation

via introducing the effective mass of barostat [69]:
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dri
dt

=
pi
mi

+ η(ri + R0)

dpi
dt

= fi − (η + ζ)pi

dζ

dt
=

1

τ2

(
T (t)

T0
− 1

)
dη

dt
=

1

Q′
V (P (t)− P0)

dV

dt
= DηV

(2.48)

where Q′ = NfkBTτ
2
p is the effective mass of the barostat, τ2

p is the barostat time constant,

and R0 is the center of mass of the system. Corresponding Hamiltonian which is equivalent

to Gibbs free energy can be written as

HNPT = G = K(p) + U(r) +
1

2
Qζ2 +

1

2
Q′η2 +

∫ t

0
(NfKBTζ(t′) + kBT0)dt′ (2.49)

In this study, Melchionna modification of the Hoover algorithm which is called Nosé-Hoover

barostat is used to control pressure in MD simulations.

2.3.2 Periodic boundary condition

The length-scale of any atomistic simulation is limited meaning the finite number of atoms

can be handles in each simulation cell. Physically, this means a large fraction of the atoms

is on the surface or affected by the surface. This is not an issue when we are interested

in the properties of an isolated system like free standing nanoparticles in vacuum. In fact,

modeling the surface effect is what we want in these cases. However, this arrangement is

not satisfactory when the goal of simulation is to model bulk properties. It is not prac-

tical to increase the size of the MD simulations cell to the sizes in which bulk properties

can be modeled in a single simulation cell. The problem of surface effect can be overcome

by applying periodic boundary condition (PBC) [64]. In this method, the simulation cell

is replicated to make translated images of itself. When an atom moves in the original

box during the simulation, its periodic images in neighboring cells move in the exact same

manner. Thus if an atom passes one of the cell walls, one of its images enters the original

cell from the opposite wall. A two dimensional representation of PBC is shown in Figure 2.6.

Although PBC removes the unwanted effect of the boundaries, some care still should be

taken to avoid interaction of atoms in the original cell with their images. This effect which is

called the minimum image convention is specially important for the non-bonded interactions.

If the cell dimensions are smaller than the cut-off of the non-bonded interactions, atoms in
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Figure 2.6: Periodic boundary condition representation in 2D space. The green arrow shows
the movement of an atom out of the box. Once one atom moves out of the original box,
one of its images enters the box from opposite boundary.

the original cell would feel the effect of their images. As a rule of thumb, the simulation

cell dimensions should be at least twice the cut-off distance. By its very nature, Ewald

summation satisfies the minimum image convention but, PBC should be used carefully if

other methods are used to handle Coulomb long range interactions.

2.4 Density functional theory

As mentioned in Section 1, the most accurate simulation tools in the atomic level are quan-

tum mechanic calculations (first-principle methods). In this study, we used first-principle

calculations with the density functional theory (DFT) nature to validate empirical poten-

tials for our MD simulations. DFT as a higher level simulation method is commonly used

to validate or derive the empirical potential parameters. In this section, we provide an

overview on the theory behind DFT owing much to [22]. It is worth to mention that the

purpose of this section is not to present a comprehensive review of all the science behind

DFT technique but, a short and clear representation of the basic equations important to

understand how DFT works.

The key difference between an atomistic simulation and a quantum mechanical method

is that in quantum mechanics atoms are treated as systems made of nuclei and electrons.

As a result, now we need to know the position of both electrons and nuclei to calculate

the energy of a many-atom system. A key property of atoms which helps applying quan-

tum mechanics is that atomic nuclei is much heaver than an individual electron. This fact

enables us to use Born-Oppenheimer approximation and separate electrons and nuclei into

two apart mathematical problems. First step is to find the lowest energy state of elec-
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trons in field of fixed position nuclei. This state is called ground state of electrons and

ground state energy, E, can be expressed as a function of nuclei positions. Calculating the

ground state energy of electrons requires to solve Schrödinger’s equation. The most famous

representation of Schrödinger’s equation is ĤΨ = EΨ which is the time independent and

non-relativistic form. In this equation, H is the Hamiltonian operator and Ψ is a set of

solutions, or eigenstates, of the Hamiltonian. Each Ψi has an associated eigenvalue, Ei that

satisfies the equation. Hamiltonian for a many-atom system can be expressed as

Ĥ =
h2

2m

N∑
i

∇2
i +

N∑
i

V (ri) +
N∑
i

∑
j<i

U(ri, rj) (2.50)

where the three terms are kinetic energy of electrons, interaction between electrons and nu-

clei, and interaction between electrons, respectively. Note that the electron spin is neglected

in this presentation in order to simplify the notation. The electron-electron interaction term

in Hamiltonian is the most critical and complicated to solve. The form of this term tells us

that an individual electron wave function, ψi cannot be found unless we consider all other

individual electron wave functions in the system simultaneously. We can define the probabil-

ity that N electrons are in a particular sets of coordinates, {r}, as ψ∗({r})ψ({r}) where the

asterisk indicates the complex conjugate. Accordingly, the density of electrons at the par-

ticular position in the space can be written in terms of individual electron wave functions as

n(r) = 2

N∑
i

ψ∗i (r)ψi(r) (2.51)

n(r) is the function of three coordinates but it contains considerable amount of quantum

information. It means that if we can reformulate the Schrödinger’s equation in a way that

its components become functions of electron density rather than wave functions, the dimen-

sions of the Schrödinger’s equation decreases from 3N to three. This idea divides electronic

structure methods into two main categories: wave-function-based methods whose object is

the calculation of the full electron wave functions and the density functional theory methods

which use electron density to find the ground state energy.

2.4.1 DFT formulation

The entire field of DFT is based on the two fundamental theorems developed and proved by

Kohn and Hohenberg [70]. These theorems enable us to reformulate the problem of finding

the ground-state energy in terms of the total density of the electrons rather than by dealing

with the many-body wave functions. Kohn-Hohenberg theorems can be written as
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• The ground-state energy from Schrödinger’s equation is a unique functional of the

electron density.

• The electron density that minimizes the total energy of the functional is the exact

ground-state density.

The first theorem states that the ground-state electron density can determine all ground-

state properties including the energy and the wave function through a mathematical rela-

tion which has a functional form. This tells us that the energy functional exists but it

does not give any information about its formulation. The second theorem gives us a very

important characteristic of the energy functional: if we know the form of the functional,

electron density which is obtained from its energy minimization is the ”true” solution of

the Schrödinger’s equation.

We can divide the energy functional into three parts: the kinetic energy, the interaction

with the external potential due to positively charged nuclei, and the electron-electron in-

teraction.

E[n(r)] = K[n(r)] + Uee[n(r)] + Vext[n(r)] (2.52)

Vext is system dependent so, the contribution of Vext can be written explicitly in terms of

the electron density as soon as we define the system

Vext[n(r)] =

∫
V (r)n(r)dr (2.53)

We still need to define the kinetic and electron-electron functionals. Let’s consider an imag-

inary system in which electrons do not interact. For such a system the kinetic energy and

electron density are well defined:

Ks[n(r)] =
h2

m

N∑
i

∫
ψ∗iO

2ψid
3r

n(r) =

N∑
i

|ψi(r)|2
(2.54)

The interaction of an individual electron with other electrons can also be formulated with

the classical Coulomb interaction:

UH = e2

∫
n(r′)

r− r′
d3r′ (2.55)
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UH which is called the Hartree potential, includes the self-interaction contribution because

the electron we are considering is also part of the total electron density. Now, we can rewrite

the energy functional as

E[n(r)] = Ks[n(r)] + UH [n(r)] + Vext[n(r)] + EXC [n(r)] (2.56)

where EXC is the exchange-correlation energy which is the sum of the error made in using a

non-interacting kinetic energy and the error caused by the unphysical self-electron-electron

interaction. Now it is the time to introduce the next milestone in developing DFT, the work

of Kohn and Sham [71]. Kohn and Sham showed that the task of finding the right electron

density can be changed into solving a set of equations in which each equation only involves

a single electron. [
h2

2m
∇2 + vext(r) + vH + vxc(r)

]
ψi(r) = εiψi(r) (2.57)

where vXC is the local multiplicative potential which is the functional derivative of the

exchange-correlation energy with respect to the density:

vxc(r) =
δExc(r)

δn(r)
(2.58)

To solve the Kohn-Sham set of equations, we need to define the Hartree potential, vH , and

to define the Hartree potential we need to know the electron density, n(r). However, the

electron density itself is the function of single-electron wave functions, ψi, and to find the

ψi we again need to solve Kohn-Sham equations! To break this circle the problem is usually

treated with the following iterative algorithm:

1. Define an initial, trial electron density, nj(r).

2. Solve Kohn-Sham equation and fine single-electron wave functions, ψi(r).

3. Calculate nj+1(r) using single-electron wave functions and Equation 2.54.

4. Compare nj(r) with nj+1(r). If the two densities are the same (or practically close),

nj(r) is the ground-state electron density, and it can be used to compute the total

energy. Otherwise, update the nj(r) = nj+1(r) and begin the process from step 2.

Kohn-Sham equations nicely formulate the problem of finding the ground state energy

but, there is still one term in this equation which need to be specified: the exchange-

correlation function.
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2.4.2 Exchange-correlation functional

The existence of the exchange-correlation functional is guaranteed by the Hohenberg-Kohn

theorem but its general form is still one of the biggest mysteries in the quantum world.

There is one specific case however, in which this functional can be derived. This system

is the homogeneous electron gas (HEG) in which the electrons are subject to a constant

external potential and electron density is constant at all points in space; n(r) = C. The

exchange-correlation energy can be decomposed into exchange and correlation terms lin-

early:

Exc[n(r)] = Ex[n(r)] + Ec[n(r)] (2.59)

The exchange term for the HEG, εx, can be explained by a simple analytic form

εx[n(r)] = −3

4

(
3

π

)1/3 ∫
n(r)4/3dr (2.60)

Analytic functional form for the correlation term of the HEG, εc, is not known but nu-

merical quantum Monte Carlo calculations could provide accurate values of the correlation

energy. Several approaches have been proposed to calculate analytical form of εc based on

the fitting different formulations on the quantum Monte Carlo results.

Knowing εxc, now EXC at each position in the space can be approximated to be the

exchange-correlation potential of HEG with the same electron density as that position.

Thus, we can write

Exc[n(r)] =

∫
n(r)εx[n(r)]dr (2.61)

This approximation uses only the local density to define the approximate exchange-correlation

functional, so it is called the local density approximation (LDA). The LDA gives us a way

to completely define the Kohn-Sham equations, and many material properties such as struc-

ture, vibrational frequencies, elastic moduli and phase stability have been successfully pre-

dicted using it. However, it is important to remember that the results obtained by LDA

do not exactly true solutions of Schrödinger’s equation because we are not using the true

exchange-correlation functional.

If the local gradient in the electron density is also used in addition to the local electron

density, the resultant exchange-correlation functional is called generalized gradient approx-

imation (GGA). Since there are many ways to include information from the gradient of
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the electron density in a GGA functional, large number of distinct GGA functionals are

defined. The next big step in improvement of exchange-correlation functional approxima-

tion was the development of the exact exchange functional. The exact exchange energy is

also called Hartree-Fock exact exchange energy because it is formulated using Kohn-Sham

orbitals, φi(r), instead of electron density, n(r).

EHFx (r) = −1

2

occupied states∑
i,j

∫
drdr′

φ∗i (r
′)φ∗j (r)φj(r

′)φi(r)

|r− r′|
(2.62)

If a exchange-correlation functional is constructed as a linear combination of the Hartree-

Fock exact exchange functionals and any number of exchange and correlation density func-

tionals, it is called hybrid exchange-correlation functional. One of the most popular hybrid

functionals is B3LYP: Becke, three-parameter, Lee-Yang-Parr:

EB3LY P
xc = ELDAXC + α1(EHFx − ELDAx ) + α2(EGGAx − ELDAx ) + α3(EGGAc − ELDAc ) (2.63)

where EGGAx is the Becke 88 exchange functional, EGGAc is the Lee-Yang-Parr correlation

functional, and α1, α2, and α3 are three numerical parameters chosen empirically to optimize

the functional to predict set of molecular properties (bond lengths, formation energies, etc.)

[22].

2.4.3 Basis set

Regardless of the quantum chemical calculation method we use, the essential input is the

representation of the molecular orbitals. Basis set is a mathematical representation of the

molecular orbitals within a molecule. It can also be interpreted as the set of rules which

limit each electron position in particular region of space. In general, an atomic orbital may

be formulated as a product of a radius, r and an angle-dependent component such as

φnlm(r) = Rn(r)Ylm(θ, ϕ) (2.64)

where n is the main quantum number, l is the angular-momentum quantum number, m is

magnetic quantum number of the individual atom and Ylm(θ, ϕ) is the spherical harmonics

function which give atomic orbitals their characteristic shapes [72]. The first approximation

for the orbital shape is developed by Slater [73]. The general expression for Slater-Type

Orbitals (STO) is

φSTOabc (x, y, z) = Nxaybzce−ζr (2.65)
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where N is a normalization constant, a, b, c are constants that control angular momentum

(l = a+ b+ c) and ζ controls the orbital width. STOs are very reasonable approximations

for the true atomic orbitals but they are slow in computing due to their ill-behaving expo-

nential function. Boys proposed the Gaussian Type Orbitals (GTO) which are much faster

computationally [74]:

φSTOabc (x, y, z) = Nxaybzce−ζr
2

(2.66)

The advantage of the GTO approach is that numerical evaluation of integrals is much eas-

ier than with STOs. However, GTOs approximate the orbital shapes poorly comparing to

STOs. To compensate for this loss of accuracy, it is possible to use a linear combination

of enough GTOs to mimic a STO which is usually called STO-nG. If a basis set uses only

one STO, GTO or STO-nG to construct each atomic orbital, it is called minimal basis set.

Similarly, double-zeta, triple-zeta and ... are basis sets that use two, three or more basis

functions for each atomic orbital.

Since it is computationally expensive to use double-zeta for every orbital, double-zeta

is usually considered only for the valence orbitals. The basis sets which split the inner and

outer orbitals are called split-valence basis sets. The common naming of split-valance basis

sets is like A1−A2A3G (such as 3-21G) where A1 is the number of GTO forming STO-nG of

the inner orbitals, and A2 and A3 are the number of GTO in the first and second STO-nGs

in the double-zeta valance orbitals.

When the atoms are brought close together, the polarization effect distorts the shape of

the atomic orbitals. This shape distortion can be seen as changing in the pure nature of an

orbital, like s, to a hybrid nature like s + p. Polarized basic sets which usually recognized

by adding asterisks to the name of split-valance basis sets, (like 6-21G*) take this effect into

the account.

When an atom is in an anion or in an excited state, it is important to model the valance

electrons more accurately. To do this, diffuse basis sets are utilized which have small ζ

exponents. Using diffuse basis sets is specially important when modeling anions as it can

affect the results significantly. Diffuse basis sets are usually represented by the ’+’ signs.

The terminology we used to name basis sets is developed by Nobel Prize-winning theoretical

chemist, John Pople and the basis sets with this structure were developed in his group.

Let’s end this section by emphasizing on an important thing to remember when reporting
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the results of a DFT calculation: the results of DFT are highly depended on the functional

and basis set used for calculations. Thus, these parameters should be reported along with

the simulation results.

35



Chapter 3

Empirical potentials of ZnS

3.1 Introduction

The technological importance of ZnS comes from two main reasons: 1) it is an important

II-VI semiconductor and 2) the main resource for production of zinc metal. The former is

due to the large direct band gap of ZnS which can be readily controlled by tailoring the

structure and configuration of particles, especially in nanoscale [75]. This property, which

can lead into wide range of optoelectronic applications, has been a motivation of various

studies on ZnS nanostructures over the past few decades. Although the rapid growth of

nanotechnology has enabled us to fabricate nanostructures with a variety of geometries,

our understanding of their structural and configuration evolution is still limited. For ZnS

nanostructures in particular, uncontrollable changes in structure and configuration which

can occur in ambient conditions have been a challenging issue questioning reliability of their

optoelectronic applications[20]. Prediction of ZnS nanomorphology is inherently difficult

experimentally as thermodynamic properties of nanomaterials differ from bulk materials

greatly [42]. In the past two decades, atomistic simulation methods have become impor-

tant tools to compliment experimental studies by providing fundamental understanding of

mechanisms of structural and configurational evolutions in ZnS nanostructures. Some of

the computational studies on ZnS nanostructures were reviewed by Hamad et. al. [76] and

Feigl et. al. [20]. Several other works on ZnS nanostructures studied equilibrium config-

urations of nanoparticles [2, 42, 43] and nanowires [77], effect of environment [78, 79] and

pressure [80] on structural transformation of nanoparticles, and mechanical properties of

ZnS nanowires and thin film [81].

ZnS mineral, sphalerite, as the primary source of zinc metal is mainly recovered by

flotation process. Unlike most of the other sulfide minerals, sphalerite does not respond

well to flotation. Therefore, sphalerite flotation requires activation by heavy-metal ions to

A modified version of this chapter has been published as M. Khalkhali, Q. Liu and H. Zhang, ”A
comparison of different empirical potentials in ZnS”, Modeling Simul. Mater. Sci. Eng., vol. 22
(2014), 085014 (22pp).
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enable adsorption of collectors [82]. The activation of sphalerite has been surveyed exten-

sively; however, conflicts still remain in regard to the mechanism of activation on the atomic

scale. Computational studies of the ZnS activation process is mainly focused on the effect

that the presence of activators has on the surface properties. The influence of the presence

of lead [83] iron and copper [84, 85] species on (110) surface properties was studied using

quantum mechanical methods. This technique is also reported in the studies of interaction

of collectors and activators on sphalerite surface [86, 87].

Although atomistic simulation methods have proven to be promising approaches to

address various problems so far, it should be kept in mind that their applicability is lim-

ited mainly by two factors: their accuracy in modelling interatomic interactions and their

computational demands. Electronic structure methods based on quantum mechanic calcu-

lations are the most accurate available methods. Theory of quantum mechanics relies on

the fact that energy and all other related properties of a system can be calculated by solv-

ing the Schrödinger’s equation. However, exact solution of Schrödinger’s equation is only

feasible for the simplest systems. As a result, different electronic structure methods have

been developed to estimate the solution of the Schrödinger’s equation by means of different

mathematical approximations[21]. Despite all the developments in hardware and software

technologies, the computational expense of the first-principle methods is still a crucial limi-

tation which makes them technically impractical for systems beyond hundreds of atoms [22].

Molecular mechanic methods which use empirical potentials and laws of classical me-

chanics to model atomic interactions are the best alternative, offering a compromise between

computational speed and accuracy [88]. Molecular dynamics (MD) simulations in particu-

lar, enable the study of dynamics and atomic level evolutions of relatively large systems (up

to millions of atoms or even more) in a practical time period (nanoseconds). This can results

in calculation of dynamical properties like heat and mass transfer, diffusion, surface absorp-

tion, and geometry evolution of nanoparticles. MD also can be applied to derive relations

between thermodynamic quantities, namely, temperature, pressure, volume, and energy[89].

Overall, MD enables the study of systems and processes with more realistic dimensional and

time scales. The accuracy of molecular mechanic methods, however, is greatly dependent

on the reliability of the empirical potential they use to model interatomic interactions. As

a result, it is quite important to verify the reliability of empirical potentials by testing their

ability to reproduce different material properties.

In this paper we focus on five empirical potentials proposed for ZnS in literature. Differ-

ent material properties calculated using these potentials are compared with the correspond-

ing experimental values or higher order first-principle calculations. ZnS properties studied

in this paper are important factors in the ZnS applications mentioned above. As a result,
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the ability to reproduce these properties can be considered to be good criteria to choose the

appropriate empirical potential for computational studies of ZnS.

The five different potential functions of ZnS studied in this paper are developed by

Wright and Jackson [90], Hamad et. al. [37], Wright and Gale [91], Grünwald et. al. [88],

and Benkabou et. al. [92]. To avoid redundancy, we will name potentials by their short

terms as IP1, IP2, IP3, IP4 and IP5 respectively. The first four potential functions are based

on the Born model of solids, which assumes the interatomic potential of ionic-bonding ma-

terials consists of two main parts: long-range electrostatic and short-range energies. Thus,

the potential energy for each atom can be written as:

Ui =
1

2

∑
j 6=i

qiqj
4πε0rij

+
1

2

∑
j 6=i

Vij(rij) +multibody potentials (3.1)

where the first and second terms are Coulomb and pair potentials. The Ewald summation

method [57] is used in this paper to evaluate the long-range Coulombic interactions. The

Shell model is also used in the first three potentials to add the prioritization effect. The

shell model, proposed by Dick and Overhauser [60], defines a simple mechanical description

to handle polarization. In this model, ions are considered to have two parts: the core which

carries atomic mass and the shell which takes the polarizable charge. Core and shell are

connected by a spring so the shell can displace from the core to model polarizability. The

sum of the core and shell charges represents the total charge of ion and they interact with

harmonic spring potential[93]:

Vcore−shell =
1

2
ksr

2 (3.2)

In a potential developed by Benkabou et. al., a totally different approach than the Born

model is applied. In this approach, parameters of Teresoff potential [94, 95], which is

based on the bond ordering concept, are optimized to reproduce structural and mechanical

properties of ZnS. These parameters are just introduced for Zn-S pairs and Zn-Zn and S-S

interactions have not been taken into account.

Among the empirical potentials studied in this paper, IP1 and IP2 have been used in

molecular dynamics and lattice dynamics simulations repeatedly. IP1 has been used to

study the surface properties of ZnS [2, 96], mechanical properties of ZnS nanowires and

thin films [81], the structural evolution of ZnS nanoparticles in vacuum [2], in presence

of water [78], and during aggregation [97]. IP2 has also applied to study the structure of

ZnS surfaces [37], nanoclusters and nanoparticles [3, 39], and embryonic growth in aqueous
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solution [41]. A more through version of IP3 which also includes two-body parameters for

Fe-S and Mn-S interactions, has been used to investigate mechanisms of uptake and in-

corporation of cadmium, iron and manganese impurities in sphalerite via lattice dynamics

surface studies [98]. The pressure induced phase transformation in CdSe/ZnS Core/Shell

nanocrystals, has been modelled via molecular dynamics study which implemented IP4 [80].

3.2 Structural and Mechanical Properties

Structural and mechanical properties of ZnS were calculated using different interatomic

potential formulations and compared with experimental values. These properties are the

main material characteristics used in the derivation of interatomic potentials. In the other

words, potential parameters are optimized to fit calculated properties to the experimental

ones. A powerful force field is the one that can predict more materials properties, especially

those that are not used in the process of deriving potential parameters.

In potential derivation procedures, the lattice parameters which minimize the total en-

ergy of the system are usually optimized by fitting to experimental values. Experimental

values are usually obtained at room temperature while the physical meaning of energy min-

imization is lowering the temperature down to 0 K. However, this process is commonly

acceptable as thermal expansion in solids is negligible at low temperatures.

There are two main approaches to calculate elastic constants via atomistic simulation

methods: 1) method based on strain (or stress) fluctuations and 2) the direct method which

calculates elastic constants from stress-strain relation of material subjected to an external

load. Fluctuation methods are based on the fact that elastic constants are equal to the

second derivatives of the deformation energy with respect to strain:

σij =
∂U

∂εij
⇒ Cij =

∂2U

∂εi∂εj
(3.3)

where U , ε, σ and Cij are deformation energy, strain, stress and corresponding elastic con-

stant, respectively. Thus, by subjecting the structure to twelve deformations (three pair of

uniaxial and three pairs of pure shear) in a way that each deformation constructs a small

fluctuation along one strain vector while keeping the rest zero, the elastic stiffness matrix

can be calculated [99].

In the direct method, elastic constants are achieved via constant pressure MD. External

pressure is applied in different directions to calculate corresponding elastic moduli. The
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major advantage of the direct method is that it is potentially capable of considering the

dynamics of the system. However, variation of strain and stress during MD simulations

makes it necessary to use average values to calculate stress-strain behaviour. Consequently,

one needs to run long simulations and make sure that strain equilibrates before each step

of stress [100].

In this study we used GULP code [99] which applies the fluctuation method within the

lattice dynamics calculations. The lattice constant values at 300 K and 0 GPa are also

calculated using constant pressure molecular dynamic simulation within DL POLY classic

code [101]. Details of MD simulations are explained in section 3.6. Although some of the

lattice constant and mechanical properties are reported for these potentials in their original

papers, we recalculated all structural and mechanical constants. This helps us to provide

more consistent comparison between different potentials.

Three different crystal structures have been reported for ZnS in literature. Under stan-

dard conditions, ZnS can adopt two crystal structures which are zinc-blende (ZB:F43m)

and wurtzite (WZ:P63mc). Due to the similarity of unit cell volume and bond lengths,

there is a small energy difference between these two structures. At higher pressures, the

high density rocksalt structure (RS:Fm3m) becomes more stable. Table 3.1 shows cal-

culated lattice and mechanical constants for three ZnS phases for each potential. Values

reported in the original papers (numbers in parentheses) and corresponding experimental

results are also represented where available. As rocksalt phase is not stable in standard

condition, the experimental value for lattice constant of this structure has been calculated

by extrapolating lattice volume at higher pressures to 0 GPa [6].

Table 3.1: Comparison of mechanical and structural properties calculated via different
potentials of ZnS (lattice parameters are in Å and mechanical properties are in GPa).

IP1 IP2 IP3 IP4 IP5 exp.

ZB

a 5.403 5.410 5.450 5.475 5.367
(5.407) (5.41) (5.45) (5.48) (5.406)

a(300K) 5.401 5.431 5.459 5.501 - 5.409a, 5.412b, 5.41c

C11 91.834 105.563 107.060 106.200 98.435 107.1d, 104.6e, 94.2c

(91.7) (105.1) (107.1) (150.1) (98.0)

C12 58.285 67.727 59.821 73.386 80.949 66.7d, 65.3e, 56.8c

(58.2) (67.8) (59.4) (51.4) (73.0)
Continued on the next page
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Table 3.1 – Continue
IP1 IP2 IP3 IP4 IP5 exp.

C44 60.103 42.909 32.977 51.740 20.019 46.55d, 46.13e, 43.6c

(44) (43.1) (33.2) (62.2)

B 69.468 80.339 75.128 84.324 86.778 74.8±3.2 f, 79.5g

(80) (75.6) (83.4) (81.6)

WZ

a 3.867 3.876 3.894 3.895 3.795
(3.91) (3.87) (3.89) (3.89)

a(300K) 3.824 3.851 3.889 3.863 - 3.816g, 3.85c, 3.8230k

c 6.092 6.088 6.191 6.241 6.198
(6.05) (6.10) (6.20) (6.26)

c(300K) 6.247 6.291 6.312 6.353 - 6.252g, 6.29c, 6.2565k

C11 124.556 124.720 110.722 130.568 107.444 124.2h, 122.2i, 131.2c

(108.5) (124.2) (111.3) (161.4)

C12 46.349 60.092 55.733 68.052 79.442 60.15h, 59.1i, 66.3c

(54.9) (59.8) (55.6) (53.8)

C13 42.484 59.092 58.739 56.769 73.426 45.54h, 46.0i, 50.9c

(53.2) (58.0) (57.9) (28.2)

C33 115.389 113.211 124.195 137.103 113.471 140.0h, 138.5i, 140.8c

(86.8) (113.0) (126.4) (213.1)

C44 40.270 37.403 37.525 32.459 12.504 28.64h, 28.23i, 28.6c

(26.8) (37.3) (37.7) (32.4)

C66 39.103 32.314 27.496 31.258 14.001 32.03h, 32.4c

(34.4) (53.8)

B 69.519 79.713 76.560 84.582 86.772 80.1g, 75.8j

(76.4) (82.3)

RS

a 5.075 5.050 5.376 5.194 4.754 5.06b

(5.20)

C11 122.560 127.818 228.319 108.697 501.082 -
(73.2)

Continued on the next page
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Table 3.1 – Continue
IP1 IP2 IP3 IP4 IP5 exp.

