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ABSTRACT

Service rates in many real queueing systems, e.g., call centers and emergency depart-

ments, change with the system conditions. We investigate and model load-dependant ser-

vice rates in this dissertation. First, we propose a general framework that explains different

mechanisms that cause service rates to change in response to the system load. We use the

framework to categorize and explain the results of published empirical papers that docu-

ment dependence of service times on load. We employ the framework to analyze the effect

of load on service times of an Emergency Medical Services (EMS) system based on a data

set for emergency calls received by the Calgary EMS system in 2009.

Second, we propose a state-dependent queueing model in which servers speed up in re-

sponse to the system “load,” but eventually slow down as a result of “overwork,” a situation

where the system has been under a heavy load for an extended time period. We quantify

load as the fraction of occupied servers and we operationalize overwork as the number of

users served so far in the current high-load period. Our model is a quasi-birth-and-death

process with a special structure that we exploit to develop efficient algorithms to compute

system performance measures. We use the model and simulation to demonstrate how using

models that ignore adaptive server behavior can result in inconsistencies between planned

and realized performance and can lead to suboptimal, unstable, or oscillatory staffing deci-

sions.

ii



PREFACE

Chapters 2 and 3 of this thesis are parts of a working paper co-authored with Dr. Ar-

mann Ingolfsson, Dr. Bora Kolfal, and Dr. Kenneth Schultz. The LEST framework pro-

posed in Chapter 2 was designed with the assistance from the co-authors. The literature

review in Chapter 2 and data analysis in Chapter 3 are my original work.

Chapter 4 of this thesis was co-authored with Dr. Armann Ingolfsson and Dr. Bora

Kolfal. The paper was submitted to the Operations Research journal for publication in

August 2013 and has received a revise-and-resubmit decision.
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CHAPTER 1

Introduction

In this dissertation, we study queueing systems in which the exogenous service rate

assumption does not hold. Most traditional capacity planning and queueing models, which

are mainly based on the classical Erlang C and B models, assume that service rates are

exogenous, that is, service rates are independent of the system state. Recent empirical

research has increasingly called into question the validity of the exogeneity assumption. In

particular, an important stream of empirical research has found evidence for the dependence

of service times on system load in various service and production systems, e.g., call centers

(Gans et al. 2010), healthcare systems (Kc and Terwiesch 2012), and serial production lines

(Schultz et al. 1998).

In this dissertation, we study the dependence of service times on system load from three

perspectives. (1) Empirical: we strive to establish fundamental knowledge about how and

why service rates adapt to system load. (2) Analytical: we develop queueing models that

incorporate some aspects of server behavior in response to load that cause service rates

to vary. (3) Prescriptive: we investigate the impact on solution quality of accounting for

adaptive service rates in models used to generate capacity planning and staffing solutions.

We focus on the first perspective in Chapters 2 and 3. We focus on the second and third

perspectives in Chapter 4.

In Chapter 2, we develop a general framework to help both empirical and analytical

researchers to investigate and model how load impacts service times. We examine interac-

tions among “load characteristics,” “system components,” and “service time determinants”

while studying the effect of load on service times. We characterize load in terms of three
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dimensions: “changeover,” “load,” and “extended load.” We distinguish between three sys-

tem components: “server,” “customer,” and “network.” We decompose service time into

“work content” and the “service speed.” We use the framework to categorize and explain

the results of published empirical papers that document dependence of service times on

load.

In Chapter 3, we illustrate the use of the framework to generate hypotheses about ser-

vice times in an emergency medical services (EMS) system. We employ the framework

to identify mechanisms that cause EMS service times to change with the EMS load. The

framework helps us to identify new mechanisms that have not been studied in previous pa-

pers. We test the hypotheses based on a data set from the EMS system of Calgary, Canada.

In Chapter 4, we develop a two-dimensional Markov chain for a multi-server queueing

system in which the service rate depends on the system “load” and “overwork”—a model

which generalizes the Erlang C model. Overwork refers to a situation where the system

has been under a heavy load for an extended time period, which might result in fatigue.

We quantify load as the fraction of occupied servers and we operationalize overwork as the

number of users served so far in the current high-load period. Our model is a quasi-birth-

and-death process with a special structure that we exploit to develop efficient and easy-

to-implement algorithms to compute system performance measures. We use the analytical

model and simulation to demonstrate how using models that ignore state-dependent service

rates can result in inconsistencies between planned and realized performance and can lead

to suboptimal, unstable, or oscillatory staffing decisions.

2



CHAPTER 2

LEST: A General Framework for the Influence of Load on

Service Times

2.1 Introduction

What is the relationship between load and service times? This question has been a fo-

cus of recent empirical research, but the conclusions are not clear. On the one hand, Kc and

Terwiesch find that “for two vastly different services ... workers can adapt to system needs

by [increasing] the service rate” (Kc and Terwiesch 2009) and that an intensive care unit

“rations its capacity during busy periods by discharging patients earlier” (Kc and Terwiesch

2012)—in other words, they find that service times decrease with load. On the other hand,

the same authors caution that “increases in productivity cannot be sustained over a long pe-

riod of time” (Kc and Terwiesch 2009) and that “high utilization results in ... [a] decrease in

productivity.” In a similar vein, Batt and Terwiesch (2012) find “evidence of both Speedup

and Slowdown mechanisms” and Tan and Netessine (2012) observe that “as workload in-

creases, the meal duration first increases and then decreases.” In other words, Tan and

Netessine find that service times have an inverted U-shaped relationship with load. Hasija

et al. (2010) report ambiguous results when studying whether call center agents speed up

in response to load. The relationship between load and service time remains an unresolved

question.

Classical queueing models assume that service times do not depend on load. By classi-

cal queueing models we mean the Erlang C (M /M /c) and B (M /M /c/c) models that stu-

dents learn about in operations management (OM) and engineering courses; that are used

3



for capacity planning in manufacturing, telecommunication, and service systems; and that

are used extensively in research on production systems. The voluminous body of research

in queueing theory since the days of Erlang has extended the classical models in many ways

but typically retaining the assumption that service times do not depend on load. There are

exceptions, dating back as far as Jackson (1963). Although some work has continued on

the modeling of such state-dependent queues, we postulate three possible reasons that have

limited progress in this area:

1. The mathematical modeling of dependence between load and service times is chal-

lenging, especially if the dependence is more complicated than the one modeled by

Jackson (1963), where the instantaneous service rates of all servers at a node in a

queueing network depend (only) on the instantaneous number of customers at that

node.

2. It is not clear that the effect of load on service times is economically or statistically

significant.

3. The nature of the dependence of service times on load is not clear.

In this chapter, we propose a framework to analyze the influence of system load on ser-

vice times in queueing systems. The proposed framework is general in the sense that it is

applicable to any type of manufacturing or service system. The framework provides a com-

prehensive and systematic basis to investigate and explain how system components react

and interact in response to system load and how those reactions and interactions cause vari-

ations in service times. We justify the generality of the framework, in part, by scrutinizing

published OM empirical studies and using the framework to explain the observed relation-

ships between service times and system load. In Chapter 3, we demonstrate application of

the framework to analyze systematically the effect of the emergency medical system (EMS)

load on service times.

Our framework has important implications for both empirical and analytical research.

The framework conceptualizes a thinking process that an empirical researcher can use by

provoking stylized questions: What are the system components? How is load characterized
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in the system? Which system components react to which load characteristics? What are

the mechanisms that relate load changes to system component reactions? Which parts of

the service time increase or decrease with which mechanism? Our framework can also

help analytical researchers to answer two fundamental questions: What are the factors on

which service times depend? How can these factors be translated into state variables? The

proposed framework also emphasizes the importance of some of the queueing modeling

characteristics, including: single-queue systems vs. queue networks, human vs. inanimate

servers or customers, dedicated vs. shared servers, and single vs. multiple customer types.

This chapter is organized as follows. In Section 2.2, we discuss the common assumption

that service times are exogenous, list examples of systems where this assumption is not

valid, and review state-dependent queueing models. In Sections 2.3 and 2.4, we propose

the framework and show how previous empirical research fits within the framework.

2.2 Literature Review

A. K. Erlang developed the classical Erlang C and B queueing models in the 1910s, to

quantify traffic congestion in telephone systems (Brockmeyer et al. 1948). The Erlang C

and B models are characterized by the assumption that service time distribution parameters

are exogenous, that is, independent of the system state. This exogeneity assumption contin-

ues to be common in research and practice. The exogeneity assumptions leads to simpler

models and it simplifies the data collection process by eliminating the need for tracking

correlations between variables of interest (Inman 1999).

Empirical research on queueing systems gained momentum in the 1990s (Scudder and

Hill 1998, Gupta et al. 2006). Empirical research involves analysis of real data collected by

field research, from archival records, or from a laboratory experiment. Empirical research

has increasingly called into question the validity of the exogeneity assumption. (e.g., Inman

1999, Robbins et al. 2010).

An important stream of empirical research has found evidence for the dependence of

service times on system load. An early field study of toll collection processes for the Port

Authority of New York (Edie 1954) found, for example, that drivers who wait longer in
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line are more likely to have change ready, leading to shorter average payment times. A

laboratory experiment of a low-inventory serial line (Schultz et al. 2003) found that subjects

worked at a slower pace during a warm-up period after an unintended break caused by

a job shortage. Regression analysis of archival data from several hospitals (Kuntz et al.

2011) suggested a concave relation between bed occupancy and hospital length of stay

(LOS): The LOS increases with occupancy up to a tipping point as patients wait longer

for diagnosis and the LOS drops after the tipping point because doctors discharge patients

earlier to accommodate incoming patients. We discuss other empirical studies in detail in

Section 2.4.

The findings of these empirical studies represent some fundamental differences. For

example, it is the behavior of the driver (the customer) in response to load that affects the

payment time in Edie (1954), whereas in Schultz et al. (2003), it is the worker (the server)

who behaves adaptively. Another example is the way in which system load is characterized:

Edie (1954) characterizes load as the queue length (number of cars in line) and Schultz et

al. (2003) characterizes load based on whether the amount of work-in-process is zero (idle

period) or positive (busy period).

To point out another difference, some studies show positive, e.g., Edie (1954), some

negative, e.g., Schultz et al. (2003), and some both positive and negative, e.g., Kuntz et al.

(2011), relationship between service time and system load. In this paper, we propose a

general framework that incorporates these and some other types of controversies.

Several queueing theorists have attempted to relax the exogeneity assumption by de-

veloping state-dependent queueing models, including Jackson (1963), Welch (1964), and

Harris (1967). In state-dependent models, the mean service rate typically depends on the

state of the system, which could either be the queue length or the amount of unfinished

work (Dshalalow 1997). Others have developed vacation queueing models, which capture

the type of load characterization that Schultz et al. (1998) observed; that is, lower service

rates after break (vacation) due to setup, e.g., Levy and Yechiali (1975).

State-dependent models often disregard some important characteristics of queueing sys-

tems, mostly for the sake of model tractability. Our proposed framework highlights some

of these characteristics. For example, most of the state-dependent models are single-server
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models and overlook behaviors like “free riding” (Karau and Williams 1993) in multi-server

systems. Another example is that queues are usually parts of a network. Performance of a

queue might affect service times in other parts of the network. For example, occupancy of

a hospital affects the LOS of patients in the hospital emergency department (ED) (Hillier et

al. 2009).

The growing evidence-based knowledge about queueing systems and advances in nu-

merical techniques provide the opportunity for queueing modelers to include important

characteristics of a real system and allow for more flexible interactions between different

system components. For example, phase-type distributions facilitate viewing service times

as the outcome of a dynamic process of customer-server interaction (Khudyakov et al. 2010,

as reported in Gans et al. 2010). Or, quasi-birth-and-death modelling (Neuts 1981) allows

for capturing different load characteristics that affect service times simultaneously (e.g.,

Delasay et al. 2013). In this respect, OM research is starting to achieve the kind of fertile

interplay between experiment and theory that one sees in other sciences, e.g., in Physics

(Fisher 2007).

2.3 Framework to Link System Load to Service Time

Figure 2.1 illustrates our framework as a chain of effects that connects system load to

service time. We name the framework as LEST (Load Effect on Service Times). In the

LEST framework, we identify three load characteristics named as: “changeover,” “load,”

and “extended load.” The load characteristics induces behaviours, or “mechanisms,” in at

least one of the system components; either the “server,” “network,” or “customer.” The in-

duced mechanism influence the service time determinants of the “work content” or “service

speed.” In subsections 2.3.1-2.3.3, we explain each box in the framework and define the

used terminology.

2.3.1 Load Characteristics

Load characteristics are the indices, measures, or conditions by which system load is

characterized. We have identified three different system load characteristics as follows:

7



Load

Characteristics

- Changeover

- Load

- Extended load 

System

Components

- Server

- Customer

- Network

Service Time

Determinants

- Work content

- Service speed

Service Time

Figure 2.1: The LEST framework

- Changeover: Changeover refers to a change in system load from zero to a positive

value or vice versa. In other words, situations where the system switches from an idle

state to a busy state or from a busy state to an idle state. Changeover captures the type

of system load effects that was observed in Schultz et al. (2003); slower service pace

after breaks. Changeover also includes switching from one service type to another.

- Load: Load refers to a measure or a set of measures that identify how busy or con-

gested a system is. Load is usually measured as the number of jobs in system, multi-

tasking level or the number of jobs assigned to a server, amount of unfinished work,

and occupancy rates or occupied capacity. For example, the number of patients wait-

ing in an ED is a way to measure ED load.

- Extended load: Extended load tracks the history of how the system load has changed.

It usually refers to a situation where the system has been under a heavy load for an

extended time period. For example, fatigue is the direct symptom of the extended

load.

2.3.2 System Components

We use the term “mechanism” to denote a link between load characteristics and service

time due to a specific cause. Changes to the three load characteristics invoke different

behaviours or induce mechanisms in three system components: the server, the customer,

or the network. An example is that the extended load may cause fatigue in servers, which

results in lower service speed and longer service time (Kc and Terwiesch 2009). Here,

“fatigue” is the mechanism.

- Server: We use the term “server” generically, without necessarily implying that

servers are human. The server is the person, the resource, or the bundle of peo-
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ple and other resources that provides service. Some systems have shared resources

that do not belong exclusively to any single server—diagnostic imaging for hospital

physicians or computer and telecommunication infrastructure for a call center (Aksin

and Harker 2003).

- Customer: The “customer” is the person or thing that receives service. Like a server,

a customer can be human or inanimate. For example, patients are customers in an ED

and unfinished products are customers in a manufacturing line.

- Network: A system may consist of multiple subsystems. When we analyze a subsys-

tem or a “node,” consisting of a queue or multiple queues and a single set of servers,

we consider any mechanism that originate from outside of the node of interest but

impacts service times in the node of interest as a “network” mechanism.

To illustrate the above definitions, consider a call center: servers are agents with associated

resources (computers, desks, cubicles), customers are callers, and the network could include

an interactive voice response unit that callers interact with prior to entering a queue of

callers waiting to talk to an agent. In an EMS system, as another example, servers are

ambulances with crews, customers are patients, and the network could include the road

network or the ED to which ambulances transport patients.

2.3.3 Service Time Determinants

Mechanisms that originate from a system component in response to a load character-

istic either increase or decrease one of the service time determinants of “work content” or

“service speed.” We view each customer entering service as having a random amount of

work, W , that needs to be completed. The work content W can include set-ups, in-process

delays, and customer-server interactions. If the service speed is S, measured in units of

work per time unit, then the service time is T = W/S. It is often useful to decompose a

service into either stages (single or multi-stage, as in Gross et al. (2008)) or phases (access,

check-in, diagnosis, service delivery, and check-out, as in Bitran and Lojo (1993)). Denot-

ing the work content and the service speed for stage or phase i by Wi and Si, respectively,
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we represent the total service time as:

T =
∑

i

Wi

Si
. (2.1)

In Section 2.4, we illustrate how the proposed framework explains and classifies the findings

in the empirical OM literature.

2.4 Classification of Previous Work

In this section, we review empirical papers that document dependency of service time

on system load. We classify the identified mechanisms in these papers in Table 2.1, which

is tabulated according to the LEST framework. In Table 2.1, we illustrate that the findings

of published studies can be explained by the framework. In our literature review, we were

interested in papers that pass two conditions: (1) Those that use data analysis to test the

dependency of service times to system load and (2) discuss the mechanisms that cause ser-

vice times to change with load. Although a paper must include some sort of data analysis to

satisfy the first condition, it does not necessarily require data analysis for the second con-

dition. The second condition can be based on intuition, judgment, observation, interviews,

past knowledge, or data analysis. We tried to be inclusive in our literature review, though

we do not claim that we have covered all related papers.

