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Abstract 

Red blood cells (RBCs) are the most commonly used components in cell therapy and 

their transfusion save millions of lives every year. These benefits were only achieved through 

advances in blood banking storage techniques that guarantee an available supply of blood to 

support medical emergencies and treatments. Although use of additive solutions extends 

storage length of RBC units, the quality of stored RBCs progressively decreases during 

hypothermic storage giving rise to a series of biochemical and biomechanical changes, 

collectively known as “hypothermic storage lesion” (HSL). Since membrane integrity is an 

important predictor of RBC survival and function and constitutes one of the targets of HSL, 

this research has focused on the use of liposomes, synthetic lipid vesicles, to mitigate RBC 

membrane injury during hypothermic storage. 

This thesis tested the hypothesis that liposome treatment of stored RBCs would 

improve in vitro membrane quality resulting in reduced in vitro production of 

proinflammatory and procoagulant markers and a safe transfusion product in an anemic rat 

model. Investigations were conducted on several levels, from assessing baseline differences 

between rat and human RBCs and the effect of blood component manufacturing on rat RBCs 

to transfusion of liposome treated-RBCs in a rat model and evaluation of the impact of 

liposome treatment on hypothermic storage lesion and consequent effects on hemorheologic, 

immune and coagulatory profile of human blood banked RBCs. 

The work presented here has established a processing method more suitable for use in 

animal models of transfusion evaluating HSL as well as demonstrated the effect of DOPC 

liposomes on rat RBC hemorheology and showed for the first time the in vivo effects of 

transfusing liposome-treated RBCs in an animal model. Furthermore, it has verified the benefit
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of liposome treatment in human RBCs by fully characterizing the effects of DOPC liposomes 

on membrane and metabolic in vitro quality parameters in human RBCs during hypothermic 

storage. Finally, it has produced novel information about the potential effects of DOPC-treated 

RBCs and supernatants on the immune response using different cell types, a comprehensive 

cytokine panel and endothelial activation markers, relevant to current understanding of in vivo 

inflammatory effects. This thesis has advanced the knowledge of transfusion medicine and 

biopreservation by offering important insights into the effects of liposome treatment as a tool 

to mitigate HSL in RBCs that might lead to novel research efforts and unveil the potential of 

liposomes for biopreservation of other clinically relevant cell types.
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1.1 Red blood cells 

Red blood cells (RBCs), or erythrocytes, are anucleate biconcave discs of about 8 μm 

in diameter that are responsible for transporting oxygen to the tissues. They have an in vivo 

life span of 120 days and obtain energy from anaerobic glycolysis. They are composed of a 

flexible membrane bilayer that allows them to deform and pass through small capillaries (1). 

The main component of the cytoplasm portion is hemoglobin (Hb) a protein composed of two 

α and two β polypeptide chains (globins) each one containing a heme group with an iron 

molecule in the center, that serves as the binding site for oxygen (2).  

 

1.2 Blood banking and transfusion medicine 

Blood transfusion is a lifesaving treatment for patients with massive blood loss (i.e. 

surgery or trauma), chronic hemolytic anemias (i.e. sickle cell anemia, thalassemia) and 

decreased erythropoiesis (i.e. cancer, aplastic and chronic disease anemia), as well as a 

supportive therapy, as it optimizes oxygen delivery and tissue perfusion (3, 4). The number of 

units can range from 2-5 for surgery patients and up to 50 units for car accident victims. 

Approximately 85 million units of red blood cells are transfused globally every year (5). In 

Canada, about 850,000 RBC units were transfused into patients in 2011/2012 (6). The clinical 

benefits of blood transfusion were only made possible through the development of techniques 

to preserve ex vivo RBC viability, which allowed the blood donor and transfusion recipient to 

be separated in time and space (7).  

The first reports related to blood storage date back to World War I where it was 

collected and stored in glass bottles developed by Oswald Robertson, containing a citrate-

glucose solution discovered by Rous and Turner in 1915 that allowed blood to be stored for a 
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few weeks after collection (8). The first storage solutions, based on the one of Rous & Turner, 

composed of citrate (anticoagulant) and dextrose (nutrient) allowed blood to be stored for 3 

weeks, such as acid citrate-dextrose (ACD) and citrate-phosphate-dextrose (CPD) (8). In the 

70’s it was discovered that the addition of adenine would extend the storage time to 5 weeks, 

and so citrate-phosphate-dextrose-adenine 1 (CPDA-1) and CPD combined with saline-

adenine-glucose (SAG) started to be used (8, 9). Additive solutions, such as saline-adenine-

glucose-mannitol (SAGM) and additive solutions (AS) 1 and 3 have effectively extended RBC 

storage for up to six weeks (8, 10). In the period following the discovery of the first storage 

solution, transfusions where performed using whole blood and only in the 1950’s the 

development of a component therapy was possible, with the introduction of plastic bags by 

Walter and Murphy that replaced the glass bottles for the collection and storage of blood (11).  

 

1.2.1 RBC manufacturing methods 

In Canada, Canadian Blood Services (CBS) is responsible for blood collection, 

manufacturing and distribution across the country, with the only exception being the province 

of Quebec that has their blood supply managed by Hema-Quebec. Blood for transfusion is 

collected as whole blood and processed into different components: packed RBCs (pRBCs), 

platelets and plasma (12, 13). There are different ways of obtaining the same blood 

components (apheresis vs. whole blood collection) and variations between processing methods 

(automated vs. manual), for the purpose of this review, the focus will be on two processing 

methods currently used by CBS (13). 

With the buffy coat production method, a bag of whole blood (450 mL ± 30 mL) is 

collected in CPD anticoagulant (70 mL). After collection, the blood is cooled to room 

temperature (18-24 °C) and held overnight. The next step is centrifugation using a moderate 
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spin (3,000-3,500 x g) to separate the blood into three layers: plasma (top layer), buffy coat 

(middle layer) and red blood cells (bottom layer) (Figure 1.1A). After separation plasma is 

extracted to a top satellite bag, packed red blood cells are extracted to a bottom satellite bag 

and the buffy coat remains in the original bag. Buffy coats (four) are further pooled in plasma 

to produce a unit of pooled platelet concentrate. The additive solution SAGM (110 mL) is 

added to packed RBCs and the mixture RBCs/SAGM is further passed through a 

leukoreduction filter at room temperature, within 24 hours of collection (10, 14-16). 

With the whole blood filtration method, a bag of whole blood (450 mL ± 30 mL) is 

collected in CPD anticoagulant (70 mL). After collection, the blood is cooled and passed 

through a leukoreduction filter while refrigerated, within 72 hours of collection. The 

leukoreduced whole blood is then centrifuged using a hard spin (≥ 4500 x g) to separate 

plasma and red blood cells (Figure 1.1B). The plasma is extracted to a satellite bag and 110 

mL of SAGM is added to RBCs in the remaining bag (10, 14-16). 

The final product on both processing methods is packed leukoreduced CPD-SAGM 

RBCs. The volume ranges from 250-350 mL with a 55-65 % hematocrit (15). These RBC 

units are stored under hypothermic conditions (1-6 °C) up to a maximum of 42 days according 

to recommendations by regulatory bodies (US Food and Drug Administration and Health 

Canada). To meet regulatory standards, in Canada, RBC units must have a hematocrit of ≤ 

80% throughout storage, hemoglobin of at least 40 g/unit and hemolysis lower than 0.8% at 

expiry (17). The 24-h post-transfusion survival of RBCs must be at least 75% (18).  

Although the final product is theoretically the same, the differences in manufacturing 

have been shown to produce RBC units with different in vitro quality (15, 16). For the purpose 

of this thesis, all RBCs used were produced using the buffy coat production method, or an 
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adaptation of it that was developed on Chapter 2 to be applied to rat RBCs for further use in an 

animal model.  

1.3 RBC hypothermic storage lesion 

Although the use of additive solutions extended storage length of RBC units, the 

quality of stored RBCs progressively decreases during hypothermic storage (1-6 °C). RBCs 

undergo a series of biochemical, biomechanical and oxidative changes, collectively known as 

“hypothermic storage lesion” (HSL). Characteristics of the HSL include RBC membrane 

remodeling, decreased metabolites, loss of intracellular potassium, oxidative injury of proteins 

and lipids, membrane loss, microparticle (MP) release and ultimately hemolysis (19-22) 

(Figure 1.2).  

 

1.3.1 Effect of storage on RBC metabolome 

 

 RBCs obtain energy from the anaerobic breakdown of glucose to lactate that generates 

high-energy phosphate molecules (i.e. adenosine triphosphate - ATP) (Figure 1.3) (23). 

Metabolic activities are higher under physiological temperatures (⁓37 °C), by storing RBCs at 

4 °C the metabolic activities are slowed down guaranteeing that cells will have enough 

nutrients from additive solutions to last through their shelf life (24). Other characteristics of 

the storage medium, like pH, are also important determinants of metabolic pathways (25). 2,3-

diphosphoglycerate (2,3-DPG) is another end product of metabolism that determines the 

affinity of the hemoglobin molecule for oxygen, and therefore its production is directly 

associated with RBC’s main function of delivering oxygen to the tissues (26). Under 

physiological conditions there is a balance between the production of ATP and 2,3-DPG, but 

under storage conditions this balance is lost (27). The pH of packed RBCs at the beginning of 

storage is around 7.1, combined with the low temperature that slows down glycolysis, this 
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environment facilitates the breakdown of 2,3-DPG as the main source for obtaining ATP (28). 

Consequently an increase in ATP will be observed while 2,3- DPG decreases, and will be 

depleted after 2 weeks of storage (7). The accumulation of lactate and protons will contribute 

to further acidity of the media that will decrease glycolysis by inhibiting enzyme activity of 

hexokinase and phosphofructokinase (25), and ATP levels will continue to decline shutting 

down ion pumps and lipid transporters that are ATP-dependent.   

 

1.3.2 Effect of storage on RBC membrane and hemorheology 

 

Experimental in vitro depletion of ATP has been shown to induce shape changes in 

RBCs (29). Red cell shape during storage progressively change from biconcave disks to 

echinocytes and spherocytes (20). It is proposed that ATP modulates cells shape by 

maintaining the balance of ions between the intracellular and extracellular medium (20), as 

well as by controlling transmembrane lipid transporters and interactions between membrane 

bilayer and cytoskeleton (30). Changes in pH and accumulation of potassium and lactate have 

also been associated with shape changes (20, 31).  

Other alterations in RBC membrane during storage include oxidative damage of 

proteins and lipids and loss of lipids through membrane shedding. Autoxidation of 

hemoglobin is implicated in the generation of reactive oxygen species that will further 

contribute to oxidative damage (32, 33), while glycation (HbA1c) could contribute to 

alterations in hemorheology (34). Malondialdehyde (MDA) a marker of lipid peroxidation has 

also been detected in stored RBCs units and has been shown to increase with storage time 

(35). Lipid oxidation and protein aggregation/degradation (i.e. Band 3, Hb) could lead to 

vesicle formation from RBCs and loss of membrane (36, 37) that could account for the 

progressive decrease in deformability observed with prolonged storage (33, 38). A decrease in 
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RBC aggregation has also been reported during storage (33, 39). There are concerns that early 

removal of RBCs from circulation and/or impaired hemorheology after transfusion could be a 

consequence of these changes.  

1.3.3 Effect of storage on RBC microvesiculation 

 

Microvesiculation is the process by which extracellular vesicles (EVs) are formed and 

released in vivo and in vitro by cells in response to a variety of conditions. Cells can release a 

mixed population of EVs that based on size and origin can be divided into exosomes (~50 to 

100 nm) or microparticles (~50 to 1000 nm). Exosomes originate from multivesicular bodies, 

while MPs originate from the plasma membrane (40). Microparticles are present in blood 

under physiological conditions and their concentration may increase under pathological 

conditions and ex vivo cold storage (41). 

The loss of RBC membrane phospholipid asymmetry ultimately leads to PS 

externalization, which will culminate in MP formation and release (42). Several mechanisms 

can be attributed to MP shedding from RBCs during hypothermic storage including protein 

oxidation (43), ATP depletion (44) and increased intracellular Ca2+ concentrations (45). 

Almizraq and colleagues (2013) have reported increased MP concentration in RBC units with 

increasing storage time (46). A study by Salzer et al. (2008) compared MPs from stored blood 

to MPs produced in vitro by calcium ionophore. They found both MPs to be similar in size, in 

thrombogenic activity, and in membrane protein composition, with the major difference being 

the concentration of integral proteins stomatin and flotilin-2 (36). MPs derived from blood 

cells have been generally shown to exhibit both procoagulant and proinflammatory activities 

(41). Current strategies to preserve in vitro RBC quality prior to transfusion do not adequately 

address the loss and remodeling of RBC membrane. 
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1.3.4 Effect of storage on RBC immune and coagulatory profile 

The loss of membrane lipid asymmetry that leads to phosphatidylserine (PS) exposure 

is one of the accepted mechanisms of immunomodulatory and coagulatory properties 

associated with transfusion of stored RBCs. Phosphatidylserine is a negatively charged 

phospholipid, that remains in the inner part of the membrane bilayer under physiological 

conditions (47). Its translocation to the outer part of the bilayer signals RBC removal from the 

circulation or initiation of the clotting cascade (48-50). During storage, the decrease in ATP 

levels leads to the shutdown of ATP-dependent lipid transporter (i.e. flippase) that is 

responsible for maintaining lipid asymmetry (51). Consequently, stored RBCs and MPs will 

express more PS on their surface and that will cause them to adhere to the endothelium 

initiating an inflammatory response (52). Since PS is also a signal for removal, the larger 

number of PS expressing RBCs and MPs might also increase activation of cells from the 

reticuloendothelial system with release of cytokines (53, 54).  

In terms of coagulation, PS provides a structure for the assembly of coagulation factors 

that will initiate the clotting cascade making PS exposure a significant contributor for 

hypercoagulatory states (41, 55-57). In addition to the role of PS, it has also been proposed 

that free hemoglobin and RBC-derived MPs containing hemoglobin can uptake nitric oxide 

(NO) reducing the bioavailability of NO to the endothelium causing injury and dysfunction 

that will contribute to changes in homeostasis leading to inflammation and coagulation (58, 

59).  

Although effects of storage lesion may play a role in immunomodulation, recent 

studies attribute the immunomodulatory effects of RBC units to residual leukocytes and 

residual plasma present in RBC units that could vary with difference processing methods and 

donor characteristics such as gender and age (60).  
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1.3.5 Approaches to evaluate the impact of HSL on transfusion  

 

Many clinical concerns have led to a call to investigate HSL in vivo using animal 

models. Several animal models have been used in studies trying to show the effects of “fresh” 

vs. “old” blood transfusion. Hod and colleagues (2010) using a mouse model, showed harmful 

effects related to inflammation produced by transfusing old stored murine RBCs (61). While 

Hendrickson et al. (2011) showed that transfusing mice with fresh RBCs would reverse the 

adverse events caused by the transfusion of old RBCs (62). In rats it was shown that 

microcirculatory oxygenation is not restored with transfusion of old RBCs after hemorrhagic 

shock (63); the transfusion of fresh but not old RBCs reduced infarct size (64) and transfusion 

of old RBCs causes neuroinflammation and reduces cognitive function (65). In guinea pigs, 

old RBC transfusion has led to intravascular hemolysis, hypertension and vascular injury (66). 

In healthy dogs, it was shown that transfusion of old RBCs produces an inflammatory 

response (67) and transfusion of old blood increased mortality in canines with pneumonia 

(68). Old RBCs and RBC supernatants have also been shown to induce acute lung injury in 

rats (69) and pigs (70) and pulmonary hypertension in sheep (71). Because animal models 

demonstrated sensitivity to the effects of blood storage, and are regularly used in preclinical 

safety studies (72), a well-stablished rat model of myocardial ischemia and reperfusion was 

chosen for this project (64, 73, 74). Considering that, there are similarities between RBC 

species in terms of membrane lipid and protein composition and membrane lipid asymmetry 

(75-77).  

Animal models provide a great opportunity to understand physiology and investigate 

mechanisms of diseases and while there is no doubt about their contribution to advance 

knowledge in medical research (78), there are also many limitations and pitfalls attributed to 

these studies. Therefore, studies involving animal models to mimic clinical settings in humans, 
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need to be interpreted with caution due to limitations such as species differences, group sizes, 

simplified conditions and a possible underestimation of the adaptive response in animals (79, 

80). 

Given the in vitro data on HSL in stored RBCs and the in vivo data obtained using 

animal models, several large clinical trials further investigated the relationship between the 

age of blood transfused and adverse events in patients. The most recent ones are presented 

here, with some trials still ongoing.  

The first study to be completed was the “Age of Red Blood Cells in Premature Infants” 

(ARIPI), done in Canada evaluating premature infants. It was a double-blind, randomized 

controlled trial that evaluated 377 premature infants in a period of six years. The primary 

outcome measured was neonatal morbidities. In this study, the fresh blood group received 

RBC units that were stored for 7 days or less (3-7 d), and the old blood group received 

standard-issue RBCs in accordance with standard blood bank practice (14-22 d). They 

concluded that the use of fresh RBCs did not improve the outcomes in premature infants 

requiring blood transfusion, compared to standard-issued RBCs (81).  

The “Age of Blood Evaluation” (ABLE) was a multicenter, blinded, randomized 

controlled trial that evaluated 2,430 patients in 64 centers in Canada and Europe over a period 

of five years. The study population was critically ill adults that were assigned to receive either 

RBCs stored for less than 8 days (6.1 ± 4.9 d) or standard-issue RBCs (22.0 ± 8.4 d). The main 

outcome measure was 90-day mortality. The study concluded that, transfusion of fresh RBCs 

did not decrease mortality in critically ill patients compared to standard-issue RBCs (82, 83).  

The “Red Cell Storage Duration Study” (RECESS) was a multicenter, randomized trial 

that evaluated 1098 patients in centers across the United States over a period of four years. 

The study population was patients undergoing complex cardiac surgery. One group of patients 
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was assigned to receive RBCs stored for 10 days or less and the second group assigned to 

receive RBCs stored for 21 days or more. The primary outcome measured was the change in 

multiple organ dysfunction score (MODS: 0-24), with higher score values indicating severe 

organ dysfunction. This trial concluded that, the duration of RBC storage did not cause 

significant changes in MODS, and therefore the transfusion of fresh RBCs was not superior to 

transfusion of older RBCs among this patient population (84, 85).  

The “Informing Fresh versus Old Red Cell Management” (INFORM) was a 

multicenter, randomized controlled trial that evaluated 20,858 patients in six hospitals in 

Australia, Canada, Israel and the United States over a period of three years. The study 

population was hospitalized patients who required RBC transfusion (less than 10 units at a 

time). Patients were assigned to receive RBC units that have been stored for the shortest 

(average of 13.0 days) or the longest (average of 23.6 days) period. The primary outcome 

measured was in-hospital mortality. The study found no significant difference in mortality 

among those who received the freshest available RBCs and those who received the oldest 

available RBCs (86).  

The “Red Cell Storage Duration and Outcomes in Cardiac Surgery” is a single-center, 

randomized controlled trial that intends to evaluate 2,800 patients in The Cleveland Clinic in 

Ohio (USA). The study population is cardiac surgery patients receiving RBCs stored for 14 

days or less and 20 days or more. The outcome measured is postoperative morbidity (30 days 

post surgery) (ClinicalTrials.gov No.: NCT00458783) (87).  

The “Standard Issue Transfusion Versus Fresher Red Blood Cell Use in Intensive 

Care” (TRANSFUSE) is a multi-center, double blind, randomized controlled trial that intends 

to evaluate 5,000 patients in Australia, New Zealand, Europe and the Middle East. The study 

population is critically ill intensive care unit adult patients receiving standard of care blood 
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transfusions (oldest RBCs) or freshest available RBCs. The primary outcome measured is 90-

day mortality (ClinicalTrials.gov No.: NCT01638416) (88, 89). 

 So far, all these large clinical trials seemed to come to the same conclusion: that fresh 

blood is not superior to standard-issue blood. However because what they considered “old” 

was blood stored for only 21-28 days, they were not able to answer the question of whether 

old blood (35-42 days) is harmful. This question is difficult to be addressed by clinical trials 

because of ethical concerns of assigning patients to receive only extremely old blood, based on 

the in vitro data showing the presence of the storage lesion. Therefore, more research is 

needed to understand the impact of HSL in transfused patients.  

 

1.3.6 Approaches to minimizing HSL 
 

Additive solutions maintain some aspects of RBC quality and function but many 

remain unaddressed as previously described in section in 1.3. Alternate solutions have been 

investigated in order to decrease cell injury during storage, such as anaerobic storage, the use 

of plasticizers, rejuvenating solutions and a new generation of additive solutions.  

 The anaerobic storage proposition is based on the fact that RBCs stored under aerobic 

conditions undergo oxidative damage, that affects lipids and proteins. Therefore, by removing 

oxygen at the beginning of storage and maintaining the oxygen-free environment throughout 

storage, would stop hemoglobin denaturation pathways and other oxidative reactions 

facilitated by oxygen and result in improved cell quality (90). The anaerobic condition is 

achieved by equilibrating RBC with argon gas prior to refrigeration, then the blood bag is 

stored in a canister containing argon and hydrogen gases in a proportion of 9:1 (90). 

Anaerobic storage has been shown to extent RBC storage time up to 9 weeks (91, 92). A 

clinical study using anaerobic stored RBCs have shown superior in vivo recovery at 6 weeks 
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compared to control aerobic stored RBCs and comparable recovery values at 9 weeks of 

storage, after autologous transfusion (93).  

Plastic collection bags became commercially available in the 1960’s and replaced glass 

bottles for storage of blood components (8). Bags are made of the synthetic plastic polymer 

polyvinyl chloride (PVC), which is very stiff and therefore requires the addition of a 

plasticizer to confer flexibility (94, 95). The plasticizer most commonly used is diethylhexyl 

phthalate (DEHP), and can make up to 40% of the total weight of a PVC film (94). DEHP has 

also been shown to interact with RBCs by entering their membrane and reducing hemolysis 

and membrane loss through microvesiculation (8). However, concerns about the toxicity and 

carcinogenicity of DEHP (96) have led to investigations of new plasticizers that could 

possibly replace DEHP in terms of positive interactions with RBCs without the potential 

health hazard (95). Possible replacements being investigated include: butyryltrihexylcitrate 

(BTHC) and 1,2-cyclohexane-dicarboxylic acid diisononyl ester (DINCH). An earlier study 

evaluating BTHC have shown protection against hemolysis, attributed to the BTHC 

component hexanol, and similar levels of ATP and lipid membrane loss compared to DEHP 

(97). A more recent study comparing DEHP, BTHC and DINCH bags showed that BTHC 

conferred less protection against vesiculation, osmotic stress and hemoglobin leakage 

compared to DEHP and DINCH bags (98). Another study also confirmed the lower 

performance of BTHC bags and added that DINCH bags maintained better ATP levels 

compared to DEHP (99). The use of PVC-free bags has also been investigated with the use of 

polyolefin (PO) that does not require a plasticizer. One study evaluating PO bags found no 

superior effects in terms reducing hemolysis and maintaining ATP levels compared to regular 

PVC bags (100), while a more recent study using similar bags did not include a comparison 

with regular PVC bags and therefore results are difficult to interpret (101).  
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Building on the improved understanding of additive solutions and the impact its 

components have on RBC quality, rejuvenating solutions were created. A better understanding 

of the conditions that modulated metabolic pathways of RBCs as well as the role of 2,3-DPG 

in oxygen affinity in the late 60’s (102, 103) led to studies investigating methods to restore 

metabolites in stored RBCs, especially 2,3-DPG, in the early 70’s using pyruvate, inosine and 

phosphate (PIP) (104-106). Valeri & Zaroulis from the Naval Blood Research Laboratory 

(Chelsea, MA, USA) first used the term “rejuvenation” in a publication of 1972 (106). 

Another military research followed in 1974 by DeVenuto and colleagues from the Army 

Medical Research Laboratory (Fort Knox, KY, USA), continuing with the term rejuvenation 

and adding adenine to the PIP mix (107), originating the PIPA solutions that are still used 

nowadays. Rejuvenation solutions aim to boost RBC metabolism by providing substrates 

needed for the Embden-Meyerhof glycolytic pathway (generation of ATP) and the Rapoport-

Luebering shunt (generation of 2,3-DPG) (Figure 1.3) (108). Many studies have documented 

the effects of rejuvenation on stored RBCs including restoration of 2,3-DPG and ATP levels, 

improved morphology and decreased adhesion to the endothelium (109-111).  

Rejuvenation is a time consuming process and RBCs can only be stored for up to 24 h 

after rejuvenation, therefore logistically it would be more advantageous if the additive 

solutions could provide similar benefits. There are several ASs currently licensed for use in 

different countries including ADSOL (AS1), Nutricel (AS3), Optisol (AS5) and SAGM, with 

slightly variations in their composition but generally hypertonic solutions, which focus on 

maintaining the metabolic function of RBCs during storage, but fail to prevent membrane loss 

and consequent MP formation (46, 112).  Recently, next-generation ASs have been developed 

(i.e. Erythro-Sol 5 and SOLX or AS7) and they differ from conventional ASs in the sense that 

they are buffered and more hypotonic (112-114). So far, SOLX is the only next-generation AS 
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to obtain approval from US Food and Drug Administration (FDA). The new solution has been 

shown to reduce storage lesion (115), to limit the effect of overnight room temperature-hold of 

whole blood on RBC biochemical variables (116) and to extend shelf-life from 6 to 8 weeks 

(although the FDA approval is limited to the 6 week period) (114). The beneficial effects of 

this new additive solution seem to be provided by metabolic modulation as a study by 

D’Alessandro and colleagues suggests that the new formulation improves energy and redox 

metabolism in stored RBCs (117). 

1.4 Liposomes as an approach to HSL

 

 

As highlighted in section 1.3.2, membrane remains a prominent target of HSL not 

completely addressed by current preservation approaches. In the meantime previous studies 

have shown that liposomes conferred membrane protection during freezing (118, 119) and 

lyophilization (120). Liposomes are defined as microscopic lipid vesicles composed of a 

central aqueous core surrounded by one or more phospholipid bilayers (Figure 1.4). They can 

be classified in terms of size, lamellarity and preparation method (121).  

Liposomes constitute an important tool for preservation of RBCs not only because of 

their delivery capacity, but also because the lipids present in the liposomes themselves can act 

as membrane stabilizers. Mature RBCs lose the capacity to synthesize phospholipids, so they 

rely on lipid exchange with plasma lipoproteins to renew their membrane phospholipids and 

acylation of lysophospholipids (122-124). In the blood bank processing of whole blood into a 

packed RBC unit, the lipoproteins remain in the plasma fraction, which is separated from 

RBCs. Therefore, during the next 42 days of storage following manufacturing, RBCs no 

                                                           
 Reproduced with permission. Multiscale Technologies for Cryomedicine - Implementation from Nano to 

Macroscale, Chapter 9: Application of liposomes in biopreservation (301-27), da Silveira Cavalcante L, Holovati 

JL, Acker JP, Copyright 2016, World Scientific Publishing Co. Pte. Ltd.  
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longer have a source of lipid exchange relying exclusively on acylation reactions that are 

normally reduced during storage (125).  

 

1.4.1 Structural components and characteristics 

 

Composition 

Liposomes are mainly composed of phospholipids and cholesterol. Phospholipid 

molecules are composed of a hydrophilic head group (e.g. phosphatidylcholine, 

phosphatidylethanolamine), a glycerol backbone and two hydrophobic fatty acids (e.g. 

palmitic, oleic, stearic) (Figure 1.5) (126). They can be extracted from natural sources (i.e. 

egg, soy, tissues) or artificially synthesized (127).  

Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) phospholipids are the 

major constituents of cell membranes and therefore the major constituents of liposomes 

designed for biological applications (128, 129). The fatty acid portion can vary in number of 

carbon atoms and degree of unsaturation, and are important determinants of the liposome-cell 

interaction.  

Liposomes containing phospholipids with short fatty acid chains (12–14 carbons) have 

been shown to induce cell lysis, probably due to extraction of cholesterol from the cell 

membrane or rapid uptake and replacement of the native phospholipid by the short chain 

phospholipid. Either mechanism results in destabilization of the cell membrane with 

consequent lysis (130-132).  

Unsaturation refers to the presence of double bonds on the fatty acid chain, numbers 

can range from zero (saturated) up to six double bonds in each chain. Unsaturated fatty acids 

(i.e. oleate-18:1 and linoleate- 18:2) have been shown to be less toxic to bilayer membranes 

than saturated ones (i.e. palmitate- 16:0) (133). Although literature reports have shown that 



17 
 

liposomes composed of unsaturated fatty acids had better preservation effects for freeze-dried 

and freezing of human red blood cells, while liposomes composed of saturated fatty acids 

conferred protection for hypothermic storage (1-6 °C) of human red blood cells (120, 134).  

Cholesterol (another major component of cell membranes) is also normally included in 

the liposome preparation as it improves the fluidity and stability of the bilayer (135). 

