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Abstract

One of the main challenges for the use of machine learning techniques in neu-

roimaging data is the small n, large p problem. Datasets usually contain only

a few hundreds of instances (n), each of which is described using hundreds

of thousands of features (p). In this dissertation, we explore the effects of

reducing the number of features by analyzing 264 specific regions of inter-

est of the brain, and increasing the number of instances by merging imag-

ing data obtained from different scanning sites for distinguishing people with

schizophrenia from healthy controls.

Empirical results show that, using features related to functional connec-

tivity of the brain, we can achieve an accuracy above the chance level (over

70%), when using data from a single scanning site for both training and test-

ing. However, this performance decreases when additional data from a dif-

ferent scanning site is used as part of the training process. We attribute the

decrease in performance to batch effects : technical noise introduced at different

scanning sites that confound the biological signal of interest.

Batch effects are often disregarded in association studies because there is

often no statistically significant interaction between the scanning site and the

variables being analyzed. In this work, we highlight important differences

between association studies and prediction studies, and we argue that in the

latter, batch effects matter. Our experiments reveal that not taking them into

account reduces the performance of a learned classifier compared to using data

from a single scanning site, even though this drastically reduces the size of the
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training set. In addition, if we make the scanning site the target variable to

predict, we can create a classifier that can distinguish among sites with an

accuracy > 80%.

We empirically show that if the same subjects are scanned in two different

sites, then a neural network that maps the fMRI scan from one scanner into

another is enough for correcting the batch effects. In more realistic situations,

involving disjoint set of subjects, simple techniques like z-score normalization

or whitening can remove batch effects caused by translations and scaling, or

translations and rotations of the feature matrix. Both approaches proved

successful in reducing the accuracy of scanning site classification to near chance

level, but they were unable to improve the accuracy of schizophrenia diagnosis

using multisite data. This is a strong indication that batch effects go beyond

these simple linear transformations.

Finally, we explored the use of BECCA (batch effects correction using

canonical correlation analysis) and approaches based on autoencoders for de-

creasing the influence of batch effects. These attempts were also unsuccessful

under our test scenarios, suggesting that batch effects is a serious problem in

prediction studies using fMRI data, and that more effort should be taken to

understand their nature in order to reduce their influence.
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Chapter 1

Introduction

Over the last decades, many researchers have focused their careers on increas-

ing our knowledge of the human brain and its disorders. There are more than

1,000 mental disorders of the central nervous system, and they cause more hos-

pitalizations than any other disease group, including cancer and heart prob-

lems. They also represent a large economic burden, since their estimated cost

is more than $600 billion USD per year, only in the US [16]. Prompt diagnosis

and prognosis can improve the quality of life of people with mental health

problems, while saving millions of dollars in the process.

Unfortunately, making an accurate diagnosis is a challenging task, since

many disorders have overlapping symptoms and there is no standard biologically-

based clinical test yet [2]. This has triggered an increasing interest in the de-

velopment of technological tools that can potentially help with the diagnosis

or prognosis, such as the use of neuroimaging data. Among the different neu-

roimaging techniques, functional magnetic resonance imaging (fMRI) is one of

the most promising [3].

fMRI is a non-invasive technique that measures the neuronal activity in

the human brain [25], and it has become an important tool for studying the

cognitive functions in healthy people as well as their changes in the presence

of a mental disorder or illness [7]. However, an fMRI experiment produces a

massive amount of data, in the range of tens of millions of real values for a

single patient. It is impossible for a human being to analyze such amount of

data, so the interest in building tools that perform this analysis automatically
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Figure 1.1: Example of how machine learning can be used to distinguish be-
tween people with schizophrenia (SCZ) and healthy controls (HC) using fMRI
data.

is increasing. Machine learning is one of these tools.

Machine learning can be defined as a set of methods that identify patterns

in historical data with the objective of using these patterns for making pre-

dictions in new, previously unseen data [41]. In the context of fMRI data and

automatic diagnosis of mental illnesses, this would involve: collecting as many

fMRI scans as possible of the groups of interest (for example, healthy controls

and people with schizophrenia), learning a classifier by applying a learning

algorithm for finding patterns in the collected data that are discriminative be-

tween the groups, and finally applying the resulting classifier to new instances

to make predictions. Figure 1.1 depicts this approach. A detailed description

of how to encode the fMRI scans into a feature vector that can be used by the

learning algorithm to create the final classifier will be presented in detail in

Section 3.