The nine cells of Table 2.1 correspond to all combinations of the three load characteris-

tics and the three system components. In each cell, we classify the identified mechanisms in

each paper based on the two service time determinants. Inside the first parentheses in front

of a mechanism, we identify whether the corresponding mechanism increases or decreases

the service time: (↑) for increase and (↓) for decrease. Then, we list the related papers in the

second parentheses. A paper has either no superscript, a “+” superscript, or a “−” super-

script. A paper is listed with no superscript if it hypothesizes the involved mechanism based

on intuition, judgment, observation, interviews, or past knowledge but it does not involve

data analysis to test the hypothesized mechanism. If a paper includes data analysis to test

the hypothesized mechanism and the result of the data analysis supports the mechanism, we

list it with a “+” superscript. On the other hand, if the result of the data analysis does not
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Table 2.1: Mechanisms

System components

Server Network Customer

Section 2.4.1 Section 2.4.2 Section 2.4.3

Changeover

Section 2.4.X.1

Work content

- Setup (↑)(This paper)

- Forgetting (↑) (Kc 2011, Schultz et

al. 2003−)

Service speed

- Loss of rhythm (↑) (Schultz et al.

2003+)

Work content

- Network arrangement (↓) (This pa-

per)

Work content

- Early task initiation (↓) (Edie 1954)

L
o

ad
ch

ar
ac

te
ri

st
ic

s

Load

Section 2.4.X.2

Work content

- Task reduction/service cancellation

(↓) (Kc and Terwiesch 2009, 2012,

Kuntz et al. 2011, Kc 2011+, Batt

and Terwiesch 2012+, Forster et al.

2003−, Mæstad et al. 2010−, This

paper)

- Task increase (↑) (Tan and Netes-

sine 2012+, This paper)

- Early task initiation (↓) (Batt and

Terwiesch 2012+, This paper)

- Multitasking - Time sharing and

interruptions (↑) (Kc 2011, Tan

and Netessine 2012, Chisholm et al.

2000+, Lu 2013+)

- Workload smoothing (↓) (Jaeker

and Tucker 2012+, This paper)

Service speed

- Social pressure - Speedup (↓) (Edie

1954, Mas and Moretti 2009, Kc and

Terwiesch 2009, Staats and Gino

2012, Lu 2013, Schultz et al. 1998+,

Tan and Netessine 2012+, This

paper)

- Social loafing - Slowdown (↑) (Mas

and Moretti 2009, Jaeker and Tucker

2012)

Work content

- Downstream system congestion (↑)

(Asaro et al. 2007+, Forster et al.

2003, Hillier et al. 2009, This paper)

- Resource sharing (↑) (Hillier et al.

2009)

- Geographical dispersion (↑) (This

paper)

Service speed

- Geographical speedup (↓) (This

paper)

Work content

- Service complication (↑) (Kc

2011+, Kc and Terwiesch 2012+,

This paper)

Extended Load

Section 2.4.X.3

Work content

- Task reduction/service cancellation

(↓) (Brown et al. 2005, This paper)

Service speed

- Overwork - Slowdown (↑) (Kc and

Terwiesch 2009, Gans et al. 2010,

Staats and Gino 2012, Lu 2013, This

paper)

- Learning-by-doing (↓) (Lu 2013)

Work content

- Network chaos (↑) (This paper)

Work content

- Service complication (↑) (Kc and

Terwiesch 2009)
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support the hypothesized mechanism, then we list the paper with a “−” superscript. We first

list papers with no superscript, then papers with “+” superscript, and finally, papers with

“−” superscript. We use the wording “This paper” if we hypothesize possible existence of

a mechanism in the studied EMS system in Chapter 3. In the remainder of this section, we

discuss the mechanisms and papers listed in each cell of Table 2.1.

2.4.1 Server Mechanisms

In this section, we review the mechanisms in the server column of Table 2.1, which is the

most populated column of the table: changeover mechanisms in 2.4.1.1, load mechanisms

in 2.4.1.2, and extended load mechanism in 2.4.1.3.

2.4.1.1 Server - Changeover Mechanisms

Question: How does server’s reaction to changeover change work content or service

speed?

(W ) Setup: When system load becomes zero, servers are forced either to take a break

or switch to another task. In both cases, the changeover characteristic is in effect. The

most obvious mechanism that increases the work content in case of a changeover is setup.

Researchers have long argued for the productivity benefits of reducing setups involved

in changeovers by strategies like specialization and mass production (Cellier and Eyrolle

1992, Schultz et al. 2003). There are two types of setups: physical setups and cognitive

setup. In the next two mechanisms, forgetting and loss of rhythm, we consider two mecha-

nisms involved mostly in the cognitive setup. In Chapter 3, we investigate physical setup in

an EMS system.

(W ) Forgetting: When servers take break from their main duty, they may forget the rou-

tine of the operation. Time to remember the operation incurs a cognitive setup that leads

to increase in the work content and processing time (Steedman 1970). In the forgetting

mechanism, longer breaks cause longer processing time penalty (Carlson and Rowe 1976,

Bailey 1989). Kc (2011) shows that patients’ LOS increases with physician’s multitasking

level and argues that this is partly because of cognitive setups involved in task switching,

e.g., going through medical notes to recall patient’s situation. Schultz et al. (2003)− test
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the forgetting mechanism in a laboratory setting of a low-inventory serial production line.

Although the experiments show that breaks lead to significantly longer processing times,

they do not support the association between the time penalty and the length of the break.

(S) Loss of rhythm: Another explanation for longer processing times after a changeover

is the loss of rhythm mechanism (Schultz et al. 2003)+. In repetitive tasks, servers adapt

a rhythm of performing their task. Breaks interrupt the rhythm and lowers service speed

for a short period until the rhythm is regained (Rubinstein et al. 2001). Staats and Gino

(2012) analyze loan processing times in a Japanese bank and find that assigning new tasks

to employees causes higher average completion times. Schultz et al. (2003)+, discussed

in the forgetting mechanism, show evidence for the loss of rhythm mechanism in a low-

inventory serial line noting that the time penalty is independent of the break length in the

loss of rhythm mechanism.

2.4.1.2 Server - Load Mechanisms

Question: How does server’s reaction to variation in load change work content or ser-

vice speed?

(W ) Task reduction/service cancellation: By task reduction, we refer to situations where

servers terminate a service stage, before it is completely accomplished, or eliminate one or

more stages of a service, usually to manage workload. We borrow the term task reduction

from Batt and Terwiesch (2012). Another term for this mechanism is cutting corners. Ser-

vice cancellation is the extreme case of task reduction. Obviously, the task reduction/service

cancellation mechanism shrinks the work content. This mechanism is mostly observed in

complex professional tasks with discretionary task completion criteria; that is, completion

of tasks are determined by server’s subjective criteria, e.g., engineers and physicians (Hopp

et al. 2007).

Based on an analytical model of a system with discretionary tasks, Hopp et al. (2007)

prove that task reduction can be the optimal service policy if service value is concave-

increasing with the service time and cost is increasing by the amount of time a customer

spends in the system. In this setting, the optimal service policy is to set a service cutoff

time that is monotone decreasing in queue length. Stidham and Weber (1989) and George
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and Harrison (2001) confirm similar policies.

Several empirical papers document task reduction in healthcare systems. This is be-

cause of the discretionary characteristic of healthcare related tasks. Early discharge is a

common manifestation of the task reduction mechanism in healthcare systems. Kc and Ter-

wiesch (2009) relate the shorter LOS of cardiothoracic surgery patients in high occupancy

levels to early patient discharges to increase bed availability for future surgeries. Kuntz

et al. (2011) observe an inverted U-shape relation between bed occupancy and hospital

LOS. They posit early discharges for decreasing LOS when occupancy exceeds the tipping

point. Interviews with personnel of an intensive care unit (ICU) also confirm that doctors

ration ICU capacity during busy periods by discharging patients earlier (Kc and Terwiesch

2012). The interviews also acknowledge that there are rare instances of elective surgery

cancellations as a result of full ICU capacity.

Batt and Terwiesch (2012)+ find statistical evidence that the number of tests ordered

by doctors decreases with ED load, measured as the waiting room census. Kc (2011)+

measures load as the number of patients multitasked by a physician. His findings support

the hypothesis that multitasking has inverse effect on the ED care quality as physicians

spend less time on patient diagnosis when they are treating several patients at the same

time.

Forster et al. (2003)− is a contradicting example. They view an ED and a hospital as

nodes of a network. They study the effect of hospital occupancy on ED throughput but they

find no evidence of the task reduction mechanism. Their regression analysis do no support

reduction in the proportion of ED patients who are referred to hospital consultants when

the hospital is experiencing high load. The analysis do not even provide evidence of early

discharges in the ED. Mæstad et al. (2010)− also find no association between physicians

multitasking level and the level of effort per patient in the diagnostic process measured by

the number of relevant questions asked and examinations performed.

(W ) Task increase: In contrast to the task reduction mechanism, in the task increase mech-

anism servers put more time and effort for a service to improve service quality or earn more

income. Tan and Netessine (2012)+ report the task increase mechanism in restaurant wait-

ers. They observe that increasing waiter’s load when he is serving few diners prolongs
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diners’ meal duration. They hypothesize that increasing the waiter-level load engages the

waiter to exert more upselling effort when restaurant is not full. They validate this by show-

ing that hourly waiter’s sales increases with load. However, restaurant load limits waiter’s

sales effectiveness after a certain threshold, which we discuss later in the speedup mecha-

nism.

(W ) Early task initiation: Early task initiation is to perform some stages or tasks of a

service in an earlier time to reduce workload of the system bottleneck. This includes ini-

tiatives undertaken by servers of a preceding stage while the customer has to wait for the

attention of the next stage’s server. An example is when ED triage nurses are allowed to or-

der diagnostic tests while a patient is waiting to be seen by a physician. Batt and Terwiesch

(2012)+ confirm that nurses order more tests when the waiting room is more crowded in

order to shorten the LOS by making test results ready when a physician visits the patient.

High degrees of early task initiation may be undesirable as over-testing by triage nurses,

before it is fully known that the tests are required, increases financial costs, medical risks,

and load on diagnostic resources.

(W ) Multitasking - Time sharing and interruptions: The term “multitasking” was first

used in computing science to describe the sharing of computing resources among many

users or programs (Brown 2006). Higher multitasking level is an indication of higher load.

Humans tend to multitask when they confront workload pressure to be able to utilize idle

time between tasks (Pennebaker 2009). For example, an ED physician who treats several

patients at the same time can check another patient while waiting for test results of a patient.

Despite presumed benefits of multitasking, phycological studies are against multitasking

mostly because of productivity loss caused by mental setups to refocus on switching tasks

(Gladstones at al. 1989, Pashler 1994, Rubinstein et al. 2001). We discussed some implica-

tions of multitasking in the forgetting mechanism and the task reduction/service cancelation

mechanism. Here, we focus on other implications of multitasking.

We are aware of four operational papers that discuss other implications of the multi-

tasking mechanism, time-sharing and interruptions, that lead to in-process wait and work

content increase. Kc (2011) finds that productivity of physicians, measured as the overall

patient throughput per unit time, increases with multitasking up to a level of five patients.
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Productivity losses of multitasking dominate its gains beyond that level. Despite the partial

productively gains, experiments reveal that multitasking at any level extends an individ-

ual patient’s LOS. One mentioned reason is the division of physician’s time over a larger

number of patients. For example, a patient’s test results are ready but since the physician

is taking care of another patient, the patient needs to wait. Tan and Netessine (2012) also

mention time-sharing as a possible reason for prolonged meal duration of diners assigned

to a waiter serving several table at the same time.

Trough time-motion analysis, Chisholm et al. (2000)+ find a positive correlation be-

tween multitasking level and number of interruptions that require attention of a multitasking

physician. Lu (2013)+ analysis on productivity of agents of an information technology ser-

vices provider reveals that although higher multitasking level is not associated with number

of interruptions, it prolongs the revisit time for suspended services.

(W ) Workload smoothing: The ability to predict future load induces different mechanisms

in servers to avoid periods of high congestion. For example, Green at al. (2013) observe

that workers react to predictable overloaded periods by not showing up at work. Workload

smoothing is another reaction to predictable load, which balances system load over time and

prevents over-utilized and under-utilized periods without hurting service quality. If servers

can predict future high load periods, they have the opportunity to smooth their workload by

serving their current work content before high load periods start. Jaeker and Tucker (2012)

argue that load predictability plays a significant role in discharging decisions in a hospital.

They find that medical teams react to high volume of incoming scheduled patients from

surgery units to hospital by early discharging current patients, if the hospital is congested.

(S) Social pressure - Speedup: Speeding up or rushing is a common phenomenon in

queueing systems where server’s performance is visible to other servers, customers, or

the manager. For example, slower workers work faster when performance feedback is

available—workers can see how other workers perform (Schultz et al. 2003, Bandiera et

al. 2012). Edie (1954) is one of the first empirical studies that reports the speedup behav-

ior. He demonstrates that toll collectors at George Washington Bridge tend to expedite the

operation under the pressure of backed-up traffic by limiting the conversation with drivers.

Mas and Moretti (2009) show that a slower cashier in a supermarket speeds up when
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customers are waiting in line and he/she is in the line of vision of other faster cashiers.

Regression models by Kc and Terwiesch (2009) support the hypothesis that patient trans-

porters in a hospital, whose performance is evaluated through a patient tracking system,

speed up in response to load, defined as the fraction of busy transporters. However, their

further analysis, which we will discuss in Section 2.4.1.3, demonstrates that speeding up is

not a sustainable behavior. Staats and Gino (2012) observe the speedup behavior in home

loan processing employees of a Japanese bank. Although employees are not aware of the

system load, they speedup when manager encourage them to speed up. Lu (2013) find evi-

dence that agents of an information technology services provider speed up with the number

of assigned requests, but the increase of speed diminishes as load exceeds a threshold.

Schultz et al. (1998)+ observe the speedup mechanism in a serial production line where

worker’s performance is tractable by the amount of work-in-process accumulated in the pre-

ceding and succeeding buffers. Using a laboratory experiment, they show that workers in a

low-inventory serial line react to pressure from workers of the neighboring workstations and

the buffer inventory level; they work faster when they are causing blockage of the preceding

station or starvation of the succeeding station. In a restaurant, Tan and Netessine (2012)+

hypothesize that a high level of load encourages restaurant waiters to accelerate service to

reduce the costs of customer waiting. Their hypothesis is consistent with their regression

results, which reveal reduced upselling effectiveness of waiters when their workload is very

high.

(S) Social loafing - Slowdown: Social loafing is the counterpart of the social pressure

mechanism. Social loafing, a.k.a. free riding, occurs when servers exert less effort to avoid

pulling the weight of a fellow team member (Karau and Williams 1993, Krumm 2000).

Social loafing is more prevalent in congested systems in which individual effort is difficult

to monitor (Latane et al. 1979).

Mas and Moretti (2009) argue that as the number of customers waiting in a supermarket

increases, cashiers find more incentive to free ride and let other cashiers handle the addi-

tional workload. Viewing an ED and a hospital as a series queueing network, Jaeker and

Tucker (2012) find that an in-hospital patient stays longer if there is a high load of incoming

non-acute patients from the ED. They associate this with nurses’ social loafing behavior:
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nurses work slower intentionally to avoid being assigned new patients when it is difficult to

being recognized as the bottleneck.

2.4.1.3 Server - Extended Load Mechanisms

Question: How does server’s reaction to the past history of load change work content

or service speed?

(W ) Overwork - Service cancellation: Overwork and the consequent productivity dete-

rioration is the natural outcome of working for long periods (Cakir et al. 1980, Setyawati

1995). Though not documented widely, overworked servers may simply refuse to serve a

customer to obtain extra rest. Brown et al. (2005) find evidence for this mechanism when

they encountered call times of less than 10 seconds while analyzing data of a call center.

Short service times were primarily caused by overworked agents who simply hung up on

customers to reduce workload and obtain extra rest.

(S) Overwork - Slowdown: The social pressure-speedup cannot be sustained indefinitely;

when servers are overworked they start to slow down (Sze 1984, Dietz 2011). In lab exper-

iments, Tanabe and Nishihara (2004) find that reaction times are longer when servers work

over a long time period. Kc and Terwiesch (2009) demonstrate that hospital transporters’

speedup behavior in response to load is not sustainable and they slow down after experienc-

ing extended periods of high load. They also argue that overwork slows down physicians in

making discharge decisions for cardiothoracic surgery patients. Gans et al. (2010) measure

overwork of agents of a call center by run length—the number of services an agent has

performed since the last gap of longer than one hour. They find that higher run length is

associated with longer average call times for some agents. Staats and Gino (2012) observe

the same behaviour by loan processors in a bank.

