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Abstract 

A Ground Delay Program (GDP) delays flights at their departure airports on ground to 

absorb their potential airborne delays, when an imbalance between flight demand and airport 

capacity is expected at the arrival airport. The existing literature have looked into the issues 

existing before (e.g. weather forecasts), during (e.g. GDP planning) and after (e.g. GDP evaluation) 

the initiation of GDPs. However, no one has explored how GDPs evolve over the course of their 

lifetimes (typically, a day).  

The thesis introduces a novel method of merging disparate but complementary datasets and 

applying data mining techniques to gain more insights into GDPs – particularly with respect to 

their evolving characteristics. More specifically, it aims to characterize GDPs with respect to 

realized weather conditions, and individual flight information. This research then identified several 

scenarios of GDP evolution based on the merged master dataset, by first reducing the 

dimensionality of the master GDP dataset, then applying cluster analysis on the resulting lower-

dimensional data. We found that GDPs at EWR can be categorized into 10 types based on 

(changing) weather forecasts, GDP scope, program rate, and duration. This research then further 

explored the characteristics of these 10 GDP evolution scenario clusters by examining the 

relationships between GDP scenarios and their performance (described using metrics previous 

developed by other researchers) using statistical analysis. It was found that GDPs under stable, 

low-severity weather and with large scope may score higher on the efficiency metric than we 

would expect. When GDPs called in similar weather conditions have high program rates, medium 

durations, and narrow scopes, it was found that capacity utilization is higher than expected – less 

flights lead to fewer cancellations and more arrivals (albeit delayed), and therefore, higher capacity 

utilization. Results also suggest that program rates are set more conservatively than needed for 
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some poor weather conditions that end earlier than expected, with GDP being canceled early as 

well. GDPs with fewer revisions were associated with a higher predictability score but lower 

efficiency score.  

These findings can provide greater insights and knowledge about GDPs for future planning 

purposes. For future work, it is recommended that additional data be utilized to provide a more 

comprehensive operational picture of GDPs, and that a wider range of performance metrics be 

considered in the analysis. In addition, it is also recommended that the patterns of how GDPs 

evolve over their lifetimes be further explored using other novel machine learning techniques that 

may provide new and useful insights. 

 

Keywords: Ground Delay Programs, GDP evolution characterization, unsupervised learning, 

clustering analysis, multivariate statistical analysis. 
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Chapter 1. Introduction 

1.1 Background 

Airport arrival capacity is vulnerable to severe weather, in addition to other disturbances 

such as less desirable runway usage configurations and even runway closures (Liu & Hansen, 

2014). Capacity reductions usually result in demand-capacity imbalances at the airport, in turn 

resulting in flight delays that are costly to passengers and airlines. Besides increasing airport arrival 

capacity by airport infrastructure expansion which requires huge investments (of public money, in 

the U.S.), the Federal Aviation Administration (FAA) has developed Traffic Management 

Initiatives (TMIs) to resolve the imbalance between flight demand and capacity during times of 

inclement and less-than-ideal conditions, by shifting the demand to alternative resources, such as 

different routes, or later (delayed) times (Manley & Sherry, 2008; Xiong, 2010). 

When there is a shortfall in capacity at an airport, arriving flights may suffer airborne delay 

as they are forced to queue in the air. When a demand-capacity imbalance is expected at an airport, 

a Ground Delay Program (GDP) is implemented. The GDP is a TMI that transfers potential 

airborne delays to cheaper and safer ground delays by holding some aircraft at their departure 

airports for a period of time (Ball & Lulli, 2004; Barnhart, Bertsimas, Caramanis, & Fearing, 

2012). A GDP is applied to an airport with a pre-specified start time, stop time, and Program Rate 

(PR – the allowed flight arrival rate). GDPs are planned under a framework called Collaborative 

Decision Making (CDM), in which the Air Traffic Control System Command Center (ATCSCC), 

FAA, and airlines communicate and collaborate to improve traffic flow management. The 

ATCSCC implements GDPs after communicating with regional FAA centers and airline 



2 

operations centers, and then airlines are able to swap and cancel flights based on the GDP details 

(Willemain, 2002; Hoffman, Ball, & Mukherjee, 2007; Ball, Hoffman, & Knorr, 2000).  

The GDP has become one of the most commonly used TMIs since implementation in 1981 

(Donohue, Shaver, & Edwards, 2008). In 2005, more than 1,350 GDPs were issued in the U.S. and 

they assigned delays to over 530,000 flights with a total of 16.8 million minutes (Ball, Hoffman, 

& Mukherjee, 2010). In 2011, there were 1,065 GDPs implemented in the U.S., and they assigned 

delays totaling 26.8 million minutes distributed over 519,940 flights (Liu & Hansen, 2014).  

Considering the extensive use of GDPs and their deep and wide-ranging impacts within 

the National Airspace System (NAS), much effort has been made to study and improve them. 

1.2 Motivation and objective 

The majority of the existing literature focuses on GDP design, such as improving GDP 

planning by accounting for weather forecasts, with one (delay minimization) or more performance 

objectives. Efforts have been made to generate airport capacity profiles for GDP planning from 

weather forecasts. Some research has also been conducted to evaluate GDP performance 

retrospectively. Overall, the existing studies have provided some insights into the issues existing 

before, during and after the implementation of GDPs. However, there has been no research 

exploring how GDPs evolve over the course of their lifetimes (typically, a day).  

To fill this gap in the literature, this research aims to characterize GDPs with respect to 

changing weather forecasts, GDP plan parameters, and operational performance. The purpose of 

this analysis is to gain some insights into the temporal patterns of GDPs with respect to these 

several key dimensions, by describing GDP performance in response to key (changing) variables. 

This research first generated a master dataset by merging several datasets on GDPs, weather 

forecasts, and individual flight information. This research then identified several scenarios of GDP 
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evolution based on the merged master dataset, by first reducing the dimensionality of the master 

GDP dataset, then applying cluster analysis on the resulting lower-dimensional data. 

1.3 Research Scope 

This research effort focused on data from Newark Liberty International Airport (EWR) 

from 2010 through 2014. Based on TMI advisory, weather forecast, and flight data, this research 

applied data mining techniques to better observe the characteristics of GDPs as they evolved over 

their lifetimes (i.e. the course of a day). As shown in Figure 1.1, this research first developed a 

master dataset through the merging of several datasets of weather forecasts, realized weather, TMI 

advisories, and individual flights information. Second, this research provided some basic 

information regarding the characteristics of weather and GDPs at EWR. Third, we used the 

autoencoder technique to visualize the data and reduce 585 dimensions of GDP evolution into two, 

in order to support the cluster analysis. Fourth, this research identified GDP evolution scenarios 

through cluster analysis based on the compressed 2-dimensional data. Finally, this research 

assessed correlations between the identified GDP clusters and performance, using Configural 

Frequency Analysis.   
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Figure 1.1 Research steps taken 

In the third step, this research reduced data dimensionality because the GDP evolution data 

involves various types of data (i.e. GDP parameters, forecasted weathers, time indexes) and many 

dimensions (585 in total), which does not allow for regression or cluster analysis. Autoencoder, a 

machine learning technique, was applied because it has been successfully applied to solve similar 

problems, such as greyscale handwritten digits classification (Hinton & Salakhutdinov, 2006), and 
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I believed it could be appropriate applied in our research context. Then this research categorized 

the GDPs based on the compressed data through cluster analysis; because GDPs are the results of 

human-driven decision-making (i.e. by air traffic controllers), it is likely that repeated patterns of 

decision-making would emerge. This research determined 10 scenarios of GDP evolution through 

comparing the results of different clustering methods and k-estimation methods. 

1.4 Thesis structure 

This thesis consists of five chapters. Chapter 2 presents a literature review GDPs and 

identifies gaps in the literature. Chapter 3 introduces the data and data preparation procedures, and 

also provides basic descriptive statistics. Chapter 4 introduces the techniques and approaches used 

to illuminate the evolution characteristics of GDPs at EWR. Chapter 5 presents conclusions, 

highlights the contributions, and recommends future extensions of this research. 
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Chapter 2. Literature review 

This chapter provides a brief review of the existing (academic and applied) literature on 

Ground Delay Programs (GDPs), and identifies gaps in this literature. 

2.1 Introduction to Ground Delay Programs 

A GDP was first implemented by the Federal Aviation Administration (FAA) in 1981. It 

is a traffic management initiative that delays flights at their departure airport in order to control 

inbound flight volumes at the airport where an imbalance between flight capacity and demand is 

expected (FAA, 2009a). The purpose of a GDP is to absorb flight delays (due to arrival airport 

demand-capacity imbalance) on the ground before take-off rather than in the air, to reduce the 

probability and duration of airborne delay, as delays incurred on the ground are significantly 

cheaper (in terms of fuel savings and personnel hours) and safer (Ball & Lulli, 2004). Airport 

capacity shortfall is the most common reason for implementing a GDP at an airport; capacity 

reduction is normally a result of adverse weather conditions (FAA, 2017a) such as low ceiling, 

low visibility, thunderstorms or strong winds. 

The planned airport capacity and GDP duration are determined by the FAA Air Traffic 

Control System Command Center (ATCSCC) based on the predicted conditions of the airports. 

The ATCSCC is a facility responsible for balancing air traffic demand to National Airspace 

System (NAS) system capacity (FAA, 2014a). Flights’ controlled arrival times (CTAs) are 

calculated and converted to controlled departure times (CTDs) and result in (ground) delays, using 

a software called Flight Schedule Monitor. Furthermore, since 1998, GDPs have been 

implemented under the Collaborative Decision Making (CDM) framework, in which the FAA, 



7 

airlines, and other airspace users cooperate with one other to improve the safety and efficiency of 

traffic flow management (Ball, Hoffman, Chen, & Vossen, 2000; Reynolds, Clark, Wilson, & 

Cook, 2012). Under CDM, the ration-by-schedule (RBS) algorithm has been applied by the FAA 

to allocate arrival slots to carriers. Under RBS, flights are prioritized according to their original 

scheduled arrival times at the GDP airport (FAA, 2017b; Jonkeren, Rietveld, & Ommeren, 2007). 

Airlines have the flexibility to swap, substitute, or cancel their own flights based on the RBS 

allocation.  

However, RBS has some limitations for equity and efficiency; for example, flights 

originating from more distant airports may suffer excessive delays when the capacity is increased 

and GDP is cancelled (Manley & Sherry, 2008; Ball & Lulli, 2004). Thus, in reality, a distance-

based RBS algorithm (DB-RBS) is applied. In DB-RBS, flights departing from airports beyond a 

certain radius of the arrival airport are exempted from the GDP, while flights originating at airports 

within the radius will be assigned ground delays. In addition, airborne (regardless of their origins) 

and international flights are also exempted from GDPs (Vossen & Ball, 2005; Hoffman, Ball, & 

Mukherjee, 2007; Barnhart, Bertsimas, Caramanis, & Fearing, 2012).  

2.2 Previous studies on GDPs 

The existing literature has spanned a variety of topics regarding different stages in the life 

time of a GDP. This section summarizes the literature, according to GDP planning and lifecycle 

stages, and discusses the limitations of the literature. 

2.2.1  Airport capacity modeling for planning GDPs 

Adverse weather is the most common cause of airport capacity reductions (FAA, 2017a). 

The accuracy of weathers forecasts impact airport arrival capacity predictions, and flights 
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experience unnecessary delays when predicted capacity does not well reflect realized capacities 

(Buxi & Hansen, 2011). Thus, there has been research focusing on modelling arrival capacity 

considering the probabilistic nature of weather forecasts. Richetta and Odoni (1994) first modeled 

airport capacity by assuming a limited number of scenarios considering the uncertainty in weather 

forecasts. Liu et al. (2008) demonstrated that capacity scenarios at several major U.S. airports can 

be inferred from historical data. Inniss and Ball (2004) and Buxi and Hansen (2011) employed 

weather forecasts to generate probabilistic capacity profiles. 

2.2.2 GDP planning 

A large number of studies focus on designing GDPs by accounting for airport capacity 

uncertainty caused by adverse weather conditions. In static models, decisions are only made once 

and will not be revised, while in dynamic GDP models, GDP decisions can be revised according 

to the updated capacity forecasts (Buxi & Hansen, 2011). Richetta and Odoni (1993) first 

developed a static stochastic model while Mukherjee and Hansen (2007) developed a dynamic 

stochastic model, which were the first of these models and have subsequently been built upon in 

subsequent research. Some studies minimize delay as a sole objective, or trade-off multiple 

performance objectives for GDP design. For example, Inniss and Ball (2004)   optimized GDPs 

by determining the appropriate amount of ground delays to be assigned to flights considering 

probabilistic capacity forecasts; Liu et al. (2017) determined GDP file time, end time, and distance 

under uncertain airport capacity, taking into account GDP operational efficiency, airline and flight 

equity, and Air Traffic Control (ATC) risks.  

GDP decision support tools based on weather forecasts can be used to notify traffic 

controllers to take actions for dealing with the expected capacity reduction appropriately 

(Mukherjee, Grabbe, & Sridhar, 2014). Most related studies developed GDP decision support tools 
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to predict GDP occurrence, the Airport Arrival Rate (AAR) or airport delays using machine 

learning techniques based on historical data. Mukherjee et al. (2014) and Bloem and Bambos 

(2015) focused on the prediction of the occurrence of a GDP during a given hour based on 

forecasted weather conditions; Kulkarni et al. (2013) and Wang (2011) focused on airport capacity 

prediction using different machine learning methods; Smith et al. (2008) predicted Aircraft Arrival 

Rates (AAR) and airport delays using Support Vector Machine (SVM) based on weather forecasts, 

to determine GDP program rate, duration and estimate passenger delays. Kuhn (RAND 

Corporation) (2016a) defined a methodology in which past GDPs issued under conditions similar 

to a present situation are ranked in order to make recommendations to traffic controllers regarding 

GDPs to be implemented at present.  

There has also been some research on designing GDPs according to principles and 

objectives that differ from the currently adopted distance-based Ration-by-Schedule algorithm 

(DB-RBS). Hoffman, Ball and Mukherjee (2007) designed a Ration-by-Distance (RBD) algorithm 

in which flights are prioritized by their travel distance when allocating arrival slots. Manley and 

Sherry (2008) examined the performances of Ration-by-Passengers (RBPax) and Ration-by-

Aircraft Size (RBAcSize), and demonstrated that the current rationing rule (DB-RBS) can be 

improved by taking into account the trade-off between airline equity and passenger flow 

efficiency. Delgado et al. (2013) designed a new strategy where aircraft can recover more delays 

without extra fuel consumption by departing earlier and flying slowly, instead of absorbing all 

delays on the ground, in early cancelled GDP events. Zhang and Hansen (2009) indicated that 

through evaluating the capacity of a hub airport together with that of other airports in the same 

region, traffic controllers can issue a regional GDP to improve the overall regional system 

efficiency. 
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2.2.3 Performance evaluation 

Only a few studies have introduced GDP performance metrics and then evaluated 

performance retrospectively, due to the difficulty of accessing high quality, operational-level data 

(such as that used in this research), and the complexity and onerousness of the analysis procedures. 

Hoffman and Ball (2000) first defined a single metric called the rate control index, which measures 

actual against planned traffic flow, to evaluate the effectiveness of a GDP. According to a list of 

11 globally endorsed key air transport performance criteria proposed by ICAO (International Civil 

Aviation Organization, 2005), Liu and Hansen (2014) proposed five GDP performance criteria 

and corresponding metrics – capacity utilization, predictability, efficiency, equity, and flexibility. 

Kuhn (RAND Corporation) (2016b) identified six criteria and metrics – efficiency, safety, equity, 

predictability, flexibility, and adherence.  

2.3 Summary 

The previous literature on GDPs is extensive in several aspects, although there has not been 

as much work on post-GDP performance evaluation asides from Liu and Hansen (2014). Moreover, 

there has been little to no work exploring how GDPs evolve over time (typically, over the course 

of a day).  

To address this gap, this research attempts to characterize GDP evolution over their 

lifetimes (i.e. a day). In order to achieve the goal, the following work will be performed: 1) 

categorize the GDPs that were planned under particular weather forecasts, and how they evolved 

as weather forecasts evolved, using data mining tools and based on historical weather forecast 

data, GDP plan data, and flight schedule data; and 2) identify correlations between different types 

of GDP evolution and GDP performance through statistical multivariate analysis (Configural 

Frequency Analysis, or CFA).  
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Chapter 3. Dataset introduction and preparation 

This chapter introduces the datasets used in the research, which include those of weather 

forecasts, GDP information, and individual flight data for arrivals into EWR from 2010 through 

2014. Three datasets were merged to prepare a single master dataset for the GDP evolution 

characterization work documented later in Chapter 4. Data descriptive statistics are presented here 

in order to provide a preliminary overview of weather and GDP characteristics. 

3.1 Background on Newark Liberty International Airport (EWR) 

Newark Liberty International Airport (EWR) is one of the busiest airport in the U.S. and 

experiences significant flight delays (McCartney, 2011). The TMI data used in this study 

(introduced in 3.2.1) indicates that EWR GDPs accounted for 15% of the GDPs implemented in 

the U.S. from 2010 to 2014, a significant number.  

EWR is located about 14 miles from New York City. EWR, LaGuardia Airport (LGA), 

and John F. Kennedy International Airport (JFK) are the three major airports in the New York 

metropolitan area, all operated by the Port Authority of New York and New Jersey (The Port 

Authority of New York and New Jersey, 2017). Flights into and out of EWR are managed by the 

New York Air Route Traffic Control Center (ZNY). An Air Route Traffic Control Center 

(ARTCC) is a facility responsible for en route control of aircraft operating under Instrument Flight 

Rules within controlled airspace (FAA, 2009b). 

EWR’s location is shown in Figure 3.1. The airport serves more than 30 airlines for both 

domestic and international flights, and is the main hub for United Airlines. United Airlines 

dominates international service to major cities in Europe, Asia, the Middle East, the Pacific region, 
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and the Americas. As one of the primary airports serving New Jersey and the New York 

metropolitan area, EWR served over 35 million passengers in 2015 (The Port Authority of New 

York and New Jersey, 2015).  

 

Figure 3.1 Newark Liberty International Airport (EWR) geographic location (Source: 

Google Maps, 2017) 

Figure 3.2 shows the airside plan diagram for EWR (FAA, 2008), EWR has two parallel 

runways (Runway 4R/22L and Runway 4L/22R) which cross Runway 11/29. Typically, departing 

aircraft take off on the inner runway, Runway 4L/22R, and arriving aircraft use Runway 4R/22L, 

while Runway 11/29 is used less frequently (FAA, 2014d).   The most frequently used runway 

configuration in VMC1 is 22L|22R, while in IMC2 it is 4R|4L (Kim, Rokib, & Liu, 2015). 

                                                           
1 Visual meteorological conditions (VMC): conditions which provide sufficient visibility for pilots to operate aircraft 

with visual references. At EWR, VMC requires at least 3000 ft ceilings and 4 miles visibility.  
2 Instrument meteorological conditions (IMC): conditions which necessitate instrument indications for pilots to 

operate aircraft in poor visibility conditions. For EWR, it occurs with less than 1000 ft ceilings or 3 miles visibility 

(FAA, 2014d).  
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Figure 3.2 EWR airport layout (FAA, 2008) 
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3.2 Data sources 

We use three datasets, plus other supplemental data, to generate a comprehensive merged 

dataset for this research. GDP plan data was obtained in the FAA Air Traffic Flow Management 

Initiative (TMI) advisories database. Weather forecast data was collected from the Terminal 

Aerodrome Forecast (TAF) database. Flight departure and arrival information was extracted from 

the Individual Flight (IF) dataset from the FAA’s Aviation System Performance Metrics (ASPM) 

database. In addition, airport longitudes, latitudes, countries and Air Route Traffic Control Centers 

were gathered to supplement the three datasets identified. 

3.2.1 Air Traffic Flow Management Initiative (TMI) Advisories  

The FAA Air Traffic Flow Management Initiative (TMI) Advisory Database contains the 

Air Traffic Control System Command Center (ATCSCC) advisories and Canadian Advisories, 

reporting planned TMIs, modifications of planned TMIs, and cancellations of TMIs. The TMIs 

mainly include Ground Delay Program (GDP), Ground Stop (GS), Reroute, and Airspace Flow 

Program (AFP). 

We extracted 21 variables (columns) from the original TMI advisories dataset, including 

advisory type, dates, times, causes, impacted scopes and program rates. The 18 variables are 

described in Table 3.1.  

With the goal of analyzing GDPs at EWR, this research extracted advisories with Advisory 

Category “GDP” (Column 5 in Table 3.1), Control Element “EWR/ZNY” (Column 7 in Table 3.1) 

and implemented in 2010 through 2014 (Column 7 in Table 3.1). There were finally 2,410 

advisories (rows) in total meeting these conditions, including 765 root advisories.  
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Table 3.1 Variables in TMI data set 

Column 

No. 

Column  

name 

Description 

1 Year Advisory send year 

2 AdvisoryDate UTC Advisory send date 

3 AdvisoryNumber Label of the advisory 

4 SendDate.Time.UTC Advisory send date and time (time zone = GMT) 

5 AdvisoryCategory TMI category, including GDP, GS, AFP, Reroute, etc. Here, 

it should be “GDP”. 

6 AdvisoryType Advisory type, “GDP” or “GDPX” (GDP cancellation) 

7 ControlElement The Air Route Traffic Control Center (ARTCC) which issued 

the advisory. Here, it should be “EWR/ZNY”. 

8 RootAdvisoryDate.UTC Send date of this advisory’s root advisory 

9 RootAdvisoryNumber Advisory Number of this advisory’s root advisory 

10 Derived.BgnDate.Time.UTC The begin time of the GDP or GDPX advisory, equal to 

column 15 or 17 (time zone = GMT) 

11 Derived.EndDate.Time.UTC The end time of the GDP or GDPX advisory, equal to column 

16 or 18 (time zone = GMT) 

12 Is.RootAdvisory Whether this advisory is a root advisory (“Yes” or “No”) 

13 Canadian.Dep.Arpts.Included Impacted Canadian departure airports included in the 

advisory 

14 Dep.Scope Impacted departure scope, a radius or a set of Air Route 

Traffic Control Centers (ARTCC). Airports outside this scope 

are exempt from the advisory. 

15 GDP.Bgn.Date.Time.UTC GDP begin time (time zone = GMT) 

16 GDP.End.Date.Time.UTC GDP end time (time zone = GMT) 

17 GDPX.Bgn.Date.Time.UTC GDP cancel begin time (time zone = GMT) 

18 GDPX.End.Date.Time.UTC GDP cancel end time (time zone = GMT) 

19 Impacting.Condition Causes of the advisory 

20 Program.Rate The number of aircraft that the GDP software is to provide to 

the airport, for each hour. 

21 Exempt.Dep.Facilities Airports exempt by the advisory 

3.2.2 Terminal Aerodrome Forecast (TAF) data 

A Terminal Aerodrome Forecast (TAF) is a concise statement issued by the U.S. National 

Weather Service (NWS) for all major U.S. airports, reporting forecasted meteorological conditions 

at each airport. It contains forecasts about visibility, ceiling, winds, and other meteorological 

features of interest (National Weather Service, 2016). Four to eight TAFs are issued every six 
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hours and generally cover a 24- to 30-hour period following the forecast (Federal Aviation 

Administration; National Weather Service, 2010).  

We retained 28 variables (columns) in the TAF data including TAF issue and forecast 

coverage times, forecast visibility, ceiling, winds, thunderstorms and precipitations. The variables 

are presented in Table 3.2. TAFs issued at EWR from January 1, 2010 to August 31, 2014 were 

available to us. After removing duplicate TAFs and TAFs with illogical duration (negative or too 

long), the final dataset contained 96,829 TAF records (rows), averaging 58 records per day.  