Several research groups have implemented machine learning approaches

in the analysis of fMRI data in order to build predictors that can diagnose:

attention deficit and hyperactivity disorders [6, 43], mild cognitive impairment

and Alzheimer’s disease [34], schizophrenia [2], autism [69]; or classify people

according to a variable of interest such as: gender [52], age group [62], or

smoking status [44]. The reported accuracy of the different tasks varies from

chance level to > 85%, depending on the task, dataset, features, and learning

algorithm used for creating the classifier.

Despite the differences in their objectives and performance, studies involv-
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ing fMRI data face a common challenge: the high dimensionality of the data

(in the range of tens of millions of features) and the relatively few number

of instances (at most a few hundreds of them). This problem is known as

small n, large p, where n refers to the number of instances and p refers to

the number of features [22]. This situation is undesirable because machine

learning approaches assume that the training sample is a good approximation

of the real distribution of the data, which might not be the case with only a

few instances in high dimensional space. At the same time, high dimensional

data is likely to contain many redundant and irrelevant features that might

obscure the patterns in the data, greatly reducing the performance of learning

algorithms [70].

Two standard approaches for dealing with the small n, large p problem are:

decrease the number of features, and increase the number of instances [61]. For

solving the first problem, it is possible to use feature selection or dimensionality

reduction algorithms. On the other side, one plausible way of increasing the

number of instances is to simply merge fMRI data (of the same phenomenon)

collected at different scanning sites into a single set, and then apply a learning

algorithm to this new expanded dataset. Surprisingly, this naive approach does

not work as expected. Despite having a bigger training sample, the accuracy

of the predictions drops when using multi-site data relative to the accuracy

obtained by applying the same algorithm on data from only a single site.

One of the reasons for this poor generalization is that machine learning

algorithms assume that all the data X and their corresponding labels Y come

from the same joint distribution p(X, Y ). Technical noise introduced at dif-

ferent scanning locations might confound the real biological signal in differ-

ent ways, modifying the original distribution. This transformation makes the

distribution of data obtained at two different scanning locations, a and b,

different: P(X, Y | a ) 6= P(X, Y | b ) This phenomenon is well known in ge-

nomic studies, and is called batch effects [37]. In fMRI studies, batch effects

can be caused by a variety of factors including: field strength of the magnet,

manufacturer and parameters of the MRI scanner, radiofrequency noise envi-

ronments, differences in the scanning protocol, and the general experience of

3



the participants in the study [21].

While interscanner variability is a well known phenomenon in the neu-

roimaging community [19, 38, 73, 18, 21, 17], many researchers report that

its effect are irrelevant for their studies, or can be corrected by including the

scanning site as a variable in the model [53, 11, 60, 57, 9]. This differs from

the empirical results presented by other groups, which show a decrease in the

classification accuracy on multi-site data, or show that a model trained in data

extracted from one scanning site does not generalize to data from a different

site [69, 27, 43, 65]. An important difference distinguishes both groups: The

former focuses on association studies, whose aim is to find statistical differ-

ences at the group level between two or more populations, while the second

group focuses on prediction studies, whose aim is to make predictions at indi-

vidual level. Most of the studies in neuroimaging fall in the first category, but

there is also a growing interest in the use of machine learning techniques and

neuroimaging data for the automatic classification of mental disorders [2]. For

prediction studies, batch effects matter.

This dissertation is focused on the use of multi-site fMRI data for the di-

agnosis of schizophrenia, and is structured as follows: The rest of this chapter

describes the problem being addressed, and summarizes the contributions of

this work. Chapter 2 introduces the background required for working with

fMRI data from a computational point of view, and describes the differences

between association studies (common in neuroscience) versus prediction stud-

ies (common in machine learning). Chapter 3 describes the methods used for

feature extraction, learning a classifier, and evaluating performance. Chap-

ter 4 shows the results in single site and multi-site classification. Chapter 5

describes the techniques used to decrease batch effects. Chapter 6 presents

the conclusions and future work. I include two appendices at the end of this

dissertation. Appendix A describes our approach for sex classification using

fMRI data, a related task to the diagnosis of schizophrenia that motivated

the research presented in this dissertation. Finally, Appendix B lists other

approaches that we used to classify between people with schizophrenia from

healthy controls (or for sex classification), but whose results were inferior to
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the ones presented in the main body of this document.