(S) Learning-by-doing: In contrast to the overwork mechanism, extended load can bring

productivity gains through the learning-by-doing mechanism, first recognized by Wright

(1936). Learning can occur over long-term horizons (weeks or months, for instance) or

short-term horizons (within a shift, for instance). Pisano et al. (2001) and Gans et al. (2010)

are among those that have studied long-term learning, as a function of the cumulative num-

ber of service completions for a medical team and for a call center agent, respectively. Lu
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(2013) studied short-term learning, as a function of the elapsed duration of a call center

agent’s current shift and found evidence for shorter processing times later in a shift.

2.4.2 Network Mechanisms

In this section, we review the mechanisms in the network column of Table 2.1: changeover

mechanisms in 2.4.2.1, load mechanisms in 2.4.2.2, and extended load mechanism in 2.4.2.3.

2.4.2.1 Network - Changeover Mechanisms

(W ) Network arrangement: We explain this mechanism in Section 3.2.

2.4.2.2 Network - Load Mechanisms

(W ) Downstream system congestion: When different services are interrelated nodes of a

network, a change in load of a node can have uncontrollable impact on service times in other

nodes. One possible scenario, which we call downstream queue congestion mechanism, is

when resources have to be engaged for a longer time to serve customers who cannot be

admitted by a full downstream service. For example, Forster et al. (2003) and Hillier et al.

(2009) view an ED and a hospital as a network. They find that patients who are admitted to

hospitals need to stay longer in ED when the hospital occupancy level is above 80%. Asaro

et al. (2007)+ confirm the existence of the downstream system congestion mechanism by

finding positive effect of hospital occupancy on boarding times of ED patients.

(W ) Resource sharing: Another network effect of load on service time happens when

different service nodes share common resources, which usually prolongs in-process delays.

One other possible reason for the effects observed by Forster et al. (2003) and Hillier et

al. (2009), discussed in the downstream system congestion mechanism, is shared resources

between the ED and the hospital, two nodes of the network. Hillier et al. (2009) find that

high hospital occupancy not only prolongs ED LOS of admitted patients to the hospital

but also increases LOS of patients discharged from the ED. This finding indicates ED and

hospital share resources, including treatment areas and care providers.

(W ) Geographical dispersion: We explain this mechanism in Section 3.2.

(S) Geographical speedup: We explain this mechanism in Section3.2.
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2.4.2.3 Network - Extended Load Mechanisms

(W ) Network chaos: We explain this mechanism in Section 3.2.

2.4.3 Customer Mechanisms

In this section, we review the mechanisms in the customer column of Table 2.1: changeover

mechanisms in 2.4.3.1, load mechanisms in 2.4.3.2, and extended load mechanism in 2.4.3.3.

2.4.3.1 Customer - Changeover Mechanisms

(W ) Early task initiation: Like server’s early task initiation mechanism, customers can

also help to shorten in-process delays by performing tasks that are under their control be-

fore the service encounter starts. To clarify the reason for shorter holding times at higher

volumes of traffic per lane at George Washington Bridge toll booths, Edie (1954) specu-

lates that drivers have the opportunity to get their tolls ready, while waiting, when there is a

waiting line at a toll booth; whereas when there is no line, they have to search to find their

tolls when they drive right up to the booth.

2.4.3.2 Customer - Load Mechanisms

(W ) Service complication: As discussed in the task reduction/service cancellation and

workload smoothing mechanisms, servers might respond to high load by cutting a service

encounter prematurely. In some services, this may endanger service quality and cause com-

plications in customer needs that require him/her to bounce back to the system at a later

time. This causes longer total service times. Kc (2011)+ and Kc and Terwiesch (2012)+

document this mechanism by showing that the likelihood of patients revisits to medical

units (an ICU and an ED) increases with load. In Kc (2011)+, lower care quality due to

excessive multi-tasking is the reason for revisits, while in Kc and Terwiesch (2012)+ early

discharge decisions cause revisits.
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2.4.3.3 Customer - Extended Load Mechanisms

(W ) Service complication: When overwork is associated with a reduction in service qual-

ity, additional reprocessing and rework is required to achieve desirable service quality. After

showing that system-wide overwork increases the LOS for cardiothrocic surgery patients,

Kc and Terwiesch (2009) argue that fatigued care providers are more prone to making med-

ical errors, which leads to complications that call for additional rework.
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CHAPTER 3

Using the LEST Framework to Analyze EMS Service Times

3.1 Introduction

In Chapter 2, we used the LEST framework to explain and categorize the findings of the

empirical studies that document the effect of system load on service times. In this section,

we describe how to employ the framework to analyze EMS service times. An EMS response

to a medical emergency begins when a patient or bystander calls 911.

An emergency medical dispatcher (EMD) answers and triages the call trough a system-

atic medical interrogation to determine the patient’s condition acuity. After gathering the

required information, including call address and the type of required equipment, the EMD

dispatches an appropriately equipped ambulance close to the incident scene. We refer to a

service as “regular” if the ambulance receives a dispatch notification in the standby mode.

It is also possible that an ambulance receives a dispatch notification just after finishing a

service, while returning from that service. We call this situation “extended service.”

The EMS service time begins when the ambulance receives the dispatch notification

and it includes the five time intervals shown in Figure 3.1:

- Chute time (TChute): The preparation and boarding time for the ambulance crew after

receiving the dispatch notification.

- Travel time (T Travel): The travel time from the dispatch location to the incident scene.

- Scene time (T Scene): The time that ambulance crew are on scene providing medical

care to a patient.
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Figure 3.1: EMS Service Time

- Transportation time (T Transport): The travel time from the scene to a hospital, if the

patient requires hospital transportation.

- Hospital time (THospital): The offload time to transfer the patient to the ED after

arriving to the hospital.

In this chapter, we use the LEST framework for a systematic investigation of mech-

anisms that cause EMS service times to depend on EMS load. We consider each cell of

the LEST framework and we try to understand how the corresponding system component

and load characteristic are manifested in different EMS service time intervals. Then, we

propose possible mechanisms that relate the system component and the load characteristic

to a service time interval.

We investigate server mechanisms in Section 3.2.1, network mechanisms in Section

3.2.2, and customer mechanisms in Section 3.2.3. In Section 3.3, we aggregate the effect of

the server, network, and customer mechanisms on each time interval and we investigate the

effect of load on the total EMS service time. We test our hypotheses by analyzing service

time data for the EMS system of the city of Calgary, Canada, in Section 3.4.

3.2 Identifying EMS Mechanisms Based on the LEST Framework

In general, “load” of an EMS system is measured as the number of patients who require

medical care from the EMS system, which is often equal to the number of busy ambulances.

A system-wide “changeover,” when system load resets to zero, might occur rarely for an

EMS system as large as Calgary EMS (typically around 40 ambulance on duty) but we can

look for changeover mechanisms when an ambulances becomes idle. When most of the
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Table 3.1: Mechanisms for the effect of EMS load on service time

System components

Server Network Customer

Changeover
Work content

- Setup (M 1.1)

Work content

- Network arrangement (M 2.5)

L
o

ad
ch

ar
ac

te
ri

st
ic

s

Load

Work content

- Early task initiation (M 1.2)

- Task increase (M 1.3.a)

- Workload smoothing (M 1.3.b)

- Task reduction (M 1.4, M 1.5)

Service speed

- Speedup (M 1.6)

Work content

- Downstream system congestion (M

2.1)

- Geographical dispersion (M 2.2)

Service speed

- Geographical speedup (M 2.3)

Work content

- Service complication (M 3.1, M 3.2)

Extended load

Work content

- Slowdown (M 1.7)

- Task reduction (M 1.8)

Work content

- Network chaos (M 2.4)

ambulances are busy for a long period, we expect to observe the “extended load” related

mechanisms.

Table 3.1 previews the identified mechanisms that cause EMS service times to depend

on different load characteristics. We explain mechanisms of each cell in the following

sections.

3.2.1 EMS Server Mechanisms

In the EMS system, “servers” are ambulances with paramedics. In this section, we first

investigate server - changeover mechanisms, then server - load mechanisms, and finally

server - extended load mechanisms.

3.2.1.1 EMS Server - Changeover Mechanisms

The forgetting and loss of rhythm mechanisms do not seem to influence the performance

of EMS servers as these mechanisms are more prevalent in repetitive and routine tasks.

Chute time, the first time interval, can be conceived as the setup time of the EMS service

and thus, a point of interest to investigate the setup mechanism. It is reasonable to believe

that chute time of regular services is longer than chute time of extended services. In most

cases, chute time for extended services is equal zero as ambulance crew are already in the

vehicle (Aehlert and Vroman 2011, page 654).
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M 1.1 Setup (server, changeover, work content): The setup involved in regular services is

longer than the setup involved in extended services.

3.2.1.2 EMS Server - Load Mechanisms.

We rule out the multitasking mechanism for the EMS system as each response unit

handles one patient at a time. We expect to observe the effect of the early task initia-

tion mechanism on the chute time, as the first time interval. We speculate that ambulance

crew’s information about the EMS load forms an expectation about the likelihood of being

dispatched in the near future. When the EMS load is high, it is more predictable for ambu-

lance crew that they will receive a dispatch notification soon. So, they can start perpetration

tasks before receiving the notification.

M 1.2 Early task initiation (server, load, work content): Service predictability in EMS

higher load enables ambulance crew to start preparation tasks before receiving a dispatch

notification.

We justify the task reduction, task increase, and workload smoothing mechanisms in the

EMS system based on Hopp et al. (2007) discretionary task completion model, discussed

in Section 2.4.1.2. Failure to meet response and service time targets has negative impact

on the EMS system and even might result in ambulance shortage to cover new calls. Scene

time and hospital time are the two time intervals with discretionary task completion criteria.

We believe that paramedics’ information about the EMS load, besides other factors

like urgency, influences the amount of time they spend on scene to cure a patient before

deciding about whether to transport the patient to hospital. Our speculation is that as load

increases up to a threshold, paramedics spend more time on the scene to treat the patient as

they tend to avoid transporting the patient to hospital due to longer hospital wait in higher

EMS load (due to the downstream system congestion mechanism, which we will discuss in

Section 3.2.2). When EMS load is very high, paramedics prefer to shorten the scene time

and instead continue the care process inside the ambulance while transferring the patient to

hospital, probably in response to some protocols. This can be an example of the workload

smoothing mechanism. We hypothesize:
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M 1.3.a Task increase (server, load, work content): When EMS load is below a critical

threshold, paramedics spend more time on scene as load increases in order to stabilize

patient condition on scene and avoid hospital transportation.

M 1.3.b Workload smoothing (server, load, work content): When EMS load is beyond

a critical threshold, paramedics spend less time on scene as load increases and instead

perform the care process inside the ambulance while transferring the patient to hospital.

We also believe paramedics’ information about the EMS load affects their discretion about

whether to transfer the patient to hospital. We think that paramedics’ expectation of longer

hospital times when load is high makes them less inclined to transfer the patient to hospital.

Therefore, we hypothesize:

M 1.4 Task reduction (server, load, work content): The probability of hospital transporta-

tion decreases with load.

The other time interval that involves discretionary task completion criteria is the hospital

time. We can consider ED’s staff, including nurses and physicians, in addition to ambulance

crew as the servers involved in the hospital time interval. We believe paramedics and ED

staff feel pressure to shorten hospital time when the EMS load is close to its limit. For

example in Alberta, Canada, “ED surge capacity protocols” force EDs to accelerate the

admission process of patients transferred by ambulances when fewer than 7 ambulances are

available for service in the city (Alberta Health Services 2010). A suggested strategy in

the protocol is freeing up capacity by moving current ED patients out of the ED or hospital

beds. Such protocols encourage early discharges.

M 1.5 Task reduction (server, load, work content): In very high EMS load and in order

to shorten ambulance delays in hospitals, ED staff discharge ED patients early for faster

accommodation of the patients arrived to the ED by ambulance.

The social pressure - speedup mechanism is another potential server - load mechanism that

affects EMS time intervals. This is mainly due to the importance of service speed on the

EMS performance and meeting response and service time targets. Also, ambulance crew’s
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actions are mostly monitored and tracked by computer aided dispatching systems in the

dispatching center. Disentangling the service speed and the work content is not clear for

chute, scene, and hospital time intervals. Whereas, it is possible to disentangle the work

content and service speed for travel and transportation times by considering distance as the

work content and the cruising speed as the service speed. The most plausible manifestation

of the social pressure - speedup is increasing the cruising speed by ambulance drivers.

M 1.6 Speedup (server, load, service speed): Ambulance drivers increase cruising speed

as EMS load increases.

3.2.1.3 EMS Server - Extended Load Mechanisms

As discussed previously, there are times that ambulance crew are required to perform

extended services due to their proximity to a high volume demand region. Extended services

are susceptible to extended load mechanisms, like the overwork - slowdown mechanism.

Chute, travel, and transportation times do not involve demanding physical or mental tasks

and do not seem to be influenced significantly by extended load mechanisms.

Scene time involves both physical and mental tasks. Therefore, we speculate that the

overwork caused by performing extended service slows down paramedics and makes scene

time longer. We also hypothesize that those paramedics that are more overworked by longer

extended services are less inclined to transfer patients to hospital.

M 1.7 Slowdown (server, extended load, work content): Extended load increases the amount

of overwork and slows down paramedics performance on the scene.

M 1.8 Task reduction (server, extended load, work content): The probability of hospital

transportation is lower for longer extended services.

3.2.2 EMS Network Mechanisms

We can view the EMS system and the ED to which an ambulance transports patients

as two nodes of a network. In this setting, ED is the downstream system of the EMS

system and is a point of interest to look for network mechanisms. We also introduce a
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new perspective for network mechanisms of the EMS system: One can model the city road

network that connects the dispatch location to the scene location and the scene location

to the hospital as an infinite-server virtual queue that delays medical care delivery. This

perspective allows us to identify new network mechanisms.

3.2.2.1 EMS Network - Changeover Mechanisms

We introduce a new mechanism for the effect of changeover on travel and transporta-

tion distances, which are the parameters of the EMS network configuration based on the

new network perspective explained in the previous paragraph. We call the new mechanism

network arrangement. This mechanism is interrelated to the geographical dispersion and

network chaos mechanisms, which we will introduce in the next two subsections. For bet-

ter clarification, we opt to introduce the network arrangement mechanism later, after we

introduce the network chaos mechanism in the network - extended load subsection.

3.2.2.2 EMS Network - Load mechanisms

Like Forster et al. (2003), Asaro et al. (2007), and Hillier et al. (2009), the most ap-

parent load mechanism to speculate here is the effect of downstream system congestion

mechanism, ED congestion, on the hospital time. Assuming that EMS load is positively

correlated with ED load, hospitals are crowded when EMS load is high. ED congestion

causes ambulances to back up to offload patients, which results in longer hospital time.

Early discharges in the ED in response to capacity management protocols, as discussed in

mechanism M 1.5 (the task reduction mechanism), mitigate the effect of downstream system

congestion mechanism when EMS load is above a critical threshold.

M 2.1 Downstream system congestion (network, load, work content): ED congestion causes

hospital time to increase with load when load is below a critical threshold.

Now, we focus on the other perspective of the EMS network. Travel time causes delay in

providing medical care to patients. For sure, the amount of delay depends on distance. The

distance itself depends on the EMD’s decision on dispatching the closest possible ambu-

lance to the scene and also, ambulance crew’s selection of the shortest route to the scene.
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The travel distance and travel time are affected by two new network mechanisms of geo-

graphical dispersion and geographical speedup.

In mechanism M 2.2, we speculate that the geographical dispersion mechanism causes

longer travel distance and time in high EMS system load. Geographic dispersion occurs

because fewer ambulances cover a fixed geographic area (a city) when the EMS system

load is high. As a result, ambulances need to travel further to a scene. This mechanism

might also be relevant to other services, for example, repair and tow truck services, porters

in hospitals, other emergency services (fire, police), and taxi and delivery services. The

geographical speedup mechanism mitigates the geographical dispersion mechanism by en-

abling ambulance drivers to drive faster as it is likely that long trips involve at least some

highway travel (Budge et al. 2010), as hypothesized in M 2.3.

M 2.2 Geographical dispersion (network, load, work content): Distance increases with

load because of the geographical dispersion mechanism.

M 2.3 Geographical speedup (network, load, service speed): Ambulance cruising speed

increases with distance due to the geographical speedup mechanism.

3.2.2.3 EMS Network - Extended Load Mechanisms

Ambulance locations in a city are picked so that they can cover all calls in a target

response time. We argue that when EMS load is high for a long period, it causes more

disarrangement of ambulances from their original planned positions, which leads to supop-

timal dispatches and longer travel times. We call this the network chaos mechanism.

M 2.4 Network chaos (network, extended load, work content): An ambulance needs to

travel longer to a scene location as extended load continues for longer periods.