Size and lamellarity 

Size and lamellarity are the most common properties used to classify liposomes, and 

less frequently, the preparation method. In terms of size, they can be divided into small (~ 100 

nm), large (~ 400 nm) and giant (> 1 µm) vesicles. In terms of lamellarity they can be divided 

into unilamellar (ULV), multilamellar (MLV) and multivesicullar (136, 137).  

Size should be considered for delivery purposes, if a substance has protective effects in 

a dose-dependent manner, large liposomes are able to entrap a larger volume of the substance 

to be delivered. Liposome size has also been implicated in interactions with the immune 

system. Liposomes larger than 100 nm can induce secretion of various types of cytokines 

(138-140).  

Lamellarity, on the other hand, is related to the release capacity, where more layers 

means slower release. The characteristics of the molecules to be encapsulated also play a role 

in deciding between ULVs and MLVs. ULVs are more efficient for encapsulation of 

hydrophilic molecules due to increased internal aqueous volume, while MLVs having more 

lipid content are capable of encapsulating larger amounts of hydrophobic molecules (141).  

Surface charge 

The head group composition of the phospholipid and pH will determine the surface 

charge of liposomes. Liposomes composed of PC, sphingomyelin (SM) and PE (pH 7–7.4) 

will have a neutral charge. Liposomes containing phosphatidic acid (PA), PS and 
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phosphatidylglycerol (PG) (pH 7–7.4) will have a negative charge. Liposomes containing 

trimethylammonium (i.e. DOTAP) or sterylamine (SA) (pH 7–7.4) will have a positive charge 

(126, 142).  

Surface charge is particularly important for fusion of liposomes and cells, which will 

increase the delivery of intra-liposomal content. Holovati and colleagues (2008) reported a 

100 times increase in the delivery of trehalose from negatively charged liposomes (containing 

PS) compared to neutral liposomes, under the same incubation conditions (143). Charge can 

also determine the toxicity as well as the interaction of liposomes with the immune system in 

vivo, which will determine how long they stay in the circulation (144). Cationic liposomes 

interact with plasma proteins causing turbidity and have been shown to cause dose-dependent 

cytotoxicity (145). They are also rapidly cleared from the circulation by macrophages due to 

activation of the complement system (146). Anionic liposomes are taken up by phagocytic 

cells at faster rates than neutral liposomes in an unclear mechanism (147). Neutral liposomes 

are reported as not inducing any detectable toxicity. The issue of reduced half-life has been 

addressed by coating the liposomes with polyethylene glycol (PEGylated or stealth liposomes) 

to suppress the uptake and increase circulation time (148). 

 

1.4.2 Mechanisms of liposome-RBC interaction 

 

Four types of liposome-cell interactions have been described in the literature: 

endocytosis, lipid transfer, adsorption and fusion (149, 150). Endocytosis involves the 

internalization of vesicles by cells (i.e. pinocytosis or phagocytosis) (151). Since is it generally 

accepted that mature RBCs do not exhibit phagocytic activity, endocytosis as a mechanism of 

interaction would not be possible, nor the most desired for successful membrane manipulation 

(152). The remaining possible mechanisms have been previously reported for liposome-RBCs 
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using unilamellar vesicles (134, 153) and are usually dependent on liposome characteristics 

such as surface charge, composition and incubation temperature (Figure 1.6). Lipid transfer is 

characterized as the transfer of cholesterol and/or phospholipids from liposomes to cell 

membranes and vice-versa, the specific molecular process is not well-understood but it might 

involve transfer proteins (154).  Adsorption is defined as the binding of intact liposomes to the 

cell surface and it could be receptor-mediated or nonspecific (155, 156). Fusion occurs when 

liposome and plasma membrane merge, following the release of their content (if loaded) into 

the cytoplasm (153, 157).   

1.4.3 Previous studies on liposomal delivery system for cryopreservation of red blood cells 

Our research group has conducted several studies on liposomal delivery for 

cryopreservation of RBCs that served to guide the liposome work presented on this thesis. The 

main findings are summarized below. 

Stress conditions are associated with ice formation that accompanies low temperatures, 

our group has proposed that delivering of liposome phospholipids through liposome 

incorporation into RBC membranes may provide an effective approach for reducing cell 

cryoinjury. The studies showed that liposome treatment significantly improved recovery and 

membrane integrity of human RBCs following low temperature exposure (119, 158). 

Liposomes modulated the RBC freezing response, resulting in cell cryoprotection and, thus, 

behaving as a novel cryoprotectant. The extent of liposome-RBC interaction was shown to 

play an essential role for cryoprotection as charged trehalose-containing liposomes were more 

effective at protecting RBCs against cryoinjury than uncharged liposomes (119, 158). While 

both trehalose- and salinecontaining liposomes improved RBC post-thaw recovery, there was 

no cryoprotection when negatively charged lipids in the free and multilamellar form were 



20 
 

incubated with RBCs (119). These results suggested that liposomes in the form of defined 

unilamellar vesicles are necessary to confer cryoprotection to RBCs. Liposome-treated RBCs 

showed an improved post-thaw survival if extracellular freezing solutions contained trehalose 

or liposomes. Furthermore, important evidence was shown that the liposome cryoprotective 

effect is not due to the delivery of intracellular trehalose, but is likely related to modification 

and/or preservation of the RBC membrane (119). 

In a follow-up study, they have evaluated the effects of DMPC, DOPC, and DPPC 

liposomes on in vitro quality of RBCs cryopreserved with known extracellular 

cryoprotectants, hydroxyethyl starch (HES) and trehalose (159). This approach also involved 

combining cryoprotectants with different mechanisms of action to maximize potential 

cryoprotection: large unilamellar liposomes composed of DPPC, DMPC or DOPC lipids, 

trehalose and HES (159). This study demonstrated that DMPC liposomes (short fatty acid 

chain) caused hemolysis even before the cryopreservation step, negatively affecting 

hemorheologic properties of RBCs. RBCs treated with DPPC and DOPC liposomes 

significantly increased cell membrane permeability, resulting in loading of intracellular 

trehalose (159). In addition to the membrane stabilizing benefits of the liposome treatment, 

HES conferred additional cryoprotection during cryopreservation (159). The synergistic 

protective effects of trehalose, DOPC liposomes and HES potentially hold promise for the 

development of new cryopreservation methods for RBCs. 

1.4.4 Liposomal delivery system for hypothermic storage of red blood cells 

 

Numerous studies using RBCs as membrane models have utilized liposomes as means 

for modifying the composition of membranes and have documented the effect of these 

manipulations (152, 160, 161).  
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Liposomes containing only phospholipids (162) or cholesterol-poor formulations (less 

than 1.0 C/P ratio) are known to deplete cholesterol from RBC membranes, destabilizing the 

membrane, increasing the permeability to ions and resulting in hemolysis. The addition of 

cholesterol to the formulation can prevent these effects. However, cholesterol-rich 

formulations are also not ideal (more than 1.0 C/P ratio) since cholesterol will then be 

transferred from liposomes to RBC membrane and can result in decreased red cell 

deformability (163).  

Short-chain phospholipids and lysophospholipids are also known to cause hemolysis 

probably due to a rapid insertion and accumulation into the RBC membrane that leads to 

destabilization (131, 132, 164). Kuypers and colleagues (1984) observed that shape changes 

were induced by replacement of native PC of human RBCs by liposomes composed of other 

PC species containing different fatty acid compositions. They concluded that the RBC 

membrane structure and the overall discoid cell shape are optimally stabilized by PC species 

that contain one saturated and one mono- or diunsaturated fatty acid, and that the cell tolerates 

only limited variations in the species composition of its PC (165). Acker and colleagues 

(2010) have examined the effect of liposome treatment on RBC membrane quality during 

hypothermic storage and the results indicated that RBCs react differently to liposomes with 

varied fatty acid compositions.  

RBCs incubated with liposomes containing phospholipids with higher degree of 

unsaturation and shorter acyl chain length had higher percent hemolysis after 42 days of 

storage. In terms of deformability, RBCs treated with liposomes containing phospholipids 

with saturated acyl chains maintained better membrane deformability during hypothermic 

storage (166). A curious fact is that RBCs from different species will have different 

preferences in terms of fatty acid saturation. In the previous works mentioned above, the 
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liposomes were not loaded with any active compounds, so the improvements observed in 

hemolysis and deformability were attributed solely to lipid exchange or adsorption of 

liposomes to the RBC membrane that could result in either membrane lipid renewal or a 

“coating” effect (119).  

 

1.5 Thesis approach 

Several in vitro changes of stored RBCs have been documented in literature and 

although large clinical trials have not shown differences between fresh and standard-issue 

blood the question of whether long stored blood is harmful or not, remains. Since reducing the 

shelf life of RBCs would cause many logistical challenges, it is important to invest in efforts 

that lead to better preservation of the current transfusion products that we have available. 

Since the cell membrane plays an important role in post transfusion survival and oxygen 

delivery capacity of RBCs (167), this research will focus on the use of liposomes to mitigate 

RBC membrane injury during hypothermic storage. 

 The first part of this thesis focus on evaluating liposomes as strategy to preserve RBCs 

using an animal model as means of detecting any undesired effects that would compromise the 

use of liposomes for the purpose of RBC preservation for transfusion. The second part focus 

on applying the liposome treatment to blood banked human RBCs while tracking the in vitro 

effects on hemorheology, immune and coagulation profile using a comprehensive panel of 

assays. The last part of this work evaluate combining the liposome approach with the 

rejuvenation approach introduced on section 1.2.5, as PIPA solutions have demonstrated 

benefits on restoring metabolism. The National Heart, Lung and Blood Institute (NHLBI) 

Working Group on Strategies to Optimize RBC Products has established that “development of 

improved RBC storage/rejuvenation solutions” among others as a scientific priority (168). 
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This thesis will contribute to this effort by analyzing thoroughly a novel approach to RBC 

HSL, as well as the combination of this new approach to already established ones and will 

discuss this strategy and its potential for use and implementation in biopreservation.  

 

1.6 Hypothesis and thesis objectives 

This thesis will test the hypothesis that liposome treatment of stored RBCs will 

improve in vitro membrane quality resulting in reduced in vitro production of 

proinflammatory and procoagulant markers and a safe transfusion product in an anemic rat 

model. The thesis consists of experimental studies with five specific research aims (SRAs): 

SRA 1: To evaluate baseline differences between rat and human RBCs in SAGM and 

investigate the impact of component manufacturing and additive solutions on rat RBCs 

(Chapter 2) 

SRA2: To evaluate different liposome formulations on in vitro rat RBC quality parameters, as 

well as the safety of transfusing liposome-treated rat RBCs in an anemic rat model (Chapter 3) 

SR3: To evaluate the impact of liposome treatment time on human RBCs and to assess the 

impact of liposome treatment on MP release, hemolysis and hemorheology in human RBCs 

during hypothermic storage (Chapter 4) 

SR4: To examine the effect of fresh and stored liposome-treated RBCs and RBC-derived MPs 

on in vitro markers of inflammation and coagulation compared to non-treated RBCs (Chapter 

5) 

SR5: To investigate a possible synergistic effect of liposome treatment combined with 

rejuvenation treatment (Chapter 6) 



24 
 

Figure 1.1: Blood processing methods. Schematic representation of blood processing (A) 

buffy coat production and (B) whole blood filtration methods. WB = whole blood, LR = 

leukoreduction. 
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Figure 1.2: Hypothermic storage lesion. Main elements of RBC hypothermic storage lesion.  
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Figure 1.3: Energy metabolism in red blood cells. Overview of the pathways of glucose 

metabolism. 
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Figure 1.4: Liposome and phospholipid bilayer structure. Representation of the 

phospholipid bilayer structure in liposomes. 

Reproduced with permission. Multiscale Technologies for Cryomedicine - Implementation from Nano to 

Macroscale, Xiaoming He & John C Bischof, Copyright 2016, World Scientific Publishing Co. Pte. Ltd. 
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Figure 1.5: Phospholipid structure. Schematic structure of phospholipid composed of fatty 

acid chains, glycerol backbone and the headgroup (choline). 

Reproduced with permission. Multiscale Technologies for Cryomedicine - Implementation from Nano to 

Macroscale, Xiaoming He & John C Bischof, Copyright 2016, World Scientific Publishing Co. Pte. Ltd. 
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Figure 1.6: Liposome interactions with red blood cells. Schematic representation of 

possible liposome-RBC interactions. 
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2.1 Introduction 

Blood transfusion is a lifesaving treatment for patients with massive blood loss and 

chronic anemia and a supportive therapy to optimize oxygen delivery and tissue perfusion in 

critical illness (1, 2). The clinical benefits of blood transfusion were made possible through the 

development of techniques to preserve cell viability ex vivo, allowing the blood donor and 

transfusion recipient to be separated in time and space (3). In the 1960’s, with the introduction 

of plastic blood bags (4), whole blood transfusion was replaced with specific blood component 

therapy - RBCs, platelets, plasma and plasma components - translating the life-saving benefits 

of one whole blood donation to up to four transfusion recipients (5). Currently packed RBCs 

(pRBCs), the most highly used blood component, are produced by two common component 

manufacturing methods: the whole blood filtration method and the buffy coat method (6, 7). 

The general procedure is similar for both techniques: whole blood is centrifuged, plasma and 

RBCs are separated and RBCs are resuspended in an additive solution, commonly 

accompanied by leukoreduction (7). Additive solutions, such as SAGM and AS3, contain 

nutrients RBCs need to survive ex vivo and have effectively extended RBC storage for up to 

six weeks (4). SAGM is widely used in blood banks in Europe, Australia and Canada, while 

AS3 is mainly used in the United States (8). 

Although use of additive solutions extends the storage length of pRBC units, the 

quality of stored RBCs progressively decreases during hypothermic storage. RBCs undergo a 

series of biochemical and biomechanical changes, collectively known as the “hypothermic 

storage lesion” (9). Characteristics of the HSL includes RBC membrane remodeling, 

decreased metabolites, such as ATP and 2,3-DPG, loss of intracellular potassium, oxidative 

injury of protein structures and lipid peroxidation, membrane loss, vesiculation and ultimately 
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hemolysis (10-12). There are increasing concerns regarding the effect of the HSL on 

hemorheology, including RBC aggregability, deformability and membrane remodeling, effects 

that could potentially lead to impairment of the oxygen delivery capacity of transfused blood 

(13-15). As a consequence, the active debate on the clinical impact of stored RBCs has given 

rise to large clinical trials about the use of “fresh” vs. “old” RBCs (16-18).  

The effect of the HSL on RBC quality during storage has also rejuvenated research 

efforts into novel additive solutions for better preservation of RBC ex vivo quality and 

function (19). Animal models are often used as a translational tool to understand the 

mechanisms behind the ageing of blood cells and possible clinical effects related to the quality 

of stored blood (20). Therefore, understanding biological differences between RBCs from 

animal model species and humans, as well as the effect of blood component manufacturing 

processes on cell quality are the first step in animal translational studies.  

Previous studies have addressed the quality of rat RBCs using CPDA-1 as the additive 

solution; however, CPDA-1 is not widely used today in blood component manufacturing. To 

my knowledge, no study has been done using the current additive solutions for pRBC storage: 

SAGM or AS3. The differences in quality parameters between human RBCs in SAGM and 

AS3 are well documented in the literature, but this information is not available for rat RBCs 

(21). Also, little is known about the effects of component manufacturing and leukoreduction 

methods on the parameters important for RBC hemorheology, including deformability, 

aggregation and microvesiculation in rat RBCs. Therefore, the aim of this study was to 

evaluate baseline differences between rat and human RBCs in SAGM, including in vitro 

quality assays to examine membrane-related and hemorheology parameters. In addition, I 

investigated the impact of the buffy coat component manufacturing method on rat RBCs and 
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the effects of different additive solutions. Ultimately, the goal was to establish a rat pRBC 

production method that closely mimics human pRBC techniques current in use that can be 

applied in rat models of transfusion studying the HSL and novel RBC biopreservation 

strategies. 

 

2.2 Materials and Methods 

2.2.1 RBC collection and manufacturing 

Ethics approval for the study was granted by the Canadian Blood Services and the 

University of Alberta Research Ethics Boards. Rat whole blood (n=6) was obtained from 

Sciences Animal Support Services (SASS) under the Animal Care & Use Committee for 

Biosciences (University of Alberta). The Sprague-Dawley rats were all male, between 8 and 9 

weeks old with an average weight of 300 g. The blood was collected after anesthesia into 10 

mL citrate-phosphate-dextrose (CPD) anticoagulant vacuum tubes (Haematologic 

Technologies Inc., Essex Junction, VT) by cardiac puncture. Harvested blood was centrifuged 

(2,200 x g, 10 min at 4 °C), and the plasma and buffy coat were removed by aspiration. The 

pRBCs were divided into two aliquots. One aliquot was resuspended in SAGM (MacoPharma, 

Mouvaux, France) and the second aliquot in AS3 (Haemonetics Corporation, Braintree, MA).  

Both maintained a proportion of 1:2 AS:RBC (vol/vol) and were leukoreduced at room 

temperature using 10.0 µm Versapor® membrane syringe filters (Pall Corporation, Ann Arbor, 

MI). Before leukoreduction, percent hemolysis was measured in both CPD-SAGM RBCs and 

CPD-AS3 RBCs. Immediately after leukoreduction, in vitro quality of CPD-SAGM RBCs and 

CPD-AS3 RBCs was analyzed, including percent hemolysis, ATP, 2,3-DPG, hematological 

indices, deformability, aggregation and microvesiculation, as described below. 
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After informed consent, human whole blood from six healthy volunteers was collected 

by venipuncture into CPD anticoagulant tubes. The blood was processed following the same 

method described above for rat blood. In vitro quality was analyzed within 3 hours of 

collection and included percent hemolysis, osmotic fragility, ATP, 2,3-DPG, supernatant 

potassium concentrations, hematological indices, deformability, aggregation and 

microvesiculation, as described below.   

 

2.2.2 RBC in vitro quality assessment 

 

Percent hemolysis  

RBC hemolysis, which represents RBC breakdown and release of Hb as a marker of 

membrane damage and rupture, was measured spectrophometricaly using the 

cyanmethemoglobin method of Drabkin (22). In this method, RBCs and supernatants were 

diluted in Drabkin’s reagent (0.61 mM potassium ferricyanide, 0.77 mM potassium cyanide, 

1.03 mM potassium dihydrogen phosphate, and 0.1 % triton X-100). The reagent converts 

most types of Hb to cyanmethemoglobin (HiCN) in a two-step reaction. First, hemoglobin is 

oxidized to methemoglobin that subsequently reacts with cyanide to form HiCN. HiCN’s 

absorbance was measured at 540 nm on a spectrophotometer SPECTRAmax PLUS 384 

(Molecular Devices Corporation, Sunnyvale, CA, USA). HiCN’s absorbance is directly 

proportional to hemoglobin concentration, hemoglobin concentration was calculated according 

to the equation below (23):  

 

𝐶 =
 𝐴540 𝑥 𝑀 𝑥 𝐹 

ɛ540 𝑥 𝑙 𝑥 1000
 

 

(Eq. 2.1) 
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Where:  C= concentration of hemoglobin (g/L)  

  A540 = absorbance of the solution at 540 nm  

M = molecular mass of hemoglobin monomer (16114.5 mg/mmol)  

F = dilution factor  

ɛ540 = extinction coefficient of HiCN at 540 nm (11.0 cm-1·mM-1) 

l = light path (cm) 

Once supernatant and total hemoglobin values have been determined, the percent 

hemolysis was calculated as a ratio of the supernatant hemoglobin to the total Hb, with the 

hematocrit (Hct), measured by microhematocrit from the following equation (24): 

 

% ℎ𝑒𝑚𝑜𝑙𝑦𝑠𝑖𝑠 =
  𝐻𝑏𝑆 

𝐻𝑏𝑇
 𝑥 (1 − 𝐻𝑐𝑡) 

 

(Eq. 2.2) 

 

Where: Hct = hematocrit  

 HbS = supernatant hemoglobin (g/L) 

 HbT = total hemoglobin (g/L) 

Commercial tri-level hemoglobin controls (low, medium and high ranges) were used as 

controls for total hemoglobin (Stanbio Laboratory, Boerne, TX). 

 

Osmotic fragility 

Osmotic fragility was determined using a series of saline solutions with concentrations 

ranging from 0.0 g/L to 9.0 g/L. When RBCs are exposed to hypotonic solutions the cells will 

begin to swell and will eventually burst releasing hemoglobin. As hemoglobin absorbs light at 

540 nm, the amount of hemoglobin can be measured and percent hemolysis calculated. 

                                                           
 Osmotic fragility was performed by HYRS student Diana Yu under my supervision.  
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Briefly, 10 µL of each RBC sample was added to 1000 µL of each saline solution. After a 30-

minute incubation period, samples were spun at 2,200 x g for 5 min and the percent hemolysis 

was measured at 540 nm on a spectrophotometer SPECTRAmax PLUS 384 (Molecular 

Devices Corporation). Percent hemolysis in each saline solution was plotted against the saline 

solution concentration to determine the concentration that produced 50% hemolysis; this 

parameter was reported as mean corpuscular fragility (MCF). If the cells are less fragile they 

can tolerate more dilute solutions and the curve will be shifted to the left relative to the control 

curve  (25). 

 

ATP 

ATP concentrations were determined enzymatically using a commercially available kit 

and controls (DiaSys Diagnostic Systems GmbH, Holzheim, Germany). RBC samples were 

added to 10% trichloroacetic acid, vortexed and placed on ice. After centrifugation, clear 

supernatants were combined with the substrates (glucose and NAD+) and enzymes 

(hexokinase and glucose-6-phosphate dehydrogenase) required for the enzymatic reaction to 

occur. ATP from the sample is used in two chemical reactions, which ultimately convert 

glucose into 6-phosphogluconate and NADH. The amount of NADH produced, which is 

proportional to the amount of ATP in the sample, was measured at 340 nm on SPECTRAmax 

PLUS 384 spectrophotometer (Molecular Devices Corporation) using the following equation: 

 

𝐴𝑇𝑃 (
𝜇𝑚𝑜𝑙

𝑑𝐿
) =

∆𝐴 𝑥 𝑉𝑠𝑎𝑚𝑝𝑙𝑒 𝑥 𝐹 𝑥 100

ɛ340 𝑥 𝑙 𝑥 𝑣
 

 

 

(Eq. 2.3) 

 

Where:  ∆𝐴 = (absorbance of the sample) – (absorbance of the blank) at 340 nm 
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  Vsample = sample volume used in the assay (µL) 

F = dilution factor for sample 

ɛ340 = extinction coefficient of NADH at 340 nm (6.3 cm-1·mM-1) 

l = light path (cm) 

 v = total reaction volume (µL) 

The amount of ATP in the sample was calculated as µmol/dL; this was further 

normalized using the total Hb concentration (µmol/g Hb) (25). 

 

2,3-DPG 

2,3-DPG concentrations were determined using a commercially available kit according 

to manufacturer’s instructions (Roche Diagnostics GmbH, Mannheim, Germany). RBC 

suspension was mixed with 0.6M perchloric acid and centrifuged to obtain supernatant. 

Supernatant was then mixed with 2.5M potassium carbonate to neutralize the perchloric acid 

and centrifuged again to obtain supernatant, used subsequently for 2,3-DPG measurement. 

2,3-DPG from RBCs is used in the series of six chemical reactions, that ultimately result in 

production of glycerol-3-phosphate and consumption of two NADH molecules per each 2,3-

DPG molecule. NADH absorbance was measured at 340 nm on SPECTRAmax PLUS 384 

(Molecular Devices Corporation). The decrease of absorbance at this wavelength is equivalent 

to the amount of NADH that has been consumed in the reaction. The concentration of 2,3-

DPG is indirectly related to the amount of NADH remaining in the reaction mixture (26). 2,3-

DPG concentration in test samples was calculated using SoftMax Pro software (Molecular Devices 

Corporation) according to the equation below:  

 

2,3 − DPG (
mmol

L
) =

∆𝐴 𝑥 𝑉𝑠𝑎𝑚𝑝𝑙𝑒 𝑥 𝐹

2 𝑥 ɛ340 𝑥 𝑙 𝑥 𝑣
 

(Eq. 2.4) 
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Where:  ∆𝐴 = (absorbance of the sample) – (absorbance of the blank) at 340 nm 

  Vsample =  sample volume used in the assay (µL) 

F = dilution factor for sample 

ɛ340 = extinction coefficient of NADH at 340 nm (6.3 cm-1·mM-1) 

l = light path (cm) 

 v = total reaction volume (µL) 

Distilled water was used as a blank and an in-house made 2,3-DPG control (2.5 

mmol/L) was prepared from 2,3-Diphospho-D-glyceric acid pentasodium salt (SIGMA, St. 

Louis, USA). Final 2,3-DPG concentrations were adjusted to the Hb content of each sample 

and reported as µmol/g Hb. 

Supernatant potassium  

RBC samples were centrifuged at 2,200 x g for 10 minutes at 4 °C to obtain 

supernatants. Supernatant potassium concentrations were measured by indirect potentiometry 

using ion-selective electrodes on a chemistry analyzer (Unicel® DxC 800 System and 

SYNCHRON® System, Beckman Coulter, Inc., Fullerton, CA) (27) by Laboratory Services at 

University of Alberta Hospital. The SYNCHRON System(s) determines potassium ion 

concentration by indirect potentiometry utilizing a potassium ion selective electrode in 

conjunction with a sodium reference electrode. To measure potassium concentrations, a 

volume of sample (40 µL) was mixed with a buffered solution. The high molar strength buffer 

is used to establish a constant activity coefficient for potassium ions, calibrating the electrode 

to concentration values. 

 

                                                           
 Potassium supernatants were analyzed by Laboratory Services at the University of Alberta Hospital. 
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Hematological indices 

 The RBC indices consist of mean corpuscular volume (MCV), mean corpuscular 

hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC), which were 

determined using a Coulter automated cell counter (Coulter AcT, Beckman Coulter, New 

York, NY) (27).  As RBCs in suspension pass through the Coulter aperture, they displace their 

own volume of electrolyte, shortly increasing impedance of the aperture, which results in a 

pulse that is directly proportional to the cell volume. In addition, a known volume of the RBC 

suspension is passed through the aperture, so a count of the number of pulses can yield the 

RBC count in a sample. The instrument computes hematocrit value by summing the electronic 

volume of RBCs, while HiCN method is used for determining Hb concentration. MCV is 

determined by measuring the average volume of individual RBCs and is expressed in fl. MCH 

is the average weight of Hb in the RBC, expressed in absolute units (pg) and computed by 

dividing Hb concentration (g/L) by RBC count (RBCs/L). Finally, MCHC is the average 

concentration of Hb in each individual RBC, expressed as a percentage and computed by 

dividing Hb concentration by the hematocrit. 

 

Deformability 

RBC deformability was measured using a laser-assisted optical rotational cell analyzer 

(LORCA; Mechatronics, Zwaag, The Netherlands), by ektacytometry as previously described 

(28). RBCs were diluted 1:100 in a polyvinylpyrrolidone solution, and subjected to increasing 

shear stress at 37 °C. The diffraction pattern produced by the scatter of a laser beam at each 

stress was collected, and subsequently plotted as a deformability curve. Deformability curves 

were linearized using the Eadie-Hofstee method as published by Stadnick, et al. (28). Two 

parameters were extrapolated using this linearized function: the maximum elongation index 
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(EImax), as a measure of deformability, and the stress required to reach half of the maximum 

elongation (KEI), as a measure of rigidity (28). 

Aggregation  

RBC aggregation was measured by syllectometry using LORCA (Mechatronics). 

RBCs were washed two times with PBS and 400 µL of packed washed cells were mixed with 

1% dextran (100 kDa) solution to an optimal Hct of 42-46%. The controls were prepared the 

same way and mixed with PBS (negative) and 3% dextran (positive). Briefly, the cells were 

subjected to a constant shear rate with rotation, to cause complete disaggregation. The 

aggregation process was started by abruptly stopping the shear rate. The laser backscatter 

intensity over time was measured (syllectogram) and the following aggregation parameters 

were generated: aggregation index (AI) in percentage (%), amplitude (Amp) in arbitrary units 

(au) and aggregation half-life (t1/2) in seconds (s) (29) (Figure 2.1).   