1.1 Problem definition

Given a training set D = {(S1, y1), (S2, y2), . . . , (Sn, yn)} with pairs of fMRI

scans Si and their respective labels yi ∈ { C, D } (for Control, Disease), ex-

tracted from a single scanning site, find a lower dimensional representation

Dtrain = {(x1, y1), (x2, y2), . . . , (xn, yn)} that can be given to a learning algo-

rithm, to create a classifier that classifies a new instance, X, from a scan S as

C or D, with an accuracy above chance, and as high as possible.

For the case of multi-site datasets, where P(X, Y | a ) 6= P(X, Y | b ) for two

scanning sites a and b, we assume that the discrepancy between the joint distri-

butions is caused exclusively by batch effects. We further assume that there ex-

ist two functions, fa and fb, such that P( fa(X), Y | a ) = P( fb(X), Y | b ). Our

objective is to find the functions f̂a(x) and f̂b(x) that approximate fa and fb in

order to create a new training set DtrainMulti = {(f̂a(xa1), ya1), . . . , (f̂a(x
a
n), yan),

(f̂b(x
b
1), yb1), . . . , (f̂b(x

b
m), ybm)} which includes the n training instances from

scanning site a, and the m training instances from scanning site b. Ideally,

a classifier created using the same learning algorithm used for the single-site

case, but fed with this expanded dataset, should achieve a better performance

than the one fed with data from a single site.

1.2 Contributions

This dissertation makes the following specific contributions:

1. It empirically shows that one can learn a model using features related

to the functional connectivity of the brain, that can distinguish between

patients with schizophrenia versus healthy controls with an accuracy

above chance level, and up to an average of 70% in single site classifi-

cation. The number of features is effectively reduced by using domain

specific information such as predefined regions of interest and informa-

tion about the network topology of the brain. This step decreases the
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computational cost of the learning process and increases the prediction

accuracy relative to naively using all the available data.

2. It highlights important differences between association studies and pre-

dictions studies, and it empirically shows that batch effects are a serious

problem that affect the latter (and most likely the former too). Naively

incorporating fMRI data obtained from different scanning sites into the

training set decreases the accuracy relative to using only instances ex-

tracted from a single site.

3. It proposes the use of a neural network, in a configuration similar to an

autoencoder, to solve the batch effects when fMRI scans from the same

participants are obtained at different scanning sites. It empirically shows

the effectiveness of this approach by learning a model that can identify

subjects with 100% accuracy, but identifies the scanning site at chance

level (which is a strong indication that the batch effects where reduced)

4. It shows that simple methods, like z-score normalization can correct for

translation and scaling in the data. Similarly, whitening can correct for

translations and rotations. It empirically shows that these methodolo-

gies are not enough for solving our batch effects problem, in the sense

that after applying the corrections, the classification accuracy when us-

ing multi-site data in the training process did not increase. This is a

strong indication that batch effects go beyond these simple linear trans-

formations.

5. It offers empirical evidence that the direct implementations of BECCA,

stacked autoencoders, and bishifting autoencoders, which have been suc-

cessfully used in other domain adaptation tasks, are not enough for solv-

ing the batch effects under our test scenarios related to the diagnosis of

schizophrenia using fMRI data. This results suggest that more research

effort is needed to understand the nature of batch effects and how to

correct them.
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Chapter 2

Background

2.1 Basics of fMRI

fMRI is an imaging technique that measures the changes in the oxygenation

level of blood in the brain, a phenomenon known as the blood oxygen level

dependent effect (BOLD effect) [56]. Since there is a coupling between the

neuronal activity and the local control of blood flow and oxygenation in the

brain (a process known as neurovascular coupling), it is possible to estimate the

brain activity by measuring these changes [25]. An oversimplified description

of the fMRI rationale is as follows:

1. Active regions in the brain require oxygen, which is delivered by the

blood. This process changes the concentration of oxyhaemoglobin (oxy-

genated blood) and deoxyhaemoglobin (deoxygenated blood) in the blood

vessels near the region of activity.

2. Oxyhaemoglobin and deoxyhaemoglobin have different magnetic prop-

erties, so the changes in their relative concentration in the blood can be

detected by an MRI scan.

3. These changes are used as an estimation of the level of activity at certain

location in the brain.

A typical fMRI scan obtains a 3-D volume of the brain every 2-3 seconds.