When EMS load gets back to its normal situation and more ambulances become idle, ambu-

lances have the chance to return to their original planned dispatch locations. So, changeover

brings the EMS network arrangement. This is the network arrangement mechanism that we

mentioned in the EMS Network - Changeover Mechanisms subsection and we postponed its

explanation to here.
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M 2.5 Network arrangement (network, changeover, work content): Travel distances are

shorter for regular (not extended) services.

3.2.3 EMS Customer Mechanisms

In the EMS system, “customers” are callers or patients. Changeover and extended load

characteristics do not seem to result in patient driven mechanisms.

3.2.3.1 EMS Customer - Load Mechanisms

Patients do not have direct knowledge about the EMS load. So, they cannot react di-

rectly to load. However, patients experience the consequences of high system load by a

delayed response due to longer travel distances (M 2.2 - the geographical dispersion mech-

anism). As documented widely in the EMS research literature, long response times result

in inferior patient condition (e.g., Feero et al. 1995, Blackwell and Kaufman 2002), which

may induce the service complication mechanism. We hypothesize that the inferior patient

condition results in complications that cause longer scene time and also, higher chance that

the patient requires hospital transportation.

M 3.1 Service complication (customer, load, work content): Longer response time in

higher load due to longer travel times causes complications in patient health condition

and increases scene time.

M 3.2 service complication (customer, load, work content): Longer response time in higher

load due to longer travel times causes complications in patient health condition and in-

creases the probability that the patient requires hospital transportation.

3.3 Generating Hypotheses about EMS Service Time Intervals: Aggregating

the Effects of the Identified Mechanisms

In this section, we aggregate the effects of the mechanisms identified in Sections 3.2.1-

3.2.3 on each time interval and the total EMS service time.
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3.3.1 Chute Time Hypotheses

We base our hypotheses about chute time on mechanisms M 1.1 (the setup mechanism)

and M 1.2 (the early task initiation mechanism). Based on the shorter setup time involved

in chute time of extended services and early task initiation of ambulance crew owing to the

higher predictability of dispatching notifications in higher EMS load, we hypothesize:

H 1 Chute time increases with changeover.

H 2 Chute time decreases with load.

3.3.2 Travel and Transportation Times Hypotheses

We base hypothesis H 3 for the effect of changeover on travel time on M 2.5 (the

network arrangement mechanism).

H 3 Travel time decreases with changeover.

M 1.5 (the social pressure - speedup mechanism), M 2.2 (the geographical dispersion

mechanism), and M 2.3 (the geographical speedup mechanism) form our hypothesis for

the effect of load on travel time. Ambulances travel in higher speed when load increases

because of the social pressure - speedup mechanism and the geographical speedup mecha-

nism. On the other hand, the travel distance increases with system load because of the geo-

graphical dispersion mechanism. We believe that the geographical dispersion mechanism

dominates the other two mechanisms. We make the same argument about the transportation

time. So,

H 4 Travel time increases with load.

H 5 Transportation time increases with load.

Finally, M 2.4 (the network chaos mechanism) form our hypothesis for the effect of ex-

tended load on travel time:

H 6 Travel time increases as high load periods last longer.
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3.3.3 Scene Time Hypotheses

We do not speculate any changeover mechanism that affects the scene time. Our hy-

pothesis for the aggregated effect of load on scene time results from M 1.3.a (the task

increase mechanism), M 1.3.b (the workload smoothing mechanism), and M 3.1 (the ser-

vice complication mechanism). Based on the three mentioned mechanisms, we expect to

find a concave relation between scene time and load as expressed in H 7.

H 7 scene time increases with load below a critical threshold and decreases with load

above the threshold.

M 1.6 (the overwork - slowdown mechanism) is the only hypothesis that relates extended

load to scene time. We express hypothesis H 8 based on M 1.6.

H 8 Scene time increases with extended load.

3.3.4 Hospital Time Hypotheses

Like scene time, we do not speculate any changeover mechanism that affects hospital

time. The network - load mechanism of downstream system congestion increases hospital

time up to a critical load threshold (M 2.1), but the ED surge capacity planning protocols

force early discharges in the ED after the critical EMS load threshold to accommodate pa-

tients transferred by ambulances faster (M 1.5). So, we predict a concave relation between

the hospital time and the EMS load.

H 9 Hospital time increases with load up to a threshold but decreases with load after the

threshold.

3.3.5 EMS Total Service Time Hypotheses

Chute, travel, and scene times are the three time intervals for without-hospital trans-

portation services. Changeover and extended load increase chute and scene times, respec-

tively (H 1 and H 8). Load reduces chute time (H 2), increases travel time (H 4), and

increases scene time up to a threshold and reduces it beyond the threshold (H 7). Trans-

portation time and hospital time are added to the service time for services with hospital
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transportation. Changeover and extended load do not affect these two intervals. Load’s

effect on transportation time is similar to it’s effect on travel time (H 5). Like scene time,

hospital time varies concavely with load (H 9). Based on the above discussion, we express

our hypotheses for the total EMS service time as follows:

H 10 Service time of without and with-hospital transportation services increases with

changeover.

H 11 Service time of without and with-hospital transportation services increases with load

below a threshold and decreases with load above the threshold.

H 12 Service time of without and with-hospital transportation services increases with ex-

tended load.

When we discussed about the discretionary task completion criteria of the scene time, we

argued that paramedics’ decision on transporting a patient to a hospital or spending more

time on scene to cure the patient is influenced by EMS load (M 1.4 - task reduction mech-

anism). On the other hand, load increases the probability of hospital transportation due to

service complication mechanism because of longer response time (M 3.2). If so, patients

with almost similar urgency might experience different service times in different EMS load

situations because one has been transported to hospital while the other has not been trans-

ported to hospital. We expect the task reduction mechanism dominates the service compli-

cation mechanism. knowing that services with hospital transportation are generally longer

than services without hospital transportation, we hypothesize:

H 13 Service time of a random call decreases with load.

3.4 Testing Hypotheses: Calgary EMS System

We test our proposed hypotheses by analyzing a 2009 data set for the EMS system of the

city of Calgary, Canada. The data set contains 108, 423 call records. We focus on 92, 893

calls for which an ambulance was dispatched. The information for a call includes: (1) time

stamps for different events generated by the EMD and paramedics, (2) coordinates for the
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ambulance dispatch location, call address, and hospital location, (3) call priority numbers

assigned by the EMD (a number from 1 to 7 with 1 being assigned to Delta/Echo or the

most critical priority calls), and (4) the number of busy and scheduled ambulances at the

moment of call arrival. We use this information to extract the following variables for each

call:

- The length of the EMS time intervals: TChute, T Travel, T Scene, T Transport, and THospital

- Response and service times for without-hospital transportation (T SWOT) and with-

hospital transportation (T SWT) services:

TResponse = TChute + T Travel

T SWOT = TChute + T Travel + T Scene

T SWT = TChute + T Travel + T Scene + T Transport + THospital

- Travel (D) and transportation (D′) distances

- Travel (S) and transportation (S′) speed. We assume a uniform speed in the entire

length of a trip and we compute the average ambulance speed by S = D/T Travel and

S′ = D′/T Transport.

- Number of busy ambulances at the dispatch notification (NB1), scene arrival (NB2),

scene departure (NB3), and hospital arrival (NB4) moments

- Whether the patient is transported to hospital (IT = 1 for hospital transportation,

IT = 0 otherwise)

- Whether the call is evaluated as life threatening with a Delta/Echo priority (IU = 1

for Delta/Echo priority, IU = 0 otherwise)

- Whether light and siren is deployed during the travel and transportation times (IS = 1

for light and siren, 0 otherwise; light and siren is deployed for priority numbers 1 to

4)

- To capture changeovers, we identify whether the responding ambulance received the

dispatch notification in the standby mode (IC = 1 for regular service) or it received
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Measure TChute T Travel T Scene T Transport THospital T SWOT T SWT

Mean 0.96 7.13 28.59 16.57 69.38 44.49 117.50
Median 0.73 5.78 23.35 14.57 56.97 34.58 105.9

Standard deviation 3.84 6.87 30.76 11.01 51.04 44.57 55.50
Coefficient of variation 4.00 0.96 1.08 0.66 0.74 1.06 0.47

Table 3.2: Descriptive statistics for service time intervals (minutes)

Measure NS NB L D (km) D′ (km)

Mean 42.78 18.84 0.44 3.89 13.27
Median 43.00 19.00 0.43 3.11 12.37

Standard deviation 7.28 6.97 0.13 3.07 6.94
Coefficient of variation 0.37 0.17 0.29 0.79 0.52

Table 3.3: Descriptive statistics for explanatory variables

while returning from a previous service (IC = 0 for extended service). We identify

a service as an extended service if the time between the start of the service and the

finish of a previous call responded by the same crew is less than 10 minutes.

- We compute the EMS load at the dispatch notification (L1), scene arrival (L2), scene

departure (L3), and hospital arrival (L4) of a service as the fraction of busy ambu-

lances by Li = NBi/NS, i = 1, . . . , 4. Then, we compute the average load during

the whole service time of a call L as the average of load at the moments included in

the service.

- We quantify extended load in the server level (O) by computing the time length a

specific ambulance crew has been continuously serving since their last changeover.

Tables 3.2 and 3.3 provide descriptive statistics of the variables of interest. Hospital time is

the longest time interval with an average of 69.38 minutes and chute time is the shortest time

interval with an average of almost a minute. The average service time for a without-hospital

transportation service is 44.49 minutes, whereas the average service time for services with

hospital transportation is 117.50 minutes. Almost 58% of services include hospital trans-

portation. This sets the average service time of all calls at 86.84 minutes.

In the remainder of this section, we provide our regression models and we test our

hypotheses. In the regression models X denotes a vector of control variables including
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Coefficient TChute (min.)

Model (3.1)

Intercept −1.60(1.47)
IC 0.23(0.04)∗∗∗

L1 −0.28(0.13)∗

NS 0.05(0.03)
D 0.06(0.00)∗∗∗

IU −0.02(0.03)

R2 0.0032
P-val. < 2.2e− 16

Table 3.4: Effect of load on chute time (∗ ∗ ∗, ∗∗, ∗ denote statistical significance at the
0.1%, 1%, and 5% significance levels, respectively. Standard errors are shown in parenthe-
ses.)

day, time, and day and time interaction variables, ε is the error term, and “×” represents

interactions. We have dummy variables for days of the week and dummy variables for hours

of the day, plus interactions between these two sets of dummy variables.

3.4.1 Testing Chute Time Hypotheses

We test hypotheses H 1 (chute time increases with changeover) and H 2 (chute time de-

creases with load) by Model (3.1). A significant positive coefficient for IC supports hypoth-

esis H 1 and provides evidence for its predecessor mechanism M 1.1 (the setup mechanism).

A significant negative coefficient for L1 supports hypothesis H 2 and provides evidence for

its predecessor mechanism M 1.2 (the early task initiation mechanism). We include D in

Model (3.1) as it may take longer for ambulance crew to find the address and the best route

if scene location is outside the normal coverage region of a unit.

TChute = β0 + βICIC + βL1
L1 + βNSNS + βDD + βIU IU + βXX+ ε. (3.1)

Table 3.4 presents the regression coefficients of Model (3.1). The coefficient for IC supports

H 1, which can be explained by the setup mechanism as proposed in M 1.1. Based on the

coefficient of L1, an increase in load from 10% to 90% shortens the chute time by almost

15 second. This provides an evidence for mechanism M 1.2 and the early task initiation

mechanism.
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3.4.2 Testing Travel and Transportation Times Hypotheses

We test hypotheses H 3 (travel time decreases with changeover) and H 4 (travel time

increases with load) by Model (3.2). The predecessor mechanism for H 3 is mechanism

M 2.5 (the network arrangement mechanism), which we test by Model (3.4). Significant

negative coefficients for IC in Models (3.2) and (3.4) support H 3 and its predecessor M

2.5, respectively.

Hypothesis H 4 has three predecessor mechanisms: M 1.6 (the social pressure - speedup

mechanism), M 2.2 (the geographical dispersion mechanism), and M 2.3 (the geographical

speedup mechanism). We test M 2.2 by Models (3.3) and (3.4). We expect the magnitude

and significance of the coefficient of L1 attenuate from Model (3.2) to Model (3.3). A

significant positive coefficient for L1 in (3.4) supports the geographical dispersion mecha-

nism.

Model (3.5) tests the other two mechanisms for H 4: the social pressure - speedup

and geographical speedup mechanisms. A significant positive coefficient for D supports

the geographical speedup mechanism and a significant positive coefficient for L1 provides

evidence for the social pressure - speedup mechanism.

T Travel = β0 + βICIC + βL1
L1 + βNSNS + βIU IU + βISIS + βXX+ ε, (3.2)

T Travel = β0 + βICIC + βL1
L1 + βDD + βNSNS + βIU IU + βISIS + βXX+ ε. (3.3)

D = β0 + βICIC + βL1
L1 + βNSNS + βIU IU + βISIS + βXX+ ε, (3.4)

S = β0 + βICIC + βL1
L1 + βDD + βNSNS + βIU IU + βISIS + βXX+ ε. (3.5)

Table 3.5 presents the coefficients of regression Models (3.2)-(3.5). Although the coefficient

of IC in Model (3.4) supports the network arrangement mechanism (M 2.5), its coefficient

in Model (3.2) supports the opposite of what we hypothesized in H 3: Travel time of a

regular service, the first service after a changeover, is longer than travel time of an extended

service. One explanation for this result is that regular services require the acceleration

phase to travel on residential or arterial roads before reaching to the cruising speed phase

corresponding to highway travel (Budge et al. 2010). Whereas, extended services are likely

to be initiated while the ambulance is already in the cruising speed phase. Therefore, the
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Coefficient T Travel (min.) T Travel (min.) D (km) S (km/min.) S (km/min.)

Model (3.2) Model (3.3) Model (3.4) Model (3.5) Model (3.5)

D < 5

Intercept 7.75(2.36)∗∗ 3.69(2.29) 4.05(1.25)∗∗ −7.41(7.83) −4.87(5.16)
IC 0.26(0.07)∗∗∗ 0.43(0.07)∗∗∗ −0.10(0.04)∗∗ −1.24(0.24)∗∗∗ −0.78(0.15)∗∗∗

L1 4.20(0.21)∗∗∗ 0.04(0.20) 4.38(0.10)∗∗∗ −0.50(0.67) 0.99(0.43)∗

D 0.97(0.01)∗∗∗ 0.48(0.02)∗∗∗ 0.25(0.04)∗∗∗

NS 0.03(0.05) 0.03(0.05) 0.01(0.03) 0.17(0.17) 0.14(0.10)
IU −1.42(0.05)∗∗∗ −1.32(0.05)∗∗∗ −0.13(0.03)∗∗∗ −0.09(0.17) 0.01(0.10)
IS −4.55(0.11)∗∗∗ −2.83(0.10)∗∗∗ −1.54(0.06)∗∗∗ −0.09(0.35) −1.04(0.25)∗∗∗

R2 0.0487 0.2543 0.0431 0.0063 0.0015

P-val. < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 < 2.2e− 16 0.0003

Table 3.5: Effect of load on travel distance and speed (∗ ∗ ∗, ∗∗, ∗ denote statistical signifi-
cance at the 0.1%, 1%, and 5% significance levels, respectively. Standard errors are shown
in parentheses.)

advantage of higher travel speed for extended services surpasses the advantage of shorter

distance for regular services. This is verified by the coefficient of IC in Model (3.5), where

speed is the dependent variable.

Model (3.2) results support hypothesis H 4. Results of Models (3.3) and (3.4) support

mechanism M 2.2 (the geographical dispersion mechanism). Based on Model (3.4), travel

distance increases by 0.43 kilometers for 10% increase in load. The attenuation of the effect

of load in Model (3.3) compared to Model (3.2) suggests that the geographical dispersion

mechanism is the dominant mechanism that affects the travel time. The coefficients of

determination (R2) of Models (3.2) and (3.3) imply that distance explains almost 20% of

the variability in the travel time.

Based on Model (3.5), traveling speed for farther distances is faster. This implies the

geographical speedup mechanism (M 2.3) as distance itself increases with load. The co-

efficient of L1 in (3.5) is not significant. This is partly because the geographical speedup

mechanism dominates the social pressure-speedup mechanism. When we run Model (3.5)

for shorter travel distance services (less than 5 kilometers) where the power of the geo-

graphical dispersion mechanism is limited, the coefficient of L1 becomes significant with a

negative sign. This provides evidence for the social pressure-speedup mechanism, at least

in short distances.