 

Microvesiculation  

The flow cytometry procedure was adapted from Almizraq et al. (25). Two tagged 

antibodies were used to label RBCs and RBC microparticles (MPs) from human and rat 

samples. Fluorescein isothiocyanate (FITC) anti-human CD235a antibody (MHGLA01 or 

MHGLA01-4, Invitrogen Life Technologies, Burlington, ON) was used as a marker for RBCs 

and MPs from human samples, while peridinin chlorophyll protein complex-cyanine 5.5 

(PerCP-Cy™ 5.5) anti-rat erythroid cells antibody (BD PharMingen, San Jose, CA) was used 

as a marker for RBCs and MPs from rat samples. APC annexin V (BD PharMingen, San Jose, 

CA) was used to label phosphatidylserine (PS) according to manufacturer’s instructions in 

                                                           
 The author would like to acknowledge George (Jingzhou) Huang (Flow Cytometry Laboratory - Department of 

Experimental Oncology) for his help with the adaptation of the flow cytometry method for measuring 

microparticles in rat RBCs. 
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both human and rat samples. RBCs (5 mL) were diluted with annexin-binding buffer (10 

mmol/L HEPES, 140 mmol/L NaCl, 2.5 mmol/L CaCl2, pH 7.4) and 5 µL of each of the 

fluorescently-labeled monoclonal antibodies (FITC, APC, PerCP-Cy™ 5.5) were added. After 

15 minutes of incubation in the dark at room temperature, the prepared samples were run on a 

FACSCalibur (BD Biosciences, San Jose, CA) equipped with a 488 nm argon laser and 

computer software (CellQuest, BD Biosciences) (25). Commercial isotype controls directed 

against glycophorin A (FITC mouse IgG1, k isotype control, BD PharMingen) and rat 

erythroid cells (PerCP-Cy™ 5.5 mouse IgM, k isotype control, BD PharMingen) were used to 

account for any nonspecific binding of the antibodies. Frozen RBCs served as the positive 

control for PS expression and microvesiculation (25). TruCOUNT beads (BD PharMingen) 

were used to determine the absolute number of MPs/µL. Forward scatter and side scatter, 

measured on a logarithmic scale, was used to distinguish between RBC and MP populations. 

Absolute numbers of MPs/µL were calculated using the equation: 

 
𝑀𝑃𝑠

𝜇𝐿
= [(

𝑛𝑜. 𝑜𝑓 𝑔𝑙𝑦𝑐𝑜𝑝ℎ𝑜𝑟𝑖𝑛 𝐴 − 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑀𝑃 𝑔𝑎𝑡𝑒𝑑 𝑒𝑣𝑒𝑛𝑡𝑠

𝑇𝑟𝑢𝐶𝑂𝑈𝑁𝑇 𝑏𝑒𝑎𝑑𝑠 − 𝑔𝑎𝑡𝑒𝑑 𝑒𝑣𝑒𝑛𝑡𝑠
) 𝑥 (

𝑛𝑜.  𝑜𝑓 𝑏𝑒𝑎𝑑𝑠 𝑝𝑒𝑟 𝑇𝑟𝑢𝐶𝑂𝑈𝑁𝑇 𝑡𝑢𝑏𝑒

𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑏𝑢𝑓𝑓𝑒𝑟 𝑎𝑑𝑑𝑒𝑑 𝑡𝑜 𝑇𝑟𝑢𝐶𝑂𝑈𝑁𝑇 (𝜇𝐿)
)] 𝑥 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 

(Eq. 2.5)  

 
 

2.2.3 Statistical analyses 

Statistical analysis was performed using SPSS 20.0 software (IBM, Armonk, NY). 

Mann-Whitney’s U non-parametric test was used to assess differences between rat and human 

RBCs and Wilcoxon signed-rank test was used to compare samples in different additive 

solutions (SAGM vs. AS3). Data were expressed as mean ± standard deviation and p < 0.05 

was considered statistically significant. 
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2.3 Results 

2.3.1  Differences between human and rat RBCs in SAGM additive solution  

Table 2.1 shows the differences in RBC in vitro quality parameters between the two 

species. In this study the samples were filtered using 10.0 µm syringe filters as an adaptation 

for the small sample volume, while trying to mimic the buffy coat blood component 

manufacturing process. The level of leukoreduction achieved was 90 ± 5% for platelets and 71 

± 9% for white blood cells. The buffy coat blood component manufacturing method caused 

alterations to rat but not to human RBCs, as demonstrated by increased hemolysis (rat pre-

leukoreduction: 3.03% ± 0.64% vs. human pre-leukoreduction: 0.24% ± 0.07%, p = 0.002; rat 

post-leukoreduction: 4.70% ± 0.83% vs. human post-leukoreduction: 0.34% ± 0.07%, p = 

0.002; Figure 2.2). Free Hb levels were also measured in CPD-plasma, where no difference 

was observed (human: 1.13 ± 0.15 g/L vs. rat: 0.98 ± 0.18 g/L, p = 0.157), and in the SAGM 

supernatant of pRBCs where the levels in rat were greater than in human (human: 1.47 ± 0.07 

g/L vs. rat: 8.95 ± 0.51 g/L, p = 0.034) (Figure 2.3). Rat RBCs were also more sensitive to 

osmotic stress than human RBCs, as shown by higher MCF values (p = 0.002). Rat RBCs had 

significantly lower levels of ATP compared to human RBCs (p = 0.004) while the levels of 

2,3-DPG were similar between species (p = 0.054). Potassium levels were significantly higher 

in the supernatant of rat RBCs compared to humans (p = 0.002). Rat RBCs had decreased 

deformability (EImax; p = 0.002) and decreased membrane rigidity (KEI; p = 0.002) compared 

to human RBCs (Figure 2.4). RBCs characteristics, including the hematological indices MCV 

and MCH were significantly different between species (p = 0.002).  Aggregation index and 

amplitude were significantly higher in human RBCs compared to rats (p = 0.016 and p = 

0.004, respectively) and the aggregation half-life was lower (p = 0.037), indicating that 

aggregation happens faster in human RBCs (Figure 2.5). The number of MPs/µL was lower in 
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rats compared to humans (p = 0.010). Further analysis showed that there were also differences 

between the species in terms of MPs expressing PS (p = 0.004; Figure 2.6 B) and the mean 

fluorescence intensity (MFI) for the expression of PS on both RBCs (p = 0.004) and MPs (p = 

0.004).  

 

2.3.2 Rat RBCs in different additive solutions: SAGM vs. AS3 

Table 2.2 shows the effect of different additive solutions on rat RBC in vitro quality 

parameters. Both EImax (deformability) and KEI (rigidity) were significantly increased when the 

packed RBCs were resuspended in AS3 compared to SAGM (p = 0.028 and p = 0.046, 

respectively). In AS3, percent hemolysis was significantly lower pre and post leukoreduction 

(Figure 2.2). ATP concentration was higher (p = 0.026) and 2,3-DPG concentration was lower 

(p = 0.028) in AS3 vs. SAGM. MCH values were comparable for both additive solutions (p = 

0.288), while MCV values were lower (p = 0.028) and MCHC values were higher (p = 0.027) 

with the use of AS3. No significant differences in the aggregation behavior were observed 

between the RBCs resuspended in the two additive solutions (Figure 2.5). The number of 

MPs/µL was slightly lower in rat RBCs resuspended in AS3 compared to SAGM (47,806 ± 

3,029 vs. 67,556 ± 13,318, p = 0.046). The percentage of PS exposure in both RBCs and MPs 

were significantly lower in the packed cells resuspended in AS3 (p = 0.028; Figure 2.6 A, 2.6 

B). MFI for the expression of PS in RBCs resuspended in AS3 was also lower (p = 0.046). 

 

2.4 Discussion 

Differences between human and rat RBCs in SAGM, particularly in terms of 

membrane parameters and hemorheology, which play a significant role in the human RBC 

HSL are not well documented. One of the objectives of this study was to fill in gaps in the 
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current literature by evaluating the baseline hemorheological differences between human and 

rat RBCs in SAGM. In addition to deformability and aggregation, MP analysis is an important 

tool to assess quality and the effects of new preservation strategies, as MPs have been linked 

to various biological activities including inflammation, vascular function and immune 

response (30). 

The concentration of MPs was lower in rat samples compared to human pRBC 

samples, while the exposure of PS in RBCs from both species was comparable. RBC 

intracellular ionized calcium concentration in rats range from 83-105 nM (31) while in 

humans the physiological range is 20-60 nM (32). Rat RBCs have also been described as more 

sensitive to exogenous Ca++ than human RBCs (33). Considering that PS externalization and 

microvesicle formation are directly correlated with calcium influx (34-36), a higher number of 

MPs would be expected in rat samples. On the other hand, RBC microvesiculation has also 

been described as a protective mechanism to avoid erythroptosis (36, 37) or to regulate 

membrane stability and avoid lysis (34, 36). In this context, the increased MPs combined with 

the lower hemolysis values indicates that the regulatory mechanisms in human RBCs are more 

effective than rat RBCs, allowing the cells to adapt better to different environments. Willekens 

and colleagues (2005) have demonstrated that in rats, RBC-derived MPs have high PS 

exposure and are easily removed from the circulation by liver Kuppfer cells, and that the same 

clearance mechanism is likely to happen in humans (35). In this study, the PS exposure in MPs 

from rat RBCs was higher than in humans. However further studies are necessary to determine 

if this high PS exposure plays a role in vivo.  

The results show that the deformability of rat RBCs significantly differs from human 

RBCs. Lower EImax and KEI values suggests that rat RBCs are less deformable and less rigid 



65 
 

than human RBCs. Similar results have been described using ektacytometry (38) and the 

resistive pulse shape analysis technique in whole blood samples collected in 

ethylenediaminetetraacetic acid (EDTA) (39). Baskurt also showed a direct correlation 

between deformability and MCV values of various species, suggesting that RBCs with a 

smaller volume do not have to deform as much to pass through the microcirculation compared 

to larger RBCs (39). This study agrees with this finding, demonstrating that rat RBCs have 

lower MCV and decreased deformability compared to humans. The aggregation pattern of 

human and rat RBCs observed in this study is in agreement with previous reports for blood 

collected in EDTA (40). The percentage of aggregation is higher in human RBCs, and the 

cells also aggregate faster and to a greater extent than rat RBCs. Rat RBCs have a higher 

surface charge compared to human, demonstrated by a higher partition coefficient (40) which 

is expected to influence the aggregation behaviour, thereby explaining the different 

aggregation patterns observed in this study. 

Hemolysis is one of the key quality control parameters evaluated in pRBCs before 

transfusion. It is well established that the percent hemolysis values of human pRBCs in CPD-

SAGM at the end of the 42-day storage period should remain under 0.8% (27). The hemolysis 

in rat RBCs was more than ten times higher than in human RBCs after the component 

production process. I investigated whether the hemolysis could have been caused by the CPD 

anticoagulant, but found that the free Hb concentration in CPD-plasma of rat and human 

samples was similar. The free Hb concentration was measured again in the SAGM supernatant 

of both species and while in humans the concentration was virtually the same, in rats it had 

increased eight times. Potassium levels were higher in the supernatant of rat RBCs, in 

accordance with previously published data for RBCs in CPDA-1 (20). This is possibly as a 
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consequence of the pronounced hemolysis, with more intracellular potassium leaking to the 

supernatant. Comparison of osmotic fragility in RBCs from different mammalian species has 

shown that rat RBCs are among the least fragile (41). In this comparison to human RBCs I 

observed that, rat RBCs are more fragile. Correlations with cell volume have been made, 

showing that smaller cells are more fragile in hypotonic media (41) and more resistant to 

hypertonic media (42). The diffusional permeability of rat RBC membrane to water is higher 

than that of human RBC membrane (43), which may explain the increased sensitivity observed 

in hypotonic media and the differences observed in the corpuscular fragility between species. 

Osmotic behaviour is also a key element for cell interaction with additive solutions, especially 

hypertonic ones like SAGM (44).  

Previously published studies of rat RBCs have used RBCs resuspended in CPDA-1 or 

EDTA blood, rather than additive solutions that are currently used. With the development of 

new additive solutions, it is important to know how the RBCs of rats, a species that is often 

used as a model in storage studies, respond to the additive solutions that are already in use. 

Human pRBC component manufacturing process is highly regulated, with well-established 

standards (21). One limitation of this study is that leukoreduction levels achieved for rat RBCs 

(90 ± 5% platelets; 71 ± 9% leukocytes) are below the human blood banking standard of 99 % 

reduction. Data to relate those standards to animal models of transfusion is lacking. This is in 

part due to a lack of understanding of how slight differences in the final product can benefit or 

affect the recipient of the RBC transfusion. Studies have already identified how different 

additive solutions and processes affect human, but not rat, RBCs. Another limitation of this 

study was that a direct comparison of human RBCs stored in SAGM and AS3 was not 

performed; however, some quality parameters have been examined before (45). Acker and 
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colleagues (2014) have previously reported no difference in ATP levels but increased 2,3-

DPG levels with the use of AS3 compared to SAGM in human RBCs (26). In rat RBCs a 

significant increase in ATP and a decrease in 2,3-DPG levels using AS3 compared to SAGM 

were observed. The metabolic aspects seem to follow the same tendency as previously 

described for RBCs resuspended in CPDA-1, with human RBCs having higher levels of ATP 

compared to rat RBCs, with no difference in 2,3-DPG levels observed between the two species 

(20). The raw values for ATP and 2,3-DPG in rat RBC using SAGM were comparable to the 

values described for rat RBCs in CPDA-1. 

In terms of hemorheology, I observed that rat RBC deformability improved (EImax), 

while rigidity increased (KEI), with the use of AS3 compared to SAGM. However, more 

studies need to be conducted to elucidate the exact mechanism of these differences. It has been 

shown that increased cellular dehydration caused by increased intracellular Hb results in 

greater cell rigidity and increases in the Hb-spectrin complex, which contributes to rigidity 

(46, 47). MCHC was higher for rat RBCs in AS3 compared to SAGM. This increased Hb 

concentration in AS3 RBCs may be the cause of the observed increase in rigidity. The 

aggregation behaviour of rat RBCs in AS3 and SAGM remained the same, with no statistically 

significant differences observed in aggregation index, amplitude and kinetics of aggregation 

between the two additive solutions. Compared to RBCs in SAGM, the number of MPs/µL was 

lower in rat RBCs resuspended in AS3, as was the PS exposure in RBCs and MPs. In vivo, PS 

exposure is related to increased adherence to the endothelium, which leads to 

hypercoagulability and vascular occlusion (48). Hemolysis was higher in rat RBCs in SAGM 

compared to AS3, which might be due to differences in the formulations of the two additive 

solutions. For example, mannitol, a membrane stabilizer that helps reduce hemolysis in human 
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RBCs (49), is present in SAGM but absent in AS3. Little is known about mannitol’s effect on 

rat RBCs. The second notable difference between the two additive solutions is the NaCl 

concentration which is two times higher in SAGM (21). The higher concentration of Cl- in 

SAGM might generate an imbalance in ion distribution across the RBC membrane, which 

could lead to activation of K+/Cl- co-transport resulting in increased potassium efflux and 

subsequently hemolysis. 

2.5 Conclusion 

In conclusion, rat RBCs differ from human RBCs in metabolic and membrane-related 

aspects findings, which should be taken into account when performing storage studies using a 

rodent model. Additive solutions play an important role in RBC preservation; however, 

SAGM, which is commonly used for human RBC storage, is not compatible with rat RBCs, as 

it causes high hemolysis and increased MP production. The present study suggest AS3 is a 

better alternative for rat RBC storage when conducting studies examining the HSL or new 

preservation strategies for RBCs that might require the use of animal models. 

In this chapter, a processing method that mimics current blood bank processing 

methods was developed and tailored to rat RBCs taking into account the small blood volume 

and the sensitivity of rat RBCs to certain additive solutions. This also allowed for the 

characterization of in vitro quality parameters of fresh rat RBCs in comparison to human 

RBCs. The next chapter will focus on defining a liposome formulation with the potential to 

mitigate HSL in stored rat RBCs and the effect of this formulation on the hemorheology of 

stored rat RBCs as well as in vivo effects of transfusing liposome-treated rat RBCs in a rat 

model.  
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Table 2.1: In vitro quality parameters of human and rat RBCs. Mean values ± SD for 

fresh human and rat RBCs resuspended in SAGM post-leukoreduction are shown. au = 

arbitrary units. 

RBC quality parameters Human RBCs Rat RBCs 

Hemolysis (%) 0.34 ± 0.07 4.70 ± 0.83* 

Osmotic fragility (MCF) 4.9 ± 0.3 5.9 ± 0.3* 

ATP (µmol/g Hb) 3.1 ± 0.1 2.5 ± 0.2* 

2,3-DPG (µmol/g Hb) 11.3 ± 1.3 14.1 ± 2.4 

Supernatant   

K+ (mmol/l) 1.4 ± 0.4 3.5 ± 0.6* 

Hematologic indices   

MCV (fL) 95.1 ± 1.6 69.5 ± 2.9* 

MCH (pg) 30.2 ± 0.7 22.6 ± 0.7* 

MCHC (g/l) 318 ± 7 327 ± 12 

Deformability   

EImax 0.57 ± 0.01 0.52 ± 0.02* 

RBC rigidity (KEI) 2.32 ± 0.51 0.76 ± 0.13* 

Aggregation parameters   
AI (%) 53.4 ± 2.1 49.2 ± 2.3* 

Amp (au) 27.4 ± 2.3 13.6 ± 0.7* 

t1/2 (s) 3.3 ±  0.3 4.0 ± 0.6* 

Microvesiculation   

MPs/µL 85,377 ± 4,656 67,556 ± 13,318* 

RBC-PS (%) 0.4 ± 0.0 0.6 ± 0.2 

MP-PS (%) 6.8 ± 1.4 42.0 ± 5.0* 

RBC-MFI 26.0 ± 1.7 86.3 ± 13.1* 

MP-MFI 41.2 ± 7.1 187.3 ± 21.9* 
  * p < 0.05 compared to human RBCs. 
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Table 2.2: In vitro quality parameters of rat RBCs in different additive solutions. Mean 

values ± SD for fresh rat RBCs resuspended in SAGM and AS3 post-leukoreduction are 

shown. au = arbitrary units.  

 Additive solutions 

Rat RBC quality parameters SAGM AS3 

Hemolysis (%) 2.21 ± 0.68 0.87 ± 0.39* 

ATP (µmol/g Hb) 2.6 ± 0.3 3.0 ± 0.3* 

2,3-DPG (µmol/g Hb) 17.6 ± 2.2 13.8 ± 2.7* 

Hematological indices   

MCV (fL) 62.9 ± 2.7 60.5 ± 2.0* 

MCH (pg) 21.3 ± 0.8 21.2 ± 0.7 

MCHC (g/l) 339 ± 5 350 ± 2* 

Deformability   

EImax 0.51 ± 0.02 0.55 ± 0.01* 

RBC rigidity (KEI) 0.80 ± 0.17 0.98 ± 0.04* 

Aggregation parameters   

AI (%) 53.8 ± 3.2 49.0 ± 4.2 

Amp (au) 16.6 ± 3.6 14.8 ± 2.6 

t1/2 (s) 3.2 ± 0.5 4.0 ± 0.9 

Microvesiculation   

MPs/µL 67,556 ± 13,318 47,806 ± 3,029* 

RBC-PS (%) 0.6 ± 0.2 0.2 ± 0.0* 

MP-PS (%) 42.0 ± 5.0 34.4 ± 3.4* 

RBC-MFI 86.3 ± 13.1 74.8 ± 8.3* 

MP-MFI 187.3 ± 21.9 173.2 ± 32.5 
* p < 0.05 compared to SAGM. 
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Figure 2.1: Schematic representation of the aggregation procedure and indices obtained 

by syllectometry.  
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Figure 2.2: Percent hemolysis in fresh human RBCs resuspended in SAGM and in rat 

RBCs resuspended in SAGM and AS3, pre and post leukoreduction. Shown is the mean ± 

SD (n= 6). * Significant (p < 0.05) compared to human RBCs resuspended in SAGM and ** 

significant (p < 0.05) compared to rat RBCs resuspended in AS3. 
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Figure 2.3: Free hemoglobin in CPD plasma and SAGM supernatants pre and post 

leukoreduction in human and rat. Shown is the mean ± SD (n= 4). * Significant (p < 0.05) 

compared to human. 
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Figure 2.4: Deformability of human and rat fresh RBCs resuspended in SAGM. Shown is 

the mean ± SE (n= 6) of the elongation indices at different shear stresses after Eadie-Hofstee 

linearization. The two variables shown (EImax and KEI) are extrapolated from the lines: EImax = 

y-intercept (deformability) and KEI = slope (rigidity). 
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Figure 2.5: RBC aggregation in fresh human RBCs resuspended in SAGM and in rat 

RBCs resuspended in SAGM and AS3. Syllectograms (light scatter x time) showing RBC 

aggregation patterns (n=6). Negative control (PBS) = no aggregation; Positive control (3% 

dextran) = high aggregation. 
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Figure 2.6: Percentage of phosphatidylserine (PS) exposure by RBCs (A) and MPs (B) in 

fresh human and rat RBCs resuspended in SAGM and in fresh rat RBCs resuspended in 

AS3. Histogram: region M1 is negative for PS exposure while, region M2 is positive. 
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3.1 Introduction 

The clinical benefits of blood transfusion were only made possible through the 

development of techniques to preserve ex vivo RBC viability, which allowed the blood donor 

and transfusion recipient to be separated in time and space (1). Additive solutions are 

commonly used in blood banks to extend RBC in vitro storage for up to six weeks prior to 

transfusion (2, 3). 

Although use of additive solutions extends storage length of RBC units, the quality of 

stored RBCs progressively decreases during hypothermic storage (1-6 °C). RBCs undergo a 

series of biochemical and biomechanical changes, collectively known as “hypothermic storage 

lesion” (4). Characteristics of the HSL include RBC membrane remodeling, decreased 

metabolites, loss of intracellular potassium, oxidative injury of proteins and lipids, PS 

exposure, membrane loss, MP release and ultimately hemolysis (5-7). Recent analyses of RBC 

membrane lipids during refrigerated storage in SAGM revealed that the cholesterol content is 

more stable, while major changes occur to phospholipids, with a general decrease in lipids of 

the major phospholipid classes (8, 9). There are concerns that the accumulation of metabolic 

and cellular byproducts during storage might be related to post-transfusion adverse effects and 

decreased RBC viability, although there is still no accurate evidence to prove causality (10-

13).  

Apart from the use of additive solutions, other approaches to decrease RBC membrane 

injury during storage have been investigated such as rejuvenating solutions (14), anaerobic 

storage (15) and the use of plasticizers (16) without much success. Since the cell membrane 

plays an important role in post-transfusion survival and oxygen delivery capacity of RBCs 

(17-19), recent research has focused on the use of liposomes - synthetic lipid vesicles - to 

mitigate RBC membrane injury during hypothermic storage (20-23). The mechanism of 
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interaction between liposomes and human RBCs involves adsorption of the vesicles to the 

RBC surface, as well as liposome content incorporation through membrane fusion (20). RBCs 

are not able to synthesize phospholipids, so the main pathway for membrane phospholipid 

renewal in vivo is through exchange with plasma lipoproteins (24).The motivation for the use 

of liposomes is based on the transfer of lipids between liposome and RBC membrane (21, 22), 

as it mimics what happens in vivo, and has been previously shown to change the membrane 

composition of human RBCs, ultimately improving cell deformability, membrane fluidity and 

reducing hemolysis upon storage (21, 23). It is unknown whether liposomes can be used to 

mitigate elements of RBC membrane storage lesion unaddressed by current additive solutions, 

including MP shedding, PS exposure and impaired hemorheology.  

Small animal models are necessary to provide evidence of the safety of liposome 

treatment and guide future pre-clinical translational and clinical studies (25, 26). Rat models 

have been widely used to study effects of transfusion, different blood products and blood 

substitutes on the cardiovascular system (25, 27-29). Like human RBCs, rat RBCs are 

anucleate flexible binconcave discs, with similar structure and biochemical pathways. 

Similarities also exist in the asymmetry of the RBC membranes, and their phopholipid and 

protein composition  (30-32). This animal model of anemia/myocardial ischemia provides a 

clinically relevant and objective means to measure the effects of transfusion of RBCs stored in 

novel conditions.  Since the myocardium has a basal oxygen extraction ratio of 55-70% (28), it 

has little capacity to increase oxygen extraction, making it particularly vulnerable to the 

effects of anemia and an ideal model system to measure injury response to transfusion. 

While previous research on application of liposomes for mitigating the HSL largely 

focused on the in vitro mechanics of RBC and liposome interaction, as well as the quality of 

rat RBCs in current additive solutions for pRBC, this study investigated the effects of 
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liposome treatment on RBC rheologic properties, as well as in vivo assesment of efficacy and 

safety of transfused liposome treated RBCs in a rat model. Considering that chemical 

characteristics of liposomes (charge, saturation) are important determinants of liposome-RBC 

interaction (33-35), the aim of this study was to assess the effect of different liposome 

formulations on rat RBC HSL and hemorheology. Finally, the in vivo outcomes of transfusing 

liposome treated RBCs in an anemic rat model of myocardial ischemia and reperfusion was 

examined.   

 

3.2 Materials and Methods 

3.2.1 RBC collection and manufacturing 

Rat whole blood was obtained from Sciences Animal Support Services (University of 

Alberta). The Sprague-Dawley rats were all male, between 8 and 9 weeks old with an average 

weight of 300 g. The blood was collected and processed as previously described in Chapter 2.  

3.2.2 Liposome synthesis  

Phospholipids for liposome synthesis were obtained from Avanti Polar Lipids 

(Alabaster, AL) and cholesterol was obtained from Sigma-Aldrich (St. Louis, MO). 

Multilamellar vesicles (MLVs) were prepared by the technique of Bangham & Horne (1964) 

(36). Briefly, chloroform solutions of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC, 

16:0), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC, 18:1), 1,2-dioleoyl-sn-glycero-3-

phospho-L-serine (DOPS, 18:1), and cholesterol were thoroughly mixed at a molar ratio of 

7:3, resulting in a 25 mM final lipid solution. Four different formulations were obtained: 

saturated uncharged (DPPC:cholesterol, 7:3 mol%), unsaturated uncharged 

(DOPC:cholesterol, 7:3 mol%), saturated charged (DPPC:cholesterol:DOPS, 6:3:1 mol%) and 

unsaturated charged (DOPC:cholesterol:DOPS, 6:3:1 mol%). Chloroform solvent was 
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evaporated from the lipid mixture using a dry nitrogen stream, and subsequently lyophilized 

for at least 12 h (Virtis, AdVantage,Wizard -2.0, Gardiner, NY) to create a thin lipid film. Dry 

lipids were hydrated in HEPES-NaCl buffer containing 135 mM NaCl and 20 mM HEPES 

(pH 7.4, 276 mOsm). Small unilamellar vesicles were obtained by an extrusion technique (37) 

using a LipexTM extruder (Northern Lipids Inc, Vancouver, BC) with 200 nm pore size 

Nuclepore® polycarbonate membranes (Whatman, Clifton, NJ).  

 

3.2.3 Liposome characterization 

Size 

The mean Z-average size (nm) of the liposomes used in this study was measured by 

dynamic light scattering (DLS) using a Zetasizer Nano ZS (Malvern Instruments, Malvern, 

UK). Briefly, 50 µL of liposomes were diluted in 0.9% NaCl solution, vortexed and 

transferred to a cuvette for DLS analysis. When a monochromatic light (i.e. a laser) shines 

through a solution containing spherical particles in Brownian motion (random motion of 

particles suspended in a fluid) and the light hits a moving particles it causes a change in the 

frequency of a wave (Doppler Shift), changing the wavelength of incoming light. This change 

is related to the size of the particle and can be calculated using Stokes-Einstein equation.  

 

𝐷ℎ =
𝑘𝐵 𝑥 𝑇

3𝜋 𝑥 𝜂 𝑥 𝐷𝑡
 

 

(Eq. 3.1) 

 

Where: Dh = hydrodynamic diameter 

 kB = Boltzmann’s constant 

 T = temperature 



88 
 

 η = dynamic viscosity 

 Dt = translational diffusion coefficient  

Phosphate content 

Liposome phosphate content was measured using a modification of the Fiske & 

Subbarow method for determining phosphorus (38, 39). Organic phosphorus in the sample is 

oxidized (digested) with sulfuric acid. Ammonium molybdate reacts with phosphate in the 

sample forming a phosphomolybdate complex. This complex is reduced to an intensely blue-

colored complex by ascorbic acid. The color is proportional to the phosphorus concentration 

and its maximum absorption was measured at 820 nm on a spectrophotometer SPECTRA max 

PLUS 384 (Molecular Devices Corporation, Sunnyvale, CA, USA). A 3mM NaH2PO4 stock 

solution was used to generate a standard curve.  A phosphate assay standard curve was 

obtained by plotting the absorbance against the phosphate concentration of standards (0, 75, 

225, 300 and 600 nmol PO4), and further used to calculate the phospholipid content of 

liposome preparations, according to the following equation: 

 

𝑇𝑜𝑡𝑎𝑙 𝑙𝑖𝑝𝑖𝑑 𝑐𝑜𝑛𝑛𝑐𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝑚𝑀) =
𝐶𝑃𝑂4 𝑥 𝑉𝑠

% 𝑃𝑂4
 𝑋 100 

 

(Eq. 3.2) 

 

Where: CPO4 = phosphate concentration (nmol) from the absorbance standard curve 

 Vs = volume of liposomes (µL) 

 % PO4 = percent of phosphate in the sample (70 for liposome preparations) 
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3.2.4 Liposome treatment  

Previous studies have shown no added benefit of increasing the liposome treatment 

concentration beyond 2 mM (40). Therefore, this concentration was applied for all the 

liposome studies included in this thesis.  