Table 3.2 Variables in TAF data set 

Column No. Column Name Description 

1 Issued Year Year of the TAF issue date time 

2 Issued Month Month of the TAF issue date time 

3 Issued Day Day of the TAF issue date time 

4 Issued Hour Hour of the TAF issue date time  

5 Issued Minute Minute of the TAF issue date time 

6 From Year Year of the forecast start date time 

7 From Month Month of the forecast start date time 

8 From Day Day of the forecast start date time 

9 From Hour Hour of the forecast start date time  

10 From Minute Minute of the forecast start date time 

11 To Year Year of the forecast end date time 

12 To Month Month of the forecast end date time 

13 To Day Day of the forecast end date time 

14 To Hour Hour of the forecast end date time  

15 To Minute Minute of the forecast end date time 

16 Wind Angle Forecasted wind angle (degrees) 

17 Wind Speed Forecasted wind angle (knots) 

18 Visibility Forecasted visibility (miles) 

19 Ceiling Forecasted ceiling (100 feet) 

20 RA Forecasted occurrence of rain (1 = yes, 0 = no) 

21 DZ Forecasted occurrence of drizzle (1 = yes, 0 = no) 

22 SN Forecasted occurrence of snow (1 = yes, 0 = no) 

23 SG Forecasted occurrence of snow grains (1 = yes, 0 = no) 

24 GR Forecasted occurrence of hail (1 = yes, 0 = no) 

25 GS Forecasted occurrence of snow pellets (1 = yes, 0 = no) 

26 IC Forecasted occurrence of ice crystals (1 = yes, 0 = no) 

27 UP Forecasted occurrence of unknown precipitation (1 = yes, 0 = no) 

28 TS Forecasted occurrence of thunderstorm (1 = yes, 0 = no) 
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3.2.3 Aviation Routine Weather Report (METAR) data 

METAR is the meteorological code for an aviation routine weather report and it is a format 

for reporting observational surface weather data by the U.S. National Weather Service (NWS). 

METARs are generated and published once an hour (UQAM Atmosphere Sciences Group, 2017). 

In this study, METAR data for EWR in the period of January 1, 2010 to December 31, 

2014 were used. It contains 55,459 records (rows) and 15 variables (columns). The variables of 

the dataset are presented in Table 3.3. 

Table 3.3 Variables in METAR data set 

Column No. Column name Description 

1 start.time Start date and time of the METAR observation  

2 end.time End date and time of the METAR observation 

3 Wind.Angle Observed wind angle (degrees) 

4 Wind.Speed Observed wind angle (knots) 

5 Visibility Observed visibility (miles) 

6 Ceiling Observed ceiling (100 feet) 

7 RA Observed occurrence of rain (1 = yes, 0 = no) 

8 DZ Observed occurrence of drizzle (1 = yes, 0 = no) 

9 SN Observed occurrence of snow (1 = yes, 0 = no) 

10 SG Observed occurrence of snow grains (1 = yes, 0 = no) 

11 GR Observed occurrence of hail (1 = yes, 0 = no) 

12 GS Observed occurrence of snow pellets (1 = yes, 0 = no) 

13 IC Observed occurrence of ice crystals (1 = yes, 0 = no) 

14 UP Observed occurrence of unknown precipitation (1 = yes, 0 = no) 

15 TS Observed occurrence of thunderstorm (1 = yes, 0 = no) 

 

3.2.4 Individual Flight (IF) data 

 The FAA Individual Flight (IF) Database of Aviation System Performance Metrics 

(ASPM) provides detailed information about flights such as departure and arrival times and flight 

delays. The time information includes actual, flight plan, ETMS plan and scheduled times of Gate 

http://aspmhelp.faa.gov/index.php/Aviation_System_Performance_Metrics_(ASPM)
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Out, Wheels Off, Wheels On and Gate In3, from TFMS (formerly known as ETMS), OOOI and 

ASQP records. TFMS refers to Traffic Flow Management System, a data exchange system 

providing flow information (FAA, 2014b); OOOI data refers to actual aircraft movement times of 

Gate Out, Wheels Off, Wheels On, and Gate In (FAA, 2015); ASQP refers to the Airline Service 

Quality Performance System (ASQP) which provides flight delay information (FAA, 2014c).   

We selected 37 variables (columns) from the original IF data. The variables are introduced 

in Table 3.4. By restricting the arrival airport as EWR, and arrival date between January 1 2010 

through December 31 2014, this research was left with 879,507 flights (rows) in the dataset. The 

departure airports consist of both U.S. and international airports. 18% of the flights were departed 

from foreign airports.  

Table 3.4 Variables in IF data set (FAA, 2003) 

                                                           
3 Gate Out: Aircraft leaves gate or parking position. 

Wheels Off: Aircraft takes off.  

Wheels On: Aircraft touches down. 

Gate In: Aircraft arrives at gate or parking position. 

Column 

No. 

Column 

name 

Description 

1 DEP_YYYYMM Scheduled Departure Year and Month (Local Date) 

2 DEP_DAY Scheduled Departure Day (Local Day) 

3 DEP_HOUR Scheduled Departure Hour (Local Hour) 

4 DEP_QTR Scheduled Departure Quarter Hour (Local Qtr) 

5 ARR_YYYYMM Scheduled Arrival Year and Month (Local Date) 

6 ARR_DAY Scheduled Arrival Day (Local Day) 

7 ARR_HOUR Scheduled Arrival Hour (Local Hour) 

8 ARR_QTR Scheduled Arrival Quarter Hour (Local Qtr) 

9 OFF_YYYYMM Actual Wheels Off Year and Month (ASQP/OOOI Off Local Date) 

10 OFF_DAY Actual Wheels Off Day (ASQP/OOOI Off Local Day) 

11 OFF_HOUR Actual Wheels Off Hour (ASQP/OOOI Off Local Hour) 

12 OFF_QTR Actual Wheels Off Quarter Hour (ASQP/OOOI Off Local Qtr) 

13 ON_YYYYMM Actual Wheels on Year and Month (ASQP/OOOI On Local Date) 

14 ON_DAY Actual Wheels on Day (ASQP/OOOI On Local Day) 

15 ON_HOUR Actual Wheels on Hour (ASQP/OOOI On Local Hour) 

16 ON_QTR Actual Wheels on Quarter Hour (ASQP/OOOI On Local Qtr) 

17 FAACARRIER Flight Carrier Code - ICAO 

http://aspmhelp.faa.gov/index.php/OOOI_Data
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3.2.5 Airport Information (AI) Dataset 

We combined airport geographic information gathered from OpenFlights database 

(OpenFlights, 2017) and the calculated distances between EWR and other airports to create a 

dataset entitled Airport Information (AI). The OpenFlights database contains airport longitudes 

and latitudes, countries, and Air Route Traffic Control Centers (within the NAS) for airports with 

flights departing to EWR. The GDP departure scope in the TMI dataset (Column 14 in Table 3.1) 

identifies the airports included in the GDP scope by specifying a radius (in miles) or a set of 

ARTCC. Flights destined for EWR from departure airports within the geographic scope can be 

assigned ground delays as specified by the GDP parameters. For GDPs with a radius-defined scope, 

this research inferred the impacted departure airports by calculating the distances between the 

Column 

No. 

Column 

name 

Description 

18 FLTNO Flight Number 

19 Dep_LOCID Departure Location Identifier: Domestic = space + 3-character 

identification code, foreign = ICAO 4-character identification code 

20 Arr_LOCID Arrival Location Identifier: Domestic = space + 3-character identification 

code, foreign = ICAO 4-character identification code. 

21 SchOutTm Scheduled Gate Departure Time (Local) HH:MM 

22 FPDepTm Flight Plan Gate Departure Time HH:MM 

23 ActOutTm Actual Gate Out Time HH:MM 

24 SchOffTm Scheduled Wheels Off Time HH:MM 

25 FPOffTm Flight Plan Wheels Off Time HH:MM 

26 ActOffTm Actual Wheels Off Time HH:MM 

27 DlaSchOff Airport Departure Delay Minutes (Based on Schedule) 

28 DlaFPOff Airport Departure Delay Minutes (Based on Flight Plan) 

29 DELAY_AIR Airborne Delay Minutes 

30 EDCTOnTm Wheels on Time HH:MM (Filed on EDCT) 

31 ActOnTm Actual Wheels on Time HH:MM 

32 EDCTArrDif Difference between EDCT Expected and Actual Wheels-On (EDCT 

Arrival) 

33 SchInTm Scheduled Gate-In HH:MM 

34 FPInTm Flight Plan Gate-In HH:MM 

35 ActInTm Actual Gate In Time HH:MM 

36 DlaSchArr Arrival Delay in Minutes (Compared to Scheduled) 

37 DlaFPArr Arrival Delay in Minutes (Compared to Flight Plan) 
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departure airports and EWR airport based on their longitudes and latitudes; similarly, for GDPs 

with an ARTCC-defined scope, this research matched the impacted ARTCCs to airports within 

these ARTCCs using the airport-ARTCC membership information contained in the AI dataset. 

This is how this research determined whether a flight was involved in a particular GDP – by 

matching the flight departure airport (Column 19 in Table 3.4) with the GDP departure scope 

(Column 14 in Table 3.1). The variables in AI data set are listed in Table 3.5. 

Table 3.5 Variables in AI data set 

 

In addition, the great-circle distances (in miles) between the departure airports and EWR 

were calculated using the following formula (Veness, 2016): 

𝑑 = atan2(√𝑎, √1 − 𝑎) × 2 × 3959                                                                                    (1) 

Where: 

 𝑎 = 𝑠𝑖𝑛2 ∆𝜑

2
+ 𝑐𝑜𝑠 𝜑1 ∙ 𝑐𝑜𝑠 𝜑2 ∙ 𝑠𝑖𝑛2 ∆𝜆

2
; 

𝜑1, 𝜑2  are the latitudes of EWR and the departure airport, respectively, and  

∆𝜆 is the difference between the longitudes of EWR and the departure airport. 

Column 

No. 

Column 

name 

Description 

1 AirportID Airport identifier: domestic = space + 3-character identification code, foreign 

= ICAO 4-character identification code 

2 Country The country in which the airport is located 

3 City The city in which the airport is located 

4 Latitude Latitude of the airport 

5 Longitude Longitude of the airport 

6 ARTCC The ARTCC which the airport belongs to (for U.S. airports and some 

Canadian airports only) 

7 Distance The distance between the airport and EWR airport (in miles) 
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3.3 Data preparation 

The data was first preprocessed through filtering, cleaning and time zone unifying. Next, 

some new variables were calculated and attached to the primary data. Then, the processed TMI, 

TAF, METAR and IF data were merged to create a comprehensive GDP dataset. Lastly, each hour 

a GDP was in place was represented by a row in the integrated dataset, to represent the temporal 

evolution of weather forecasts and GDP plans. The R code for preparing the GDP evolution data 

is provided in Appendix A. 

3.3.1 Data preprocessing 

The data preprocessing work includes filtering, cleaning, and unifying the time zone. It 

was filtered such that the retained records were only those for TMI data with Advisory Category 

“GDP” (Column 5 in Table 3.1), Control Element “EWR/ZNY” (Column 7 in Table 3.1) and 

Advisory Date from January 1, 2010 to August 31, 2014 (Column 2 in Table 3.1). TAF data issued 

at EWR from January 1, 2010 to August 31, 2014 were retained (Columns 1, 2 and 3 in Table 3.2); 

and IF data with arrival airport EWR (Column 20 in Table 3.4), arrival date from January 1, 2010 

to August 31, 2014 (Columns 5 and 6 in Table 3.4) were retained. The time horizon of January 1, 

2010 to August 31, 2014 was chosen because the available TAF data was limited to this period. 

After filtering, illogical data, such as TAFs or TMIs with abnormal (too long or negative) 

durations, and duplicate data (mainly an issue in the TAF dataset) were removed from the original 

datasets. 

Finally, time zones were unified as the GDP and weather data is in Universal Time 

Coordinated (UTC) while the IF data is in Eastern Time (UTC -5:00 / -4:00) or New York City 

local time. All datasets were unified into New York City local time. 
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3.3.2 Generating additional variables 

We produced additional variables calculated from other data in the raw datasets, for the 

purpose of matching the datasets or describing GDP features. In the TMI dataset, only the “planned” 

parameters of the GDP advisories are available. For example, the advisory end times (Column 16 

in Table 3.1) do not typically match the “actual” end times of the advisory. The actual advisory 

end time information would be the advisory begin times (Column 15) of the subsequent revision 

advisory belonging to the same GDP (if there should be one). 

All new variables calculated are presented in Column 2 of Table 3.6, along with 

descriptions. 
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Table 3.6 Summary of the new variables 

Code Name Sour

ces 

Description Computational process Involved variables (column no.) 

#1 Actual advisory 

end time 

TMI The actual end time 

of the advisories 

If the advisory is not the last one of the initiative and the 

start time of the next advisory (column 15 in Table 3.1) 

is earlier than the planned end time of this advisory (16), 

the actual advisory end time should be the start time of 

the new advisory; otherwise, it equals to the planned end 

time of this advisory. 

 

GDP.Bgn.Date.Time (Column 

15 in Table 3.1); 

GDP.End.Date.Time (16) 

#2 Actual initiative 

end time 

TMI The actual end time 

of the initiatives 

If the GDP was cancelled (6), the actual initiative end 

time is the cancellation time (17); otherwise, it is the end 

time (16) of the last advisory of this GDP. 

 

AdvisoryType (Column 6); 

GDPX.Bgn.Date.Time (17); 

GDP.End.Date.Time (16) 

#3 Planned 

advisory 

duration 

TMI The planned duration 

of the advisories 

The difference between the end time (16) and start time 

(15) of a GDP advisory. 

GDP.Bgn.Date.Time (15); 

GDP.End.Date.Time (16) 

#4 Actual advisory 

duration 

TMI The actual duration 

of the advisories 

The difference between the actual end time (#1) and 

start time (15) of the GDP advisory 

Actual advisory end time (#1); 

GDP.Bgn.Date.Time (15) 

#5 Planned 

initiative 

duration 

TMI The planned duration 

of a GDP initiative 

after each advisory of 

it was issued 

 

The difference between the end time (16) of the GDP 

advisory and the initial start time (15) of the GDP 

initiative 

 

GDP.Bgn.Date.Time (15); 

GDP.End.Date.Time (16) 

#6 Actual initiative 

duration 

TMI The final actual 

duration of the GDP 

initiatives 

 

The difference between the actual initiative end time 

(#2) and the initial start time of the GDP initiative. 

 

Actual initiative end time (#2); 

GDP.End.Date.Time (16) 

#7 Number of 

modifications 

TMI Number of 

modifications/advisor

ies of a GDP 

 

The number of the GDP advisories belonging to the 

GDP (whether an advisory belongs to an initiative 

depends on the right variables) 

 

RootAdvisoryNumber (9); 

Is.RootAdvisory (12); 

AdvisoryType (6) 

#8 Affected 

airports 

(in TMI) 

TMI

, AI 

The airports which 

would be affected by 

the advisory 

Translate the “Departure scope” (14) of the advisory 

into airports using AI data; then add the Canadian 

airports affected by the advisory (13); delete the airports 

exempted in the advisory (21) 

Canadian.Dep.Arpts.Included 

(13); Dep.Scope (14);  

Exempt.Dep.Facilities (21); 

AirportID (1 in Table 3.5);  

ARTCC (6 in Table 3.5) 
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Code Name Sou-

rces 

Description Computational process Involved variables (column no.) 

#9 Early cancel 

time 

TMI For the cancelled 

GDPs, it describes 

how advance a GDP 

was ended by a 

cancellation than it 

was planned to be 

ended 

 

The difference between the end time (18) of the last 

GDP advisory of the initiative and its cancellation time 

(17). 

GDPX.Bgn.Date.Time (17); 

GDP.End.Date.Time (18) 

#10 CW0422 TAF The forecasted 

crosswind strength to 

Runways 4/22 of 

EWR airport 

 

Wind Speed * |sin((Wind Angle – 40)*(pi/180))| Wind.Angle (16 in Table 3.2); 

Wind.Speed (17) 

#11 CW1129 TAF The forecasted 

crosswind strength to 

Runway 11/29 of 

EWR airport 

 

Wind Speed * |sin((Wind Angle – 110)*(pi/180))| Wind.Angle (16); 

Wind.Speed (17) 

#12 PC TAF Whether there would 

be any precipitation  

For the following variables in TAF - RA(rain), 

DZ(drizzle), SN(snow), SG(snow grains), GR(hail), GS 

(snow pellets), IC (ice crystals), UP (unknown 

precipitation (auto)), if there is any of the variables 

equals to 1, PC = 1. (National Weather Service, 2017) 

 

RA (20); DZ (21); SN (22); SG 

(23); GR (24); GS (25); IC 

(A26); UP (27) 

#13 ARTCC 

(in IF) 

AI, 

IF 

The ARTCC of the 

airports arriving at 

EWR airport 

 

Match the airport ID in IF and in AI and attach the 

ARTCC from AI to IF for the airport 

 

AirportID (1 in Table 3.5); 

ARTCC (6 in Table 3.5); 

Dep_LOCID (19 in Table 3.4) 

#14 Country 

(in IF) 

AI, 

IF 

The country category 

where the airport is 

located: U.S, Canada 

or International 

 

Match the airport ID in IF and in AI and attach the 

Country from AI to IF for the airport 

AirportID (1 in Table 3.5); 

Country (2 in Table 3.5); 

Dep_LOCID (19 in Table 3.4) 

#15 Distance 

(in IF) 

AI, 

IF 

The distance (in 

miles) between the 

departure airport and 

EWR airport 

Match the airport ID in IF and in AI and attach the 

Distance from AI to IF for the airport 

AirportID (1 in Table 3.5); 

Distance (7 in Table 3.5); 

Dep_LOCID (19 in Table 3.4) 
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To capture crosswinds from the TAF and METARs data, this research calculated a 

crosswind variable based on wind speed and angle. Crosswinds pose serious safety risks to aircraft 

on runways by exerting a lateral force (Khurana, 2009). Additionally, Kuhn (2016) indicated that 

crosswind strength was one of the most important features for modelling the initiation of GDPs at 

EWR. Crosswinds can be calculated based on wind speed (Column 16 in Table 3.2 for TAFs; 

Column 3 in Table 3.3 for METARs), wind angle (Column 17 in Table 3.2 for TAFs; Column 4 

in Table 3.3 for METARs) and runway direction using the following formula (Neufville & Odoni, 

2003): 

𝑐𝑟𝑜𝑠𝑠𝑤𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑 = 𝑤𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑 × 𝑠𝑖𝑛 (𝛼)                                                                      (2) 

Where 𝛼 is the angle of the wind from the aircraft travel direction on the runway (in radians).  

The direction of runways 4L/22R and 4R/22L at EWR are 40 or 220 degrees, and runway 

11/29 is 110 or 290 degrees. Thus, α will be the difference between the wind angle and 40 (or 220) 

degrees for Runway 4L/22R and 4R/22L, and the difference between the wind angle and 110 (or 

290) degrees for Runway 11/29.  

The weather variables RA (rain), DZ (drizzle), SN (snow), SG (snow grains), GR (hail), 

GS (snow pellets), IC (ice crystals) and UP (unknown precipitation (auto)) (Columns 20 – 27 in 

Table 3.2 for TAFs; Columns 7 -14 in Table 3.3 for METARs) were combined into an integrated 

variable – precipitation (National Weather Service, 2017). 

For IF data, the information of country, ARTCC and distance from EWR of the departure 

airport from AI data was supplemented for each flight. 

All new variables and how they were generated are described in Table 3.6. 
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3.3.3 Generating GDP evolution data 

GDP plans are often revised as the weather forecasts change over time. Thus, GDP 

evolution is dependent on weather forecasts (from TAF dataset) and GDP parameters (from TMI 

dataset and IF dataset) over time.  

3.3.3.1 Matching TAFs to GDPs (TMI dataset) 

By merging the TMI and TAF datasets, the hourly weather forecast (i.e. visibility, ceiling, 

crosswind to Runways 4/22, crosswind to Runway 11/29, thunderstorm and precipitation) was 

attached to each GDP advisory for describing the forecast weather conditions of the advisories. 

The variables attached to the TMI data from TAFs are described in Table 3.7. 

Regarding the forecast coverage time of the TAFs, overlapped forecast time periods existed 

among different TAF records, meaning that a GDP hour may have several corresponding TAF 

records. Only one TAF record was chosen for each GDP hour by the following steps:  

a) For a GDP advisory, pick out the TAFs with: 1) an issued time earlier than its 

corresponding GDP’s send time, 2) start time earlier than GDP end time, or 3) end time 

later than GDP start time. 

b) For each hour of the GDP advisory, pick out the TAFs with start time earlier than the 

last minute of this hour, and TAF end time later than the first minute of this hour. 

c) If for an hour, there are several TAF records, then the TAF with the latest issue time is 

chosen for matching to a GDP, as forecasts issued later have a higher likelihood of 

accuracy to real events. 

d) Finally, attach the weather variables obtained above to each hour of each GDP.  
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Table 3.7 Variables attached to TMIs from TAF data 

Code Name Sources Description 

#16 Visibility TMI, TAF The forecasted visibility condition (in miles) for 

each hour at EWR  

#17 Ceiling TMI, TAF The forecasted ceiling condition (in 100 feet) for 

each hour at EWR 

#18 Crosswind to 

Runways 4/22 

TMI, TAF The forecasted crosswind condition (in knots) for 

each hour for Runways 4/22 at EWR  

#19 Crosswind to 

Runway 11/29 

TMI, TAF The forecasted crosswind condition (in knots) for 

each hour for Runway 11/29 at EWR  

#20 Thunderstorm TMI, TAF The forecasted thunderstorm status (0 for none, 1 

otherwise) for each hour at EWR 

#21 Precipitation TMI, TAF The forecasted precipitation status (0 for none, 1 

otherwise) for each hour at EWR 

 

3.3.3.2 Matching individual flights (IF dataset) to GDPs (TMI dataset) 

We then matched IF data to GDP data to assign GDPs the flights they impacted. To merge 

the TMI and IF datasets, this research matched by geography and time. The steps are detailed 

below: 

a) Match GDPs and flights by time. Compare the flight base estimated time of arrival 

(scheduled gate-in time) (Column 33 in Table 3.4) with GDP times and pick out the 

flights whose flight arrival times fall within the GDPs times (Columns 15 and 16 in 

Table 3.1).  

b) Match GDPs and flights by geography. Check flight originating Country (#14). For 

flights originating in the U.S. or Canada, do step c. 

c) For U.S. and Canadian flights, check whether they were affected or exempted by the 

GDPs, through matching the ARTCC (#13) or Distance (#15) in IF dataset with the 

GDP departure scope (Column 14 in Table 3.1) or GDP affected Canadian departure 
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airports (Column 13 in Table 3.1) and GDP exempted departure airports (Column 21 

in Table 3.1). 

The detailed computational process for the variables from IF dataset and attached to TMI 

dataset were described in Table 3.8.
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Table 3.8 Variables attached to TMIs from IF dataset 

Code Name Sources Description Computational process Involved variables 

#22 Scheduled 

Arrivals 

IF, TMI Number of flights which were 

scheduled to arrive at EWR 

during a GDP plan before it 

was issued 

Number of flights whose base estimated 

time/gate-in time (AG in IF) of arrival before 

it was affected by the GDP was within the 

GDP time horizon (O and P in TMI) 

SCHINTM (AG in IF); 

GDP.Bgn.Date.Time (O in 

TMI); 

GDP.End.Date.Time (P in 

TMI) 

 

#23 Impacted 

Arrivals 

IF, TMI Number of flights affected by 

the GDP (involved in GDP 

departure scope) 

For the flights whose base estimated time of 

arrival (AG in IF) was within the GDP time 

horizon (O and P in TMI), if the flight was 

included in “AffectedAirports” (#8), then it 

would be affected by the GDP. 