We run similar regression models as Models (3.2)-(3.5) on the transportation time to test
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hypothesis H 5 (transportation time increases with load) and the three predecessor mecha-

nisms M 1.6 (the social pressure-speedup mechanism), M 2.2 (the geographical dispersion

mechanism), and M 2.3 (the geographical speedup mechanism). We did not find enough

evidence to support H 5 or any of the mechanisms. Unlike scene locations, ambulances

transport patients to a fixed set of hospitals regardless of the EMS load. This explains why

the geographical dispersion mechanism is not an effective mechanism for the transporta-

tion time. Although the transportation speed increases with distance, we do not observe the

geographical speedup mechanism here since distance is not driven by load.

3.4.3 Testing Scene Time Hypotheses

We test hypotheses H 7 (scene time increases with load below a critical threshold and

decreases with load above the threshold) and H 8 (scene time increases with extended load)

by Model (3.6). A significant negative coefficient for L2
2 supports the concave relation be-

tween the scene time and load. It also implies the predecessor mechanisms M 1.3.a (the task

increase mechanism) and M 1.3.b (the workload smoothing mechanism). Also, a signifi-

cant positive coefficient for TResponse supports the service complication mechanism (M 3.1)

as response time increases with load due to longer travel time. A significant positive coef-

ficient for O supports H 8 and the predecessor mechanism M 1.7 (the overwork-slowdown

mechanism). We include interaction terms L2
2×IU and L×IU in Model (3.6) as we believe

the outlined mechanisms are more pronounced for less urgent patients.

T Scene =β0 + βL2
2
L2
2 + βL2

L2 + βOO + βTResponseTResponse + βNSNS + βIU IU+

βIT IT + βL2
2
×IU

L2
2 × IU + βL×IUL× IU + βXX+ ε. (3.6)

Table 3.6 presents results of Model (3.6). The results support the concave relation between

load and scene time (H 7) and provides evidence for the task increase, workload smoothing,

and service complication mechanisms. Figure 3.2 plots scene time versus load for trans-

ported urgent and non-urgent services based on Table 3.6 results and average values of other

independent variables. Model (3.6) also supports the slowdown mechanism and its effect

on increasing scene time due to the extended load.
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Coefficient TScene (min.)

Model (3.6)

Intercept −1.95(8.91)
L2
2 −29.47(4.79)∗∗∗

L2 26.40(4.42)∗∗∗

O 0.01(0.00)∗∗∗

TResponse 0.50(0.01)∗∗∗

NS 0.63(0.23)∗∗

IU 3.93(1.83)∗∗

IT −12.18(0.20)∗∗∗

L2
2 × IU 28.37(9.24)∗∗

L2 × IU −24.15(8.41)∗∗

R2 0.0647
P-val. < 2.2e− 16

Table 3.6: Effect of load on scene time (∗ ∗ ∗, ∗∗, ∗ denote statistical significance at the
0.1%, 1%, and 5% significance levels, respectively. Standard errors are shown in parenthe-
ses.)

Figure 3.2 shows how scene time changes with load for urgent and non-urgent services

based on Model (3.6) and average values for NS = 42.79, TResponse = 8.09 minutes, and

O2 = 6.75 minutes.
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Figure 3.2: Scene time vs. load based on Model (3.6); NS = 42.79, TResponse = 8.09
minutes, and O2 = 6.75 minutes

3.4.4 Testing Hospital Time Hypotheses

We test hypotheses H 9 (Hospital time increases with load up to a threshold but de-

creases with load after the threshold) and the predecessor mechanisms M 2.1 (the down-

stream system congestion mechanism) and M 1.5 (the task reduction mechanism) by Model
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Coefficient THospital (min.)

Model (3.7)

Intercept 32.73(19.62)
L2
4 −36.11(8.87)∗∗∗

L4 68.16(8.32)∗∗∗

NS 0.04(0.51)
IU 5.21(0.49)∗∗∗

R2 0.0501
P-val. < 2.2e− 16

Table 3.7: Effect of load on hospital time (∗ ∗ ∗, ∗∗, ∗ denote statistical significance at the
0.1%, 1%, and 5% significance levels, respectively. Standard errors are shown in parenthe-
ses.)

(3.7). A significant negative coefficient for L2
4 supports the concave relation between the

hospital time and load. It also provides evidence for the downstream system congestion

mechanism (M 2.1) when load is below a critical threshold and the task reduction-early

discharge mechanism (M 1.5) when load is above the critical threshold.

THospital = β0 + βL2
4
L2
4 + βL4

L4 + βNSNS + βIU IU + βXX+ ε. (3.7)

The results of Model (3.7), as presented in Table 3.7, support the concave relation between

load and hospital time (H 9). Plot 3.3 shows the regression line of Model (3.7), estimated

by Table 3.7 results, which illustrates the effects of downstream system congestion and task

reduction-early discharge mechanisms.
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Figure 3.3: Hospital time vs. load based on Model (3.7); NS = 42.79
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Coefficient T Service

Model (3.8)

Intercept −5.32(18.45)
IC 6.75(1.20)∗∗∗

L
2 −33.92(13.03)∗∗

L 21.89(12.13)
O 0.14(0.01)∗∗∗

IT 28.78(3.84)∗∗∗

NS 0.58(0.40)
IU −0.59(0.41)

IC × IT 3.26(1.66)∗

L
2 × IT −52.23(17.03)∗∗

L× IT 125.41(15.65)∗∗∗

O × IT −0.09(0.02)∗∗∗

R2 0.3923
P-val. < 2.2e− 16

Table 3.8: Effect of load on service time (in minutes) (∗ ∗ ∗, ∗∗, ∗ denote statistical signifi-
cance at the 0.1%, 1%, and 5% significance levels, respectively. Standard errors are shown
in parentheses.)

3.4.5 Testing EMS Total Service Time Hypotheses

We construct Model (3.8) to test hypoteses H 10 (service time of without and with-

hospital transportation services increases with changeover), H 11 (service time of without

and with-hospital transportation services increases with load below a threshold and de-

creases with load above the threshold), and H 12 (service time of without and with-hospital

transportation services increases with extended load). Significant negative coefficients for

IC and L
2

when IT = 0 and IT = 1 support H 10 and H 11. Significant positive coeffi-

cients for O when IT = 0 and IT = 1 support H 12. The results for Model (3.8), presented

in Table 3.8, support hypotheses H 10, H 11, and H 12.

T Service =β0 + βICIC + β
L
2L

2
+ βLL+ βOO + βIT IT + βNSNS + βIU IU+

βIC×IT IC × IT + β
L
2
×IT

L
2 × IT + βL×IT

L× IT + βO×ITO × IT + βXX+ ε.

(3.8)

The other hypothesis to test is H 13 (Service time of a random call decreases with load.).

We cannot test H 13 directly but we can test its predecessors M 1.4 (the task reduction
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Coefficient logit[Pr(IT = 1)]
Model (3.9)

Intercept 0.67(0.65)
L3 −0.56(0.07)∗∗∗

TResponse 0.00(0.00)
NS −0.01(0.02)
IU −0.35(0.15)∗

L3 × IU −0.13(0.12)

Table 3.9: Effect of load on transportation time and probability (∗∗∗, ∗∗, ∗ denote statistical
significance at the 0.1%, 1%, and 5% significance levels, respectively. Standard errors are
shown in parentheses.)

mechanism: the probability of hospital transportation decreases with load) and M 3.2 (the

service complication mechanism: the probability of hospital transportation increases with

longer response time when EMS load is high). We test mechanisms M 1.4 and M 3.2 by

logistic Model (3.9). A significant negative coefficient for L3 supports M 1.4 and the task

increase mechanism. A significant positive coefficient for TResponse supports M 3.2 and the

service complication mechanism.

logit[Pr(IT = 1)] =β0 + βL3
L3 + βTResponseTResponse + βNSNS + βIU IU+

βL3×IUL3 × IU + βXX+ ε. (3.9)

Table 3.9 presents the results of Model (3.9). The results support the task reduction mecha-

nism to avoid long hospital times in higher EMS load but they do not provide evidence for

the service complication mechanism’s effect on the probability of transporting patients to

hospital. According to Table 3.9, as load increases from 10% to 90%, the probability that

a patient is transported to hospital decreases from 49% to 38% for non-urgent calls. This

result can be interpreted as an indication to support H 13 but we cannot construct a model

to test it directly.
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CHAPTER 4

Modeling Load and Overwork Effects in Queueing Systems with

Adaptive Servers

4.1 Introduction

Most capacity planning and queueing models are based on an assumption that servers

work at a constant speed. This assumption is a simplification of reality, and researchers

have documented various ways in which the assumption is violated. A typical finding is

that servers speed up when the system load, usually measured by the system occupancy,

increases (Edie 1954, Kc and Terwiesch 2012, Gans et al. 2010, Kuntz et al. 2011, Chan

et al. 2012, Tan and Netessine 2012). Some researchers have hypothesized, and in some

cases verified, that such speedup cannot be sustained indefinitely, and therefore servers

slow down when load remains high over an extended period (Sze 1984, Gans et al. 2010,

Dietz 2011), a situation that has been referred to as overwork (Kc and Terwiesch 2009).

We believe it is important to study adaptive server behavior from three perspectives: (1)

empirically, to establish fundamental knowledge about whether, how, and why servers in

real systems adapt, which we focused on in Chapters 2 and 3, (2) analytically, to develop

tractable models that incorporate the main aspects of real server behavior, and (3) pre-

scriptively, to investigate the impact on solution quality of accounting for adaptive server

behavior in models used to generate solutions. In this chapter, we focus on the second

perspective, of developing tractable models. We also touch on the third perspective, by

illustrating possible negative impacts on solution quality that might result from ignoring

adaptive server behavior.
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We extend the commonly used Erlang C capacity-planning model to allow server speed

to depend on load and overwork, we derive the performance measures of the extended

model, and we investigate the “errors” that can result from using a constant-server-speed

model to predict performance or prescribe capacity levels. Extending the Erlang C model

to allow server speed to depend on load is not difficult and has been accomplished by

researchers such as Jackson (1963). It is more challenging to allow server speed to also

depend on overwork while maintaining model tractability, and it appears that no one has

undertaken that analysis.

The modeling challenge is to operationalize overwork through an index that does not

require detailed memory of the past history of the system. The indices that we investigate

are all based on keeping track of “high-load periods” through the concept of a k-partial busy

period, which is a period during which k or more of the s servers in the system are busy

serving users. Typically, we select k to correspond to the average number of busy servers—

for example, in a 10-server system with 80% long-term average utilization, we would set k

to 0.8× 10 = 8, which means that overwork begins to impact server speed when 8 or more

of the 10 servers are simultaneously busy. (Our models do not restrict k to equal the average

number of busy servers, however.) During a k-partial busy period, one could track various

cumulative overwork measures. We have investigated three cumulative measures: number

of service completions, elapsed time, and elapsed time summed over all busy servers. We

focus on the first measure, which leads to a tractable two-dimensional Markov chain, with

one dimension corresponding to load and the other dimension corresponding to overwork.

The Markov chain has a special structure that allows it to be formulated as a quasi-birth-

and-death (QBD) process. We exploit this special structure to design efficient algorithms to

compute system performance measures.

4.2 Literature Review

We survey two streams of related work: First, empirical studies that document that

service rates vary when system conditions change (Section 4.2.1) and second, analytical and

simulation studies that investigate the performance of state-dependent systems or develop
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optimal service rate control policies (Section 4.2.2).

4.2.1 Empirical Studies

Batt and Terwiesch (2012) categorize means through which system load affects ser-

vice rate as either speedup or slowdown mechanisms. We use the speedup and slowdown

categories to organize our review of empirical papers.

Speedup effects have been observed in many contexts. Edie (1954), the earliest empir-

ical study we know of, reports that toll booth holding times (service times) at the Lincoln

Tunnel and the George Washington Bridge decrease with traffic volume and the number

of open booths because (1) the collectors expedite the operation under the backed-up traf-

fic pressure and (2) the drivers are more likely to have their payment ready before they

reach the toll booth. Sze (1984) anecdotally reports that Bell System telephone operators

work faster during overloaded periods to work off the queue. Tan and Netessine (2012)

and Staats and Gino (2012) document speedup behavior of restaurant waiters and bank loan

application processors, respectively.

There are also several reports of speedup effects in healthcare systems. Kc and Terwi-

esch (2009) find evidence of speedup in two distinctly different operations in a hospital,

patient transportation and cardiothoracic surgery, where patient transportation time and pa-

tient length of stay (LOS) decrease with the number of busy transporters and the number

of occupied beds, respectively. Kc and Terwiesch (2012) and Chan et al. (2012) argue that

when a cardiac intensive care unit (ICU) is full and a new patient needs to be admitted, care

providers are likely to discharge the most stable patient early. Batt and Terwiesch (2012)

observe speedup effects for several emergency department (ED) patient care tasks. Kuntz

et al. (2011) report a nonlinear relation between bed occupancy level and hospital LOS and

confirm that physicians use their discretion over early discharge when load is very high.

However, load does not appear to affect LOS when the utilization is low.

Turning to slowdown mechanisms, Sze (1984) lists the slowdown behavior of telephone

operators after long high-load periods without relief, as one of the complexities of work-

force management in call centers. Dietz (2011) observes a positive correlation between

call volume and average service time when call volume is high and hypothesizes that “shift
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fatigue” leads to longer service times. Gans et al. (2010) define run length, the number of

services an agent has performed since the last gap of longer than one hour, as a proxy for

how overworked a call center agent is, and they find that higher run length is associated

with longer average call times for some agents.

Kc and Terwiesch (2009) show that the load effect for in-hospital patient transportation

time and cardiothoracic surgery patient LOS is not permanent and overwork, measured as

the excess load over a time period that extends a specified number of time periods into

the past, eventually slows down transporters and medical staff. Batt and Terwiesch (2012)

also find evidence of slowdown in such ED tasks as lab specimen collection and X-ray

imaging. Armony et al. (2010) show that service rate decreases with load when the number

of patients within an ED is high and conjecture that ED medical staff slow down when they

feel overwhelmed by the system pressure.

4.2.2 Analytical and Simulation Studies

Analytical queueing models with load-dependent service rates have a long history, dat-

ing back to Jackson (1963), who obtained the joint probability distribution of the queue

lengths in a network with Markovian routing. In this system, arrivals and service comple-

tions at each station follow generalized Poisson processes with mean rates that depend on

the total number of users and the queue length at each station, respectively. Welch (1964)

and Harris (1967) focus on the M /G/1 model, extending it to allow the service time distri-

bution to depend on whether the system is empty when service begins (Welch 1964) or on

the queue length when service begins (Harris 1967).

Gans et al. (2010) and Powell and Schultz (2004) use simulation to investigate the

behavior of systems with state-dependent service rates. Gans et al. (2010) demonstrate that

accounting for adaptive server behavior improves capacity planning and Powell and Schultz

(2004) show that adaptive server behavior benefits system throughput.

Assuming that service rate is controllable and waiting and service costs associated with

a service rate are known, Crabill (1972) studies how to optimally choose state-dependent

service rates for a single-server queue to minimize the long-run expected cost. George and

Harrison (2001) show that the optimal service rate is increasing in the queue length. Berk
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and Moinzadeh (1998) present an analytical model where patient discharge time is affected

by the occupancy level of the healthcare unit and explore the impact of early discharges

on effective capacity. Chan et al. (2012) develop a state-dependent queueing model of an

ICU in which physicians discharge patients earlier when the ICU is overloaded in order to

accommodate new urgent patients. Speedup can alleviate high congestion in some situa-

tions, but may reduce future bed availability due to readmission of prematurely discharged

patients. They investigate polices to determine when and how speedup should be used.

We make the following contributions: (1) We extend multi-server queueing models

where the service rate depends on load to also incorporate dependence on overwork. (2)

We formulate our model as a level-dependent QBD process that can accommodate any

functional dependence of service rates on load and overwork and we provide formulas and

efficient algorithms to compute steady state probabilities and system performance measures.

(3) Our experiments demonstrate the magnitude of the errors that result from using fixed-

service-rate models to predict performance. (4) We illustrate several types of unintended

consequences that can result from using fixed-service-rate models to prescribe staffing in

systems with state-dependent service rates, including oscillatory staffing, unstable staffing,

and convergence to a suboptimal staffing level.

4.3 Operationalizing Overwork

In this section, we discuss alternative ways to operationalize the concept of overwork—

a situation where the system has been under a heavy load for an extended time period. We

review how other researchers have operationalized overwork and related constructs in order

to measure overwork empirically, we discuss why it is challenging to incorporate previously

proposed overwork measures in a stochastic model, and we outline a family of overwork

measures that can be incorporated in a Markov chain through the addition of only one state

variable.

Overwork might result in human servers (for example, hospital porters or call center

agents) becoming fatigued, resulting in a slowdown in service delivery. In settings where

a “server” represents a bundle of human and other resources, overwork could influence
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service speed through more complex mechanisms. If one views a bed and the resources

needed to serve a patient in a cardiothoracic surgery ward as a server, for example, then

Kc and Terwiesch (2009) argue that overworked physicians tend to prescribe more testing,

which can delay patient discharge.