C12 77.298 81.177 76.840 88.973 0.000 -
(45.3)

C44 77.298 96.671 67.046 88.973 11.522 -
(45.3)

B 92.385 96.724 127.333 95.548 167.027 103.6b

(54.6)

(a) Ref. [102] (b) Ref. [6] (c)Ref. [103]
(d) Ref. [104] (77 K) (e) Ref. [104] (298 K)
(f) Ref. [105] (g) Ref. [7] (h)Ref. [106]
(i) Ref. [107] (j) Ref. [108] (k)Ref. [109]

As seen in table 3.1, there is a wide range of experimental data values for mechanical

properties. As mechanical properties are one of the main parameters used in derivation of

empirical potentials, the values calculated by each potential is strictly dependent on corre-

sponding experimental values used in derivation process. Likely due to the use of different

calculation methods, there are a few noticeable differences between mechanical properties

calculated in this study and those reported in original papers. Keeping in mind the inherent

uncertainty of experimental results, IP2 potential seems to have better overall agreement

with experimental lattice constants and mechanical properties of three ZnS phases.

As expected, all of the potentials overestimate 300 K lattice constant of zinc-blende

phase since experimental results (which are obtained in room temperature) are fitted to

those calculated via energy minimization. However, almost all potentials can reproduce

experimental wurtzite lattice constants at 300 K. It can be seen that wurtzite lattice con-

stant a is overstimulated by energy minimization while c is underestimated. Nevertheless,

increasing temperature causes lattice constant to approach their experimental values. One

improvement which can easily be applied to potential derivation methods by using lattice

constants calculated by NPT MD simulations at 300 K and 0 GPa in the optimization

procedure instead of those obtained via energy minimization.

3-body potentials are very short-ange in nature and usually do not go further than

first neighbour atomic distance. Considering a Zn atom, first, second, third , and fourth

neighbours are S, Zn, S, Zn atoms at
√

3
4 a,

√
2

2 a,
√

10
4 a, and a distances, where a is the lattice
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constant. In case of zinc-blende ZnS (a = 5.41), first, second, third and fourth neighbour

distances would be 2.343Å, 3.825Å, 4.277Å, and 5.41Å, respectively. The atomic distances

in wurtzite are similar to zinc-blende because of their alike densities. Therefore the cut-off

distance of 6Å, which was proposed for IP3 potential, seems to be too high for 3-body

interactions as it goes beyond the fourth neighbour. The effect of high 3-body cut-off is

noticeable in rocksalt ZnS which is a more compact phase. As can be seen in table 3.1, there

is a large difference between rocksalt properties calculated by IP3 and other potentials. We

have tried different 3-body cut-offs for IP3 potential without changing the formulation itself

and results are given in table 3.2.

Table 3.2: Effect of changing 3-body cut-off on structural and mechan-
ical properties calculated via IP3 potential (lattice parameters are in
Å and mechanical properties are in GPa).

Zn-S 6.0 Å Zn-S 3.0 Å

ZB

a 5.450 5.441
C11 107.060 104.636
C12 59.821 58.180
C44 32.977 32.907
B 75.128 73.665

WZ

a 3.894 3.902
c 6.191 6.110
C11 110.722 107.221
C12 55.733 55.219
C13 58.739 58.314
C33 124.195 109.103
C44 37.525 40.604
C66 27.496 26.002
B 76.560 74.100

RS

a 5.376 5.200
C11 228.319 140.585
C12 76.840 96.586
C44 67.046 79.523
B 127.333 111.252
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Table 3.2 shows that changing 3-body cut-offs improves rocksalt properties predicted by

IP3 potential. Except for C11 and C33 of wurtzite which become softer, it seems that chang-

ing 3-body cut-off has no significant effect on other properties of zinc-blende and wurtzite

phases.

Using the shell model inherently causes MD simulations to become more complicated.

Firstly, the shell model introduces a new specie into the system which will increase the

simulation time. Additionally, handling shells in MD simulations requires more care espe-

cially in higher temperatures and pressures. We will discuss MD simulation of shell model

in the section 3.6. Adding many-body terms in potential formulations can also slow down

MD simulations. This made us interested in investigating how removing the shell model

and 4-body term affects material properties predicted by IP2 and IP3 potentials. Table 3.3

compares the structural and mechanical properties before and after removing shell model

and 4-body term from IP2 and IP3 potentials.
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Table 3.3: Comparison of mechanical and structural properties
calculated by IP2 and IP3 potential with and without shell model
and 4-body potential (lattice parameters are in Å and mechan-
ical properties are in GPa).

IP2 IP2 IP3 IP3 IP3
(No Shell) (No 4-bd) (No Shell)

ZB

a 5.410 5.410 5.450 5.450 5.450
C11 105.563 105.563 107.060 107.060 107.060
C12 67.727 67.727 59.821 59.821 59.821
C44 64.950 42.909 32.977 65.652 32.977
B 80.339 80.339 75.128 75.567 75.128

WZ

a 3.868 3.876 3.894 3.888 3.894
c 6.116 6.088 6.191 6.209 6.191
C11 140.254 124.720 110.719 133.816 110.722
C12 55.883 60.092 55.716 43.691 55.733
C13 49.321 59.092 58.695 43.615 58.739
C33 131.596 113.211 124.227 137.704 124.195
C44 42.264 37.403 37.537 46.837 37.525
C66 42.185 32.314 27.501 45.350 27.496
B 79.932 79.713 76.540 76.609 76.560

RS

a 5.050 5.050 5.376 5.376 5.376
C11 127.818 127.818 228.316 228.319 228.319
C12 81.177 81.177 76.816 76.840 76.840
C44 96.671 96.671 67.048 67.046 67.046
B 96.724 96.724 127.316 127.333 127.333

Table 3.3 clearly shows that omitting 4-body potential from IP3 formulation does not

significantly affect structural and mechanical properties. On the other hand, removing the

shell model does show noticeable effect on wurtzite and zinc-blende properties for both

potentials. In some cases, (IP2: zinc-blende C44 and wurtzite C11, C44 and C66, IP3: zinc-

blende C44 and wurtzite C12, C44 and C66) removing the shell model results in deviations

from the experimental values while other cases (IP2: wurtzite C13, C33, IP3: wurtzite C11,

C13 and C33) approach to experimental values after removing the shell model.
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3.3 Phonon dispersion

Calculation of phonon dispersion spectra in solid crystals is interesting as it can be used

to obtain some material properties such as heat capacity, thermal expansion coefficient and

phonon-electron interaction. Phonon-electron interaction is especially attractive in semicon-

ductor materials like ZnS as it can govern the optoelectronic properties. Phonon dispersion

data is also one of the material properties which can be readily used in empirical inter-

atomic potential development. Since phonon data was not used as a fitting parameter in

developing any of the potentials mentioned in this study, the ability of each potential to

reproduce experimental data can be a good way to test them.

In this section, experimental phonon dispersion data of zinc-blende and wurtzite ZnS

is compared with those calculated via empirical potentials. Phonon dispersion calculations

were performed using the module within GULP software and experimental results were

obtained from Raman scattering study of Cheng et. al. [4]. The details of calculation

process can be found elsewhere[99]. However, it is important to mention that calculation

of Born effective charge and high frequency dielectric constant tensor is necessary in ionic

materials to add a correction responsible to break degeneracy of the Transverse Optical

(TO) and Longitudinal Optical (LO) modes. Thus, theses tensors are calculated for each

potential formulation and represented in table 3.4 along with corresponding experimental

values.

Table 3.4: Born effective charges and high frequency dielec-
tric constants.

IP1 IP2 IP3 IP4 IP5 exp.

ZB

Z∗xx 0.66 1.82 1.46 1.18 - 2.15a

ε∞zz 4.14 3.35 4.9 - - 5.2b , 4.4c

WZ

Z∗xx 0.63 1.80 1.44 1.18 -
Z∗zz 0.72 1.86 1.55 1.18 -
ε∞xx 4.01 3.32 4.82 - -
ε∞zz 4.43 3.41 5.09 - -
(a) Ref. [110] (b) Ref. [111] (c)Ref. [112]

Table 3.4 shows that IP1 potential underestimates ZnS ionicity compared to the exper-

imental results. As mentioned above, the Born effective charge of IP4 ZnS, which does not

include the shell model, is equal to the nominal charge of cores. Atoms are not charged
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in IP5 so Born effective charge can not be defined. For both IP1 and IP4, the dielectric

constant tensor is equal to unit matrix. Using the information calculated in table 3.4,

phonon dispersion relation for zinc-blende and wurtzite phases are calculated and shown in

figure 3.1. Phonon band structures are drawn along ΓX and ΓA directions for ZB and WZ

structures respectively where Γ, X, and A are high symmetry points in the Brillouin zone.

Γ refers to the centre of the Brillouin zone (k = 0,0,0) while X and A are k = 0,1
2 ,0 and k =

0,0,1
2 in corresponding Brillouin zones of zinc-blende and wurtzite structures respectively. In

figure 3.1, solid lines represent experimental results obtained from Raman scattering study

of Cheng et. al. [4] and filled diamonds are values calculated using interatomic potentials.
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(a) (b)

(c) (d)

(e) (f)
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(g) (h)

(i) (j)

Figure 3.1: Phonon dispersion relations of ZnS calculated with (a,b) IP1, (c,d) IP2, (e,f)
IP3, (g,h) IP4, and (i,j) IP5. Right and left figures are correspond to zinc-blende and
wurtzite phases respectively. The solid lines represent experimental results taken from [4]
and filled circles are calculated phonon frequencies

Except for IP1, acoustic phonons calculated using empirical potentials are in good agree-

ment with the experiment. All potentials show weakness in the calculation of optic phonons.

This is worse for IP5 as there is no LO/TO splitting in Γ point. As pointed out by Wright

and Gale [91], this is because of the fact that species do not carry charge in IP5. Among

the other three, it seems IP2 potential can reproduce better Γ point phonon frequencies

for zinc-blende ZnS. Phonon dispersion relations obtained by IP4 also shows an acceptable

agreement to experimental values despite its simple formulation.
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3.4 Surface energy and structure

There is a considerable number of studies on surface properties of ZnS using first-principle

and molecular mechanics methods. High surface to volume ratio in nanostructures, makes

surface properties a crucial topic in nanoscience. As a result, the ability of an interatomic po-

tential in predicting surface properties can be an important factor for using it in nanoscience.

The energy penalty to cleave a bulk material and form a surface is defined as the surface

energy. By this definition, surface energy for any stable material is a positive value (making

a free surface is endothermic) and can be calculated as:

Es =
[Us − nUcoh]

A
(3.4)

where Es is surface energy, Us is the energy of system that contains surface, n is number of

atoms in the same system, Ucoh is cohesive energy per atom in periodic bulk system, and

A is the surface area.

There are two main approaches for calculating surface energy by atomistic simulation

methods. In the first method, which we call the 3D method, a system with two free sur-

faces is made by introducing vacuum gaps. This can be done by increasing the simulation

cell length along one axis making a slab with two free surfaces normal to the increased

dimension. It should be kept in mind that the simulation is still running in a 3D periodic

environment so the vacuum gap should be sufficiently large to avoid interaction of free sur-

faces with their images. The slab itself should be thick enough to ensure that properties

converge to bulk properties at the centre of the slab. The advantage of the 3D method is

that it can be used with codes that can only handle 3D boundary conditions. This is crucial

especially when there is long range electrostatic interaction in the system (like ZnS) as many

of the available MD codes have not implemented the two-dimensional Ewald summation.

The main disadvantage of this method is the necessity of a larger simulation box due to the

presence of vacuum gaps which will increase the simulation time.

In the second method (2D method), a system with a single surface and two regions is

made. Region 1 contains surface and all layer below surface allowed to relax and atoms in

region 2 are assumed to have no displacement from relaxed bulk structure. The 2D method

is more efficient and became possible for ionic system by introducing the 2D version of

Ewald summation by Parry [113] (know as Parry summation).

We used both methods within GULP code to calculate (110) surface energy of zinc-

blende ZnS. Since both methods produced similar results for all potentials, we used 2D
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(a) Top view (b) Side view

Figure 3.2: Side and top views of the relaxed surface geometry for the (110) surface of cubic
ZnS (After Duke and Paton[5]).

method to calculate other surface energies. (110) is found to be the most stable surface of

zinc-blende ZnS in nature. Duke and Paton [5] studied atomic geometries of (110) surface

of ZnS using low-energy electron diffraction (LEED) analysis. The relaxed (100) surface

structure and its structural parameters suggested by Duke and Paton is shown in figure 3.2

schematically. Table 3.5 represents ZnS(110) surface properties calculated by different po-

tential formulations. Corresponding experimental and first-principle values are represented

where available.

Structural relaxation of different surfaces of II-VI semiconductors is well established by

numerical and experimental studies. It has been observed that anions move outward from

the surface and cations move inward[37]. It seems all potentials except IP1 can predict

this surface reconstruction. This potential has also been used in other studies to calculate

ZnS(110) properties [83, 96]. Unfortunately, we could not reproduce results reported in

these studies (Es=0.53[83], 0.65[96]; ∆1,⊥=0.42 [83], 0.28[96]). To check accuracy of our

calculations, we used the surface configuration already relaxed by IP2 potential as the input

for IP1 surface calculations and we ended up with the same surface properties reported in

table 3.5. IP5 potential is also predicting a less stable (110) surface which is probably due to

the fact that this potential does not consider charged species. The effect of charges become

more considerable when the system has free surfaces as coulomb forces acting on surface

atoms are not homogeneous in three dimensions.
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Table 3.5: (110) surface geometry parameters (as shows in figure 3.2). All
distances are in Å and ω angle is in degrees.

IP1 IP2 IP3 IP4 IP5 DFTa,b exp.c

ax 3.821 3.825 3.854 3.871 3.795 3.825
ay 5.403 5.410 5.450 5.475 5.367 5.409

∆1,⊥ -0.013 0.370 0.531 0.128 0.744 0.320, 0.55 0.59
∆1,y 4.426 4.252 4.162 4.318 4.330 4.345, 4.21 4.296
d12,y 2.871 2.947 2.997 2.887 3.197 3.006, 3.12 3.149
d12,⊥ 1.700 1.566 1.544 1.720 1.285 1.590, 1.49 1.403
∆2,⊥ -0.009 0.094 0.091 0.031 0.058 0.072, 0.000 0.000
d0 1.967 1.888 1.891 1.898 1.837 2.001, 1.87 1.912
ω1 179.250 17.702 22.406 6.335 35.673 15.9 28.0

(a) Ref. [84] (b) Ref. [85] (c)Ref. [5]

In addition to (110) surface of ZB structure, we also studied other most observed sur-

faces in ZB and WZ nanoparticles. (100) and (111) surfaces are known to be probable

facets in ZB nanostructures [42] as well as (0001), (1010) and (1120) in WZ ones[43]. It

should be taken into consideration that (100), (111) and (0001) surfaces are polar surfaces

which inherently exhibit a dipole moment. Polar surfaces would be unstable, showing high

surface energies unless dipoles are removed. In this study, dipole moments were removed

by forming surface vacancies with the same procedure described by Hamad et. al. [37].

Another important fact about polar surfaces is that they can be made by cleaving along Zn

or S layers. As a result, we can end up with Zn or S terminated surfaces. In table 3.6 cal-

culated surface energies using empirical potentials and DFT calculations are shown. DFT

results for ZB and WZ phases are taken from two works of Feigl, Barnard and Russo [42, 43].
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Table 3.6: Comparison of the surface energies (J/m2) of ZnS in ZB and WZ
structures, calculated using different empirical potentials (Zn and S denote
Zn-terminated and S-terminated surfaces, respectively).

IP1 IP2 IP3 IP4 IP5 DFTa

ZB

(110) 0.825 0.515 0.439 0.554 1.176 0.43
(100) Zn 1.845 1.532 1.161 1.111 1.773 2.03
(100) S 1.724 1.295 1.038 1.121 1.652 2.03
(111) Zn 1.369 0.851 0.676 0.856 1.513 1.36
(111) S 1.407 0.981 0.863 0.897 1.418 1.36

WZ

(0001) Zn 1.368 0.828 0.661 0.858 1.475 1.394
(0001) S 1.658 0.961 0.879 0.907 1.418 1.394
(1010) 0.862 0.520 0.439 0.575 1.028 0.431
(1120) 0.854 0.500 0.384 0.562 1.156 0.427

Ref. [42] for ZB and Ref. [43] for WZ surface energies.

Table 3.6 shows that all empirical potentials and DFT calculations predict the same

trend in surface energies. (110) is the most stable surface in ZB phase followed by (111)

and (100). In WZ phase, (1120) has the smallest energy but the difference between this

surface and (1010) energies is negligible, suggesting similar stability for both surfaces.

3.5 Behaviour under pressure

As mentioned before, ZnS can be found in two fourfold coordinated (Z = 4) crystal struc-

tures in nature: zinc-blende (F43m) and wurtzite (P63mc). The first and second neighbour

distances in both structures are similar. As a result, there is a small difference between unit

cell volume of the two structures. There has been a considerable amount of theoretical and

experimental studies showing that ZnS undergoes phase transformation from fourfold to six-

fold rocksalt structure (Fm3m) at high pressures. High pressure x-ray diffraction showed

that this transformation results in a large volume change (13-17%) in pressure range from

12 to 18 GPa [6, 7, 114]).

In this section, we examine interatomic potentials ability to model ZnS under pressure

by comparing high pressure lattice dynamic results with experiments. Enthalpy and vol-

ume per atom are calculated for 3 phases using lattice dynamic code within GULP software.

Coexistent pressure of fourfold and sixfold coordinated phases can be approximated by the
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point of equal enthalpy of both phases in Fig.3.3.

Figure 3.3e clearly shows that IP5 potentials can not model ZnS crystal structures cor-

rectly as rocksalt is more stable than zinc-blende and wurtzite at all pressures. This can be

justified by the fact that IP5 potential does not consider interaction between similar atoms.

These interactions (especially anion-anion interactions) become more important in more

condense phases like rocksalt where atomic distances are smaller. IP3 potential predicts

rocksalt structure to be unstable at all pressures between 0 to 30 GPa. As shown in section

3.2, mechanical properties of rocksalt calculated by IP3 potential could be improved by

changing the high 3-body cut-off suggested in the original paper to a smaller value. We ex-

pect that the ability of IP3 potential in modelling pressure induced phase transformation to

be improved by changing the 3-body cut-off as well. Figure 3.3f confirms that by changing

the 3-body cut-off to 3.0 Å transition pressure calculated by IP3 lies in the range reported

in experimental studies. The relative volume change with increasing pressure is calculated

for the four potentials that showed acceptable transition pressure values in Fig.3.3. Resul-

tant P-V graphs are plotted in figure 3.4 and compared with three different experimental

values.

Increasing pressure causes considerable divergence of wurtzite (and zinc-blende) relative

volume from experimental values in figure 3.4a and Figre 3.4c. This is expected as IP1 and

IP4 potentials underestimated and overestimated bulk modulus, respectively (Table 3.1).

The parameters of the equation of state (like the Murnaghan formulation) can be obtained

by fitting to high density ZnS phase (rocksalt) experimental P-V data. Properties in ambi-

ent pressure can then be derived by extrapolation of the equation of state to 0 Gpa. Using

this method, relative volume of rocksalt to wurtzite phase (VRS/VZB) in ambient pressure

is reported to be 0.81 [6, 7]. IP4 potential overestimates VRS/VZB at ambient pressure

and this is the main reason for the large difference between calculated and experimental

values in figure 3.4c. This difference is larger in figure 3.4d as IP3 potential overestimates

both relative volume and bulk modulus of the rocksalt phase. Thus, even modifying the

3-body cut-off, can not make this potential predict ZnS properties in high density structure

state accurately. Generally, it seems IP2 potential offers better modeling of ZnS under high

pressure. Results of this section are summarized in table 3.7.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.3: Enthalpy per atom as a function of Pressure for bulk ZnS: (a) IP1, (b) IP2, (c)
IP3, (d) IP4, (e) IP5, and (f) IP5 with the new 3bd cut-off.
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(a) (b)

(c) (d)

Figure 3.4: Pressure-volume relation of ZnS fourfold and sixfold phases for (a) IP1, (b)
IP2, (c) IP4, and IP3 with the modified 3-body cut-off potentials. Resultant graphs are
compared with experimental values of Ves et. al.[6] and Desgreniers et. al.[7]
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Table 3.7: Comparison of behaviour of four interatomic
potentials of ZnS under pressure. VT /V0, ∆VT , and PT
are relative volume, volume change, and pressure, of phase
transformation respectively

IP1 IP2 IP3 IP4 exp.

VT /V0 0.856 0.863 0.892 0.903 0.865a,0.853b

∆VT (%) 14.3 17.0 9.6 13.8 16a,17b

PT (GPa) 14 16 10 12 14.7a,14.6b

(a) Ref. [6] (b) Ref. [7]

3.6 Thermal expansion

The ability of a force field to model a material at higher temperatures enables many op-

portunities to investigate high temperature phenomena in atomistic scales. One of the

physical properties that can be readily calculated by MD is the volume change with respect

to temperature. When the experimental values are available, thermal expansion calculated

by MD can be used as one of the factors to verify the ability of a force field to model high

temperatures.

There are a considerable number of studies on crystal structure of ZnS at low temper-

atures. However, there is not much experimental data available above room temperature.

Two sets of published experimental data on ZnS thermal expansion are neutron diffraction

high temperature lattice parameter measurement by Moss et. al. [115] and diatometery

linear expansion by Roberts et. al. [8].

In this section, we compare thermal expansion of ZnS modelled with different potentials

with experimental values. Nosé-Hoover isothermal-isobaric ensemble (NPT) at 0 GPa were

used within DL POLY code to calculate volume change with temperature of 6x6x6 zinc-

blende super cell with 3D periodic boundary condition. Final configuration of simulation

at each temperature is used as the initial configuration for the next one to accelerate the

equilibration.

For the potentials containing shell model, the adiabatic method as described by Mitchell

and Fincham [63] is used. In this method the shell is given a small portion of ion mass and

its motion is integrated by standard techniques. The shell mass should be small enough

to ensure that the core-shell spring frequency is well above the vibrational frequencies of

the lattice. From classical mechanics, the frequency of core-shell spring can be calculated as
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υ =
1

2π

√
k

x(x− 1)M
(3.5)

where x is the fraction of the ion mass assigned to shell, M is the ion mass and k is the

shell constant. Equation 3.5 shows that smaller shell constants require smaller shell masses

to satisfy adiabatic conditions. Technically, this means much smaller MD time steps are

required to capture the fast movement of the light shells. In addition to slowing down the

simulations, light shells are problematic at higher temperatures due to their much higher

vibrational frequencies in respect to the lattice.

For sulfur, we chose x = 0.1 which results in core-shell frequencies of 48 THz and 34

THz for IP2 and IP3 potentials, respectively. These frequencies are well above known vi-

bration modes in ZnS. For IP1 potential, we had to choose x as small as 0.01 to make the

zinc core-shell frequency in the same range as sulfur. To keep consistency, time step of

0.1 fs was used for all potentials and NPT simulations were run for 100 ps. Final lattice

dimensions were calculated by taking the average of the last 10 ps of each simulation. It

should be mentioned that we were unable to run MD simulations for ZnS described by IP5

potential. The system seems to be unstable at all high temperatures.

The temperature at which the zinc-blende to wurtzite phase transformation occurs is

known to be around 1300 K (1273[116], 1295[109]). Moss et. al. also showed that ZnS

keeps its complete cubic structure up to 1300 K[9]. MD calculated and experimental values

of thermal expansion are given in figure 3.5.

MD results should be treated with caution when they are used to calculate thermal

expansion. The simulation cell should be equilibrated carefully and average cell dimensions

should be calculated when fluctuation in cell dimensions is in a same order of magnitude

as thermal expansion. Considering this, it seems IP2 potential shows a better agreement

with experimental thermal expansion results. Thermal expansion behaviour of wurtzite is

also calculated and seen to be fairly similar to zinc-blende for all potentials. The energy

difference between the two phases is very small (about 0.5%) with a slightly more stable

wurtzite in all temperatures.

3.7 Potential energy hyper-surface

Derivation of force field parameters by fitting to a potential energy hypersurface obtained

from first-principle methods is one of the main ways to develop empirical interatomic po-

tentials. An ab-initio energy hypersurface is usually calculated by changing the geometry of
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Figure 3.5: Thermal expansion of zinc-blende ZnS calculated by MD using different potential
formulations. Experimental results are taken from Roberts et. al.[8] and Moss et. al.[9]
works.
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periodic solids, gas phases or both. Potential energy hypersurface calculated from a reliable

first-principle method, can also be a good criterion to compare different empirical force fields.

In this section, we compare energy hypersurfaces calculated using empirical potentials

with those obtained from the density functional theory (DFT) calculations. Gaussian opti-

mized basis sets for ZnS by Heyd et. al. [117] and middle-range hybrid exchange-correlation

functional of Henderson, Izmaylov, Scuseria and Savin (HISS) [118] were used in the pe-

riodic boundary condition code [119] within GAUSSIAN program [120] to calculate the

first-principle energy hypersurface. The basis set and functional which we used in this

study have shown reliable results in structural and band gap calculations of ZnS. We also

checked the reliability of our DFT calculations by calculating optimized lattice constants

for all three ZnS phases which were in a very good agreement with the experimental values

(aZB = 5.413, aWZ = 3.3.828, cWZ = 6.260, aRS = 5.071).

Two different strategies were used to calculate the potential energy hypersurfaces for

ZnS in zinc-blende crystal structure. In the first set of calculations, we constructed potential

energy hypersurface by changing the zinc-blende ZnS unit cell volume. The lattice constant

was changed from 5 to 5.8 Å with 0.01 Å increments and potential energy calculated at

each step. As shown in the previous sections, this range of volume change covers expansion

due to increasing temperature from 0 to 2000 K and compression due to increasing pressure

from 0 to 30 GPa for all empirical potentials. As absolute energy values calculated with

DFT and interatomic potential methods can not be compared directly, energy difference is

calculated for each method:

∆E = E − E0 (3.6)

where E is the potential energy calculated at each step and E0 is the minimum energy of

corresponding empirical potential or DFT calculation. Since the minimum of each poten-

tial formulation occurs at its equilibrium lattice constant, we shifted all minimums to the

lattice constant calculated via DFT (which is a good choice as it has a good agreement with

experimental value). This enabled us to compare the curvature of each empirical potential

energy hypersurface with the one calculated from DFT.

Anharmonicity of the energy hypersurface is noticeable in figure 3.6 as the slope of diagram

is bigger in the compression mode (a < 5.41 Å) compared to the expansion mode (a > 5.41

Å). IP2 potential has better agreement with DFT energy calculations in compression mode

which can verify the more favourable results we obtained for this potential in section 3.5.

In expansion mode, which can be related to the thermal expansion, IP2 and IP3 potentials
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Figure 3.6: Energy hypersurfaces calculated via changing zinc-blende unit cell volume.

exhibit a better fit to DFT results. This is again in agreement with the thermal expansion

results calculated in section 3.6.

Uniform volume change of zinc-blende unit cell can not include the effect of the three

body interaction in the empirical potential formulations as the value of S-Zn-S angle stays

the same when lattice dimensions are changed uniformly in all directions. Also, the ef-

fect of polarization can not be captured with changing cubic unit cell volume uniformly

as minimum energy always happens when cores and shells occupy the same positions. In

order to capture the effect of presence of three-body and shell model terms in empirical

potential formulations, we used another strategy to calculate energy hypersurface for zinc-

blende ZnS unit cell. In this method, one Zn atom was moved from its equilibrium position

in zinc-blende unit cell, (1
4a,1

4a,1
4a), toward and away from the S atom at (0,0,0) along

[1,1,1] direction (a is the unit cell). To stay on [1,1,1] direction, fractional position of Zn

atom should always have the format like (α,α,α). To build the energy hypersurface, α was

changed from 0.15 to 0.35 with 0.01 increments. In order to include polarization of core-

shell units, all shells were let to relax at each step while cores were fixed. figure 3.7 shows

the resultant energy hypersurfaces.

