ERA

Download the full-sized PDF of Practical Implementation Details of Multiple Point Statistical SimulationDownload the full-sized PDF

Analytics

Share

Permanent link (DOI): https://doi.org/10.7939/R3Z60C71S

Download

Export to: EndNote  |  Zotero  |  Mendeley

Communities

This file is in the following communities:

Graduate Studies and Research, Faculty of

Collections

This file is in the following collections:

Theses and Dissertations

Practical Implementation Details of Multiple Point Statistical Simulation Open Access

Descriptions

Other title
Subject/Keyword
Multiple Point Statistical Simulation
Training Image
Type of item
Thesis
Degree grantor
University of Alberta
Author or creator
Jiang, Chenyu
Supervisor and department
Boisvert, Jeff B. (Civil and Environmental Engineering)
Examining committee member and department
Deutsch, Clayton V. (Civil and Environmental Engineering)
Pourrahimian, Yashar (Civil and Environmental Engineering)
Boisvert, Jeff B. (Civil and Environmental Engineering)
Department
Department of Civil and Environmental Engineering
Specialization
Mining Engineering
Date accepted
2016-09-12T14:42:45Z
Graduation date
2016-06:Fall 2016
Degree
Master of Science
Degree level
Master's
Abstract
Best practice and recommendations for multiple point statistics (MPS) simulation are presented. Three main contributions are: (1) assessing the stationarity of training images (TI) and determining the characteristics of TI's that result in realizations that reproduce features found in the TI; (2) determining optimal input parameters of MPS simulation; (3) summarizing categorical merging rules when implementing MPS simulation in a hierarchical MPS methodology. Specifically, the first contribution is determining what type of TI is suitable for generating MPS realizations that reproduce TI features. The quality of a TI is considered here by the quality of TI features reproduced in the MPS realizations. Stationarity is assessed through dividing a TI into zones and comparing the distribution of categories, oriental features and the Euclidean distance matrix. Ten 2D TIs and six 3D TIs are assessed to determine the optimal input parameters to use in SNESIM. The optimal settings found depend on the dimensionality of the TI and include: using a 40-70-point template in 2D cases; 50 (or more) point templates with 3D TIs; square template shapes; and use of 4 or more multiple-grids. Because the quality of the realizations generated with SNESIM are found to depend on the stationarity of the TI, cut-offs for determining the stationarity level of a TI is provided and is based on its statistical assessment and predicts expected realization quality. Finally, if the TI is too complex to provide decent feature reproduction because of the number of categories, a hierarchical methodology is recommended. The TI is re-coded to a TI with fewer categories, and is simulated in multiple steps. Each simulation step is based on the results of the previous steps. Rules for combining categories are discussed: categories that share a little contact area, or are far from each other should be lumped, to keep the isolated category separated, and lumping two categories that are completely connected. With the popularity of MPS simulation, it is important to ensure a proper implementation of the methodology. The TIs analyzed are diverse and allow for the generalization of the findings in this thesis. Ten 2D TIs and six 3D TIs are assessed to determine the optimal input parameters to use in SNESIM. The optimal settings found depend on the dimensionality of the TI and include: using a 40-70-point template in 2D cases; 50 (or more) point templates for 3D non-channel-type TIs; square template shapes; and use of 4 or more multiple-grids. Because the quality of the realizations generated with SNESIM is found to depend on the stationarity of the TI, the expected realization quality can be predicted by cut-offs that determines the stationarity level of a TI. Finally, if the TI is too complex to provide decent feature reproduction because of the number of categories, a hierarchical methodology is recommended. The TI is re-coded to a TI with fewer categories, and is simulated in multiple steps. Each simulation step is based on the results of the previous steps. Rules for combining categories are discussed: categories that share a little contact area, or are far from each other should be lumped or not to be simulated together, to keep the isolated category separated, and to lump two categories that are completely connected. With the popularity of MPS simulation, it is important to ensure a proper implementation of the methodology. The TIs analyzed are diverse and allow for the generalization of the findings in this thesis.
Language
English
DOI
doi:10.7939/R3Z60C71S
Rights
This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for the purpose of private, scholarly or scientific research. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.
Citation for previous publication

File Details

Date Uploaded
Date Modified
2016-09-12T20:42:46.633+00:00
Audit Status
Audits have not yet been run on this file.
Characterization
File format: pdf (PDF/A)
Mime type: application/pdf
File size: 7628595
Last modified: 2016:11:16 15:54:33-07:00
Filename: Jiang_Chenyu_201609_Master.pdf
Original checksum: e09f439310c04dccd77868689f0c41ab
Activity of users you follow
User Activity Date