The effects of liposome composition on rat RBC in vitro quality 

The packed rat RBCs were incubated at 37 °C with either HEPES-NaCl solution (non-

treated control) or 2 mM lipid from four different liposome formulations.  The RBCs were 

gently rotated during incubation. The in vitro quality of DPPC/DOPC/ DPPC-PS/ DOPC-PS 

RBCs (n=3 each) and control RBCs (n=3) was analyzed immediately after the liposome 

treatment and at weekly intervals up to 5 weeks of hypothermic storage and included percent 

hemolysis, hematological indices, deformability, and cholesterol and phospholipid 

concentrations, as described below.  

 

The effects of DOPC liposome treatment on rat RBC hemorheology 

The packed rat RBCs were incubated for 30 min at 37 °C with either HEPES-NaCl 

solution (non-treated control) or 2 mM lipid from DOPC liposomes.  The RBCs were gently 

rotated during incubation. The in vitro quality of DOPC RBCs (n=7) and control RBCs (n=7) 

was analyzed immediately after the liposome treatment and upon 1 week and 6 weeks of 

hypothermic storage and included percent hemolysis, hematological indices, deformability, 

aggregation and microvesiculation, as described below. 

3.2.5 RBC in vitro quality assessment 

 

Rat RBC quality was assessed by percent hemolysis (Drabkin’s), hematological indices 

(Coulter), deformability and aggregation (LORCA), microvesiculation (flow cytometry) all as 

described in Chapter 2, Section 2.2.2 and cholesterol/phospholipid concentrations. 
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Density gradient separation using Ficoll-Paque (GE Healthcare Biosciences, Uppsala, 

Sweden) was performed to separate RBCs from liposomes adsorbed to the RBC membrane, as 

well as free liposomes in the incubation mixture (20). Lipid extraction was performed 

according to Rose & Oklander (1965) (41). Briefly, RBCs were washed 3x in 0.9% NaCl. 

After the last wash, RBCs were hemolysed with distilled water, allowed to stand for 15 min 

and then centrifuged. The pellet was resuspended in distilled water and transferred to a glass 

tube, isopropanol was added and after 1 h of incubation, chloroform was added to the mixture. 

After another hour, the extraction tubes were centrifuged at 500 x g for 30 min at 4 °C. The 

top layer containing the lipid extract was transferred to 3 glass tubes, dried using a N2 stream 

and frozen at -20 °C for further cholesterol and phospholipid analysis.  

The EnzyChrom™ AF Cholesterol Assay Kit (E2CH-100; BioAssay Systems, 

Hayward, CA) was used to determine the amount of cholesterol in the extracts according to 

manufacturer’s instructions (21). The kit consists of a single reagent that combines cholesterol 

ester hydrolysis, oxidation and color reaction in one step. In addition to a cholesterol standard 

(300 mg/dL). The color intensity of the reaction product at 570nm is directly proportional to 

total cholesterol concentration in the sample. A standard curve was obtained by plotting the 

absorbance against the cholesterol concentration of standards (0 – 100 mg/dL cholesterol, 10 

mg/dL increments), and further used to calculate the cholesterol content of the samples, 

according to the following equation: 

 

𝑐ℎ𝑜𝑙𝑒𝑠𝑡𝑒𝑟𝑜𝑙 (𝑚𝑔/𝑑𝐿) =  
𝐴𝑠 − 𝐴𝑏
𝑠𝑙𝑜𝑝𝑒 

 
 

(Eq. 3.3) 

 

Where: As = absorbance of the sample 

 Ab = absorbance of the blank 
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 Slope = slope of the linear regression fit 

Phospholipids in the extracts were estimated by spectrophotometric phosphorus 

determination after an acid digestion as previously described in Section 3.2.3 of this chapter. 

 

3.2.6 Effects of transfusing DOPC-treated rat RBCs in an anemic rat model of 

myocardial ischemia and reperfusion 

Male Sprague-Dawley rats (200-300 g) were used to experimentally evaluate in vivo 

effect of transfusing liposome-treated RBCs. All animals were provided water and food ad 

libitum and housed in a temperature- and humidity-controlled facility with 12-hour light and 

dark cycles. The investigation conforms to the Guide for the Care and Use of Laboratory 

Animals published by the US National Institutes of Health (NIH Publication No. 85-23, 

revised 1996). Experimental protocols were approved by the Animal Use Committee at the 

University of Western Ontario. Anemia was induced in rats by a combination of iron-deficient 

diet (10-20 ppm; TestDiet 5859, Richmond, IN) and phlebotomy (2-3 mL) twice weekly to 

reach target hemoglobin (Hb) levels of 80-90 g/L. Immediately after phlebotomy, rats were 

infused with an equal volume of 10% pentastarch (Bristol-Myers Squibb Canada, Montreal, 

Quebec, Canada) (28). Myocardial ischemia and reperfusion (I/R) was induced by occlusion 

of the left descending coronary artery for 45 minutes, followed by 24 hours of reperfusion 

according to previous reports (25, 28). Anemic rats were transfused immediately after 

coronary artery ligation with either non-treated RBCs or DOPC-treated RBCs stored for one 

week. After transfusion, Hb levels, infarct size and 24 h-survival were measured. Infarct size 

was determined according to previous reports (42, 43). Briefly, 3 mL of Evans blue dye was 

                                                           
 In vivo experiments were performed in collaboration with Dr. Qingping Feng and Dr. Ian Chin-Yee from the 

University of Western Ontario, London, ON. 
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injected into the left ventricle to distinguish between perfused and nonperfused areas of the 

heart. Hearts were then excised and cut into four transverse slices from the apex to base. 

Sections were stained with 1.5% triphenyltetrazolium chloride (TTC) for 30 min at 37°C, and 

then weighed. The nonischemic area (blue), area at risk (red), and infarct area (pale) were 

quantitated using an image analysis system (Sigma ScanPro, Ashburn, VA). Percent weight of 

nonischemic, risk, and infarct area were calculated. Infarct size was expressed as a percentage 

of the weight of the infarct area to the area at risk. 

 

3.2.7 Statistical analyses 

Statistical analysis was performed using SPSS 22.0 software (IBM, Armonk, NY). 

Mann-Whitney’s U non-parametric test was used to assess differences between liposome-

treated rat RBCs and controls, and between anemic rats transfused with liposome-treated 

RBCs vs. non-treated RBCs. Wilcoxon signed-rank test was used to assess differences 

between liposome-treated rat RBCs and controls over storage time. Data were expressed as 

mean ± standard deviation and p < 0.05 was considered statistically significant. 

 
 

3.3 Results 

The characteristics of the liposome formulations used for all studies comprised in this 

chapter are shown in Table 3.1.  

 

3.3.1 The effects of liposome composition on rat RBC in vitro quality 

Immediately after incubation, all liposome treatments resulted in significant decrease 

in percent hemolysis, with the effect most prominent with DOPC-treated RBCs (1.6 ± 0.1% vs 

3.1 ± 0.2 %, p = 0.050; Figure 3.1A). Liposome treatment did not significantly alter rat RBC 

membrane deformability (EImax: Control 0.58 ± 0.00; DOPC-PS 0.59 ± 0.01; DOPC 0.57 ± 
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0.00; DPPC-PS 0.57 ± 0.01; DPPC 0.58 ± 0.00, p > 0.050) or hematological indices (MCV, 

MCH and MCHC). DOPC liposome treatment resulted in significant increase in rat RBC 

phospholipid concentration, while DPPC liposome treatment seemed to induce loss of 

phospholipids from the rat RBC membranes (1.56 ± 0.20 mg/ g Hb vs 0.76 ± 0.07 mg/ g Hb, p 

= 0.003).  The cholesterol: phospholipid ratio in DOPC-treated rat RBCs was comparable to 

control (0.49 ± 0.06 vs 0.51 ± 0.08, p = 0.800; Figure 3.2). All liposome treated RBCs 

continued to exhibit decreased hemolysis after 5 weeks of storage compared to the control (p = 

0.050), with uncharged formulations resulting in lower hemolysis than charged liposomes (3.4 

± 0.2% vs 3.9 ± 0.4%, p = 0.010) (Figure 3.1A). In terms of rigidity (KEI), DOPC-treated 

RBCs remained significantly lower compared to control RBCs even after 5 weeks of storage 

(Figure 3.1B). Based on these findings, the DOPC formulation was selected for further studies 

on hemorheology. 

3.3.2 The effects of DOPC liposome treatment on rat RBC hemorheology 

Table 3.2 describes the hemorheology parameters of liposome-treated and control 

RBCs in additive solution 3 (AS3), both immediately after treatment (fresh) and after 6 weeks 

of hypothermic storage. DOPC liposome treatment resulted in significant changes in fresh 

liposome-treated RBCs compared to control RBCs, such as a decrease in percent hemolysis 

(1.7 ± 0.2% vs. 2.3 ± 0.3%, p = 0.018), MCH (22.0 ± 1.0 vs. 22.3 ± 0.9, p = 0.018) and 

MCHC (355 ± 11 vs. 375 ± 7, p = 0.046) an increase in rigidity (KEI: 0.84 ± 0.10 vs. 0.77 ± 

0.07, p = 0.043) and Hct (51.7 ± 2.3 % vs. 49.8 ± 1.3 %, p = 0.041). The intensity of PS 

exposure was the same in control and liposome-treated MPs (MP-MFI/MP-PS%, p >0.050). 

PS-MFI of microparticles decreased over time in both liposome-treated and control MPs 

(Table 3.2). After six weeks of hypothermic storage, liposome-treated RBCs continued to 
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differ from control RBCs by exhibiting an increased Hct (47.1 ± 1.7 % vs. 45.0 ± 1.5 %, p = 

0.028) and lower rigidity (KEI: 1.03 ± 0.18 vs. 1.16 ± 0.13, p = 0.043). Flow cytometry 

analysis also showed increased PS exposure in liposome-treated RBCs (1.1 ± 0.2 vs. 0.8 ± 0.2, 

p = 0.018) while PS exposure in MPs was significantly lower (55.8 ± 6.5 vs. 34.8 ± 8.5, p = 

0.031; Figure 3.3). The intensity of PS exposure was lower in liposome-treated MPs (= less 

PS/MP) than in control MPs as shown by MP-MFI/MP-PS% values (Figure 3.4), with a more 

prominent decrease observed in liposome treated MPs (63.1% vs. 39.2%, p = 0.009). In terms 

of aggregation parameters, there was no significant difference between control and liposome-

treated RBCs. However, control RBCs showed a significant decrease in aggregation index 

(AI: 41.9 ± 7.2 % vs. 29.9 ± 4.1 %, p = 0.018) and an increase in aggregation half time (t1/2: 

6.5 ± 2.9 s vs. 12.5 ± 2.8 s, p = 0.018) after six weeks of storage that was not observed in 

liposome-treated RBCs (Figure 3.5). The only change observed in liposome-treated RBCs was 

a decrease in aggregation amplitude (Amp: 12.9 ± 1.7 au vs. 10.9 ± 1.4 au, p = 0.018). 

3.3.3 Effects of transfusing DOPC-treated rat RBCs in an anemic rat model of 

myocardial ischemia and reperfusion 

The Hb levels prior to transfusion were similar in both control and liposome-treated 

groups (84.2 ± 7.1 vs. 83.5 ± 5.3 g/L, p = 1.000). The in vivo study showed that the 24 h-

survival after myocardial I/R was the same in both liposome-treated (7 out of 7) and control 

groups (7 out of 7). No significant difference was observed in the Hb levels (control: 99.8 ± 

3.0 vs. lipo: 101.9 ± 2.5 g/L, p = 0.197; Figure 3.6) and infarct size between the two groups 

(control: 53.3 ± 13.1 vs. lipo: 45.3 ± 8.4%, p = 0.223; Figure 3.7). Note that two rats from the 

liposome-treated group had to be excluded from the statistical analysis of infarct size due to 

very small infarct sizes attributed to the surgical procedure.  
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3.4 Discussion 

Several elements of RBC membrane storage lesion remain unaddressed by current 

additive solutions (4). A membrane-based approach to preserve RBC quality, such as the use 

of liposomes, may mitigate MP shedding, PS exposure and impaired hemorheology. This 

study investigated the effects of liposome treatment on rat RBC HSL and rheologic properties 

as well as the outcomes of transfusing liposome treated RBCs in a rat model. 

All the liposome formulations tested succesfully decreased hemolysis in rat RBCs 

compared to non-treated controls. The same effect has also been described for human RBCs 

(23). RBCs treated with liposomes exhibited higher Hct and lower supernatant Hb 

concentrations, showing that the treatment stabilizes the cell membrane, preventing Hb 

leakage. The exact mechanism by which liposomes reduce hemolysis has not been completely 

elucidated, but based on the in vitro mechanisms of liposome-cell interactions previously 

described, the possible interactions include lipid transfer, adsorption, fusion or a combination 

of these (21, 44).  The DOPC liposomes used in this study, which were small unilamellar 

vesicles (SUV), neutral (not charged) and fluid (always kept above the Tc of the lipid) had the 

most prominent effect in reducing hemolysis of rat RBCs. Based on those characteristics, the  

most probable RBC-liposome interaction types are membrane fusion and lipid transfer (22, 

44). Renooij & Van Golde (1976) (45) have reported that lipid exchange between rat RBCs 

and lipid vesicles is a temperature dependent process that only becomes significant at 

temperatures higher than 20 °C, which explains why a difference was observed in hemolysis 

immeadiately after incubation with liposomes at 37 °C, but was no longer detectable after the 

storage period at 4 °C.  
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The concentration of MPs was comparable between the two treatment groups when 

fresh and after the 6-week storage period. However, some slight differences in the PS profile 

of those MPs, lead me to argue whether they would have the same biological activity. The 

percentage of PS (+) MPs decreased in control samples and remained stable in liposome-

treated samples over time, with overall values being comparable between the groups for both 

time points evaluated (fresh and 6 weeks). An interesting observation is that even though the 

percentage of PS (+) MPs is comparable in both groups after 6 weeks, MPs from liposome-

treated group exposed less PS per MP compared to control (as shown by MP-MFI/MP-PS% 

values; Table 3.2; Figure 3.4). Percentage of PS (+) RBCs increased over time in both groups, 

with a more prominent increase in the liposome-treated group. The increase in PS (+) RBCs 

seems to be a natural process that occurs to rat RBCs during storage time. The slightly higher 

increase observed in liposome-treated samples might be due to the cholesterol/phospholipid 

ratio of the liposome formulation used (0.4:1), and therefore can be easily modified. 

According to Van Meer and colleagues (1980) (46) liposomes with cholesterol/phospholipid 

ratio lower than 1:1 can extract cholesterol from RBCs resulting in altered stability that will 

directly impact membrane lipid asymmetry. PS exposure is often associated with increased 

inflammation, coagulation and endothelial injury (47, 48) so it would be fair to assume that 

less PS exposure on MPs could result in less adverse events. On the other hand, more PS 

exposure is also present in senescent cells and correlates with increased in vivo uptake by the 

reticuloendothelial system (49) which would potentially result in faster removal of those MPs 

from the circulation. Further investigation is needed to establish the clinical relevance of these 

findings and understand whether the two types of MPs are equivalent or whether one type 

would produce more deleterious effects than the other.  
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RBC membrane characteristics such as surface charge, phospholipid composition and 

membrane mechanical behavior are the most commonly considered biophysical properties that 

influence aggregation behavior (50). Increased aggregation results in an increase in blood 

viscosity, affects microcirculatory blood flow and organ perfusion (51).  In terms of 

aggregation parameters, there was no significant difference between the two groups. However, 

fewer changes were observed in the liposome-treated group over time suggesting a 

stabilization effect of liposomes on RBCs that minimizes the effects of HSL. The only change 

observed was a decrease in aggregation amplitude, related to the quantity of 3D aggregates 

formed. Therefore, the differences in aggregation behavior within control and liposome-

treated RBCs over time could be attributed to changes resulting from the liposome treatment.  

Deformability measurements can be described by two distinct parameters EImax and 

KEI. The EImax represents how much elongation the cells can tolerate and directly relates to the 

elasticity of the RBC membrane, while the KEI is a measurement of cell rigidity that relates to 

the cytoskeleton/membrane assembly rather than the membrane alone. In this study, both 

treatment groups presented an equivalent decrease in EImax over the 6 weeks of storage. The 

decrease in deformability might be explained by membrane loss in the form of MPs that was 

not overcome by the formulation used. The KEI from liposome-treated RBCs increased 

significantly immediately after treatment and remained stable during storage, while in control 

RBCs it significantly increased over time and to a greater extent. Lipid transfer or fusion of 

liposomes with RBCs in the treatment group could alter the association of the membrane with 

the cytoskeleton, changing the rigidity at first but then maintaining it at a constant rigidity 

throughout storage. It has been reported that phosphorylation of major proteins such as 

Ankyrin, band 4.1 and band 4.9 can weaken the rigidity of the cytoskeleton by reducing the 

binding affinity (52). 
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Rat RBCs, despite having similar characteristics to human RBCs, which make them a 

suitable model for transfusion studies, still differ from human RBCs in many metabolic and 

membrane-related aspects (53). The liposome formulation used in the in vivo study did not 

cause deleterious effects in terms of the clinical outcomes of ischemia/reperfusion in anemic 

rats, and therefore appears to be safe. Hu and colleagues (2010, 2012) using anemic Sprague-

Dawley rats and the same I/R procedure, reported that baseline infarct size for anemic rats that 

did not received transfusion was about 70% (25, 28). Comparing to the data presented here 

this value is 17% larger compared to the group that received control RBCs and 25% larger 

compared to the group that received DOPC-treated RBCs. However, the safety observed in 

rats cannot be directly translated to human safety, since previous drugs that were shown to be 

safe in animal models later failed safety tests in humans (54). Therefore, as in many studies 

involving animal models to mimic clinical settings in humans, the results presented need to be 

interpreted with caution due to limitations such as species differences, group sizes and a 

possible underestimation of the adaptive response in animals, as summarized by Hartung 

(2008) (55). The present study was limited to examining the acute effects of transfusing 

liposome-treated RBCs in a relatively small number of animals per group. Hypersensitivity 

reactions mediated by complement activation could lead to cardiovascular and hemodynamic 

alterations (56), as well as coagulation disturbances and transient thrombocytopenia caused by 

liposome-platelets interactions (57-59) were some of the acute outcomes of concern and that 

could have resulted in decreased survival of the animals after transfusion of liposome-treated 

RBCs. In terms of chronic outcomes, the main concern would be immune system modulation 

that could lead to inflammation, immune suppression or autoimmune responses.  

The elements of rat RBC HSL are similar to human, except that the rat RBC storage 

lesion of seven days is equivalent to the human RBC storage lesion of 29 days (60). This 
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animal model has been used in the past to evaluate effects of hypothermic storage lesion and 

leukoreduction (25, 28, 29). By using sensitive measures of specific organ injury and 

myocardial infarct size, is possible to quantitate the effects of anemia, as well as differentiate 

between fresh and stored blood transfusion. The liposome formulation used in the in vivo 

study did not show superior effects in terms of the outcomes of I/R in anemic rats. 

3.5 Conclusion 

From the four formulations tested unsaturated-uncharged liposomes (DOPC) were the 

most beneficial for rat RBCs and were therefore used to further evaluate effects on 

hemorheology and in vivo study. DOPC liposome treatment resulted in an overall 

improvement in rat RBC hemorheology upon storage. However, the changes observed with 

liposome treatment in vitro were not sufficient to improve the outcomes of myocardial I/R in 

anemic rats transfused with liposome-treated RBCs.  

 Even so, because the in vivo study did not prompt any immediate safety concerns, the 

beneficial effects of liposome treatment should continue to be investigated on stored human 

RBCs, by exploring new formulations and combinations of treatments. In addition to further 

studies confirming these safety results and exploring the long-term effects, more studies need 

to be done to address the in vivo viability and oxygen delivery efficacy of this transfusion 

product.  

Next chapter will investigate the effect of DOPC liposomes on stored human RBCs, 

while determining the ideal treatment time and its effect on hemorheology.  
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Table 3.1: Formulations, size and lipid content of liposomes used in the studies. Mean 

values ± SD for experiments that required more than one batch of liposomes.  

 

Study Formulation Size  (nm) Lipid content (mM) 

Effect of formulation DOPC:Chol 

(70:30) 

127.3 16.8 

 DOPC:PS:Chol 

(60:10:30) 

130.5 17.0 

 DPPC:Chol 

(70:30) 
177.8 16.1 

 DPPC:PS:Chol 

(60:10:30) 
147.9 21.5 

Hemorheology  DOPC:Chol 

(70:30) 
129.6 ± 1.8 19.4 ± 0.1 

In vivo DOPC:Chol 

(70:30) 

130.7 ± 5.0 19.4 ± 1.5 
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Table 3.2: Hemorheology parameters of DOPC-treated RBCs and control rat RBCs. 

Mean values ± SD for DOPC-treated and control rat RBCs immediately after treatment and 

after 6 weeks of hypothermic storage are shown. au = arbitrary units.  

 

 Control RBCs DOPC-treated RBCs  

RBC hemorheology Fresh 6 weeks Fresh 6 weeks 

Hemolysis (%) 2.3 ± 0.3 4.7 ± 0.7‡ 1.7 ± 0.2* 5.0 ± 0.6‡ 

Hematologic indices     

MCV (fL) 62.1 ± 2.2 64.1 ± 2.5‡ 61.9 ± 2.5 64.4 ± 3.0‡ 

MCH (pg) 22.3 ± 0.9 24.1 ± 1.1‡ 22.0 ± 1.0* 24.2 ± 1.2‡ 

MCHC (g/l) 360 ± 10   375 ± 7 355 ± 11* 376 ± 6‡ 

Deformability     

EImax 0.56 ± 0.01 0.40 ± 0.02‡ 0.56 ± 0.02 0.39 ± 0.02‡ 

KEI 0.77 ± 0.07 1.16 ± 0.13‡ 0.84 ± 0.10* 1.03 ± 0.18* 

Aggregation parameters     
AI (%) 41.9 ± 7.2 29.9 ± 4.1‡ 34.7 ± 9.2 30.7 ± 6.1 

Amp (au) 11.7 ± 1.8 10.6 ± 2.0 12.9 ± 1.7 10.9 ± 1.4‡ 

t1/2 (s) 6.5 ± 2.9 12.5 ± 2.8‡ 9.1 ± 4.4 11.4 ± 4.5 

Microvesiculation     

MPs/µL 24,663 ± 1,529 444,084 ± 103,366‡ 26,339 ± 2,897 569,258 ± 115,981‡ 

RBC-PS (%) 0.3 ± 0.0 0.8 ± 0.2‡ 0.3 ± 0.0 1.1 ± 0.2* ‡ 

MP-PS (%) 35.1 ± 4.7 24.8 ± 7.8‡ 34.3 ± 4.0 28.5 ± 9.3 

RBC-MFI 68.3 ± 6.1 59.3 ± 9.2 74.0 ± 17.0 53.3 ± 5.0‡ 

MP-MFI 146.3 ± 32.3 49.1 ± 8.5‡ 131.6 ± 32.5 44.9 ± 2.0‡ 

MP-MFI/MP-PS% 3.9 ± 0.8 1.8 ± 0.2‡ 3.7 ± 0.9 1.5 ± 0.3* ‡ 
* p < 0.05 compared to control RBCs of corresponding age, ‡ p < 0.05 compared to fresh RBCs 

of the same group. 
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Figure 3.1: Percent hemolysis (A) and rigidity (B) in rat RBCs treated with charged and 

uncharged liposome formulations. Shown in the boxplots (n= 3) are: 99% percentile (higher 

x), 1% percentile (lower x) and mean (□). * Significant (p < 0.05) compared to fresh control 

RBCs; ** significant (p < 0.05) compared to control RBCs stored for 5 weeks. 
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Figure 3.2: Cholesterol/Phospholipid ratio in rat RBCs treated with saturated and 

unsaturated liposome formulations. Shown in the boxplots (n= 3) are: 99% percentile 

(higher x), 1% percentile (lower x) and mean (□). * Significant (p < 0.05) compared to control 

RBCs. 
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Figure 3.3: Percentage of phosphatidylserine (PS) exposure by MPs in fresh control and 

liposome-treated rat RBCs and after 6 weeks of storage. Histogram: region M1 is negative 

for PS exposure while, region M2 is positive. 
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Figure 3.4: Intensity of phosphatidylserine (PS) exposure (MFI) divided by percentage of 

PS (+) MPs in fresh control and liposome-treated rat MPs and after 6 weeks of storage. * 

Significant (p < 0.05) compared to control MPs of same age. 
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Figure 3.5: RBC aggregation in control and liposome-treated rat RBCs (fresh and after 6 

weeks of storage). Syllectograms (light scatter x time) showing RBC aggregation patterns 

(n=7). Negative control (PBS) = no aggregation; Positive control (3% dextran) = high 

aggregation. 
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Figure 3.6: Hemoglobin levels in rats from liposome and control groups before and after 

transfusion. Shown in the boxplots (n= 7) are: 99% percentile (higher x), 1% percentile 

(lower x) and mean (□).  
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Figure 3.7: Effect of liposome treated rat red blood cells on infarct size after ischemia 

and reperfusion in anemic rats. Pictures 1-6 represent transverse sections of the same heart 

from apex to base stained with 2% triphenyltetrazolium chloride (TTC) where infarct size was 

measured. Blue area: non-ischemic, red area: at risk area, white area: infarct area. Shown in 

the boxplots are: 99% percentile (higher x), 1% percentile (lower x) and mean (□). Baseline 

Infarct/risk area in anemic rats after I/R without transfusion is ⁓ 70% (Source: Hu et al., 2010; 

Hu et al., 2012). 
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4.1 Introduction 

 Ex vivo cold storage of RBCs for transfusion has long been associated with a set of 

changes to cell characteristics that results in reduced in vitro quality, including cell shape 

change, loss of membrane, decreased deformability, altered aggregation behavior, metabolic 

depletion and, finally, hemolysis.  These RBC changes are now all known collectively as HSL 

(1). Cold storage slows down metabolism but does not completely supress it, so the cells will 

continue to age, along with a confined and fixed environment that will accumulate cell 

metabolism by-products and cell waste that will contribute to changes in pH, that in turn will 

affect cellular responses (2).  

Studies of HSL have characterized that the most significant changes start to happen 

between 2 and 3 weeks of storage (~ 21 days), period after which, some changes become 

irreversible. For example, RBC changes shape after loss of membrane (discoid shape to 

spherocytes)(3, 4) and 2,3-DPG is also no longer detectable after two weeks, although studies 

have shown that normal levels are restored within 72 h of transfusion (5, 6). Additive solutions 

provide RBCs with an excess of nutrients, substrates for metabolism and membrane stabilizers 

that help maintain cellular structure and metabolism for longer periods (up to six weeks) 

during ex vivo storage (7).  

One important topic of HSL not addressed by additive solutions and metabolic 

rejuvenation is the loss of phospholipid asymmetry that culminates in membrane loss. The loss 

of RBC membrane phospholipid asymmetry ultimately leads to PS externalization, which 

culminates in MP formation and release (8, 9). Several mechanisms can be attributed to MP 

shedding from RBCs including protein oxidation (10), ATP depletion (11, 12) and increased 

intracellular Ca2+ concentrations (13). Current strategies to preserve in vitro RBC quality 

prior to transfusion do not adequately address the loss and remodeling of RBC membrane. 
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Numerous studies using RBCs as membrane models have utilized liposomes as means for 

modifying the composition of membranes and have documented the effect of these 

manipulations (14, 15). Liposomes have been shown to influence membrane fluidity and 

thermal phase behavior (16, 17) of human RBCs, but no studies have evaluated the effect of 

liposomes as a strategy for decreasing MP concentration or changing its composition during 

hypothermic storage. The intent of the liposome treatment is to provide a source of 

phospholipids for membrane renewal and conservation of phospholipid asymmetry; since 

RBCs are not able to synthesize phospholipids and their in vivo source (lipoproteins) do not 

remain in the bag after whole blood is processed into packed RBCs (18). Considering the 

aforementioned facts, it is important to evaluate when the liposome treatment should be 

performed in human RBCs so the cells would be most benefited by the liposomal supply of 

phospholipids. 

In chapter 3, I described an assessment of the impact of liposome treatment on 

hemorheology of rat RBCs (19) with an observation that DOPC liposome treatment resulted in 

an overall improvement in rat RBC hemorheology upon storage. Therefore, it is important to 

evaluate if those effects remain true for human RBCs. In addition, there are no reports on the 

effect of membrane manipulations using liposomes on the metabolic profile of cells. Although 

it is not expected that the treatment will induce significant changes in the metabolic profile, it 

is essential to make sure the treatment will not further deplete metabolic markers (i.e. ATP, 

2,3-DPG). With those observations in mind, the aim of this study was to evaluate the effect of 

liposome treatment time on human RBCs and to assess the effect of liposome treatment on 

hemorheology and metabolic profile of human RBCs using the same liposome formulation 

that rendered significant changes to rat RBCs. 
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4.2 Materials and Methods 

4.2.1 RBC collection and manufacturing 

Ethical approval for the study was granted by both the Canadian Blood Services (CBS) 

and the University of Alberta Research Ethics Boards. Ten leukoreduced packed RBC units in 

saline-adenine-glucose-mannitol buffy coat processed were obtained from the CBS Network 

Centre for Applied Development (netCAD) and processed from whole blood as previously 

described (20). 