Depending on the nature of the study, the collection of data from a single
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Time

...
(a)

(b) (c)

Figure 2.1: fMRI from a computational point of view. (a) Compute a 3-D
matrix (corresponding to the BOLD signal at each voxel), every 2-3 seconds.
(b) Every voxel has an associated time series. (c) Every voxel is associated
with a particular location of the brain. Hence, this is an estimation of the
level of activity at a particular location over time.

subject might take 5 – 30 minutes, which can be done in a single long run, or

can be partitioned in few shorter runs [3].

From a computational point of view, every 3-D volume can be seen as a

3-D matrix, where every voxel represents a particular location in the brain,

whose intensity value is related to the relative concentration of oxygenated

blood at a particular moment. Since a volume is obtained every few seconds,

the level of activity at any area of the brain is represented as the time series

of its corresponding voxel (see Fig 2.1). As a typical fMRI 3-D volume con-

tains approximately 500,000 voxels, an fMRI session over 8 minutes (involving

150 volumes), would have nearly 75, 000, 000 values for every single subject

scanned. This amount of data poses a challenge for the analysis, since the

number of instances (people scanned) is usually only a few hundreds.
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2.1.1 Preprocessing pipeline

The analysis of fMRI data assumes that the same voxel ([x,y,z] index in each

3-D scan) represents the same location in the brain for all the participants

in an experiment. Unfortunately, raw fMRI data does not meet that criteria.

First, there is variability in the brain size of different people, so the same voxel

coordinates might represent two different brain regions in two people. Even

with the scan from a single subject, there are different sources of noise that

can affect the experiment, including: head motion, fluctuations in the electro-

magnetic field created by the scanner (thermal noise), or heart beating and

breathing (physiological noise) [21]. At the same time, the expected fluctu-

ations in the time signal of a particular region of the brain that is active is

very small, usually only ±5%, relative to its mean intensity value [25]. The

combination of these two factors can severely damage the results of the anal-

ysis of fMRI data. In an effort to reduce their effect, a preprocessing step is

applied before starting the analysis. The preprocessing of fMRI data is a well

studied topic, which has been described in detail elsewhere [3]. Many tools,

tutorials, books and software are available for performing this step. In our

analysis we used the freely available FSL1 package [28] and implemented the

following preprocessing steps independently to every fMRI scan:

1. Motion Correction: When a subject moves, brain regions will move to

different spatial locations in the scanner. In order to correct for this, we

apply an affine transformation, which has 12 degrees of freedom (allows

for translation, rotation, scaling and shearing along the three dimen-

sions).

2. Coregistration: At the beginning of each fMRI experiment, usually a

high resolution structural MRI image is acquired for every subject. This

step involves aligning the fMRI brain volumes with their corresponding

structural MRI image.

3. Spatial smoothing: In order to increase the signal to noise ratio, every

1http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL

9



volume of the fMRI data is smoothed by convolving it with a Gaussian

kernel. This operation has the effect of substituting the intensity value

of the voxel vi in a volume by a weighted average of the intensity values

of all the voxels within a mask centered at vi. This preprocessing step is

applied in an effort to decrease the effect of a fluctuating magnetic field

in the MRI scan.

4. MNI normalization: In an effort to make every voxel map the same

location of the brain across all the individuals, all the fMRI volumes are

mapped to the ICBM152 template [15].

2.2 Functional connectivity

Functional connectivity is used to analyze the degree of synchrony among

regions of the brain that are anatomically distant [49], which is defined as a

statistical association between the time series associated with different parts

of the brain [51].

Two types of methods are commonly employed for determining the func-

tional connectivity of the brain: the ones based on regions of interest, and

the ones based in independent component analysis (ICA). The first one ex-

tracts the time courses from each of a set of predefined regions of the brain,

then determines the pairwise statistical association between regions by corre-

lation [71], coherence [58], or conditional independence [51]. The output of

this process is a graph where the regions of interest are represented by the

nodes, and their statistical association is represented by the weights of the

edges. ICA, on the other side, makes no assumption about the regions of the

brain useful for the analysis and uses the time series from all the voxels to

decompose the time signals into a set of statistically independent components.

The output of this process is a set of spatial map that shows which parts of the

brain are associated with the independent components, as well as their degree

of activation. Note that this is a soft labeling, which means that a particular

voxel can be associated with more than one statistical map (or with none of

them).
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The current belief in the neuroscience community is that the connectivity in

the brain determines its computational properties [39]. There is also increasing

evidence that differences in the functional connectivity are associated with al-

terations in cognitive and behavioral functions, suggesting that they also play

a role in neurological and psychiatric disorders [4]. If the functional connec-

tivity is similar among people with the same condition (e.g., schizophrenia)

and different from others with a different condition (e.g., healthy controls),

then we could use it to create a classifier that assigns new people to one of

the groups, based on their functional connectivity. A detailed description of

how we computed the functional connectivity for the experiments performed

in this dissertation is given in Section 3.3

2.3 Association vs prediction studies

Traditionally, fMRI studies are used for analyzing the cognitive function of the

brain, and its disruption in the presence of a mental disorder or mental illness.