 

Variables in #22; 

Affected Airports (#8);  

DEP_LOCID (S in IF) 

 

#24 Ground 

Delay 

IF, TMI Sum of the ground delay of all 

the flights affected by a GDP 

Sum of the “Schedule-based Departure Delay” 

(AA in IF) of the flights affected by the GDP 

 

DLASCHOFF (AA in IF); 

Variables in #24 

 

#25 Actual Total 

Arrival Delay 

IF, TMI Sum of the actual total delay 

(ground delay and airborne 

delay) of all the flights affected 

by a GDP 

 

Sum of the “Schedule-based Arrival Delay” 

(AJ in IF) of the flights affected by the GDP 

DLASCHARR (AJ in IF) 

#26 Planned 

Arrival Delay 

IF, TMI Sum of the planned arrival 

delay of all the flights affected 

by the GDP 

Sum of the difference between Planned 

Arrival Time and Schedule Arrival Time of all 

the flights affected by the GDP. For 

computational convenience, it equals to the 

difference between Flight Plan based Arrival 

Delay (CC in IF) and Schedule-based Arrival 

Delay (AK in IF) 

DLAFPARR (AK in IF); 

DLASCHARR (AJ in IF) 
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3.3.3.3 Descriptions of the merged dataset   

Through the data processing work detailed above, a final GDP advisory dataset was 

established which matches GDP advisories to their corresponding weather forecasts and planned 

advisory parameters. The final dataset consists of 2,282 rows and 37 columns. Each row consists 

of a GDP advisory. The advisories were reordered according to their Root Advisory Number and 

Modification Number, unlike the original TMI data where advisories were ordered by their issue 

time. The dataset variables (i.e. columns) are shown in Table 3.9. The descriptions are not provided 

here since all variables in this dataset were introduced in previous sections (Tables 3.1-3.8). 

Table 3.9 Variables in GDP Advisory Dataset 

 

Column No. Column name Column No. Column name 

1 AdvisoryNumber 20 Planned advisory duration 
2 SendDate.Time.UTC 21 Actual advisory duration 
3 AdvisoryType 22 Planned initiative duration 
4 RootAdvisoryNumber 23 Actual initiative duration 
5 Derived.BgnDate.Time.UTC 24 Number of modifications 
6 Derived.EndDate.Time.UTC 25 Affected airports 
7 Is.RootAdvisory 26 Early cancel time 
8 Canadian.Dep.Arpts.Included 27 Visibility 
9 Dep.Scope 28 Ceiling 
10 Eff.Bgn.Date.Time.UTC 29 Crosswind to Runways 4/22 
11 Eff.End.Date.Time.UTC 30 Crosswind to Runway 11/29 
12 GDP.Bgn.Date.Time.UTC 31 Thunderstorm 
13 GDP.End.Date.Time.UTC 32 Precipitation 
14 GDPX.Bgn.Date.Time.UTC 33 Scheduled Arrivals 
15 GDPX.End.Date.Time.UTC 34 Impacted Arrivals 
16 Impacting.Condition 35 Ground Delay 
17 ProgramRate 36 Actual Total Arrival Delay 
18 Actual advisory end time 37 Planned Arrival Delay 
19 Actual initiative end time   
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3.3.3.4 Generating Hourly GDP Evolution Dataset 

Based on the master GDP advisory dataset I created, an Hourly GDP Dataset was built by 

creating a new file with each row representing an hour, and then organizing all the GDP 

information into this new time-based format.  

Two steps have been performed to establish this dataset: first, group the GDP advisories 

with the same root advisory number (Column 9 in Table 3.1) into one GDP initiative; second, 

divide the GDP initiative active time into hours, and use the GDP parameters of the advisory whose 

active time matches with this hour, as the initiative parameters of this hour. Here, 

advisory/initiative active time is determined by the difference between actual advisory/initiative 

end time GDP and advisory/initiative begin time. At this point, an hourly GDP initiative dataset 

reflecting the evolving parameters of GDP initiatives has been created. 

Thus, in the Hourly GDP Dataset, the unit (or each row) is one hour of a GDP initiative. 

Finally, 11,177 rows and 38 columns are included in the dataset. Asides from a new column 

containing the hour number, the remaining columns/variables of this dataset remain the same as 

the GDP advisory dataset of Section 3.3.3.3. 

3.4 Descriptive statistics  

This section presents descriptive statistics for the weather, GDP and flight data prepared as 

described previously in this chapter, in order to gain a basic knowledge of the weather features and 

GDP characteristics at EWR from 2010 through 2014. The data distribution, components 

(proportions), and trend over the time were summarized.  
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3.4.1 Weather characteristics at EWR 

The data indicates that from 2010 through 2014, 89% of the EWR GDPs were initiated due 

to adverse weather, confirming that weather was the heavily dominating cause of GDPs over the 

five years in question. 

Because crosswinds may pose safety risks by exerting a lateral force to aircraft on the 

runways (Khurana, 2009), a runway experiencing crosswinds greater than 15 knots are not used, 

according to FAA Airplane Flying Handbook (FAA, 2016).  

The EWR capacity profile for EWR (FAA, 2014d) indicates that pilots are required to use 

instruments to fly aircraft (in a situation called Instrument Meteorological Conditions, IMC) when 

the ceiling or visibility is below 1000 feet or 3 miles, respectively. Thus, I defined “low ceilings”, 

“low visibility” and created “IMC” variable according to this IMC criteria.  

Figure 3.3 shows the total number of observations (hours) for the weather variables for 

each month of the year. The variables include strong crosswind to Runways 4/22 (StrCW0422), 

strong crosswind to Runways 11/29 (StrCW11/29), IMC, precipitation, and thunderstorms. 

Precipitation, StrCW0422, and IMC were found to be the most frequent weather phenomenon at 

EWR in 2010 to 2014, while StrCW1129 were observed with relatively lower frequency. 

Thunderstorms (TS) occurred rarely except in summer. Precipitation was observed more from 

December - March and May, and less in June through November; StrCW0422 occurred most 

frequently from December to April, and least frequently from May to October; IMC appeared most 

often from December - February and May, and least often in July and August. In general, the 

frequencies of all three severe weather variables were low in summer and fall, and high in spring 

and winter. However, thunderstorms were more prevalent at EWR in the summer months, which 
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is in keeping with general knowledge about thunderstorms across the eastern states (Kim & 

Hansen, 2013).  

Overall, precipitation appears to be the most commonly occurring adverse weather 

condition at EWR from 2010-2014, followed by crosswinds to runways 4/22, and low ceiling and 

visibility causing IMC. Weather conditions in December to May were generally worse than in 

other months.  

Although the total number of hours of thunderstorm was very low, thunderstorms will 

typically lead to highly restrictive GDPs and significant arrival delays at EWR (Allan, Beesley, 

Evans, & Gaddy, 2001).  

 

Figure 3.3 Count of observations of different weather variables in different months 

Figure 3.4 shows the total hours where the different adverse weather conditions were in 

place over the five years from 2010-2014. Weather in 2010 and 2011 was comparatively worse 

than subsequent years – 2010 experienced more crosswinds to Runways 4/22 than other years; 

precipitation and IMC was most prevalent in 2011. Weather conditions from 2012 to 2014 appear 
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to be more consistent compared with the two previous years.  These observations are consistent 

with reports from NOAA (U.S. Global Change Research Program, 2014). 

 

Figure 3.4 Weather constitutions of each year 

Overall, among the five years, 2010 and 2011 appear to have been the worst years for 

weather while 2012 to 2014 were relatively better. The main adverse weather condition in 2010 

were strong crosswinds to Runways 0422 and precipitation, while Instrument Meteorology 

Condition and Precipitation were the main conditions in 2011. 

3.4.2 GDP characteristics at EWR  

3.4.2.1 GDP causes 

While adverse weather is cited as the most common reason for GDP issuance, it is usually 

a combination of weather and heavy flight demands (Manley & Sherry, 2008). This section 

discusses the major causes of EWR GDPs based on the five years of GDP, weather, and flight 

data. 
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As introduced in 3.2.1, the TMI dataset contains the causes of GDP advisories. GDP causes 

from January 1, 2010 through December 31, 2014 are shown in Figure 3.5. The figure 

demonstrates that weather was the major factor (89%) initiating GDPs, while runway-taxi 

problems (such as construction and maintenance), other conditions (such as security and 

emergency events) and flight demand prompted 8%, 2% and 1% GDPs respectively. However, the 

extremely low percentage of demand seems unreasonable because EWR is a busy airport with 

heavy flight demand as introduced in 3.1. The reason may be that 89% GDPs were usually initiated 

due to a combination of heavy demand and severe weather, and rarely just because of demand 

alone.  

 

Figure 3.5 Causes of EWR GDPs 

  

Figure 3.6 Weather causes of EWR GDPs 

For the GDPs prompted by weather, strong winds and low ceiling or visibility were the 

most common factors for those GDPs. Thunderstorms and precipitation accounted only for 19% 

and 5% respectively of those GDPs, as shown in Figure 3.6. Comparing with the EWR weather 

characteristics discussed in 3.4.1, it can be observed that although precipitation was the most 

frequently occurring adverse weather phenomena at EWR, it was not as impactful for GDP 

initiation. Strong crosswind to Runways 4/22 and IMC (low ceiling/visibility) most frequently 

33%
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caused GDP initiation, in line with the findings of Wang and Kulkarni (2011) and Grabbe, Sridhar 

and Mukherjee (2013). 

Figure 3.7 shows the components of the GDP causes in different months. Though Figure 

3.3 and Figure 3.6 illustrated that thunderstorms were the least frequent weather condition and 

relatively insignificant GDP contributors, they had a large impact on the summer GDPs issued 

(June to August) as shown in Figure 3.7. GDPs prompted by precipitations mainly existed in 

winter. October to March, GDPs were mainly issued due to winds. GDPs in April, May and 

September were issued due to multiple factors including winds, thunderstorms, low ceilings and 

runway/taxi problems with roughly even percentages. There were more winter (December to 

March) GDPs prompted by precipitation by comparing with other months. Besides the cause 

component information, this figure also reveals a difference in number of GDPs in different 

months. A figure clearly showing the number of GDP initiatives in each month is presented as 

Figure 3.8.  

 

Figure 3.7 EWR GDP causes in different months 
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As shown in Figure 3.8, GDPs were most frequently observed in April and May, followed 

by December, July, June and March. GDPs were least frequently observed in February, followed 

by September-November. However, in Figure 3.3 it was observed that crosswinds, precipitation 

and IMC occurred very frequently in February which suggests that GDPs at EWR were often 

prompted by factors other than weather alone. 

 

Figure 3.8 Number of GDP initiatives per month 

The individual flights (IF) dataset contains scheduled flight information. It must, however, 

be noted that the ASPM data (including IF data) does not include cancelled flights, meaning that 

not all flights originally scheduled to arrive or depart at EWR were included in the dataset. 

Although less than ideal given that flight cancellations due to GDP can be extensive, for the 

purpose of this study, this research used the number of scheduled flights in IF as an approximation 

of the “true” runway demand. Figure 3.9 shows the total flight demand as per the IF dataset at 

EWR over the months of the year. It was observed that flight demand was lower in February, 
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which provides an explanation of why GDPs were issued with less frequency that month despite 

the greater frequency of adverse weather.   

 

Figure 3.9 Flight demand at EWR in each month 

To further examine the impact of flight demand on GDPs at EWR, Figure 3.10 which 

shows the flight demand per day of the week at EWR from 2010-2014. As expected, there are 

more scheduled flights during the weekdays than weekends (with Saturday having the lowest flight 

demand). By comparing with Figure 3.11 which presents the number of GDP initiatives 

implemented in the days of the week, it was observed that same trend appears in Figure 3.11– 

fewer GDPs were implemented on weekends, particularly Saturday. The impact of flight demand 

on the EWR GDPs was verified again through the comparison. 
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Figure 3.10 Number of scheduled flights at EWR per day of week over the 5 years 

 

Figure 3.11 EWR GDP in per day of week over the 5 years 

As introduced in 2.1, the purpose of a GDP is to mitigate the imbalance between flight 

demand and capacity at an airport. The capacity-demand imbalance can be caused by capacity 

reduction due to inclement weather or excessive demand due to heavy flight schedules. Although 

the TMI data demonstrated that weather was the major cause of GDPs at EWR, we know that 

GDPs would not be as prevalent at less busy airports with lower flight demands than EWR.  
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3.4.2.2 GDP revisions and cancellations 

For the EWR GDPs implemented from 2010 through 2014, each GDP plan had on average 

1.16 revisions (usually an extension). 95% of GDPs were cancelled (usually early cancellation) 

with an average early cancel time of 1.9 hours, meaning that GDPs at EWR ended almost 2 hours 

earlier than planned. This seems to suggest that air traffic controllers were either conservative in 

their GDP planning, TAF forecasts are conservative, or both. 

3.4.2.3 GDP times and durations 

There are three critical time variables for GDP implementation – GDP send time, start time 

and end time. This section provides a statistical description regarding the times of the EWR GDPs 

issued from 2010 through 2014. All the GDP times stated in this section are in New York City 

local time. 

Figure 3.12 presents box plots of EWR GDP send times, begin times, revise times and end 

times by hour of day. Send, begin, and end times each occur once for a GDP initiative, while 

revisions can occur multiple times. It can be observed that half the send times (in the center, 25th 

to 75th percentile) were between 9 am and 12 pm, began times were between 11 am and 1 pm, 

revised between 2 and 6 pm; and ended between 7 and 10 pm.  

 



 
 

41 

Figure 3.12 Send times, begin times, revise times and end times of the GDPs over a day 

The planned duration of a GDP is the difference between its start time and planned end 

time. The actual duration of a GDP is the difference between its start time and actual end time 

(sometimes it is “cancel time”). Figure 3.13 shows descriptive statistics on GDP initial planned 

duration, planned duration after revisions and actual duration. By comparing the third boxplot with 

other boxplots in Figure 3.13, it can be found that the actual GDP duration was generally shorter 

than their initial and revised planned length. Specifically, most GDPs were initially planned to run 

for about 8 to 12 hours. Then after being revised, the GDPs were generally extended, reaching a 

planned duration of 10 to 13 hours. Finally, the GDPs were generally shorter than their planned 

length, lasting for 6 to 11 hours.  

 

Figure 3.13 EWR GDP durations 

In summary, EWR GDPs issued in the five years were sent in the late morning, activated 

around noon, modified in the afternoon, and ended in late evening or early night. The GDPs were 

often revised to extend, but ended earlier than even the planned duration. 
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3.5 Summary 

This chapter provided an overview of the data used in this study. Datasets on GDPs, 

weather forecasts, and individual flight information at EWR from 2010 through 2014 were 

combined to generate a master dataset for the GDP evolution analysis in next chapter. This master 

dataset contains the weather forecasts and GDP parameters for each hour when a GDP was in place 

over the five analysis years.  

Descriptive statistics were generated to gain a basic understanding of the EWR weather 

and GDP data over the five analysis years. The main characteristics of the actual weather at EWR 

include that: 1) precipitation, crosswinds to runways 4/22, and low ceiling or visibility were the 

most frequently observed adverse phenomenon; 2) December to May generally experienced more 

inclement weather than in other months, and 3) weather from 2010 through 2011 was relatively 

worse than in other years. GDPs generally were in place for 8-10 hours and on average ended two 

hours earlier than planned. GDPs were found to be more frequently initiated in spring and on 

weekdays (due to heavier flight demand), while crosswinds were found to be the most common 

cause of the GDPs. To further explore the characteristics of the EWR GDPs, data mining 

techniques will be applied to GDP evolution data in next chapter.  
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Chapter 4. GDP evolution characteristics exploration 

This chapter introduces the techniques, analysis procedures and results of GDP 

characteristics exploration using data mining. Section 4.1 provides a brief introduction to the 

dimensionality reduction techniques, clustering methods, and statistical methods used in the study. 

Section 4.2 describes the process of GDP evolution scenario establishment and scenario-

performance correlation assessment. Through the analysis, 10 GDP scenarios were finally 

identified for describing how GDPs evolve under changing weather forecasts. Significant 

correlations between scenario parameters and GDP performances were observed. 

4.1 Techniques 

This section introduces the techniques used in our exploration of GDP evolution. 

Autoencoder, an unsupervised learning method, was used to extract some of the basic patterns in 

the high-dimensional GDP data (i.e. with many features changing over time) with the goal of 

dimensionality reduction. Three clustering methods - 𝑘-means, PAM, and hierarchical clustering 

- along with three 𝑘-estimation methods - average silhouette and gap statistic - were employed to 

develop GDP scenarios. A statistical method called Configural Frequency Analysis was utilized 

to examine correlations between different GDP parameters. 

4.1.1 Autoencoders 

As introduced in Section 3.3.3.3, the GDP evolution dataset developed for this study 

contains weather forecasts and GDP parameters by hour, and thus involves multiple dimensions. 

Autoencoder, which can capture important features of high-dimensional data (such as the prepared 
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GDP dataset) automatically, was applied with the purpose of dimensionality reduction. 

Dimensionality reduction is the process of reducing the number of variables in the data set by 

selecting a subset of the original data (feature selection) or transforming the data to a lower-

dimensional space (feature extraction). The transformation could be linear (such as in Principle 

Components Analysis) or nonlinear. As linear methods could be restrictive, autoencoder, a more 

automatic approach without the linearity assumption, was used. There have been some studies 

using autoencoders for the characterization of high-dimensional and time-varying data (such as 

that of the GDP dataset). For example, Shin et al. (2011) applied autoencoders to automatically 

classify tissue types according to the change in brightness of resonance images.   

An autoencoder is an artificial neural network which learns the features of inputs by 

backpropagation algorithm - reconstructing the input data in output layer and minimizing 

reconstruction errors (Hinton & Salakhutdinov, 2006). An autoencoder includes an input layer, 

one or more hidden layers, and an output layer whose number of nodes is the same as the one of 

input layer. The structure of an autoencoder can be divided into two parts – encoder and decoder, 

as shown in Figure 4.1. In the encoder part (from input layer to middle hidden layer), the 

autoencoder learns representation for a data set (encoding), while it is trained to optimize a loss 

function which measures how well the data is reconstructed based on the encoder representation 

in the decoder part (from the middle hidden layer to output layer). Thus, an autoencoder is a special 

type of neural net where the input is also used as the target; in other words, the output is an 

optimized reconstruction of the input. 
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Figure 4.1 An autoencoder with 3 hidden layers 

In the encoder, the structure can be represented using the following: 

 𝒉 = 𝑓(𝒙) = 𝜎(𝑾𝒙 + 𝒃)                                                                                                    (3) 

Where: 

𝒙 is the input; 

𝒉 is the representations of input in lower dimensions; 

𝜎 is an element-wise activation function; 

𝑾 is a weight matrix; 

and 𝒃 is a bias vector.  

For example, in Figure 4.1, Hidden Layer 1 (with fewer neurons) is the lower-dimensional 

representation of the data in Input Layer (with more neurons). Thus, the nodes in Hidden Layer 1 

is 𝒉 and data in the Input Layer is 𝒙. Each node in the Hidden Layer 1 is determined through a 

weighted sum (𝑾𝒙 + 𝒃) and a nonlinear transformation (𝜎, a non-linear activation function) of 

the nodes in Input Layer 1. The other encoder layers can be derived in the same manner. In this 

study, the Tanh activation function was used to relax the linear transformation assumption made 
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in other methods like PCA. The function has been widely used (Sarle, 2002). The Tanh function 

is shown as below: 

𝑓(𝑧) = tanh(𝑧) =
𝑒𝑧−𝑒−𝑧

𝑒𝑧+𝑒−𝑧                                                                                                     (4) 

In Decoder, the structure can be represented as follows: 

𝒙′ = 𝑔(𝒉) = 𝜎(𝑾′𝒉 + 𝒃′)                                                                                                (5) 

Where: 

 𝒙′ ≈ 𝒙,  

𝜎, 𝑾′ and  𝒃′ are the activation function (Tanh function), weight matrix and bias vector for 

decoder. 

The constraint of the neural network is to minimize the loss function - Mean Square Error 

(MSE): 

Min 𝐿(𝒙, 𝒙′) = ||𝒙′ − 𝒙||
2

                                                                                            (6) 

Where: 

 𝐿(𝒙, 𝒙′) is the cost function reflecting the discrepancy between the input and output, 

namely reconstruction errors. 

This research built a 5-layer autoencoder net to compress the high-dimensional and time-

varying data was compressed into two dimensions. The detailed process is introduced in Section 

4.2.2. 

4.1.2 Cluster methods 

Clustering is a common technique for exploratory data mining, which groups data objects 

with the goal that objects within the same group are similar to each other and different from objects 

in other groups (Tan, Steinbach, & Kumar, 2006).  Since the structure of the GDP evolution data 

https://en.wikipedia.org/wiki/Data_mining
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was unknown, I applied three different clustering methods in order to split the data into groups of 

similar objects (GDPs), and two approaches to determine the optimal number of clusters. Then, 

the results of these methods were compared. 

4.1.2.1 Clustering methods 

Clustering can be divided into partitioning methods (such as 𝑘 -means and PAM) 

and hierarchical clustering. This section introduces the 𝑘-means, PAM and hierarchical clustering 

used in this study. Clustering was performed using R (with all codes provided in Appendix B). 

(1) 𝑘-means clustering 

𝑘-means is one of the most popular clustering methods for unsupervised data learning. The 

aim of this method is to classify a given set of data points into a certain number of clusters, in 

which each data point belongs to the cluster with the closest mean. Ultimately, 𝑘 centroids are 

defined, one for each cluster. The detail steps of the 𝑘 -means method are shown as below 

(MacQueen, 1967). 

• Place 𝑘 points into the space of the dataset to be clustered and define these points as 

the initial group centroids. 

• Assign each data points to the cluster group that has the closest centroid. 

• When all data points have been assigned, recalculate the positions of the 𝑘 centroids as 

the center of the clusters generated from the previous step. 

• Repeat Steps 2 and 3 until the centroids no longer move. This produces a partition of 

the data points into clusters, in which the centroid is the closest to binding data points.  

(2) PAM clustering  

Partition Around Medoids (PAM) is another frequently used clustering method for data 

mining, also known as the 𝑘-medoids clustering method. Similar to k-means, PAM also aims to 

http://www.sthda.com/english/wiki/partitioning-cluster-analysis-quick-start-guide-unsupervised-machine-learning
http://www.sthda.com/english/wiki/hierarchical-clustering-essentials-unsupervised-machine-learning
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minimize the distance between data points grouped to belong to a cluster and a point defined as 

the center of that cluster. In contrast to 𝑘-means, PAM chooses data points (observations) as 

centers (defined as medoids in this method) and uses Manhattan Norm instead of Euclidean norm 

to calculate the distance or similarity between data points (Kaufman & Rousseeuw, Clustering by 

means of medoids, 1987). The equation of the Manhattan Norm is: 

||x|| = ∑ 𝑥𝑖
𝑛
1                                                                                                                        (7)  

(3) Hierarchical clustering  

Hierarchical clustering builds a hierarchy of clusters. The number of clusters to be 

generated does not need to be specified a-priori, and uses pairwise distance matrix between 

observations as clustering criteria. The result is a tree-based representation of the observations. 

There are two types of hierarchical clustering - agglomerative and divisive (Kaufman & 

Rousseeuw, Finding groups in data: an introduction to cluster analysis, 2009). Agglomerative 

clustering is a bottom-up algorithm, in which each object is initially considered as a single-element 

cluster (leaf). Then the two clusters that are the most similar are combined into a new bigger cluster 

(nodes), until all points are included in one single big cluster (root). Divisive clustering is a top-

down algorithm, in which all objects are included in a single cluster. Then the most heterogeneous 

cluster is divided into two until all objects are in their own cluster. 

4.1.2.2 Determining the optimal number of clusters 

This section briefly describes three methods for determining the optimal number of clusters, 

including a direct method (average silhouette) and a statistical testing method (gap statistic).  

The direct methods, which optimize a criterion about how well the clusters summarize the 

data, used in this study is average silhouette method. The criterion to be optimized is the average 

silhouette width. To choose the optimal number of clusters (𝑘), we usually look for 𝑘 with the 

http://www.sthda.com/english/wiki/clarifying-distance-measures-unsupervised-machine-learning
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maximum silhouette width (Kaufman & Rousseeuw, Finding groups in data: an introduction to 

cluster analysis, 2009) 

The statistical testing methods used in this study is the gap statistic, which can be applied 

to any clustering method. The optimal 𝑘 is the one with maximum gap statistic. The gap statistic 

is the deviation of the total within intra-cluster variation of the real data from the expected value 

of the reference data with a uniform distribution (Tibshirani, Walther, & Hastie, 2001). 