Compared to figure 3.6, energy hypersurfaces in figure 3.7 show more anharmonicity.
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Figure 3.7: Energy hypersurfaces calculated via changing Zn atom fractional position
(α,α,α) in zinc-blende unit cell.
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The slope of the DFT energy hypersurface is much bigger in the first half of the diagram

where 0.15 < α < 0.25. This part of the diagram is equivalent to the moving of a Zn atom

from its equilibrium fractional position at (0.25,0.25,0.25) toward the S atom placed at the

origin. IP2 represents the best agreement with DFT calculation in this region. Although

IP2 diverges from DFT energy hypersurface in the second half of the figure. 3.7 and IP4

fits better in this region, calculating R2 values showed IP2 have the best overall agreement

with the DFT results.

3.8 Conclusion

The performance of five different empirical potentials for ZnS were tested and compared

in this paper. This was done by calculating different ZnS properties via empirical poten-

tials and comparing them with corresponding experimental results or DFT calculations.

Properties tested in this paper are mechanical and structural properties, phonon dispersion

relation, surface energy and structure, behaviour under pressure, thermal expansion and

energy hypersurface. In section 3.2 we showed that lattice constants of ZB and WZ phases

calculated by all empirical potentials are in acceptable agreement with the experiment. In

RS phase, however, IP3 and IP5 could not reproduce experimental lattice constant. This

also happened for mechanical properties as elastic constants calculated for RS phase via

IP3 and IP5 are very different from those calculated by other three potentials. We showed

that mechanical and structural properties of RS phase calculated by IP3 potential can be

improved by modifying its 3-body cut-off distance.

In Section 3.3 phonon dispersion relations for ZB and WZ phases were studied. Except

for IP1, all other empirical potentials seemed to be able to reproduce acoustic branch. All

potentials showed weakness in predicting optical phonons. This was worse for IP5 as there

was no LO/TO splitting due to the fact that atoms are charge neutral.

Surface properties of ZnS were studied in section 3.4. Previous theoretical and experi-

mental studies showed that (110) surface of ZnS experiences a considerable geometry change

after relaxation. This surface relaxation includes the movement of anions to the out of the

surface. This surface reconstruction was observed by all empirical potentials except IP1.

Relaxed surface structures calculated by IP2 and IP3 were more similar to the experiment.

IP1, IP2 and IP4 have been shown to be able to predict the pressure induced phase

transformation in section 3.5. We also have shown changing 3-body cut-off distance enables

IP3 to show a pressure induced phase transformation. It was also observed that the P-V

relation calculated by IP2 represents better agreement with experimental results. Thermal

expansion calculated by this potential has also shown better accordance to the experimental
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results. Finally, the energy hypersurface obtained from DFT calculations showed a better

agreement to IP2 compared to the other empirical potentials.

Considering these results, we should emphasize that one general comment can not be

made on reliability of particular empirical potentials. The choice of potential is highly

depended on the application that molecular mechanic simulation aims for. Each of these

potentials is designed to reproduce some specific ZnS properties. Except for IP5, we were

able to run molecular dynamic simulations for temperatures as high as 1500 K. We noticed

that more care should be taken when using potentials that include shell model when running

simulations at higher temperatures. Simulation speed is also highly depended on complexity

of potential formulation. Thus, potentials like IP4 offer much higher simulation speed than

more complicated ones like IP3.
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Chapter 4

Structure of ZnS nanoparticles in
vacuum

4.1 Introduction

II-VI semiconductor nanomaterials are of great technological interest due to their unique

optoelectronic properties. The quantum confinement effect makes it possible to tune the fre-

quency range of emitted light (colour) from semiconductor nanostructures, usually known

as quantum dots (QDs), by controlling their sizes[24]. Because they also have wide ab-

sorption and luminescent efficiency, a high resistance to photobleaching, and high chemical

stability, quantum dots are an ideal candidate for use in biomedical imaging applications,

where they can be used in place of organic fluoroscopes [25]. Owing to the rapid growth

of nanotechnology, a variety of synthesis procedures have been proposed to fabricate II-VI

semiconductor nanoparticles (NPs) in different sizes, shapes and structures [76]. The typi-

cal QD size is smaller than 5 nm mainly to make the best use of the quantum confinement

effect. Moreover, studies have shown that the level of toxicity of QDs also decreases with

decreasing sizes. It has been reported that large QDs are generally accumulated for several

months in the reticuloendothelial system, such as liver, spleen and lymphatic system, but

QDs smaller than 5 nm could be removed quickly by the kidney [30].

The rapid development of QD technology has raised serious concerns about its applica-

bility, mainly because the most studied II-VI semiconductor nanomaterials contain cadmium

(CdSe, CdTe and CdS), which is known to be highly carcinogenic for living systems [27].

Various modifications such as adding a ZnS shell or polyethylene glycol (PEG) coating

have been suggested to modify QDs with toxic elements. However, the cytotoxicity of Cd

containing QDs is still a major concern [28]. Zn-based QDs such as ZnS have been intro-

duced as a suitable alternative for QDs with Cd components since Zn is considered to be

A modified version of this chapter has been been accepted for publication in Scientific Reports as M.
Khalkhali, H. Zeng, Q. Liu and H. Zhang, ”A size-dependent structural evolution of ZnS
nanoparticles” Sci. Rep. 5, 14267 (2015)
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an essential biological element [29]. Furthermore, the band gap of ZnS is more than 1 eV

wider than the others in the II-VI family, which enables a wider spectrum to be tuned by

varying the size of ZnS nanostructures. However, the structural stability of nanocrystalline

ZnS has been shown to be a challenging issue limiting its applicability since a ZnS NP has

the potential to undergo uncontrolled structural changes [20].

At standard temperature and pressure (STP: 298 K and 1 bar), bulk ZnS exists in two

crystal structures: zinc-blende (ZB : F43m) and wurtzite (WZ : P63mc). ZB structure

has slightly lower energy at standard condition while WZ is more stable above 1020 ◦C.

At higher pressures (above 15 GPa), the high density rocksalt structure (RS : Fm3m)

becomes more stable. It has been shown that at the nanoscale, the phase transformation

behaviour of ZnS can deviate greatly from bulk. For ZnS nanostructure, the tempera-

tures as low as 400 ◦C [31] and 250 ◦C [33] have been reported for the ZB-to-WZ phase

transformation at standard pressure and 1 GPa, respectively. However, pressure-induced

transformations to the RS phase have been shown to increase to 19.6 GPa in ZnS NPs [121].

The structural transformation of ZnS NPs has also been reported at room temperature.

Zhang et al. showed that reversible structural transformations at room temperature could

be induced by the absorption-desorption of methanol and water [35]. They found that

absorption of water to the surface of ZB ZnS NPs increased crystallinity, a finding also

supported by MD simulation results [78]. MD has also been used to study the structural

relaxation of a freestanding 3 nm ZnS NP at 300 K [2] as well as the aggregation behaviour

of NPs with the same size [97]. A phase transformation from ZB to WZ structure was

reported in both cases. Haung and Banfield have shown that WZ grows on the surface

of coarsened ZB particles during aggregation at 500 K [122]. The crystal growth of WZ,

however, was kinetically controlled by WZ-ZB interface radius, and no pure WZ particles

were observed in coarsened samples.

Using MD and DFT calculations, Hamad and Catlow studied (ZnS)n clusters with

sizes ranging from 1 to 4 nm (18 < n < 512) [3]. They showed that small clusters (n < 80)

adopted bubble-like or onion-like structures, which predominantly consisted of arrangements

of 3-coordinated atoms. Crystal structures of large clusters (n = 256 and n = 512) obtained

by simulated annealing, mainly consisted of 4-coordinated atoms but deviated from the two

bulk phases of ZnS found in nature and were shown to be similar to the BCT zeolite struc-

ture [3]. Applying surface energies calculated using first-principle computer simulations into

a thermodynamic model, Barnard et al. studied the effect of shape and size on the stabil-

ity of ZnS ZB [42] and WZ [43] NPs. They found that the rhombic dodecahedron shape,

enclosed entirely by non-polar {110} facets, was the most stable ZnS shape regardless of

the size of the particle [42]. However, it has been shown that adding polar facets to ZB
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nanostructures would make coreshell crystalline/amorphous structure thermodynamically

favourable. Deviation from the rhombic dodecahedron shape enabled some thermodynamic

paths from ZB to WZ transformation by decreasing the size [43]. In contrast, high energy

WZ nanostructures with low prism aspect ratios or lower indexed pyramidal capping facets

were prone to transform to ZB, especially when the size increased [43].

In this paper we aim to provide details about how the freestanding ZnS NP size affects

structural evolution in standard condition. Structural and configurational evolutions of ZnS

NPs were studied using classical MD method. Different structural analyses including ra-

dial distribution function (RDF), angular distribution (AD), Honeycutt-Andersen indices,

root mean square displacement (RMSD) and coordination number (CN) calculations were

performed to characterize the relaxed structures of NPs. In perfect ZB and WZ lattices,

each ion is connected to four dissimilar ions with a tetrahedral bond geometry in which all

bond angles are equal to 109.47◦. Based on bond angles and CN population analyses, we

show that the structure of relaxed ZnS NPs bigger than 2 nm consist of three regions: a) a

4-coordinated crystalline core at which Zn and S ions keep their initial tetrahedral arrange-

ment, b) a distorted network of 4-coordinated ions which environs the crystalline core and

c) the surface structure which consists of a network of 3-coordinated ions. The stability

and size of each region is highly dependent on the crystal structure and size of the ZnS NP.

The 4-coordinated tetrahedral bond structure completely disappears in 2 nm ZnS NPs and

decreasing the size down to 1 nm results in a bubble-like structure in which all atoms are

3-coordinated. The effect of this structural evolution on NPs’ dipole momenta (DM) has

also been studied since dipole-dipole interactions are of great importance in non-metallic

nanoparticles, as they are found to govern the inter-particle interactions which can vary the

behaviour of the mixture of NPs from agglomeration to self-assembly into ordered struc-

tures. Results of DM calculations show that in relatively smaller NPs where the surface

effect is dominant, DM is controlled by the surface structure. Due to the similarity of the

surface structure of ZB and WZ NPs, their DM is similar when the size is smaller than 3

nm. However, in NPs bigger than 3 nm, the direction and magnitude of DM approach the

bulk values. This implies that ZB NPs become less polar while the polarity of WZ NPs

increases due to the considerable polar nature of WZ lattice.

4.2 Results

4.2.1 Structural Evolution

The Radial Distribution Function

The radial distribution function of atom B in the distance r from atom A (g(r)) can be

readily calculated from MD trajectories as,
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g(r) =
< n(r)/v(r) >

NANB/V
(4.1)

where n(r) is the number of B atoms found in the shell between r and r + dr, v(r) is the

volume of the shell, NA and NB are the total number of atom A and atom B in the system,

V is the total volume of the system, and < ... > denotes the ensemble average. For the

small dr, v(r) can be approximated as v(r) = 4πr2dr and equation 4.1 can be rewritten as

g(r) =
< n(r) >

4πr2drρANB
(4.2)

where ρA is the number density of atom A in the system. In a special case where A and B

are the same, NB is equal to N − 1, where N is the total number of A atoms in the system.

Some care should be taken into consideration when calculating RDF for a freestanding NP.

As the NP has undercoordinated atoms on its surface, its n(r) is lower than what is cal-

culated for the bulk. This means the intensity of RDF peaks of NPs are lower than bulk

even for the initial structure. It is especially important for 1 and 2 nm NPs because of

their high surface-to-volume ratio. While the position of RDF peaks of relaxed NPs can be

compared with the bulk, making a direct comparison between the intensities of RDF peaks

is not accurate. A RDF diagram of a NP with the same size and at the same temperature

but with no structural relaxation may be used as a reference to study the crystal structure

change in the relaxed NP. This reference RDF is made for each NP by cutting a sphere

with the same size as the NP from the trajectories of 1 ns NPT simulation of the periodic

bulk structure at 300 K and 0 atm. One other issue in the RDF calculations of freestanding

NPs is that the volume is not defined for non-periodic systems. As a result ρ should be

defined carefully. In our RDF calculations, we used the number density of the bulk ZnS as

a normalizing factor, ρ. This puts the intensities of NPs’ RDF peaks on the same order of

magnitude with each other as well as the bulk. Figure 4.1 shows the calculated RDFs for

Zn-Zn pairs in ZB and WZ NPs with different sizes. RDF plots of unrelaxed structures are

calculated as explained above. n(3.5 < r < 4.5), the number of Zn-Zn pairs whose distances

are between 3.5 and 4.5 Å (area under the first RDF peak), is also shown in Fig. 4.1.
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(b)
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(d)
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(e)

(f)

Figure 4.1: RDF plots of Zn-Zn pairs for (a) 10, (b) 20, (c) 30, (d) 40 and (e) 50 Å NPs.
(f) shows the number of Zn-Zn pairs whose distances are between 3.5 and 4.5 Å, n(3.5 <
r < 4.5) = 4π

∫ 4.5
3.5 ρr

2G(r)dr. Dashed lines show the corresponding plots for the NPs with
the same size but with an unrelaxed structure.
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A general trend of losing crystallinity with decreasing the size of NPs can be recognized

in RDF diagrams in Fig. 4.1. In ideal ZB and WZ structure, the first peak of Zn-Zn RDF

diagram appears at 3.84 Å. For 10 and 20 Å NPs the position of this peak is changed and

the Zn-Zn distance is reduced. All other peaks after 3.84 Å seem to fade away in these small

NPs. These two features of RDF diagrams of 10 and 20 Å NPs suggest that these NPs lose

their inital crystal structures after relaxation. NPs bigger than 20 Å show the crystalline

RDF diagrams, suggesting that considerable portion of the NP structure keeps the crys-

talline order. The difference between RDF peaks intensities of unrelaxed and relaxed NP

decreases as the size of the ZnS NP increases. This suggests that increasing the size of the

ZnS NP enhances its crystal structures after relaxation. There is a tiny peak that emerges

before the first neighbour’s peak and its intensity increases by decreasing the size of the

NPs. In other words, the intensity of this peak increases while the crystal structure loses

stability. Hamad et al. reported the Zn-Zn RDF diagrams similar to what we observed for

10 and 20 Å NPs for small clusters which adopt double-bubble structures [40]. They related

the appearance of the first tiny peak to the formation of 4-rings of 3-coordinated atoms in

the bubble-like structures.

Figure 4.1f shows n(3.5 < r < 4.5) = 4π
∫ 4.5

3.5 ρr
2G(r)dr for ZnS NPs with different sizes

as well as bulk structures. For a periodic system, this quantity is equal to the coordination

number. Due to the undercoordinated surface atoms, this number is lower for NPs and

decreases by decreasing the size of the NP (because the surface to volume ratio is higher in

smaller NPs). The difference between the n(3.5 < r < 4.5) of relaxed and unrelaxed configu-

rations is an indication of the deviation of the relaxed structure from the ideal NP structure.

1 and 2 nm NPs

As mentioned before, the main characteristic of the bubble and onion like double bubble

(where a network of 4-coordinated atoms connects the inner and outer bubble clusters)

structures, is that the majority of atoms are three-coordinated. The coordination number

(CN) of atom A was calculated by counting the number of dissimilar atoms (B) within a

3 Å distance from atom A. The 3 Å distance was chosen according to the first and second

peaks in the Zn-S RDF diagram of periodic bulk ZnS (corresponding to the first and second

dissimilar neighbours), which are 2.35 and 4.5 Å, respectively. Figure 4.2 represents the

results of CN calculations for 10 and 20 Å NPs.

Since the initial configurations were made of perfect ZB and WZ structures, all under-

coordinated atoms in the initial configurations (CN < 4) are located on the surface. Due

to the higher surface-to-volume ratio of 10 Å NP, its initial configuration has more under-

coordinated atoms compared to the 20 Å NP. Figure 4.2a shows that all atoms in 10 Å NP
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Figure 4.2: Distribution of atomic coordination number in initial and final configurations
of (a) 10 Å and (b) 20 Å NPs. (c) Shows the probability of finding 3- and 4-coordinated
atoms in 20 Å ZB and WZ NPs as a function of distance from the centre of NP.
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become 3-coordinated after relaxation at 300 K. This confirms the stability of the bubble-

like structure for 1 nm ZnS NPs which has been also shown by previous studies [3, 40].

In contrast, a considerable number of 4-coordinated atoms are detected in the relaxed 20

Å NPs, indicating that it is not likely that the atoms rearranged into a bubble-like structure

(Fig. 4.2b). Figure 4.2b also shows that all the atoms become 3- or 4-coordinated after the

relaxation and there is no 1- or 2-coordinated atoms in the final configuration of 20 Å NPs.

The probability of finding 3- and 4-coordinated atoms in 20 Å NPs as a function of distance

from the centre of the NP is represented in Fig. 4.2c. This figure also shows that the

majority of atoms located in the cores of NPs (r < 5Å) keep their 4-coordinated structure.

For both ZB and WZ NPs, the probability of finding 3-coordinated atoms increases as we

approach the surface, but they increase with different rates. It seems the 4-coordinated

structure is less stable in the 20 Å ZB NP.

To understand the nature of the 4-coordinated structure at the core of 20 Å NPs, we

calculated the RDF for Zn-Zn and S-S pairs as well as the Honeycutt-Andersen (HA) indices

[123] for atoms located in the core of the NPs. Four HA indices are defined as follows: the

first index represents the RDF peak number to which the atomic pair of interest belongs

and is usually equal to one (first neighbours). The second index is the number of common

nearest neighbours of the atomic pair of interest. The third index counts the number of

common neighbours which form a bond and the fourth one is used to differentiate clusters

with identical sets of the first three indices but different configurations. HA indices can be

used to identify the local FCC and HCP arrangements. It has been shown that the 1421

bond type is characteristic of the FCC crystal, while in the HCP structure, 1422 bonds are

also predominant [124]. HA indices of Zn-Zn and S-S pairs can be used to track structural

changes, since Zn and S atoms have FCC and HCP arrangements in ZB and WZ structures,

respectively. The 12xx and 13xx bond families represent the short-range order by forming

rhombus clusters, usually considered as a sign of a disordered system [125]. Figure 4.3

represents the RDF and HA indices for the core atoms of 20 Å NPs (r < 5Å). Both RDF

and HA were calculated from the trajectories of the last 1 ns of simulations.

Figure 4.3 shows that structures of the cores of both NPs considerably diverge from

the initial crystal structure. A large number of 1201 and 1311 bond types also indicates a

highly distorted structure. Although almost all central atoms are still 4-coordinated in the

relaxed 20 Å NPs, they have lost their initial crystal structure. Apparently, the structural

change is more severe in the ZB structure. This can be deduced from the stronger first

RDF peak and lower number of 1201 and 1311 bonds in WZ NP (Figure 4.3b). The tiny

peak before the first neighbour peak is also observed in the core Zn-Zn RDFs, showing

that 4-rings have also formed in the 4-coordinated cores of 20 Å NPs. The formation of

4-rings has been reported in the crystallization of ZnS from an amorphous structure [126]
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(a)

(b)

Figure 4.3: RDF of Zn-Zn and S-S pairs at the core (r < 5Å) of 20 Å ZnS NPs with
initial (a) ZB and (b) WZ structures. Inset plots are HA indices for the same NP. Dashed
lines show the corresponding plots for the NPs with the same size but with an unrelaxed
structure. All calculation were done using trajectories of the last 1 ns of the simulations.

75



and simulated annealing [40]. This peak is missing in the S-S RDFs because 4-rings adopt

a rhombus shape in which S atoms stay farther from each other. The bigger length of S-S

pairs occurs because repulsive forces are stronger between anions in ionic components. In

the ZB and WZ structures, Zn-Zn and S-S distances are identical, but once NP loses its

crystal structure, S ions have the opportunity to repel each other and stay further away

causing Zn-Zn distances to decrease. This explains why Zn-Zn RDF peaks for 10 and 20

Å NPs shift to the right compared to the unrelaxed RDF peaks (Figure 4.1). The deviation

from the ideal crystal structure becomes more severe by coming closer to the surface, where

the atoms have more freedom to move, i.e., the S-S distances increase more and Zn-Zn

distances become shorter. When the atomic arrangement deviates from the nominal crystal

structure of the NPs, the atomic bond angles are also altered. Perfect ZB and WZ crys-

tals show a single peak angular distribution with a maximum located at 109.47◦, which is

the tetrahedral bond angle. Any deviation from this angular distribution is an indication

of deviation from the crystal structure. Figure 4.4 shows the distribution of Zn-S-Zn and

S-Zn-S angles at different distances from the centre of 20 Å ZB and WZ NPs.
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(d)

Figure 4.4: Angular distribution over the last 1 ns of relaxation at 300 K for 20 Å NPs with
initial (a,b) ZB and (c,d) WZ structures. Different colours correspond to different distances
of the vertex of the angle (central atom) from the centre of the NP. Inset plots are overall
angular distributions.

While a small portion of atoms at the centre of the 20 Å WZ NP (r < 3Å) show a tetra-

hedral angular distribution (Fig. 4.4c-4.4d), ZB NP shows a completely distorted angular

distribution, even for the central atoms. This further confirms that the tetrahedral bond

structure is more stable in WZ NPs. Similar to Fig. 4.3, transformation from the single-

peak to the double-peak angular distribution in Fig. 4.4 shows that the atomic structure

of the cores of 20 Å NPs deviates from the tetrahedral structure, although atoms are still

4-coordinated. In the double peak angular distribution, the first peak corresponds to the

formation of 4-rings where the angles are smaller. Generally, Zn-S-Zn angles are smaller

than S-Zn-S angles because once the deviation from the tetrahedral bond structure occurs,

Zn-Zn and S-S distances become shorter and bigger than their equilibrium distances in the

crystal structure (the first peak in the unrelaxed RDF), respectively. As mentioned be-

fore, this deviation becomes more significant closer to the surface where atoms have more

freedom to move. This movement causes the S-Zn-S and Zn-S-Zn angular distributions to

move to the right and the left, respectively. The intensity of the 4-rings’ peak in the angular

distribution becomes significantly greater when R > 9 Å showing the higher probability of

forming 4-rings on the surface. Figure 4.5 shows the final configurations of 10 Å and the
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Figure 4.5: Final configurations of (a) atoms at the core of 20 Å ZB NP (r < 5 Å) and (b)
10 Å ZB NP (yellow and grey spheres are S and Zn ions, respectively).

core of 20 Å ZB NPs.

All atoms at the core of 20 Å ZB NP are 4-coordinated, while the 10 Å ZB NP final

configuration is made entirely of 3-coordinated atoms. Figure 4.5 shows that the S-Zn-S

and Zn-S-Zn atomic angles between the 3-coordinated atoms on the surface differ from the

4-coordinated atoms in the core.

3 to 5 nm NPs

The above analyses confirm that the structure of the 20 Å ZnS NPs consists of 3-coordinated

atoms on the surface and a distorted structure of 4-coordinated atoms in the core. The 4-

coordinated atoms mainly lose their tetrahedral structure and arrange into 4- and 6-rings.

However, small number of atoms at the core of 20 Å NP (r < 3Å) with the WZ initial

structure still keep their tetrahedral arrangement. The initial structure seems to com-

pletely fade away in the ZB NP. Based on these observations, we can expect bigger NPs

to have a structure, including the 4-coordinated atoms with the tetrahedral arrangement

at the core, followed by a shell that includes the distorted structure of 4-rings and 6-rings

of 4-coordinated atoms which connects 3-coordinated surface atoms to the core. The same

analyses were performed to study the structural changes in the bigger NPs. Figure 4.6

shows the CN distribution of 30, 40 and 50 Å NPs.
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80



(c) 40 Å

(d) 40 Å
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(e) 50 Å

(f) 50 Å

Figure 4.6: CN distribution for (a,b) 30Å, (c,d) 40Å, and (e,f) 50Å NPs. Bar plots (left
column) show the probability of finding atoms with different CNs in the initial and final
configurations. Line plots (right column) show probability of finding a 4- or 3-coordinated
atom at different distances from the centre during the last 1 ns of simulations.

82



Comparing Fig. 4.6 with Fig. 4.2b, we can see that unlike the 20 Å NPs, the 4-

coordinated atoms are dominant in bigger NPs. The stability of the 4-coordinated struc-

ture increases by increasing the size of NPs. Similar to what was observed in 20 Å NP,

the ZB structure is less stable than the WZ structure. Figures 4.6b, 4.6d and 4.6f show

that a 50% probability for 3- and 4-coordinated atoms is located at around 1 Å beneath

the surface. This distance, which was also observed for 20 Å NPs (Fig. 4.2c), shows that

in all NPs ranging in size from 20 Å to 50 Å, the 3-coordinated structure is only limited

to the surface. However, in 20 Å NPs, the surface relaxation causes a pervasive structural

change, resulting in the disappearance of the tetrahedral structure. Thus, it seems that

using the probability of finding 3-coordinated atoms in NPs is not a good way to quantify

the stability of tetrahedral structure. As when we analyzed for 20 Å NPs, we calculated

the angular distribution in different distances from the centre of NPs to track the change

in tetrahedral structure. Figure 4.7 shows the S-Zn-S angular distribution calculated using

trajectories of the last 1 ns of simulations.
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Figure 4.7: Angular distribution over thr last 1 ns of relaxation at 300 K for 30 Å NPs with
initial (a,b) ZB and (c,d) WZ structures. Different colours correspond to different distances
of the vertex of the angle (central atom) from the centre of the NP. Inset plots are overall
angular distributions.
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Figure 4.7 shows that all NPs with sizes ranging from 30 Å to 50 Å have shown strong

tetrahedral peaks at their centres. Compared to WZ NPs, the tetrahedral angular distribu-

tions of the central atoms in ZB NPs have a higher intensity. However, the intensity of the

tetrahedral peak in ZB NPs decreases at a higher rate as it approaches the surface. The

lower intensity of the tetrahedral angular distribution at the centre of WZ NPs is probably

due to the anisotropic thermal vibration in WZ crystal, which causes the tetrahedral angle

to vibrate in a wider range. The anisotropy of thermal vibration of WZ ZnS has been re-

ported in DFT calculations [127]. Moreover, it is well known that real WZ lattices of II-VI

semiconductors deviate from the ideal WZ structure [49]. It has been already shown that

the potential formulation used in this study successfully reproduces the real WZ structure

of ZnS at 300 K [128]. This difference can make the angle of the tetrahedral bond deviate

slightly from the ideal tetrahedral angle (109.47 ◦) in the real WZ structure. This effect

is also the main reason of the different polar behaviour of ZB and WZ structures. This

behaviour is explained in more details later. Except for atoms at the very centre of NPs

(r < 5Å), all other tetrahedral angular distributions in 30 and 40 Å WZ NPs are stronger

than those in ZB NPs. This suggests that WZ NPs have a more stable tetrahedral structure.

As shown in Fig. 4.6, 3-coordinated atoms become dominant from almost 1 Å un-

derneath the nominal radius of NPs. In Fig. 4.7, we can see that these atoms show a

double-peak angular distribution in which both peaks have almost the same intensity. The

first peak is due to the formation of 4-rings on the surface. In all diagrams, we can see that

the deviation from single-peak to double-peak distribution starts from almost 5 Å under-

neath the surface. Since Fig. 4.6 shows that almost all atoms are still 4 coordinated at this

distance, the formation of the double-peak distribution can be attributed to the distorted

4-coordinated structure (similar to what we observed at the core of 20 Å NPs). Double-peak

distributions move to the right as we approach to the surface. This is because the S-Zn-S

angles become bigger on the surface as atoms have more freedom to move.

Root Mean Square Displacement

To verify the formation of the distorted 4-coordinated structure under the surface, we also

calculated the root mean square displacement of atoms with respect to their initial posi-

tions. In RMSD calculations the position of atoms in each time step is corrected to remove

the NP’s centre of mass rotation and movement effect. Figure 4.8 shows the average RMSD

of atoms at different distances from the centre.