We know of two empirical studies that operationalize overwork. Kc and Terwiesch

(2009) measure overwork as the average excess load over the last T time periods. For

example, suppose that the average load is 2 requests per server per hour, but in the previous

T = 5 hours, each server has handled 3 requests per hour. The resulting overwork is

3 − 2 = 1 extra request per server per hour for a total amount of 1 × 5 = 5 units of

overwork. In a similar vein, Gans et al. (2010) define “run length” as the number of calls an

agent has answered since the last service gap of longer than an hour to measure overwork

for an individual agent. This means that if the last service gap of an agent ended one hour

ago and during the previous hour the agent handled 50 calls, then the agent overwork is

measured as 50. Notice that both operationalizations have one free parameter (“T ” for Kc

and Terwiesch (2009) and “one hour” for Gans et al. (2010)) for which the most appropriate

value is not obvious. Kc and Terwiesch (2009) choose a value for T that maximizes model

fit, but Gans et al. (2010) do not vary the “one hour.”

Although the overwork variables that Kc and Terwiesch (2009) and Gans et al. (2010)

defined can be measured empirically, they require historical information about service com-

pletions in previous time periods and from a stochastic modeling perspective, using these

definitions requires a high-dimensional state space. If one were to use the Kc and Terwi-

esch (2009) operationalization in a Markov chain, then one would need to include T state

variables—the number of users in the system in each of the last T time periods. If the sys-

tem capacity is N and one also includes a state variable for the current number of users in

the system, then the cardinality of the state space is (N+1)T+1. The exponential growth in

the cardinality of the state space as the number of state variables increases is known as the

curse of dimensionality (Bellman 1961). With the Gans et al. (2010) operationalization, the

curse of dimensionality is even more pronounced, because one cannot bound how far back

the model’s “memory” should reach in order to capture the last service gap that was longer

than an hour.
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We propose a family of tractable overwork measures, all of which are defined using the

concept of a k-partial busy period, k = 1, · · · , s, which is a period that commences when

an arrival finds k− 1 users in the system and ends when a departure leaves the system with

k − 1 users (Artalejo and Lopez-Herrero 2001). Every overwork measure that we consider

equals zero when a k-partial busy period begins, increases during the k-partial busy period,

and is reset to zero when the k-partial busy period ends. Three examples of such overwork

measures are (1) the number of users served, J(t), (2) the elapsed time, E(t), and (3) the

cumulative service time across all servers, C(t),—all measured up to time t in the current

k-partial busy period. In this chapter, we focus on,

J(t) = the number of users served up to time t in the current k-partial busy period

(0 if the system is not in a k-partial busy period), (4.1)

and we incorporate it as the second state variable in a continuous-time Markov chain

(CTMC).

If the average system utilization (proportion of busy servers) is ρ and one sets k = dρse,

then J(t) is analogous to the Kc and Terwiesch (2009) measure in that both measures

increase during periods when the load is above average. During periods when the load is

below average, the Kc and Terwiesch (2009) measure decreases gradually, but our measure

J(t) is reset to zero

4.4 Model Formulation

In our generalization of the Erlang C model, users arrive according to a Poisson process

with rate λ and wait in an infinite capacity first-come-first-served queue for the first avail-

able of s parallel and identical servers. Servers are never idle when customers are waiting.

The rate µi,j at which every busy server completes its current service depends on the state

variables I(t) (number of users in the system) and J(t) (defined in (4.1)). The overwork

measure J(t) increases by one with every service completion when I(t) ≥ k and J(t) is

reset to zero when I(t) falls below k. The resulting ModelM1 is a CTMC with two infinite-

range state variables and state space Ω1 = {(i, j) : i = 0, · · · , k− 1; j = 0} ∪ {(i, j) : i =
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k, k + 1, · · · ; j = 0, 1, · · · }. In Section 4.5, we transform Model M1 into Model M2, in

which J(t) has finite range. We do not specify service time distributions but the assump-

tion that the holding time in each system state is exponential with a state-dependent mean

implies that service time distributions are phase-type.
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Figure 4.1: State transition diagram for Model M1

We use B(t) = min{I(t), s} to denote the number of busy servers at time t and we

represent particular values of B(t), I(t), and J(t) by b, i, and j. We measure load as the

ratio b/s. Figure 4.1 shows a transition rate diagram for Model M1. The four transitions

types are:

• User arrival, with rate λ, resulting in a transition to state (i+ 1, j).

• User departure from state (i, 0), where 1 ≤ i ≤ k − 1, with rate µi,0, resulting in a

transition to state (i− 1, 0).

• User departure from state (k, j) that terminates a k-partial busy period, with rate

kµk,j , resulting in a transition to state (k − 1, 0).

• User departure from state (i, j), where i ≥ k + 1, that does not terminate a k-partial

busy period, at rate bµi,j , resulting in a transition to (i− 1, j + 1).

If all service rates are equal (µij = µ, ∀(i, j) ∈ Ω), then the marginal steady-state distribu-

tion of I matches the system size distribution of the Erlang C model. When k = s = 1,
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the marginal distribution for J can be converted to the distribution of the number of users

served in a busy period, Y ,

Pr(Y = y) =
π1,y−1
∑

j π1,j
, y ≥ 1, (4.2)

where πi,j is the steady-state probability of state (i, j). We compared the distribution for Y

to the closed-form results obtained by Takacs (1955):

Pr(Y = y) =
1

y

(

2y − 2

y − 1

)

ρy−1(1 + ρ)−2y+1, ρ = λ/µ, y ≥ 1. (4.3)

In the remainder of the chapter, we make three assumptions about the service rates.

Assumption 4.1. Service rates are independent of i for i ≥ s: µs+l,j = µs,j for j =

0, 1, · · · and l = 1, 2, · · · .

This assumption reflects our interpretation of b/s as measuring the system load, which

implies that the load effect on service rates saturates when i reaches s. It also implies

that the overwork effect on service rates does not depend on the number of users in the

system, if all servers are busy. It is possible to relax this assumption to µs′,j = µs′+l,j , for

j = 0, 1, · · · and l = 1, 2, · · · , where s′ is finite and larger than s.

Assumption 4.2. Service rates are independent of j for j large enough: There exists an

m ≥ 1 such that µi,m+l = µi,m for i = k, k + 1, · · · and l = 1, 2, · · · .

Typically, we expect service rates to decrease with j and if they do, then µi,m represents

the smallest possible service rate for I = i. Even if Assumption 4.2 is judged not to be

realistic, if one selects the threshold m to be sufficiently large, then the probability that J is

larger than m will be negligible.

Under Assumptions 4.1 and 4.2, M1 can be transformed into a level-dependent QBD

process that we refer to as Model M2, as we will discuss in Section 4.5.

Assumption 4.3. Model M2 is stable: µs,j > 0, j = 0, · · · ,m− 1, and sµs,m > λ.

In Section 4.5.3, we show that the system is stable if and only if Assumption 4.3 holds.
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4.5 Model Analysis

We begin by showing, in Theorem 4.4, that under Assumption 4.2, Model M1 is equiv-

alent to Model M2, which has a finite range {0, 1, · · · ,m} for J . We establish that M2

is a QBD process, whose special structure, together with general matrix-geometric results,

allows tractable calculation of steady-state probabilities and other important system perfor-

mance measures.

ModelM2 is a CTMC with state variables (I(t), J(t)), state space Ω2 = Ω1∩{j ≤ m},

and death rates bµi,0 for 0 ≤ i ≤ k − 1 and bµi,j for i ≥ k and j ≤ m. Figure 4.2 presents

transition rate diagrams for M1 and M2.

Theorem 4.4. M1 is equivalent to M2 in the sense that the steady state probabilities πi,j ,

for i ≥ 0 and 0 ≤ j ≤ m− 1, and the steady state marginal distributions of I are equal in

the two models.
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Figure 4.2: Equivalent Markov chains: Model M1 (left) and Model M2 (right), for the case

k < s

Proof. Proof. See Appendix A.1.

In the special case s = k = m = 1, M2 is an M /M /1 queue in which the first user in a

busy period receives a service with a special service rate. Welch (1964) and Medhi (1996)

study this system. We obtained a closed-form solutions for the joint probabilities of this

system by solving the balance equations for M2 and from this solution, we obtained the
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same distribution for I as Welch (1964) and Medhi (1996). However, obtaining a closed-

form solution to the the balance equations for systems with arbitrary s and k and larger m

appears to be difficult.

We formulate M2 as a level-dependent QBD process with I as the level and J as the

phase, that is, we order the system states lexicographically as {(0, 0), · · · , (k−1, 0), (k, 0), · · · , (k,m), · · · , (s, 0), · ·

We define the subset L(i) = Ω2 ∩{I = i} of states in level i. Model M2 is a QBD because

it is skip-free to the left and right. The transition matrix is block tridiagonal:







































B1 B0

B2 A
(k)
1 A0

A
(k+1)
2 A

(k+1)
1 A0

. . .
. . .

. . .

A
(s)
2 A

(s)
1 A0

A
(s)
2 A

(s)
1 A0

. . .
. . .

. . .







































,

where A0, A
(i)
1 (A

(s+l)
1 = A

(s)
1 , ∀l ≥ 0), and A

(i)
2 (A

(s+l)
2 = A

(s)
2 , ∀l ≥ 0) are square

matrices of order m+ 1, given as

A0 =













λ

. . .

λ













,A
(i)
1 =













−λ− bµi,0
. . .

−λ− bµi,m













,A
(i)
2 =



















0 bµi,0
. . .

. . .

0 bµi,m−1

bµi,m



















,
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and the boundary blocks B1, B0, and B2 are

B1 =







































−λ λ

µ1,0 −λ− µ1,0 λ

. . .
. . .

. . .

(k − 2)µk−2,0 −λ− (k − 2)µk−2,0 λ

(k − 1)µk−1,0 −λ− (k − 1)µk−1,0







































k×k

,

B0 =



















0 0 · · · 0

...
...

...
...

0 0 · · · 0

λ 0 · · · 0



















k×(m+1)

, and B2 =



















0 · · · 0 kµk,0
...

...
...

...

0 · · · 0 kµk,m−1

0 · · · 0 kµk,m



















(m+1)×k

.

Given that A
(s+l)
1 = A

(s)
1 and A

(s+l)
2 = A

(s)
2 , l = 1, 2, · · · , we can also formulate

M2 as a level-independent QBD with larger boundary blocks by considering all states from

(0, 0) to (s − 1,m) to be boundary states. Although the level-independent QBD represen-

tation is more compact, the level-dependent one is more computationally efficient and it is

structurally similar to the fixed-service-rate Erlang C model, as we illustrate later in this

section.

Let πi,0, 0 ≤ i ≤ k − 1, denote the steady-state probabilities of the boundary states

(one-dimensional section of Model M2) and the row vector πi = {πi,0, πi,1, · · · , πi,m},

i ≥ k − 1, denote the steady state probabilities of the states in L(i). The steady state
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probabilities of M2 satisfy

k−1
∑

i=0

πi,0 +
∞
∑

i=k

πi1 = 1, (4.4)

πi+1,0 = πi,0ri, 0 ≤ i ≤ k − 2, (4.5)

πk−1 = πk−1,0e1, (4.6)

πi+1 = πiR
(i), i ≥ k − 1, (4.7)

where 1 is a vector of ones, e1 is the first unit row vector, and scalars

ri =
λ

(i+ 1)µi+1,0
, 0 ≤ i ≤ k − 2, (4.8)

result directly from the balance equations for the states in the one-dimensional section of

the state space. The rate matrix for L(i), R(i), i ≥ k − 1, records the expected number of

visits to L(i+1) between two consecutive visits to L(i) (Latouche and Ramaswami 1999).

We discuss the computation of the rate matrices in the next two subsections.

4.5.1 Computing the Rate Matrices

In a level-independent QBD, the rate matrix R is the minimal nonnegative solution to

R2A2 + RA1 + A0 = 0 (Neuts 1981) and is computed numerically in most cases. van

Leeuwaarden and Winands (2006) introduce a class of level-independent QBD processes

with transitions limited to the ones shown in Figure 4.3a, for which R is explicitly obtain-

able by counting lattice paths between two particular states multiplied by the constant path

probability. The property that facilitates the explicit representation of R is that if the QBD

process leaves a state in level L(i), it returns back to L(i) in a finite number of transitions.

The set of transitions inM2 is a subset of the transitions that van Leeuwaarden and Winands

(2006) allow (compare Figures 4.3a and 4.3b). However, in contrast to van Leeuwaarden

and Winands (2006), we allow the transition rates to change between and within levels in

M2.

We modify the van Leeuwaarden and Winands (2006) approach to obtain rate matrices
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(a) van Leeuwaarden and Winands (2006) model

i

j

m

0

(b) Model M2

Figure 4.3: Allowed transitions

R(i), i = k, k + 1, · · · , for M2. van Leeuwaarden and Winands (2006) define an excursion

as the time interval from the moment that the QBD leaves a particular level i to the moment

that it returns to level i for the first time. The rate matrices R(i) are upper-triangular (be-

cause returning to a lower phase is prohibited in M2, when i ≥ k) and can be expressed

as

R(i) =













R
(i)
0,0 · · · R

(i)
0,m

. . .
...

R
(i)
m,m













,

where R
(i)
j,h = expected time spent in state (i + 1, h), h ≥ j, during an excursion with the

initial state (i, j), expressed in the expected sojourn time in state (i, j). We extend Property

3.1 in van Leeuwaarden and Winands (2006) to capture the level-dependency of the rate

matrices and restate the property as follows:

Property 1. For an excursion starting from state (i, j), elements R
(i)
j,h can be decomposed

as

R
(i)
j,h = q

(i)
j,hE(X

(i)
h )

[A
(i)
1 ]j,j

[A
(i+1)
1 ]h,h

, i ≥ k, 0 ≤ j ≤ m, j ≤ h ≤ m, (4.9)

where q
(i)
j,h is the combined probability of all paths from (i, j) to (i + 1, h), E(X

(i)
h ) is the

expected number of visits to state (i + 1, h) given that the excursion is in state (i + 1, h)

for the first time, and [A
(i)
1 ]j,j/[A

(i+1)
1 ]h,h = (λ+ bµi,j)/(λ+ bµi+1,h) is the ratio of the
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expected time 1/|[A(i+1)
1 ]h,h| spent in state (i+1, h) to the expected time 1/|[A(i)

1 ]j,j | spent

in state (i, j).

Property 1 shows that the task of computing the matrix elements R
(i)
j,h decomposes into

computing the probabilities q
(i)
j,h and the expected values E(X

(i)
h ). We discuss how to com-

pute these quantities efficiently in the remainder of this subsection.

4.5.1.1 Computing q
(i)
j,h:

Let the upper-triangular matrix q(i) contain elements q
(i)
j,h for an excursion from level

L(i) to L(i + 1). We explain how to compute the q
(i)
j,h probabilities, first for h < m and

second, for h = m. To calculate q
(i)
j,h for h < m, one needs to add the probabilities of

all paths from (i, j) to (i + 1, h). In the special case of s = 1 and constant service rates

where all paths have equal probabilities, van Leeuwaarden and Winands (2006, Theorem

3.1) provide a closed-form solution for qj,h obtained by multiplying the number of paths

with the fixed path probability. The state-dependent service rates in M2, however, result in

unequal path probabilities.

As an example, Figure 4.4 shows the five possible paths from state (4, 0) to state (5, 3).

All paths include 4 arrivals and 3 service completions. Denote the probability that the next

transition from state (i, j) is an arrival or is a service completion by φi,j = λ/(λ+ bµi,j)

and ψi,j = bµi,j/(λ+ bµi,j), respectively. When s = 1 and the service rates are fixed,

the arrival and service completion probabilities are constants φ = λ/(λ+ µ) and ψ =

µ/(λ+ µ), resulting in q0,3 = 5φ4ψ3. When service rates are state-dependent, however,

each path has a different probability, resulting in

q
(4)
0,3 = φ4,0φ5,0ψ6,2 (φ6,0φ7,0ψ8,0ψ7,1 + φ6,0ψ7,0φ6,1ψ7,1+

φ6,0ψ7,0ψ6,1φ5,2 + ψ6,0φ5,1φ6,1ψ7,1 + ψ6,0φ5,1ψ6,1φ5,2) .