4.1.3 Configural Frequency Analysis 

Configural Frequency Analysis (CFA) is a widely used multivariate data analysis method 

which is parameter-free and can be can be applied to any data set regardless of its statistical 

distribution. It identifies the configurations which occur statistically more or less than expected by 

chance. For example, we classify GDPs into several types, and count how frequently they occur 

for each day of the week. The combination of a particular GDP type and day of the week is a 

configuration, and CFA would detect whether the observed frequency of this configuration is 

greater or less than expected by random occurrence. The formula for calculating the expected 

frequency is shown in 𝐸𝑖,𝑗= 𝑁 ∗ 𝑝𝑖. ∗ 𝑝.𝑗                                                                                                                     (8. 

A configuration occurring significantly more than expected will be identified as a “type,” while a 

configuration occurring significantly less than expected will be identified as an “antitype.” (Eye, 

Spiel, & Wood, 1996). 

We firstly calculate the expected frequencies 𝐸 for each configuration by assuming that no 

relationships exist between the two categories (e.g. GDP types and days of the week). The formulas 

are shown as below: 

𝐸𝑖,𝑗 = 𝑁 ∗ 𝑝𝑖. ∗ 𝑝.𝑗                                                                                                                     (8) 

Where: 
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𝐸𝑖𝑗 is the expected frequency of a configuration; 

𝑁 is the total numbers of observations of all configurations; 

𝑝𝑖. = 𝑂𝑖 𝑁⁄ ;   𝑝.𝑗 = 𝑂𝑗 𝑁⁄                                                                                                           

𝑂𝑖𝑗 is the observed frequencies of the configuration; 

Then the observed frequencies and expected frequencies are compared. As long as the 

expected frequency of most configurations is 𝐸𝑖,𝑗 ≥ 10 , the Z-test can be applied to test the 

significance of the difference between observed and expected frequencies (Eye, Spiel, & Wood, 

1996). The binomial statistic 𝑍 is calculated as below:  

𝑍𝑖𝑗 =
𝑂𝑖𝑗−𝐸𝑖𝑗

√𝐸𝑖𝑗(1−𝑝𝑖𝑗)
                                                                                                                                    (9) 

Where: 

𝑝𝑖𝑗 = 𝐸𝑖𝑗/𝑁                                                                                                                                                (10) 

Finally, we identify the types and antitypes based on the 𝑝-value calculated from the 𝑍 

statistic. In this study, type/antitypes were detected based on a confidence level of 90% and were 

then used to interpret the relationship between GDP category and other categories. 

4.2 GDP characteristics exploration 

This section presents an exploratory analysis for GDP evolution characterization, including 

the process and results of the data visualization, dimensionality reduction, cluster analysis and 

statistical analysis. 

4.2.1 Data visualization 

As described in 0, the merged dataset contains the weather forecast data and GDP plan data 

as different columns, with each row representing an hour number for each GDP initiative. Here, 
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this research further broke down the hourly data in order to describe the GDP evolution more 

precisely, as GDP parameters can change within a single hour. Visualization of GDP data can help 

explain the abstract data transforming process, as well as help evaluate the clustering results which 

are introduced in 4.2.3. 

We designed a form of images to visualize the GDP evolution process under changing 

weather over three key elements – times, GDP/weather parameter categories, and parameter value 

magnitudes. As shown in Figure 4.2, the GDP images are two-dimensional and in greyscale, in 

which the x-axis represents time, y-axis represents parameters, and the grey scale represents the 

parameters’ values. As such, the images can be used to describe the varying GDP parameters 

planned under varying forecast weather conditions. 

 

Figure 4.2 A greyscale image for GDP visualization 

Figure 4.2 shows nine variables on the y-axis, including six weather variables and three 

GDP parameters. The six weather variables include the forecast weather variables from the TAF: 

1. TS (thunderstorm), 2. PC (precipitation), 3. CW0422 (crosswind strength to Runways 4/22), 4. 

CW1129 (crosswind strength to Runway 11/29), 5. CL (ceiling), and 6. VS (visibility). The three 

GDP variables are the basic GDP planning parameters and include: 1. PR (program rate), 2. DS 

(departure scope, represented by the number of affected flights of a GDP advisory), and 3. DR 
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(planned initiative duration). The three GDP parameters describe the impact of the GDPs. 

Specifically, PR is the maximum number of aircraft the GDP will allow to arrive at the airport per 

hour (i.e. GDP arrival capacity); DS is the number of delayed flights during the GDP; and DR is 

the effective duration of the GDP advisories. 

The maximum time shown on the x-axis represents the actual end time of a GDP, and there 

are total of 65 intervals on the axis. The design reasons and process are explained as follows. 

Different GDPs have different length. If I make the maximum on x-axis all the same for all GDPs, 

besides the distribution of the greyscale blocks, there will be another feature appearing on the 

image – the size of the colored space (or the blank space). It was found that, by using this type of 

design, GDPs were overwhelmingly characterized by their durations, rather than other evolution 

patterns of interest. Although the actual GDP length is an important feature of GDPs, this research 

is more interested in describing under what situations GDPs were planned and revised. Thus, I 

removed the “size” (i.e. real time) component from the GDP images by normalizing all GDP 

durations. The next step is to set up the intervals on time axis for GDPs. A GDP parameter may 

change due to its hourly setting, for example, “program rate” of a GDP advisory is set up in an 

hourly format. Besides, a GDP parameter may also change due to a revision. In this way, the time 

difference between a GDP parameter issuance and modification can be less than one hour. In our 

dataset, the parameter modification times varied between one and sixty minutes. If we describe 

GDP evolution by minute the dataset size will be too large; if we describe GDP evolution by hour, 

we lose details. Balancing dataset size and detail level, this research divided each GDP into 65 

intervals (66 moments) such that all GDPs are described by intervals no longer than 15 minutes. 

All variables are scaled to [0,1] and their values are represented by the grey scale. The darker the 

block is, the higher the variable value is. Thus, a greyscale GDP image has 9 * 65 = 585 pixels. 
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The images describe GDP evolution by presenting at what moment, under what condition, what 

kind advisory was planned. 

4.2.2 Dimensionality reduction 

As introduced above, a GDP is represented by a 9 x 65 matrix (585 cells), and this was 

transformed into vectors 585 cells long. Then this research applied the autoencoder technique on 

the processed data using the H2O platform from R. H2O is a fast and scalable open-source machine 

learning platform, with interfaces to Java, Python, R and Scala. 

The autoencoder technique requires the design of a neural network by setting up the 

number of neurons in each layer and the number of hidden layers for the autoencoder. According 

to the definition of autoencoders explained in 4.1.1, the number of neurons in the input and output 

layers is the same. Each GDP has 585 cells; thus, there are 585 neurons in both the input and output 

layers. There are no rules for choosing the number of hidden layers and the number of neurons in 

hidden layers. For most problems, one hidden layer is sufficient (Panchal, Ganatra, Kosta, & 

Panchal, 2011). this research compared the effects of the autoencoders with one to three hidden 

layers by viewing the clustering results. It was found that using an autoencoder with three hidden 

layers, the GDP were more well-classified (“well-classified” refers to that GDP images within the 

same group are very similar to each other and distinctive to the images in other groups) than the 

results of autoencoders with one or two hidden layers. I set the number of neurons in the middle 

hidden layer to two, so that the original data can be represented in a two-dimensional space. 

Finally, I designed an autoencoder with one input layer, three hidden layers and one output layer, 

with 585, 300, 2, 200, and 585 neurons respectively. The structure of the autoencoder this research 

used is shown as Figure 4.3. 
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Figure 4.3 Autoencoder structure in this study 

The original 585-dimensional data was compressed to two dimensions in the second hidden 

layer. There are some missing time periods in the TAF data, which results in discontinuous weather 

forecasts for some GDP records from the TMI database. Considering that incomplete data will 

lead to untrue GDP images, I removed those GDPs with missing TAF data; in the end, 495 GDP 

initiatives are retained. The GDPs were then plotted as shown in Figure 4.4. 
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Figure 4.4 GDPs in 2-dimensional space  

In Figure 4.4, the dots in the plot represents the 495 GDPs. The GDPs are represented by 

two dimensions, which were determined by the autoencoder as nonlinear combinations of the 585 

original variables of that GDP. 

4.2.3 Cluster analysis  

Three clustering methods – 𝑘-means, PAM and hierarchical clustering, were applied to the 

2-dimensional GDP data obtained after dimensionality reduction, and the 𝑘-estimation methods –

average silhouette and gap statistic methods – were used to determine the optimal number of 

clusters.  

 The clustering results are summarized in Table 4.1. The columns represent the clustering 

methods and the rows are the 𝑘-estimation methods. Each cell contains a 𝑘-estimation plot for the 

corresponding clustering method. The plots are labeled from (a) to (i). All possible values of 𝑘 

between 2 and 20 were considered. To choose the optimal number of clusters, as per 4.1.2, the 

average silhouette method and gap statistic returns 𝑘 values that maximize the average silhouette 
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width or gap statistic. Here, that value is two in plots (d) to (h) and three in plot (i). But it is unlikely 

that there are only two or three types of days with respect to air traffic flow management in the 

New York area (Kuhn, Shah, Skeels, & Murra, 2016). The classified GDP images when 𝑘 ≤ 5 

indicate that GDPs within the same group may include images with notably different patterns. 

Thus, as introduced in 4.1.2, this research decided upon an optimal 𝑘 for each clustering method 

by choosing the 𝑘 (larger than 5) with highest average silhouette width and gap statistic. They are 

listed below the clustering figures as shown in Table 4.1. Three figures (a, b, e) suggest that 10 

may be a good candidate for 𝑘, two figures suggest that 8 (b, f) or 9 (c, d) is optimal. 

Table 4.1 Cluster analysis results 

 𝑘-means PAM 
Hierarchical 

clustering 

Average 

silhouette 

 
(a) 𝑘 = 7, 10, 11  

 
(b) 𝑘 = 8, 10 

 
(c) 𝑘 = 6, 9 

Gap statistic 

 
(d) 𝑘 = 9 

 
(e) 𝑘 = 10 

 
(f) 𝑘 = 8, 12 
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Then, this research conducted a graphical exploration to determine whether 𝑘  lies 

somewhere between 8 − 12. this research examined the clustering results using GDP greyscale 

images, and comparing the similarity of images within the same group as well as the difference of 

images in different groups. It was found that, for 𝑘 = 8 or 9, some cluster appeared to hold very 

different images and thus were candidates for further division into more groups. With 𝑘 = 11 or 

12, some different clusters were similar and can be merged into one group. Finally, with the PAM 

clustering method and 𝑘 = 10, the greyscale images were such that GDPs within a group were 

quite similar while those in different groups are more distinguished. The GDPs clustered into 10 

groups by PAM are shown in Figure 4.5.  

 

Figure 4.5 GDPs clustered by PAM with 𝒌 = 𝟏𝟎  

Sample greyscale GDP images of each cluster are provided in Figure 4.6. It can be seen 

that GDPs were clustered well with 𝑘 = 10 , reflected by their different color distribution patterns 

both horizontally and vertically. The “color distribution patterns” refers to two points. First, how 

dark are the colors of the cells? Second, how consistent are the colors of the cells? For example, 
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GDP images in Cluster 3 look “bright on top, black in middle, grey in bottom”, while GDP images 

in Cluster 8 look “partially black on top, light grey in middle, dark in bottom”; images in Cluster 

3 look very “neat” while images in Cluster 8 look very “messy”.  

 

Figure 4.6 Greyscale images of GDPs in each cluster 

Figure 4.6 shows that the clusters may have severe/relatively good and even/unstable 

forecasted weather conditions, and GDPs with high/low values. For example, in Cluster 3, 

forecasted weather (first 6 rows) and GDP plans (last 3 rows) appear very stable across time (x-

axis), and there was little thunderstorm action (first row), precipitation (second row) and 

crosswinds (third and four rows); ceiling (fifth row) was medium low (grey colored), and visibility 

was very high (dark). Also, GDP program rate, departure scope and planned duration (last three 

rows) were in medium level (grey colored). this research further examined the characteristics 

shown in the clustered GDP images - firstly, this research calculated the average of each variable 

for all the clusters to examine the level of adverse weather severity and the level of GDP impact 

for each cluster. Secondly, this research examined the variability (or stability) of the forecasted 

weather conditions for all clusters, by calculating the variance of each weather variable in a GDP 

and then averaging the variance of each weather variable for the GDPs in same cluster. 
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Table 4.2 shows the average of each variable of these clusters which demonstrates the level 

of adverse weather severity and the level of GDP impact. The cells are colored in gradient red 

according to their relative magnitudes within the column, indicating how severe the forecasted 

weather condition was (based on columns TS, PC, CW0422, CW1129, CL, VS) and how impactful 

the GDP plan was (based on columns PR, DS, DR) - dark red means that the cell represents high 

weather variable impact (impactful GDP or severe weather) and light red corresponds to low 

impact by the weather variable in question. The averages of the variables in each cluster were 

found to be consistent with their features (darkness) shown in Figure 4.6. Thus, this research finally 

described the weather severity and GDP impacts according to the visual features and averages.   

Table 4.2 Average of weather and GDP variables of each cluster4 

Cluster 

No. 
TS PC 

CW 

0422 

CW 

1129 
CL VS PR DS DR 

1 0.00 0.56 17.01 9.43 17.01 8.01 33.06 175.51 12.33 

2 0.06 0.98 7.31 9.43 7.31 4.24 33.47 179.75 12.51 

3 0.00 0.00 12.41 8.02 12.41 9.81 37.56 116.92 7.89 

4 0.00 0.00 9.41 6.87 9.41 9.83 37.26 71.03 5.31 

5 0.00 0.00 20.62 9.75 20.62 9.95 35.78 156.93 10.80 

6 0.14 0.94 5.94 10.51 5.94 4.07 31.99 121.53 10.34 

7 0.09 0.82 9.36 8.33 9.36 7.53 34.74 153.07 11.31 

8 0.12 0.31 9.08 9.45 9.08 8.47 34.42 149.41 10.99 

9 0.48 0.88 5.47 8.47 5.47 4.37 32.20 64.48 5.57 

10 0.35 0.60 7.48 7.61 7.48 7.76 34.01 113.11 8.97 

 

                                                           
4 Explanation of the variables’ abbreviated names: 

 TS: thunderstorm in TAF. 1 represents existence of thunderstorm, and 0 represents the absence of thunderstorm. 

 PC: precipitation in TAF. 1 represents existence of precipitation, and 0 represents the absence of precipitation. 

 CW0422: crosswind strength to Runways 4/22 in TAF (in knots). 

 CW1129: crosswind strength to Runway 11/29 in TAF (in knots). 

 CL: ceiling in TAF (in 100 feet). 

 VS: visibility in TAF (in miles). 

 PR: planned program rate of GDP advisories (in number of aircraft). 

 DS: planned departure scope of GDP advisories, represented by the number of affected flights. 

 DR: planned initiative duration (in hours). 
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Table 4.3 shows the variance of the forecasted weather conditions for the clusters. Cells 

with dark red represents that weather forecasts varied significantly over time. The variances were 

found to be consistent with the variation features shown in Figure 4.6. Information about the 

clusters is summarized in Table 4.4, along with the average analysis results. 

Table 4.3 Variance of weather variables of each cluster 

Cluster 

No. 
TS PC 

CW 

0422 

CW 

1129 
CL VS 

1 0.00 0.17 0.47 0.05 0.00 0.51 

2 0.03 0.00 0.01 0.00 0.00 0.03 

3 0.00 0.00 0.01 0.00 0.01 0.00 

4 0.00 0.00 0.01 0.00 0.00 0.00 

5 0.00 0.00 0.01 0.00 0.01 0.00 

6 0.05 0.02 0.20 0.00 0.00 0.12 

7 0.03 0.08 0.18 0.00 0.04 0.60 

8 0.07 0.18 0.01 0.02 0.09 0.43 

9 0.02 0.02 0.19 0.00 0.00 0.09 

10 0.13 0.19 0.23 0.03 0.12 0.77 

Table 4.4 Cluster descriptions 

Group No. 
Main 

weather types 

Weather 

severity 

Weather 

stability 
GDP Type Number of GDPs 

1 PC, CW Severe Unstable Low, Wide, Long 
23 

2 PC, LVC Severe Medium Low, Wide, Long 
36 

3 LVC, CW Less severe Stable High, Medium, Short 
151 

4 LVC, CW Less severe Completely Stable High, Narrow, Short 
39 

5 CW Less severe Stable High, Wide, Medium 
110 

6 PC, LVC Severe Medium Low, Medium, Medium 
37 

7 PC, LVC Severe Unstable Medium, Wide, Long 
34 

8 LVC, PC Severe Unstable Medium, Wide, Long 
46 

9 TS, PC, LVC Very severe Medium Low, Narrow, Short 
10 

10 TS, PC, LVC Very severe Unstable Medium, Medium, Short 
26 
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By considering both the absolute magnitude of each of the six weather variables for each 

cluster, as well as their relative magnitudes compared with other clusters, this research described 

the weather by indicating the main weather types (e.g. TC, PC, etc.), weather level (less severe, 

severe or very severe), and weather stability (unstable, medium, stable, or completely stable). For 

example, Cluster 3 was defined as “less severe” weather because the images and averages shows 

that only some crosswinds (12 knots on average) were forecasted for the GDPs in the cluster and 

the cluster has only 3 red-colored weather cells, ranking as the best one. Cluster 10 was defined as 

“unstable” weather because its images and variance shows that most of the weather variables’ 

variances are high and the cluster has the most red-colored cells (relative magnitude). Similarly, 

for the GDP variables, since there are no references or standards for identifying a GDP parameter’s 

level to be low or high, this research simply described a GDPs by indicating program rate level 

(relatively low, medium, or high), departure scope (relatively wide, medium or narrow) and 

advisory duration (relatively long, medium or short) according to their relative magnitudes as well 

as considering their absolute magnitudes. 

The quantitative bounds for the classifications used to describe weather and GDPs are 

introduced as follows: 

(1) Weather severity 

 Less severe: only strong crosswinds (bigger than 15 knots) or low ceiling (less than 

1000 feet) forecasted.  

 Severe: precipitation plus strong crosswinds, low ceiling or low visibility (less than 4 

miles) forecasted. 

 Very severe: thunderstorms forecasted. 

(2) Weather stability  
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 Stable: no weather variables expected to change significantly over time. (The variance 

obtained in this research is not applicable to general conditions, thus this may require 

subjective judgement.) 

 Medium: only one weather variable expected to change significantly over time. 

 Unstable: two or more weather variables expected to change significantly over time.  

(3) GDP program rate 

 Low: hourly program rate less than 34 

 Medium: hourly program rate between 34 – 35 

 High: hourly program rate bigger than 35 

(4) GDP departure scope 

 Narrow: the number of impacted scheduled flights (excludes canceled flights) less than 

100 

 Medium: the number of impacted scheduled flights (excludes canceled flights) bigger 

than 100 and less than 130 

 Wide: the number of impacted scheduled flights (excludes canceled flights) more than 

130 

(5) GDP planned duration 

 Short: planned duration less than 9 hours 

 Medium: planned duration between 9 – 11 hours 

 Long: planned duration more than 11 hours  

The cluster descriptions are listed as follows according to Table 4.4: 

 Group 1 represents low-wide-short GDPs under severe and unstable precipitation and 

windy weather.  
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 Group 2 represents low-wide-short GDPs under severe and medium-stable low 

visibility/ceiling weather.  

 Group 3 represents high-medium-short GDPs under less severe and stable windy low 

visibility/ceiling weather. 

 Group 4 represents high-narrow-short GDPs under less severe and completely stable 

windy low visibility/ceiling weather. 

 Group 5 represents high-wide-medium GDPs under less severe and stable windy 

weather. 

 Group 6 represents low-medium-medium GDPs under severe and medium-stable 

precipitation, thunderstorm and low visibility/ceiling weather. 

 Group 7 represents medium-wide-long GDPs under unstable and severe precipitation, 

thunderstorm and low visibility/ceiling weather. 

 Group 8 represents medium-wide-long GDPs under unstable and severe low 

visibility/ceiling, precipitation and thunderstorm weather. 

 Group 9 represents low-narrow-short GDPs under very severe and medium-stable 

thunderstorm, precipitation and low visibility/ceiling weather. 

 Group 10 represents medium-medium-short GDPs under very severe and unstable 

thunderstorm, precipitation and low visibility/ceiling weather. 

We found three major categories for the clusters’ forecasted weather conditions – 1) less 

severe and stable weather, where severe low visibility/ceiling (“LVC” in second column in Table 

4.4) and strong crosswinds (CW) were the main weather types; 2) Severe and unstable weather, 

where precipitation (PC) was the main weather type, and CW or LVC occurred together; 3) Very 
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severe and unstable weather, where thunderstorms (TS) was the main weather conditions, PC and 

LVC also occurred together.  

The first category, including Clusters 3, 4, and 5, had the highest number of observations. 

GDPs under this forecasted weather combination were all planned with high program rate (“high” 

in the fifth column in Table 4.4)), medium to short duration (“medium” / “short”). Most had 

medium to wide departure scopes (Cluster 3 and 5) while a few had narrow departure scope 

(Cluster 4). 

The second category, including Clusters 1, 2, 6, 7 and 8, was the second most frequently 

occurring group. All the GDPs in this category had medium to low program rates, medium to wide 

departure scopes, and medium to long planned durations. 

The third category, which includes Clusters 9 and 10, occurred with the least frequency. 

GDPs in this category had medium to low program rates, medium to narrow departure scopes, and 

short planned durations. 

4.2.4 Statistical analysis 

This section explores the relationships between the GDP scenarios (clusters) and their 

performance. The performance of the GDPs in each cluster were evaluated using the efficiency, 

capacity utilization and predictability metrics proposed by Liu and Hansen (2013). Other features, 

such as early cancelation time, number of revisions, days of the week, and time of the day were 

also included. 

A series of Configural Frequency Analysis (CFA) tests were conducted to assess the 

correlations between GDP clusters and each performance metric. I set the clusters as rows and the 

levels of GDP performance (e.g. high/medium/low capacity utilization) as columns. The number 

of observations of each configuration was the cell value. For example, the capacity utilization of 
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the GDPs ranges from 0.10 to 1.09. Since there is no definite reference for identifying capacity 

utilization level to be low or high, to simplify, I divided this range into 3 equal sections – [0.10, 

0.43), [0.43, 0.76) and [0.76, 1.09], and described them as relatively “low”, “medium” and “high” 

capacity utilization. In Table 4.5, the 2nd-4th columns show the count of observations in the low, 

medium, and high groups, respectively; for instance, among the 23 GDPs in Cluster 1, 13 of them 

have “low capacity utilization.” According to the CFA principles introduced in 4.1.3, the null 

hypothesis is that there is no correlation between the GDP cluster and the capacity utilization levels. 

Under this null hypothesis, the expected cell frequencies of each configuration can be calculated 

and compared with the observed frequencies. Finally, CFA detected that Cluster 4 was 

significantly related to high capacity utilization while Cluster 6 was significantly related to low 

capacity utilization.   

Table 4.5 Configural Frequency Analysis Example 

Cluster Low capacity 

utilization 

Medium capacity 

utilization 

High capacity 

utilization  

Total 

1 13 1 9 23 

2 14 2 20 36 

3 51  6 94 151 

4 9  1 29 (type) 39 

5 53 0 57 110 

6 24 (type) 0 13 37 

7 17 1 16 34 

8 18 0 11 29 

9 4 1 5 10 

10 15 0 11 26 

Total 218 12 265 495 

 

The CFA tests were conducted separately for different GDP performance metrics. I 

reordered the clusters according to their weather patterns, to allow for easier visual identification. 

Table 4.6 shows the CFA results. Table 4.7 shows the averages of the performance metrics for 
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each cluster, supplementing Table 4.6. The two tables contain many results that could be discussed; 

however, in the interest of space, I will discuss two sets of results of particular interest. 