Apparently, the RMSD of centres of all NPs is negligible except for 20 Å NPs. This

verifies the angular distribution results which showed that all NPs except for the 20 Å NPs

kept their tetrahedral structures at their centres. Excluding the 20 Å NPs, Fig. 4.8 also
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Figure 4.8: RMSD calculated for atoms located in a shell confined between r and r - 2 Å.
R is the radius of the NP.
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shows that RMSD plots for all NPs start to diverge from the plateau from about 5 Å be-

neath the surface. As mentioned before, the large displacement of atoms in this region can

be a sign that distorted 4-coordinated structure was formed. The formation of distorted

4-coordinated structure was also characterized by the appearance of double-peak angular

distributions in Fig. 4.7.

3-Phase Structure

The above observations and analyses confirm the three-phase structure of ZnS NPs: a)

a crystalline core which maintains the initial tetrahedral bond structure, b) a distorted

network of 4-coordinated atoms which surrounds the crystalline core, and c) a surface

structure which includes 4 and 6-rings of 3-coordinated atoms. We further quantify these

three phases using the bond angle and coordination number of each atoms as follows: 4-

coordinated atoms whose all bond angles range between 100◦ and 120◦ are considered as

tetrahedral atoms (4CT); the 4-coordinated atoms which have at least one angle out of the

aforementioned range are categorized as not tetrahedral 4-coordinated atoms (4CNT); and

finally, the 3-coordinated atoms (3C) which form the surface structure. According to the

previous analyses, all atoms in the relaxed ZnS NPs should belong to one of these categories.

Results of these calculations are illustrated in Fig. 4.9 using two different graphical repre-

sentations. Line plots show the probability of finding each atom type at different distances

from the centre. Each dot in the scatter plots represents an atomic position during the

last 1 ns of simulations. For clarity, only the position of atoms located in the central slab

(−2Å < Z < 2Å) of NPs is shown. Moreover, to avoid redundancy, only the results for 20

and 50 Å NPs are represented.
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Figure 4.9: Representation of three atom types in the last 1 ns of relaxation of (a) 20 Å ZB,
(b) 20 Å WZ, (c) 50 Å ZB and (d) 50 Å WZ NPs. 4CT: 4-coordinated atoms whose all bond
angles are between 100◦ and 120◦ (tetrahedral atoms), 4CNT: 4-coordinated atoms which
have at least one angle out of the aforementioned range (not tetrahedral 4-coordinated
atoms), and 3C: 3-coordinated atoms (surface atoms). Scatter plots show the distribution
of different atom types in a slab with −2 < Z < 2 and line plots show the probability of
finding each atomic type in a shell confined between R and R - 1 Å. Different atomic types
are distinguishable by different colours.
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Figure 4.9a confirms the complete disappearance of the tetrahedral structure in the 20

Å ZB NP. In contrast, a small portion of tetrahedral atoms is detected in the centre of 20

Å WZ NP. Figures 4.9c and 4.9d also show that the deviation from the tetrahedral structure

begins from about 5 Å beneath the surface. This 5 Å thickness of distorted structure, which

has also been observed in Fig. 4.8, suggests that 30 to 50 Å ZnS NPs, regardless of their

size or initial crystal structure, experience a similar surface relaxation which results in a

network of 3-coordinated atoms on the surface followed by a couple of layers of distorted 4-

coordinated atoms. This similarity is of great importance because it can result in the same

surface properties that can control the interaction of NPs with the surrounding environment.

Atoms located on the edges and corners of surface facets are more under-coordinated (1- and

2-coordinated) and more prone to chemical and electrochemical reactions [129]. The surface

behaviour can be greatly changed if the faceted nature of the NPs’ surfaces disappears, and

the coordination number of all the atoms on the surface is turned to three. Figure 4.10 con-

firms that the similar surface structures of ZnS NPs leads to similar surface energies as well.
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Figure 4.10: The average potential energy of ZnS NPs after relaxation. The energy of the
surface layers (4CNT+3C atoms) was calculated via subtracting the energy of the crystalline
core from the total energy of the NP.
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The energy of the surface atomic layers including 4CNT and 3C atoms was estimated

by subtracting the total energy of NP from the energy of the crystalline core. The energy

of the ZB and WZ lattices has been calculated from NPT simulations of the periodic bulk

structures. The energy of the crystalline core of NPs was then calculated by multiplying

the number of 4CT atoms by the energy per atom obtained from the simulation of the bulk

structures. The average number of 4CT, 4CNT and 3C atoms and the average total energy

of NPs were calculated from the last 1 ns of simulations.

Figure 4.10 shows that the total energy of a NP decreases as the size increases. This is

expected, as by increasing the size, the surface-to-volume ratio decreases and the structure

of the NP also transforms from more amorphous-like to more crystalline-like, and energy

approaches the level of bulk energy. However, the energy of the surface atoms (open sym-

bols) is independent of both the initial crystal structure and the size of the NP.

4.2.2 Dipole Moment

The dipole momentum is calculated in this study to examine the effect of structural change.

Dipole-dipole interactions are of a great importance as they are shown to be the governing

factor in the agglomeration [45], oriented attachment [46], and stabilization of superlattice

structures [47] of non-metallic NPs. There has been considerable number of studies on

finding the origin of large permanent dipole in ionic NPs. A large DM is expected in WZ

NPs due to the polar nature of WZ lattice but the DM is expected to be absent in ZB NPs,

due to the Td symmetry of ZB lattice. Li and Alivisatos’s study on CdSe nanorods showed

that a permanent DM was proportional to the volume of nanorods. They considered the

origin of the DM was due to the natural polar character of the WZ structure [48]. Nann

and Schneider have also shown that small crystallographic deviations from the ideal WZ

structure could result in a large permanent dipole moment [49]. In contrast, Shim and

Guyot-Sionnest have shown a large DM in both WZ CdSe and ZB ZnSe nanocrystals which

were linearly dependent on the radius [44]. Since the large DM has been observed for both

ZB and WZ structures, they concluded that this linear size dependence was not due to the

polar character of the WZ lattice but to the faceted surface structure of nanocrystals. A

subsequent study of Shanbhag and Kotov showed that minor deviations from a symmetric

tetrahedral shape of ZB CdS nanocrystals could result in large DMs [50]. Cho et al. have

shown that the dipole moment of PbSe nanocrystals with a centrosymmetric rocksalt lattice

was large enough to result in the formation of nanowires through the oriented attachment

of nanocrystals [51]. Considering a random distribution of polar facets and the probability

of lacking of central symmetry, they showed that about 89% of possible shapes of PbSe

nanocrystals was polar. The self-assembly of ZnS nanocrystals into ellipsoidal shapes has

also been explained by charge-charge, charge-dipole, and dipole-dipole interactions of non-
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Figure 4.11: Tetrahedron model used to calculate the bulk dipole moment.

symmetric ZnS NCs along the [111] direction [52].

All the previous studies explain the dipole moment in NCs with a cubic crystal lattice

via the deviation of distribution of surface ions from the central symmetry. In contrast, WZ

NCs polarity is mainly related to deviation of WZ lattice from the idea tetrahedral bond

structure. In this study we will systemically quantify the effect of surface and bulk asym-

metry of ZnS NPs on the total DM. We also propose the dynamical structural relaxation

of NPs (which is explained in previous section) as another major parameter controlling the

DM. We used MD trajectories to calculate the total DM of a NP as

−−→
DM = | <

∑
i

qiri > | (4.3)

where qi and ri are the charge and the position vector of ion i, respectively. To study the

effect of the crystal structure of NPs on their final DM, the natural DM of ZB and WZ

lattices was calculated first using trajectories of the 1 ns NPT simulation of bulk structures

at 300 K and 0 atm. We used the simple-point charged model of Nann and Schneider [49] to

calculate the bulk DM. In this model, the DM is calculated for each Zn-S tetrahedron unit

as shown in Fig. 4.11. In each Zn-S tetrahedron, the Zn ion caries the elemental charge of

+2e and each S ion (core plus shell) caries 25% of the Zn charge. For an ideal tetrahedral

bond structure, where all atomic bond lengths are equal and all bond angles are equal to

109.47 ◦, the DM is equal to zero.

As expected, DM calculations show that bulk ZB structure has no natural DM while the

WZ lattice is considerably polar. The average natural DM for each WZ ZnS tetrahedron

unit was calculated to be 0.3855 D in the opposite direction of the c axis. This is in an
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agreement with Nann and Schneider calculations, which confirms the natural DM of real

WZ structure as a consequence of the slight C3v-distortion of the elementary tetrahedron

in real wurtzite [49].

As explained in the Methods section, making initial configurations of NPs is started by

cutting spheres from perfect ZB and WZ lattices and followed by removing excessive ions

from the surface to achieve charge neutrality. In this paper, when we refer to the initial

configurations, we are talking about the initial configurations after charge neutralization.

Configurations before the charge neutralization are called as-cut configurations. The charge

neutralization of ionic NPs as-cut structures has usually been achieved by randomly remov-

ing excessive ions from the surface. However, this method could not ensure the symmetry

of the initial configurations. The asymmetry of distribution of positive and negative ions

on the surface can cause a DM for initial configurations. We noticed that except for 10

and 20Å NPs (in which the initial crystal structure is entirely removed after relaxation),

the final structures’ DM magnitude and direction is strongly dependent on the initial DM.

To study the effect of structural evolution during the NPs’ relaxation on the final DM, we

needed to remove this artificial effect of initial structures. We did this using a method other

than the random removing of excessive ions from the surface, which results in non-polar

initial configurations. Details of our charge neutralization method are explained in the

Methods section. For each NP size, 10 different, non-polar initial structures were randomly

chosen and relaxed through NVT simulations. Figure 4.12 shows the DM per ZnS calcu-

lated for ZB and WZ NPs using 10 ns NVT simulations at 300 K. Trajectories of the last

1 ns of simulations were used to calculate the DM.

Figure 4.12 shows polarities of ZnS NPs as a function of NPs size. This figure shows

that the DM is evolving differently in ZB and WZ NPs. While the magnitude of the DM per

ZnS is decreasing continuously by increasing the size of ZB NPs, it drops and then increases

as the WZ NPs size increases. Another major difference between ZB and WZ NPs polar

behaviours is the direction of the DM vectors. The directions of DM vectors of relaxed ZB

NPs with different initial configurations show no correlation and change randomly. How-

ever, the WZ NPs’ DM vectors become more aligned with -Z direction as the size increases.

Since the initial structures of NPs are not polar (or negligibly polar in WZ NPs), DMs of

final configurations are pure products of structural evolutions of NPs at 300 K. As the ZB

lattice remains non-polar at 300 K, divergence from the ideal tetrahedral structure which

happens on the atomic layers near surface (aforementioned 4CNT and 3C structures) is the

main reason of polarity of relaxed configurations of ZB NPs. The random direction of final

DM vectors can also be justified by the fact that the deformed surface structure of a ZB

NP has a random atomic arrangement.
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Figure 4.12: The DM of ZnS NPs calculated using the last 1 ns simulations. (a) and (b)
show the DM of ZB and WZ NPs, respectively. Insets show the projected image of the DM
vectors on the XZ plane.
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For 20 Å WZ NP whose entire tetrahedral structure is almost vanished, the direction

of DM is randomly changed for different initial configurations similar to ZB NPs. It also

seems that the DM magnitude of 20 and 30 Å WZ NPs is similar to the corresponding ZB

NPs, but starts to increase afterwards. Unlike the ZB structure, we showed that the WZ

lattice is considerably polar at 300 K and the direction of the WZ bulk DM vector is aliened

with -Z direction. As the WZ NP becomes bigger, the size of the bulk tetrahedral structure

increases (number of 4CT ions) and this will consequently increase the magnitude of the

bulk DM in Z direction. This is the reason why DM vectors become more aligned with the

Z direction as the size of the WZ NP increases. It also explains why the polar behaviour

of 20 and 30 Å WZ NPs, in which deformed surface structure is dominant, is similar to ZB

NPs but starts to diverge after 30 Å when the polar crystalline core of WZ NPs becomes the

dominant portion of the structure. As the size of the NP increases, the polarity converges

to the bulk value. As a result, one should expect that the DM per ZnS magnitude of ZB

and WZ NPs approach the bulk values which are 0.0 and 0.3855 D, respectively.

The DM caused by surface atoms of a WZ NP can be calculated by subtracting the DM

caused by the crystalline core from the total DM of the NP. The bulk DM of WZ NPs was

estimated by multiplying the number of tetrahedral units (number of Zn 4CT atoms) by

0.3855 D (the DM for each tetrahedral unit of WZ lattice). Figure 4.13 shows the DM per

ZnS caused by the deformed surface structures of WZ NPs along with the total DM of ZB

NPs.

Apparently, the magnitude of DM caused by surface structure of WZ NPs is similar to

the DM of ZB NPs. This is another indication confirming that the surface structure of ZB

and WZ NPs is similar. Figure 4.13 also shows that the effect of the surface dipole becomes

less significant as the size of NPs increases. This is because the deformed surface structure of

NPs becomes smaller comparing to bulk tetrahedral structure, as the size of a NP increases.

4.3 Discussion

In this paper, we studied the structural evolution of freestanding ZnS NPs having initial

ZB and WZ crystal structures and ranged in size from 1 to 5 nm. We found that except for

the 10 and 20 Å NPs, the final configurations of ZnS NPs with both initial crystal struc-

tures consisted of three regions: a) a crystalline core which kept the initial tetrahedral bond

structure (4CT), b) a region of distorted 4-coordinated atoms which formed 4- and 6-rings

(4CNT), and c) 3-coordinated atoms which covered the surface of NPs (3C). In the relaxed

structure of 10 Å NPs all of the atoms were 3-coordinated, confirming the formation of the

bubble-like structure. For 20 Å NPs, the structure relaxation removed the initial tetrahe-

dral bond structure (region a) entirely. Our structural analyses showed that the surface
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Figure 4.13: The DM per ZnS caused by the deformed surface structure.

structure of both ZB and WZ NPs ranging from 2 to 5 nm in size was similar and consisted

of 3C and 4CNT atoms. This similarity may result in similar surface properties such as the

the surface energy. These analyses also showed that tetrahedral bond structure was more

stable in WZ NPs and that ZB NPs experienced more severe structural relaxations.

The effect of the structural evolution of NPs on the dipole moment was also studied. To

study the pure effect of structural evolutions, non-polar initial configurations were used for

simulations. Results of dipole moment calculations showed that non-polar ideal structures

of NPs changed to polar structures after relaxation at 300 K. Since the tetrahedral core of

ZB NPs has a non-polar nature, the polarity occurred in these NPs because their surface

configurations deviated from the tetrahedral bond structure. There was no specific direction

for a dipole moment vector of a ZB NP and the direction changed randomly for different

configurations. In contrast, dipole moment vectors of WZ NPs became more aligned with

-Z direction as the NP size increased. This was due to the polar nature of WZ lattice, which

was shown to have dipole moment of 0.3855 D per ZnS molecule. By increasing the size

of the WZ NP, the crystalline polar core became more dominant and controlled the dipole

moment magnitude and direction. For NPs smaller than 3 nm, where 4CNT and 3C atoms

were predominant, DMs of ZB and WZ NPs were similar due to the similarity of the surface

structures. As the size of the NP increased, the 4CT atoms started to control the DM. As

a result, ZB and WZ NPs became less and more polar, respectively. By subtracting the

98



dipole moment caused by the crystalline core from the total dipole moment, we calculated

the surface dipole moment for WZ NPs. It was shown that surface dipole moment of WZ

NPs was in the same range as dipole moment of ZB NPs, which again confirmed the similar

surface properties of ZnS NPs in the range of 2 to 5 nm.

4.4 Methods

4.4.1 Initial configurations construction

The initial configurations of NPs ranging in size from 1 to 5 nm were generated by cut-

ting spheres from perfect ZB and WZ super-lattices. Due to the tetrahedral symmetry of

the ZB lattice, for each ion I(x,y,z), there exists a similar symmetric-ion I’(-x,-y,-z) in ZB

as-cut configurations. Ions I and I’ make a symmetric-group II’, which has zero DM in all

directions (X, Y and Z). Since all ions should belong to a symmetric-group, the total DM

of the as-cut configuration would then be zero. WZ belongs to the C3v point group, which

has lower symmetry than Td. While Td makes DM to be zero in all X, Y and Z directions,

C3v symmetry only ensures zero DM in the X and Y directions. For each ion I(x,y,z) in the

C3v point group, there exist two similar symmetric-ions I’(x’,y’,z) and I”(x”,y”,z) such OI,

OI’ and OI” vectors make 120◦angles. As the DM of symmetric-group II’I” in the (0001)

plane (XY plane) is zero and each ion should belong to a symmetric group, the total DM

of WZ the as-cut configuration will be zero in the X and Y directions.

Since the initial configurations of NPs are not necessarily charge-neutral, excess ions

were removed from the surface to achieve electroneutrality. The charge neutralization of

ionic NPs’ as-cut structures has usually been achieved by randomly removing excessive ions

from the surface. However, this method cannot ensure the symmetry of distribution of

positive and negative ions on the surface and may result in a DM for initial configurations.

In this study, instead of individual ions, symmetric groups were removed randomly from the

surface to obtain non-polar initial configurations. It means that excessive ions should be

removed in groups of 2 or 3 from ZB and WZ as-cut configurations, respectively. Depending

on the total number of excessive ions, complete charge neutrality may not be accessible by

removing symmetric ions from the surface. If the total number of excessive ions is not a

multiple of two, we will end up having one remaining excessive ion in the NP after removing

symmetric groups. Similarly, one or two excessive ions may remain if the total number of

excessive ions is not a multiple of three in WZ NPs. In those cases, one or two remaining

ions would be removed from the bulk of the as-cut configuration in a way that does not

affect the symmetry.

For each of ZB and WZ NPs, 10 initial configurations with the lowest energies were
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chosen. As the initial DMs of WZ NPs are not necessarily zero in the Z direction, one more

condition was added to enssure that the initial configurations have the lowest DMs (negli-

gible in respect to the final DM after the relaxation). A large number of repetitions (no less

than 1,000,000) were performed to make sure that all possible combinations of removing

excessive ions from the surface were covered. It is worth noting that initial configurations

of WZ NPs were made out of the ideal WZ super-lattice so the probable DM of initial WZ

configurations was just due to the asymmetry of distribution of surface ions in the Z direc-

tion, but not the asymmetry of the bulk structure. We noticed that for NPs greater than 2

nm, using either the random removing of ions or symmetric groups would not significantly

affect the final structure and energy of NPs, but would affect their final DMs.

4.4.2 Simulation Details

A detailed comparison of the different available ZnS empirical potentials in the literature

was published in our previous study [128]. Among all available potentials for ZnS, we

chose the potential developed by Hamad et al. [37] for this work. Surface properties

are of great importance when studying nanostructures. It has been shown that surface

properties calculated by this potential have the best agreement with results of experimental

and first-principle studies. Furthermore, this potential has successfully reproduced some

other ZnS properties such as crystal structures, mechanical properties, thermal expansion

and pressure-induced phase transformation. Moreover, developers of the empirical force

field used in this study have validated its accuracy in predicting the energy of small ZnS

clusters. They did so by comparing the force field results with the first-principle calculations

[38, 40]. In their later study, they also emphasized the ability of this force field in modeling

the surface properties of the small ZnS clusters by comparing (ZnS)n clusters (n = 2 -

7) optimized with both DFT and IP, which gave a deviation of less than 0.1 Å for bond

distances, and less than 51 for angles [3]. Considering the importance of the surface effect

in small NPs, we also performed first-principle calculations to validate the accuracy of this

force field in predicting the energy and structure of 1 nm ZnS NPs. We performed DFT

geometry optimization using the DMol3 [130, 131] code and PW91 exchange-correlation

functional [132] with effective core potentials and a double numerical plus polarization

basis set. The energy, structure and dipole moment of 1 nm ZnS NPs were calculated

and compared with the empirical interatomic potential results. This comparison, details of

which are provided in Appendix A, shows that the properties of geometry optimized NPs

achieved by interatomic potential agree strongly with the DFT results. MD simulations of

ZnS NPs were run in vacuum and the canonical ensemble using DL Poly [101] simulation

code. All simulations were run at 300 K, and the Nosé-Hoover thermostat was used to

control the temperature. A time step of 0.5 fs was used, and simulations were carried out

for no less than 10 ns.
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Chapter 5

Structure of ZnS nanoparticles in
water

5.1 Introduction

In the past two decades, interesting optoelectronic properties of II-VI semiconductor nano-

materials have made research on this technology strive and many potential applications

have been proposed. Biomedical imaging is one of these applications in which quantum

dots (QDs), florescent II-VI semiconductor nanomaterials, have shown a promising future.

Unique optical properties such as size-tunable photoluminescence, broad excitation band

and narrow emission band, good resistance to photobleaching and stability in metabolic sys-

tems make these materials good candidates to substitute organic fluoroscopes for biomedical

imaging applications [26]. However, serious concerns were raised early in their development

about toxicity and safety, especially because the most studied II-VI semiconductor nanoma-

terials contain cadmium (CdSe, CdTe and CdS) which is known to be highly carcinogenic

for living systems [27]. Although modifications such as adding ZnS shell or polyethylene

glycol (PEG) coating have been suggested to modify QDs with toxic elements, it has been

shown that their cytotoxicity can only be partially alleviated, but not completely elimi-

nated [28, 133]. Zn based QDs such as ZnS has been introduced as a suitable alternative for

QDs with Cd components since Zn is considered to be an essential biological element [29].

Furthermore, the band gap of ZnS is more than 1 eV wider than the others in the II-VI

family, which enables a wider spectrum to be tuned by varying size of ZnS nanostructures.

Unfortunately, ZnS nanoparticles (NPs) have shown intrinsic potential to undergo uncon-

trollable structural evolutions in ambient conditions which has limited their applicability

[20]. Accordingly, structural stability of ZnS NPs have been highlighted in experimental

and numerical studies.

A modified version of this chapter has been prepared for publication in Journal of Physical Chemistry
C as M. Khalkhali, H. Zeng, Q. Liu and H. Zhang, ”Structural evolutions of ZnS nanoparticles
in hydrated and bare states”

101



At ambient temperature and pressure, zinc-blende (ZB : F43m) is the most stable crys-

tal structure of the bulk ZnS while wurtzite (WZ : P63mc) is more stable above 1020 ◦C.

Structural behavior of ZnS NPs, however, deviates from the bulk greatly, due to their large

surface to volume ratio which means significant portion of atoms are undercoordinated. Un-

dercoordinated atoms can reside on surface facets (3-coordinated), edges (2-coordinated)

or corners (1-coordinated) of a NP. Due to their broken bonds, undercoordinated atoms on

the surface cause an excess free energy for a NP comparing to the bulk which can result

in alteration of phase stability behavior. One approach to predict stable configuration of

a NP is to calculate frequent crystalline surface energies and construct the most stable

shape using Wulff construction. Such an approach applied by Barnard et al. showed that

ZB rhombic dodecahedron enclosed entirely by non-polar 110 facets is the most stable ZnS

shape regardless of the NP size [42]. However adding polar facets to ZB nanostructures will

make core/shell crystalline/amorphous structure thermodynamically favorable. Further-

more, deviation from rhombic dodecahedron enables some thermodynamic paths from ZB

to WZ transformation by decreasing the size [43]. While this approach provides valuable

thermodynamic information about phase stability of the ZnS NPs, it does not come close

to dynamics. Moreover, Wulff configurations can not be made in all sizes and more realistic

model of a NP includes imperfect facets, edges and corners which affect the NP’s surface

energy significantly.

Molecular dynamics (MD) is a suitable alternative to study the structural evolution

of nanostructures in realistic sizes and time scales. In our previous study, we used MD

simulations to study structural evolution of 1 to 5 nm ZnS NPs with initial WZ and ZB

crystal structures [134] in vacuum. Simulation results revealed that relaxed configurations

of ZnS nanoparticles larger than 3 nm consist of three regions: a) a crystalline core in which

atoms keep their initial 4-coordinated tetrahedral bond structure, b) a region of distorted

4-coordinated atoms which environs the crystalline core, and c) the surface of the NP en-

tirely made of 3-coordinated atoms. Decreasing the size of the ZnS nanoparticle to 2 nm

will result in disappearance of the crystalline core and further reducing the size will result

in formation of bubble like structure at which all atoms are 3-coordinated. Formation of

bubble-like or onion-like structures which predominantly consist of arrangements of three-

coordinated atoms is also reported in small (ZnS)n clusters (n < 80) relaxed through global

minimization [38, 39]. Study of the larger NPs with the same method revealed that BCT

structure, which is not observed experimentally, to be generally more stable than others

[3]. However, the energy of WZ clusters were found to be so close to BCT ones and it was

suggested that their relative energies may be reversed by solvation effects [3]. Early MD

study on a 3 nm free standing ZB ZnS NP suggested ZB to WZ phase transformation at 300

K [2]. Although we reported more relative stability of WZ NPs, no phase transformation

was noticed in 10 ns MD simulations.
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It is well-known that surface ligands, like surfactants or solvent molecules, can alter NPs

structure and properties through changing the surface energy. In the case of QDs, under-

standing the effect of surface adsorbed water on their structure, optoelectronic properties

and toxicity is of great importance for biomedical (in vivo) applications. As a result, hy-

drated ZnS nanocrystals have been surveyed considerably. In one of the earliest work on this

context, Zhang et. al. showed that ZnS NPs exhibit reversible structure transformation ac-

companying absorption and desorption of methanol and water [35]. This structural changed

was identified by enhancement of crystallinity by absorption of water and reappearance of

distorted structure by substituting water with ethanol. MD simulation performed by the

same group confirmed that crystallinity of ZnS NPs is increased in presence of surface ad-

sorbed water [2, 78]. Effect of water on enhancement of crystallinity of ZnS NPs has been

reported in other theoretical and experimental studies as well [135–137].

In addition to alternating optoelectronic properties of a single NP, structural and config-

urational changes can also affect intrinsic forces between NPs. Semiconductor NPs interac-

tions can be decomposed into coulomb and van der Waals components. Although NPs are

generally charge neutral, they exhibit large static permanent dipoles causing considerable

coulomb interactions [44]. Dipole-dipole interactions are of great importance in non-metallic

nanoparticles, as they are found to govern the behavior of mixture of NPs which can vary

from agglomeration to self-assembly into ordered structures. Zhang and Banfield showed

that dipole-dipole interactions are the main driving force for oriented attachment of ZnS

NPs [46]. ZnS nanowires with length as long as 10 µm have been successfully fabricated

via oriented attachment of ZnS nanocrystals [53]. In our previous work, we showed that

non-polar initial configurations of bare NPs (free standing NPs in vacuum) become polar

after relaxation at 300 K. Since the tetrahedral core of ZB NPs has a non-polar nature,

polarity of these NPs is due to the deviation of their surface configurations from the tetra-

hedral bond structure. There is no specific direction for the dipole moment (DM) vector

of a ZB NP and it changes randomly for different configurations. On the other hand, DM

vectors of WZ NPs become more aligned to -Z direction as the NP size increases. This is

due to the polar nature of WZ lattice which was shown to have DM of 0.3855 D per ZnS

molecule. DM of ZB and WZ NPs are in the same range when their sizes are smaller than

3 nm. In this size range, crystalline core is not predominant and DM of NPs is controlled

by the surface structure. Due to the similarity of surface structures of WZ and ZB NPs,

their dipole moments are in the same range. By increasing the size, DMs are converging to

the bulk values. This makes ZB and WZ NPs less and more polar, respectively.

This study aims to extend our understanding of structural evolution of ZnS NPs, spe-

cially in hydrated state. As mentioned before, understanding the behavior of ZnS NPs in
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aqueous environment is of the great importance for their potential biomedical application.