 

4.2.2 Liposome treatment  

Unilamellar (DOPC:cholesterol, 7:3 mol%) liposomes were synthesized as described in 

Chapter 3, Section 3.2.2. 

The effect of liposome treatment time on human RBC in vitro quality 

Four leukoreduced packed RBC units in CPD-SAGM obtained from the CBS netCAD 

were pooled and split. One pool containing four Rh and ABO-matched RBC units was 

generated and subsequently split to produce four equivalent RBC products. RBCs were 

divided into three sets of tubes of control and liposome-treated samples (n= 4 each) and 

treated at day 2, day 21 and day 42 of hypothermic storage with a final assessment at day 45. 

The packed RBCs were incubated at 37 °C with either HEPES-NaCl solution (non-treated 

control) or 2 mM lipid DOPC liposomes (147.2 nm).  The in vitro quality of DOPC-treated 

RBCs (n=4) and control RBCs (n=4) was analyzed immediately after the liposome treatment 

(for each treatment day) and at days 42 and 45 of hypothermic storage and included percent 

                                                           
 The author would like to acknowledge Angela Hill (Acker Lab research technician) for her help with the pool 

and split procedure.  
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hemolysis, hematological indices, deformability, aggregation and microvesiculation, as 

described in Chapter 2, Section 2.2.2.  

The effects of DOPC liposome treatment on human RBC hemorheology and metabolic 

content 

The packed human RBCs were incubated for 1 h at 37 °C with either HEPES-NaCl 

solution (non-treated control) or 2 mM lipid from DOPC liposomes (123.1 nm).  The in vitro 

quality of DOPC RBCs (n=6) and control RBCs (n=6) was analyzed immediately after the 

liposome treatment and upon 3 week and 6 weeks of hypothermic storage and included 

percent hemolysis, hematological indices, deformability, aggregation, supernatant potassium, 

ATP and 2,3-DPG as described in Chapter 2, Section 2.2.2.  

 

4.2.3 Statistical analyses 

Statistical analysis was performed using SPSS 23.0 software (IBM, Armonk, NY). 

Two-way ANOVA was used to assess the effect of treatment (control vs. liposome) and 

treatment time (d2, d21, d42) on in vitro quality parameters. When a significant interaction 

between treatment and treatment time was found, simple main effects were analyzed using 

Bonferroni post hoc test. When no significant interaction was found, main effects were 

reported followed by Tukey’s Post Hoc Test when needed. Paired Student’s T test or 

Wilcoxon test was used to assess differences between liposome-treated RBCs and controls 

over storage time. Data were expressed as mean ± standard deviation (or mean ± standard 

error, where indicated) and p < 0.05 was considered statistically significant. 

 

 

                                                           
 Potassium supernatants were analyzed by Laboratory Services at the University of Alberta Hospital. ATP and 

2,3-DPG assays were performed by MLS honors student Melissa Shyian under my supervision. 
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4.3 Results 

4.3.1 The effect of liposome treatment time on human RBC in vitro quality 

Table 4.1 summarizes the test between-subjects effects of two-way ANOVA. No 

significant differences between treatment type or treatment time were detected overall for 

aggregation parameters AI (model p = 0.356) and aggregation half time (model p = 0.321), 

therefore no further analysis was conducted. There was no significant interaction between 

treatment type and treatment time for ektacytometry parameters EImax F (2,18) = 0.22, p = 

0.803 and KEI F (2,18) = 0.35, p = 0.709; aggregation amplitude F (2,18) = 1.25, p = 0.310; 

MCH F (2,18) = 0.01, p = 0.990; MCHC F (2,18) = 3.05, p = 0.072 and MP-MFI F (2,18) = 

0.59, p = 0.563, therefore main effects were reported after post hoc analysis. There was a 

significant interaction between treatment and treatment time for hemolysis F (2,18) = 26.14, p 

< 0.001, MCV F (2,18) = 20.09, p < 0.001, MP concentration F (2,18) = 18.67, p < 0.001, MP-

PS% F (2,18) = 8.22, p = 0.003 and MP-MFI/MP-PS% F (2,18) = 5.21, p = 0.016. Therefore, 

results were interpreted in the context of the interaction and simple effects reported.  

Table 4.2 summarizes RBC quality parameters affected by treatment time. 

Deformability of samples treated on day 2 and day 21 was slightly lower compared to samples 

treated on day 42 (day 2: 0.54 ± 0.00 vs. 0.55 ± 0.00, p < 0.001; day 21: 0.54 ± 0.00 vs. 0.55 ± 

0.00, p < 0.001). Rigidity of samples treated on day 2 and day 21 was lower compared to 

samples treated on day 42 (day 2: 2.12 ± 0.02 vs. 2.32 ± 0.02, p < 0.001; day 21: 2.16 ± 0.02 

vs. 2.32 ± 0.02, p < 0.001). Aggregation amplitude was significantly lower on samples treated 

on day 2 compared to treated on day 42 (16.3 ± 0.3 vs. 17.3 ± 0.3, p = 0.037). MCH of 

samples treated on day 2 was lower compared to samples treated on day 21 (29.1 ± 0.1 vs. 

29.5 ± 0.1, p = 0.006). MCHC of samples treated on day 2 was lower compared to samples 
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treated on day 21 (297 ± 1 vs. 302 ± 1, p = 0.001) and on day 42 (297 ± 1 vs. 302 ± 1, p = 

0.001). MP-MFI was significantly lower in samples treated at day 2 compared to day 21 (p = 

0.010) and 42 (p < 0.001); and on day 21 treatment compared to day 42 (p = 0.042).  

KEI was also affected by treatment type with DOPC-treated RBCs having higher 

rigidity than control RBCs (2.25 ± 0.02 vs. 2.16 ± 0.02, p = 0.002) (Figure 4.1 A). 

Aggregation amplitude was affected by treatment type with DOPC-treated RBCs having 

higher amplitude compared to control (17.2 ± 0.2 vs. 16.5 ± 0.2, p = 0.040) (Figure 4.1 B).  

Table 4.3 summarizes simple effects analysis for RBC quality parameters where the 

interaction between treatment type and treatment time was significant. DOPC-treated RBCs 

had significantly lower hemolysis than control RBCs when treated at day 2 (p < 0.001) and 

day 21 (p <0.001), but there was no difference in hemolysis between treatments when RBCs 

were treated at day 42 (p = 0.093). DOPC-treated RBCs had significantly higher MCV than 

control RBCs when treated at day 2 (p < 0.001) and day 21 (p <0.001), but there was no 

difference in MCV between treatments when RBCs were treated at day 42 (p = 0.501). DOPC-

treated RBCs had significantly higher MP concentration than control RBCs when treated at 

day 2 (p < 0.001) and day 21 (p <0.001), but there was no difference in MP concentration 

between treatments when RBCs were treated at day 42 (p = 0.074). DOPC-treated RBCs had 

significantly higher MP-PS% than control RBCs when treated at day 2 (p < 0.001) and day 21 

(p = 0.001), but there was no difference in MP-PS% between treatments when RBCs were 

treated at day 42 (p = 0.715). DOPC-treated RBCs had significantly lower MP-MFI/MP-PS% 

than control RBCs when treated at day 2 (p = 0.001) and day 21 (p = 0.005), but there was no 

difference in MFI/MP-PS% between treatments when RBCs were treated at day 42 (p = 0.771) 

(Figure 4.2). 
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4.3.2 The effects of DOPC liposome treatment on human RBC hemorheology and 

metabolic content 

Table 4.4 describes the hemorheology and metabolic parameters of liposome-treated 

and control RBCs, both immediately after treatment (fresh) and after 3 and 6 weeks of 

hypothermic storage. Ektacytometry analysis showed no significant effect of liposome 

treatment on maximum elongation (EImax) in any of the time points evaluated. DOPC-treated 

RBCs showed increased rigidity immediately after treatment (KEI: 2.08 ± 0.27 vs. 1.84 ± 0.27, 

p = 0.040), which stabilized after 6 weeks of storage resulting in significantly lower values 

compared to the control group (KEI: 2.27 ± 0.33 vs. 2.39 ± 0.23, p = 0.048) (Figure 4.3). 

Syllectometry analysis showed a decrease in aggregation half time of liposome-treated RBCs 

(3.4 ± 0.4 s vs. 3.8 ± 0.4 s, p = 0.046) immediately after treatment. After 6 weeks of storage, 

aggregation index (AI) and aggregation amplitude (Amp) were significantly increased in 

liposome-treated RBCs (AI: 45.38 ± 1.92% vs. 41.54 ± 4.10%, p = 0.020) (Amp: 16.38 ± 2.17 

au vs. 12.22 ± 3.29 au, p = 0.019) while aggregation half time was lower when compared to 

control (4.93 ± 0.46 s vs. 6.05 ± 1.21 s, p = 0.035) (Figure 4.4). Although hemolysis was 

significantly lower immediately after treatment in the liposome group (0.15 ± 0.13% vs. 0.18 

± 0.14%, p = 0.042), a significant difference was not detected after 3 and 6 weeks of storage. 

Despite comparable hemolysis levels at 3 and 6 weeks, DOPC-treated RBCs showed 

significantly increased potassium levels for the aforementioned time-points (3 weeks: 31.2 ± 

2.7 mmol/l vs. 30.8 ± 2.7 mmol/l, p = 0.007; 6 weeks: 45.0 ± 3.0 mmol/l vs. 43.8 ± 3.4 

mmol/l, p = 0.013). MCH was comparable between treatments throughout storage, while 

MCHC was slightly increased in DOPC-treated RBCs after 6 weeks of storage (306 ± 5 g/l vs. 

302 ± 7 g/l, p = 0.003) and MCV was slightly decreased (96.5 ± 6.2 fL vs. 97.3 ± 6.4 fL, p = 

0.028). 2,3-DPG levels were comparable throughout storage and no longer detectable after 6 
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weeks. ATP levels were initially comparable in both groups but was slightly decreased in 

DOPC-treated RBCs compared to control after 6 weeks of storage (1.3 ± 0.5 µmol/g Hb vs. 

1.7 ± 0.6 µmol/g Hb, p = 0.008).  

4.4 Discussion 

Several elements of RBC membrane storage lesion remain unaddressed by current 

RBC preservation approaches. A liposome-based approach has been previously applied to rat 

RBCs, resulting in hemorheological improvements. This study evaluated the effect of 

liposome treatment time on human RBCs; and investigated the effects of liposome treatment 

on human RBC HSL and rheological properties as well as the metabolic profile.  

 The parameter least affected by liposome treatment was aggregation, with treatment 

time having no detectable effect on aggregation index and aggregation kinetics (t1/2). 

Aggregation amplitude was the only parameter affected by treatment time, with results 

showing that samples treated at the beginning of storage (day 2) had lower amplitude at 

expiry, compared to samples that were treated at expiry (day 42). High aggregation amplitude 

could lead to impaired microcirculatory flow, and this hemorheologic alteration has been 

thought to contribute to the pathophysiology of  slow coronary flow (21). RBC deformability 

and rigidity (KEI) were both affected by liposome treatment time. Maximum elongation was 

comparable until day 21 and slightly increased when RBCs were treated at day 42, although is 

not likely that a difference of 0.01 in deformability would have a significant clinical impact. 

RBC membrane rigidity was also increased when the treatment was performed at expiry (day 

42) compared to day 2 and 21. Treatment type also had an impact on rigidity, with liposome-

treated RBCs exhibiting slightly higher rigidity compared to control. Rigidity can be increased 

by the cholesterol content of RBC membrane, which is why patients with high cholesterol 
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levels also present an increase in RBC rigidity (22). Liposome formulation used in this study 

had a 0.4 C/P ratio, therefore is not likely that transfer of cholesterol from liposomes to RBCs 

had taken place (23), consequently the increase in rigidity cannot be explained by cholesterol 

enrichment. On a separate note, studies have shown the transfer of cholesterol from RBCs to 

liposomes (17). Therefore the increase in ridigity could be linked to membrane loss in the 

form of MPs or a change in the normal C/P ratio of RBC membrane.   

 Hematological indices MCH and MCHC were slightly affected by treatment time, with 

lower MCH for samples treated on day 2 compared to day 21 and lower MCHC for samples 

treated on day 2 compared to day 21 and 42. Although a statistical significance was observed, 

the differences were too small to be considered clinically relevant. While MCH remained 

whithin the reference range (29 ± 2 pg) at expiry, MCHC decreased to similar values in both 

treatment groups (300 ± 1 g/l vs. 301 ± 1 g/l,  p = 0.184) remaining below reference range 

(340 ± 20 g/l) (24). This means that there was less hemoglobin in each RBC, regardless of 

their volume. Hemoglobin can be lost through membrane leak or bound to MPs (25, 26). MCV 

was increased in DOPC-RBCs treated on day 2 and 21, but not day 42, while hemolysis 

reversely decreased in DOPC-treated RBCs when treated at day 2 and 21, but at day 42 values 

were comparable to control. Liposomes might have fused with the membrane or transferred 

enough phospholipids that caused the change in volume while decreasing hemolysis (27). The 

type of liposomes used in this study would interact with RBCs by fusion, phospholid transfer 

or a combination of both (27). This uptake of lipids could help stabilize cell membrane and 

compensate for lipid loss that would help decrease hemolysis. 

 Microparticle profile revealed that MP concentration and percentage of PS(+) MPs 

were higher in DOPC-RBCs treated at day 2 and 21 compared to control, but not day 42. 
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While MPs from DOPC-treated RBCs treated at day 2 and 21 exposed less PS per MP 

compared to control (as shown by MP-MFI/MP-PS% values; Table 4.3; Figure 4.2). Mean 

fluorescence intensity (MFI) of MPs increased as treatment time increased (d42 > d21 > d2). 

The time taken between PS exposure and MP release it not well known for RBCs, but in other 

cell types entering apoptosis it occurs within hours (28). Considering that, MP release is a 

time-dependent process it is not surprising that samples treated at day 42 had lower MP 

concentration (i.e. there was not enough time to shed compared to samples treated earlier). MP 

concentration in DOPC-treated RBCs was significantly higher while inversely presenting 

higher MCV for the same treatment times. This might suggest that the lipid enrichment 

provided by the liposome treatment is compensating the membrane loss, which would explain 

why even after shedding membrane pieces through MPs, their cell volume was not reduced. It 

could also provide an explanation to the different MP characteristics, with DOPC-treated MPs 

exposing less PS per MP (as per MP-MFI/MP-PS% values).  

 The DOPC liposomes used in this study, which were small unilamellar vesicles (SUV), 

neutral (not charged) and fluid (always kept above the Tc of the lipid) had the same 

characteristics as the ones used for previous rat studies and were also able to reduce hemolysis 

of human RBCs immediately after treatment, although during 3 and  6 weeks assessments this 

effect was no longer observed. Inversely, supernatant postassium levels for 3 and 6 weeks of 

storage was slightly increased for DOPC-treated samples. Acker and colleagues (2014) have 

reported supernatant potassium values at expiry of 46.2 ± 4.3 and 47.4 ± 4.0 mmol/l, using 

current blood manufacturing methods (29), therefore the values observed for DOPC-treated 

samples (45.0 ± 3.0 mmol/l) would be still clinically acceptable.  
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 DOPC treatment increased the percent and extent of RBC aggregation while reducing 

aggregation time. Aggregation behavior that usually decreases with prolonged storage time 

seemed to be better preserved in DOPC-treated RBCs resembling values observed in fresh 

control RBCs. While the increase in the extent of aggregation might not seem of advantage, it 

is important to point that although the amplitude was increased by liposome treatment it 

remained within what has been reported for healthy individuals (21, 30, 31).  

 Metabolic profile was not significantly altered by liposome treatment, no differences 

were observed for 2,3-DPG and only a slight decrease in ATP levels were detected after 6 

weeks of storage in DOPC-treated samples. Intracellular ATP levels decrease progressively 

throughout storage and correlates to post-transfusion RBC viability towards the end of storage 

(32). ATP is also necessary for the function of many pumps and transporters that maintain 

RBC shape and to repair cellular damage (33). Considering that transmembrane lipid 

transporters are ATP-dependent, this could explain lower values observed for the liposome-

treated samples.  

 

4.5 Conclusion 

Overall liposome treatment seemed to be more beneficial when performed at the 

beginning of storage up to day 21. Treatment at expiry (day 42) resulted in a lack of effect of 

liposome treatment on in vitro quality parameters. These results support the practice of 

treating RBCs while they are still fresh (up to 7 days of storage), as it was done in the previous 

chapter for rat RBCs. 

This chapter characterized for the first time the effect of DOPC liposomes on in vitro 

quality of human RBCs. DOPC liposome treatment resulted in modest improvements in 
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human RBC hemorheology upon storage, with no significant impact on metabolic profile. 

Liposome treatment resulted in more significant changes immediately after treatment or at the 

end of storage, with the 3 week assessment revealing no significant changes between treatment 

groups. This indicates that liposome-treated RBCs in the middle of the storage duration do not 

differ from control RBCs, and therefore there would be no added clinical benefit of the 

treatment if they were to be transfused at that time point.  

Next studies will focus on the immune profile of liposome-treated RBCs in order to 

evaluate and predict possible undesirable interactions with cells of the immune system.    
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Table 4.1: Two-way ANOVA for RBC quality parameters. Treatment type (control vs. 

liposomes) and treatment time (d2, d21, d42) were fixed factors. Control and liposome-treated 

RBCs (n = 4 each) assessed on day 42 of hypothermic storage.  

 

 

 

 

 

 

 

 

Quality parameters Effect of treatment type Effect of treatment time Interaction 
 Model P F P F P F P 

Hemolysis (%) < 0.001 132.64 < 0.001 2.33 0.126 26.14 < 0.001 

Deformability        

EImax 0.001 1.58 0.224 18.25 < 0.001 0.22 0.803 

KEI < 0.001 13.54 0.002 27.16 < 0.001 0.35 0.709 

Hematologic 

indices 

       

MCV (fL) < 0.001 55.69 < 0.001 19.65 < 0.001 20.09 < 0.001 

MCH (pg) 0.040 1.87 0.188 6.49 0.008 0.01 0.990 

MCHC (g/L) 0.001 1.91 0.184 11.93 0.001 3.05 0.072 

Aggregation        

AI (%) 0.356 1.60 0.222 1.04 0.373 1.12 0.348 

Amp (au) 0.037 4.90 0.040 3.87 0.040 1.25 0.310 

t ½ (s) 0.321 2.36 0.142 1.04 0.374 0.95 0.406 

Microvesiculation        

MPs/µL < 0.001 119.23 < 0.001 16.50 < 0.001 18.67 < 0.001 
MP-PS (%) < 0.001 25.45 < 0.001 0.70 0.510 8.22 0.003 

MP-MFI 0.001 1.40 0.253 17.97 < 0.001 0.59 0.563 

MP-MFI/MP-PS% 0.001 15.84 0.001 3.57 0.050 5.21 0.016 
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Table 4.2: Two-way ANOVA for RBC quality parameters affected by treatment time. 

Mean values ± SE for samples treated on day 2, day 21 and day 42. Main effect of treatment 

time followed by post hoc analysis (Tukey’s test). 

Treatment time EImax F P 

Day 2 0.54 ± 0.00a 18.25 < 0.001 

Day 21 0.54 ± 0.00a 

Day 42 0.55 ± 0.00b 

Treatment time KEI   

Day 2 2.12 ± 0.02a 27.16 < 0.001 

Day 21 2.16 ± 0.02a 

Day 42 2.32 ± 0.02b 

Treatment time MCH (pg)   

Day 2 29.1 ± 0.1a 6.49 0.008 

Day 21 29.5 ± 0.1b 

Day 42 29.3 ± 0.1ab 

Treatment time MCHC (g/L)   

Day 2 297 ± 1a 11.93 0.001 

Day 21 302 ± 1b 

Day 42 302 ± 1b 

Treatment time Amp (au)   

Day 2 16.3 ± 0.3a 3.87 0.040 

Day 21 17.0 ± 0.3ab 

Day 42 17.3 ± 0.3b 

Treatment time MP-MFI   

Day 2 251.8 ± 9.2a 17.97 < 0.001 

Day 21 295.6 ± 9.2b 

Day 42 330.1 ± 9.2c 
       Means followed by different letters are significantly different (P < 0.050 Tukey’s 

test).  
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Table 4.3: Two-way ANOVA for RBC quality parameters with significant interaction 

between treatment type and treatment time. Mean values ± SE for control and DOPC-

treated RBCs treated on day 2, day 21 and day 42. Simple effects of treatment time x 

treatment type after post hoc analysis (Bonferroni’s test). 

Hemolysis (%) Control DOPC P 

Day 2  0.91 ± 0.02 0.57 ± 0.02 < 0.001 

Day 21 0.82 ± 0.02 0.65 ± 0.02 < 0.001 

Day 42 0.80 ± 0.02 0.75 ± 0.02 0.093 

MCV (fL)    

Day 2 97.1 ± 0.1 98.5 ± 0.1 < 0.001 

Day 21 97.2 ± 0.1 98.2 ± 0.1 < 0.001 

Day 42 97.1 ± 0.1 97.0 ± 0.1 0.501 

MPs/µL    

Day 2 78275 ± 3642 132513 ± 3642 < 0.001 

Day 21 78549 ± 3642 111971 ± 3642 < 0.001 

Day 42 79595 ± 3642 89351 ± 3642 0.074 

MP-PS (%)    

Day 2 32.3 ± 1.9 45.5 ± 1.9 < 0.001 

Day 21 33.5 ± 1.9 44.7 ± 1.9 0.001 

Day 42 41.4 ± 1.9 40.4 ± 1.9 0.715 

MP-MFI/MP-PS%    

Day 2 8.29 ± 0.54 5.24 ± 0.54 0.001 

Day 21 9.05 ± 0.54 6.61 ± 0.54 0.005 

Day 42 8.02 ± 0.54 8.25 ± 0.54 0.771 
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Table 4.4: Hemorheology and metabolic parameters of DOPC-treated RBCs and control 

human RBCs. Mean values ± SD for DOPC-treated and control RBCs immediately after 

treatment and after 3 and 6 weeks of hypothermic storage are shown. au = arbitrary units.  

 

 Control RBCs DOPC-treated RBCs 

Hemorheology Fresh 3 weeks 6 weeks Fresh 3 weeks 6 weeks 

Hemolysis (%) 0.18 ± 0.14 0.32 ± 0.14 1.14 ± 0.36 0.15 ± 0.13* 0.30 ± 0.15 1.14 ± 0.47 

Supernatant K+ 

(mmol/l) 

3.5 ± 0.4 30.8 ± 2.7 43.8 ± 3.4 3.4 ± 0.4 31.2 ± 2.7* 45.0 ± 3.0* 

Hematologic 

indices 

      

MCV (fL) 91.9 ± 5.5  93.6 ± 5.8 97.3 ± 6.4  92.3 ± 5.0  93.9 ± 5.6 96.5 ± 6.2* 

MCH (pg) 32.0 ± 2.4 29.9 ± 2.1 29.3 ± 2.2 32.0 ± 2.4 29.9 ± 2.1 29.6 ± 2.2 

MCHC (g/l) 348 ± 8 319 ± 6  302 ± 7  346 ± 8 318 ± 6  306 ± 5*  

Deformability       

EImax 0.60 ± 0.02 0.58 ± 0.01 0.53 ± 0.01 0.60 ± 0.01 0.58 ± 0.02 0.53 ± 0.02 

KEI 1.84 ± 0.27 2.03 ± 0.35 2.39 ± 0.23 2.08 ± 0.27* 2.13 ± 0.45 2.27 ± 0.33* 

Aggregation 

parameters 

      

AI (%) 50.1 ± 2.5 46.9 ± 2.6 41.5 ± 4.1 53.7 ± 3.8 47.3 ± 2.6 45.4 ± 1.9* 

Amp (au) 21.4 ± 2.8 17.6 ± 3.2 12.2 ± 3.3 21.1 ± 3.0 18.0 ± 2.5 16.4 ± 2.2* 

t1/2 (s) 3.8 ± 0.4 4.5 ± 0.6 6.1 ± 1.2 3.4 ± 0.4* 4.5 ± 0.5 4.9 ± 0.5* 

Metabolism       

ATP (µmol/g 

Hb) 

3.8 ± 0.4 2.7 ± 0.5 1.7 ± 0.6 3.6 ± 0.6 3.0 ± 0.8 1.3 ± 0.5* 

2,3-DPG 

(µmol/g Hb) 

5.4 ± 2.3 0.9 ± 1.3 0 ± 0 5.5 ± 2.3 0.5 ± 0.7 0 ± 0 

* p < 0.05 compared to control RBCs of corresponding age. 
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Figure 4.1: Estimated marginal means for KEI (A) and aggregation amplitude (B) of 

DOPC-treated and control human RBCs.  

 

 

A 

B 
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Figure 4.2: Intensity of phosphatidylserine (PS) exposure (MFI) divided by percentage of 

PS (+) MPs in control and DOPC-treated MPs. Mean values ± SD for control and DOPC-

treated MPs treated at day 2, day 21 and day 42. * Significant (p < 0.05) compared to control 

MPs treated on the same. 
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Figure 4.3: Deformability curves of fresh and stored DOPC-treated and control RBCs. 

Maximum elongation index (EImax) and rigidity (KEI) are shown (n= 6). * Significant (p < 

0.05) compared to fresh control RBCs. 

 

 

0.00 0.05 0.10 0.15 0.20 0.25
0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

E
lo

n
g

a
ti

o
n

 i
n

d
e

x

Elongation index / Shear stress

 

 

 Control: EI
max

= 0.60 ± 0.02 K
EI
= 1.84 ± 0.27

 Lipo: EI
max

= 0.60 ± 0.01 K
EI
= 2.08 ± 0.27*

Fresh

0.00 0.05 0.10 0.15 0.20
0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55
6 weeks

E
lo

n
g

a
ti

o
n

 i
n

d
e

x

Elongation index / Shear stress

 

 

  Control: EI
max

= 0.53 ± 0.01 K
EI
= 2.39 ± 0.23

  Lipo: EI
max

= 0.53 ± 0.02 K
EI
= 2.27 ± 0.33*



136 
 

Figure 4.4: RBC aggregation in control and DOPC-treated RBCs (fresh and after 6 

weeks of storage). Syllectograms (light scatter x time) showing RBC aggregation patterns 

(n=6). Negative control (PBS) = no aggregation; Positive control (3% dextran) = high 

aggregation. 
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Chapter 5 

 

 

 

 

 

 

 

 

The effect of liposome treatment on the immune profile of red 

blood cells and supernatants 
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5.1 Introduction 

Red blood cells (RBCs) for transfusion are stored for a maximum of 42 days under 

hypothermic conditions, during which in vitro storage results in cells undergoing several 

biochemical and biomechanical changes, known as the “hypothermic storage lesion” (HSL). 

Some of the membrane-related consequences of HSL include RBC membrane remodeling 

with phosphatidylserine (PS) exposure, loss of intracellular potassium, oxidative injury of 

proteins and lipids, membrane loss, microparticle (MP) release and ultimately hemolysis (1, 

2). Since membrane damage is a major consequence of HSL and current strategies to preserve 

in vitro RBC quality prior to transfusion do not adequately address the loss and remodeling of 

RBC membrane, this thesis’s approach has focused on liposome treatment of RBCs to mitigate 

HSL. Previous studies have shown that liposomes improve human RBC in vitro quality by 

minimizing membrane damage occurring during 42-day hypothermic storage (3, 4). In vivo 

transfusion of liposome-treated RBCs in a rat model has not prompted safety concerns (5).   

The use of older blood units (≥ 21 days) has been associated with adverse effects in 

transfused patients, although no direct causality has been proven (6). The adverse effects 

described include transfusion related acute lung injury, systemic inflammatory response 

syndrome, modulatory effects on hemostasis, inflammation and coagulation (7, 8). Three 

components of HSL are of particular interest in relation to immune modulation: PS exposure, 

MP shedding and the release of hemoglobin derived from RBC breakdown. These components 

have been related to vascular and immunoregulatory impairment that could lead to thrombosis, 

hypertension and inflammation (9-11). Clinical studies on post-transfusion inflammatory 

markers have only focused on a few cytokines (12, 13), resulting in a lack of a comprehensive 

panel to evaluate cytokine release and other aspects of immune modulation, like endothelial 

cell activation and adhesion molecules expression, and immune response by phagocytic cells. 
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Although the previous in vivo study suggested that the changes observed with liposome 

treatment in vitro were not sufficient to improve the outcomes of myocardial 

ischemia/reperfusion in anemic rats (5), differences in the PS profile suggested that there may 

be potential immune modulation, which could affect the safety and efficacy of liposome-

treated RBCs. 