The first set of observations are from clusters 1-3 (highlighted in light grey and bordered 

in dark grey). The weather forecast in those clusters is less severe and stable, such that initiation 

of GDPs in this group may be attributed more to high demands or other factors rather than severe 

weather. For GDPs with high program rates, medium durations, and medium-wide scopes (cluster 

1), their efficiency metric is higher than expected according to the CFA results. This suggests that 

GDPs with large scope (i.e. larger geographic scope and therefore, more impacted flights) may 

lead to higher-than-expected efficiency (ratio of GDP-induced departure over arrival delay). This 

could be interpreted by the fact that, despite a wide scope, stable weather conditions lead to more 

stable GDPs. When these GDPs have high program rates, medium durations, and narrow scopes, 

they would have higher-than-expected capacity utilization (as per CFA results). This result could 

be attributed to that these high program rate GDPs with narrower scopes involving less flights, 

leading to fewer cancellations and more arrivals (albeit delayed), and therefore, higher capacity 

utilization. 

The second set of observations pertains to the results for clusters 6-8 (highlighted in darker 

grey). The weather of clusters 6-8 was forecasted to be severe and unstable (i.e. rapidly changing). 

When those GDPs have low program rate, wide departure scope and long duration occurs, their 

efficiency metric values were found lower than expected. This may be attributed to unstable 

weather conditions and a wide scope leading to a more volatile and rapidly changing GDP, which 

will lead to further delays in the air, and therefore, a lower efficiency score. When those GDPs 

have low program rate, low-medium departure scope and low-medium duration occurs, their 

capacity utilization is lower than expected. With higher duration, the capacity utilization is as 
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expected. This suggests that program rates are set more conservatively than needed for some poor 

weather conditions that end earlier than expected, with GDP being canceled early as well. 

However, it is notable that although 90% of the GDPs were, according to the TMI dataset, 

caused by adverse weather, GDPs attributed to other causes (e.g. runway construction) were also 

included in the data. These GDPs (less than 10% of all GDPs) are likely to have been included in 

cluster 1-3, which have “less severe” and “stable” forecasted weather. Thus, the results found in 

the first set could attributed to factors other than those discussed above, and warrant further 

targeted analysis. 
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Table 4.6 CFA results 

Original  

Label 

Cluster 

No. 

Weather  

forecast 

GDP parameters 
Efficiency Capacity Utilization Predictability 

Early cancel 

 time (hrs) 
Number of revisions 

5 1 Less severe, stable High, wide, med High -* - ≥2 - 

4 2 Less severe, stable High, narrow, short - High - - 0 

3 3 Less severe, stable High, med, short High - - - 0 

1 4 Severe, unstable Low, wide, long - - - - ≥2 

8 5 Severe, unstable Low, wide, long - - - - ≥2 

7 6 Severe, unstable Low, wide, long Low - High - - 

2 7 Severe, medium Low, wide, long Low - - - ≥2 

6 8 Severe, medium Low, med, med - Low - - ≥2 

10 9 Very severe, unstable Low, med, short - - - - - 

9 10 Very severe, unstable Low, narrow, short - - - - 0~1 

 

Table 4.7 Simple statistics analysis results 

Original  

Label 

Cluster 

No. 
Weather severity Weather stability GDP Type Efficiency Capacity Utilization Predictability 

Early cancel 

 time (hrs) 
Number of revisions 

5 1 Less severe, stable Stable High, wide, med 1.03 0.55 0.50 2.20 1.15 

4 2 Less severe, stable Completely stable High, narrow, short 1.02 0.74 0.34 1.88 0.31 

3 3 Less severe, stable Stable High, med, short 1.05 0.64 0.44 1.94 0.64 

1 4 Severe, unstable Unstable Low, wide, long 1.00 0.46 0.54 1.48 1.70 

8 5 Severe, unstable Unstable Low, wide, long 0.99 0.43 0.48 1.79 1.66 

7 6 Severe, unstable Unstable Low, wide, long 0.97 0.51 0.54 1.35 1.09 

2 7 Severe, medium Medium Low, wide, long 0.95 0.58 0.52 1.92 1.50 

6 8 Severe, medium Medium Low, med, med 0.93 0.41 0.45 1.65 1.57 

10 9 Very severe, unstable Unstable Low, med, short 0.99 0.46 0.53 1.60 1.38 

9 10 Very severe, unstable Medium Low, narrow, short 0.91 0.62 0.43 2.08 0.30 
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It was found that different revision decisions may involve a trade-off between predictability 

and efficiency. Clusters 5-8 have similar forecasted weather (severe and unstable with precipitation 

and low visibility/ceiling); by comparing these clusters, a trade-off was found to exist between 

high (2 or more) and low number of modifications – fewer revisions were associated with higher 

predictability but lower efficiency.  

These results suggest the joint impact of GDP plans and weather forecasts on GDP 

efficiency. When weather is predicted to be less severe, for GDPs with wide departure scope, their 

efficiency would be higher than expected, while when weather is predicted to be severe and 

unstable over time, it would lead to lower-than-expected efficiency. It may be interpreted that, 

under less severe and stable forecasted weather conditions, GDPs with wider departure scope 

would lead to higher efficiency because they can absorb the airborne delays almost completely on 

ground by delaying numerous flights at their departure airport instead of en route; under long-term 

severe and unstable weather, less of flights’ airborne delays may be transferred to the ground, due 

to the uncertainties induced by the long-term unstable conditions. 

4.3 Summary 

In this chapter, I explored how GDPs evolved over their lifetimes, taking into account 

weather forecasts, GDP plans, and GDP performance. 

First, I visualized the GDPs using greyscale images in aid of examining the clustering 

results. The 585-dimensional GDP data was compressed into a 2-dimensional space using the 

autoencoder. Then clustering analysis was used to characterize evolving GDP plans under 

changing weather forecasts. I compared the results of 𝑘-means, PAM and hierarchical clustering 

using average silhouette width and gap statistic 𝑘-estimating methods, to describe the changing 
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weather forecasts and changing GDPs at EWR. Finally, Configural Frequency Analysis was 

performed to examine the correlations between specific GDP scenarios and GDP performances. 

GDPs were clustered into 10 distinct scenarios according to weather type, severity, and 

stability over time, in addition to GDP duration, scope, and program rate. The most common GDPs 

issued in less severe and stable weather were those with high program rates, medium-to-wide 

departure scopes and short-to-medium durations. The most common GDPs issued in severe and 

unstable weather were those with medium-to-low program rates, medium-to-wide scopes, and 

medium-to-long durations. The results of the Configural Frequency Analysis (CFA) suggest that 

GDPs under stable, low-severity weather and with large scope (i.e. more impacted flights) may 

score higher on the efficiency metric than we would expect. This could be attributed to the fact 

that, despite a wide scope, stable weather conditions lead to more stable GDPs. When these GDPs 

have high program rates, medium durations, and narrow scopes, it was found that capacity 

utilization is higher than expected – less flights lead to fewer cancellations and more arrivals (albeit 

delayed), and therefore, higher capacity utilization. The results also suggest that program rates are 

set more conservatively than ultimately needed for some poor weather conditions that end earlier 

than expected, with GDP being canceled early as well. GDPs with fewer revisions were associated 

with a higher predictability score but lower efficiency score. 
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Chapter 5. Conclusions 

This chapter provides a summary of the key findings and major conclusions of this 

research, presents the contributions, limitations of the research, and recommended future work.  

5.1 Overview 

This research explored the characteristics of evolving GDP plans under changing weather 

conditions. Based on the GDP data, weather data and flight data at EWR from 2010 through 2014, 

this research applied data mining tools to summarize the characteristics of the EWR GDPs as they 

evolved over their lifetimes. The work included: 

1) Development of a dataset including GDP parameters and weather variables through 

the merging of forecast weather data (TAF), GDP data (TMI) and flight data (IF). 

2) Visualization of high-dimensional and time-varying GDP evolution data, to support 

clustering results. 

3) Feature extraction for the GDP evolution data by applying a deep neural network 

technique named autoencoder, compressing 585 dimensions into two. 

4) Identification of the GDP evolution scenarios through cluster analysis based on 

compressed 2-dimensional data, with the purpose of characterizing GDP evolution under changing 

weather forecasts. Clustering methods ( 𝑘 -means, PAM and hierarchical clustering) and 𝑘 -

estimation methods (average silhouette and gap statistic) were employed. The final clusters were 

determined through comparing the results of these clustering methods. 

5) Assessment of the correlations between the GDP evolution scenarios and GDP 

performances through multivariate statistical analysis, for further exploring GDP characteristics. 
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The Configural Frequency Analysis was applied to interpret whether certain GDP scenarios and 

certain GDP performances were significantly correlated.   

5.2 Findings 

The data confirmed that EWR GDPs from 2010 to 2014 1) were typically issued in late 

morning, began around noon, experienced modifications in afternoon, and ended in late evening 

or at early night; 2) involved one revision and one cancellation, on average; 3) typically lasted 

between 8 and 10 hours; 4) on average ended two hours earlier than planned; 5) were most 

frequently initiated due to various inclement weather, including crosswinds to runways 4/22, and 

6) were more typically initiated in the spring months and on weekdays (the latter due to heavier 

flight schedules).  

Based on the compressed 2-dimensinal data, the GDPs were clustered into 10 distinct 

scenarios as per weather type, severity, and stability over time, in addition to GDP duration, scope, 

and program rate. The most common GDPs issued in less severe and stable weather were those 

with high program rates, medium-to-wide departure scopes and short-to-medium durations. The 

most common GDPs issued in severe and unstable weather were those with medium-to-low 

program rates, medium-to-wide scopes, and medium-to-long durations.  

The results of the Configural Frequency Analysis (CFA) suggest that under stable, less 

severe forecasted weather, GDPs with large scope (i.e. more impacted flights) scored higher on 

the efficiency metric than would be expected. This could be attributed to the fact that, stable 

weather conditions lead to more stable GDPs despite a wide scope. Under same weather forecast, 

for those GDPs with high program rates, medium durations, and narrow scopes, their capacity 

utilization is higher than expected. This could be attributed to less flights lead to fewer 

cancellations and more arrivals (albeit delayed), and therefore, higher capacity utilization. The 
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results also suggest that program rates are set more conservatively than needed for some adverse 

weather conditions that end earlier than expected, with GDP being canceled early as well. GDPs 

with fewer revisions were associated with a higher predictability score but lower efficiency score.  

5.3 Contributions 

This paper has introduced a novel method of merging disparate but complementary datasets 

and applying machine learning techniques to gain more insights into GDPs – particularly with 

respect to their changing characteristics and parameters. Four major research contributions have 

been identified for this research: 

• We have generated a unique and comprehensive dataset describing GDP evolution, including 

GDP plans, flight schedules and times based on Traffic Management Initiative (TMI) data, 

TAF data, METAR data and Individual Flight (IF) data.  

• It has identified the characteristics of how GDPs at EWR evolved over their lifetimes, by 

identifying 10 scenarios for the evolving GDPs under changing forecasted weather, and 

detecting the correlations between the scenarios and GDP performances. The results may be 

helpful to organizations like the FAA in better understanding GDPs. 

• It proposed an exploration process to characterize GDP evolution by integrating unsupervised 

learning method, clustering methods and multivariate data analysis method. It can provide 

additional insights for researchers about the approaches to studying GDP evolution in multi-

dimensional space. 

• A visualization method was developed to present GDP evolution based on high-dimensional 

and time-varying GDP data. Through this method, big data involving time and multiple 

variables can be presented in 2-dimensional greyscale grid. 
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5.4 Research limitations and future work 

There are several limitations in this research that may be addressed in future studies.  

First, it is recommended that additional data be utilized to provide a more comprehensive 

operational picture of GDPs, and that a wider range of performance metrics be considered in the 

CFA analysis. In particular, the On-Time Performance dataset from the Bureau of Transportation 

Statistics (Bureau of Transportation Statistics, 2017) may be utilized to extract schedule data for 

individual flights.  

Second, this study only takes into account impact of forecast weather conditions on GDP 

plans when building scenarios for GDPs. In future studies, more causes of GDPs, such as flight 

demand and runway conditions, can be considered into GDP characterization.   

In addition, it is also recommended that the patterns of how GDPs evolve over their 

lifetimes, with respect to several key variables identified using statistical analysis and 

dimensionality reductions, be further explored using other novel machine learning techniques that 

may provide new and useful insights. For example, learning the patterns of the colored space 

instead of the size of the colored space. In this way, the feature of “real time” of the day can be 

integrated into the GDP evolution data. 
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Appendix A R Code for preparing GDP evolution data 

#Part 1 import GDP data 

TMI = read.csv("advisory.csv") 

focus = which(TMI$AdvisoryType == "GDP"| TMI$AdvisoryType == "GDP CNX") 

GDP = TMI[focus,] 

focus = which(GDP$ControlElement == "EWR/ZNY") 

EWR_GDP = GDP[focus,] 

 

# Part 2 Change timezone for GDP times (GMT->NY) 

EWR_GDP$SendDate.Time.UTC = 

as.POSIXct(strptime(as.character(EWR_GDP$SendDate.Time.UTC),"%Y-%m-%d %H:%M",tz

="GMT")) 

EWR_GDP$Derived.BgnDate.Time.UTC = 

as.POSIXct(strptime(as.character(EWR_GDP$Derived.BgnDate.Time.UTC),"%Y-%m-%d %H:

%M",tz="GMT")) 

EWR_GDP$Derived.EndDate.Time.UTC = 

as.POSIXct(strptime(as.character(EWR_GDP$Derived.EndDate.Time.UTC),"%Y-%m-%d %H:

%M",tz="GMT")) 

EWR_GDP$Eff.Bgn.Date.Time.UTC = 

as.POSIXct(strptime(as.character(EWR_GDP$Eff.Bgn.Date.Time.UTC),"%Y-%m-%d %H:%M

",tz="GMT")) 

EWR_GDP$Eff.End.Date.Time.UTC = 

as.POSIXct(strptime(as.character(EWR_GDP$Eff.End.Date.Time.UTC),"%Y-%m-%d %H:%M

",tz="GMT")) 

EWR_GDP$GDP.Bgn.Date.Time.UTC= 

as.POSIXct(strptime(as.character(EWR_GDP$GDP.Bgn.Date.Time.UTC),"%Y-%m-%d %H:%

M",tz="GMT")) 

EWR_GDP$GDP.End.Date.Time.UTC= 

as.POSIXct(strptime(as.character(EWR_GDP$GDP.End.Date.Time.UTC),"%Y-%m-%d %H:%

M",tz="GMT")) 

EWR_GDP$GDPX.Bgn.Date.Time.UTC= 

as.POSIXct(strptime(as.character(EWR_GDP$GDPX.Bgn.Date.Time.UTC),"%Y-%m-%d %H:

%M",tz="GMT")) 

EWR_GDP$GDPX.End.Date.Time.UTC= 

as.POSIXct(strptime(as.character(EWR_GDP$GDPX.End.Date.Time.UTC),"%Y-%m-%d %H:

%M",tz="GMT")) 

EWR_GDP$RootAdvisoryDate.UTC=as.POSIXct(strptime(as.character(EWR_GDP$RootAdvis

oryDate.UTC),"%Y-%m-%d",tz="GMT")) 

 

attr(EWR_GDP$SendDate.Time.UTC, "tzone") <- "America/New_York" 

attr(EWR_GDP$Derived.BgnDate.Time.UTC, "tzone") <- "America/New_York" 

attr(EWR_GDP$Derived.EndDate.Time.UTC, "tzone") <- "America/New_York" 

attr(EWR_GDP$Eff.Bgn.Date.Time.UTC, "tzone") <- "America/New_York" 

attr(EWR_GDP$Eff.End.Date.Time.UTC, "tzone") <- "America/New_York" 
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attr(EWR_GDP$GDP.Bgn.Date.Time.UTC, "tzone") <- "America/New_York" 

attr(EWR_GDP$GDP.End.Date.Time.UTC, "tzone") <- "America/New_York" 

attr(EWR_GDP$GDPX.Bgn.Date.Time.UTC, "tzone") <- "America/New_York" 

attr(EWR_GDP$GDPX.End.Date.Time.UTC, "tzone") <- "America/New_York" 

attr(EWR_GDP$RootAdvisoryDate.UTC, "tzone") <- "America/New_York" 

 

# Part 3 Duration variables 

N=nrow(EWR_GDP) 

## duration of each single advisory 

EWR_GDP$Duration_Advisory = difftime(EWR_GDP$Derived.EndDate.Time.UTC, 

EWR_GDP$Derived.BgnDate.Time.UTC, units = "hours")   

## duration of the GDP plan when a new advisory is issued 

EWR_GDP$RootBgnTime= EWR_GDP$Derived.BgnDate.Time.UTC 

for (i in 1:N){ 

if (EWR_GDP$Is.RootAdvisory[i]== "Yes") { 

j=i 

root= as.numeric(EWR_GDP$RootAdvisoryNumber[j]) 

roottime= EWR_GDP$RootAdvisoryDate.UTC[j] 

} 

EWR_GDP$RootBgnTime[as.numeric(EWR_GDP$RootAdvisoryNumber)== root  & 

EWR_GDP$RootAdvisoryDate.UTC== roottime]= EWR_GDP$Derived.BgnDate.Time.UTC[j] 

} 

EWR_GDP$Duration_Initiative[as.character(EWR_GDP$AdvisoryType)== "GDP"]= 

difftime(EWR_GDP$Derived.EndDate.Time.UTC[as.character(EWR_GDP$AdvisoryType)== 

"GDP"], EWR_GDP$RootBgnTime[as.character(EWR_GDP$AdvisoryType)== "GDP"], units 

= "hours") 

EWR_GDP$Duration_Initiative[as.character(EWR_GDP$AdvisoryType)== "GDP CNX"]= 

difftime(EWR_GDP$Derived.BgnDate.Time.UTC[as.character(EWR_GDP$AdvisoryType)== 

"GDP CNX"], EWR_GDP$RootBgnTime[as.character(EWR_GDP$AdvisoryType)== "GDP 

CNX"], units = "hours") 

## Actual duration of the GDP plan when no more new advisory will be issued 

for (i in 1:N){ 

if (EWR_GDP$Is.RootAdvisory[i]== "Yes") { 

root= as.numeric(EWR_GDP$RootAdvisoryNumber[i]) 

roottime= EWR_GDP$RootAdvisoryDate.UTC[i]} 

last = max(which(as.numeric(EWR_GDP$RootAdvisoryNumber)== root  & 

EWR_GDP$RootAdvisoryDate.UTC== roottime)) 

EWR_GDP$Duration_Actual[as.numeric(EWR_GDP$RootAdvisoryNumber)== root  & 

EWR_GDP$RootAdvisoryDate.UTC== roottime]=EWR_GDP$Duration_Initiative[last] 

} 

 

# Part 4 Number of Modifications of GDP plan including & excluding GDP CNX 

for (i in 1:N){ 

if (EWR_GDP$Is.RootAdvisory[i]== "Yes") { 

root= as.numeric(EWR_GDP$RootAdvisoryNumber[i]) 

roottime= EWR_GDP$RootAdvisoryDate.UTC[i] 
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} 

EWR_GDP$Number_Revisions_NoCNX[as.numeric(EWR_GDP$RootAdvisoryNumber)== 

root  & EWR_GDP$RootAdvisoryDate.UTC== roottime] = 

nrow(EWR_GDP[which(as.character(EWR_GDP$AdvisoryType)== "GDP"& 

as.numeric(EWR_GDP$RootAdvisoryNumber)== root  & 

EWR_GDP$RootAdvisoryDate.UTC== roottime),])-1 

EWR_GDP$Number_TotModif_incldCNX[as.numeric(EWR_GDP$RootAdvisoryNumber)== 

root  & EWR_GDP$RootAdvisoryDate.UTC== roottime] = 

nrow(EWR_GDP[which(as.numeric(EWR_GDP$RootAdvisoryNumber)== root  & 

EWR_GDP$RootAdvisoryDate.UTC== roottime),])-1 

} 

 

# Part 5 Early Cancel, Lead Time 

##early cancel time 

for (i in 1:N){ 

if (as.character(EWR_GDP$AdvisoryType[i])== "GDP CNX") { 

beforeCNX=max(which(as.character(EWR_GDP$AdvisoryType)== "GDP" & 

as.numeric(EWR_GDP$RootAdvisoryNumber)== 

as.numeric(EWR_GDP$RootAdvisoryNumber[i])  & EWR_GDP$RootAdvisoryDate.UTC== 

EWR_GDP$RootAdvisoryDate.UTC[i])) 

 

EWR_GDP$EarlyCancelTime[as.numeric(EWR_GDP$RootAdvisoryNumber)== 

as.numeric(EWR_GDP$RootAdvisoryNumber[i])  & EWR_GDP$RootAdvisoryDate.UTC== 

EWR_GDP$RootAdvisoryDate.UTC[i]]= EWR_GDP$Duration_Initiative[beforeCNX]-

EWR_GDP$Duration_Initiative[i] 

} 

} 

##lead time 

EWR_GDP$LeadTime = difftime(EWR_GDP$Derived.BgnDate.Time.UTC, 

EWR_GDP$SendDate.Time.UTC, units = "hours") 

 

# Part 6 time of the day, day of the week, month-day of the year 

##send time of the day 

EWR_GDP$SendTime= format(EWR_GDP$SendDate.Time.UTC, "%H:%M") 

##begin time of the day 

EWR_GDP$BgnTime= format(EWR_GDP$Derived.BgnDate.Time.UTC, "%H:%M") 

##end time of the day 

EWR_GDP$EndTime= format(EWR_GDP$Derived.EndDate.Time.UTC, "%H:%M") 

##GDP month-day of the year 

EWR_GDP$BgnDay=format(EWR_GDP$Derived.BgnDate.Time.UTC, "%m-%d") 

##GDP day of the week 

EWR_GDP$BgnWeekday=weekdays(EWR_GDP$Derived.BgnDate.Time.UTC, abbreviate = 

FALSE) 

#Part 7 match TAF data (hourly) 

TAF = read.csv("EWRTAF.csv") 
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## combine date and time 

TAF$issue.time = as.character(paste(as.character(TAF$Issued.Year), 

as.character(TAF$Issued.Month), as.character(TAF$Issued.Day), as.character 

(TAF$Issued.Hour), as.character (TAF$Issued.Minute))) 

TAF$start.time = as.character(paste(as.character(TAF$From.Year), 

as.character(TAF$From.Month), as.character(TAF$From.Day), as.character (TAF$From.Hour), 

as.character (TAF$From.Minute))) 

TAF$end.time = as.character(paste(as.character(TAF$To.Year), as.character(TAF$To.Month), 

as.character(TAF$To.Day), as.character (TAF$To.Hour), as.character (TAF$To.Minute))) 

 

## convert date time to datetime format 

TAF$issue.time = strptime(TAF$issue.time, "%Y %m %d %H %M", tz ="GMT") 

TAF$issue.time = format(TAF$issue.time, format = "%Y-%m-%d %H:%M", tz ="GMT" ) 

TAF$issue.time = 

as.POSIXct(strptime(as.character(TAF$issue.time),"%Y-%m-%d %H:%M",tz="GMT")) 

 

TAF$start.time = strptime(TAF$start.time, "%Y %m %d %H %M", tz ="GMT") 

TAF$start.time = format(TAF$start.time, format = "%Y-%m-%d %H:%M", tz ="GMT" ) 

TAF$start.time = 

as.POSIXct(strptime(as.character(TAF$start.time),"%Y-%m-%d %H:%M",tz="GMT")) 

 

TAF$end.time = strptime(TAF$end.time, "%Y %m %d %H %M", tz ="GMT") 

TAF$end.time = format(TAF$end.time, format = "%Y-%m-%d %H:%M", tz ="GMT" ) 

TAF$end.time = 

as.POSIXct(strptime(as.character(TAF$end.time),"%Y-%m-%d %H:%M",tz="GMT")) 

 

## convert GMT time to NY time 

attr(TAF$issue.time, "tzone") <- "America/New_York" 

attr(TAF$start.time, "tzone") <- "America/New_York" 

attr(TAF$end.time, "tzone") <- "America/New_York" 

 

## identify low visibility/ceiling, precipitation, and crosswind weather 

TAF$IMC=0 

TAF$IMC[TAF$Ceiling < 10 | TAF$Visibility < 3]=1 

 

TAF$MCIC=0 

TAF$MCIC[TAF$Ceiling < 30 | TAF$Visibility < 4]=1 

 