For medical imaging applications, the QDs’ site of action is in vivo which is mainly an

aqueous media. As a result, the structural stability of ZnS QDs in water can govern their

applicability for proposed biomedical applications. In addition to a structural stability of

a single QD, interactions between complex set of these noncrystalline materials should be

considered. It has been shown that structural transformation in ZnS nanoparticle can occur

as a result of agglomeration [31, 33] and aggregation [34, 97]. In this study, we compare the

structural evolutions of hydrated and bare ZnS NPs and study the effect of these evolutions

on dipole moment and interactions between NPs.

5.2 Simulation Details

The initial configuration of NPs starts with cutting quasi-spherical shapes from ideal crys-

tal lattices. These structures are not necessarily charge neutral so the excess ions should

be removed from the surface to achieve electroneutrality. Charge neutralization is usually

achieved by randomly removing of excessive ions from the surface. This method can not

ensure the symmetry of distribution of the positive and negative ions on the surface after

charge neutralization and may result in charge-neutral but polar initial configurations. In

this study, we made charged-neutral, nonpolar initial configurations through symmetric re-

moving of excessive ions from the surface. Process of making nonpolar initial configurations

is explained in details in our previous study [134]. Five different initial configurations were

chosen for each size. Due to the nonpolar nature of the initial structures of NPs, any change

in their polarity is the results of their structural evolutions.

In comparison with other available empirical potentials for ZnS, potential developed by

Hamad et al. [37] is shown to be more accurate to model ZnS bulk and surface properties

at room temperature [128]. The accountability of this potential in modeling the surface

effect in small ZnS clusters is also validated by comparing the interatomic potential results

with the first-principle single point energy calculation [38, 39] and geometry optimization [3]

[134]. Hence, this empirical potential is used to model ZnS in this study. The parameter of

water potential is taken from consistent valence force field (CVFF) [138] and the ZnS-water

interaction is modeled using the parameters proposed in the study on the embryonic stage

of ZnS formation from aqueous solution [41].

Constant temperature and pressure simulation of ZnS NPs in water was performed us-

ing the DL Poly [101] simulation code, periodic boundary condition, and the Nosé-Hoover

thermostat and barostat. A time step of 0.5 fs was used and the size of the simulation box

was chosen such that the interaction of the hydrated NP with its images in neighboring

boxes was negligible. Considering the long range charge-charge and dipole-dipole interac-
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tions of NPs, simulation box sizes were chosen to be at least 3 nm bigger than the diameter

of the NPs to meet the minimum image criterion. To model the effect of presence of water

on NP structural evolution accurately, it is important to let the water around the NP to

equilibrate and absorb to the NP surface before letting the NP to relax. To achieve this, we

first energy minimized the water structure while the NP was fixed using zero temperature

dynamics module within DL Poly. This will let us to repair any water-water or water-ZnS

close contact before performing dynamics. This step is followed by 100 ps NVT simulation

at 300 K in which the NP is still kept fixed. After equilibrating water around NPs, NPs let

to relax during 100 ps NVT simulation which is followed by at least 10 ns NPT simulation

at 300 K and 0 atm.

The fundamental question for any classical MD simulation is that if the simulation has

been running long enough to satisfy ergodicity. In other words, MD simulation should be

long enough so the system under study can explore all the energetically relevant config-

urations. This ideal condition, however, is not always achievable in practical situations.

Different configurations of the system may be separated by high free-energy barriers which

makes it impossible to observe the structural transformations in the time scale of MD sim-

ulation.

One approach to overcome the energy barriers and achieve the lowest energy configu-

rations is to use global minimization techniques like simulated annealing which basically

mimics high temperatures at which kinetics is much faster. As mentioned in Introduction,

such a technique was applied on ZnS NPs ranging in size between 1-4 nm revealed bubble-

like configurations for small ZnS clusters and BCT crystal structure for bigger NPs [3].

Simulated annealing is applicable for bare NPs, however, it does not have a physical mean-

ing in the case of hydrated NPs. Another approach to explore the configurational space is

to use methods such as Metadynamics which facilitate sampling the phase space. To make

the best use of these methods, however, we need to have a clear picture of the classical MD

results first. We need to know what are the limits achievable by MD to decide how to pass

them by other methods.

In practice, equilibrium is examined by monitoring the thermodynamic properties dur-

ing the MD simulation. The most common property which is readily available in each MD

simulation is the potential energy. For bare NPs, we observed that the potential energy of

the system reaches the equilibrium long before 10 ns. In the case of hydrated NPs, however,

the potential energy of system is mainly dominated by the large number of water molecules

and monitoring it cannot reflect the equilibration of the structures of the NPs. Therefore,

we used parameters other than potential energy such as root mean square displacement

(RMSD) and 4th order Steinhardt parameter, Q4 [139]. RMSD was chosen because it can
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show the changes of the atomic arrangements on the surface and in the bulk while Q4 can

reflect the evolution in the crystal structure of the NP. After running simulations for 8

ns, structural parameters were monitored carefully and simulations were stopped if these

parameters did not change greatly for at least 2 ns (see the Appendix B for more details).

All the analysis were done using the trajectories of the last 500 ps of simulations.

5.3 Results and Discussion

5.3.1 Structure of ZnS NPs

As explained in our previous work, some cares should be taken when using RDF to evaluate

the structural evolution of a NP. Due to the undercoordinated atoms on the surface, the

intensities of RDF peaks of the unrelaxed NP is lower than the periodic system with the

same structure, while the positions of peaks are identical. At very small sizes like 1 nm,

high order RDF peaks would disappear even for the unrelaxed structure. As a result, it is

more accurate to compare each NP’s RDF diagram with its unrelaxed state rather than the

periodic system. In Figure 5.1, RDF diagrams of unrelaxed NPs are calculated by cutting

spheres with the same sizes from the trajectories of a 1 ns NPT simulation of the periodic

systems. Moreover, the number density of the bulk ZnS is used as the normalizing factor

for all RDF calculations. This makes the intensities of RDFs of NPs with different sizes

to be in the same order of magnitude. The Zn-Zn RDF diagrams (g(r)) for ZB and WZ

NPs are shown in Figure 5.1. The number of Zn-Zn pairs whose distances are between 3.5

and 4.5 Å (n(3.5 < r < 4.5) = 4π
∫ 4.5

3.5 ρr
2g(r)dr), is also represented in this figure. For a

periodic mono-atomic system, this quantity is equal to the coordination number. Similar

to RDF peak intensities, n(3.5 < r < 4.5) for a NP is smaller compared to the bulk and its

value approaches the bulk value as the size of the NP increases.
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(b)
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(f)

Figure 5.1: RDF plots for Zn-Zn pairs in (a) 10, (b) 20, (c) 30, (d) 40, (e) 50 Å ZnS NPs in
bare (red line) and hydrated (blue line) states. (f) shows The number of Zn-Zn pairs whose
distances are between 3.5 and 4.5 Å (n(3.5 < r < 4.5) = 4π

∫ 4.5
3.5 ρr

2g(r)dr). UR, B and H
stand for the unrelaxed, relaxed bare and relaxed hydrated NPs, respectively.
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It has been shown before that 10 and 20 Å bare NPs, with both initial ZB and WZ struc-

tures, lose their crystal order after relaxation. 10 Å bare NPs adopt bubble-like structure

while 20 Å bare NPs consist of distorted 4-coordinated structure in the core and a network

of interconnected 3-coordinated atoms on the surface. Figure 5.1a shows that the RDF

diagrams of hydrated and bare 10 Å NPs are comparable showing no clear crystallinity.

This indicates that in this small size, 4-coordinated structure may not be stable even in the

hydrated state.

20 Å NPs which completely lost their crystal structure in the vacuum, however, show

more crystalline RDF in hydrated state. Higher order RDF peaks which were completely

disappeared in bare NPs can be recognized in hydrated ones. Although the bigger NPs show

clear crystalline RDF diagrams in both vacuum and water, the intensity of RDF peaks of

hydrated NPs is higher. This shows that presence of water enhances the crystallinity of

NPs. The difference between the RDF intensities of hydrated and bare NPs decreases as

the size of NPs increases. In other words, the structure of bare and hydrated NPs become

more similar as the size of NPs increases. Another interesting point about Figure 5.1 is

that the difference between RDF diagrams of bare and hydrated NPs with WZ structure is

smaller than ZB NPs. This can be due to the more structural stability of the bare WZ NPs

compared to the bare ZB NPs [134]. One other possibility is that this order may change in

presence of water and hydrated ZB NPs show higher structural stability.

In Figure 5.1f, n(3.5 < r < 4.5) of the hydrated (H) state lies between the unrelaxed

(UR) and bare (B) states, showing the structure of hydrated NPs is more similar to the

unrelaxed structure. The RDF analyses show that the structure of hydrated NPs with both

crystal structures are generally more crystalline but it does not give us information about

the structure of surface of NPs. To study the surface structure of hydrated NPs and to check

if the three phase structure is also forming in presence of water we need more structural anal-

yses. The three phase structure of bare NPs is made of a crystalline core in which atoms

keep their tetrahedral bond structure, a distorted 4-coordinated region where the bond

structure deviates from tetrahedral, and a network of interconnected 3-coordinated atoms

on the surface. The bond length and angular distribution diagrams are shown in Figure 5.2.
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(f)

Figure 5.2: The bond length and bond angle distribution in bare and hydrated ZnS NPs.
(a) and (b) show the bond length distribution of WZ and ZB NPs, respectively. The all-
atom angular distributions for WZ and ZB NPs are shown in (c) and (d), respectively. (e)
and (f) show the angular distributions calculated using only undercoordinated atoms.
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Figures 5.2a and 5.2b show that the Zn-S bond length in bare NPs is lower than bulk.

Shrinkage of the bond length in bare NPs is related to the formation of the interconnected

3-coordinated surface structure which causes a compressive surface tension. By increasing

the size of the bare NP, the surface to volume ratio decreases and the surface effect becomes

weaker, consequently. This effect can be seen in Figures 5.2a and 5.2b where the Zn-S bond

length in bare NPs is approaching to the bulk value by increasing the size. Hydrated NPs

however, show bond lengths much closer to the bulk value and the effect of the increasing

of the size on the bond length is not as significant as bare NPs.

Ideal ZB and WZ lattices have tetrahedral bond structures in which all bond angles

are equal to 109.47◦. Transformation of a 109.47◦ single peak to a double peak angular

distribution is the sign of the deviation from tetrahedral bond structure. We have shown

previously [134] that the first peak in the double peak angular distribution is the sign of

the formation of 4-rings of Zn and S while the second peak is usually due to the 6-rings.

Once the bond structure of ZnS deviates from tetrahedral, anions (S2−) which have the

stronger tendency to repel each other would find the opportunity to increase their distance

forcing cations (Zn2+) to approach each other. That is why 4-ring acquire rhombic shape

in which S-Zn-S angles are bigger than Zn-S-Zn angles. Shorter Zn-Zn distances in 4-rings

also causes the emergence of a tiny peak in Zn-Zn RDF diagram before the first Zn-Zn

nominal distance in crystal structure. 4-rings can form in both distorted 4-coordinated

bulk and 3-coordinated surface structures. As undercoordinated atoms on the surface have

more freedom to move, S atoms can increase their distances more, making Zn-S-Zn angles

bigger. Thus, angular distribution of surface atoms shifts to the right in respect to distorted

4-coordinated structure beneath surface.

In Figures 5.2c and 5.2d, 10 Å bare NPs which are entirely made of 3-coordinated atoms

show a clear double peak angular distributions. Nonetheless, the hydrated 10 Å NPs are

different and resembles the double-peak angular distribution of the 20 Å bare NPs. This

indicates that bubble structure was not formed in 10 Å hydrated NPs. The angular dis-

tributions also show that the 10 and 20 Å NPs have distorted structures in both bare and

hydrated states. As the size of a ZnS NPs increases, their angular distributions in both bare

and hydrates states approach the bulk. NPs bigger than 30 Å show single-peak angular

distributions but the peak intensities of the bare WZ NPs seem to be slightly lower than

bare ZB NPs. It was shown that this difference is due to the anisotropic thermal vibration

in WZ crystal which can make the bond angles to vibrate in a wider range [134]. Similar

to what was observed in RDF diagrams, it seems the effect of water on ZB NPs is more

significant than WZ ones.

Examination of Figures 5.2e and 5.2f shows than undercoordinated atoms of bare NPs
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with both ZB and WZ initial structures ranging in size between 2 and 5 nm have similar

angular distributions. This is due to the similar surface structure of bare NPs which was

shown to consist of interconnected 3-coordinated atoms. This structure is recognized by a

double-peak angular distribution with two peaks around 100◦ and 120◦ which have com-

parable intensities [134]. The angular distribution of undercoordinated atoms in hydrated

NPs, however, does not have these characteristics. Moreover, the angular distributions of

hydrated ZB and WZ NPs do not resemble. This shows that the 3-coordinated structure is

not forming on the surface of the hydrated NPs and their surface structure not similar either.

To further investigate the internal and surface structure of NPs we examine the co-

ordination number and tetrahedral order parameter at different distances from centre of

NPs. Previously, we used atomic coordination number and bond angles to categorize 4-

coordinated atoms into two tetrahedral and not tetrahedral groups. Here, we use an order

parameter to track the level of deviation from tetrahedral bond structure in different parts

of the NPs. The tetrahedral order parameter (QT ) of Chau and Hardwick [140] indicates

the deviation from perfectly tetrahedral bond structure and ranges from 0 (random bond

structure) to 1 (perfectly tetrahedral arrangement). For each 4-coordinated atom in ZB or

WZ structures, the atomic tetrahedral order parameter is defined as

qTi = 1− 3

8

3∑
j=1

4∑
k=j+1

(
cos θijk +

1

3

)2

(5.1)

where θijk is the bond angle between the central atom i and two of its closest dissimilar

neighbors j and k. Tetrahedral order parameter of NP then can be calculated as

< QT >=
1

N

N∑
i=1

< qi > (5.2)

where < ... > denoted the ensemble average. Figure 5.3 shows the average coordination

number and tetrahedral order parameter at different distances from the centre of NPs.
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Figure 5.3: Average tetrahedral order parameter (a) and coordination number (b) at differ-
ent distances from centre of ZnS NPs. r and R are the distance from the centre and radius
of NPs, respectively.

Due to the bubble-like structure, there is no 4-coordinated atom in bare 10 Å NPs so
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< QT > can not be calculated. On the other hand, Figure 5.3b shows that the < CN > is

bigger than 3 at the centre of the hydrated 10 Å NPs meaning that 4-coordinated atoms still

exist. More over, the average CN on the surface of these NPs is smaller than three which

shows atoms on the surface are not entirely 3-coordinated. These two observations reveal

that hydrated 10 Å NPs did not form bubble-like (in which all atoms are 3-coordinated)

or onion-like (where two bubbles are connected through a network of 4-coordinated atoms)

structures. Considerably low value of < QT > at the centre of the hydrated 10 Å NPs

(Figure 5.3a) shows that the bond structure of 4-coordinated atom deviates from the tetra-

hedral greatly.

It was shown previously that atoms with tetrahedral bond structure can be detected

at the very centre of bare 20 Å WZ NPs while they are completely disappear in bare ZB

NPs with the same size. The low < QT > at the centre of bare 20 Å WZ NP in Figure

5.3a also confirms this. However, the same figure shows a tetrahedral bond structure at the

centre of the hydrated 20 Å ZB NP. In fact, it can be seen that < QT > of hydrated NPs

with all sizes and crystal structures are generally higher than bare NPs which shows more

stability of the tetrahedral bond structure in hydrated NPs. It has been shown that WZ

NPs have more structural stability when they relax in vacuum. This can be also observed

in Figure 5.3a where the < QT > plots of bare WZ NPs lie above the ZB ones. However,

the tetrahedral order parameter of ZB NPs in hydrated state is generally higher that WZ

NPs.

Figure 5.3b shows that unlike the bare NPs, the average CN of surface atoms in hydrated

NPs is smaller than three. Similar to angular distribution in Figures 5.2e and 5.2f, this in-

dicates that the interconnected 3-coordinated surface structure which was observed in bare

NPs was not formed in hydrated NPs and atom with lower coordination numbers remained

on the surface. Examining the coordination number of the surface atoms in detail showed

that almost all atoms on the surface of relaxed hydrated NPs are either 2- or 3-coordinated.

In some rare cases, interaction with water causes the 1-coordinated Zn atoms to leave the

surface of the NP but generally, 1-coordinated atoms changed their coordination number

by surface relaxation. The RMSD of the undercoordinated atoms is calculated to examine

the surface structure of NPs in more detail. Correction of atomic positions to remove centre

of mass movement and rotation is important before calculating RMSD, specially for small

hydrated NPs which have large movement in water. The average RMSD of undercoordi-

nated Zn and S atoms in respect to the initial configuration of NPs are shown in Figure B.1.

118



(a)

(b)

119



(c)

(d)

Figure 5.4: RMSD of Zn and S atom in (a) ZB bare, (b) ZB hydrated, (c) WZ bare, and
(d) WZ hydrated NPs. RMSD is calculated in respect to the initial configurations of NPs.
Error bars show the difference between values obtained from different initial configurations.
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As expected, Figure 5.4 shows that the overall RMSD of atoms in hydrated NPs is lower

than bare NPs indicating that NPs experience less severe structural changes when they are

relaxed in water. In other words, the structure of hydrated NPs are more similar to the

initial structures before relaxation which also means they have more crystalline structure.

The RMSD of undercoordinated Zn atoms is generally higher than S atoms in bare NPs

due to the higher mobility of Zn atoms. Zn atoms seems to have higher mobility than S

atoms on the surface of hydrated WZ NPs as well while the RMSD of undercoordinated Zn

and S atoms is close to each other in hydrated ZB NPs. In both hydrated and bare states,

the overall RMSD is decreasing by increasing the size due to the lower structural changes

in bigger NPs. According to RMSD results, we may expect the hydrated NPs to be less

polar since their structure is more similar to initial non-polar configurations. In the next

section, we study the polarity of bare and hydrated NPs in more detail.

5.3.2 Polarity as a function of structural evolutions

Previously, we showed that relaxation of ZnS NPs with non-polar and charge-neutral initial

configurations in vacuum, results in final structures with the polar nature [134]. The same

dipole moment (DM) calculations were done for hydrated NPs in this study. As a result,

DMs reported for hydrated NPs are pure DMs without considering the solvent effect. Figure

5.5 shows the DM calculation results for hydrated and bare ZB NPs.

Since bulk ZB structure has a non-polar nature, polarity of relaxed NPs is due to the

deviation of the arrangement of the surface atoms from the ideal ZB structure. Figure 5.5

shows that the magnitude of DM of a hydrated ZB NPs is considerably bigger than the bare

NPs with the same sizes. This shows that less deviation of hydrated NPs’ structures from

the initial configurations which was shown by RMSD calculations, would not make them

less polar. However, Figure 5.5b shows that the magnitude of normalized DM (DM per ZnS)

for hydrated NPs decreases by increasing the size similar to what was observed for bare ZB

NPs. The difference between magnitude of the normalized DM of hydrated and bare ZB

NPs also decreases as the NP become bigger. As the size of the NP increases, the portion of

NP structure which deviates from the initial nonpolar configuration decreases. This makes

the surface effect less significant and the structure of bare and hydrated NPs more similar.

The randomness of the direction of the DM vectors also shows that the polarity of ZB NPs

in both bare and hydrated states is controlled by the surface structure. Thus, the different

polarity of bare and hydrated ZB NPs is attributed to their different surface structures.

The atomic structure of the surface of bare NPs consists of a network of interconnected

3-coordinated atoms which are connected to the crystalline core of the NP through a layer

of distorted 4-coordinated structure. This arrangement makes the surface of bare NPs to
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(b)

Figure 5.5: Variation of (a) DM and (b) DM per ZnS molecule with the size of bare and
hydrated ZB NPs. Inset plots show the the projected image of the DM vectors of hydrated
NPs on the XZ plane.
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have a liquid like structure which is homogeneously distributed all over the surface and is

similar in all NPs. The homogeneous nature of the surface structure of bare NPs, lowers the

DM caused by the surface atoms. In the extreme case of the very small NPs (D = 1 nm)

where the bubble-like structure is formed, the arrangement of atoms is close to a spherical

shell which has the maximum symmetry. To further clarify this, the structures of bare and

hydrated 30 Å ZB NP is shown in figure 5.6.

The three phase structure of bare NPs can be clearly recognized in Figure 5.6a where

the high tetrahedrally ordered centre is surrounded by a layer of 4-coordinated atoms with

a distorted bond structure and the surface is entirely made of 3-coordinated atoms. Both

distorted 4-coordinated and 3-coordinated surface structures seem to be interconnected and

continuous. On the surface of the hydrated 30 Å ZB NP however, the 2-coordinated atoms

can still be found after relaxation. Moreover, there is no continuous distorted 4-coordinated

structure beneath the surface of the hydrated NP and tetrahedral seems to be stable up

to the surface of the NP. Another important difference between surface relaxation in water

and vacuum is how the CN of atoms changes during relaxation. When the NP is relaxed in

vacuum, all undercoordinated atoms try to increase their CN and become 3-coordinated to

lower the surface energy. However, it was observed that some of the surface atoms which

were 3-coordinated in the initial configuration lower their CN to 2 after relaxation in water.

This shows that for some of the surface atoms, it is energetically more favorable to break a

bond with ZnS structure and form a bond with water Which increases the inhomogeneity

of the surface structure of the hydrated NPs. Hydrated NPs experience less overall struc-

tural evolutions which results in lower RMSD and more crystalline structures. However,

their surface relaxation is less homogeneous comparing to the bare NPs which results in the

higher DM in the hydrated NPs.

We have shown before that the bulk WZ structure at 300 K shows a natural DM of

0.3855 D per ZnS along the Z direction because of the slight C3v-distortion of the elemen-

tary ZnS tetrahedron [134]. The magnitude of DM of the bare ZnS NPs with both crystal

structures are similar when the size of the NPs is smaller than 30 Å. This is due to the

fact that crystalline core is not the dominant part of the NP structure and the surface

structures of the bare WZ and ZB NPs are similar. When the size of the bare NP increases,

the crystalline core becomes dominant part of the NP structure so DM approaches to the

bulk value, consequently. As a result, the DM of the bare WZ NP becomes more aliened to

the Z direction and its magnitude converges to 0.3855 D per ZnS molecule when the size in-

creases. Figure 5.7 shows the DM of bare and hydrated WZ NPs as a function of the NP size.

Figure 5.7a shows that the DM of both hydrated and bare WZ NPs increases by increas-

ing the size. However, the DM of hydrated WZ NPs is bigger that the bare NPs. Figure
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Figure 5.6: Projection of atomic positions in the last 500 ps of relaxation of (a) bare and (c)
hydrated 30 Å ZB NP. The cross-section is viewed along the [111] direction and the big and
small circles represent S and Zn atoms, respectively. 4-coordinated atoms are colored with
respect to their tetrahedral order parameter, qT . For clarity, only the position of atoms
located in the central slab (−6Å < x+ y + z < 6Å) are shown.
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(a)

(b)

Figure 5.7: Variation of (a) DM and (b) DM per ZnS molecule with the size of bare and
hydrated ZB NPs. Inset plots show the the projected image of the DM vectors of hydrated
NPs on the XZ plane.
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5.7a shows that DM per ZnS is also higher in the hydrated WZ NPs. As the hydrated NPs

has more crystalline structure, this difference can be attributed to the polar nature of the

WZ lattice. However, the fact that DM of hydrated 50 Å WZ NP is still much bigger than

the natural DM of bulk WZ shows that the large DM of hydrated WZ NPs is not solely

due to their more crystalline structure. Similar to ZB NPs, the surface of WZ NPs has less

homogeneous structure than the bare NPs and this can result in higher DMs. However,

The large difference between DM magnitude of bare and Hydrated WZ NPs shows that the

effect of the surface is more significant in hydrated WZ NPs.

In WZ structure, (0001) is the most compact and a polar crystallographic surface. First

principle studies has been shown that relaxation of Zn-terminated (0001) includes a large

displacement of Zn atoms toward the bulk which ends up to a surface reconstruction very

similar to the one of the non-polar (1010) surface [141, 142]. We also modeled relaxation of

Zn and S (0001) surfaces in water and vacuum using MD at 300 K and obtained the same

results. The simulations showed that Zn atoms move down to locate in the underlying S

layer. Relaxation of S-terminated (0001) planes, however, does not include large movement

of S ions. In our WZ NPs, the positive and negative end of all NPs in Z direction is ter-

minated by Zn and S (0001) surfaces, respectively. This tells us that we should expect a

large movement of positively charged Zn ions toward the -Z direction which can cause a

large DM in the same direction. The structure of relaxed bare and hydrated 30 Å WZ NP

is shown in Figure 5.8 to demonstrate this surface relaxation.

Figure 5.8 clearly shows the difference between relaxation of bare and hydrated WZ NPs

in Z direction. More faceted structure of the hydrated NP is accompanied by large surface

relaxation in Zn-terminated (0001) surface.This relaxation includes a large movement of Zn

atoms toward the -Z direction which makes final structure of Zn-terminated (0001) surface

to be flatten. This kind of surface reconstruction was also reported by other studies using

different interatomic potentials [143]. It was shown that the the final {0001} surfaces are

flattened to a near-hexagonal net which can effect the tetrahedral bond structure of the

underlying layers in the bulk of NP as well. Thus, the effect of the Zn-terminated (0001)

surface relaxation on the underlying atomic layers is probably the reason of lower tetrahe-

dral order parameter and wider angular distribution which was observed for hydrated WZ

NPs. The same surface relaxation happened in the first stages of the relaxation of WZ NPs

in vacuum. By continuing the relaxation and formation of the 3-phase structure, the initial

strain caused by relaxation of Zn-terminated (0001) surface is released and DM decreases.

The more faceted configuration of the hydrated WZ NPs, however, is the reason of their

larger polarity. The equivalent WZ (0001) plane in ZB structure is (111) surface. Due

to the Td symmetry of ZB structure there are 4 sets of (111) planes in ZB which gives a

more homogeneous distribution to the (111) facets on the surface of a ZB NP. As a result,
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(a)

(b)

Figure 5.8: Projection of atomic positions in the last 500 ps of relaxation of (a) bare and
(c) hydrated 30 Å ZB NP. The cross-section is viewed along the +Y direction and the big
and small circles represent S and Zn atoms, respectively. Dashed lines represent the initial
position of (0001) planes and color map shows the atomic displacement in Z direction.For
clarity, only the position of atoms located in the central slab (−6Å < y < 6Å) are shown.

127



the effect of polar facets relaxation on the total DM of the hydrated ZB NP is less significant.

5.3.3 The structure of water

To understand the interaction between water and ZnS NPs, we studied the water structure

around NPs in more details. In addition to stabilize the surface, the structure of water

around the NP can play an important role in interaction of NP with the aqueous solution

such as adsorption/desorption reactions of aqueous ions on the surface of NPs. The partial

RDF diagrams between surface atoms of 30 Å NPs and water molecules are shown in Figure

5.9.

In theory, water adsorption to the NPs surface can happen through formation of Zn-O

bonds, S-H bonds or mixture of both bond types. Figure 5.9 shows that water adsorbs

to the NPs surface mainly through Zn-O interactions. Examination of partial RDF dia-

grams for other sizes shows that Zn-O bond length is varying between 2.1 and 2.2 Å while

S-H bond length lies between 2.4 and 2.5 Å. These values are in a good agreement with

CPMD results for hydrated (ZnS)n clusters (n = 4[78], 33 and 116 [137]). The structure

of hydrated Zn2+ ion has thoroughly been studied by various experimental and theoretical

methods. It has been shown that preferred hydration state of Zn2+ is six-coordinated. Ex-

perimentally measured Zn-O bond length for six coordinated Zn2+ cation varies between

2.07 to 2.1 Å [144, 145] which has been also confirmed by DFT studies have [146, 147].