 Microparticle shedding is a natural process that occurs in all cells as part of activation 

or apoptosis (14), and in case of RBCs as part of calcium influx and metabolic depletion 

during ex vivo storage (15, 16). Depending on the process by which they are formed, 

composition of MPs may be affected, in ageing RBCs they are characterized by larger size and 

lower PS exposure compared to the ones from younger cells (17). MPs derived from blood 

cells have been generally shown to exhibit both procoagulant and proinflammatory activities 

(17, 18) making them a concern in transfusion medicine. 

There are currently several liposome-based drugs on the market and several others 

being used in clinical trials (19). In spite of that, there is no current regulatory guideline 

specifically designed to test the immunotoxicity of nanoparticles, with most guidelines and 

toxicity studies suggested by regulatory bodies being based on guidelines used for 

conventional drugs (20). Reflection papers from the European Medicines Agency (EMA) to 

guide the development of liposome formulations similar to the ones already in use, suggests in 

vitro and in vivo immune reactogenicity assays such as macrophage/basophil activation assays 

and testing for complement activation-related pseudoallergy (CARPA) in sensitive animal 

models to evaluate potential adverse events. While under non-clinical pharmacodynamics 

studies it suggests: “where possible the development of in vitro tests capable of characterising 

any interaction between liposomes and target cells or other cells where the interaction is 

toxicologically relevant is encouraged” (21). Because the types of phospholipids used in this 
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project have already been used in clinical formulations (19), instead of focusing on standard 

assays it is important to evaluate other cell-based assays that are relevant to this novel 

liposome application. 

Although cholesterol and phospholipids are common substances of cell membrane in 

any living organism, some of those lipids are also involved in recognition by the 

reticuloendothelial system. Therefore, their exposure can function as a signal for several 

biological processes from apoptosis and removal from circulation, to initiation of the clotting 

cascade and inflammatory response, as is it the case for phosphatidylserine in red blood cells 

and platelets (22-24). The cell types chosen for the in vitro assays were 

monocytes/macrophages and endothelial cells, not only because they are important for 

immune response but also for their role in inflammatory and clotting response (25).  

The Monocyte Monolayer Assay (MMA) has been used since early 80’s in transfusion 

to predict clinical significance of red blood cell alloantibodies (26) and later to assess 

phagocytosis of RBCs affected by sickle cell disease and infected by Plasmodium falciparum 

(27, 28). Since monocytes/macrophages represent the first line of defense of the immune 

system against foreign materials (29) this assay is useful in predicting the immune response to 

membrane changes caused by liposomes that might be undesired (i.e. early removal from 

circulation).   

Human Umbilical Vein Endothelial Cells (HUVECs) are widely used to model 

endothelial biology and vascular pathology and more recently to evaluate biomaterials, 

biopharmaceuticals, and nanoparticles as part of preclinical tests (30, 31). HUVECs are 

primary, non-immortalized cells and possess several advantages for being well characterized, 

easily available, generating pure isolates, availability of pooled preparations and relatively 

simplicity of culture and maintenance, while generating great amount of cells by rapid 
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expansion (32). Cytokines are signalling molecules secreted from a wide variety of cells to 

stimulate immune response in inflammation, infection and trauma (33). While adhesion 

molecules are cytokine-induced proteins, expressed on the surface of endothelial cells that 

binds to leukocytes resulting in an inflammatory response (34). 

As current progress points towards the use of liposomes in gene therapy, vaccines and 

biopreservation (35, 36), the interaction of liposomes with the immune system both in vitro 

and in vivo is of interest as part of preclinical studies to determine the immunotoxicity of 

liposomes and guide future translational studies. Considering that, most adverse effects in 

transfused patients are related to inflammation, as well as, the importance of trying to predict 

the in vivo immune response to avoid immunotoxicity and the changes reported in Chapter 4 

after liposome treatment. This study aimed to assess the impact of liposome-induced 

membrane changes on the immune profile of liposome-treated RBCs by evaluating their 

interaction with endothelial cells and monocytes; and the resulting immune response derived 

from this interaction, in the form of cytokine release, adhesion molecules expression and 

phagocytosis. In addition, the impact of liposome treatment on MP-rich supernatants was also 

assessed, by evaluating interactions with endothelial cells (cytokines and adhesion molecules) 

and coagulation profile.  

 

5.2 Materials and Methods 

5.2.1 RBC collection  

Ethical approval for the study was granted by both the Canadian Blood Services (CBS) 

and the University of Alberta Research Ethics Boards. Six leukoreduced packed RBC units in 

saline-adenine-glucose-mannitol buffy coat processed were obtained from the CBS Network 
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Centre for Applied Development (netCAD) and processed from whole blood as previously 

described (37).  

 

5.2.2 Liposome Treatment  

Unilamellar (DOPC:cholesterol, 7:3 mol%) liposomes were synthesized as described in 

Chapter 3, Section 3.2.2. Each packed RBC unit was divided into two aliquots and incubated 

at 37 °C for 1 h with either HEPES-NaCl solution (non-treated control) or 2 mM lipid from 

DOPC/Chol liposomes (131 nm). The RBCs were gently rotated during incubation. DOPC-

treated and control RBCs were used in the assays immediately after treatment (day 2 of 

hypothermic storage) and after 42 days of hypothermic storage.  

 

5.2.3 Human Umbilical Vein Endothelial Cells (HUVECs) Culture 

HUVECs (C2519A, Lonza Group Ltd., Walkersville, MD, USA) were purchased as 

pooled primary cells and cultured as previously described (38, 39). The cells were cultured as 

a monolayer in tissue culture flasks until confluent and then transferred to 12-well flat-

bottomed culture plates and used for experiments at passage 2-3. Growth medium was 

replaced with basal media with 1% fetal bovine serum (FBS) 24 h prior to the incubation with 

RBCs and supernatants.  

5.2.4 Incubation with RBCs and MPs 

HUVECs were incubated with 25% (v/v) control and DOPC-treated RBCs as well as 

control and DOPC-treated supernatants containing MPs in endothelial basal medium -2 

(EBM-2) to a final volume of 1 mL, for 24 h at 37 °C and 5% CO2. After the 24-h incubation 

                                                           
 The author would like to acknowledge Dr. Leah Marquez-Curtis (research associate LMP/CME) for the training 

in HUVECs culture. 
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period, supernatants were collected and centrifuged at 10,000 x g for 5 min. The cell-free 

supernatants were then stored at -80 °C for further cytokine analysis. HUVECs cells were 

washed and harvested using StemPro® Accutase® (Gibco® by Life Technologies, Grand Island, 

NY, USA) for adhesion molecules analysis. Lipopolysaccharide (LPS) from Escherichia coli, 

serotype 055:B5 (Sigma Aldrich, St. Louis, USA) in a concentration of 20 µg/mL EBM-2/1% 

FBS was used as a positive control while phosphate-buffered saline (PBS) in EBM-2/1% FBS 

was used as a negative control. 

 

5.2.5 Adhesion Molecules Expression by HUVECs 

HUVECS were washed with staining media 0.1% bovine serum albumin (BSA) in PBS 

(pH = 7.4) and stained with phycoerythrin (PE) anti-human CD106 antibody as a marker of 

vascular cell adhesion molecule [VCAM]-1, allophycocyanin (APC) anti-human CD-62E as a 

marker of E-selectin and fluorescein isothiocyanate (FITC) anti-human CD31 as an 

endothelial cell marker (BD Pharmingen, San Diego, CA, USA). Commercial isotype controls 

(PE mouse IgG1, κ isotype control; APC mouse IgG1, κ isotype control; FITC mouse IgG1, κ 

isotype control, BD Pharmingen) were used to account for any nonspecific binding of the 

antibodies. After 15 minutes of incubation in the dark at room temperature, the prepared 

samples were fixed with a 4% (v/v) formaldehyde solution (Sigma-Aldrich, St. Louis, USA) 

and run the next day on a FACSCanto II flow cytometer (BD Biosciences, Erembodegem, 

Belgium) using FACSDiva (BD Biosciences) computer software. Lipopolysaccharide (LPS) 

from Escherichia coli, serotype 055:B5 (Sigma Aldrich, St. Louis, USA) in a concentration of 

20 µg/mL EBM-2/1% FBS was used as a positive control while phosphate-buffered saline 

(PBS) in EBM-2/1% FBS was used as a negative control. 
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5.2.6 Peripheral Blood Mononuclear Cells (PBMCs) Isolation 

Three buffy coat residual products produced as a by-product from the separation of 

plasma and red blood cells from whole blood were obtained from netCAD (Vancouver, 

Canada) and centrifuged to obtain a pooled, concentrated buffy coat layer, which was then 

diluted with two volumes of RPMI-1640 media (Sigma-Aldrich, St. Louis, USA). This 

suspension (10 mL) was layered over 30 mL of Ficoll-Paque PLUS (GE Healthcare UK Ltd., 

England) and centrifuged (400 x g, 40 minutes, 20°C, acceleration=1, brakes=0). The resulting 

layer of PBMCs and platelets was removed and washed three times to remove platelets before 

being resuspended in 37 °C RPMI-1640 media. The viable cell count was determined by the 

trypan blue (Sigma-Aldrich, Oakville, ON, Canada) exclusion method and the cell suspension 

adjusted to 2.0 x 106/mL.  

 

5.2.7 Monocyte Monolayer Assay (MMA) 

The MMA was adapted from Branch and colleagues (26, 40). The cell suspension (1 

mL) was placed on glass coverslips coated with poly-L-lysine (Sigma-Aldrich, Oakville, ON, 

Canada) and incubated at 37 °C with 5% CO2 for one hour. They were then washed three 

times with 1 mL of PBS at 37 °C to remove non-adherent cells and to prepare the resulting 

monocyte monolayer for subsequent testing. Each sample (0.5 mL of 10% RBCs in PBS) was 

added to 0.5 mL culture media for each coverslip. Positive controls were prepared from O 

positive RBCs that were washed in PBS and incubated with IgG anti-D. RBC suspension (1 

mL) was placed on each coverslip monolayer and incubated (2 hours, 37 °C, 5% CO2). A 

negative control coverslip was covered with 1 mL culture media. The supernatants were then 

                                                           
 MMA assay was performed by MLS honors student Melissa Shyian under my supervision. 
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collected, spun at 10 000 x g to obtain a cell-free supernatant, which was frozen at -80 °C for 

subsequent cytokine analysis. The coverslips were washed three times with 1 mL 37 °C PBS 

to remove non-phagocytosed RBCs, stained with Hema 3 stain (Fisher Scientific, Kalamazoo, 

MI, USA), and mounted to a microscope slide. Monocytes (100 cells) were counted and the 

RBC phagocytic index was calculated.  

5.2.8 Multiplex Cytokine Analysis  

Luminex multi-analyte profiling (xMAP) technology from Luminex employ 

proprietary bead sets which are measurable under flow cytometry-based instruments. After the 

bead captures an analyte from a test sample, a biotinylated detection antibody is introduced. 

The reaction mixture is then incubated with Streptavidin-PE conjugate, the reporter molecule, 

to complete the reaction on the surface of each microsphere.  Each individual microsphere is 

identified and the result is quantified based on fluorescent reporter signals. The capability of 

adding multiple conjugated beads to a biological sample results in the ability to measure 

multiple cytokines from that sample (41). 

Luminex technology was used to measure 40 cytokines with MILLIPLEX MAP 

Human Cytokine/Chemokine Magnetic Bead Panels (EMD Millipore Toronto, Canada).The 

38-plex human cytokine/chemokine panel (38plex: HCYTMAG-60K-PX38) consists of 

(interleukin [IL]-1RA, IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-

12p40, IL-12p70, IL-13, IL-15, IL-17A, interferon [IFN]-γ, IFN-α2, eotaxin, epidermal 

growth factor [EGF], vascular endothelial growth factor [VEGF], granulocyte colony-

stimulating factor [G-CSF], granulocyte-macrophage colony-stimulating factor [GM-CSF], 

monocyte chemoattractant protein [MCP]-1, MCP-3, macrophage inflammatory protein 

                                                           
 Multiplex Cytokine analysis was performed by Dr. Trang Duong from The Hospital for Sick Children Research 

Institute in Toronto. 
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[MIP]-1α, MIP-1β, tumor necrosis factor [TNF]-α and TNF-β, fibroblast growth factor [FGF]-

2, transforming growth factor [TGF]-α, macrophage-derived chemokine [MDC], fractalkine, 

sCD40L, Flt-3L, GRO [CXCL1], IP-10 [CXCL10]) in addition to IL-11 (IL-11: 

HCYP3MAG-63K) and RANTES (RANTES: HCYTOMAG-60K). The assay was performed 

in accordance with the manufacturer's instructions as previously described (42).  

 

5.2.9 Coagulation (PT and aPTT) in MP-rich supernatants 

Prothrombin time (PT) 

Clotting time by the PT method was assessed using the KC1 analyzer (Trinity Biotech 

plc, Bray, Co. Wicklow, Ireland), which uses a mechanical endpoint detection method. 

Supernatants (25 μL) from control and DOPC-treated samples were combined with 25 μL 

normal fresh frozen plasma. This mixture was incubated at 37°C for 60 seconds in a test well 

containing a metal ball, and then 100 μL warmed thromboplastin reagent (Werfen Group IVD, 

Lexington, MA, USA) was added. The time to clotting was measured based on the time taken 

for the clot to stop the metal ball from oscillating. Samples were tested in duplicate and the 

mean clotting time was used for statistical analysis. 

Activated partial thromboplastin time (aPTT) 

Clotting time by the aPTT method was also analyzed using the KC1 analyzer (Trinity 

Biotech plc, Bray, Co.). Supernatants (50 μL) from control and DOPC-treated samples were 

combined with 50 μL normal fresh frozen plasma and 100 μL aPTT reagent (Werfen Group 

IVD) containing kaolin and negatively charged phospholipids. This mixture was incubated at 

37°C for 180 seconds in a test well containing a metal ball, and then 100 μL warmed 0.025 M 

calcium chloride reagent (Werfen Group IVD) was added. The time to clotting was detected 
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by mechanical endpoint. Samples were tested in duplicate and the mean clotting time was used 

for statistical analysis. 

 

5.2.10 Statistical Analyses 

Statistical analysis was performed using SPSS 23.0 software (IBM, Armonk, NY). 

Paired T test or Wilcoxon signed-rank test were used to assess differences between liposome-

treated RBCs and MPs, and control RBCs and MPs. Spearman’s correlation was used to 

evaluate cytokine release and adhesion molecules expression by HUVECs. Data were 

expressed as mean ± standard deviation and p < 0.05 was considered statistically significant. 

 

5.3 Results 

Cytokine release from HUVECs after Incubation with Control and DOPC-treated RBCs at 

Day 2 of Hypothermic Storage 

From the 40 cytokines/chemokines measured, six (IL-1α, IL-1β, IL-2, IL-3, IL-9 and 

TNFβ) were below the detection limit and thirty-four were not significantly altered by the 

DOPC treatment compared to control at day 2 of hypothermic storage (Table 5.1). HUVECs 

release of interferons IFNα2 (DOPC-treated: 11.1 ± 2.5 pg/mL vs. control: 17.5 ± 3.4 pg/mL, 

p = 0.009) and IFNγ (DOPC-treated: 2.4 ± 0.4 pg/mL vs. control: 3.3 ± 0.7 pg/mL, p = 0.030) 

was significantly decreased after incubation with DOPC-treated RBCs compared to control 

RBCs. The release of cytokines IL-15 and IL-17 was also decreased in DOPC-treated RBCs at 

day 2 of storage (IL-15: 2.0 ± 0.4 pg/mL vs. 2.8 ± 0.5 pg/mL, p = 0.024; IL-17: 1.1 ± 0.3 

pg/mL vs. 1.6 ± 0.1 pg/mL, p = 0.006) as well as hematopoietin Flt-3L (8.5 ± 2.4 pg/mL vs. 

11.6 ± 2.3 pg/mL, p = 0.010). The growth factor FGF-2 was significantly increased after 
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incubation with DOPC-treated RBCs compared to control RBCs (127.6 ± 16.0 pg/mL vs. 53.5 

± 19.5 pg/mL, p = 0.002). 

Cytokine release from HUVECs after Incubation with Control and DOPC-treated RBCs at 

Day 42 of Hypothermic Storage 

From the 40 cytokines/chemokines measured, fourteen (IL-1α, IL-1β, IL-2, IL-3, IL-5, 

IL-9, IL-10, TNFα, TNFβ, MDC, IL-12p70, sCD40L, IL-17 and TGFα) were below the 

detection limit and thirty-seven were not significantly altered by the DOPC treatment 

compared to control at day 42 of hypothermic storage (Table 5.1). The cytokines IL-1α, IL-1β, 

IL-2, IL-3, IL-9 and TNFβ remained below detection limit throughout storage. HUVECs 

release of cytokine IL-11 was significantly increased after incubation with DOPC-treated 

RBCs compared to control RBCs (4.2 ± 0.4 pg/mL vs. 3.5 ± 0.6 pg/mL, p = 0.005) as well as 

growth factor FGF-2 (DOPC: 46.4 ± 21.2 pg/mL vs. Control: 15.3 ± 5.7 pg/mL, p = 0.015) at 

day 42 of storage. The growth factor FGF-2 was the only cytokine that remained increased 

after incubation with DOPC-treated RBCs compared to control RBCs throughout storage. The 

release of chemokine IP-10 was significantly decreased after incubation with DOPC-treated 

RBCs compared to control RBCs (4.1 ± 3.3 pg/mL vs. 8.6 ± 2.1 pg/mL, p = 0.016).  

Cytokine release from HUVECs after Incubation with Control and DOPC-treated MP-rich 

supernatants at Day 2 of Hypothermic Storage 

From the 40 cytokines/chemokines measured, three (IL-1α, IL-2, IL-3) were below the 

detection limit and thirty were not significantly altered by the DOPC treatment compared to 

control at day 2 of hypothermic storage (Table 5.2). The colony-stimulating factor GM-CSF 

was significantly increased in DOPC supernatants compared to control (24.0 ± 10.2 pg/mL vs. 

14.6 ± 7.5 pg/mL, p = 0.007). Chemokines GRO (6337.6 ± 4125.2 pg/mL vs. 3678.5 ± 3820.2 

pg/mL, p = 0.002), MCP-3 (164.3 ± 71.9 pg/mL vs. 107.5 ± 53.5 pg/mL, p = 0.027) and IL-8 
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(6306.7 ± 1362.1 pg/mL vs. 3462.2 ± 2842.0 pg/mL, p = 0.029) were also significantly 

increased in DOPC supernatants. DOPC supernatants also had slightly higher concentrations 

of sCD40L (9.0 ± 1.8 pg/mL vs. 7.8 ± 2.1 pg/mL, p = 0.020), IL-17 (2.7 ± 0.4 pg/mL vs. 2.2 ± 

0.5 pg/mL, p = 0.006) and IL-6 (305.2 ± 181.0 pg/mL vs. 211.0 ± 163.6 pg/mL, p = 0.031). 

Cytokine release from HUVECs after Incubation with Control and DOPC-treated MP-rich 

supernatants at Day 42 of Hypothermic Storage 

From the 40 cytokines/chemokines measured, six (TGF- α, IL-1α, IL-9, IL-1β, IL-3, 

IL-5) were below the detection limit and thirty-three were not significantly altered by the 

DOPC treatment compared to control at day 42 of hypothermic storage (Table 5.2). Growth 

factor FGF-2 was increased in DOPC supernatants compared to control (45.8 ± 12.3 pg/mL 

vs. 25.5 ± 10.7 pg/mL, p = 0.028).  

HUVECs Adhesion Molecules Expression: Effect of Liposome Treatment 

The expression of VCAM-1 in the negative control was 3.5 ± 3.2% and in the positive 

control was 16.7 ± 1.4%. The expression of E-selectin in the negative control was 4.1 ± 2.2% 

and in the positive control was 12.7 ± 1.6%. The expression of both VCAM-1(15.3 ± 5.6% vs. 

6.3 ± 0.9%, p = 0.008) and E-selectin (18.0 ± 6.3% vs. 6.6 ± 0.7%, p = 0.004) by HUVECs 

was significantly increased after incubation with liposome-treated RBCs compared to control, 

at day 2 of storage (Figure 5.1A). At day 42 of hypothermic storage, the expression of 

VCAM-1 by HUVECs was higher when incubated with liposome-treated RBCs (16.8 ± 4.9% 

vs. 10.9 ± 2.8%, p = 0.028), while the expression of E-selectin increased to a similar extent for 

incubation with both control and liposome-treated RBCs (37.2 ± 8.4% vs. 41.0 ± 5.5%, p = 

0.249) (Figure 5.1B). Control and liposome-treated supernatants induced similar expression of 

VCAM-1 (7.1 ± 3.6% vs. 5.2 ± 1.2%, p = 0.237) and E-selectin (9.2 ± 4.9% vs. 7.3 ± 1.0%, p 

= 0.402) by HUVECs at day 2 of storage. At day 42 of storage, control and liposome-treated 
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supernatants also induced similar expression of VCAM-1 (12.6 ± 4.7% vs. 11.1 ± 2.6%, p = 

0.526) and E-selectin (29.8 ± 6.5% vs. 26.9 ± 2.7%, p = 0.397) by HUVECs. 

HUVECs Adhesion Molecules Expression: Effect of Storage 

The expression of both VCAM-1(6.3 ± 0.9% vs. 10.9 ± 2.8%, p = 0.011) and E-

selectin (6.6 ± 0.7% vs. 37.2 ± 8.4%, p = 0.031) by HUVECs was significantly increased after 

incubation with control RBCs at day 42 of storage compared to day 2. The expression of E-

selectin by HUVECs was higher at day 42 compared to day 2 of storage (18.0 ± 6.3% vs. 41.0 

± 5.5%, p = 0.001), while the expression of VCAM-1 did not increase significantly with 

storage after incubation with DOPC-treated RBCs (15.3 ± 5.6% vs. 16.8 ± 4.9%, p = 0.617). 

The expression of both VCAM-1 (7.1 ± 3.6% vs. 11.7 ± 4.6%, p = 0.045) and E-selectin (9.2 ± 

4.9% vs. 29.8 ± 6.5%, p < 0.001) by HUVECs was significantly increased after incubation 

with control supernatants at day 42 of storage compared to day 2. The expression of both 

VCAM-1 (5.2 ± 1.2% vs. 11.6 ± 2.6%, p = 0.002) and E-selectin (7.3 ± 1.0% vs. 26.9 ± 2.7%, 

p < 0.001) by HUVECs was significantly increased after incubation with DOPC supernatants 

at day 42 of storage compared to day 2. 

Correlation of Cytokine release and Adhesion Molecule Expression by HUVECs  

Table 5.3 shows Spearman’s correlation coefficients and p-values for cytokine release 

by HUVECs when incubated with control and DOPC-treated RBCs at day 2 (IL-15, IL-17, 

IFNγ, IFNα2, FGF-2, Flt-3L) and 42 (IL-11, FGF-2, IP-10) of hypothermic storage and the 

expression of adhesion molecules. No correlation was found between the release of 

cytokines/chemokines and the expression of adhesion molecules (VCAM-1 and E-selectin) 

when HUVECs was incubated with control RBCs, regardless of storage time. When DOPC-

treated RBCs were incubated with HUVECs at day 2 of storage there was a strong negative 

correlation between the release of IL-15 (rs = -0.943, p = 0.017) and IL-17 (rs = -0.853, p = 
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0.033) and the expression of VCAM-1, as well as the release of IFNα2 (rs = -0.899, p = 0.017) 

and the expression of E-selectin. When DOPC-treated RBCs were incubated with HUVECs at 

day 42 of storage there was a strong positive correlation between the release of IL-11 (rs = 

0.943, p = 0.017) and the expression of VCAM-1. 

Cytokine release from Monocytes after Incubation with Control and DOPC-treated RBCs at 

Day 2 of Hypothermic Storage 

From the 40 cytokines/chemokines measured, twenty-one were below the detection 

limit and thirty-eight were not significantly altered by the DOPC treatment compared to 

control at day 2 of hypothermic storage (Table 5.4). Monocytes release of IL-12p70 was 

slightly decreased after incubation with DOPC-treated RBCs compared to control RBCs (1.4 ± 

0.2 pg/mL vs 1.6 ± 0.2 pg/mL, p = 0.043) while IL-5 was significantly increased in DOPC-

treated RBCs compared to control RBCs (1.0 ± 0.2 pg/mL vs 0.7 ± 0.1 pg/mL, p = 0.042). 

Cytokine release from Monocytes after Incubation with Control and DOPC-treated RBCs at 

Day 42 of Hypothermic Storage 

From the 40 cytokines/chemokines measured, twenty-eight were below the detection 

limit and thirty-nine were not significantly altered by the DOPC treatment compared to control 

at day 42 of hypothermic storage (Table 5.4). Monocytes release of fractalkine was 

significantly decreased after incubation with DOPC-treated RBCs compared to control RBCs 

(0.6 ± 1.6 pg/mL vs 7.1 ± 3.9 pg/mL, p = 0.039). 

Phagocytosis of Control and DOPC-treated RBCs by Monocytes 

The MMA resulted in phagocytic indexes findings of zero for both control and DOPC-

treated RBCs at day 2 and day 42 of hypothermic storage (positive controls: 61 ± 22% at day 

2; 72 ± 11% at day 42). 
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Coagulation (PT and aPTT) in control and DOPC-treated MP-rich supernatants 

 PT results were comparable at day 2 (19.2 ± 0.8s vs. 19.8 ± 1.9s, p = 0.471) but 

significantly decreased in stored supernatants from liposome-treated RBCs compared to 

control (16.7 ± 0.6s vs. 18.7 ± 0.6s, p = 0.003) (Figure 5.2A). The opposite occurred for aPTT 

which was slightly decreased at day 2 in supernatants from liposome-treated RBCs compared 

to control (41.1 ± 1.2s vs. 43.0 ± 0.8s, p = 0.043) but at day 42, a significant difference was no 

longer observed (43.9 ± 1.1s vs. 45.3 ± 1.0s, p = 0.106) (Figure 5.2B).  

5.4 Discussion 

Liposomes have been shown to improve human RBC in vitro quality by minimizing 

membrane damage occurring during hypothermic storage (3). The emerging use of 

nanoparticles in therapeutics (i.e. drug delivery) raises safety questions about their interaction 

with the immune and coagulation systems that could ultimately lead to severe consequences in 

patients. This study evaluated a comprehensive panel of cytokines and other aspects of 

immune modulation, like endothelial cell adhesion molecules expression, and immune 

response by phagocytic cells as part of the investigation on the effects of liposome-treated 

RBCs and supernatants on immune response, as well as the effect of liposome-treated 

supernatants on coagulation profile.  

Recent studies on transfusion-related reactions are pointing to manufacturing methods 

and donor factors as the main cause of adverse events, even showing that fresh RBCs can be 

potentially more immunogenic than old RBCs as the results observed in this study indicates 

(43-45). A possible mechanism involves the presence of soluble HLA antigens from donor’s 

plasma and the presence of residual leukocytes that can become activated or undergo 

apoptosis consequently releasing cytokines (46). Cytokines are signalling molecules secreted 
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from a wide variety of cells to stimulate immune response in inflammation, infection and 

trauma (33). Cytokine release was more pronounced after incubation with fresh RBCs (day 2 

of hypothermic storage) regardless of treatment for both HUVECs and PBMCs compared to 

RBCs at day 42 of hypothermic storage, as shown by the higher number of cytokines that were 

below the detection limit at day 42.  

Interferons (IFNγ and IFNα2) were significantly decreased when HUVECs were 

incubated with DOPC-treated RBCs at day 2 of storage; at day 42 a significant difference was 

no longer observed. Endothelial cells do not secrete type II interferons like IFNγ, but they 

respond to IFNγ by secreting chemokine IP-10 (interferon-γ-inducible protein 10) which 

attracts T-cells to inflammation sites (47). Therefore, the IFNγ detected on the samples might 

have been produced by residual leukocytes. While IP-10 secretion was comparable at day 2 of 

storage, at day 42 HUVECs release of IP-10 was decreased after incubation with DOPC-

treated RBCs compared to control. At day 2 of storage, IL-6 secretion by HUVECs showed a 

trend towards lower levels (p = 0.058) after incubation with DOPC-treated RBCs, which 

might be linked to the significantly lower secretion of IL-15 and IL-17 observed after 

incubation with DOPC-treated RBCs. Endothelial activation with release of IL-6 supports the 

expansion of T helper (Th)17 under inflammatory conditions (48), Th17 cells will in turn 

produce inflammatory cytokine IL-17, while IL-15 has also been shown to trigger IL-17 

production in vitro (49).  