TAF$PC=0 

TAF$PC[TAF$DZ+TAF$RA+ TAF$SN+ TAF$SG+ TAF$IC+ TAF$PL+ TAF$GR+ 

TAF$GS+ TAF$UP>0]=1 

 

TAF$WindAngle= as.numeric(as.character(TAF$Wind.Angle)) 

TAF$CW0422 = round(as.numeric(TAF$Wind.Spee 

d)*abs(sin((TAF$WindAngle-40)*(pi/180))), digits = 0) 
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TAF$CW1129 = round(as.numeric(TAF$Wind.Speed)*abs(sin((TAF$WindAngle-

110)*(pi/180))), digits = 0) 

 

## delete TAFs beyond time horizon (2010-1-1-2014-8-31) 

boundary1 = as.character("2010-1-1 00:00") 

boundary2 = as.character("2014-8-31 23:59") 

 

bdr1 = strptime(boundary1, "%Y-%m-%d %H:%M", tz ="America/New_York") 

bdr1 =  format(boundary1, format = "%Y-%m-%d %H:%M", tz ="America/New_York" ) 

bdr1 = as.POSIXct(strptime(as.character(boundary1),"%Y-%m-%d %H:%M", tz 

="America/New_York")) 

bdr2 = strptime(boundary2, "%Y-%m-%d %H:%M", tz ="America/New_York") 

bdr2 =  format(boundary2, format = "%Y-%m-%d %H:%M", tz ="America/New_York" ) 

bdr2 = as.POSIXct(strptime(as.character(boundary2),"%Y-%m-%d %H:%M", tz 

="America/New_York")) 

 

TAF1=TAF[TAF$end.time>bdr1 & TAF$start.time < bdr2,] 

 

##delete duplicated TAF with same issue, begin, and end time 

TAF2 = TAF1[order(TAF1$IMC,TAF1$MCIC, TAF1$TS, TAF1$CW0422, TAF1$CW1129, 

TAF1$PC, decreasing = TRUE ),] 

TAF3= TAF2[!duplicated(TAF2[c("end.time","start.time","issue.time")]),] 

 

##delete data with abnormal forecast time horizon 

TAF3$timediff= difftime(TAF3$end.time, TAF3$start.time,units ="hours" ) 

TAF4 = TAF3[TAF3$timediff >0& TAF3$timediff<=24, ] 

write.csv(x = TAF4, file="TAF-20140831-nonduplicated-24h.csv") 

TAF4 = read.csv("TAF-20140831-nonduplicated-24h.csv",  as.is=TRUE) 

TAF4$issue.time= as.POSIXct(TAF4$issue.time, tz =  "America/New_York") 

TAF4$start.time= as.POSIXct(TAF4$start.time, tz =  "America/New_York") 

TAF4$end.time= as.POSIXct(TAF4$end.time, tz =  "America/New_York") 

 

EWR_GDP$IMC <- "" 

EWR_GDP$MCIC <- "" 

EWR_GDP$Visibility <- "" 

EWR_GDP$Ceiling <- "" 

EWR_GDP$TS <- "" 

EWR_GDP$CW0422<- "" 

EWR_GDP$CW1129<- "" 

EWR_GDP$PC<- "" 

EWR_GDP$RNSNIC<- "" 

for ( i in 1:N) { 

TAFGDP1=TAF4[TAF4$issue.time < EWR_GDP$SendDate.Time.UTC[i] & TAF4$end.time > 

EWR_GDP$Derived.BgnDate.Time.UTC[i] & TAF4$start.time< 

EWR_GDP$Derived.EndDate.Time.UTC[i],] 
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H = ceiling(as.numeric(EWR_GDP$Duration_Advisory[i])) 

 

for (h in 1:H) { 

TAFGDP2=TAFGDP1[TAFGDP1$start.time<EWR_GDP$Derived.BgnDate.Time.UTC[i]+h*6

0*60 & TAFGDP1$end.time> EWR_GDP$Derived.BgnDate.Time.UTC[i]+(h-1)*60*60,] 

 

TAFGDP3 = TAFGDP2[order(TAFGDP2$issue.time,decreasing = TRUE)[1],] 

 

EWR_GDP$IMC[i] = paste(EWR_GDP$IMC[i], TAFGDP3$IMC, sep = " ") 

EWR_GDP$MCIC[i] = paste(EWR_GDP$MCIC[i], TAFGDP3$MCIC, sep = " ") 

EWR_GDP$Visibility[i] = paste(EWR_GDP$Visibility[i], TAFGDP3$Visibility, sep = " ") 

EWR_GDP$Ceiling[i] = paste(EWR_GDP$Ceiling[i], TAFGDP3$Ceiling, sep = " ") 

EWR_GDP$TS[i] = paste(EWR_GDP$TS[i], TAFGDP3$TS, sep = " ") 

EWR_GDP$CW0422[i] = paste(EWR_GDP$CW0422[i], TAFGDP3$CW0422, sep = " ") 

EWR_GDP$CW1129[i] = paste(EWR_GDP$CW1129[i], TAFGDP3$CW1129, sep = " ") 

EWR_GDP$PC[i] = paste(EWR_GDP$PC[i], TAFGDP3$PC, sep = " ") 

EWR_GDP$RNSNIC[i] = paste(EWR_GDP$RNSNIC[i], TAFGDP3$RNSNIC, sep = " ") 

} 

} 

write.csv(x = EWR_GDP, file="EWR_GDP7【TAF】.csv") 

 

#Part 8 Convert program rate to hourly vector 

EWR_GDP$ProgramRate = as.character(EWR_GDP$ProgramRate) 

EWR_GDP$ProgramRateVct= EWR_GDP$ProgramRate 

 

for (i in 1:N) { 

if (EWR_GDP$AdvisoryType[i] == "GDP" & !grepl("/",EWR_GDP$ProgramRate[i])) { 

DurationRoundUp = ceiling(as.numeric(EWR_GDP$Duration_Advisory[i])) 

 

EWR_GDP$ProgramRateVct[i]=paste(replicate(DurationRoundUp, 

EWR_GDP$ProgramRate[i]), collapse = "/") 

} 

} 

 

#Part 9 Types of Dep Scope  

EWR_GDP$Dep.Scope = as.character(EWR_GDP$Dep.Scope) 

EWR_GDP$DepScopeType = "ARTCC" 

EWR_GDP$DepScopeType[grepl("0", EWR_GDP$Dep.Scope) | grepl("5", 

EWR_GDP$Dep.Scope)]= "Radius" 

EWR_GDP$DepScopeType[grepl("-", EWR_GDP$Dep.Scope)]= "-" 

# Part 10 preprocess IF  

EWRIF = read.csv("EWR_IF.csv") 

EWRIF$ARR_YYYY = as.character(substr(EWRIF$ARR_YYYYMM,1,4)) 

EWRIF$ARR_MM = as.character(substr(EWRIF$ARR_YYYYMM,5,6)) 
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EWRIF$SchIn = as.character(paste(EWRIF$ARR_YYYY, EWRIF$ARR_MM, 

as.character(EWRIF$ARR_DAY), as.character (EWRIF$SCHINTM))) 

EWRIF$SchIn = strptime(EWRIF$SchIn, "%Y %m %d %H:%M", tz ="America/New_York") 

 

DEPARP = read.csv("DEPARP.csv") 

DEPARP$ARTCC=as.character(DEPARP$ARTCC) 

DEPARP$Country=as.character(DEPARP$Country) 

DEPARP$Mile=as.character(DEPARP$Mile) 

 

DEPARP$LocationID=as.character(DEPARP$LocationID) 

EWRIF$DEP_LOCID=as.character(EWRIF$DEP_LOCID) 

 

for (i in 1:nrow(DEPARP)) { 

EWRIF$ARTCC[EWRIF$DEP_LOCID %in% DEPARP$LocationID[i]] = DEPARP$ARTCC 

[i] 

EWRIF$Country[EWRIF$DEP_LOCID %in% DEPARP$LocationID[i]] = 

DEPARP$Country[i] 

EWRIF$Mile[EWRIF$DEP_LOCID %in% DEPARP$LocationID[i]] = DEPARP$Mile[i] 

} 

 

write.csv(x = EWRIF, file="EWRIF-fixed.csv") 

 

# Part 11 Match IF and TMI (suggest to run this part separately with following parts as it 

is very slow) 

EWR_GDP$Exempt.Dep.Facilities = as.character(EWR_GDP$Exempt.Dep.Facilities) 

EWR_GDP$AdvisoryType =as.character(EWR_GDP$AdvisoryType) 

EWR_GDP1=EWR_GDP[difftime(as.Date(EWR_GDP$AdvisoryDate.UTC), as.Date('2014-09-

01 '))<0,] 

EWR_GDP1$Dep.Scope = as.character(EWR_GDP1$Dep.Scope) 

 

EWR_GDP1$SchArrSchIn = 0 

EWR_GDP1$ImpArrSchIn = 0 

 

EWRIF$Mile = as.numeric(EWRIF$Mile) 

EWRIF$DEP_LOCID=as.character(EWRIF$DEP_LOCID) 

 

IFCA= EWRIF[EWRIF$Country == "CA",] 

IFUS= EWRIF[EWRIF$Country == "US",] 

IFINT= EWRIF[EWRIF$Country == "INT",] 

 

for (i in 1:nrow(EWR_GDP1)) { 

if (EWR_GDP1$AdvisoryType[i] == "GDP") { 

#scheduled arrivals 

EWR_GDP1$SchArrSchIn[i] = 

length(which( EWRIF$SchIn >=EWR_GDP1$Derived.BgnDate.Time.UTC[i] & EWRIF$SchIn 

<= EWR_GDP1$Derived.EndDate.Time.UTC[i])) 
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##CA flights 

###Spatial 

rows<-sapply(IFCA$DEP_LOCID, function(x) grepl(x, 

EWR_GDP1$Canadian.Dep.Arpts.Included[i])) 

IFGDPCA = IFCA[rows,] 

###Temporal 

CA = length(which(IFGDPCA$SchIn>=EWR_GDP1$Derived.BgnDate.Time.UTC[i] & 

IFGDPCA$SchIn <=EWR_GDP1$Derived.EndDate.Time.UTC[i])) 

##US flights 

### tick out exempted flights 

if (EWR_GDP1$Exempt.Dep.Facilities[i]!= "-") {  

rows<-sapply(IFUS$DEP_LOCID, function(x) !grepl(x, 

EWR_GDP1$Exempt.Dep.Facilities[i]))  

IFUS1 = IFUS[rows,] 

rows<- sapply(IFUS1$ARTCC, function(x) !grepl(x, EWR_GDP1$Exempt.Dep.Facilities[i]) ) 

IFGDPUS = IFUS1[rows,] 

} else{ 

IFGDPUS= IFUS 

} 

### spatial scope 

if (!grepl("ALL",EWR_GDP1$Dep.Scope[i]) ){ 

if(EWR_GDP1$DepScopeType[i] == "ARTCC") 

{ 

IFGDPUS1=IFGDPUS[sapply(IFGDPUS$ARTCC, function(x) grepl(x, 

EWR_GDP1$Dep.Scope[i] )),] 

} 

if(EWR_GDP1$DepScopeType[i] == "Radius") 

{ 

IFGDPUS1 = IFGDPUS[IFGDPUS$Mile <= as.numeric(EWR_GDP1$Dep.Scope[i]),] 

} 

}else { 

IFGDPUS1= IFGDPUS} 

### temporal scope 

US= length(which(IFGDPUS1$SchIn>=EWR_GDP1$Derived.BgnDate.Time.UTC[i] &  

IFGDPUS1$SchIn<=EWR_GDP1$Derived.EndDate.Time.UTC[i])) 

 

##Int Flights 

#INT= length(which(IFINT$SchIn>=EWR_GDP1$Derived.BgnDate.Time.UTC[i] &  

#IFINT$SchIn<=EWR_GDP1$Derived.EndDate.Time.UTC[i])) 

 

##Flight No. 

EWR_GDP1$ImpArrSchIn[i] = as.numeric(CA)+ as.numeric(US)  

} } 

write.csv(x = EWR_GDP1, file="EWR_GDP11.csv") 
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# Part 12 change format of some variable, preparing for dimensionality reduction 

EWR_GDP_IF = read.csv("EWR_GDP11.csv") 

EWR_GDP_IF$SchArrSchIn =as.numeric(as.character(EWR_GDP_IF$SchArrSchIn)) 

EWR_GDP_IF$ImpArrSchIn= as.numeric(as.character(EWR_GDP_IF$ImpArrSchIn)) 

 

EWR_GDP1=EWR_GDP[difftime(as.Date(EWR_GDP$AdvisoryDate.UTC), as.Date('2014-09-

01 '))<0,] 

EWR_GDP1$SchArrSchIn = EWR_GDP_IF$SchArrSchIn 

EWR_GDP1$ImpArrSchIn = EWR_GDP_IF$ImpArrSchIn 

 

##generate month 

library(lubridate) 

EWR_GDP1$Month = month(EWR_GDP1$Derived.BgnDate.Time.UTC) 

EWR_GDP1$Month=as.numeric(as.character(EWR_GDP1$Month)) 

 

##generate time of the day 

time1 = hm("0,0") 

time2 = hm("6,0") 

time3 = hm("9,0") 

time4 = hm("12,0") 

time5 = hm("15,0") 

time6 = hm("18,0") 

time7 = hm("21,0") 

time8 = hm("24,0") 

 

EWR_GDP1$SendTime=hm(EWR_GDP1$SendTime) 

EWR_GDP1$BgnTime=hm(EWR_GDP1$BgnTime) 

EWR_GDP1$EndTime=hm(EWR_GDP1$EndTime) 

 

EWR_GDP1$SendTimePeriod[EWR_GDP1$SendTime<time2& 

EWR_GDP1$SendTime>=time1] = 6 #"0-6" 

EWR_GDP1$SendTimePeriod[EWR_GDP1$SendTime<time3& 

EWR_GDP1$SendTime>=time2] =9 #"6-9" 

EWR_GDP1$SendTimePeriod[EWR_GDP1$SendTime<time4& 

EWR_GDP1$SendTime>=time3] =12 #"9-12" 

EWR_GDP1$SendTimePeriod[EWR_GDP1$SendTime<time5& 

EWR_GDP1$SendTime>=time4] =15 #"12-15" 

EWR_GDP1$SendTimePeriod[EWR_GDP1$SendTime<time6& 

EWR_GDP1$SendTime>=time5] =18 #"15-18" 

EWR_GDP1$SendTimePeriod[EWR_GDP1$SendTime<time7& 

EWR_GDP1$SendTime>=time6] =21 #"18-21" 

EWR_GDP1$SendTimePeriod[EWR_GDP1$SendTime<time8& 

EWR_GDP1$SendTime>=time7] =24 #"21-24" 

 

EWR_GDP1$BgnTimePeriod[EWR_GDP1$BgnTime<time2& 

EWR_GDP1$BgnTime>=time1] =6 #"0-6" 
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EWR_GDP1$BgnTimePeriod[EWR_GDP1$BgnTime<time3& 

EWR_GDP1$BgnTime>=time2] =9 #"6-9" 

EWR_GDP1$BgnTimePeriod[EWR_GDP1$BgnTime<time4& 

EWR_GDP1$BgnTime>=time3] =12 #"9-12" 

EWR_GDP1$BgnTimePeriod[EWR_GDP1$BgnTime<time5& 

EWR_GDP1$BgnTime>=time4] =15 #"12-15" 

EWR_GDP1$BgnTimePeriod[EWR_GDP1$BgnTime<time6& 

EWR_GDP1$BgnTime>=time5] =18 #"15-18" 

EWR_GDP1$BgnTimePeriod[EWR_GDP1$BgnTime<time7& 

EWR_GDP1$BgnTime>=time6] =21 #"18-21" 

EWR_GDP1$BgnTimePeriod[EWR_GDP1$BgnTime<time8& 

EWR_GDP1$BgnTime>=time7] =24 #"21-24" 

 

EWR_GDP1$EndTimePeriod[EWR_GDP1$EndTime<time2& EWR_GDP1$EndTime>=time1] 

=6 #"0-6" 

EWR_GDP1$EndTimePeriod[EWR_GDP1$EndTime<time3& EWR_GDP1$EndTime>=time2] 

=9 #"6-9" 

EWR_GDP1$EndTimePeriod[EWR_GDP1$EndTime<time4& EWR_GDP1$EndTime>=time3] 

=12 #"9-12" 

EWR_GDP1$EndTimePeriod[EWR_GDP1$EndTime<time5& EWR_GDP1$EndTime>=time4] 

=15 #"12-15" 

EWR_GDP1$EndTimePeriod[EWR_GDP1$EndTime<time6& EWR_GDP1$EndTime>=time5] 

=18 #"15-18" 

EWR_GDP1$EndTimePeriod[EWR_GDP1$EndTime<time7& EWR_GDP1$EndTime>=time6] 

=21 #"18-21" 

EWR_GDP1$EndTimePeriod[EWR_GDP1$EndTime<time8& EWR_GDP1$EndTime>=time7] 

=24 #"21-24" 

 

EWR_GDP1$SendTimePeriod= as.numeric(EWR_GDP1$SendTimePeriod) 

EWR_GDP1$BgnTimePeriod= as.numeric(EWR_GDP1$BgnTimePeriod) 

EWR_GDP1$EndTimePeriod= as.numeric(EWR_GDP1$EndTimePeriod) 

 

##generate numeric weekday 

EWR_GDP1$BgnWeekday=as.character(EWR_GDP1$BgnWeekday) 

EWR_GDP1$WeekdayNo[EWR_GDP1$BgnWeekday =="Monday"] = 1 

EWR_GDP1$WeekdayNo[EWR_GDP1$BgnWeekday =="Tuesday"] = 2 

EWR_GDP1$WeekdayNo[EWR_GDP1$BgnWeekday =="Wednesday"] = 3 

EWR_GDP1$WeekdayNo[EWR_GDP1$BgnWeekday =="Thursday"] = 4 

EWR_GDP1$WeekdayNo[EWR_GDP1$BgnWeekday =="Friday"] = 5 

EWR_GDP1$WeekdayNo[EWR_GDP1$BgnWeekday =="Saturday"] = 6 

EWR_GDP1$WeekdayNo[EWR_GDP1$BgnWeekday =="Sunday"] = 7 

EWR_GDP1$WeekdayNo = as.numeric(EWR_GDP1$WeekdayNo) 

 

##change others to numeric 

EWR_GDP1$Duration_Advisory= as.numeric(EWR_GDP1$Duration_Advisory) 

EWR_GDP1$Duration_Actual= as.numeric(EWR_GDP1$Duration_Actual) 
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EWR_GDP1$Number_Revisions_NoCNX= 

as.numeric(EWR_GDP1$Number_Revisions_NoCNX) 

EWR_GDP1$Number_TotModif_incldCNX= 

as.numeric(EWR_GDP1$Number_TotModif_incldCNX) 

EWR_GDP1$LeadTime= as.numeric(EWR_GDP1$LeadTime) 

 

#Part 13 match GDP with METAR data (hourly) 

METAR = read.csv("EWRMETAR.csv") 

 

## convert date time to datetime format 

METAR$start.time = as.POSIXct(strptime(as.character(METAR$start.time),"%Y-%m-%d 

%H:%M",tz="GMT")) 

METAR$end.time = as.POSIXct(strptime(as.character(METAR$end.time),"%Y-%m-%d 

%H:%M",tz="GMT")) 

 

## convert GMT time to NY time 

attr(METAR$start.time, "tzone") <- "America/New_York" 

attr(METAR$end.time, "tzone") <- "America/New_York" 

 

## identify non-VMC weather, precipitation, and crosswind 

METAR$IMC=0 

METAR$IMC[METAR$Ceiling < 10 | METAR$Visibility < 3]=1 

 

METAR$MCIC=0 

METAR$MCIC[METAR$Ceiling < 30 | METAR$Visibility < 4]=1 

 

METAR$PC=0 

METAR$PC[METAR$DZ+METAR$RA+ METAR$SN+ METAR$SG+ METAR$IC+ 

METAR$PL+ METAR$GR+ METAR$GS+ METAR$UP>0]=1  

 

METAR$WindAngle= as.numeric(as.character(METAR$Wind.Angle)) 

METAR$CW0422 = round(as.numeric(METAR$Wind.Speed)*abs(sin((METAR$WindAngle-

40)*(pi/180))), digits = 0) 

METAR$CW1129 = round(as.numeric(METAR$Wind.Speed)*abs(sin((METAR$WindAngle-

110)*(pi/180))), digits = 0) 

 

library(lubridate) 

METAR$Month = month(METAR$start.time) 

METAR$Month =as.numeric(as.character(METAR$Month)) 

 

## delete METARs beyond time horizon (2010-1-1-2014-8-31) 

boundary1 = as.character("2010-1-1 00:00") 

boundary2 = as.character("2014-8-31 23:59") 

 

bdr1 = strptime(boundary1, "%Y-%m-%d %H:%M", tz ="America/New_York") 

bdr1 =  format(boundary1, format = "%Y-%m-%d %H:%M", tz ="America/New_York" ) 
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bdr1 = as.POSIXct(strptime(as.character(boundary1),"%Y-%m-%d %H:%M", tz 

="America/New_York")) 

bdr2 = strptime(boundary2, "%Y-%m-%d %H:%M", tz ="America/New_York") 

bdr2 =  format(boundary2, format = "%Y-%m-%d %H:%M", tz ="America/New_York" ) 

bdr2 = as.POSIXct(strptime(as.character(boundary2),"%Y-%m-%d %H:%M", tz 

="America/New_York")) 

 

METAR1=METAR[METAR$end.time>bdr1 & METAR$start.time < bdr2,] 

 

##delete duplicated METAR with same issue, begin, and end time 

METAR2 = METAR1[order(METAR1$IMC,METAR1$MCIC, METAR1$TS, 

METAR1$CW0422, METAR1$CW1129, METAR1$PC, decreasing = TRUE ),] 

METAR3= METAR2[!duplicated(METAR2[c("end.time","start.time")]),] 

write.csv(x = METAR3, file="METAR-20140831-nonduplicated.csv") 

 

METAR4 = read.csv("METAR-20140831-nonduplicated-.csv",  as.is=TRUE) 

METAR4$start.time= as.POSIXct(METAR4$start.time, tz =  "America/New_York") 

METAR4$end.time= as.POSIXct(METAR4$end.time, tz =  "America/New_York") 

 

EWR_GDP1$MCIC_obs <- "" 

EWR_GDP1$Vis_obs <- "" 

EWR_GDP1$Ceiling_obs <- "" 

EWR_GDP1$TS_obs <- "" 

EWR_GDP1$CW0422_obs <- "" 

EWR_GDP1$CW1129_obs <- "" 

EWR_GDP1$PC_obs <- "" 

EWR_GDP1$RNSNIC_obs <- "" 

 

for ( i in 1:nrow(EWR_GDP1)) { 

 

METARGDP1=METAR4[METAR4$end.time > EWR_GDP1$Derived.BgnDate.Time.UTC[i] 

& METAR4$start.time< EWR_GDP1$Derived.EndDate.Time.UTC[i],] 

 

H = ceiling(as.numeric(EWR_GDP1$Duration_Advisory[i])) 

 

for (h in 1:H) { 

METARGDP2=METARGDP1[METARGDP1$start.time<EWR_GDP1$Derived.BgnDate.Time

.UTC[i]+h*60*60 & METARGDP1$end.time> 

EWR_GDP1$Derived.BgnDate.Time.UTC[i]+(h-1)*60*60,] 

 

METARGDP3 = METARGDP2[order(METARGDP2$MCIC, METARGDP2$TS, 

METARGDP2$CW0422, METARGDP2$CW1129, METARGDP2$RNSNIC, 

METARGDP2$PC ,decreasing = TRUE)[1],] 

 

EWR_GDP1$MCIC_obs[i] = paste(EWR_GDP1$MCIC_obs[i], METARGDP3$MCIC, sep = " 

") 
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EWR_GDP1$Vis_obs[i] = paste(EWR_GDP1$Vis_obs[i], METARGDP3$Visibility, sep = " ") 

EWR_GDP1$Ceiling_obs[i] = paste(EWR_GDP1$Vis_obs[i], METARGDP3$Ceiling, sep = " 