In the fitting procedure used to derive parameters of Water-ZnS potential no data from

solvation of Zn2+ was used, however, it was shown that the correct octahedral coordination

is obtained for Zn2+ with a distance of 2.07 Å between the ion and the water molecules

[41]. We also performed the MD simulation of solvation of S2− ion in water. More water

molecules (9 - 11) was found in the first coordination shell of S2− ion with the average S-H

distance of 2.4 Å. Shorter Zn-O distance suggests stronger Zn-O bond in respect to S-H

bonds. This can be attributed to the difference between the Pauling electronegativities of O

and Zn (3.44-1.65 = 1.79) which is larger than that between S and H (2.58-2.20 = 0.38) [78].

The first peak in the Zn-O RDF diagram represents the first hydration shell around the

NP at which water molecules are tightly bond to the NP surface. The statics and dynamics

of water at the first hydration shell can be explained using two quantities: average number

of coordinated water (nw), and water residence time (τ). These two parameters have been

used in experimental studies on ions in water [144], and theoretical studies to describe water

properties near flat surfaces [148] and nanoparticles [149, 150]. Average number of coordi-

nated water for each atom on the surface of the NP was calculated by counting the number

of water molecules whose centre of mass lies within the first hydration shell distance. We

used the definition proposed by Impey et al. [151] to calculate water residence time. In this
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(a)

(b)

Figure 5.9: Partial RDF diagrams of Zn(surface)-O(water) and S(surface)-H(water) pairs
for 30 Å ZnS NPs with initial (a) ZB and (b) WZ crystal structures.
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definition, water residence time for each ion is calculated from residence-time correlation

function, which is defined as

< n(t) >=<
1

N0

N0∑
i=1

Pi(t0, t; t
∗) > (5.3)

where < ... > denotes the time average, N0 is the number of the coordinated water around

the ion at the time t0 and Pi(t0, t; t
∗) is a property of water molecule i which can take values

of 0 or 1. Pi(t0, t; t
∗) equals to 1, if water molecule i is within the first hydration shell at

the time t0 and t0 + t and have not left the first hydration shell for any continuous period

longer than t∗. Under all other circumstances, it takes the value 0. Following the original

work of Impey et al., we set t∗ equal to 2 ps [151]. From this definition it is apparent that

n(0) = 1. The water residence time at the first hydration shell can be obtained now by

integration of < n(t) >:

τ =

∫ ∞
0

< n(t) > dt (5.4)

Figure 5.10 shows the average number of coordinated water molecules and the average resi-

dence time of water in the first hydration shell. These properties were calculated using the

trajectories of the last 500 ps of simulations.

Figure 5.10a shows that the number of coordinated water and water residence time is

higher around 2-coordinated surface atoms. Surface atoms with lower coordination num-

bers have more ability to adsorb water to compensate their under-coordination. Similar to

what was observed for S2− and Zn2+ ions in water, the average coordinated water number

around surface S atoms is higher in Figure 5.10a. However, Figure 5.10b shows that there

is a large difference between water residence time near surface Zn and S atoms. Water

molecules in the first hydration shell of surface Zn atoms show a high stability while the

residence time near S atoms is almost negligible. Large difference between water residence

time around Zn and S atoms, shows again that water molecules mainly adsorb to the surface

of NPs through Zn-O interactions. The long residence time specially near 2-coordinated Zn

atoms can effect the surface properties of hydrated NPs greatly. In catalyst applications

for instance, the affinity of undercoordinated atoms which considered as reaction sites can

be influenced by water molecules in the first hydration shell. The almost immobile water

molecules near 2-coordinated Zn atoms can also affect the observable dipole moment of the

NP.
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(a)

(b)

Figure 5.10: Water properties within the first hydration shell distance from the surface
atoms during the last 500 ps of simulations. (a) average coordinated water number and (b)
average water residence time near surface.
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Figure 5.10a also shows that adsorption of water to the surface of NPs depends on the

local structure of the surface. Type of atoms (Zn or S) and their CN (2 or 3) affects the

water structure near a surface site. Accordingly, the water structure around the NP is het-

erogeneous and the first hydration shell is not continuous. The position of water molecules

within the first hydration shell distance (< 3Å) from the surface of 30 Å ZB and WZ NPs

are shown in Figure 5.11. To make it possible to show the whole surface of NPs, positions

of Water molecules are represented in the Spherical Polar Coordinates.

(a)
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(b)

(c)
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(d)

Figure 5.11: Projection of positions of water molecules in the first hydration shell and
surface Zn and S atoms of 30 Å ZB and WZ NPs in the θφ plane of the Spherical Polar
Coordinates. (a) and (c) are positions of water molecules within the first hydration shell
distance from the surface of ZB and WZ NPs, respectively. (b) and (d) show the position
of surface Zn and S atoms in the same NPs, ZB and WZ, respectively. θ is the azimuthal
angle in the xy-plane from the x-axis with 0 ≤ θ < 2π, φ is polar angle from the positive
z-axis with 0 ≤ φ ≤ π. Each point in the graphs represent one atomic (or molecular in case
of water) position during the last 500 ps of simulations.

As shown in Figure 5.11, the water structure of in the first coordination shell strictly

depends on the position of Zn atoms on the surface. The positions of water molecules can

be fit on the positions of Zn atoms on the surface. The position of the Zn-terminated (111)

and (0001) facets in the ZB and WZ NPs are shown in the Figures 5.11b and 5.11d as an

example. It can be trivially seen that corresponding S-terminated planes did not caused

any order in the water structure.

5.4 Conclusions

The structural evolutions of bare and hydrated ZnS NPs with two initial crystal structures,

ZB and WZ, and ranging in size between 1 to 5 nm are compared in this work. Different

structural analyses such as radial distribution function, angular distribution, tetrahedral
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order parameter and root mean square displacement performed on relaxed NPs showed

that the 3-phase structure which was previously reported for the bare NPs was not formed

in hydrated NPs. The 3-phase structure of bare NPs consists of a crystalline core followed

by a layer of distorted 4-coordinated atoms and surface structure which entirely made of

interconnected 3-coordinated atoms. Despite the more crystalline bulk of the hydrated

NPs, their surface structure is not as homogeneous as bare NPs. The layer of distorted

4-coordinated atoms was not observed and bulk of NP remains its tetrahedral bond order

almost up to the surface. 2-coordinated atoms which disappear after relaxation of NPs in

vacuum were observed on the surface of hydrated NPs as well.

The structural evolution of ZnS NPs in vacuum and water affects their polarity. Initially

non-polar ZnS NPs show polar behaviour after relaxation. When the size of the bare NP is

smaller than 3 nm, the surface is dominant portion of NP structure and controls the polar-

ity. Due to the similar surface structure of bare WZ and ZB NPs they show similar dipole

moments. In bare NPs bigger than 3 nm, polarity is controlled by volume. This makes ZB

and WZ NPs less and more polar, respectively (WZ crystal structure has a natural dipole

moment at 300 K due to the slight C3v-distortion of the elementary ZnS tetrahedron).

Despite the more crystalline structure, hydrated ZB NPs showed a considerable polarity

specially in small sizes. It has been shown than this polarity is due to the inhomogeneous

surface relaxation in hydrated NPs. On the other hand, liquid like surface structure which

is the result of the homogeneous structural deformation, lowers the dipole moment in bare

NPs. In spite of the different dipole moment magnitudes of hydrated and bare ZB NPs, they

both follow the same trend by increasing the size and become less polar. Hydrated WZ NPs

showed more complicated surface relaxation. It is shown than relaxation of Zn-terminated

(0001) surface of hydrated WZ NPs causes a large dipole moment in the Z direction. As a

result, WZ NPs show a strong polarity in water and their dipole moment does not converge

to the bulk WZ value even in sizes as big as 5 nm.

Analyses on water structure showed that water molecules are adsorbed to the surface

of ZnS NPs mainly through Zn-O interactions. Despite of higher number of coordinated

water molecules in the first hydration shell of surface S atoms, the residence time of water

near S atoms is negligible. On the other hand, long residence time of water near underco-

ordinated Zn atoms, especially 2-coordinated Zn atom, showed that some water molecules

become almost immobile in the vicinity of the surface Zn atoms. This results show that

the water adsorption is depended on the local structure of the NP surface which results in

a discontinuous first hydration shell. The position of water molecules in the first hydration

shell of NPs showed to have the same pattern as the arrangement of surface Zn atoms.
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Chapter 6

Conclusion and future works

Throughout this work we have studied the structural stability of ZnS nanoparticles as a

function of crystal structure, size and environment mainly through employing the molecular

dynamics simulations. We began with a focus on finding the proper empirical potential to

model ZnS in nano-scale. The performance of five different empirical potentials for ZnS

were tested and compared in Chapter 3. These potential functions of ZnS were developed

by Wright and Jackson [90], Hamad et. al. [37], Wright and Gale [91], Grünwald et. al.

[88], and Benkabou et. al. [92]. To avoid redundancy, we named the potentials by their

short terms as IP1, IP2, IP3, IP4 and IP5, respectively.

It was shown that the lattice constants of ZB and WZ phases calculated by all empirical

potentials are in acceptable agreement with the experiment. However, the lattice constant

of RS phase calculated by IP3 and IP5 were not in an agreement with experimental values.

This also happened for mechanical properties as elastic constants calculated for RS phase

using IP3 and IP5 diverge greatly from those calculated by other potentials. We showed

that mechanical and structural properties of RS phase calculated by IP3 potential can be

improved by modifying its 3-body cut-off distance. Study of the phonon dispersion relations

of ZB and WZ phases showed that all empirical potentials were able to reproduce acoustic

branch except for IP1. None of potentials could predict optical phonons accurately and it

was worse for IP5 as there was no LO/TO splitting due to the charge neutral atoms. IP1

was also unable to make the experimentally observed surface structure of ZnS. All other em-

pirical potentials produced correct relaxed surface structures, however, IP2 and IP3 results

were in the better agreement with the experiment. Pressure induced phase transforma-

tion was successfully predicted by IP1, IP2 and IP4. It is also shown that changing the

3-body cut-off distance would enable IP3 to show the pressure induced phase transforma-

tion as well. P-V relation calculated by IP2 represents better agreement with experimental

results. Thermal expansion and potential hyper surface calculated by IP2 also showed a

better agreement with experimental results and DFT calculations. Overall, one general

comment can not be made on reliability of particular empirical potentials. The choice of
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potential is highly depended on the application that molecular mechanic simulation aims

for. Each of these potentials is designed to reproduce some specific ZnS properties. Except

for IP5, we were able to run molecular dynamic simulations for temperatures as high as

1500 K. However, more care should be taken when using potentials that include shell model

to perform high temperature molecular dynamics simulations. Very small time steps are

needed to make shell model work in high temperatures which usually makes simulations

too slow to be practical. Simulation speed is also highly depended on the complexity of the

potential formulation. Thus, potentials like IP4 offer much higher simulation speed than

more complicated ones like IP3.

The structural evolution of bare ZnS NPs having initial ZB and WZ crystal structures

and ranged in size from 1 to 5 nm was investigated in Chapter 4. It was shown that for

NPs bigger than 30 Å, the final configurations consists of three regions: a) a crystalline core

which keeps its tetrahedral bond structure, b) a region of distorted 4-coordinated atoms

which surrounds the core by forming 4- and 6-rings, and c) a network of interconnected

3-coordinated atoms which covers the surface of NPs. In the relaxed structure of 10 Å NPs

all of the atoms are 3-coordinated, confirming the formation of the bubble-like structure.

For 20 Å NPs, the structure relaxation removes the initial tetrahedral bond structure (re-

gion a) entirely. Our structural analyses showed that both ZB and WZ NPs ranging from

2 to 5 nm in size adopt a similar surface structure which includes regions b and c. This

similarity may result in similar surface properties such as the surface energy. Although

the tetrahedral bond structure is more stable in WZ NPs, we did not observe any phase

transformation from ZB to WZ during 10 ns MD simulations. Results of dipole moment

calculations showed that non-polar ideal structures of the bare NPs changes to the polar

structures after relaxation at 300 K. Since the tetrahedral core of ZB NPs has a non-polar

nature, the deviation of the surface structure from the ideal tetrahedral bond arrangement

is the reason of their polar behaviour. Due to the randomness of the arrangement of the

atoms on the surface, there was no specific direction for the dipole moment vector of the

ZB NPs. In contrast, dipole moment vectors of WZ NPs becomes more aligned with -Z

direction as the NP size increases. This is due to the polar nature of the WZ lattice, which

was shown to have a dipole moment of 0.3855 D per ZnS molecule. By increasing the size

of the WZ NP, the crystalline polar core becomes more dominant and controls the dipole

moment magnitude and direction. For NPs smaller than 3 nm, where surface structure is

predominant, the magnitude of dipole moments of ZB and WZ NPs are similar due to the

similarity of the surface structures. As the size of the NP increases, the crystalline core

becomes the dominant part of the NPs structure making ZB and WZ NPs less and more

polar, respectively.

The structural evolutions of bare and hydrated ZnS NPs were compared in Chapter 5.
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Structural analyses performed on the relaxed structures showed that the 3-phase structure

which was observed in the bare NPs is not formed in hydrated NPs. The structure of hy-

drated NPs is generally more crystalline. Despite the more crystalline bulk of the hydrated

NPs, their surface structure is not as homogeneous as the surface structure of the bare NPs.

The layer of distorted 4-coordinated atoms was not observed and bulk of NP remains its

tetrahedral bond order almost up to the surface. 2-coordinated atoms which disappeared

after relaxation of NPs in vacuum were observed on the surface of hydrated NPs. The in-

homogeneity of the surface structure of hydrated ZB NPs results in a considerable polarity

specially in small sizes. On the other hand, liquid like surface structure which is the result

of the homogeneous structural deformation, lowers the dipole moment in bare NPs. In spite

of the different dipole moment magnitudes of hydrated and bare ZB NPs, they both follow

the same trend by increasing the size and become less polar. Hydrated WZ NPs showed

more complicated surface relaxation. It is shown than relaxation of Zn-terminated (0001)

surface of hydrated WZ NPs causes a large dipole moment in the Z direction. As a result,

WZ NPs show a strong polarity in water and their dipole moment does not converge to the

bulk WZ value even in sizes as big as 5 nm. Analyses of the water structure around NPs

showed that the arrangement of water molecules in the first hydration shell highly depends

on the arrangement of under-coordinated Zn atom on the surface. This is because of strong

interaction between NPs’ zinc atoms and oxygen in water molecules which causes water

molecules to adsorb to the surface of ZnS NPs mainly through Zn-O interactions. Despite

the higher number of coordinated water molecules in the first hydration shell of surface S

atoms, the residence time of water near S atoms is negligible. On the other hand, long

residence time of water near undercoordinated Zn atoms, especially 2-coordinated Zn atom,

showed that some water molecules become almost immobile in the vicinity of the surface

Zn atoms.

Overall, this study shows that ZnS NPs structure can dynamically change and its evolu-

tion depends on crystal structure, size and environment. The particle-particle and particle-

environment interactions are also affected by the structural evolution of NPs. This study

clearly shows that there is still plenty to investigate in this field. some aspect of our work

which we could not complete and propose for future studies are:

• This study highlights that improving the available ZnS empirical potentials is still

desirable. We found the potential developed by Hamad et al. [37] the most suitable one

to study the noncrystalline ZnS. But, this should be emphasized that the order of the

structural stability of ZB and WZ phases is not predicted accurately by this or other

available empirical potentials in literature. The fact that the most stable structure

of ZnS NPs predicted by this potential using the global minimization technique is

the unphysical BCT phase shows that, developing a more accurate potential can be

the subject of the future studies. It also may be desirable to develop more stable
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force fields in high temperatures to investigate structure of ZnS NPs as a function of

temperature. Developing parameter of more powerful force fields such as ReaxFF, can

enable the study of surface reactions such as Cu-Zn uptake or surface dissociation.

• The fundamental question for any classical molecular dynamics simulation is that if

the simulation has been running long enough to satisfy ergodicity. In other words,

MD simulation should be long enough so the system under study can explore all the

energetically relevant configurations. This ideal condition, however, is not always

achievable in practical situations. Different configurations of the system may be sepa-

rated by high free-energy barriers which makes it impossible to observe the structural

transformations in the time scale of MD simulation. We tried to apply the metady-

namics method to investigate phase space of ZnS NPs. This would be an exiting topic

for the future studies as size and shape dependent phase transformation in ZnS NPs

has been proposed in numerical and experimental studies.

• The first principle calculations can be used in conjunction with molecular dynamics

simulations to study the effect of structural changes of ZnS NPs on their optoelec-

tronic properties. Simulation of dynamics of structural evolution in long time scales

such as those reported in this study is still beyond the reach of the first principle

simulations. However, these methods can be used to investigate the optoelectronic

properties of NPs at different stages of MD relaxation. This can provide useful in-

formation regarding the life time and performance quality of ZnS quantum dots in

different conditions.
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Appendix A

Comparison between DFT and IP
results for the geometry
optimization of the 1 nm
nanoparticle

Table A.1: Comparison between DFT and IP (interatomic empirical potential)
results for the geometry optimization of the 1 nm zinc blende (ZB) and wurtzite
(WZ) ZnS nanoparticles.

Property Method ZB WZ

∆E1
IP (eV )

IP -1.415 -1.700
DFT -1.089 -1.272

∆E∗DFT (eV )
IP -0.859 -0.911
DFT -1.03 -1.17

RMSD (Å)
IP 1.63 1.72
DFT 1.34 1.41

Average Bond Length (Å)
IP 2.321 2.333
DFT 2.355 2.350

Average Bond Angle (◦)
IP 107.913 106.588
DFT 130.130 103.970

Average Coordination Number2 IP 3.101 3.000
DFT 2.942 2.955

Dipole Moment3(D)
IP 1.475 1.938
DFT 1.389 1.867

1. ∆E = Ef−E0. Geometry optimization performed using IP and DFT methods. Single

point energy calculation was performed for initial and final structures after geometry

optimization. Subscript of ∆E shows the method used for the single point energy

calculations. In the IP method which includes shell model, we let the shells of S

atoms to relax during energy calculations.
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2. Average coordination numbers of the initial configurations of the ZB and WZ nanopar-

ticles were 2.895 and 2.636, respectively.

3. Dipole moment was calculated using the DFT method.
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Appendix B

Monitoring the structural
evolution of hydrated ZnS
nanoparticles during MD
simulation

Root mean square displacement (RMSD) and the 4th order Steinhardt parameter, Q4 were

used to monitor the structural changes in the hydrated ZnS nanoparticles (NPs). After

running MD simulations for 8 ns in the NPT ensemble, simulations were stopped if these

parameters did not change abruptly for at least 2 ns. Figure SB.1 shows the evolution

of RMSD in the 10 ns NPT simulations. RMSD is calculated with respect to the initial

unrelaxed configurations of NPs.

The 4th order Steinhardt parameter, Q4 was calculated using the PLUMED software

[152]. The order in the first coordination shell around an atom can be conveniently mea-

sured using Steinhardt order parameters. As explained in the PLUMED manual, Steinhardt

parameters can be utilized in a variety of different ways to perform this measurement. In-

stead of simply taking the norm of Steinhardt parameters and calculating Q4, we used more

complicated approach which calculates “local Q4”. This parameter shows the extent which

orientation of the atoms in the first coordination sphere of an atom match the orientation

of the central atom. For more details about different methods of calculation of Steinhardt

order parameter, readers are referred to the PLUMED manual. Evolution of the “local

Q4” during the 10 ns NPT simulation of ZnS NPs is represented in Figure SB.2.
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(a) WZ (b) WZ

(c) ZB (d) ZB

Figure B.1: Evolution of RMSD during the 10 ns NPT simulation of ZnS NPs. (a) and (b)
are related to WZ NPs and show RMSD of Zn and S atoms, respectively. (c) and (d) are
the similar calculations for the ZB NPs.
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(a) WZ (b) WZ

(c) ZB (d) ZB

Figure B.2: Evolution of local Q4 during the 10 ns NPT simulation of ZnS NPs. (a) and
(b) are related to WZ NPs and show the local Q4 of Zn and S atoms, respectively. (c) and
(d) are the similar calculations for the ZB NPs.
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Appendix C

Surface properties of ZnS in
vacuum and water

As a part of this study, the surface properties of ZB and WZ ZnS is studied in the vacuum

and water. The results of surface energy calculations are represented in Table C.1. The

surface properties represented in this section are calculated using 3D periodic boundary

conditions within DL POLY software which is different from the method used to calculated

surface properties in Chapter 3.

Table C.1: Surface energy calculations for ZB and WZ crystallographic planes in vacuum
and water.

Condition E∗1 E∗2 E2 − E1 Area Es
(eV) (eV) (eV) (Å

2
) (J/m2)

ZB

(110)

Vacuum - 0 K -25508.444 -25442.324 66.120 993.392 0.533
Vacuum - 300 K -25448.889 -25383.184 65.705 1001.119 0.526
Water - 300 K -26007.991 -25960.422 47.569 1001.119 0.381

(111) - Zn

Vacuum - 0 K -25508.444 -25424.650 83.794 811.101 0.828
Vacuum - 300 K -25448.889 -25365.000 83.889 817.411 0.822
Water - 300 K -25870.384 -25817.128 53.256 817.411 0.522

(111) - S

Vacuum - 0 K -25508.444 -25405.000 103.444 811.101 1.022
Vacuum - 300 K -25448.889 -25346.439 102.450 817.411 1.004
Water - 300 K -25823.258 -25737.000 86.258 817.411 0.845

(100) - Zn

Vacuum - 0 K -28697.000 -28547.000 150.000 1053.652 1.140
Vacuum - 300 K -28630.000 -28487.000 143.000 1119.572 1.023

Continued on the next page
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Table C.1 – Continue
Condition E∗1 E∗2 E2 − E1 Area Es

(eV) (eV) (eV) (Å
2
) (J/m2)

Water - 300 K -29256.587 -29167.501 89.086 1119.572 0.637

(100) - S

Vacuum - 0 K -28697.000 -28530.610 166.390 1053.652 1.265
Vacuum - 300 K -28630.000 -28474.000 156.000 1119.572 1.116
Water - 300 K -29249.801 -29149.000 100.801 1119.572 0.721

WZ

(0001)-Zn

Vacuum - 0 K -26632.000 -26511.860 120.140 1040.846 0.925
Vacuum - 300 K -26566.000 -26456.000 110.000 1015.734 0.868
Water - 300 K -27018.032 -26941.000 77.032 1015.734 0.608

(0001)-S

Vacuum - 0 K -26632.000 -26484.070 147.930 1040.846 1.139
Vacuum - 300 K -26566.000 -26431.000 135.000 1015.734 1.065
Water - 300 K -27018.032 -26917.000 101.032 1015.734 0.797

(1010)

Vacuum - 0 K -26632.000 -26564.490 67.510 943.884 0.573
Vacuum - 300 K -26566.000 -26502.000 64.000 962.003 0.533
Water - 300 K -26970.152 -26920.000 50.152 962.003 0.418

(1120)

Vacuum - 0 K -26632.000 -26564.340 67.660 1021.779 0.530
Vacuum - 300 K -26566.000 -26502.000 64.000 1041.399 0.492
Water - 300 K -26970.152 -27001.000 46.062 1041.399 0.354
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Appendix D

String-like Cooperative Motion in
Homogeneous Melting

D.1 Abstract

Despite the fundamental nature and practical importance of melting, there is still no gen-

erally accepted theory of this ubiquitous phenomenon. Even the earliest simulations of

melting of hard discs by Alder and Wainwright indicated the active role of collective atomic

motion in melting and here we utilize molecular dynamics simulation to determine whether

these correlated motions are similar to those found in recent studies of glass-forming (GF)

liquids and other condensed, strongly interacting, particle systems. We indeed find string-

like collective atomic motion in our simulations of “superheated” Ni crystals, but other

observations indicate significant differences from GF liquids. For example, we observe nei-

ther stretched exponential structural relaxation, nor any decoupling phenomenon, while we

do find a Boson peak, findings that have strong implications for understanding the physical

origin of these universal properties of GF liquids. Our simulations also provide a novel

view of “homogeneous” melting in which a small concentration of interstitial defects ex-

erts a powerful effect on the crystal stability through their initiation and propagation of

collective atomic motion. These relatively rare point defects are found to propagate down

the strings like solitons, driving the collective motion. Crystal integrity remains preserved

when the permutational atomic motions take the form of ring-like atomic exchanges, but

a topological transition occurs at higher temperatures where the rings open to form linear

chains similar in geometrical form and length distribution to the strings of GF liquids. The

local symmetry breaking effect of the open strings apparently destabilizes the local lattice

A modified version of this chapter has been published as H. Zhang, M. Khalkhali, Q. Liu, and
J. F. Douglas, “String-like Cooperative Motion in Homogeneous Melting”, J. Chem. Phys., 138,
12A538 (2013).
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structure and precipitates crystal melting. The crystal defects are thus not static entities

under dynamic conditions, such as elevated temperatures or material loading, but rather

are active agents exhibiting a rich non-linear dynamics that is not addressed in conventional

“static” defect melting models.

D.2 Introduction

The theory of melting has developed rather slowly and there is still no fundamental theory

of this ubiquitous phenomenon. Melting has been conceived of in terms of the prolifera-

tion of vacancies [153], interstitials [154–156] and dislocations [157–161] upon heating where

these “excitations” are argued to progressively decrease the shear modulus of the crystal

until there is a complete loss of rigidity, resulting in the melted fluid state. Chui [162] has

emphasized the importance of the self-organization of dislocations to form low angle grain

boundaries (GBs), an effect that makes the melting transition first order [162, 163]. Many

other authors have emphasized the propensity for lattice defect structures to self-organize

into more extended defect structures [162–168]. There is also the Lindemann approach to

melting, [169–174] which is based on a consideration of the global instability of the crystal

lattice. In this perspective, melting is associated with a dynamical instability defined by the

thermodynamics of the crystal. In particular, melting is then characterized by a condition

at which the mean square atomic displacements become sufficiently large in comparison to

the mean interatomic lattice spacing. Basically, this condition defines the point at which

the lattice globally loses its structural integrity. Finally, we mention approaches based on

thermodynamic instability criteria that the entropy of the crystal exceeds the fluid entropy

[175, 176] or the vanishing of the crystal shear modulus [177, 178].

All these models consider melting in terms of time averaged equilibrium properties and

focus on the derivation of the conditions under which melting occurs, and on the thermo-

dynamic nature of the melting transition [179]. These approaches entirely neglect local

dynamical phenomena involved in the progressive change of state of the material from a lo-

cally ordered to a disordered state or the reverse of this process, “freezing”. Measurements of

freezing provide ample evidence of large scale fluctuations in dynamic light scattering mea-

surements [180], an effect attributed to some kind of large scale collective atomic motion at

the crystallization front [181]. In a previous paper [182], we investigated both heterogeneous

melting and freezing in Ni nanoparticles (NPs) and found that the collective atomic motion
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took exactly the same form as strongly interacting disordered particle systems such as GF

liquids. In NP melting, the collective motion and associated crystal disordering initiated

from the NP surface, while in NP freezing the ordering process initiated instead from the

interface of an ordered region (“seed”) within the NP. In both NP melting and freezing,

however, the transition between the solid and liquid states took the form of a propagating

wavefront in which string-like collective atomic motion occurred in the interfacial region of

the propagating front, evidencing the highly collective nature of the non-equilibrium order-

ing and disordering processes in these NPs [182]. Curiously, the length distribution of the

string-like collective motions, localized within the interfacial regions of these propagating

fronts, has always been found to be nearly exponential in the number of particles (atoms)

involved. This property is also characteristic of equilibrium GF liquids [183–185], and the

interfacial dynamics of GBs [186] and NPs at equilibrium [142], suggesting that a local

equilibrium approximately prevails at the propagating ordering and disordering interfaces.

While string-like collective motion evidently plays an important role in the dynamics

of ordering and disordering processes, the physical significance of this collective dynamics

is not yet entirely clear. In GF liquids, the growth of the average extent of this collective

motion (average number of particles moving collectively) has been directly related to the

growth of the activation energy for structural relaxation [187], providing significant insight

into the astronomical growth of relaxation times associated with cooling GF liquids; pre-

sumably, this collective particle motion will have a similar significance for understanding

aspects of the kinetics of melting and freezing. It seems likely that a better understanding

of this “dynamic heterogeneity” will also provide insights into how collective particle motion

influences crystal morphology [188, 189] and the propensity for crystal nucleation [190, 191].