Although no significant difference was observed in the release of VEGF by HUVECs 

when incubated with the two RBC groups (control and liposome-treated), both samples 

experienced a significant decrease in the release of this growth factor with storage time 

(51.2% for DOPC-treated RBCs versus 43.7% for control RBCs). VEGF has been implicated 
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as a potential mediator of transfusion-related acute lung injury (TRALI) (50) which is one of 

the most serious complications of transfusion, characterized by acute respiratory distress and 

lung edema, presenting high indices of morbidity and mortality (51). Lower concentrations of 

Flt-3L were released by HUVECs when incubated with DOPC-treated RBCs at day 2, 

compared to control RBCs, while at day 42 of storage the levels of Flt-3L were comparable 

regardless of the treatment. Flt-3L is a hematopoietin produced in great amounts by 

endothelial cells (52), but its main role in immunity is related to the generation and 

differentiation of dendritic cells, which in turn control T regulatory cells. Considering that 

anti-inflammatory responses tend to be higher in response to inflammation (53), the increased 

levels of Flt-3L might be an effort to counteract the increased levels of pro-inflammatory 

cytokines released during incubation with control RBCs. The Fibroblast Growth Factor-2 

(FGF-2) has been associated with many functions like angiogenesis, endothelial cell 

proliferation and wound healing (54). FGF-2 was the only cytokine released by HUVECs that 

remained significantly increased after incubation with DOPC-treated RBCs compared to 

control RBCs throughout storage. This is particularly concerning because FGF-2 is up-

regulated in inflammatory conditions like atherosclerosis (55) and following blood vessel 

injury (56). 

A great number of cytokines were not detected after incubation with RBCs at day 42 of 

storage, and most of the significant differences observed between treatments at day 2 were no 

longer detectable (with the exception of FGF-2). At day 42, besides the aforementioned 

difference in IP-10 release, the only detectable difference in cytokine release was in IL-11 that 

was significantly increased in HUVECs incubated with DOPC-treated RBCs. IL-11 has been 
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shown to have protective effects on immune-mediated injury in HUVECs without inhibition of 

pro-inflammatory response (57).  

Supernatants were able to induce a greater cytokine response from HUVECs than the 

cell fraction. This observation is not surprising considering supernatants will contain all the 

metabolic and cellular by-products, including biologically active MPs of all sizes, 

compositions and different cell origins (i.e. leukocytes, platelet and RBC-derived) (58). A 

similar pattern of upregulation of cytokines has also been reported for fresh vesicles incubated 

with PBMCs compared to older vesicles (42 days) (59), that was similar to what was observed 

for HUVECs (more stimulation with day 2 supernatants compared to day 42). On day 2 

DOPC-treated supernatants showed a more pro-inflammatory profile with upregulation of pro-

inflammatory cytokines (GM-CSF, IL1-7, IL6), chemoattractants (GRO, IL-8, MCP-3) and 

anti-inflammatory sCD40L. On day 42 DOPC-treated and control supernatants had a similar 

profile, with only a small increase in growth factor (FGF-2) secretion in DOPC supernatants. 

Considering that a control sample containing liposomes only was not able to induce the same 

effects on cytokine release by HUVECs (data not shown), the observed changes could be a 

result of liposome interaction with other cells (leukocytes, platelets) or changes to RBC MPs.  

Overall, the monocytes response to the incubation with DOPC-treated and control 

RBCs in the form of cytokine release was lower when compared to HUVECs. This fact is 

probably due to the shorter duration of incubation (2 h for monocytes compared to 24 h for 

HUVECs). One of the few changes observed between treatments was a decrease in the release 

of IL-12p70 by monocytes when incubated with DOPC-treated RBCs at day 2 of storage 

compared to control RBCs. IL-12 is required to induce the production of IFN-γ by Th1 cells 

(60), but no similar decrease was observed in IFN-γ from the same sample. The levels of IL-5 
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released by monocytes were higher when incubated with DOPC-treated RBCs. Th2 cells 

produce IL-5 and is implicated in allergy-related inflammation by activation of eosinophils 

(61).  After incubation with RBCs at day 42 of storage, the only significant difference 

observed was an increase in the release of the chemokine Fractalkine by monocytes when 

incubated with control RBCs compared to DOPC-treated RBCs. Fractalkine is a critical 

mediator in the host inflammatory response leading to vascular injury by promoting adhesion 

and extravasation of leucocytes to inflammatory infiltrates, and is usually up-regulated in 

endothelial cells in inflammatory disease states (62). Previous reports have shown that a 2 h 

incubation is enough to produce detectable levels of acute phase cytokines by monocytes (63) 

but since this might not be true for all cytokines/chemokines the short incubation time 

constitutes a limitation of the study regarding cytokine release by monocytes.  

Adhesion molecules are cytokine-induced proteins, expressed on the surface of 

endothelial cells that binds to leukocytes resulting in an inflammatory response (34). 

Liposome-treated RBCs increased the expression of VCAM-1 by HUVECs at day 2 and at day 

42 of storage compared to control RBCs. The α4β1 integrin on RBC membrane binds to 

VCAM-1 on endothelial cells (64) and has been associated with increased adherence of sickle 

RBCs (65). The level of expression of α4β1 in mature RBCs is not likely to be changed by 

liposome treatment but signaling cascades may result in activation of this integrin and could 

regulate RBC adhesion to endothelium (66). An increase in E-selectin expression by HUVECs 

was observed at day 2 of storage for liposome-treated RBCs compared to control, but at day 

42 of storage no significant difference was observed. Sialic acid serves as the binding site for 

E-selectin on RBCs (64). E-selectin also increased significantly with storage in both groups, 

which contrasts with the fact that old RBCs tend to have less sialic acid content on their 
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membranes (67) and therefore increased expression of E-selectin at day 42 of storage must 

have been stimulated by other factors. The cytokines TNFα and IL-1β that are known to 

induce the expression of E-selectin (68) were almost undetectable, requiring further 

investigation into the exact mechanism of adhesion molecules expression that was observed. 

Control and DOPC-treated supernatants induced similar expression of VCAM-1 and E-

selectin regardless of treatment time. While the expression of both adhesion molecules 

increased significantly over time in both treatment groups. One limitation of these results is 

that RBCs were incubated with HUVECs under static conditions rather than flow conditions 

(as it happens in vivo), therefore the adhesion molecules expression as well as cytokine release 

response might be exacerbated by the extended contact between cells. Because of these 

factors, the likelihood that the observed changes might be biologically significant are minimal, 

but cell assays closely mimicking in vivo conditions should be designed to provide a definite 

answer. The effect of liposome-treated supernatants on the expression of VCAM-1 and E-

selectin was comparable to control throughout storage.  

Since monocytes/macrophages represent the first line of defense of the immune system 

against foreign materials (29) this assay is useful in predicting the immune response to 

membrane changes caused by liposomes. In this study, phagocytosis for both control and 

liposome-treated RBCs was found to be zero at day 2 and day 42 of hypothermic storage. A 

study by Veale and colleagues (2014) using the human monocytic cell line THP-1 has 

rendered different results showing significantly increased in vitro phagocytosis of RBCs at day 

1 and at day 42 of storage (69). THP-1 cells are a transformed monocyte cell line, therefore 

results obtained using this cell line may not necessarily be generalized to normal monocytes-

macrophages. However, a study evaluating in vivo and in vitro phagocytosis in a mouse model 
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showed the absence of in vitro phagocytosis of senescent RBCs by bone marrow and spleen-

derived macrophages (70). This may suggest that changes observed in senescent RBCs as well 

as in stored RBCs (i.e. PS exposure) were not sufficient to induce phagocytosis in vitro, and 

the membrane changes promoted by the liposome treatment did not induce further recognition 

by phagocytic cells in vitro nevertheless, the possibility that they might be recognized in vivo 

cannot be excluded.  

Coagulation markers were slightly altered in DOPC-treated supernatants compared to 

control, showing a procoagulant tendency. Studies evaluating coagulation activity in stored 

blood have attributed these effects early in storage to the presence of PS, tissue factor and 

factor XIa, but later in storage other factors might contribute to procoagulant activity (71). The 

procoagulant activity seen early in storage might be due to factors affecting the intrinsic 

pathway (since there is an increase in aPTT over storage time), while coagulation activity at 

the end of storage might be due to factors affecting PT and the extrinsic pathway (since there 

is a decrease in PT over storage time). 

5.5 Conclusion 

Liposome treatment did not result in significant changes to the immune profile of 

stored RBCs. There were significant changes in adhesion molecules expression by HUVECs, 

as well as FGF-2 release, that were exclusively observed on incubations with DOPC-treated 

RBCs, and therefore require further investigations about its possible clinical implications. 

However, liposome treatment did not induce additional immune response from endothelial 

cells or monocytes in vitro, suggesting that such RBCs are not likely to be removed 

prematurely from the circulation upon transfusion.  
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Liposome treatment resulted in a small change in the immune profile of fresh 

supernatants only, indicated by higher cytokine release. In addition, supernatants showed 

slightly enhanced clotting response, warranting further investigations. These results are less 

concerning because a simple wash procedure prior to transfusion would likely eliminate any 

deleterious effects associated with the supernatant portion.  

These findings combined with previous in vivo results from Chapter 3 showing the 

ability of DOPC-treated RBCs to raise hemoglobin levels in transfused anemic rats without 

increasing mortality in addition to results from Chapter 4 showing improvement in 

hemorheology without affecting the metabolic profile of human RBCs, make liposome 

treatment a potential candidate for application in red blood cell preservation for transfusion 

purposes as well as open the possibility for clinical use with other cell types. 

The next chapter will evaluate the combination of liposome treatment with 

rejuvenating solution, a strategy currently used in blood banks to achieve metabolic 

restoration.  
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Table 5.1: Cytokine/Chemokine released by HUVECs after incubation with DOPC-

treated and control RBCs at day 2 and day 42 of hypothermic storage. Mean values ± SD 

(n = 6) are shown. 

Hypothermic storage Day 2 Day 42 

Cytokines/ 

Chemokines (pg/mL) 
Control RBCs 

DOPC-treated 

RBCs 
Control RBCs 

DOPC-treated 

RBCs 

IL-1RA  8.4 ± 1.4 6.2 ± 1.6 6.8 ± 3.6 5.0 ± 3.1 

FGF-2  53.5 ± 19.5 127.6 ± 16.0* 15.3 ± 5.7 46.4 ± 21.2* 

Eotaxin  123.2 ± 65.3 112.2 ± 67.8 76.7 ± 54.0 81.6 ± 34.4 

TGFα  0.9 ± 0.5 0.1 ± 0.3 < OOR < OOR 

Flt-3L  11.6 ± 2.3 8.5 ± 2.4* 8.1 ± 2.7 8.2 ± 1.8 

GM-CSF  14.3 ± 4.2 10.2 ± 3.0 20.9 ± 11.0 14.7 ± 7.4 

Fractalkine  81.8 ± 9.4 70.9 ± 6.4 35.8 ± 16.0 26.8 ± 11.2 

IFNα2  17.5 ± 3.4 11.1 ± 2.5* 19.2 ± 9.8 17.2 ± 6.1 

IFNγ  3.3 ± 0.7 2.4 ± 0.4* 2.3 ± 0.9 2.0 ± 0.7 

GRO  104.1 ± 30.7 75.7 ± 22.1 90.0 ± 44.7 75.2 ± 22.7 

IL-10  2.8 ± 0.8 2.6 ± 0.4 < OOR < OOR 

MCP-3  15.3 ± 2.5    12.0 ± 3.5 11.5 ± 3.0 9.0 ± 2.1 

IL-12p40  5.7 ± 1.7 3.6 ± 1.2 5.1 ± 2.9 2.4 ± 2.8 

MDC  9.3 ± 2.3 7.4 ± 1.0 < OOR < OOR 

IL-12p70  4.0 ± 1.0 3.1 ± 0.4 < OOR < OOR 

IL-13  2.2 ± 0.3 2.0 ± 0.4 6.4 ± 3.3 3.0 ± 2.1 

IL-15  2.8 ± 0.5 2.0 ± 0.4* 2.0 ± 1.6 1.6 ± 1.4 

sCD40L  4.5 ± 1.4 2.8 ± 2.2 < OOR < OOR 

IL-17  1.6 ± 0.1 1.1 ± 0.3* < OOR < OOR 

IL-1α  < OOR < OOR < OOR < OOR 

IL-9  < OOR < OOR < OOR < OOR 

IL-1β  < OOR < OOR < OOR < OOR 

IL-2  < OOR < OOR < OOR < OOR 
IL-3  < OOR < OOR < OOR < OOR 

IL-4  5.6 ± 1.4 4.2 ± 1.2 6.7 ± 4.0 5.0 ± 3.3 

IL-5  1.3 ± 0.3 1.2 ± 0.1 < OOR < OOR 

IL-6  131.9 ± 40.5 74.4 ± 34.9 181.3 ± 107.7 136.2 ± 85.5 

IL-7  7.6 ± 1.8 6.5 ± 2.0 21.6 ± 12.6 22.4 ± 5.4 

IL-8  406.5 ± 154.0 270.3 ± 78.7 437.3 ± 256.8 313.1 ± 138.4 

IP-10  14.4 ± 3.3 11.7 ± 4.4 8.6  ± 2.1 4.1 ± 3.3* 

MCP-1  11672.7 ± 841.1 8980.2 ± 3317.0 9028.9 ± 5375.8 6053.8 ± 3968.4 

MIP-1α  6.2 ± 1.9 5.6 ± 2.8 5.9 ± 3.1 4.6 ± 2.9 

MIP-1β  3.3 ± 1.8 1.9 ± 2.1 5.7 ± 1.5 4.4 ± 1.1 

TNFa  1.3 ± 0.3 0.9 ± 0.3 < OOR < OOR 
TNFb  < OOR < OOR < OOR < OOR 

VEGF  80.6 ± 15.8 81.9 ± 32.7 45.3  ± 22.8 40.0  ± 18.4 

EGF  4.6 ± 0.8 4.0 ± 0.6 1.1 ± 1.7 1.5 ± 1.6 

G-CSF  22.2 ± 6.0 18.9 ± 5.1 24.1 ± 13.5 16.8 ± 6.7 

IL-11  3.3 ± 1.0 3.4  ± 0.4 3.5  ± 0.6 4.2 ± 0.4* 

RANTES  423.3 ± 228.6 360.5 ± 183.9 318.9 ± 187.5 313.6 ± 141.5 
* p < 0.05 compared to control RBCs of correspondent age, < OOR: out (below) of detection range. 
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Table 5.2: Cytokine/Chemokine released by HUVECs after incubation with DOPC-

treated and control supernatants at day 2 and day 42 of hypothermic storage. Mean 

values ± SD (n = 6) are shown.  

Hypothermic storage Day 2 Day 42 

Cytokines/ 

Chemokines (pg/mL) 

Control 

Supernatants 

DOPC-treated 

Supernatants 

Control 

Supernatants 

DOPC-treated 

Supernatants 

IL-1RA  12.8 ± 3.0 12.0 ± 1.9 11.5 ± 3.2 8.7 ± 3.1 

FGF-2  53.8 ± 9.1 56.6 ± 6.5 25.5 ± 10.7 45.8 ± 12.3* 

Eotaxin  19.1 ± 5.4 21.9 ± 4.3 30.2 ± 10.5 32.5 ± 16.9 

TGFα  1.7 ± 0.6 1.8 ± 0.4 OOR < OOR < 

Flt-3L  16.1 ± 2.7 17.2 ± 1.8 12.1 ± 1.6 11.2 ± 3.7 

GM-CSF  14.6 ± 7.5 24.0 ± 10.2* 17.8 ± 5.9 17.9 ± 15.5 

Fractalkine  130.7 ± 39.1 134.3 ± 32.7 52.6 ± 7.5 42.4 ± 14.6 

IFNα2  20.9 ± 7.1 23.8 ± 4.9 29.3 ± 4.7 30.3 ± 10.7 

IFNγ  4.1 ± 0.8 4.8 ± 1.2 4.0 ± 1.2 3.3 ± 1.9 

GRO  3678.5 ± 3820.2 6337.6 ± 4125.2* 1504.8 ± 1200.3 2262.9 ± 4284.5 

IL-10  3.6 ± 0.5 3.6 ± 0.8 1.6 ± 1.9 0.7 ± 1.1 

MCP-3  107.5 ± 53.5 164.3 ± 71.9* 26.9 ± 10.5 19.5 ± 9.4 

IL-12p40  9.2 ± 1.5 9.6 ± 1.9 8.7 ± 3.2 6.4 ± 3.1 

MDC  10.5 ± 1.1 12.0 ± 2.7 3.6 ± 1.9 2.4 ± 2.9 

IL-12p70  5.8 ± 1.4 6.0 ± 1.3 2.8 ± 0.6 2.0 ± 2.1 

IL-13  2.5 ± 0.5 2.7 ± 0.4 9.6 ± 2.0 9.0 ± 3.3 

IL-15  4.0 ± 0.9 4.5 ± 1.2 5.4 ± 1.8 4.0 ± 2.7 

sCD40L  7.8 ± 2.1 9.0 ± 1.8* 4.7 ± 2.5 3.5 ± 3.2 

IL-17  2.2 ± 0.5 2.7 ± 0.4* 1.2 ± 1.0 0.9 ± 1.2 

IL-1α  OOR < OOR < OOR < OOR < 

IL-9  1.3 ± 0.2 1.4 ± 0.2 OOR < OOR < 

IL-1β  0.5 ± 0.6 0.5 ± 0.5 OOR < OOR < 

IL-2  OOR < OOR < 1.69 ± 1.03 0.42 ± 1.03 

IL-3  OOR < OOR < OOR < OOR < 

IL-4  10.7 ± 2.5 11.4 ± 3.0 15.9 ± 1.9 13.2 ± 4.3 

IL-5  1.9 ± 0.4 1.9 ± 0.3 OOR < OOR < 

IL-6  211.0 ± 163.6 305.2 ± 181.0* 130.3 ± 57.0 148.7 ± 198.4 

IL-7  14.3 ± 4.3 15.6 ± 2.2 43.7 ± 9.8 43.5 ± 10.9 

IL-8  3462.2 ± 2842.0 6306.7 ± 1362.1* 1757.9 ± 1099.2 1831.0 ± 974.0 

IP-10  26.4 ± 11.2 32.5 ± 13.7 14.4 ± 5.1 10.8 ± 4.9 

MCP-1  11606.1 ± 441.7 11786.6 ± 247.2 14608.6 ± 555.5 12118.2 ± 3446.8 

MIP-1α  10.1 ± 2.0 11.9 ± 1.5 10.4 ± 2.6 9.0 ± 2.8 

MIP-1β  6.6 ± 1.6 6.6 ± 1.9 7.1 ± 1.2 5.9 ± 1.6 

TNFa  2.0 ± 0.6 1.9 ± 0.5 0.7 ± 0.6 0.6 ± 0.7 

TNFb  2.3 ± 0.6 2.4 ± 0.5 0.3 ± 0.7 0.7 ± 1.1 

VEGF  142.2 ± 38.2 164.0 ± 33.3 91.0 ± 21.5 68.8 ± 28.4 

EGF  4.9 ± 0.6 5.5 ± 1.3 4.1 ± 1.0 3.1 ± 1.7 

G-CSF  35.2 ± 13.4 36.8 ± 9.9 40.7 ± 14.6 42.4 ± 18.3 

IL-11  3.6 ± 0.8 3.5 ± 0.3 4.1 ± 0.2 4.5 ± 0.8 

RANTES  85.5 ± 59.1 101.9 ± 32.7 134.4 ± 76.3 171.0 ± 125.7 
* p < 0.05 compared to control RBCs of correspondent age, < OOR: out (below) of detection range. 
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Table 5.3: Correlation of cytokine release with the expression of adhesion molecules by 

HUVECs when incubated with control and DOPC-treated RBCs at day 2 and 42 of 

hypothermic storage. 

Day 2 Control RBCs DOPC-RBCs 
Adhesion molecules VCAM-1 E-selectine VCAM-1 E-selectine 

Cytokine/Chemokine (rs) P (rs) P (rs) P (rs) P 
IL-15 0.029 1.00 0.314 0.56 -0.943 0.02* -0.829 0.06 

IL-17 0.794 0.06 0.353 0.50 -0.853 0.03* -0.765 0.10 

IFNγ 0.486 0.36 0.371 0.50 -0.200 0.72 -0.257 0.66 

IFNα2 0.667 0.14 0.116 0.80 -0.812 0.06 -0.899 0.02* 

FGF-2 0.257 0.66 0.771 0.10 0.143 0.80 0.029 1.00 

Flt-3L 0.371 0.50 0.771 0.10 0.377 0.42 0.232 0.66 

Day 42 (rs) P (rs) P (rs) P (rs) P 
IL-11 0.698 0.14 0.698 0.14 0.943 0.02* 0.771 0.10 

FGF-2 0.029 0.92 0.029 0.92 0.771 0.10 0.714 0.14 

IP-10 -0.177 0.71 -0.177 0.71 0.235 0.66 0.000 1.00 

rs = Spearman’s correlation coefficient, * p < 0.05 
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Table 5.4: Cytokine/Chemokine released by monocytes after incubation with DOPC-

treated and control RBCs at day 2 and day 42 of hypothermic storage. Mean values ± SD 

(n = 6) are shown.  

Hypothermic storage Day 2 Day 42 

Cytokines/ 

Chemokines (pg/mL) 

Control 

RBCs 

DOPC-treated 

RBCs 

Control 

RBCs 

DOPC-treated 

RBCs 

IL-1RA  OOR < OOR < OOR < OOR < 

FGF-2  2.8 ± 3.6 4.2 ± 5.3 1.4 ± 3.4 2.8 ± 4.3 

Eotaxin  12.1 ± 5.9 12.6 ± 4.8 13.0 ± 5.9 12.6 ± 7.1 

TGFα  OOR < OOR < OOR < OOR < 

Flt-3L  OOR < OOR < 3.4 ± 2.7 3.6 ± 3.0 

GM-CSF  OOR < OOR < OOR < OOR < 

Fractalkine  4.2 ± 7.0 9.8 ± 11.3 7.1 ± 3.9 0.6 ± 1.6* 

IFNα2  OOR < OOR < OOR < OOR < 

IFNγ  1.2 ± 0.4 1.3 ± 0.3 OOR < OOR < 

GRO  12.1 ± 4.5 10.5 ± 5.3 7.8 ± 3.1 6.2 ± 1.3 

IL-10  1.7 ± 0.2 1.7 ± 0.3 OOR < OOR < 

MCP-3  4.0 ± 4.9 5.1 ± 4.4 5.3 ± 1.0 5.9 ± 1.8 

IL-12p40  OOR < OOR < OOR < OOR < 

MDC  3.0 ± 1.7 1.7 ± 1.9 OOR < OOR < 

IL-12p70  1.6 ± 0.2 1.4 ± 0.2* OOR < OOR < 

IL-13  OOR < OOR < OOR < OOR < 

IL-15  OOR < OOR < OOR < OOR < 

sCD40L  OOR < OOR < OOR < OOR < 

IL-17  OOR < OOR < OOR < OOR < 

IL-1α  OOR < OOR < OOR < OOR < 

IL-9  OOR < OOR < OOR < OOR < 

IL-1β  2.0 ± 1.2 2.3 ± 1.0 OOR < OOR < 

IL-2  OOR < OOR < OOR < OOR < 

IL-3  OOR < OOR < OOR < OOR < 

IL-4  OOR < OOR < OOR < OOR < 

IL-5  0.7 ± 0.1 1.0 ± 0.2* OOR < OOR < 

IL-6  OOR < OOR < OOR < OOR < 

IL-7  OOR < OOR < OOR < OOR < 

IL-8  91.9 ± 52.1 86.3 ± 38.1 35.6 ± 17.8 23.4 ± 8.1 

IP-10  3.3 ± 2.6 3.0 ± 2.6 OOR < OOR < 

MCP-1  28.7 ± 12.8 32.2 ± 19.0 32.5 ± 12.5 30.5 ± 13.6 

MIP-1α  14.9 ± 7.5 14.4 ± 3.9 1.2 ± 2.9 0.6 ± 1.5 

MIP-1β  OOR < OOR < OOR < OOR < 

TNFa  4.6 ± 2.0 4.4 ± 1.5 1.6 ± 1.3 0.9 ± 0.8 

TNFb  OOR < OOR < OOR < OOR < 

VEGF  OOR < OOR < OOR < OOR < 

EGF  OOR < OOR < OOR < OOR < 

G-CSF  1.8 ± 2.1 1.1 ± 1.2 OOR < OOR < 

IL-11  3.2 ± 0.5 2.8 ± 0.5 4.4 ± 0.7 4.1 ± 0.7 

RANTES  98.5 ± 44.2 93.3 ± 36.9 93.9 ± 41.5 89.3 ± 30.0 
* p < 0.05 compared to control RBCs of correspondent age, < OOR: out (below) of detection range. 
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Figure 5.1: Adhesion molecules expression at day 2 (A) and day 42 (B) of storage by 

HUVECs incubated with control and DOPC-treated RBCs. Shown is the mean ± SD (n= 

6). Negative control (PBS) and positive control (LPS 20 µg/mL). * Significant (p < 0.05) 

compared to control RBCs.  
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Figure 5.2: Prothrombin time (A) and Activated partial thromboplastin time (B) of 

control and DOPC-treated supernatants. Shown is the mean ± SD (n= 6). * Significant (p < 

0.05) compared to control. 
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6.1 Introduction 

As described in Chapter 1, HSL remains an unsolved problem for red cell preservation. 

Therefore, a number of alternate approaches have been investigated in order to decrease cell 

injury during storage and perhaps increase RBC shelf life. The techniques vary from new 

generation additive solutions (1, 2) to anaerobic storage (3), the use of plasticizers (4) and 

rejuvenating solutions (5). 

Rejuvenating solutions have been described since the early 70’s, originally for freezing 

of outdated stored RBCs (6, 7); they are composed of substrates to boost metabolism and 

contain pyruvate, inosine, phosphate and adenine, sometimes also referred to as the acronym 

PIPA (8). Pyruvate, inosine and phosphate support 2,3-DPG synthesis, while adenine supports 

ATP synthesis (Figure 6.1). Inosine and phosphate will originate substrates used in the pentose 

shunt that will ultimately lead to glyceraldehyde-3-phosphate (G3P), pyruvate to lactate 

conversion generates a NAD molecule needed for further conversion of G3P to 1,3-DPG (9).  

The rejuvenation process involves incubating packed RBCs with the rejuvenating 

solution for 1 h at 4 °C (cold rejuvenation) or at 37 °C (warm rejuvenation). Cold rejuvenation 

is sometimes preferred so that RBCs are not exposed to varying temperatures during storage 

that could potentially affect their quality, in addition that are concerns that warm temperatures 

could promote contamination and bacterial growth in RBC units (10, 11). The incubation is 

followed by washing to remove the contents of rejuvenating solutions that are potentially toxic 

(nephrotoxicity) and the excess of lactate produced by the conversation of pyruvate, that could 

decrease blood pH and cause metabolic acidosis after transfusion (6, 10).  

A rejuvenating solution named Rejuvesol is the only commercially available solution 

with FDA-approval (9). There are many reports in the literature using both Rejuvesol (5, 9, 
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12) and in house prepared solutions (13) showing an increase in ATP and 2,3-DPG levels 

following rejuvenation.  

Rejuvenating solutions, while useful in restoration of metabolites, might not mitigate 

the membrane part of storage lesion. Cell membrane plays an important role in post-

transfusion survival and oxygen delivery capacity of RBCs (14, 15). The use of liposomes in 

transfusion is relatively safe, as shown in Chapter 3. While improving RBC in vitro quality by 

minimizing membrane damage occurring during 42-day storage, as shown in Chapter 4, 

liposomes do not result in significant changes to the immune profile of stored RBCs, as shown 

in Chapter 5. Considering the effects of liposomes on membrane quality and the effect of 

rejuvenating solutions on restoring metabolism, the objective of this study was to evaluate the 

effect of combining liposome treatment and rejuvenation on the quality of stored RBCs.  

 

6.2 Materials and Methods 

6.2.1 RBC collection and manufacturing 

Ethical approval for the study was granted by both the Canadian Blood Services (CBS) 

and the University of Alberta Research Ethics Boards. Five leukoreduced packed RBC units in 

saline-adenine-glucose-mannitol buffy coat processed were obtained from the CBS Network 

Centre for Applied Development (netCAD) and processed from whole blood as previously 

described (16).  

6.2.2 Liposome and rejuvenation treatments  

Unilamellar (DOPC:cholesterol, 7:3 mol%) liposomes were synthesized as described in 

Chapter 3, Section 3.2.2. Five leukoreduced packed RBC units in CPD-SAGM obtained from 

                                                           
 Hematological indices and deformability were performed with the help of MSc student Betty Kipkeu and 

Doctoral student Ruqayyah Alzmiraq (Lab Medicine and Pathology). 