") 

EWR_GDP1$TS_obs[i] = paste(EWR_GDP1$TS_obs[i], METARGDP3$TS, sep = " ") 

EWR_GDP1$CW0422_obs[i] = paste(EWR_GDP1$CW0422_obs[i], METARGDP3$CW0422, 

sep = " ") 

EWR_GDP1$CW1129_obs[i] = paste(EWR_GDP1$CW1129_obs[i], METARGDP3$CW1129, 

sep = " ") 

EWR_GDP1$PC_obs[i] = paste(EWR_GDP1$PC_obs[i], METARGDP3$PC, sep = " ") 

EWR_GDP1$RNSNIC_obs[i] = paste(EWR_GDP1$RNSNIC_obs[i], METARGDP3$RNSNIC, 

sep = " ") 

} 

} 

 

# Part 14 generate root advisory No. and modification No.  

temp <-read.csv("EWR_GDP7【TAF】.csv") 

temp=temp[difftime(as.Date(temp$AdvisoryDate.UTC), as.Date('2014-09-01 '))<0,] 

temp$Visibility<- as.character(temp$Visibility) 

temp$Ceiling<- as.character(temp$Ceiling) 

EWR_GDP1 = cbind(EWR_GDP1, Visibility = temp$Visibility, Ceiling = temp$Ceiling) 

EWR_GDP1$Visibility = as.character(EWR_GDP1$Visibility) 

EWR_GDP1$Ceiling = as.character(EWR_GDP1$Ceiling) 

 

##label every root GDP 

EWR_GDP1$RootAdvisoryDate.UTC = as.character(EWR_GDP1$RootAdvisoryDate.UTC) 

EWR_GDP1$Is.RootAdvisory = as.character(EWR_GDP1$Is.RootAdvisory) 

Root = EWR_GDP1[EWR_GDP1$Is.RootAdvisory == "Yes",] 

Root$RootNumber= c(1: nrow(Root)) 

 

##label root GDP no for every GDP  

for (i in 1:nrow(Root)) { 

rows = which(Root$RootAdvisoryDate.UTC[i] ==EWR_GDP1$RootAdvisoryDate.UTC & 

Root$RootAdvisoryNumber[i]==EWR_GDP1$RootAdvisoryNumber) 

for (j in 1:length(rows)) { 

EWR_GDP1$RootNumber[rows[j]] <- Root$RootNumber[i] 

} 

} 

 

##label mods for every GDP plan 

EWR_GDP2= EWR_GDP1[order(EWR_GDP1$RootNumber, decreasing = FALSE),] 

EWR_GDP2$ModNumber= 0 

ModNo = 0 

for (i in 2:nrow(EWR_GDP2)) { 

RootNo = EWR_GDP2$RootNumber[i-1] 

if (EWR_GDP2$RootNumber[i] == RootNo) { 

ModNo = ModNo+1 
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EWR_GDP2$ModNumber[i] = ModNo 

} else { 

ModNo = 0} 

} 

 

##order data 

EWR_GDP3= EWR_GDP2[order(EWR_GDP2$RootNumber, EWR_GDP2$ModNumber, 

decreasing = FALSE),] 

 

# Part 15 convert to hourly GDPs  

 

EWR_GDP3$ActAdvisoryDuration= EWR_GDP3$Duration_Advisory 

EWR_GDP3$ActAdvisoryEndTime= EWR_GDP3$Derived.EndDate.Time.UTC 

for (i in 1:(nrow(EWR_GDP3)-1)) { 

if(EWR_GDP3$RootNumber[i]== EWR_GDP3$RootNumber[i+1] & 

EWR_GDP3$Derived.BgnDate.Time.UTC[i+1] < 

EWR_GDP3$Derived.EndDate.Time.UTC[i]) { 

EWR_GDP3$ActAdvisoryEndTime[i] = EWR_GDP3$Derived.BgnDate.Time.UTC[i+1] 

EWR_GDP3$ActAdvisoryDuration[i] = 

difftime(EWR_GDP3$ActAdvisoryEndTime[i],EWR_GDP3$Derived.BgnDate.Time.UTC[i],un

its = "hours") 

}  

} 

 

##delete first blank in the weather data 

MCIC = substring(EWR_GDP3$MCIC,2, nchar(EWR_GDP3$MCIC)) 

Vis = substring(EWR_GDP3$Visibility,2, nchar(EWR_GDP3$Visibility)) 

Ceiling = substring(EWR_GDP3$Ceiling,2, nchar(EWR_GDP3$Ceiling)) 

TS = substring(EWR_GDP3$TS,2, nchar(EWR_GDP3$TS)) 

CW0422 = substring(EWR_GDP3$CW0422,2, nchar(EWR_GDP3$CW0422)) 

CW1129 = substring(EWR_GDP3$CW1129,2, nchar(EWR_GDP3$CW1129)) 

PC = substring(EWR_GDP3$PC,2, nchar(EWR_GDP3$PC)) 

RNSNIC= substring(EWR_GDP3$RNSNIC,2, nchar(EWR_GDP3$RNSNIC)) 

 

MCIC_obs = substring(EWR_GDP3$MCIC_obs,2, nchar(EWR_GDP3$MCIC_obs)) 

Vis_obs = substring(EWR_GDP3$Vis_obs,2, nchar(EWR_GDP3$Vis_obs)) 

Ceiling_obs = substring(EWR_GDP3$Ceiling_obs,2, nchar(EWR_GDP3$Ceiling_obs)) 

TS_obs = substring(EWR_GDP3$TS_obs,2, nchar(EWR_GDP3$TS_obs)) 

CW0422_obs = substring(EWR_GDP3$CW0422_obs,2, nchar(EWR_GDP3$CW0422_obs)) 

CW1129_obs = substring(EWR_GDP3$CW1129_obs,2, nchar(EWR_GDP3$CW1129_obs)) 

PC_obs = substring(EWR_GDP3$PC_obs,2, nchar(EWR_GDP3$PC_obs)) 

RNSNIC_obs = substring(EWR_GDP3$RNSNIC_obs,2, nchar(EWR_GDP3$RNSNIC_obs)) 

 

c = ncol(EWR_GDP3) 

HrGDP <- EWR_GDP3[0,] 

rowno = 0 
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for ( i in 1:nrow(EWR_GDP3)) { 

H = ceiling(as.numeric(EWR_GDP3$ActAdvisoryDuration[i])) 

 

MCIC1 = as.numeric(unlist(strsplit(as.character(MCIC[i]), split =" "))) 

Vis1 = as.numeric(unlist(strsplit(as.character(Vis[i]), split =" "))) 

Ceiling1 = as.numeric(unlist(strsplit(as.character(Ceiling[i]), split =" "))) 

TS1 = as.numeric(unlist(strsplit(as.character(TS[i]), split =" "))) 

CW04221 = as.numeric(unlist(strsplit(as.character(CW0422[i]), split =" "))) 

CW11291 = as.numeric(unlist(strsplit(as.character(CW1129[i]), split =" "))) 

PC1 = as.numeric(unlist(strsplit(as.character(PC[i]), split =" "))) 

RNSNIC1 = as.numeric(unlist(strsplit(as.character(RNSNIC[i]), split =" "))) 

 

PR1 = as.numeric(unlist(strsplit(as.character(EWR_GDP3$ProgramRateVct [i]), split ="/"))) 

 

MCIC1_obs = as.numeric(unlist(strsplit(as.character(MCIC_obs[i]), split =" "))) 

Vis1_obs = as.numeric(unlist(strsplit(as.character(Vis_obs [i]), split =" "))) 

Ceiling1_obs = as.numeric(unlist(strsplit(as.character(Ceiling_obs [i]), split =" "))) 

TS1_obs = as.numeric(unlist(strsplit(as.character(TS_obs[i]), split =" "))) 

CW04221_obs = as.numeric(unlist(strsplit(as.character(CW0422_obs[i]), split =" "))) 

CW11291_obs = as.numeric(unlist(strsplit(as.character(CW1129_obs[i]), split =" "))) 

PC1_obs = as.numeric(unlist(strsplit(as.character(PC_obs[i]), split =" "))) 

RNSNIC1_obs = as.numeric(unlist(strsplit(as.character(RNSNIC_obs[i]), split =" "))) 

if(H>0) { 

for (h in 1:H) { 

rowno =rowno+1 

HrGDP[rowno,1:c] =EWR_GDP3[i,] 

 

HrGDP$HourNo[rowno] = h 

 

HrGDP$SchArrSchIn[rowno] = EWR_GDP3$SchArrSchIn[i] 

HrGDP$ImpArrSchIn[rowno] = EWR_GDP3$ImpArrSchIn[i] 

 

HrGDP$BgnTime[rowno] = as.character(EWR_GDP3$Derived.BgnDate.Time.UTC[i]+ (h-

1)*60*60) 

 if(h==H) { 

HrGDP$EndTime[rowno] <- as.character(EWR_GDP3$ActAdvisoryEndTime[i]) 

} else { 

HrGDP$EndTime[rowno] = 

as.character(EWR_GDP3$Derived.BgnDate.Time.UTC[i]+h*60*60) 

} 

 

HrGDP$MCIC_hr[rowno] = MCIC1[h] 

HrGDP$Vis_hr[rowno] = Vis1[h] 

HrGDP$Ceiling_hr[rowno] = Ceiling1[h] 

HrGDP$TS_hr[rowno] = TS1[h] 
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HrGDP$CW0422_hr[rowno] = CW04221[h] 

HrGDP$CW1129_hr[rowno] = CW11291[h] 

HrGDP$PC_hr[rowno] = PC1[h] 

HrGDP$RNSNIC_hr[rowno] = RNSNIC1[h] 

 

HrGDP$PR_hr[rowno] = PR1[h] 

 

HrGDP$MCIC_hr_obs[rowno] = MCIC1_obs[h] 

HrGDP$Vis_hr_obs [rowno] = Vis1_obs [h] 

HrGDP$Ceiling_hr_obs [rowno] = Ceiling1_obs [h] 

HrGDP$TS_hr_obs[rowno] = TS1_obs[h] 

HrGDP$CW0422_hr_obs[rowno] = CW04221_obs[h] 

HrGDP$CW1129_hr_obs[rowno] = CW11291_obs[h] 

HrGDP$PC_hr_obs[rowno] = PC1_obs[h] 

HrGDP$RNSNIC_hr_obs[rowno] = RNSNIC1_obs[h] 

} 

} 

} 

 

Focus = which(HrGDP$AdvisoryType == "GDP CNX" & HrGDP$HourNo != 1) 

HrGDP = HrGDP[-Focus,] 

 

HrGDP$EarlyCancelTime[is.na(HrGDP$EarlyCancelTime)] = 0 

HrGDP[HrGDP$AdvisoryType == "GDP CNX", c("Duration_Advisory", "PR_hr")] = 0 

 

HrGDP$BgnTime = parse_date_time(HrGDP$BgnTime, guess_formats(HrGDP$BgnTime, 

c("%Y-%m-%d %H:%M:%S", "%Y-%m-%d")), tz="America/New_York") 

HrGDP$EndTime = parse_date_time(HrGDP$EndTime, guess_formats(HrGDP$EndTime, 

c("%Y-%m-%d %H:%M:%S", "%Y-%m-%d")), tz="America/New_York") 

 

HrGDP$StartMin= difftime(HrGDP$BgnTime, HrGDP$RootBgnTime, units = "mins") 

HrGDP$EndTime[HrGDP$AdvisoryType == "GDP CNX"]= 

HrGDP$BgnTime[HrGDP$AdvisoryType == "GDP CNX"] 

HrGDP$EndMin= difftime(HrGDP$EndTime, HrGDP$RootBgnTime, units = "mins") 

 

#Part 16 identify strong wind 

HrGDP$CW0422_hr=as.numeric(HrGDP$CW0422_hr) 

HrGDP$CW1129_hr=as.numeric(HrGDP$CW1129_hr) 

HrGDP$CW0422_hr_obs =as.numeric(HrGDP$CW0422_hr_obs) 

HrGDP$CW1129_hr_obs =as.numeric(HrGDP$CW1129_hr_obs) 

 

HrGDP$CW0422_Str=0 

HrGDP$CW1129_Str=0 

HrGDP$CW0422_Str[HrGDP$CW0422_hr>=25]=1 

HrGDP$CW1129_Str[HrGDP$CW1129_hr>=25]=1 
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HrGDP$CW0422_obs_Str=0 

HrGDP$CW1129_obs_Str=0 

HrGDP$CW0422_obs_Str[HrGDP$CW0422_hr_obs >=25]=1 

HrGDP$CW1129_obs_Str[HrGDP$CW1129_hr_obs>=25]=1 

 

#Part 17 GDP evolution data 

 

HrGDP1= HrGDP 

 

HrGDP1$RootNumber=as.numeric(HrGDP1$RootNumber) 

HrGDP1$AdvisoryType=as.character(HrGDP1$AdvisoryType) 

HrGDP1$StartMin = as.numeric(HrGDP1$StartMin) 

HrGDP1$EndMin = as.numeric(HrGDP1$EndMin) 

 

##add the root GDPs 

EWR_GDP3$Is.RootAdvisory=as.character(EWR_GDP3$Is.RootAdvisory) 

root = EWR_GDP3[EWR_GDP3$Is.RootAdvisory=="Yes",] 

 

#delete GDPs with incomplete information 

HrGDP1$CW0422=as.character(HrGDP1$CW0422) 

HrGDP1$CW1129=as.character(HrGDP1$CW1129) 

HrGDP1$MCIC=as.character(HrGDP1$MCIC) 

HrGDP1$TS=as.character(HrGDP1$TS) 

HrGDP1$PC=as.character(HrGDP1$PC) 

 

focus=which(grepl("NA", HrGDP1$CW0422)) 

if(length(focus)>0) { 

NANo=HrGDP1$RootNumber[focus] 

HrGDP1 = HrGDP1[-focus,] 

for(j in 1:length(NANo)) { 

focus1 = which(root$RootNumber == NANo[j]) 

if(length(focus1)>0) { 

root = root[-focus1,] 

} 

} 

} 

focus=which(grepl("NA", HrGDP1$CW1129)) 

if(length(focus)>0) { 

NANo=HrGDP1$RootNumber[focus] 

HrGDP1 = HrGDP1[-focus,] 

for(j in 1:length(NANo)) { 

focus1 = which(root$RootNumber == NANo[j]) 

if(length(focus1)>0) { 

root = root[-focus1,] 

} 

} 
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} 

focus=which(grepl("NA", HrGDP1$MCIC)) 

if(length(focus)>0) { 

NANo=HrGDP1$RootNumber[focus] 

HrGDP1 = HrGDP1[-focus,] 

for(j in 1:length(NANo)) { 

focus1 = which(root$RootNumber == NANo[j]) 

if(length(focus1)>0) { 

root = root[-focus1,] 

} 

} 

} 

focus=which(grepl("NA", HrGDP1$PC)) 

if(length(focus)>0) { 

NANo=HrGDP1$RootNumber[focus] 

HrGDP1 = HrGDP1[-focus,] 

for(j in 1:length(NANo)) { 

focus1 = which(root$RootNumber == NANo[j]) 

if(length(focus1)>0) { 

root = root[-focus1,] 

} 

} 

} 

focus=which(grepl("NA", HrGDP1$TS)) 

if(length(focus)>0) { 

NANo=HrGDP1$RootNumber[focus] 

HrGDP1 = HrGDP1[-focus,] 

for(j in 1:length(NANo)) { 

focus1 = which(root$RootNumber == NANo[j]) 

if(length(focus1)>0) { 

root = root[-focus1,] 

} 

} 

} 

 

HrGDP2= HrGDP1 

root1=root 

J= nrow(HrGDP2)-1 

HrGDP2$DiffSE=0 

for( j in 1:J) { 

if(HrGDP2$RootNumber[j]== HrGDP2$RootNumber[j+1]){ 

HrGDP2$DiffSE[j] = HrGDP2$EndMin[j]- HrGDP2$StartMin[j+1] 

} 

} 

focus=which(HrGDP2$DiffSE!=0) 

NANo=HrGDP2$RootNumber[focus] 
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for(j in 1:length(NANo)) { 

focus1 = which(HrGDP2$RootNumber == NANo[j]) 

if(length(focus1)>0) { 

HrGDP2 = HrGDP2[-focus1,] 

} 

focus2= which(root1$RootNumber == NANo[j]) 

if(length(focus2)>0) { 

root1 = root1[-focus2,] 

} 

} 

 

##delete GDPs with illogical times 

focus=which(HrGDP2$EndMin<0 | HrGDP2$StartMin<0) 

NANo=HrGDP2$RootNumber[focus] 

for(j in 1:length(NANo)) { 

focus1 = which(HrGDP2$RootNumber == NANo[j]) 

if(length(focus1)>0) { 

HrGDP2 = HrGDP2[-focus1,] 

} 

focus2= which(root1$RootNumber == NANo[j]) 

if(length(focus2)>0) { 

root1 = root1[-focus2,] 

} 

} 

 

##add weather and flight information to the GDPs 

maxtime=max(HrGDP2$EndMin) 

MaxInterval=15 

NumNewcol= floor(maxtime/MaxInterval)+1 #66 

root2 = root1 

 

###thunderstorms 

OldTotCol=ncol(root2) 

NewBgnCol=ncol(root2)+1 

NewTotCol= OldTotCol + NumNewcol #192 = 126 +66 

for(j in NewBgnCol:NewTotCol){ 

root2[,j]<-NA 

IntNum= j- OldTotCol 

colnames(root2)[j]<-paste(as.character(IntNum), "TS") 

} 

maxrt= max(HrGDP2$RootNumber) 

for(k in 1:maxrt) { 

sub1 = HrGDP2[HrGDP2$RootNumber == k,] 

if(nrow(sub1)>0){ 

MaxEndTm = max(sub1$EndMin) 

Int = MaxEndTm/(NumNewcol-1) 
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for(i in 1:NumNewcol){ 

x= (i-1)*Int 

y=i*Int 

sub2=sub1[which( y>=sub1$StartMin & x< sub1$EndMin),]  

if(nrow(sub2)>0) { 

sub2= sub2[order(sub2$TS_hr, decreasing = TRUE),] 

root2[root2$RootNumber == k, OldTotCol +i]=sub2$TS_hr[1] 

}else{ 

root2[root2$RootNumber == k, OldTotCol +i]= "/" 

}}}} 

 

###Precipitation 

OldTotCol=ncol(root2) 

NewBgnCol=ncol(root2)+1 

NewTotCol= OldTotCol + NumNewcol #192 = 126 +66 

for(j in NewBgnCol:NewTotCol){ 

root2[,j]<-NA 

IntNum= j- OldTotCol 

colnames(root2)[j]<-paste(as.character(IntNum), "PC") 

} 

maxrt= max(HrGDP2$RootNumber) 

for(k in 1:maxrt) { 

sub1 = HrGDP2[HrGDP2$RootNumber == k,] 

if(nrow(sub1)>0){ 

MaxEndTm = max(sub1$EndMin) 

Int = MaxEndTm/(NumNewcol-1) 

for(i in 1:NumNewcol){ 

x= (i-1)*Int 

y=i*Int 

sub2=sub1[which( y>=sub1$StartMin & x< sub1$EndMin),] #GDP advisory 

if(nrow(sub2)>0) { 

sub2= sub2[order(sub2$PC_hr, decreasing = TRUE),] 

root2[root2$RootNumber == k, OldTotCol +i]=sub2$PC_hr[1] 

}else{ 

root2[root2$RootNumber == k, OldTotCol +i]= "/" 

}}}} 

 

###CW0422 

OldTotCol=ncol(root2) 

NewBgnCol=ncol(root2)+1 

NewTotCol= OldTotCol + NumNewcol #192 = 126 +66 

for(j in NewBgnCol:NewTotCol){ 

root2[,j]<-NA 

IntNum= j- OldTotCol 

colnames(root2)[j]<-paste(as.character(IntNum), "CW0422") 

} 
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maxrt= max(HrGDP2$RootNumber) 

for(k in 1:maxrt) { 

sub1 = HrGDP2[HrGDP2$RootNumber == k,] 

if(nrow(sub1)>0){ 

MaxEndTm = max(sub1$EndMin) 

Int = MaxEndTm/(NumNewcol-1) 

for(i in 1:NumNewcol){ 

x= (i-1)*Int 

y=i*Int 

sub2=sub1[which( y>=sub1$StartMin & x< sub1$EndMin),]  

if(nrow(sub2)>0) { 

sub2= sub2[order(sub2$CW0422_hr, decreasing = TRUE),] 

root2[root2$RootNumber == k, OldTotCol +i]=sub2$CW0422_hr[1] 

}else{ 

root2[root2$RootNumber == k, OldTotCol +i]= "/" 

}}}} 

 

###CW1129 

OldTotCol=ncol(root2) 

NewBgnCol=ncol(root2)+1 

NewTotCol= OldTotCol + NumNewcol #192 = 126 +66 

for(j in NewBgnCol:NewTotCol){ 

root2[,j]<-NA 

IntNum= j- OldTotCol 

colnames(root2)[j]<-paste(as.character(IntNum), "CW1129") 

} 

maxrt= max(HrGDP2$RootNumber) 

for(k in 1:maxrt) { 

sub1 = HrGDP2[HrGDP2$RootNumber == k,] 

if(nrow(sub1)>0){ 

MaxEndTm = max(sub1$EndMin) 

Int = MaxEndTm/(NumNewcol-1) 

for(i in 1:NumNewcol){ 

x= (i-1)*Int 

y=i*Int 

sub2=sub1[which( y>=sub1$StartMin & x< sub1$EndMin),] #GDP advisory 

if(nrow(sub2)>0) { 

sub2= sub2[order(sub2$CW1129_hr, decreasing = TRUE),] 

root2[root2$RootNumber == k, OldTotCol +i]=sub2$CW1129_hr[1] 

}else{ 

root2[root2$RootNumber == k, OldTotCol +i]= "/" 

}}}} 

 

###Ceiling 

OldTotCol=ncol(root2) 

NewBgnCol=ncol(root2)+1 
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NewTotCol= OldTotCol + NumNewcol #192 = 126 +66 

for(j in NewBgnCol:NewTotCol){ 

root2[,j]<-NA 

IntNum= j- OldTotCol 

colnames(root2)[j]<-paste(as.character(IntNum), "Ceiling") 

} 

maxrt= max(HrGDP2$RootNumber) 

for(k in 1:maxrt) { 

sub1 = HrGDP2[HrGDP2$RootNumber == k,] 

if(nrow(sub1)>0){ 

MaxEndTm = max(sub1$EndMin) 

Int = MaxEndTm/(NumNewcol-1) 

for(i in 1:NumNewcol){ 

x= (i-1)*Int 

y=i*Int 

sub2=sub1[which( y>=sub1$StartMin & x< sub1$EndMin),]  

if(nrow(sub2)>0) { 

sub2= sub2[order(sub2$Ceiling_hr, decreasing = FALSE),] 

root2[root2$RootNumber == k, OldTotCol +i]=sub2$Ceiling_hr[1] 

}else{ 

root2[root2$RootNumber == k, OldTotCol +i]= "/" 

}}}} 

 

###Visibility 

OldTotCol=ncol(root2) 

NewBgnCol=ncol(root2)+1 

NewTotCol= OldTotCol + NumNewcol #192 = 126 +66 

for(j in NewBgnCol:NewTotCol){ 

root2[,j]<-NA 

IntNum= j- OldTotCol 

colnames(root2)[j]<-paste(as.character(IntNum), "Vis") 

} 

maxrt= max(HrGDP2$RootNumber) 

for(k in 1:maxrt) { 

sub1 = HrGDP2[HrGDP2$RootNumber == k,] 

if(nrow(sub1)>0){ 

MaxEndTm = max(sub1$EndMin) 

Int = MaxEndTm/(NumNewcol-1) 

for(i in 1:NumNewcol){ 

x= (i-1)*Int 

y=i*Int 

sub2=sub1[which( y>=sub1$StartMin & x< sub1$EndMin),] #GDP advisory 

if(nrow(sub2)>0) { 

sub2= sub2[order(sub2$Vis_hr, decreasing = FALSE),] 

root2[root2$RootNumber == k, OldTotCol +i]=sub2$Vis_hr[1] 