Recent studies have emphasized that the dynamic heterogeneity of GF liquids is prevalent

in the freezing of simple fluids, even hard sphere liquids, making the nucleation process

more complicated than the simple model assumed by classical nucleation theory [192–194].

A predictive model of how the dynamic heterogeneity of glass-formation affects critical nu-

cleus formation has not yet emerged, however. Further studies of the coupling of dynamic

heterogeneity to both crystallization and melting are clearly required before such advances

can be made on a systematic basis. In the present work, we seek a better understanding of

the nature of the collective motion in the relatively “simple” process of homogeneous melt-

ing. Of course, melting in most materials is initiated by a heterogeneous nucleation process

initiated from the free surface of the crystalline material [195–199], as in our former NP
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study [182], or instead is initiated from GBs or other defects within the crystal [183, 184].

However, if these nucleation sources for melting are suppressed by modifying the crystal

interface appropriately, and also by reducing defects within the crystal, then it is possible

to “superheat” the crystal to well above its “equilibrium melting temperature”, TEm . The

present work considers the nature of this “homogeneous” melting process for crystalline Ni

based on the same interatomic potential [200] as used before for polycrystalline Ni and Ni

NPs, a choice that facilitates comparisons between these materials. We note that our ho-

mogeneous melting temperature TEm is not the liquid-solid coexistence temperature at zero

pressure. Rather, it is the more practically defined temperature at which actual melting in

our simulations occurs as a result of heating the crystal where interfacial effects on melting

are suppressed through the use of periodic boundary conditions.

In some ways, superheating is just an inversion of the supercooling process found in GF

liquids so we may expect some sort of collective atomic motion or some form of “dynamic

heterogeneity” to arise in superheated crystals as well. Qualitative evidence for such hetero-

geneity has been apparent since the earliest simulations of melting in hard discs by Alder et

al. [201, 202] where large-scale cooperative particle motion was found to be a conspicuous

feature of the melting process. This type of permutational particle motion was also noticed

long ago in the simulated melting of one-component plasmas [203] and measurements on

granular fluid [204], colloidal fluid [205, 206] and dusty plasma [207–209] melting in near

two dimensions. Quite recently there have been molecular dynamics studies of collective

atomic motion associated with superheating of three dimensional crystals of Lennard-Jones

particles [11, 210] where many aspects of dynamics heterogeneity in GF liquids are exhib-

ited such as a strong growth of the non-Gaussian parameter, clusters of mobile particles,

cooperative particle motion, etc. (These quantities are defined and examined below). Per-

haps the most extraordinary aspect of these simulations is the significant rate of diffusion

occurring in crystalline materials well below T hm, a temperature about 20% larger than TEm .

The appearance of highly correlated particle motion in association with bulk melting

appears to be consistent with the entropy catastrophe model of melting introduced by Fecht

and Johnson [175] where bulk melting was identified with the condition that the crystal en-

tropy becomes equal to that of the equilibrium fluid, an instability condition dual to that

of the liquid to crystallization when the liquid configurational entropy approaches that of

the crystal upon sufficient supercooling [175]. Recent molecular dynamics simulations of
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bulk melting in Ni and other metals (Al, Au, Pt) [176] have provided evidence support-

ing this instability explanation of bulk melting and Gallington and Bongiorno [176] further

suggested that the rapid increase of the configurational entropy of the crystal to its liquid

value upon heating is directly associated with cyclic atomic permutational atomic motion,

providing a potential direct link between the thermodynamic instability based on entropy

and the collective particle motion driving the melting process. However, accurate calcula-

tions of the configurational entropy of both the heated crystal and the Ni melt are required

to better understand how the geometry of these collective atomic motions relate to the con-

figurational entropy, molecular transport properties in the crystal, and the ultimate crystal

stability. The present paper takes a first step in this direction by focusing on quantifying the

nature (geometric size, fractal geometry, topological form) of the collective atomic motions

in crystalline Ni near bulk melting.

What does it really mean for a crystal to be “dynamically heterogeneous” and how

does this heterogeneity relate to the melting process itself. Bai and Li [210] suggest that

the proliferation of permutational motion of the atoms in heated crystals actually drives

the melting process under homogeneous melting conditions. In particular, they note the

prevalence of two distinct types of string-like collective motion in melting - open and closed

strings having the form of linear and ring “polymeric” structures. The atoms in the lin-

ear strings are characterized by a higher potential energy and significantly larger average

vibrational amplitudes than surrounding particles and they provided qualitative evidence

that these dynamical structures, rather than strings having a ring-like form, are nuclei for

the liquid phase [210]. We look into this fascinating suggestion below.

The various proposed models of melting and simulations just described lead us to expect

some kind of thermally activated defects to form during the course of melting and we may

generally expect their self-organization into coherent structures that drive the bulk melting

transition. While there is much evidence supporting this scenario, there has been very little

quantification of these dynamic structures. Are these excitations related to some type of

GB phenomenon [211]? What types of defects are formed in superheated crystals and what

role do they play in the initiation and propagation of the evident collective motion? Can

one effectively quantify this collective motion? What effect does this collective motion have

on mass transport and the nature of structural relaxation in the superheated crystal? In

particular, do we observe the characteristic “decoupling” phenomenon between mass and
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momentum diffusion processes, the Boson peak and stretched exponential relaxation phe-

nomena that are universally observed in GF liquids?

We can anticipate that this investigation of homogeneous melting to be revealing about

the nature of GF liquids because these systems lack a basic feature of supercooled liquids,

the packing of atoms, polymer chain segments or colloidal suspension particles into struc-

tures that are locally well-ordered and the local packing can be denser than any macroscopic

crystal, e.g., icosahedral ordering for hard spheres [212–216]. Due to packing frustration,

these clusters of excessively immobile particles organize into dynamic polymer structures

that coexist with the strings of particles exhibiting cooperative motion, playing a role anal-

ogous to grain boundaries in polycrystalline materials. This type of clustering of molecules

into relatively rigid, but dynamic, polymeric structures presumably cannot exist in crys-

tals so that studying superheating affords an opportunity of investigating how collective

atomic motion affects material dynamics (There are exceptions to this situation in certain

quasi-crystal materials [217], however, and we hope to study melting in this type of crys-

tal in the future to contrast with the present simulations on Ni.) Our simulations inform

rather clearly on the separate effects created by the mobile and immobile particles in GF

liquids. The decoupling phenomenon and the stretched exponential relaxation phenomena

are simply not observable in the superheated crystal, and yet these materials exhibit highly

collective motion involving cooperatively rearranging atoms and a Boson peak, much like

any GF liquid. Evidently, the decoupling and stretched exponential relaxation phenomena

of GF liquids can be attributed to the immobile particle clusters rather than correlated

particle motion.

D.3 Simulation Details

Molecular dynamics simulations were performed to characterize melting of our bulk Ni ma-

terial based on the same potentials that we have utilized before for simulating Ni GBs

[186] and the interfacial dynamics and melting/freezing of Ni NPs [142, 182]. In particular,

atomic interactions for Ni were described using the Voter-Chen [200] form of an Embedded

Atom Method (EAM) [218] potential. A perfect crystal of face-centered cubic lattice was

initiated first. The simulation cell consists of 13,500 atoms with a dimension of about 5 nm

x 5 nm x 5 nm, oriented with crystallographic directions [100], [010] and [001] in the X-, Y-

and Z-directions. In all simulations, periodic boundary conditions were applied in all direc-
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tions and the isobaric-isothermal ensemble (NPT) was employed where the zero pressure

and simulation box size were controlled by the Parrinello-Rahman method [68]; constant

temperature (T) was maintained by the Nose-Hoover method [65, 66]. Uncertainties below

are based upon a 95 % confidence interval. The MD simulations utilize LAMMPS [219],

which was developed at the Sandia National Laboratories.

Bai and Li [210] found that the heating rate has a large effect on the bulk melting

temperature T hm due to the fact that typical heat rate (1011 to 1013) K / s in molecular

dynamics simulations does not allow the system to fully relax to reach equilibrium and will

suppress some important kinetic processes in homogeneous melting. On the other hand,

isothermal heating below T hm for an extended period of time would ensure the system to

reach equilibrium, allowing us to probe kinetic processes that cannot be observed under con-

tinuous heating conditions. In this study, both continuous and isothermal heating methods

are considered. Continuous heating was employed to determine T hm, where temperature was

continuously changed from 300 K to 2000 K with a heating rate of 2 × 1011 K/s. The

“equilibrium melting temperature” TEm of 1624 K was determined previously for this poten-

tial using solid-liquid co-existence technique [15]. In order to obtain a superheated crystal,

isothermal heating simulations were also performed at T = 1800 K, 1840 K, 1880 K, 1900

K, 1920 K, 1940 K, 1950 K, 1960 K, 2000 K and 2100 K. At each T, the simulation was

conducted for at least 4 ns and up to 6 ns. Our simulation results indicated that the crystal

structure retained its integrity during the entire isothermal heating simulation for T values

below 1950 K, while at T = 1960 K, the system potential energy increases abruptly after 0.6

ns, suggesting a solid to liquid transformation occurs at this T (i.e., T hm =1960 K). Figure

D.1 shows a typical atomic configuration of the simulation cell at T = 1800 K, where the

atoms are colored by their potential energy (see color map). Energy minimization using the

conjugate gradient method [220] was also performed in quenching the equilibrium atomic

configuration to obtain the information of stable defects in the simulation cell.

D.4 Results and Discussion

D.4.1 Bulk Melting Temperature

As in our previous papers [142], we first establish the value of T hm by calculating the po-

tential energy per atom through continuous heating, and we then determine T hm as the T

165



Figure D.1: Equilibrium atomic configuration of simulation cell at T = 1800 K. Atoms are
colored by potential energy.
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Figure D.2: Potential energy per atom versus temperature for bulk Ni. The heating rate in
current simulations are 2 × 1011 K/s where the potential energy in inset is averaged over
every 5 ps.

at which there is an abrupt change in potential energy, reflecting the phase change of the

material. We show the result of such a standard computation in Fig. D.2, where we see that

the transition is rather sharp, appropriate for a phase transition of first order. The inset

to this figure shows that this change in E gives rise to a very sharp disordering transition,

as observed in measurements on the crystal-glass transition in both colloidal and molecu-

lar materials [221, 222]. Sharp transitions from crystal to an amorphous state have also

been observed in metallic crystalline materials subjected to a critical amount of irradiation

[223, 224].

D.4.2 Van Hove Correlation Function

We first characterize basic aspects of rate of molecular diffusion and the extent of dynamic

heterogeneity in the superheated crystal. Both of these quantities can be quantified to a
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degree with the self-part of the van Hove correlation function Gs(r,∆t), which describes

the probability distribution of the position r of an atom after a time t. Mathematically, the

van Hove correlation function can be written as:

Gs(r,∆t) =
1

N
〈
N∑
i=1

δ(ri(∆t)− ri(0)− r)〉 (D.1)

When ∆t is small, Gs(r,∆t) is Gaussian, meaning the atom undergoes harmonically local-

ized motion. As the time interval ∆t increases, generally we expect to observe non-Gaussian

behavior. By looking at Gs(r,∆t) at different time intervals, we can trace the path that the

atom takes as it moves through the system and quantify these changes in terms of atomic

displacement. The non-Gaussian parameter α2 is one of the basic measures of dynamic

heterogeneity,

α2(∆t) =
3 < r4(∆t) >

5 < r2(∆t) >2
− 1 (D.2)

where r(t) is the displacement of an atom after a time interval, ∆t.

Figure D.3 inset shows the self-part of the van Hove correlation function on a reduced

radial coordinates (rescaled by r0, which is the interatomic distance at the T of interest)

for the simulation cell at T = 1800 K, 1880 K and 2100 K with ∆t = 150 ps, 150 ps, and

5 ps, respectively. The multiple peaks centering at successive nearest-neighbor distances

in Gs(r) imply a “hopping” motion to preferentially quantized distances, a phenomenon

emphasized before by Bai and Li [210].

These hopping peaks are pronounced and such peaks are also characteristic for two-

dimensional fluids exhibiting hexatic ordering, a condition that is likewise an intermediate

state between a crystal and fully disordered liquid [225] (This phenomenon is further illus-

trated as a function of time in Appendix E). A large non-Gaussian parameter has been

noted before in the phenomenology of diffusion in fluids approaching their melting transi-

tions in systems in two and three dimensions. Below we define “mobile” particles as those

exceeding the van Hove function minimum position after a characteristic time t∗ at which
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Figure D.3: The non-Gaussian parameter α2 as a function of time interval ∆t for a range
of T. Temperatures are shown in the bottom left of figure. The inset shows the van Hove
function Gs(r,∆t) describing the probability for particle displacement from a particle po-
sition at the origin (r = 0) at ∆t = 150 ps for T = 1800 K and T = 1880 K while at ∆t
= 5 ps for T = 2100 K. As T hm is approached, Gs(r,∆t) develops multiple peaks above T
= 1800 K, reflecting a “hopping” motion of the atoms (see text). At T = 1800 K, α2 is
rather small, indicating a nearly harmonic localization of the Ni atoms in the crystal. The
minimum in the van Hove function occurs near 0.6 (See Appendix E for further details and
illustration).
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α2 exhibits a maximum.

D.4.3 Cooperative Atomic Motion in Bulk Melting

Cooperative particle dynamics is one of the most characteristic features of the dynamics

of GF fluids. Both atomistic simulations [183–185] and experiments [226] on glass-forming

colloidal [227] and granular fluids [226] exhibit string-like collective motion and MD simula-

tions [15, 186, 228] have recently shown that this type of motion also occurs in the dynamics

of GB [186] and the interfacial [142] and melting dynamics of NPs [182]. We next apply

methods originally developed to identify this type of correlated motion in GF liquids [183]

to our simulations of the dynamics bulk melting. First, we review the definition of collective

atomic displacement motion [183].

As a first step in identifying collective particle motion, we must identify the “mo-

bile” atoms in our system. In GF liquids, the “mobile” atoms (atoms with enhanced

mobility relative to Brownian motion) are defined by comparing the self-part of the van

Hove correlation function Gs(r), describing the probability distribution that a particle ini-

tially at the origin makes a displacement to the spatial distance r(t) after a time t, for

the strongly interacting particle fluid to an ideal uncorrelated liquid exhibiting Brownian

motion where Gs(r) reduces to a simple Gaussian function by the central limit theorem

[The diffusion coefficient D is defined to be the same in the interacting and non-interacting

Gs(r)] [183].

Since “mobile” atoms are essentially those particles moving a distance r(t) larger than

the typical amplitude of an atomic vibration after a decorrelation time ∆t, but smaller than

the second nearest-neighbor atomic distance, we mathematically identify these mobile par-

ticles, as in previous studies of GB dynamics and the interfacial dynamics of NP [142, 186],

by a threshold atomic displacement condition, 0.6r0 < |ri(∆t)−ri(0)| < 1.2r0, involving the

average bulk crystal interatomic spacing, r0. (See Fig. E.1 in Appendix E for motivation of

the minimal displacement cut-off.) We find the mobile particles cluster in space and their

size distribution is highly reminiscent of percolation clusters (which have a fractal dimen-

sion near 2.5 in three dimensions and a power-law size distribution with an exponent [229]

near -2; we summarize these results in Appendix E.) The fraction of mobile particles at the

characteristic time t∗ seems to be insensitive to the temperature in the range of 1840 K and
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1950 K (about 5 % to 6 % of total atoms in the system.) A previous study has identified

the mobile atom clusters in incipiently melting bulk Cu crystals [230] based on a EAM

potential model, where they find similar results and where they emphasize the similarity

of this size distribution of mobile particles to supercooled liquids [10, 17, 231]. Given this

former characterization of mobile particle clusters in incipiently melting crystals, we do not

further emphasize the geometrical characteristics of the mobile particles in the present work.

The identification of correlated atomic motion requires a consideration of the rela-

tive displacement of particles. Collective atom motion means that the spatial relation

between the atoms is preserved to some degree as the atoms move. Specifically, mo-

bile atoms i and j are considered to be within a collective atom displacement string if

they remain in each other’s neighborhood, and we specify this proximity relationship by,

min[|ri(∆t)−ri(0)|, |ri(0)−ri(∆t)| < 0.43r0, as in past studies of GF liquids, the dynamics

of GB, [183, 228] and the interfacial dynamics of Ni NPs [142]. Application of this criterion

reveals that the collective particle motion in the superheated Ni crystal takes the form of

“strings” (see Figure D.3 for illustration). The nature of this motion is remarkably similar

to previous simulations on the atomic dynamics of GF liquids [183] and the atomic dynam-

ics of GBs in polycrystalline materials [186, 232].

The mean “string length” is defined as the average,

n(∆t) =

∞∑
n=2

nP (n,∆t), (D.3)

which we advocate as a measure of the scale of cooperative particle motion in strongly

interacting liquids rather generally. P (n,∆t) is the probability of finding a string of length

n in time interval ∆t. String properties are defined at a characteristic decorrelation time

∆t = t∗ at which the mean string length in Eq. D.1 has a maximum [15, 183–185]. Previ-

ous work [15, 185] has established that the average string length in GF liquids grows upon

cooling, along with the effective activation energy for structural relaxation. This finding

accords with the Adams and Gibbs (AG) theory of relaxation in GF liquids [187], where the

strings are identified [183] with the vaguely defined “cooperatively rearranging regions” of

the AG theory. Strings are thus of practical interest since they are correlated with the rela-
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Figure D.4: String-like collective atomic motion in the superheated bulk Ni crystal at T =
1880 K. The lines denote Ni atoms that belong to the same collective atom movement and
the colors are introduced to discriminate between different string events.
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tive strength of the T-dependence of transport properties (see below), perhaps the defining

property of GF fluids.

String-like cooperative atomic motion is prevalent in all GF liquids examined to date

(including water, polymer fluids, metallic glass-forming liquids, concentrated colloidal sus-

pensions and even strongly driven granular fluids [183, 185, 227, 232, 233].) It is apparently

a universal property of the dynamics of strongly interacting fluids where a strong reduction

in the particle mobility and an enormous change in the rate of structural relaxation are

found in association with the growth of string-like correlated motion upon approaching the

glass transition. We think it is significant that these same structures arise in superheated

crystals. To further establish the nature of the strings, we determine some of their other

properties.

We next examine the nature of the atomic motion occurring in the superheated crystal

to determine if it follows this general pattern of “frustrated fluid” dynamics seen in super-

cooled liquids. The colored atoms in Fig. D.4 represent the initial atomic positions (t = 0)

and the displacement arrows point to their positions at a later time ∆t. This string-like

atomic motion occurs “randomly” , i.e., without much obvious correlation to the crystal

lattice structure and these motions superficially resemble the collective motion found pre-

viously in supercooled liquids [142]. We next consider the size distribution of these strings

of collective motion and the T dependence of their average size, L ≡< n >.

Atomistic simulations of glass-forming liquids [183] indicate that the distribution of

string lengths P (n) is generally an exponential function of n,

P (n) ∼ (−n/ < n >), (D.4)

to an excellent approximation. Figure D.5 shows the distribution of string lengths at

∆t = t∗, where the mean string length n(∆t) exhibits a maximum [The time dependence

of n(∆t) is not shown (See refs. [15, 183, 184])].

The distribution of the string length n in the heated bulk Ni crystal is the same as

found in GF liquids [234], the atomic dynamics of GB in simulated polycrystalline Ni [186]
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Figure D.5: The string size distribution at T = 1920 K and T = 1970 K. Inset shows the
T dependence of the average string length < n >.
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Figure D.6: Scaling of string radius of gyration Rg with its length L as Rg ∼ Lν , where the
inset shows ν = 1/df as a function of T . The exponent ν is about 0.6, corresponding to a
fractal dimension df ≈ 5/3 of self-avoiding walks [10].

and colloidal measurements [235, 236] of polycrystalline materials and interfacial dynamics

of Ni NPs [142]. Figure D.6 indicates the radius of gyration Rg of the strings versus their

mass and the scaling exponent ν describing how their average size (Rg) increases with the

length is near ν ≈ 0.6, a value characteristic of self-avoiding walks [237]. This type of scaling

behavior has also been observed for strings of monomers in a coarse-grained GF polymer

melt [231].

We have also examined the possibility of a topological transition between strings having

open linear chain and closed polymer ring topologies since Bai and Li have suggested that

open strings can be identified with the liquid “nuclei” that initiate the melting process.

Figure D.7 shows the variation of the number of linear chains of collective atomic motion

in comparison to the number of ring atomic permutational atomic exchange motions. We

indeed find that linear chains proliferate near T hm while the ring atom exchanges exhibit
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Figure D.7: The number of open strings and close strings as a function of T .

a maximum at a lower T that is close to the value at which the average string length L

exhibits a maximum (See Fig. D.5). The proliferation of the open strings is not as singular

as we expected, however. This may represent finite size effects near T hm and future work

should consider a systematic finite size analysis to refine the current estimates.

While the full ramifications of this topological transition in the form of collective motion

for homogeneous melting are not yet clear, the open strings clearly play a significant role in

the homogeneous melting process, as suggested before Bai and Li. Our analysis of the open

string/ring populations as a function of T serves to quantify the nature of this topological

transition in the nature of the collective motion upon approaching the homogeneous melt-

ing transition. There have been earlier observations of this string-like motion in association

with crystal melting and we next discuss some of these observations briefly.

The appearance of string-like collective motion in connection with melting has been long
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known from simulations of hard disc melting by Alder and Wainwright [201, 202] and the

melting of two-dimensional lattice of Lennard-Jones particles [206]. This type of particle

permutation motion has also been observed in particle tracking measurements of melting in

quasi-two dimensional lattices of colloidal particles [205, 238–240], quasi-two dimensional

driven granular fluids [204] and simulations of the melting of quasi-two dimensional plasma

crystals [165, 203, 207]. It is thus not surprising that we see prevalent string-like collective

motion in our simulations of melting in Ni crystals. What is somewhat surprising is that the

size distribution and geometrical form of the excitations is so similar in geometrical form

to GF liquids. We next turn to some further comparisons of the dynamics of superheated

crystals to GF liquids.

D.4.4 Impact of Dynamic Heterogeneity on the Dynamical Properties of
Bulk Ni

There has been much speculation about how dynamic heterogeneity, as measured by α2,

and collective particle motion relate to some of the essential characteristics of GF liquids

such as the breakdown of the Stokes-Einstein relation between the translational diffusion co-

efficient D and the structural relaxation time from the intermediate scattering function (or

from dielectric or stress relaxation measurements) and the general observation of structural

relaxation having the form of a stretched exponential rather than a simple exponential de-

cay. Douglas and coworkers [233, 241–243] have made two predictions with regard to these

basic phenomena of GF liquids that are germane to the current discussion of bulk melting.

First, Douglas and Leporini [241, 242] have argued based on classical hydrodynamics that

clustering in the form of immobile particle clusters alters mass and momentum diffusion

differently and that this effect simply explains the fundamental origin of the breakdown of

the Stokes-Einstein relation. Stukalin et al. [243] found stretched exponential stress relax-

ation with a non-trivial “stretching” exponent β near 1/3 naturally arises from persistent

self-assembled polymer structures and Douglas et al. [233] further argued that the immobile

particle clusters of GF liquids are self-assembled “equilibrium” polymers so that non-trivial

β exponent calculations of Stukalin et al. should directly apply to GF liquids.

In the context of the current bulk melting simulations, these model calculations and

arguments imply that no decoupling should exist in superheated crystals and, moreover,

the stretching exponent β is predicted to remain near 1. These expectations follow since
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most of the particles in the crystal, at least at T well below T hm, are in a localized crystalline

state, i.e., polydisperse immobile clusters of finite extent do not exist in the superheated

crystal. We next check these predictions, which if confirmed, would offer significant insights

into both supercooled liquids and superheated crystals. First, we examine the nature of

caging and diffusion in the superheated crystal.

Caging, particle delocalization at melting point and diffusion

In Figure D.7, we plot the mean square displacement < r2 > of Ni atoms in our bulk Ni

crystal over a range of T indicated in the figure. Following Jin et al. [11], we also plot the

average root-mean-square particle displacement < ∆r2 >1/2 compared with its equilibrium

interparticle distance r0. The fraction of particles for which the ratio (< r2 >1/2 /r0) ex-

ceeds a critical Lindemann value ( δ ≡ 0.20; vibrational amplitude or the first peak position

in van Hove plot near melting point), then provides an estimate of the fraction of atoms f

in the liquid state [244].

Starr and coworkers [245] and Leporini and coworkers [246] describe how the caging time

may be determined and consequently define the “Debye-Waller factor” (DWF), < u2 >,

as the mean square atomic displacement < r2 > after a particular decorrelation time char-

acterizing the crossover from ballistic to caged atom motion. The mean square atomic

displacement < r2 > in Fig. D.8 exhibits a well-defined plateau at short times that is also

typical of “caging” in GF liquids and < r2 > at long times is diffusive. This allows us to

determine D (the proportionality constant between < r2 > and t after the caged dynamics

region atomic displacement), at least for a range of T below T hm. The upper inset of this

figure shows that D/T , scales inversely with the time constant t∗ at which the strings are

defined so that the characteristic time t∗ is a diffusive relaxation time.

The Lindemann criterion for homogeneous melting is different phenomenogically from

the well know condition for the equilibrium melting temperature where the presence of an

interface is implicit in the definition. We find that the mean square amplitude of atomic

displacement in the vicinity of T hm is nearly equal its value on the boundary of the crystal

at the onset of heterogeneous melting [142]. In particular, this critical displacement value

is about < u2 >1/2 /r0 ≈ 0.27, which is about twice as large as the Lindemann ratio value

for our material undergoing heterogeneous melting. Our observations are consistent with
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Figure D.8: Mean square displacement of bulk Ni at seven different temperatures. The bot-
tom inset shows the temperature dependence of the Lindemann parameter, δ =< ∆r2 >1/2

/r0 , describing the root mean square particle displacement relative to the average inter-
atomic distance, the “Debye-Waller factor” (DWF), < u2 >, and the fraction of “Linde-
mann particles” [11] as a function of T (< ∆r2 >1/2 /r0 > 0.2; the magnitude 0.2 cut-off is
prescribed by the peak position of the van Hove function in Figure D.8 and Fig. E.1). The
top inset shows, D/T 1/t∗, where D is the Ni atom diffusion coefficient and t∗ is the time
at which α2 exhibits a maximum. This is a general result that holds as well for many GF
liquids. The characteristic relaxation time t∗ has the significance of a diffusive relaxation
time, a quantity that in general can have a qualitatively different T dependence from the
inverse structural relaxation time α2 from the self-intermediate scattering function (See Fig.
D.9).
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simulations of bulk melting in crystals of LJ particles in three dimensions by Jin et al [11].

and with measurements on defect-mediated melting in bulk colloidal crystals [247]. The

initiation of bulk homogeneous melting evidently requires a larger critical average displace-

ment and this condition is more readily achieved at the interface of the crystal.

The lower inset to Fig. D.8 also shows that the fraction of mobile particles f , defined by

the Lindemann particle definition above, increases in a parallel fashion to < u2 >. More-

over, in the next section we find that f varies in direct proportionality to interstitial defect

concentration in the crystal (each defect generating about 200 mobile particles so a small

number of defects can be rather disruptive to the lattice). Below, we consider how lattice

defect structures relate to these mobile particles and their active role in facilitating the

collective particle motion seen in association with bulk melting.