We interpret q
(i)
j,h as the probability that an excursion starting from state (i, j) is absorbed

in state (i + 1, h), by viewing state (i + 1, h) as absorbing and all other states that are
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Figure 4.4: Paths from state (4, 0) to state (5, 3)

possibly visited in the excursion as transient states. Viewed this way, q
(i)
j,h is the solution to

a set of linear absorption probability equations. Continuing with the Figure 4.4 example,

the probability q
(4)
0,3 of reaching state (5, 3) starting from state (4, 0) is the solution to the

linear equation set,

q
(4)
0,3 = φ4,0δ

5,3
5,0 ,

δ5,35,0 = φ5,0δ
5,3
6,0 ,

δ5,36,0 = φ6,0δ
5,3
7,0 + ψ6,0δ

5,3
5,1 ,

δ5,37,0 = φ7,0δ
5,3
8,0 + ψ7,0δ

5,3
6,1 ,

δ5,38,0 = ψ8,0δ
5,3
7,1 ,

δ5,35,1 = φ5,1δ
5,3
6,1 ,

δ5,36,1 = φ6,1δ
5,3
7,1 + ψ6,1δ

5,3
5,2 ,

δ5,37,1 = ψ7,1δ
5,3
6,2 ,

δ5,35,2 = φ5,2δ
5,3
6,2 ,

δ5,36,2 = ψ6,2δ
5,3
5,3 ,

where the variable δ5,3a,b , a = 5, · · · , 8 and b = 0, · · · , 8 − i, is the probability of reaching

state (5, 3), starting from any state (a, b) that is on a path between (4, 0) and (5, 3). The

above equation set can be solved recursively by using the initial condition δ5,35,3 = 1.

This approach can be used to calculate the elements q
(i)
j,h, h < m one at a time, but

it is more efficient to calculate all entries in a column of q(i) simultaneously. If we label

columns of matrix q(i) from 0 to m, the elements in column h (q
(i)
0,h, · · · , q

(i)
h,h), h < m,

correspond to the probabilities of absorption in state (i + 1, h), starting from state (i, j),

j = 0, · · · , h, as illustrated in Figure 4.5. Note that q
(i)
h,h = φi,h, ∀h. The general equations

to compute column h, h = 0, · · · ,m− 1, are:
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Figure 4.5: Paths from state (i, j), 0 ≤ j ≤ h, to (i+ 1, h)















































q
(i)
h,h = φi,h,

q
(i)
j,h = φi,jδ

i+1,h
i+1,j , j = 0, · · · , h− 1,

δi+1,h
i+1,b = φi+1,bδ

i+1,h
i+2,b , b = 0, · · · , h− 1,

δi+1,h
a,b = ψa,bδ

i+1,h
a−1,b+1, a = i+ 2, · · · , i+ h+ 1, b = i+ h+ 1− a,

δi+1,h
a,b = φa,bδ

i+1,h
a+1,b + ψa,bδ

i+1,h
a−1,b+1, a = i+ 2, · · · , i+ h, b = 0, · · · , i+ h− a.

(4.10)

These equations can be solved recursively, starting with the initial condition δi+1,h
i+1,h = 1.

We cannot use equation sets (A.11) and (4.10) for column m of q(i) (q
(i)
0,m, · · · , q

(i)
m,m),

because there are infinitely many paths from state (i, j), j ≤ m, to state (i + 1,m) due

to the possible left transitions from states in phase m. To calculate q
(i)
j,m, j < m, one can

subtract the probability that a path enters L(i + 1) but returns to L(i) before visiting state

(i+ 1,m) from the probability of a move from L(i) to level L(i+ 1), that is:











q
(i)
j,m = φi,j −

∑m−1
l=j ψi+1,lq

(i)
j,l , j < m,

q
(i)
m,m = φm,m.

(4.11)

4.5.1.2 Computing E(X
(i)
h ):

If h < m, an excursion from (i, j) to (i+1, h) visits (i+1, h) only once. On the bound-

ary, however, given that (i+ 1,m) is visited once, the total number of visits to that state is

geometrically distributed, with parameter ψi+1,m (the probability that the next transition is
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an arrival). Therefore,

E(X
(i)
h ) =











1, h < m,

1/ψi+1,m, h = m.
(4.12)

Substituting (4.12) in (4.9) results in the following expression for the non-zero entries in

the rate matrix R(i),

R
(i)
j,h =















q
(i)
j,h

φi+1,h

φi,j
, j = 0, · · · ,m, h = j, · · · ,m− 1,

q
(i)
j,m

φi+1,m

φi,jψi+1,m
, j = 0, · · · ,m, h = m,

(4.13)

where q
(i)
j,h, h < m, and q

(i)
j,m are obtained from (4.10) and (4.11), respectively.

Even though the transitions between levels k − 1 and k have a different structure than

the transitions between i− 1 and i where i > k (Figure 4.3), one can verify that the method

for computing R(i), i = k, k + 1, · · · , applies for R(k−1) as well, as we show in Appendix

A.2.

4.5.2 Computational Complexity of Computing R(i)

We first derive the computational complexity of computing matrix q(i) by solving equa-

tion set (A.11) or (4.10). Each equation in (4.10) corresponds to a state in a right triangle,

with h states on the vertical leg, h states on the hypotenuse, and a total of h(h+ 3)/2 states.

Solving the equation for each of the 2h states on the vertical leg or on the hypotenuse re-

quires one arithmetic operation and solving the equation for each of the other h(h− 1)/2

states requires three operations, for a total of (3h2 + 3h+ 2)/2 operations to compute the

entries in the h-th column of q(i), for h < m. Computing the m-th column using (4.11)

requires m(m + 1) operations. In total, the number of operations needed to compute all

non-zero entries in the matrix q(i) is

m(m+ 1) +
m−1
∑

h=1

3h2 + 3h+ 2

2
=
m3 + 2m2 + 3m− 2

2
.
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Once we have computed q(i), we perform 2 operations if h < m and 3 operations if h = m

in (4.13) to compute each nonzero entry of the rate matrix R(i). The total number of

operations needed to compute R(i) is (m3 + 4m2 + 11m+ 4)/2.

For comparison, Van Houdt and van Leeuwaarden (2011) developed an algorithm with

computational complexity 2m3 to compute matrix G, which, in turn, is used to compute

matrix R = A0 (I−A1 −A0G)−1
, for M /G/1-type Markov chains with triangular A0,

A1, and A2 matrices. Finding the main diagonal of G requires an iterative algorithm that

converges quadratically. The Van Houdt and van Leeuwaarden (2011) algorithm appears

to be the most efficient published algorithm that could be used (with some modifications to

accommodate state-dependent rates) for our model, but our algorithm is more efficient and

easier to implement.

4.5.3 Stability Condition

In Theorem 4.5, we prove that Assumption 4.3 expresses the stability condition of our

model.

Theorem 4.5. Model M2 is stable if and only if (1) µs,j > 0, j = 0, · · · ,m − 1, and (2)

sµs,m > λ.

Proof. Proof. As mentioned in Section 4.5, one can view Model M2 as a level-independent

QBD with rate matrix R(s) by considering all states from (0, 0) to (s−1,m) to be boundary

states. Therefore, Model M2 is stable if and only if the following ergodicity condition for

level-independent QBDs is satisfied (Latouche and Ramaswami 1999, Theorem 7.2.4):

νA
(s)
0 1 < νA

(s)
2 1, (4.14)

where the row vector ν = (ν0, · · · , νm) contains the steady state probabilities of the

Markov chain that corresponds to the generator matrix A(s) = A
(s)
0 + A

(s)
1 + A

(s)
2 and

is the unique solution to

νA(s) = 0,

m
∑

i=0

νi = 1. (4.15)
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The Markov chain corresponding to A(s) is a pure birth process with birth rates sµs,0, . . . , sµs,m−1,

which provides the unique solution ν = (0, · · · , 0, 1) in (4.15) if µs,j > 0, j = 0, · · · ,m−

1. If µs,j = 0, for some j = 0, · · · ,m − 1, then (4.15) does not have a unique solution.

When we substitute ν = (0, · · · , 0, 1) in (4.14), we obtain λ < sµs,m.�

Note that if the service rates are decreasing in j, then λ < sµs,m is sufficient for stabil-

ity.

4.5.4 Performance Measures

Using equations (4.5) and (4.7), we can express the steady state probabilities of the

following three state-space regions in terms of the rate matrices and π0,0:

Only load effect: Pr(i ≤ k − 1) = π0,0



1 +
k−1
∑

i=1

i−1
∏

j=0

rj



 , (4.16)

Both load and overwork effects: Pr(k ≤ i < s) = πk−1

s−k
∑

i=1

k+i−2
∏

j=k−1

R(j)1, (4.17)

Only overwork effect: Pr(i ≥ s) = πs

∞
∑

i=0

R(s)i = πs

(

I−R(s)
)−1

1, (4.18)

where

πk−1 = π0,0

k−2
∏

i=0

rie1, and πs = πk−1

s−1
∏

i=k−1

R(i). (4.19)

To fully characterize the steady state probabilities, we need π0,0, which we obtain as fol-

lows, knowing that (4.16), (4.17), and (4.18) add up to one.

π0,0 =



1 +

k−1
∑

i=1

i−1
∏

j=0

rj +

k−2
∏

i=0

rie1





s−k
∑

i=1

k+i−2
∏

j=k−1

R(j) +

s−1
∏

i=k−1

R(i)
(

I−R(s)
)−1



1





−1

.

(4.20)

The Erlang C model is structurally similar to Model M2, with the rate matrix R(s) in M2

playing a similar role to the utilization ρ in the Erlang C model. Table 4.1 illustrates some
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Table 4.1: Structural similarities between the Erlang C and M2 models.

Erlang C

πi+1 = πiri, i = 0, · · · , k − 1
πi+1 = πiri, i = k, · · · , s− 1
πi+1 = πiρ, i ≥ s

π0 =

(

1 +
∑s−1

i=1

ri0
i!

+
rs0/s!

1− ρ

)−1

Pr(I ≥ s) = Pr(Delay) = 1− π0
∑s−2

i=0

ri0
i!

Wq =
1
λ

(

π0
rs0
s!

ρ

(1− ρ)2

)

Model M2

πi+1,0 = πi,0ri,0, i = 0, · · · , k − 1

πi+1 = πiR
(i), i = k, · · · , s− 1

πi+1 = πiR
(s), i ≥ s

π0,0 =
[

1 +
∑k−1

i=1

∏i−1
j=0 rj +

∏k−2
i=0 rie1

(

∑s−k
i=1

∏k+i−2
j=k−1R

(j) +
∏s−1

i=k−1R
(i)

(

I−R(s)
)−1

)

1
]−1

Pr(I ≥ s) = Pr(Delay) = 1− π0,0

[

1 +
∑k−1

i=1

∏i−1
j=0 rj +

∏k−2
i=0 rie1

(

∑s−k
i=1

∏k+i−2
j=k−1R

(j)
)

1
]

Wq =
1
λ
π0,0

∏k−1
i=0 rie1

∏s
i=k R

(i)
(

R(s)
(

I−R(s)
)−2

)

1

of these similarities. In Model M2, the average queue length Lq is obtained as follows,

Lq =

∞
∑

i=s

(i− s)πi1 = πsR
(s)

(

I−R(s)
)−2

1. (4.21)

Using Little’s Law and (4.21) results in the expression for the expected queue delay Wq in

Table 4.1.

The virtual waiting time for Model M2 corresponds to the time to absorption in a mod-

ified version of the model, where all arrival transitions are removed, all states with one or

more free servers are aggregated into a single absorbing state, and the probability distri-

bution for the initial state is the steady-state distribution for M2, conditional on all servers

being busy. The details of this standard approach are discussed, for example, in Ramaswami

and Lucantoni (1985). We provide pseudo code for computing the virtual waiting time dis-

tribution for M2 in Appendix A.3.
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Figure 4.6: Three-service rate system

4.6 Effects of Ignoring Load and Overwork

In this section, we illustrate the magnitude of the errors that can result from using a

fixed-service-rate Erlang C model, instead of our state-dependent Model M2, to predict

the performance of a system with load and overwork effects. Model M2 is general in that

it can accommodate any functional dependence of service rates on load and overwork as

long as Assumptions 1-3 are satisfied. In this and the next section, however, we focus on a

simplified situation with only three different service rates, in order to develop insights and

for ease of exposition. Our base case is a 35-server system in which load and overwork

begin to impact the service rates when 90% or more of the servers are busy (k = d0.9se =

32). We specify the service rates per hour as follows:

µi,j =























µ1 = 0.9 Region 1: i < k (load < 0.9, overwork = 0),

µ2 = 1 Region 2: i ≥ k, j = 0 (load > 0.9, overwork = 0),

µ3 = 0.75 Region 3: i ≥ k, j > 0 (load > 0.9, overwork > 0).

(4.22)

In words, if we use “full speed” to refer to the service rate when at least 32 servers are busy

but no service completions have occurred since the 32nd server became busy, the servers

slow down to 90% of full speed when fewer than 32 servers are busy and they slow down

to 75% of full speed in the overwork region, which begins with the first service completion

after the 32nd server became busy and ends when a service completion leaves 31 busy

servers. The system is stable if λ < 35× µ3 = 26.25.

One alternative to our state-dependent model for the above system is to use the standard
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Erlang C model with a well-chosen “representative” service rate. The simplest representa-

tive service rate might be a service rate that corresponds to one of the three regions in the

state space illustrated in Figure 4.6. Figures 4.7 and 4.8 compare the average delay (loga-

rithmic scale) and the delay probability for Model M2 with average delays and delay prob-

abilities of three Erlang C models with rates fixed at µ1, µ2, and µ3. The fixed-rate models

with µ1 and µ2 underestimate the average delay and delay probability, while the fixed-rate

model with µ3 overestimates the two measures. All three fixed-rate models perform poorly

for low and moderate arrival rates. The µ3 fixed-rate model (the one corresponding to the

“overwork region”) is accurate for arrival rates close to the stability limit. When the arrival

rate approaches the stability limit, the Model M2 probability for the overwork region ap-

proaches 1 and the Model M2 average delay diverges, as it does in the Erlang C model.

None of the three fixed-rate models provide a good approximation over the entire arrival

rate range. Even if none of three fixed-rate models that correspond to service rates µ1, µ2,
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and µ3 are accurate, conceivably one can obtain accurate performance measure estimates by

either using a weighted average µ̄ of the three service rates as input to a fixed-rate model or

by using a weighted average of the outputs from the three fixed-rate models. Let C(λ/µ, s)

and D(λ/µ, s) be the Erlang C probability of delay and average delay, respectively. Aver-

aging the input means using µ̄ =
∑

i,j wi,jµi,j , for some set of weights wi,j , as the input

to the Erlang C model. Averaging the output means estimating the probability of delay and

the average delay as
∑

i,j wi,jC(λ/µi,j , s) and
∑

i,j wi,jD(λ/µi,j , s), respectively.

It is not clear how one should choose the weights for averaging the input or the output

of the Erlang C model. We expect, however, that using the probabilities of the three state
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space regions shown in Figure 4.6 as weights (or, more generally, settingwi,j = πi,j) should

result in greater accuracy (compared to the state-dependent model) than any set of weights

that are determined without solving the state-dependent model. We follow this conservative

approach in assessing the accuracy of both input averaging and output averaging.

Figure 4.9 shows that the probability mass shifts from the low-load Region 1 to the high-

overwork Region 3 as the arrival rate increases from 20/hour to 26.25/hour (the stability

limit), which results in the weighted average service rate µ̄ shifting from µ1 = 0.9 to

µ3 = 0.75, as shown in Figure 4.10.
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Using a weighted average of the three fixed-rate models improves accuracy but consid-

erable and systematic error remains, as we illustrate in Figures 4.11 and 4.12. The output-

averaging approximation results in higher delay probability and higher average delay than

the input-averaging approximation. This is not a coincidence, but a consequence of Jensen’s

inequality and convexity properties of C(.) and D(.) with respect to µ (Appendix A.4).
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4.7 Consequences of Using the “Wrong” Model

In Section 4.6, we studied the errors that can occur when one uses the Erlang C model

to evaluate performance for a system where the service rates vary with load and overwork.

In this section, we investigate the possible consequences of using the Erlang C model (the

“wrong” model, if we view the state-dependent Model M2 as representing reality) on an

ongoing basis to set staffing levels in a service system with state-dependent rates. Perhaps

the best that one could hope for is that ongoing monitoring of system performance leads

to self-correcting behavior, even if one uses an incorrect model, and we find that this does

indeed occur in some circumstances. We find, however, that using an incorrect model can

also result in a variety of other less desirable system trajectories.

In order to be able to focus on the consequences of using the wrong model, we consider

a system whose arrival rate and state-dependent service rates are time invariant. We use the

following procedure to imitate staffing decisions in such a system:

1. Set arrival rate (λ), state-dependent service rates (µi,j), initial staffing (s = s0), initial

period counter (n = 1), target service level (ϕ), and monitoring period length (T ).

2. Simulate the system for period n and estimate the arrival rate (λ̂n) and the service

rate (µ̂n),

λ̂n =
An

T
, 1/µ̂n =

∑Sn

i=1Xi

Sn
, (4.23)

where An and Sn are the number of arrivals and service completions in period n, and

Xi is the service time of user i whose service finished in period n.