}else{ 
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root2[root2$RootNumber == k, OldTotCol +i]= "/" 

}}}} 

 

###Program rate 

OldTotCol=ncol(root2) 

NewBgnCol=ncol(root2)+1 

NewTotCol= OldTotCol + NumNewcol #192 = 126 +66 

for(j in NewBgnCol:NewTotCol){ 

root2[,j]<-NA 

IntNum= j- OldTotCol 

colnames(root2)[j]<-paste(as.character(IntNum), "PR") 

} 

maxrt= max(HrGDP2$RootNumber) 

for(k in 1:maxrt) { 

sub1 = HrGDP2[HrGDP2$RootNumber == k,] 

if(nrow(sub1)>0){ 

MaxEndTm = max(sub1$EndMin) 

Int = MaxEndTm/(NumNewcol-1) 

for(i in 1:NumNewcol){ 

x= (i-1)*Int 

y=i*Int 

sub2=sub1[which( y>=sub1$StartMin & x< sub1$EndMin),] #GDP advisory 

if(nrow(sub2)>0) { 

sub2= sub2[order(sub2$PR_hr, decreasing = FALSE),] 

root2[root2$RootNumber == k, OldTotCol +i]=sub2$PR_hr[1] 

}else{ 

root2[root2$RootNumber == k, OldTotCol +i]= "/" 

}}}} 

 

##SchArrSchIn 

OldTotCol=ncol(root2) 

NewBgnCol=ncol(root2)+1 

NewTotCol= OldTotCol + NumNewcol #192 = 126 +66 

for(j in NewBgnCol:NewTotCol){ 

root2[,j]<-NA 

IntNum= j- OldTotCol 

colnames(root2)[j]<-paste(as.character(IntNum), "SchArrSchIn") 

} 

maxrt= max(HrGDP2$RootNumber) 

for(k in 1:maxrt) { 

sub1 = HrGDP2[HrGDP2$RootNumber == k,] 

if(nrow(sub1)>0){ 

MaxEndTm = max(sub1$EndMin) 

Int = MaxEndTm/(NumNewcol-1) 

for(i in 1:NumNewcol){ 

x= (i-1)*Int 
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y=i*Int 

sub2=sub1[which( y>=sub1$StartMin & x< sub1$EndMin),] #GDP advisory 

if(nrow(sub2)>0) { 

sub2= sub2[order(sub2$SchArrSchIn, decreasing = TRUE),] 

root2[root2$RootNumber == k, OldTotCol +i]=sub2$SchArrSchIn[1] 

}else{ 

root2[root2$RootNumber == k, OldTotCol +i]= "/" 

}}}} 

##ImpArrSchIn 

OldTotCol=ncol(root2) 

NewBgnCol=ncol(root2)+1 

NewTotCol= OldTotCol + NumNewcol #192 = 126 +66 

for(j in NewBgnCol:NewTotCol){ 

root2[,j]<-NA 

IntNum= j- OldTotCol 

colnames(root2)[j]<-paste(as.character(IntNum), "ImpArrSchIn") 

} 

maxrt= max(HrGDP2$RootNumber) 

for(k in 1:maxrt) { 

sub1 = HrGDP2[HrGDP2$RootNumber == k,] 

if(nrow(sub1)>0){ 

MaxEndTm = max(sub1$EndMin) 

Int = MaxEndTm/(NumNewcol-1) 

for(i in 1:NumNewcol){ 

x= (i-1)*Int 

y=i*Int 

sub2=sub1[which( y>=sub1$StartMin & x< sub1$EndMin),] #GDP advisory 

if(nrow(sub2)>0) { 

sub2= sub2[order(sub2$ImpArrSchIn, decreasing = TRUE),] 

root2[root2$RootNumber == k, OldTotCol +i]=sub2$ImpArrSchIn[1] 

}else{ 

root2[root2$RootNumber == k, OldTotCol +i]= "/" 

}}}} 

 

##Duration 

OldTotCol=ncol(root2) 

NewBgnCol=ncol(root2)+1 

NewTotCol= OldTotCol + NumNewcol #192 = 126 +66 

for(j in NewBgnCol:NewTotCol){ 

root2[,j]<-NA 

IntNum= j- OldTotCol 

colnames(root2)[j]<-paste(as.character(IntNum), "PlanDuration") 

} 

maxrt= max(HrGDP2$RootNumber) 

for(k in 1:maxrt) { 

sub1 = HrGDP2[HrGDP2$RootNumber == k,] 
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if(nrow(sub1)>0){ 

MaxEndTm = max(sub1$EndMin) 

Int = MaxEndTm/(NumNewcol-1) 

for(i in 1:NumNewcol){ 

x= (i-1)*Int 

y=i*Int 

sub2=sub1[which( y>=sub1$StartMin & x< sub1$EndMin),] #GDP advisory 时间与 15 间隔时

间有交集，取最大 SchArr 

if(nrow(sub2)>0) { 

sub2= sub2[order(sub2$Duration_Initiative, decreasing = TRUE),] 

root2[root2$RootNumber == k, OldTotCol +i]=sub2$Duration_Initiative [1] 

}else{ 

root2[root2$RootNumber == k, OldTotCol +i]= "/" 

}}}} 

 

EWR_GDP4 = EWR_GDP3[EWR_GDP3$RootNumber %in% HrGDP2$RootNumber,] 

 

#Part 18 Evaluation 

## get Ground Delays, Total Delays, Planned Delays, Actual Delays from IF 

EWRIF = read.csv( "EWRIF-fixed.csv") 

 

EWR_GDP4$Exempt.Dep.Facilities = as.character(EWR_GDP4$Exempt.Dep.Facilities) 

EWR_GDP4$AdvisoryType =as.character(EWR_GDP4$AdvisoryType) 

EWR_GDP4$Dep.Scope = as.character(EWR_GDP4$Dep.Scope) 

 

EWRIF$Mile = as.numeric(EWRIF$Mile) 

EWRIF$DEP_LOCID=as.character(EWRIF$DEP_LOCID) 

EWRIF$Country=as.character(EWRIF$Country) 

 

##Ground and G+Air delay 

EWRIF$FpIn = as.character(paste(EWRIF$ARR_YYYY, EWRIF$ARR_MM, 

as.character(EWRIF$ARR_DAY), as.character (EWRIF$FPINTM))) 

EWRIF$FpIn = strptime(EWRIF$FpIn, "%Y %m %d %H:%M", tz ="America/New_York") 

 

EWRIF$SchIn = as.character(paste(EWRIF$ARR_YYYY, EWRIF$ARR_MM, 

as.character(EWRIF$ARR_DAY), as.character (EWRIF$SCHINTM))) 

EWRIF$SchIn = strptime(EWRIF$SchIn, "%Y %m %d %H:%M", tz ="America/New_York") 

 

EWRIF$DLAP = as.numeric(EWRIF$DLASCHARR) - as.numeric(EWRIF$DLAFPARR) 

EWRIF$DLAP[EWRIF$DLAP<0] = 0 

 

IFCA= EWRIF[EWRIF$Country == "CA",] 

IFUS= EWRIF[EWRIF$Country == "US",] 

IFINT= EWRIF[EWRIF$Country == "INT",] 

 

for (i in 1:nrow(EWR_GDP4)) { 
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if (EWR_GDP4$AdvisoryType[i] == "GDP") { 

 

##CA flights 

###Spatial 

rows<-sapply(IFCA$DEP_LOCID, function(x) grepl(x, 

EWR_GDP4$Canadian.Dep.Arpts.Included[i])) 

IFGDPCA = IFCA[rows,] 

###Temporal 

if(EWR_GDP4$RootNumber[i+1] == EWR_GDP4$RootNumber[i] ) { 

mint = min(EWR_GDP4$Derived.BgnDate.Time.UTC[i+1], 

EWR_GDP4$Derived.EndDate.Time.UTC[i])  

row <-which(IFGDPCA$SchIn>=EWR_GDP4$Derived.BgnDate.Time.UTC[i] & 

IFGDPCA$SchIn <=mint)} else { 

row <-which(IFGDPCA$SchIn>=EWR_GDP4$Derived.BgnDate.Time.UTC[i] & 

IFGDPCA$SchIn <= EWR_GDP4$Derived.EndDate.Time.UTC[i]) 

} 

CA = IFGDPCA[row,] 

CAGD = sum(CA$DLASCHOFF) 

CATD = sum(CA$DLASCHARR) 

CADLAA=sum(CA$DLASCHARR) 

 

##US flights 

### tick out exempted flights 

if (EWR_GDP4$Exempt.Dep.Facilities[i]!= "-") {  

rows<-sapply(IFUS$DEP_LOCID, function(x) !grepl(x, 

EWR_GDP4$Exempt.Dep.Facilities[i]))  

IFUS1 = IFUS[rows,] 

rows<- sapply(IFUS1$ARTCC, function(x) !grepl(x, EWR_GDP4$Exempt.Dep.Facilities[i]) ) 

IFGDPUS = IFUS1[rows,] 

} else{ 

IFGDPUS= IFUS 

} 

### spatial scope 

if (!grepl("ALL",EWR_GDP4$Dep.Scope[i]) ){ 

if(EWR_GDP4$DepScopeType[i] == "ARTCC") 

{ 

IFGDPUS1=IFGDPUS[sapply(IFGDPUS$ARTCC, function(x) grepl(x, 

EWR_GDP4$Dep.Scope[i] )),] 

} 

if(EWR_GDP4$DepScopeType[i] == "Radius") 

{ 

IFGDPUS1 = IFGDPUS[IFGDPUS$Mile <= as.numeric(EWR_GDP4$Dep.Scope[i]),] 

} 

}else { 

IFGDPUS1= IFGDPUS} 

### temporal scope 
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if(EWR_GDP4$RootNumber[i+1] == EWR_GDP4$RootNumber[i] ) { 

mint = min(EWR_GDP4$Derived.BgnDate.Time.UTC[i+1], 

EWR_GDP4$Derived.EndDate.Time.UTC[i])  

row <-which(IFGDPUS1$SchIn>=EWR_GDP4$Derived.BgnDate.Time.UTC[i] &  

IFGDPUS1$SchIn<=mint)} else { 

row <-which(IFGDPUS1$SchIn>=EWR_GDP4$Derived.BgnDate.Time.UTC[i] &  

IFGDPUS1$SchIn<=EWR_GDP4$Derived.EndDate.Time.UTC[i]) 

} 

 

US = IFGDPUS1[row,] 

USGD = sum(US$DLASCHOFF) 

USTD = sum(US$DLASCHARR) 

USDLAA=sum(US$DLASCHARR) 

 

##Total Delay. 

EWR_GDP4$GD[i] = as.numeric(CAGD)+ as.numeric(USGD)  

EWR_GDP4$TD[i] = as.numeric(CATD)+ as.numeric(USTD)  

##Total Delay. 

EWR_GDP4$DLAA[i] = as.numeric(CADLAA)+ as.numeric(USDLAA)  

}  

} 

 

##Efficiency 

for( j in root2$RootNumber) { 

x= EWR_GDP4[EWR_GDP4$RootNumber ==j & EWR_GDP4$AdvisoryType =="GDP" ,] 

root2$GD[root2$RootNumber ==j] = sum(x$GD) 

root2$TD[root2$RootNumber ==j] = sum(x$TD) 

root2$Eff[root2$RootNumber ==j] = root2$GD[root2$RootNumber ==j]/ 

root2$TD[root2$RootNumber ==j] 

} 

 

for (i in 1:nrow(root2)) { 

##CA flights 

###Spatial 

rows<-sapply(IFCA$DEP_LOCID, function(x) grepl(x, root2$Canadian.Dep.Arpts.Included[i])) 

IFGDPCA = IFCA[rows,] 

###Temporal 

row <-which(IFGDPCA$SchIn>=root2$Derived.BgnDate.Time.UTC[i] & IFGDPCA$SchIn <= 

root2$Derived.EndDate.Time.UTC[i]) 

CA = IFGDPCA[row,] 

CADLAP= sum(CA$DLAP) 

 

##US flights 

### tick out exempted flights 

if (root2$Exempt.Dep.Facilities[i]!= "-") {  

rows<-sapply(IFUS$DEP_LOCID, function(x) !grepl(x, root2$Exempt.Dep.Facilities[i]))  
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IFUS1 = IFUS[rows,] 

rows<- sapply(IFUS1$ARTCC, function(x) !grepl(x, root2$Exempt.Dep.Facilities[i]) ) 

IFGDPUS = IFUS1[rows,] 

} else{ 

IFGDPUS= IFUS 

} 

### spatial scope 

if (!grepl("ALL",root2$Dep.Scope[i]) ){ 

if(root2$DepScopeType[i] == "ARTCC") 

{ 

IFGDPUS1=IFGDPUS[sapply(IFGDPUS$ARTCC, function(x) grepl(x, root2$Dep.Scope[i] )),] 

} 

if(root2$DepScopeType[i] == "Radius") 

{ 

IFGDPUS1 = IFGDPUS[IFGDPUS$Mile <= as.numeric(root2$Dep.Scope[i]),] 

} 

}else { 

IFGDPUS1= IFGDPUS} 

### temporal scope 

row <-which(IFGDPUS1$SchIn>=root2$Derived.BgnDate.Time.UTC[i] &  

IFGDPUS1$SchIn<=root2$Derived.EndDate.Time.UTC[i]) 

USDLAP= sum(US$DLAP) 

 

##Total Delay. 

root2$DLAP[i] = as.numeric(CADLAP)+ as.numeric(USDLAP)  

} 

 

##Predictability 

for( j in root2$RootNumber) { 

x= EWR_GDP4[EWR_GDP4$RootNumber ==j & EWR_GDP4$AdvisoryType =="GDP" ,] 

A = sum(x$DLAA) 

root2$DLAA[root2$RootNumber ==j] = A 

} 

 

for(j in 1:nrow(root2)) { 

root2$Pred[j] = min(root2$DLAA[j], root2$DLAP[j])/ max(root2$DLAA[j], root2$DLAP[j]) 

} 

 

##Actual Arrivals 

EWRIF$ARR_YYYY = as.character(substr(EWRIF$ARR_YYYYMM,1,4)) 

EWRIF$ARR_MM = as.character(substr(EWRIF$ARR_YYYYMM,5,6)) 

 

EWRIF$ActIn = as.character(paste(EWRIF$ARR_YYYY, EWRIF$ARR_MM, 

as.character(EWRIF$ARR_DAY), as.character (EWRIF$ACTINTM))) 

EWRIF$ActIn = strptime(EWRIF$ActIn, "%Y %m %d %H:%M", tz ="America/New_York") 

for(i in 1:nrow(EWR_GDP4)) { 
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if(EWR_GDP4$RootNumber[i+1] == EWR_GDP4$RootNumber[i] ) { 

mint = min(EWR_GDP4$Derived.BgnDate.Time.UTC[i+1], 

EWR_GDP4$Derived.EndDate.Time.UTC[i])  

EWR_GDP4$ActArr[i] = 

length(which(EWRIF$ActIn >=EWR_GDP4$Derived.BgnDate.Time.UTC[i] & EWRIF$ActIn 

<=mint)) } else { 

EWR_GDP4$ActArr[i] = 

length(which(EWRIF$ActIn >=EWR_GDP4$Derived.BgnDate.Time.UTC[i] & EWRIF$ActIn 

<= EWR_GDP4$Derived.EndDate.Time.UTC[i])) 

} 

} 

 

##Capacity Utilization 

for ( j in 1:nrow(EWR_GDP4)) { 

if(!grepl("-", EWR_GDP4$ProgramRate[j])) { 

PR = as.numeric(unlist(strsplit(as.character(EWR_GDP4$ProgramRate[j]),split = "/"))) 

EWR_GDP4$AvePR[j]= mean(sum(PR)) 

} 

} 

EWR_GDP4$TotCap= EWR_GDP4$AvePR * EWR_GDP4$ActAdvisoryDuration 

 

for( j in root2$RootNumber) { 

x= EWR_GDP4[EWR_GDP4$RootNumber ==j & EWR_GDP4$AdvisoryType =="GDP" ,] 

ActArr= sum(x$ActArr) 

TotCap = sum(x$TotCap) 

root2$CU[root2$RootNumber ==j] = ActArr/TotCap 

} 

 

##Paste labels to Hrs and Advisory data 

rootevl =read.csv("EWR_GDP18-CU.csv") 

rootevl$Label = allweather12[,598] 

rootevl$Label[rootevl$Label==6] =3 

for(j in rootevl$RootNumber) { 

HrGDP2$Label[HrGDP2$RootNumber ==j] = rootevl$Label[rootevl$RootNumber == j] 

} 

for(j in rootevl$RootNumber) { 

EWR_GDP3$Label[EWR_GDP3$RootNumber ==j] = rootevl$Label[rootevl$RootNumber == 

j]} 

 

##Calculate average of each variable 

StatAna = data.frame(matrix(vector(), 12, 9, 

                dimnames=list(c(), c("TSAve","PCAve","CW0422Ave", "CW1129Ave", 

"CeilingAve", "VisAve","PRAve","ScopeAve","DurationAve"))), 

                stringsAsFactors=F) 

###Mean 

HrGDP3 = HrGDP2[!is.na(HrGDP2$Label),] 
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for( j in 1:12) { 

x = HrGDP3[HrGDP3$Label == j,] 

StatAna$TSAve[j] = mean(x$TS_hr) 

StatAna$PCAve[j] = mean(x$PC_hr) 

StatAna$CW0422Ave[j] = mean(x$CW0422_hr) 

StatAna$CW1129Ave[j] = mean(x$CW1129_hr) 

StatAna$VisAve[j] = mean(x$Vis_hr) 

StatAna$CeilingAve[j] = mean(x$CW0422_hr) 

StatAna$PRAve[j] = mean(x$PR_hr) 

} 

EWR_GDP4= EWR_GDP3[!is.na(EWR_GDP3$Label),] 

for( j in 1:12) { 

x = EWR_GDP4[EWR_GDP4$Label == j,] 

StatAna$ScopeAve[j] = mean(x$ImpArrSchIn) 

StatAna$DurationAve[j] = mean(x$Duration_Initiative) 

} 

 

##Variance of the each varirable 

library(matrixStats) 

STAT<- allweather12_P 

N = ncol(allweather12_P)+1 

for(j in 1:9) { 

j1=(j-1)*66+1 

j2=j1+64 

stat = as.matrix(allweather12_P[,j1:j2]) 

STAT[,j] = rowVars(stat) 

colnames(STAT)[j] =paste("var-",j) 

} 

for( j in 1:12) { 

x = STAT[STAT$PM12 == j,] 

StatAna$TSVar[j] = mean(x$var-1) 

StatAna$PCVar[j] = mean(x$var-2) 

StatAna$CW0422Var[j] = mean(x$var-3) 

StatAna$CW1129Var[j] = mean(x$var-4) 

StatAna$VisVar[j] = mean(x$var-5) 

StatAna$CeilingVar[j] = mean(x$var-6) 

} 

colnames(STAT)[1:6] = c("TSVar","PCVar","CW0422Var", "CW1129Var", "CeilingVar", 

"VisVar") 

StatAna= cbind(StatAna, STAT[.1:6] ) 
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Appendix B  R Code for GDP clustering  

#Part 1 import target parameters of root GDPs 

Dim = root2[,128:721] 

norm.data=Dim 

norm.data[] = lapply(norm.data, function(x) as.numeric(as.character(x))) 

 

#Part 2 normalize data for dimension reduction 

min.max.norm <- function(x){ 

    (x-min1)/(max1-min1) 

} 

 

que=c(1:2,5:9) 

for(n in que) { 

i1 = 66*(n-1)+1 

i2=i1+65 

max1 = max(na.omit(unlist(norm.data[,i1:i2]))) 

min1 = min(na.omit(unlist(norm.data[,i1:i2]))) 

for(j in i1:i2) { 

focus = which(!is.na(norm.data[,j])) 

norm.data[focus,j] = min.max.norm(norm.data[focus,j]) 

} 

} 

 

n1=3 

n2=4 

i1 = 66*(n1-1)+1 #133 

i2=66*(n2-1)+1+65 #264 

max1 = max(na.omit(unlist(norm.data[,i1:i2]))) 

min1 = min(na.omit(unlist(norm.data[,i1:i2]))) 

for(j in i1:i2) { 

focus = which(!is.na(norm.data[,j])) 

norm.data[focus,j] = min.max.norm(norm.data[focus,j]) 

} 

 

for(j in 1:ncol(norm.data)) { 

focus = which(is.na(norm.data[,j])) 

norm.data[focus,j] = 0 

} 

 

#Part 3 Autoencoders for dimension reduction (h2o platform) 

delNo = numeric() 

for(j in 1:9) { 

delNo[j]=66*j} 

norm.data1 = norm.data[,-delNo] 
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library(h2o) 

localH2O <- h2o.init(ip = "localhost", port = 54321) 

 

mfile = "C:\\Users\\Qian Fu\\Documents\\R-TMI\\new-feb\\Dim1.csv" 

# mfile = "C:\\Users\\Kexin\\Documents\\Dim1.csv" 

mydata = h2o.importFile(path = mfile) 

 

set.seed(1) 

NN_model <- h2o.deeplearning( 

x = 2:586, 

training_frame = mydata, 

hidden = c(300,2,200), 

epochs = 100, 

activation = "Tanh", 

autoencoder = TRUE, 

export_weights_and_biases=T 

) 

 

Weights1<-h2o.weights(NN_model,matrix_id = 1) 

Weights2<-h2o.weights(NN_model,matrix_id = 2) 

 

train_supervised_features = h2o.deepfeatures(NN_model, mydata, layer=2) 

plotdata = as.data.frame(train_supervised_features) 

 

# Part 3 Clustering analysis 

library(factoextra) 

library(cluster) 

 

##choose k 

###silhouette 

fviz_nbclust(plotdata, kmeans, method = "silhouette", k.max = 20) 

fviz_nbclust(plotdata, pam, method = "silhouette", k.max = 20) 

fviz_nbclust(plotdata, hcut, method = "silhouette", hc_method = "complete", k.max = 20) 

###Gap 

set.seed(123) 

gap_stat <- clusGap(plotdata, FUN = kmeans, nstart = 25, K.max = 20, B = 50) 

fviz_gap_stat(gap_stat) 

set.seed(123) 

gap_stat <- clusGap(plotdata, FUN = pam, K.max = 20, B = 50) 

fviz_gap_stat(gap_stat) 

set.seed(123) 

gap_stat <- clusGap(plotdata, FUN = hcut, K.max = 20, B = 50) 

fviz_gap_stat(gap_stat) 

 

##Plot Clustering results 
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###PAM 

pamc=pam(plotdata,10) 

pamc1 = cbind(plotdata, clusterNum =pamc$clustering)  

plot(pamc1[,1:2],col=pamc1$clusterNum, main ="PM, k=10" ) 

###HC 

hc <- hclust(dist(plotdata), method="ward.D") 

x1=cbind(plotdata, cluster = as.numeric(as.character(cutree(hc,k=10)))) 

plot (x1[,1:2],col=x1$cluster, main = "HC, k=10") 

###k-means 

cl=kmeans(plotdata,10) 

dim = cbind(plotdata, clusterNum =cl$cluster)  

plot(dim[,1:2],col=dim$clusterNum, main ="KM, k=10" ) 

 

##Visual images (using PAM) 

allweather10=cbind(norm.data,plotdata, PM10= pamc$clustering) 

allweather10_P= allweather10[order(allweather10$PM10, decreasing=FALSE),] 

usr <- par( "usr" ) 

par( mfrow = c(10,10), mai = c(0,0,0,0)) 

 

par( mfrow = c(1,1)) 

plot.new() 

par( mfrow = c(10,10), mai = c(0,0,0,0)) 

for(i in 1:nrow(allweather10_P)){ 

y = as.matrix(allweather10_P[i, 1:594]) 

dim(y) = c(66, 9) 

image(y[,ncol(y):1],axes = FALSE, col = gray(255:0 / 255)) 

box(lty = 'solid', col = 'red') 

text( usr[ 2 ], usr[ 4 ], allweather12_P[i,598],    adj = c( 2, 1 ), col = "blue" )} 