Structural relaxation, decoupling, and the boson peak

The structural relaxation time is a basic property of a condensed material and we esti-

mate this quantity from the self-intermediate scattering function Fs(q, t) (see Fig. D.9),

Fs(q, t) =< exp{−iq[ri(t)− ri(0)]} >, which is simply the Fourier transform of the particle

displacement distribution function Gs(r, t) described above. (The Fourier transform vari-

able q is often termed the scattering “wave vector” .) After exhibiting a plateau associated

with the particle caging phenomenon, Fs(q, t) in GF liquids normally exhibits a “stretched

exponential” variation,

Fs(q, t) ∝ exp[−(t/τ)βs ] where 0 < βs < 1. (D.5)

Fs(q, t) data for GBs and NPs both exhibit a normal trend for GF liquids, i.e., the

“stretching exponent” βs has a value near βs ≈ 1/3, i.e., βs = 0.34 and 0.36 ± 0.02, for

Ni GBs and 2 nm NPs, respectively. In stark contrast, the fitted value of βs in our bulk

Ni simulations is near 1 (i.e., βs lies in the range 0.92 and 1.01). An exponential decay

of the intermediate scattering function has also been found recently in simulations LJ par-

ticles in two dimensions by Shiba et al. [248]. It is then clear that βs cannot be simply

identified with development of collective atomic motion. We also consider the matter of
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Figure D.9: The self-intermediate scattering function Fs(q, t) in bulk Ni at T = 1840 K, 1880
K, 1920 K and 1950 K and the collective intermediate scattering function (the black solid
curve) in bulk Ni at T = 1950 K. The dashed black curves are fits using where the apparent
value of β varies between 0.92 and 1.01. Inset shows D rescaled by the temperature, D/T ,
as a function of the structural relaxation time, τ obtained from Fs(q, t). Note that the
collective intermediate scattering function Fc(q, t) (solid line) does not decay to 0 in the
crystal state and that this quantity exhibits collective density oscillations on a timescale on
the order of a ps. We discuss this “Boson peak” feature below (see Fig. D.10).
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decoupling. In the inset to Fig. D.9, we also examine the scaling relation between D/T

and the structural relaxation time τ obtained from Fs(q, t). We see that D/T in our super-

heated crystal scales inversely to τ so that the fractional power-law relation between these

properties (“decoupling” ) often found in GF liquids [249–251] is not observed, despite the

significant dynamic heterogeneity in the superheated crystal taking the form of strings.

The current simulations observations then strongly suggest that the decoupling between

mass and momentum diffusion relaxation times and the stretching of structural relaxation

in GF liquids both arise from the existence of polydisperse immobile particle clusters, as

suggested before by Douglas and coworkers. By extension, increasing the spatial dimen-

sion in which the fluid is embedded should relieve packing frustration responsible for the

immobile particle clusters so that increasing dimensionality should decrease the strength

of decoupling and exponent stretching, while at the same time the collective motion would

remain prevalent, approaching the nature of the superheated crystal. There are recent sim-

ulations of model GF liquids in variable spatial dimension that could be used to test these

expected trends [252].

The decay of Fs(q, t) reflects the facile diffusion of atoms within the superheated crystal

due to collective motion, but the material is still a crystal so that its decay seems some-

what counter-intuitive. Actually, there is no real paradox and the crystalline nature of the

material is apparent from the collective intermediate scattering function [253]. Normally,

Fs(q, t) and Fc(q, t) are similar in GF liquids, but in a crystal, or any solid really, we expect

instead that Fc(q, t) should decay to a plateau after a transient inertial regime. In Figure

D.9, we illustrate Fc(q, t) for our bulk Ni crystal at T = 1950 K where we see that this

quantity for our heated crystal does not decay to zero at long times.

The so-called Boson peak is another universal [254] feature of GF materials whose even

qualitative interpretation remains controversial. Many authors attribute this feature in GF

liquids to the existence of relatively stiff hypothetical nanoscale elastic heterogeneities hav-

ing a log-normal size polydispersity [255, 256]. On the other hand, other authors have

attributed the Boson peak to collective permutational atomic motions in the material

[255, 257], In particular, Shintani and Tanaka [258] found evidence that the Boson peak

involves “transverse collective vibrational motions” associated with “soft regions” in the

disordered material and Chen et al. [259], Manning and Liu 260 and Tan et al. [261] have
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all argued based on both experimental and simulation evidence that the Boson peak has

its origin “soft spots” in glasses where some sort of correlated particle rearrangements are

concentrated. Recent particle tracking measurements on colloidal fluids [262] have indi-

cated that the Boson peak can be associated with hierarchical collective swirling particle

motions that are reminiscent of Feymann” s conception of “rotons” in terms a vortex-like

local stirring motion in the fluid [263–265] and of vortex motions often directly observed in

dusty plasmas [200–202, 208, 266]. We certainly see swirling collective atomic motion in our

crystal approaching bulk melting so do these heated crystals exhibit a Boson peak? The

answer to this question should contribute to the ongoing intense discussion to the meaning

of this scattering feature.

To address this question, we first calculate the power spectrum of the velocity auto-

correlation function V AF (t) ≡< v(t)v(0) >, which encodes basic information about the

density of states of the material. In particular, the cosine transform (power spectrum) of

< v(t)v(0) > / < v(0)2 > determines the vibrational density of states g(ω) [267]. Glass-

forming liquids have an excess density of states at relatively low frequencies relative to

crystals as one of their most distinctive features and g(ω) normalized by the Debye vi-

brational density of states gD(ω), scaling as ω2 for a crystal, normally exhibits a Boson

peak” [268–271]. The V AF (t) is related to the mean square particle displacement < r2 >

by differentiation, d2 < r2 > /dt2 ∝ V AF (t) and this is a good way of determining V AF (t)

if we have smooth data on a fine time mesh. We calculate the cosine transform of V AF (t)

of the Ni atoms in the bulk Ni crystal to obtain,

g(ω) ∼
∑

V AF (t)cos(2πωt)∆t. (D.6)

Here g(ω) is divided by ω2 to obtain the reduced density of states, g(ω)/ω2. We see

from Fig. D.10 that a heated bulk crystal does indeed exhibit a Boson peak, as in the

case of glassy materials [268–272]. The observation of the Boson peak in our data supports

its interpretation in terms of collective atomic rearrangement motions within the material

rather than nanoscale stiff regions. We note that crystalline materials at low T do not

normally exhibit a Boson peak, but lattice damage induced by fast neutron radiation [224]

or material deformation [273] can induce this scattering feature to arise. Neutron scattering
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Figure D.10: Reduced vibrational density of states and Boson peak for Bulk Ni at five
different temperatures. The variation of the position of the Boson peak with T is hard
to resolve in our simulations, but is clear that the peak position blue shifts to smaller
frequencies upon going from 1800 K to 1880 K, a trend that is opposite to the trend found
in GF liquids [12, 13]. Our impression from the limited data, however, is that the trend is
non-monotonic when a larger T range is considered, as in the string length L data in Fig.
D.5.

measurements also show that simply heating crystals towards their melting point, as in our

present simulations, can give rise to a Boson like peak feature [269, 274–277], consistent

with our simulations.

D.4.5 String-like Collective Motion and Defects?

Another basic issue that we address by simulation is the suggestion that the strings have

some relation to the formation of point defects within the melting crystal [278]. Granato

and coworkers [230, 279] have made convincing arguments of the significance of interstitial

defects in relation to melting by virtue of their relatively low activation energy in comparison
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to dislocations, disclinations, stacking faults, etc [155, 279]. The fundamental significance of

these defects in relation to bulk melting has also been emphasized by Stillinger and Weber

[14]. Many aspects of crystals [14, 155, 279, 280] can indeed be rationalized by thermally

excited interstitial defects, including the Boson peak phenomenon in irradiated crystals

[155, 261, 262]. Nordlund et al. [230] have gone so far as to advocate the identification of

“strings” of collective atomic motion with chains of interstitial defects, which is a testable

proposition. While the arguments of Granato and coworkers are conjectural, it is certainly

plausible that disclinations play a significant role in the initiation of the collective string-like

atomic motion. We next explore this possibility.

To identify whether string-like collective motion can be unambiguously identified or

associated with some kind of point defects or dislocation related structures, we performed

energy quenches of our superheated crystals at T = 1840 K, 1880 K, 1920 K and 1950 K and

simply examined the nature of the defect structures that resulted. At each T , we sampled

at least 10 independent atomic configurations (spaced by 200 ps) for energy quench. The

defect concentration was then averaged over these independent simulations so that defects

were not introduced artificially but instead arose naturally from thermal fluctuations within

the material. The result of this analysis surprised us since we had intuitively anticipated

seeing thermally generated GBs. Instead, as shown in Fig. D.11, the defects are simple

point defects such as vacancies and interstitials, in line with the reasoning of Granato and

coworkers [155, 230, 279] (A vacancy is just a vacant lattice site and an interstitial is an

atom that occupies an off-lattice position within the crystal, often in the form of a “split

interstitial” atomic pair located near a lattice position.).

We see that the density of interstitial defects (Fig. D.12) increases with heating, but

their concentration remains small and their positions are relatively uncorrelated. Recent

studies of inherent structures in crystals undergoing bulk or homogeneous melting have

come to a similar conclusion [281]. We must conclude that the defect structures in the su-

perheated crystal do not appear to be particularly interesting at first glance; they certainly

do not suggest at first an obvious origin for the string-like collective motion described above.

A striking aspect of our quantitative estimation of the self-interstitial concentration as

a function of T in Figure D.12 is the rather small concentration of these defects over a wide

T range below T hm. However, these defects are pregnant in their capacity in creating mobile

particles in the crystal and to establish this fact we compare the interstitial concentration to
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Figure D.11: Defects exhibited in Ni crystal following energy minimization at different
temperatures. Only non-fcc atoms are displayed in the figure for clarity. The defects
observed correspond to simple interstitials. The density of these defects does increase with
heating, but their concentration is rather small and their positions seem to be relatively
uncorrelated in space. Stillinger and Weber [14] have provided insightful visualizations and
discussion of this type of defect.
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Figure D.12: The self-interstitial concentration as a function of T . Inset shows the correla-
tion between self-interstitial and Lindemann particle concentrations at different T .
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the Lindemann particle concentration indicated in Fig. D.8. We find that these concentra-

tions are proportional to a high approximation and we then see that each interstitial defect

creates about a 20-fold increase of relative number of Lindemann particles. The prolifer-

ation of interstitial defects and mobile particles by the Lindemann criterion are evidently

directly related.

The slope of the Arrhenius curve in Fig. D.12 allows us to estimate the activation en-

ergy Eint for self-interstitial formation under superheating conditions, Eint ≈ 4.5 eV. The

concentration of these defects near the homogeneous melting temperature is extrapolated

to be a fraction of a percent, i.e., 0.13 %. (Every vacancy created must be associated with

a self-interstitial and these may be considered a “Frenkel pair” so that the self-interstitial

concentration equals the vacancy concentration). Granato et al. [155, 279] nd Feynman

[263–265] have correspondingly emphasized that while the concentration of these defects

may be small, they can nonetheless have a potent effect on the shear modulus of the crystal.

Convinced of the importance of these defects by Granato” s arguments and the observations

above, we inquire further into how these defects might be related to string-like collective

motion.

So how might self-interstitial defects relate to the strings discussed above? In order to

probe this question quantitatively, we consider a typical string event at T = 1840 K and an-

alyze energy and displacement fluctuations over the course of the string lifetime, t∗. Figure

D.13a illustrates the specific string under consideration, corresponding to our superheated

Ni crystal at T = 1840 K. In Figure D.13b, we examine the potential energy for Ni atoms

within this representative string and Fig. D.13c shows particle displacements ∆r/r0 for

these same string atoms. The potential energy is taken the difference between the average

energy over 1 ps and the average energy over the string lifetime t∗ = 250 ps for each atom

in string. The atomic displacements are taken with respect to its initial position, rescaled

by the distance to its neighbor along the string; its value can then be positive or negative

depending on its relative position to the neighbor. The y-axis denotes time in units of the

caging time (same time for which < u2 > is defined). Plots of this kind are conventional

in studies of energy localization in one-dimensional chains of non-linear oscillators where

they are termed “hypsometric plots” [282–286]. The color map legends of these figures

define the magnitude of the potential energy and particle displacement jumps. These fig-

ures show the local energy variation in the string along with the displacement of the atoms

188



along the string [See Fig. D.13c]. This process is signaled by a propagating wave of energy

jump events that are shown as small red segments in Fig. D.13b. After having displaced,

the particle positions then become relatively stable. Figures D.13b and D.13c then show

that energy of each atom becomes relatively large just before the diffusive jump and this

transient energy rise is somehow related to the energy barrier for jumping. What is driving

these local potential energy changes and propagating atomic motion?

We next chose an atomic configuration just before the jump of atom 1 occurs and then

perform an energy quench to see if there is a defect in the neighborhood of this position.

After energy minimization, we find two self-interstitial defects in this quench: one at atom

1, described above, and the other located next to a vacancy that atom 1 is about to oc-

cupy. These observations clearly suggest that interstitial defect pairs serve as initiators of

string-like cooperative motion in our heated crystal. If we continue the quench process, the

interstitial defects are observed to propagate along the string, i.e., each atom involved in

string-like motion transiently becomes an interstitial as these excitations move down the

string, resulting in a net displacement of a whole group of atoms. Evidently, the interstitial

propagates down the string in the form of a soliton, driving atomic successive displacements

within the string. A chain-like nearest neighbor atomic motion driven by interstitial defect

movement was previously observed by Lee and Li [287] in connection with incipient bulk

melting where it was further recognized that chain closure in the form of rings results from

interstitial-vacancy annihilation. However, the connection of this motion to the collective

motion found in GF liquids was not appreciated in this early work and the geometrical

properties of this collective motion were not examined in any detail.

We then see that former suggestions that string-like motion can be equated with inter-

stitial defect chains and GBs [278] are untenable. Nonetheless, the interstitial defects play

a significant role in initiating the collective motion that we observe in association with bulk

melting. The appearance of soliton-like excitations driving particle displacements in our

simulations first surprised us, but the proliferation solitonic excitations has been predicted

for melting in polymer crystals [288] so this phenomenon might have been anticipated.
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(a)

(b) (c)

Figure D.13: (a) A typical string with a member of 15 atoms at T = 1840 K. (b) Potential
energy fluctuations of atom that is involved in collective string-like motion over the timescale
of 120 ps (b) Relative displacements (∆r/r0) fluctuation of atoms within string. .
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D.5 Conclusions

The emergence of the solid state from the liquid state upon cooling and the liquid state from

the solid state upon heating are both cooperative phenomena characterized by collective

particle motions that play an active role in the conversion of one state to the other and that

affect the dynamics of materials near their solidification or “softening” points. Previous

work has extensively characterized the collective motion in “supercooled” or glass-forming

liquids [183–185] and shown the significance of string-like collective motion for understand-

ing the strong temperature dependence of the transport properties of these complex fluids

[289] and interfacial dynamics of grain boundaries in polycrystalline materials [186] and the

interfacial dynamics of nanoparticles [142]. Simulation has also shown that the dynamics of

both melting and freezing of nanoparticles involves the propagation of ordering and disor-

dering interfaces at which collective atomic motion is prevalent, taking a form similar to the

collective motions of glass-forming liquids. Although we have focused on Ni nanoparticles,

we expect this phenomenon to arise in almost any type of nanoparticle and to arise in the

heterogeneous melting and freezing of any type of crystal. We can also expect that the same

type of cooperative motion to be important for understanding the physical aging properties

of condensed materials and changes of the relaxation times and transport properties in ap-

plied fields such as temperature or applied stresses or physical confinement effects. We have

already found cooperative atomic motion to be modified for the grain boundary mobility of

polycrystalline Ni subjected to applied stresses and the relaxation dynamics of thin glass-

forming polymer films [185], but there are many other studies to be made to understand

how perturbations of materials can be used to modify their properties based on this effect.

Simulations have also suggested that the polycrystalline nature of many commonly encoun-

tered crystallizing materials, such as semi-crystalline polymers, is largely influenced by the

collective dynamics of glass-formation [188] so that both the dynamics and the structural

form of diverse materials is predicted to reflect the collective dynamics operating during

the material solidification process, a behavior that can be controlled through the judicious

use of molecular [185, 234, 290] and nanoparticle [289] additives that modulate the coop-

erative molecular motion depending on the geometrical properties of the additive and it

interaction with the fluid. Recent simulation [190] has further shown that the occurrence of

crystal nucleation in simulated silica can be strongly influenced by dynamic heterogeneity

of the glass-forming liquids, an effect that probably has general significance in understand-

ing the propensity of liquids to crystallize rather than form glasses at high degrees of cooling.
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The present work focuses on string-like cooperative atomic motion that occurs in con-

nection with homogeneous melting of “bulk” crystals under isothermal conditions where

there are no interfaces (boundaries of the materials or defects within the material) to nucle-

ate the melting process. As in our previous studies of ordering and disordering in condensed

materials, we find that the atomic dynamics within a crystal approaching its melting point

is highly collective and the cooperative atomic motion greatly facilitates molecular diffusion

in the crystal before it melts at the homogeneous melting temperature T hm. We are again

impressed by the extent to which string-like collective motion pervades the dynamics of

condensed materials.

Our simulations provide a novel view of melting in which a small concentration of in-

terstitial defect exert a powerful effect on the crystal stability through their initiation of

collective particle motions that ultimately lead to a breakdown of lattice order and these de-

fects drive significant atomic transport at temperatures below T hm in the form of a collective

atomic permutational motion. The crystal integrity remains preserved for permutational

atomic motions in the form of rings exchanges, but at higher temperatures we find a topo-

logical transition in these exchange motions into linear catenations of particle exchange

events similar in geometrical form to glass-forming liquids. These motions evidently give

rise to a local symmetry breaking of the local lattice structure that the crystal cannot sus-

tain. We find that this collective atomic motion driving transport and melting is driven by

propagating interstitial defect excitations that move down the chain of atoms that move

in string-like coordination. The defects are not static entities under dynamic conditions of

elevated temperatures or material loading. They exhibit a rich non-linear dynamics that

are not captured in static defect models of melting.

The fact that permutational collective motion increases the rate of diffusion in heated

crystals rather than decreasing the rate of diffusion in cooled liquids, as anticipated by

Zener [291], underscores the different influence of collective motion on ordering and disor-

dering process involving the emergence and loss of rigidity. We do not fully understand this

striking difference, but we can appreciate that the emergence of a disordered solid state

from a fluid involves the clustering of particles into fractal polydisperse, persistent and

locally well-packed particles dynamic structures that must play an essential role in the vis-

coelastic properties of these complex fluids. This immobile particle clustering phenomenon

192



presumably does not arise in crystals below their melting point (unless they are highly

damaged by applied stresses or radiation) so the study of superheating of crystals provides

an opportunity to study which general properties of glass-formation derive from the mo-

bile particles exhibiting collective string-like motion or for the immobile particles that are

mainly responsible for the growth of the viscosity of cooled fluids approaching their glass

transition. To address this issue, we examined three basic phenomena in our simulations

of the melting of crystalline Ni crystals that arise universally in all glass-forming liquids -

the occurrence of stretched exponential relaxation, a decoupling power law relation between

the translational diffusion coefficient and the structural relaxation time of the cooled liquid

and the occurrence of the Boson peak. None of these phenomena has a generally accepted

interpretation in glass forming liquids, but models by Douglas and coworkers [233, 243]

have indicated that both decoupling and stretched exponential relaxation in glass-forming

liquids derive from structural heterogeneity taking the form of immobile particle clusters

that do not exist in glass-forming liquids so that these phenomena are then expected to

essentially not exist in heated crystals, despite the highly prevalent string-like collective

motion that the simulations indicate is occurring in these systems and the strong resem-

blance of this collective motion that occurring in glass-forming liquids. Strikingly we find

no decoupling or any appreciable stretching of the intermediate scattering function gov-

erning structural relaxation in the dynamically heterogeneous regime of our heated crystal

approaching its melting point. Decoupling and stretched exponential relaxation in glasses

are then suggested strongly to have their origin in the clustering of immobile particles and

these phenomena have no general direct relation to the emergence of collective motion.

The Boson peak has been interpreted both in terms of the emergence of relative stiff and

soft nanoscale regions in regions in glass-forming liquids so that the investigation of the

Boson peak in our heated Ni crystal also sheds light on the physical interpretation of this

ubiquitous, but poorly understood phenomenon. We find a well-defined Boson peak in our

simulations of bulk Ni in the superheated regime and we can infer that this phenomenon

is consistent with models that attribute it to relatively high frequency and mobile parti-

cles exhibiting small-scale cooperative atomic motion. The study of superheated crystals

then provides a laboratory for investigating essential aspects of glass-forming liquids since

these materials exhibit a simpler type of “dynamic heterogeneity” than supercooled liquids.

As mentioned in the introduction, the general tendency for crystals to initiate their melt-

ing through heterogeneous nucleation at their boundaries due to the relatively large average
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atomic displacements at these boundaries is the usual explanation of why it’s more difficult

to superheat crystals than it is to supercool liquids below their equilibrium melting temper-

ature. It is normally rather difficult to perform measurements on real superheated crystals

and homogeneous melting is thought to occur only under rather special circumstances. Con-

sequently, our results on this type of melting might appear to have only academic interest.

Actually, there is an important class of crystalline materials that exhibit properties strik-

ingly similar to those found in our simulations of heated Ni crystals and these materials,

moreover, have great current interest in materials applications in the crucial field of energy

storage. In particular, many crystals having a fluorite crystallographic structure exhibit

extraordinarily high electrical conductivities [292, 293] as approaching values of ionic melts!

This makes these materials extremely attractive as solid electrolyte materials for batteries,

etc. [294] Apart from the superficial similarity of a high atomic mobility in these materials

to our Ni crystal simulations when each type of crystal is heated, recent simulations [292] on

PbF2, CaF2 and other superionic crystalline materials indicate that there is no stretching

of intermediate scattering function , i.e., β = 1, and no decoupling between the ion diffu-

sion coefficient and the electrical conductivity. Moreover, there is strong experimental and

computational evidence for the role of interstitial defect formation, and associated collective

motion, in these materials as well. All of these observations on superionic crystals accord

with our simulations on heated Ni crystals with boundary effects removed so that homoge-

neous melting is prevalent. We expect that a detailed examination of previous simulations

on superionic materials will reveal that we are actually dealing with a kind of homogeneous

melting phenomenon.

One of the singular findings of our simulations on homogeneous melting in Ni is peculiar

observation of a non-monotonic variation of the string length L with temperature, a feature

that we have frankly never seen before in glass-forming liquids. The phenomenon is so

unusual that we, and of course our reviewers, were naturally concerned that this might be

a computational artifact due to some kind of non-equilibrium aging effect. However, we

do not see any obvious evidence of aging effects in our simulations under the conditions

investigated so we find it difficult to explain away this phenomenon as an artifact and we

naturally wonder if anything like this has ever been seen experimentally? Given our sugges-

tion that superionic crystals might be a system exhibiting incipient homogeneous melting,

it is then natural to turn to the experimental literature on transport in superionic crystals

194



to see if this “weird” behavior has observed in these materials.

In glass-forming liquids, there is simulation evidence in the case of model polymer glass-

forming materials [289, 295] indicating that the average scale of collective motion (string

length L) is proportional to the activation energy governing structural relaxation so that

large changes in transport and cooled liquids with temperature can be directly and trans-

parently understood from a variation in the context of collective motion in these materials.

In particular, these simulations support the identification of the strings with the abstract

“cooperatively rearranging regions” of Adam and Gibbs. [187] Recent simulation and

experimental studies have also found remarkable similarities between the temperature de-

pendence of transport properties in superionic crystals and glass-forming materials [292]

and, in particular, the Adam-Gibbs (AG) relation was found to quantitatively describe

both the ion-diffusivity and electrical conductivity of simulated PbF2 and CaF2 super-ionic

crystalline materials where the configurational entropy of the AG theory Sc was estimated

from a determination of the difference between the material entropy, minus its value at the

super-ionic transition temperature defining the onset of appreciable ion conductivity. The

identification of the strings with the cooperative rearranging regions of AG in the context

of heated crystals, the applicability of AG to heated crystal relaxation data, along with

the hypothesis that such crystals might be identified with super-ionic materials, imply that

the activation energy for the conductivity of super-ionic materials should exhibit the same

peculiar maximum as the string length in our simulations at a temperature well below the

melting temperature. Careful conductivity experiments [296] on a range of superionic crys-

tals have indeed indicated the general occurrence of an activation energy maximum of this

kind for a wide range of superionic crystalline materials. The maximum that we observe in

the string length with temperature is broader than in many of the super-ionic crystalline

material observations, but the strength of this feature is highly variable experimentally

[292, 296] and, correspondingly, the variable “sharpness” of this activation energy peak,

and in the specific heat, has been termed “fragility” by analogy with the use of this term

in glass-forming materials [292]. By this classification scheme, our Ni crystal system is a

relatively “strong” crystalline material (experimentally, PbF2 is much more fragile than

CaF2 [292]). Finally, we mention that there is much neuron scattering evidence that the

unusual transport properties in superionic materials are associated with interstitial defect

generation [297, 298], as we have found for superheated Ni crystal. It is also notable that

these crystalline materials exhibit a Boson peak [16], as in our simulations. All these striking

195



correspondences between our simulation findings for homogeneous melting of Ni crystals in

bulk and the phenomenology of superionic crystals support our contention that superionic

crystals are superheated crystals, or these materials are at least physically very much like

them. The odd properties of superionic crystals have been since the early studies of them

by Faraday [154, 163], but the extreme promise of these materials for applications relating

to energy storage for electric vehicles, and wind and solar energy storage, is only recently

becoming appreciated [294]. The further elucidation of the dynamics of these materials

using the methods of the present paper should aid in the practical development of these

promising materials.
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Appendix E

String-like Cooperative Motion in
Homogeneous Melting -
Supplementary Material

The mobile atoms are identified as these particles by a threshold atomic displacement

condition, 0.6r0 < |ri(∆t) − ri(0)| < 1.2r0, involving the average bulk crystal interatomic

spacing, r0. While changing the cut-off value alters the number of mobile particles, the

statistical properties of the size distribution are insensitive to this choice. We then define a

’mobile particle cluster’ as the group of neighboring particles having a separation less than

1.2 times the interatomic spacing, r0. The power-law cluster size distribution for the mobile

particles in Fig. E.4 is characteristic of branched equilibrium polymers and the distribution

of the mass of the mobile particles exhibits a similar exponent as observed before for heated

crystals of Cu and model glass-forming liquids [17] (See Nordlund et al. [230]).
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(a) (b)

Figure E.1: an Hove function Gs(r, t) after a short time (0.25 ns) and longer time (1 ns)
exhibiting a transformation from particle localization to a displacement to a distance about
an interparticle distance away. A minimum in this curve at the reduced scale ≈ 0.6 defines
a natural cut-off for defining the mobile particles.

Figure E.2: The distribution of < u2 > at T = 1950 K. We note that the distribution of
< u2 > does not exhibit any clear bimodal character, despite the clear multi-modal nature
of Gs(r, t) in Fig. E.1.
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Figure E.3: Decay first peak height of Gs(r, t) in Fig. E.1. The first peak magnitude
at T = 1950 K, denoted Φ(t), decays an exponential function, Φ(t) = exp(−t/τ) , to a
good approximation. The time constant τ fitted here is ≈ 700 ps, which is comparable
to the structural relaxation time τs obtained from the self-intermediate scattering function
(≈ 800 ps; See Fig. D.9 in Appendix D). The structural relaxation time then reflects the
persistence time of the particles in the immobile state, as in glass-forming liquids [10].
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Figure E.4: The distribution of particle cluster sizes P (n) for mobile atoms at four T . The
inset shows the average cluster size for mobile particles as a function of time interval at
different T .
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Figure E.5: Scaling of mobile particle radius of gyration Rg with its average mass M ,
Rg ∼ Mν where the inset shows ν = 1/df as a function of T . The exponent ν is about
0.4, corresponding to a fractal dimension df df ≈ 2.5, consistent with branched equilibrium
polymers with screened excluded volume interactions, i.e., percolation clusters [15, 16].
Recent simulation estimates of the mobile particles in a model polymer glass-forming liquid
also indicate a fractal dimension of these clusters near 2.5 [17].
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