3. Use λ̂n and µ̂n in the fixed-rate ErlangC model to find the minimum required staffing

for the next period, sn+1, to satisfy ϕ.

4. Set n→ n+ 1 and return to Step 2.

The simulation model simulates the state-dependent system, which we assume repre-

sents reality. When a server begins serving a user, while in state (i, j), we simulate the

service time as exponentially distributed with rate µi,j . Whenever the system transitions
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from state (i, j) to (i′, j′), we update the remaining service times of the users in service by

generating new exponentially-distributed random variates with rate µi′,j′ . If the number of

servers increases from one period to the next one, then the service of the users in the queue

at the end of the previous period, if any, is immediately initiated by the newly added servers.

If the number of servers decreases, then the departure of a server, if busy, is postponed until

the current service is completed.

In the experiments of this section, we vary the low-load service rate µ1 in the base-

case service-rate function (4.22) to illustrate a range of behaviors that result from the above

staffing procedure. We set λ = 20 per hour and ϕ = 0.90 and define the service level

as the probability that the virtual wait is less than or equal to 20 minutes. We begin by

illustrating the impact of noisy estimation of λ and µ. Figure 4.13 shows simulated staffing

for 8 periods, when µ1 = 0.75 per hour, under three monitoring periods: short (T = 50

hours with 1,000 expected arrivals), medium (T = 250 hours with 5,000 expected arrivals),

and long (T = 1000 hours with 20,000 expected arrivals). The optimal staffing for this

system, obtained from the state-dependent model, is s = 31. The staffing levels obtained

from the Erlang C model converge to the optimal value after 4 periods when T is long.

For the shorter monitoring periods, the staffing levels take longer to reach the optimal value

and the staffing is not guaranteed to remain at the optimal value, because of the estimation

noise.
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Figure 4.13: The impact of noisy parameter estimation on staffing.

In the remainder of this section, we focus on factors other than parameter estimation

noise. Therefore, we assume that the monitoring period is long enough that parameter
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Table 4.2: Experiment parameters

Low-load service rate (per hour) Behavior Figure

µ1 = 0.50 Convergence to overstaffing 4.14

µ1 = 0.75 Convergence to optimal 4.15

µ1 = 0.85 Convergence to understaffing 4.16

µ1 = 0.90 Oscillation 4.17

µ1 = 0.95 Instability 4.18

estimation errors are negligible and that the system reaches steady state, if the system is

stable, which means that we can replace the simulation model with the numerical solution

of M2. In what follows, we vary the low-load service rate µ1 as shown in Table 4.2, to

illustrate three main staffing patterns that we have observed: (1) convergence (to a value

that is too high, optimal, or too low), (2) oscillation, and (3) instability.

Convergence: As the low-load service rate varies from 0.5 to 0.75 to 0.85 per hour, the

staffing converges in all cases, but to a value that changes from too high, to optimal,

to too low, as illustrated in Figures 4.14-4.16. The low-load service rate of 0.5 per

hour is so much lower than the full-speed service rate of 1 per hour that the Erlang

C model cannot capture the speedup, and converges to a staffing level (40 servers)

that is far above the optimal value of 32 (Figure 4.14). When the low-load service

rate increases to 0.75 per hour—the same value as the overwork service rate—then

the Erlang C model approximates the system performance sufficiently well that the

staffing converges to the optimal value (Figure 4.15). When the low-load service

rate increases above the overwork service rate, to 0.85 per hour, then the Erlang C

model’s failure to account for the slowdown that occurs due to overwork results in

staffing that converges to a value that is too low (29 vs. 31, as shown in Figure 4.16).

Interestingly, we see from Figure 4.14 that the procedure that we have described

results in an increase in staffing even when the service level (as computed using M2)

is above target. Similarly, in Figure 4.16, we see one period of a decrease in staffing

even though the service level is below the target. These counter-intuitive decisions

occur because in our procedure, changes in staffing are determined using the Erlang
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Figure 4.16: Convergence to understaffing

C model. One can envision an alternative “model-free” procedure that determines

changes in staffing based only on an empirically estimated service level, ŜL. The

simplest such procedure might be to increase the staffing by one if ŜL > ϕ and

decrease the staffing by one if ŜL < ϕ. This procedure would change staffing at the

beginning of every monitoring period, assuming that it is unlikely that the empirically

estimated service level is exactly equal to its target.

Oscillation: When we increase the low-load service rate to µ1 = 0.90, then the staffing

levels no longer converge, but oscillate (Figure 4.17), between 27 (with SL = 0.21)

and 31 (with SL = 0.95), while the optimal staffing level is 30. The long-term

average service level in this oscillating system is 0.58, which is below the target. In

addition, in a real system, one expects that the constant staffing changes would be

costly and the constant changes in service level might impact customer retention.

The oscillation occurs because with 27 servers, the system is very likely to remain in

the overwork region, and with 31 servers, the system is very likely to be in the low-

load region. In this situation, the ErlangC model is unreliable in extrapolating service
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Figure 4.17: Staffing oscillation

levels from the low-load region to the overwork region and vice versa. Specifically,

with 31 servers, the average service rate is µ̄ = 0.89–quite close to the low-load

service rate of µ1 = 0.9. Similarly, with 27 servers, the average service rate of

µ̄ = 0.77 is close to the overwork service rate of µ3 = 0.75. As a consequence, the

Erlang C model “overshoots,” both when predicting how much to increase staffing

and when predicting how much to decrease staffing.

Instability: When we increase the low-load service rate to µ1 = 0.95, the Erlang C model

overestimates the appropriate decrease in staffing so drastically that the system be-

comes unstable. Starting with 35 servers, the ErlangC model recommends a decrease

to 25 servers, which is unstable because λ > 25µ3. For this system, we used simula-

tion (with T = 1000 hours) to obtain the service levels shown in Figure 4.18 and the

system size sample path in Figure 4.19.
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Figure 4.18: Unstable staffing
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CHAPTER 5

Summary of Findings

Empirical researchers have recently challenged the exogenous service times assumption

in queueing models by providing evidence for dependence of service times on load in vari-

ous systems, for example call centers, emergency rooms, and banks. Most of these studies

focus on the most obvious manifestation of load in queueing systems, that is, the number

of servers currently busy, and its effect on servers. A few studies have also paid attention to

the load history in addition to the instantaneous system load. Tracking the load history has

unveiled empirical evidence for behaviours like slowdown in response to overwork.

Our aim in Chapters 2 and 3 of this dissertation was to propose a general framework

that can be employed by both empirical and analytical researchers to investigate and model

service time dependencies in any system. We strove to design a comprehensive framework

that can be applied to any system. The proposed framework, which we called it LEST,

has three dimensions: (1) load characteristics, (2) system components, and (3) service time

determinants.

In the first dimension of the LEST framework, we identified three load characteristics:

changeover, load, and extended load, each involving different mechanisms. Changeover

refers to switching from idle to busy periods or switching from one task to another, which

induces mechanisms like setup. Load is the congestion level of the system and extended

load is the past history of load.

In the second dimension of the LEST framework, we identified three system compo-

nents: server, customer, and network. We recognized that servers are not the only system
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components that may react to load characteristics. Customers also respond to system load.

One obvious example that is well studied is abandonment from a queue. We also came

across papers that study queues as nodes in a network and document how busyness of a

node affects service times at other nodes. For this reason, we included the network as the

third system component in our framework.

The third dimension of the framework includes two service time determinants. Some-

times it is the work content that is influenced by load characteristics and sometimes it is the

service speed. The service time is determined by the amount of work required for a service

and the rate at which the service is performed.

The proposed framework is beneficial for both empirical and analytical researchers. For

empirical researchers, the framework provides a systematic tool to think about the effect of

system load on service times from different aspects. The main power of the framework

is in provoking questions that lead the researcher to list and explain mechanisms and in-

teractions that cause service times to vary with load. The framework also helps analytical

researchers to understand factors that influence service times and how these factors can be

translated into state variables in state-dependent models. The framework also emphasizes

the importance of characteristics that are often disregarded in models including, single-

queue systems vs. queue networks, human vs. inanimate servers or customers, dedicated

vs. shared servers, and single vs. multiple customer types.

In Chapter 2, we showed that the findings of published studies can be explained by the

framework. The classification of the published studies according to the framework high-

lights research gaps in the empirical OM literature. In Chapter 3, we applied the framework

to an EMS system to investigate possible mechanisms that cause EMS service times to

change with load. The framework helped us to hypothesize and identify new mechanisms

not previously documented.

Our aim in Chapter 4 was to formulate a tractable and flexible stochastic model that

captures two types of adaptive server behaviors that lead to state-dependent service rates:

speeding up in response to the system load and slowing down in response to overwork.

Markov chains with state-dependent rates can model changes in server speed in response

to changes in system load, as measured by the system occupancy, but tracking overwork
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requires additional state variables.

The model that we formulate can be seen as an extension to the Erlang C model. In

addition to the system occupancy state variable that is included in most queueing models,

we added one other state variable to capture overwork: The cumulative number of service

completions in the current high-load period. This method of operationalizing overwork

leads to a model that can be represented as a QBD process with special transition structure

that makes it possible to compute steady state probabilities and standard queueing system

performance measures efficiently.

We demonstrated through numerical experiments that when service rates depend on

load and overwork, use of the Erlang C model provides a poor approximation of the system

performance, even if one uses input averaging or output averaging. Using a stylized model

of staffing practice, we illustrated how ongoing use of the Erlang C model for staffing with

periodically updated arrival and service rate estimates can lead to convergence to a staffing

level that is either too high or too low, staffing oscillation, and even to staffing levels that

result in an unstable system.
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APPENDIX A

Chapter 4: Modeling Load and Overwork Effects in Queueing

Systems with Adaptive Servers

A.1 Proof of Theorem 4.4

Proof. Proof. Let πi,j and π′i,j denote the steady state probabilities for ModelsM1 andM2,

respectively. The proof follows by showing that balance equations of Model M1 provide

balance equations of Model M2 if

π′i,j = πi,j , 0 ≤ j ≤ m− 1, (A.1)

π′i,m =

∞
∑

j=m

πi,j . (A.2)

State (i, j) ∈ Ω2 − {(k − 1, 0), j = m}: Model M1 equations follow,

λπi,0 = µi+1,0πi+1,0, 0 ≤ i ≤ k − 2,

(λ+ biµi,0)πi,0 = λπi−1,0, i ≥ k, j = 0,

(λ+ kµk,j)πk,j = (k + 1)µk+1,j−1πk+1,j−1, 1 ≤ j ≤ m− 1,

(λ+ biµi,j)πi,j = λπi−1,j ,+bi+1µi+1,j−1πi+1,j−1, i > k, 1 ≤ j ≤ m− 1,

which also provide balance equations of Model M2 if (A.1) holds.
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State (i, j) ∈ Ω1 ∩ {i ≥ k, j ≥ m}: In Model M1, µi,j = µi,m, j > m, and balance equa-

tions follow:

(λ+ kµk,m)πk,m = (k + 1)µk+1,m−1πk+1,m−1, (A.3)

(λ+ kµk,m)πk,j = (k + 1)µk+1,mπk+1,m−1, j > m, (A.4)

(λ+ biµi,m)πi,m = λπi−1,m + bi+1µi+1,m−1πi+1,m−1, i > k, (A.5)

(λ+ biµi,m)πi,j = λπi−1,j + bi+1µi+1,mπi+1,j−1, i > k, j > m. (A.6)

If (A.1) and (A.2) hold, the summation of equations (A.3)-(A.6) over j provides equation

set for Model M2, when j = m, as

(λ+ kµk,m)π′k,m = (k + 1)µk+1,m−1π
′
k+1,m−1 + (k + 1)µk+1,mπ

′
k+1,m, (A.7)

(λ+ biµi,m)π′i,m = λπ′i−1,m + bi+1µi+1,m−1π
′
i+1,m−1 + bi+1µi+1,mπ

′
i+1,m, i > k.

(A.8)

State (k − 1, 0): Balance equations of state (k−1, 0) in ModelsM1 andM2 follow equation

sets (A.9) and (A.10), respectively, that are equivalent if (A.1) and (A.2) hold.

λπk−1,0 = k

m−1
∑

j=0

µk,jπk,j + kµk,m

∞
∑

j=m

πk,j , (A.9)

λπ′k−1,0 = k
m−1
∑

j=0

µk,jπ
′
k,j + kµk,mπ

′
k,m. (A.10)

A.2 Property 1 for Level k − 1

In this appendix, we show that the recursion πi+1 = R(i)
πi, Property 1, and the asso-

ciated algorithm for computing R(i) is valid for level i = k − 1, with minor modifications,

even though the topology of the transitions between levels k−1 and k is different from that

for higher levels. This allows us to express the equations for the steady state probabilities

more compactly. The only state in level k − 1 is (k − 1, 0). One can form a vector of state
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probabilities for level k − 1 by forcing probabilities πk−1,j = 0 for j ≥ 1, which results in

πk−1 = (πk−1,0, 0, · · · , 0). The structure of the rate matrix R(k−1) is as follows:

R(k−1) =



















R
(k−1)
0,0 · · · R

(k−1)
0,m

0 · · · 0

. . .
...

0



















,

To calculate q
(k−1)
0,h , the probability of an excursion from state (k− 1, 0) to state (k, h),

we use the approach from Section 4.5.1.1, modified as shown in equation set (A.11), as

like the upper levels, an arrival moves the excursion from state (k − 1, 0) to level k and a

departure from each state of level k terminates the excursion. The other transition of the

excursion, in levels i > k, follow the structure of Figure 4.3b.















































q
(i)
h,h = φi,h, if h = 0,

q
(i)
0,h = φi,0δ

i+1,h
i+1,0

δi+1,h
i+1,b = φi+1,bδ

i+1,h
i+2,b , b = 0, · · · , h− 1,

δi+1,h
a,b = ψa,bδ

i+1,h
a−1,b+1, a = i+ 2, · · · , i+ h+ 1, b = i+ h+ 1− a,

δi+1,h
a,b = φa,bδ

i+1,h
a+1,b + ψa,bδ

i+1,h
a−1,b+1, a = i+ 2, · · · , i+ h, b = 0, · · · , i+ h− a.

(A.11)

A.3 Wait Time Distribution

The stationary probabilityW (x) that a user waits more than x time units before entering

service in a queue that is modelled as a QBD process can be expressed as (Ramaswami and

Lucantoni 1985, Theorem 4)

W (x) =
∞
∑

n=0

dne
−θx (θx)

n

n!
, (A.12)

where dn is the probability that the user waits at least n+1 epochs of a uniformizing Poisson

process with rate θ in the stochastically equivalent construction of the QBD process. In our
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level-dependent QBD,

θ = max
1≤j≤m+1

−{A0 +A
(s)
1 }jj = max

j
{λ+ sµs,j},

dn = πs−1

(

I−R(s)
)−1

R(s)Hne, n ≥ 0,

H0 = I, Hn+1 = HnP1 +R(s)HnP2, n ≥ 0,

and

P1 =
1

θ
(A0 +A

(s)
1 ) + I, P2 =

1

θ
A

(s)
2 .

One can use two approaches to find the stopping criterion for n in the infinite series (A.12).

The simpler approach is to set the upper limit for the series equal to (Grassmann 1977, eq.

(10))

UB = θx+ 4
√
θx+ 5, (A.13)

which guarantees that 1−
∑UB

n=0 e
−θx(θx)n/n! is less than 10−4.

The second approach requires more effort. Based on (A.12), Ramaswami and Lucantoni

(1985) derive the expected wait time in queue as,

Wq = θ−1
∞
∑

n=0

dn. (A.14)

One can gradually increase the upper limit of n so that the result of (A.14) falls in the ac-

ceptable tolerance from the exact expected wait time obtained from the closed form solution

of Wq presented in Table 4.1.
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A.4 A Note on Figures 4.11 and 4.12

Suppose we view the service rate µ in the Erlang C model as a random variable, with a

distribution obtained from the steady-state probabilities forM2, that is Pr{µ = µi,j} = πi,j

with µ = E(µ). Then Jensen’s inequality implies that E[f(µ)] > f(µ̄) for convex functions

f . We show that C(.) and D(.) are convex functions of µ.

The delay probability C(.) is an increasing and convex function of ρ = λ/(sµ) when s

is held constant (Harel 2010, Proposition 4). The utilization ρ is is convex in µ. Therefore,

C(.) as a function of µ is a composition of a convex increasing function and a convex

function, which implies that C(.) is convex in µ.

Grassmann (1983) shows that the average queue length in an Erlang C model is a

convex function of µ. Combined with Little’s Law, this result implies that the average

delay D(.) is convex with respect to µ.
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