182 
 

the CBS netCAD were pooled and split. One pool containing five Rh and ABO-matched RBC 

units was generated and subsequently split to produce five equivalent RBC products. The units 

produced were segregated into four experimental groups sham control (S), liposome-treated 

(L), rejuvenation-treated (R) and liposome + rejuvenation-treated (L+R) with treatment at 

various periods during hypothermic storage (day 7, 21, 42). The FDA-approved rejuvenation 

solution, Rejuvesol (Citra Labs, Zimmer Biomet, Braintree, MA, USA) was used for 

rejuvenation treatment. RBCs were divided into four sets of 150 mL bags of S, L, R and L+R 

and treated at day 7, day 21 and day 42 of hypothermic storage with a final assessment at day 

45 (Figure 6.2). The leukoreduced pRBCs were incubated for 1 h at 37 °C with HEPES-NaCl 

(sham), unilamellar liposomes (DOPC:CHOL, 7:3 mol%, 2 mM lipid, 138.6 nm), 

rejuvenation-treated (Rejuvesol) and unilamellar liposomes plus rejuvenation (DOPC:CHOL, 

7:3 mol%, ≈ 1 mM lipid, 138.6 nm + Rejuvesol) at different storage periods and the in vitro 

quality was accessed. The RBCs were gently rotated during incubation.   

The in vitro quality of RBCs (n=1 per group/per treatment day) was tested in 

duplicates and analyzed immediately after treatment (for each treatment day) and at days 42 

and 45 of hypothermic storage. Parameters analyzed included percent hemolysis using 

Drabkin’s method, hematological indices performed on a Coulter Counter, deformability and 

aggregation performed on LORCA, ATP and 2,3-DPG using spectrophotometric methods, all 

as described in Chapter 2, Section 2.2.2. 

 

6.2.3 Combining liposomes and Rejuvesol 

For the L+R treatment, liposomes were spun at 15,000 x g at 4 °C for 40 min and the 

pellet ressuspended with Rejuvesol. During this procedure, it was noted that the centrifugation 

                                                           
 Rejuvesol was provided by Zimmer Biomet (IN, USA). 
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step was not successful in pelleting all the liposome content and part of it remained in the 

supernatant. Supernatants were then collected and stored at 4 °C, along with an aliquot of the 

original liposome suspension for further particle analysis to determine the amount of 

liposomes lost in this step.  

Tunable resistive pulse sensing (TRPS) 

TRPS technique, also referred to as scanning ion occlusion sensing (SIOS), was used 

to determine total particle concentration. This method of particle analysis is similar to the 

Coulter method, but allows for the individual analysis of particles in the nanoscale range (50 - 

10,000 nm). When a single nanoparticle passes through a tunable nanopore, it displaces a 

volume of electrolyte, causing a temporary increase in the electrical resistance of the circuit 

and corresponding decrease in the measured current. The magnitude of the current reduction 

and the frequency of the pulses are respectively related to the particle size and concentration 

(17). 

Liposome suspension and supernatant samples were diluted 1:1000 in Solution A of 

the Izon reagent kit (Izon Science Ltd., Cambridge, MA, USA) and measured on a NP200 

nanopore (85-500 nm) using CPC200 calibration particles (Izon Science Ltd.) as controls.  

 

6.2.4 Statistical analyses 

Statistical analysis was performed using SPSS 23.0 software (IBM, Armonk, NY). 

Non-parametric One-way ANOVA (Kruskall-Wallis test) was used to assess the effect of 

treatment on in vitro quality parameters at day 42 HS regardless of treatment time. When a 

significant difference was found, Mann-Whitney test was used for paired comparisons. Data 

were expressed as mean ± standard deviation and p < 0.05 was considered statistically 

significant. 
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6.3 Results 

 Particle analysis revealed a concentration of 5.3 x 1016 particles/mL in the original 

liposome suspension, while in the supernatants the concentration was 2.6 x 1016 particles/mL, 

accounting for a loss of 2.7 x 1016 particles/mL (50.9 %).  

Table 6.1 summarizes RBC quality parameters after non-parametric one-way ANOVA. 

Percent hemolysis was significantly decreased in all treatments compared to sham control 

(0.60 ± 0.06%): L (0.53 ± 0.01%, p = 0.042), R (0.43 ± 0.02%, p = 0.004), L+R (0.48 ± 

0.06%, p = 0.020) (Figure 6.3). Hemolysis levels were comparable in the combined treatment 

(L+R) compared to individual treatments L (p = 0.293) and R (p = 0.107). No differences in 

treatments were observed for hematological indices MCV (p = 0.684), MCH (p = 0.649) and 

MCHC (p = 0.791). 

Ektacytometry analysis showed an increase in maximum elongation (EImax) in R (0.55 

± 0.01, p = 0.010) and L+R (0.55 ± 0.01, p = 0.010) treatments compared to S (0.53 ± 0.01) 

but not L (0.53 ± 0.01, p = 0.936) (Figure 6.4). The combined treatment was comparable to R 

(p = 0.872) and resulted in a greater EImax than L (p = 0.004). RBC rigidity (KEI) increased in 

all treatments compared to sham (1.19 ± 0.07): L (1.28 ± 0.06, p = 0.025), R (1.44 ± 0.17, p = 

0.010) and R+L (1.44 ± 0.06, p = 0.004) (Figure 6.4). The combined treatment was 

comparable to R (p = 0.749) but increased to a greater extent when compared to L (p = 0.004). 

Analysis of variance did not show significant differences among treatments for aggregation 

index (AI, p = 0.081) and aggregation half-time (t1/2, p = 0.092). However, aggregation 

amplitude was significantly increased by R treatment only (24.1 ± 1.7 au vs. 19.1 ± 1.4 au, p = 

0.004). The combined treatment was comparable to L (p = 0.337) and R (p = 0.262).  

ATP levels were significantly higher in all treatments compared to sham (1.64 ± 0.14 

µmol/g Hb): L (2.00 ± 0.21 µmol/g Hb, p = 0.010), R (4.70 ± 1.20 µmol/g Hb, p = 0.004), 
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L+R (5.00 ± 1.56 µmol/g Hb, p = 0.004). ATP levels in the combined treatment was 

comparable to R (p = 0.749) and significantly higher compared to L (p = 0.004). The levels of 

2,3-DPG were no longer detectable in S and L treatments at day 42. The combined treatment 

was comparable to R (2.38 ± 3.26 µmol/g Hb vs. 2.62 ± 2.20 µmol/g Hb, p = 0.868). 

 

6.4 Discussion 

Liposomes have been shown to minimize RBC membrane damage occurring during 

42-day hypothermic storage, while rejuvenation solutions have been shown to restore RBC 

metabolism. The objective of this study was to evaluate a potential synergistic effect of 

combining liposome and rejuvenation treatment on RBC in vitro quality.  

Rejuvenation treatment increased metabolites ATP and 2,3-DPG in accordance with 

reports by previous studies (7, 9, 13, 18). The increase in ATP has been associated with 

improvements in morphology (13, 19) and decreased endothelial adhesion (5, 20), that might 

result from the restoration of ion and lipid transport across the membrane which are ATP-

dependent processes (21, 22), while the restoration of 2,3-DPG is associated with an increase 

in oxygen release capacity (23).  

Percent hemolysis levels were decreased in all treatments compared to sham control. 

The reduction in hemolysis is consistent with results presented in Chapter 4 (Tables 4.3 and 

4.4) for liposome-treated RBCs. The lower levels of hemolysis for rejuvenation treatment 

alone are also in agreeement with a study from Tchir and colleagues (2013), showing that 

rejuvenated samples had significantly lower hemolysis levels throughout storage compared to 

sham treated samples (13). The combined treatment however failed to show a synergistic 

effect on percent hemolyis reduction. This might have been due to liposome loss (≈51%) 
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during the centrifugation procedure to combine both treatments, that resulted in lower 

liposome concentration in the combined treatment and constitutes a limitation of this study.  

While liposome treatment has caused changes to RBC rigidity, no changes to 

elongation index have been observed in previous chapters. Rejuvenation and combined 

treatment both had increased elongation index, which, considering previous results of  

liposome effect on hemorheology in Chapter 4, is probably due to rejuvenation rather the 

liposome treatment, since liposome treatment alone has never been shown to affect elongation 

index. This increase in elongation index is the opposite of what was observed during a study 

using cold rejuvenation (13), but agrees with a warm rejuvenation study showing partial 

recovery of mechanical damage in RBCs following rejuvenation (24). The same cold 

rejuvenation study showed no changes to rigidity (KEI) (13) while the results of this study 

showed an increase in rigidity for all treatments. The changes observed could be due to 

cytoskeletal rearrangement or changes in the interaction between the lipid bilayer and 

cytoskeleton that might require biochemical activation and therefore would be favored by 

physiological temperatures and inhibited by cold temperatures (25, 26). Because no significant 

changes were observed in MCV and MCH for the same treatments, the increase in rigidity 

cannot be explained by a reduction in surface area-to-volume ratio and increased internal 

viscosity, that is usually related to changes in rigidity (27, 28). The choice for warm 

rejuvenation was based on the fact that liposome treatment is also performed at 37 °C. The 

difference between this result and previous results using cold rejuvenation might suggest that, 

while both types of rejuvenation are able to raise metabolites, the same effect might not be 

true regarding aspects of storage lesion related to the cell membrane. Membrane fluidity 

depends on temperature and composition, with cholesterol being a major determinant of 

fluidity (29). In order to maintain cell function, membrane lipid bilayers are normally fluid at 
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physiological temperatures (30). Cell membrane is less fluid at low temperatures, which in 

turn affects membrane permeability (31). Since there is an accumulation of calcium in stored 

and aged RBCs that is directly related to RBC deformability (32, 33), cold rejuvenation might 

not allow for calcium efflux of RBCs due to decreased membrane fluidity and permeability at 

4 °C resulting in inferior effects on deformability compared to warm rejuvenation.  

There are no reports in the literature evaluating the effects of rejuvenation on 

aggregation parameters. While there was no significant effect of treatments regarding 

aggregation index and aggregation half-time, a significant increase in the extent of aggregation 

(amplitude) compared to sham control was observed for rejuvenation treatment only. An 

increase in aggregation amplitude is often seen in abnormal RBCs (i.e. sickle cell disease) (34) 

and some disease states (i.e. unstable angina, bacterial infection) (35) as a consequence of 

changes in cellular properties (i.e. surface charge, glycocalyx) that favor the formation of 

larger 3D aggregates. Cellular factors like shape, surface charge (related to the membrane 

sialic acid content) and glycocalyx thickness are intrinsic cell properties known to influence 

aggregation behavior (36). RBCs tend to have less sialic acid as they age (37, 38) as well as a 

decrease in glycocalyx thickness (39), which would facilitate aggregation by reducing surface 

charge and increasing cell affinity respectively, coupled to restoration of morphology 

attributed to rejuvenation (40) could account for the increase in aggregation amplitude 

observed. Although statistical significance does not always translate to clinical significance, 

the amplitude results observed here for the rejuvenation treated RBCs are comparable to 

values reported for patients with sickle cell hemoglobin C disease (34) and therefore require 

further investigation.  

Rejuvesol is slightly hypertonic (416 mOsm/kg H2O). Liposomes behave like cell 

membranes when subjected to osmotic changes (41), therefore the exposure to a hypertonic 
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environment most likely caused them to shrink (42). The shrinkage could affect the integrity 

of the lipid bilayer and consequently their interaction with RBC membranes. Neutral 

liposomes are also prone to aggregation, which is usually reversible by agitation, but since pH 

and ionic strength also play a role in aggregation (43, 44) more information on the effects 

Rejuvesol (pH = 6.7-7.4) might have on liposome aggregation are needed.  

This study was a limited study of the effects of combining liposomes and rejuvenation 

on the quality of RBCs. Lipid concentration on the combined treatment was a limiting factor 

of the study, as well as the small sample size used. In order to make the combined treatment 

less time consuming, DOPC liposomes and Rejuvesol were pooled and used as a one-step 

treatment, which might have affected liposome integrity and consequently their interactions 

with RBCs, therefore characterizing another limitation. Further studies need to be done to 

characterize liposome properties when subjected to a medium like Rejuvesol.  

The investigation of the effects of the combined treatment on RBC quality still has 

merit, and future studies to re-test this hypothesis should be designed, while addressing the 

limitations presented here. If liposomes prove to be incompatible with Rejuvesol, one viable 

option would be to divide the treatments into two sequential steps.   

 

6.5 Conclusion 

Both rejuvenation and liposome treatments improved the quality of stored RBCs 

compared to sham control. The combined treatment (L+R) did not have a greater impact in 

improving in vitro quality of stored RBCs compared to rejuvenation alone. Further 

investigation should address whether rejuvenation solutions affect the ability of liposomes to 

interact with RBC membranes. Another alternative would be combining the treatments as a 
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sequential two-step treatment (i.e. rejuvenation followed by liposome treatment) to help avoid 

incompatibilities that might result in less efficacy.  
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Table 6.1: Non-parametric One-way ANOVA for RBC quality parameters. Mean ± SD 

are shown (n=3) for sham control (S), liposome (L), rejuvenation (R) and liposome + 

rejuvenation (L+R) treated RBCs assessed on day 42 of hypothermic storage.  

Quality parameters S L R L+R P 

Hemolysis (%) 0.60 ± 0.06 0.53 ± 0.01* 0.43 ± 0.02* 0.48 ± 0.06* 0.002 

Deformability      

EImax 0.53 ± 0.01 0.53 ± 0.01‡ 0.55 ± 0.01* 0.55 ± 0.01* 0.001 

KEI 1.19 ± 0.07 1.28 ± 0.06*‡ 1.44 ± 0.17* 1.44 ± 0.06* 0.001 

Hematological indices      

MCV (fL) 99.5 ± 0.4 99.8 ± 0.3 99.4 ± 0.8 99.7 ± 0.9 0.684 

MCH (pg) 30.7 ± 0.2 30.8 ± 0.2 30.6 ± 0.1 30.6 ± 0.2 0.649 

MCHC (g/L) 309 ± 3 308 ± 2 308 ± 1 307 ± 3 0.791 

Aggregation      

AI (%) 45.6 ± 2.6 48.8 ± 2.0 48.5 ± 1.4 47.9 ± 0.7 0.081 

Amp (au) 19.1 ± 1.4 20.4 ± 0.9 24.1 ± 1.7* 20.4 ± 5.9 0.020 

t1/2 (s) 4.8 ± 0.6 4.1 ± 0.3 4.2 ± 0.3 4.3 ± 0.2 0.092 

Metabolites      

ATP (µmol/g Hb) 1.64 ± 0.14 2.00 ± 0.21*‡ 4.70 ± 1.20* 5.00 ± 1.56* < 0.001 

2,3-DPG (µmol/g Hb) 0 ± 0 0 ± 0 2.62 ± 2.20 2.38 ± 3.26 0.026 
*p < 0.05 compared to sham control, ‡ p < 0.05 compared to combined treatment  
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Figure 6.1: Red blood cell energy metabolism. Overview of metabolic pathways and 

contribution of PIPA to the generation of ATP and 2,3-DPG.  

 

 

 

 

 

 

 

 

 

 



192 
 

Figure 6.2:  Experimental design of the study.  
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Figure 6.3: Percent hemolysis in human RBCs at day 42 of HS. Shown is the mean ± SD 

(n= 3). * Significant (p < 0.05) compared to sham control. Dotted line showing the cut off 

value for blood banked stored RBCs at day 42 of HS in Canada. 
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Figure 6.4: Deformability curves of sham, liposome-treated, rejuvenation-treated and 

liposome + rejuvenation-treated RBCs at day 42 of HS. Maximum elongation index (EImax) 

and rigidity (KEI) are shown (n= 3). * Significant (p < 0.05) compared to sham control RBCs. 
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7.1 Review of thesis objectives and summary of results 

Many advances have been made in transfusion medicine since the first solution to 

preserve blood ex vivo was discovered by Rous and Turner in 1915 (1). Over the last 102 

years, new knowledge and innovations in the field have allowed the establishment and 

expansion of modern blood banking. However, despite many successful strategies that allowed 

blood to be stored for longer periods, the decrease in quality of long stored blood caused by 

HSL is still a problem that has not been overcome by current strategies. Therefore, new 

research efforts are necessary to guarantee a better quality and safe supply for those in need of 

this life saving treatment.   

 The work presented here had the objective to advance the field of transfusion medicine 

and biopreservation by increasing our understanding of RBC hypothermic storage lesion and 

by investigating a novel approach to mitigate membrane injury occurring during hypothermic 

storage, involving the use of liposomes. Investigations were first conducted on an animal 

model, and developed further to evaluate several aspects of liposome treatment on human 

RBCs that would characterize it as a promising tool for RBC preservation.  

Although the differences in quality parameters between human RBCs in SAGM and 

AS3 are well documented in the literature, this information is not available for rat RBCs (2). 

Also, little is known about the effects of component manufacturing and leukoreduction 

methods on the parameters important for RBC hemorheology, including deformability, 

aggregation and microvesiculation in rat RBCs. Considering that, the key of this research was 

to evaluate a new approach to HSL that directly influenced membrane characteristics, it is 

important that membrane-related parameters have been well characterized in the animal model 

species before any intervention. The objective of the first experimental study, described in 

Chapter 2, was to evaluate baseline differences between rat and human RBCs following a 
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novel adaptation of the buffy coat component production method (rat and human RBCs in 

SAGM). The purpose was to examine metabolic, membrane-related and hemorheology 

parameters in addition to investigate the impact of the buffy coat component manufacturing 

method on rat RBCs and the effects of different additive solutions (rat RBCs in AS3 and 

SAGM). Eventually, the goal was to establish a rat pRBC production method that closely 

mimics current human pRBC techniques to be used consistently in the next studies.  This 

study provided confirmation of significant differences between RBC species in metabolic and 

membrane-related aspects, which should be taken into account when performing preclinical 

transfusion studies using rat models. It also showed that SAGM, which is commonly used for 

human RBC storage, is not compatible with rat RBCs, as it causes high hemolysis and 

increased MP production, a fact that was unknown until now. The recommendation originated 

from this study is the use of a buffy coat production method for rat RBCs (plasma and buffy 

coat removal, addition of compatible AS and leukoreduction) as well as the use of AS3 as a 

better alternative for rat RBC storage when conducting studies examining the HSL or new 

preservation strategies for RBCs that might require the use of rat models. Since the quality of 

stored RBCs vary with different production methods (3, 4), this study recommends that 

standard processing protocols mimicking blood bank production and storage be developed for 

specific species used as animal models in transfusion medicine studies evaluating the age of 

blood.    

After establishing a rat pRBC production method and a baseline for rat RBC in vitro 

quality parameters, my next study aimed to evaluate the effect of different liposome 

formulations on rat RBC HSL and the in vivo outcomes of transfusing liposome-treated RBCs 

in an anemic rat model, as described in Chapter 3. This study investigated the effects of 

liposome treatment on RBC rheologic properties, as well as in vivo assesment of efficacy and 
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short-term safety of transfusing liposome treated RBCs in a rat model. Four liposome 

formulations were evaluated with differences in saturation (saturated and unsaturated) and 

surface charge (neutral and negatively charged), considering that chemical characteristics are 

important determinants of liposome-RBC interaction (5-10). This study showed that all 

formulations had an effect in reducing hemolysis and the beneficial effect of liposome 

treatment on rat RBC membrane was related to the saturation level of liposome phospholipids, 

rather than liposome charge. Unsaturated-uncharged liposomes (DOPC) were the most 

beneficial for rat RBCs and therefore were used to further evaluate effects on hemorheology 

and in the in vivo study. It was further demonstrated that DOPC liposome treatment overall 

improved rat RBC hemorheology upon storage. However, in terms of efficacy the animals that 

received liposome-treated RBCs did not show significant reduction in infarct size compared to 

the control group, suggesting that the changes observed with liposome treatment in vitro were 

not sufficient to improve the outcomes of myocardial I/R in anemic rats. Despite that, because 

the in vivo study did not prompt any immediate safety concerns, the effects of liposome 

treatment continued to be investigated on stored human RBCs in the next chapters. This was 

the first report of banked RBC treatment with liposomes followed by storage and in vivo 

transfusion of liposome-treated RBCs. This study recommended further investigation to 

confirm these safety results and explore the long-term effects of transfusing liposome-treated 

RBCs, as well as to address the in vivo viability and oxygen delivery efficacy of liposome-

treated RBCs.  

Stemming from questions posed in previous chapters, Chapter 4 experiments aimed to 

answer whether treatment of human RBCs with DOPC liposomes (as used for all previous rat 

studies) would have the same beneficial effects on hemorheology as observed in rat RBCs. In 

addition to evaluating the time point during RBC storage where liposome treatment would 
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have the most beneficial effects, considering that most significant changes attributed to HSL 

start to happen around 21 days of storage (11-13). This study showed that DOPC liposome 

treatment resulted in modest improvements in human RBC hemorheology upon storage, with 

no significant impact on metabolic profile. Half-way through storage the changes promoted by 

the liposome treatment dissipate resulting in similar quality to control samples, only to 

resurface again at the end of storage (6 weeks). This observation is of clinical importance 

because it shows that during this period when the quality of liposome-treated RBCs reaches a 

plateau, there would be no added clinical benefit of the treatment if they were to be transfused 

at that time point. This study also showed that liposome treatment should be performed at the 

beginning of storage preferably (≤ 7 days) up to 21 days.  

Since studies associate old blood with adverse events in transfused patients involving 

modulatory effects on hemostasis, inflammation and coagulation (14-16), the next study had 

the objective to assess the impact of liposome-induced membrane changes on the immune 

profile of liposome-treated RBCs as well as the impact of liposome treatment on MP-rich 

supernatants as described in Chapter 5. The interaction of liposomes with the immune system 

both in vitro and in vivo is of interest as part of preclinical studies to determine the 

immunotoxicity of liposomes and guide future translational studies. The purpose of this study 

was to assess the interactions of liposome-treated RBCs with cells of the immune system using 

cell-based assays (HUVECs and monocytes) and the resulting immune response derived from 

this interaction, in the form of cytokine release, adhesion molecules expression and 

phagocytosis. In addition, the impact of liposome treatment on MP-rich supernatants was also 

assessed, by evaluating interactions with endothelial cells (cytokines and adhesion molecules) 

and the coagulation profile. This is the first report of immunomodulatory effects using a 

comprehensive panel of cell-based assays relevant to blood bank and this intended liposome 
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application. This study showed that liposome treatment did not result in significant changes to 

the immune profile of stored RBCs as per cytokine profiles of HUVECs and monocytes. 

However, further investigation on the clinical implications of adhesion molecules expression 

by HUVECs, as well as FGF-2 release that were exclusively increased on incubations with 

DOPC-treated RBCs are recommended. Liposome treatment did not induce additional 

immune response from endothelial cells or monocytes in vitro, suggesting that such RBCs are 

not likely to be removed prematurely from the circulation upon transfusion. It was also 

demonstrated that liposome treatment resulted in a small change in the immune profile of fresh 

supernatants only, indicated by higher cytokine release as well as slightly enhanced clotting 

response. Considering these effects would probably be mitigated by a washing procedure, it 

does not invalidate the potential for liposomes in RBC preservation. Finally, this study 

revealed that the membrane changes observed with liposome treatment in previous chapters do 

not necessarily translate into amelioration of immune and coagulation profile of stored RBCs 

(lower pro-inflammatory and pro-coagulant activity); however, the fact that it did not result in 

immunotoxicity is encouraging and still make liposome treatment a possible candidate for 

RBC preservation. 

Providing stored RBCs with a source of phospholipids is important for membrane 

renewal, but so is the metabolic machinery in assuring appropriate function of enzymes, ion 

channels, transporters and pumps that will contribute to membrane improvements and long-

term conservation. The final study of this thesis aimed to evaluate the effect of combining 

liposome treatment and rejuvenation on the quality of stored RBCs, as described in Chapter 6. 

Since rejuvenating solutions are useful in restoration of metabolites (17-20) and liposomes are 

useful in membrane restoration, the hypothesis that combining these treatments would result in 

better preservation of RBC quality after 42-day storage was tested. This is the first study to 
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address membrane and cell metabolism for improved biopreservation. This study 

demonstrated that individual liposome and rejuvenation treatments improved the quality of 

stored RBCs compared to sham treated. However, the combined treatment did not have a 

greater impact in improving in vitro quality of stored RBCs compared to rejuvenation alone. 

Additional investigation on the effect of rejuvenating solutions on the ability of liposomes to 

interact with RBC membranes were proposed. Due to the study limitations, it was not possible 

to exclude the possibility that combining liposome and rejuvenation treatments would improve 

the quality of stored RBCs and therefore this hypothesis should be re-tested using a sequential 

two-step treatment rather than the one-step treatment used.  

My original hypothesis stated: “Liposome treatment of stored RBCs will improve in 

vitro membrane quality resulting in reduced in vitro production of proinflammatory and 

procoagulant markers and a safe transfusion product in an anemic rat model.” The information 

obtained from this work provided new and important information on how liposome treatment 

does improve in vitro RBC quality, which does not translate into reduction of in vitro 

production of proinflammatory and procoagulant markers, although the final transfusion 

product showed relative safety in the rat model.  

 

7.2 Contributions to science and future directions 

 This thesis has made a number of contributions to the fields of transfusion medicine 

and biopreservation, as demonstrated by four published papers in top journals in the fields of 

transfusion medicine, liposomes research and biopreservation.  

1) It has produced new knowledge about the impact of blood processing manufacturing 

on rat RBCs using current additive solutions and a baseline of the in vitro membrane and 

metabolic quality markers, as well as established a processing method more suitable for use in 
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animal models of transfusion evaluating HSL. This knowledge is important, as it will help 

reduce one cause of variability in animal studies of transfusion that might add to the lack of 

translation to human studies.    

2) It has demonstrated the effect of different liposome formulations on rat RBC 

hemorheology and determined for the first time the short-term safety of transfusing liposome-

treated RBCs in an animal model. This will advance the knowledge base of biopreservation 

strategies using liposomes, while increasing the data on biocompatibility of liposomes that 

make them such promising tools for diverse applications in medical research.  

3) It has established the ideal liposome treatment time in human RBCs and fully 

characterized for the first time the effects of DOPC liposome treatment on membrane and 

metabolic in vitro quality parameters in human RBCs at three different time points of 

hypothermic storage (fresh, 3 and 6 weeks). This was also the first attempt to perform the 

liposome treatment on packed human RBCs produced according to blood bank standards and 

characteristics (i.e. CPD-SAGM, leukoreduced, 55-65 % Hct) as previous attempts used small 

volume whole blood collections and different processing steps (i.e. different anticoagulants, no 

leukoreduction) and only evaluated 5% Hct suspensions. This work provides a foundation to 

guide future research using liposomes to preserve banked RBCs and other cell types (i.e. 

platelets, cord blood).  

4) It has produced novel information about the potential effects of DOPC-treated RBCs 

and supernatants on the immune response using different cell types, a comprehensive cytokine 

panel and endothelial activation markers, relevant to current understanding of in vivo 

inflammatory effects. Furthermore, it has produced novel information on the coagulation 

profile of the supernatant portion, which has been implicated in adverse reactions related to 

thrombotic events in transfused patients.   
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5) Finally, a first attempt to a novel idea of combining liposome and rejuvenation 

treatments was demonstrated, and by the lack of synergistic effect of the combined treatment, 

it was concluded that treatments may be performed in two consecutive steps to avoid possible 

incompatibilities and loss of efficacy of liposomes.  

Future research in this area should focus on evaluating this DOPC liposome 

formulation with varying cholesterol content, as a way to maximize the beneficial effects on 

the RBC membrane reported here  (i.e. decreased hemolysis, aggregation behavior) while 

minimizing some of the undesired effects (i.e. increase MP release). Another aspect of the 

liposome approach that deserves further investigation as part of the efforts to improve RBC 

hypothermic storage, is the loading of liposomes with antioxidants (i.e. ascorbic acid, 

glutathione), cryoprotectants and rejuvenating solutions or its individual components (i.e. 

inosine, pyruvate) for delivery during storage. Because the hypothermic lesion results from a 

combination of different mechanisms (membrane, oxidative and metabolic), the association of 

liposomes with metabolic restoration or antioxidant protection might have a synergistic effect 

in protecting RBCs during hypothermic storage. Antioxidants loaded in the bilayer or aqueous 

core of liposomes have been shown to protect DPPC vesicles from radiation damage (21). In a 

similar way, antioxidants added to an RBC unit have been shown to protect against oxidative 

damage of gamma irradiation (22). Since evidence suggests that liposome-encapsulated 

antioxidants can be superior to the corresponding free antioxidants against oxidative damage 

(23), I believe that the combined action of liposomes and antioxidants could provide a new 

alternative for mitigating RBC storage lesion. Further investigation into different ways for 

combining liposomes with rejuvenation treatment is also recommended.  

I believe that the use of liposomes to mitigate HSL is a strategy worth pursuing further. 

Considering the vast number of possible liposome formulations, it is imaginable that an ideal 
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one would be capable of improving the quality of stored RBCs to an even greater extent than 

the results reported here for this particular formulation. I also think that this would open new 

possibilities of preservation systems for other clinically relevant cell types and I hope this 

work helps guide future research and developments in biopreservation that will help advance 

cellular therapies and improve patient’s lives.  
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