These studies typically seek explanatory models, in which a set of factors

X are assumed to cause an underlying effect, which is measured by variable

Y [54]. Their objective is to find these underlying factors (biomarkers) among

all the features available in the data. For the specific case of fMRI data, the

biomarker might take the form of regions of the brain that co-vary with a

particular stimuli and that are statistically significantly different among the

groups under study (e.g., people with schizophrenia vs healthy controls) [7].

These type of studies are known as “association studies” [33].

Standard association studies require at least two stages: individual level

analysis and group level analysis [3]. In the former one, the fMRI scan of

every subject is analyzed individually, one voxel (or region of interest) at the

time. The objective is to identify which voxels are associated with a time

series that relates to the task being performed. The time series associated

with every voxel (or region of interest) is modeled as Y = Xβ + ε, where Y

is the response associated with the explanatory variable X, based on their

respective coefficients β; here ε is the error term. Then a statistical test is
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Figure 2.2: Regions of the brain with statistically significant differences be-
tween schizophrenia patients and healthy controls under the experiment of
Walter et al. [63] (reproduced by permission of Oxford University Press)

applied to β (e.g., a t-test) to produce a statistical map, with a single value

per voxel that represents its level of activation. Readers interested into the

details of this process are referred to the work of Friston [20] and Ashby [3].

In the second phase, the individual statistical maps are combined into a single

group map (e.g., one map for healthy people, and one map for people with

schizophrenia) with the objective of finding statistically significant differences

between groups.

A conclusion of an association study typically takes the form people from

group A presented more/less activation in regions X, Y, and Z compared with

group B, and then visually represents the regions in the brain that present dif-

ferences. As a concrete example, Walter et al. [63] analyzed differences in the

brain activation patterns between people with schizophrenia and healthy con-

trols under activities with different degree of social interaction. They report

that ”...[patients with schizophrenia] showed less activation in three regions

typically activated in theory of mind tasks, i.e., paracingulate cortex and bilat-

eral temporo-parietal junctions...” and represent those differences in the image

shown in Figure 2.2.

One of the most important characteristics of these studies is its explanatory

12



power: the goal is to build an interpretable model that brings insight about the

nature of the problem under study, however, one caveat of explanatory models

is that the research hypotheses are given in terms of theoretical constructs,

which are descriptions of a phenomenon of interest [13], such as functional

connectivity, rather than in terms of measurable variables [54]. Therefore,

these models are difficult to evaluate numerically, so their reliability is typi-

cally measured by consistency (similar studies reporting similar results) and

closeness to the known theoretical models of the problem under study.

Prediction studies, on the other side, focus on learning patterns using his-

torical data with the objective of making predictions on new or future obser-

vations [41]. A typical prediction study follows the block diagram shown in

Figure 1.1. Unlike association studies, the results are presented at individ-

ual level, rather than group level. Also, it is relatively easy to evaluate the

performance of the methods used for learning the classifier, since there are

well-defined metrics, such as accuracy, designed for this purpose.

Prediction studies are not as common as association studies in many fields,

including neuroscience, because they might not help to produce an underlying

theory [54]. However, there is a growing interest in these predictive models

due to their potential to be applied in clinical settings [2]. As it name suggest,

predictive studies focus on predictive power so, instead of finding a subset of

all the features x that explain a phenomenon y using an univariate approach,

they use a multivariate approach to find combinations of features that give

the most probable outcome for a specific instance x, arg max
y

P( y |x ). The

caveat of these studies is that, since they might use hundreds or thousands of

features, they are difficult to interpret. Besides, even if the number of features

is low, the model learned might not be directly interpretable [23].

In many fields, models that focus on explanatory power are often assumed

to have also a predictive power [54], but this is not necessarily the case. As a

simple example, consider the following simulated scenario: A study measures

the level of activation in the motor cortex and the prefrontal cortex in people

with schizophrenia and healthy controls. The distributions of the features
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Figure 2.3: Distribution of two hypothetical features across two groups of
interest. The difference in the means of the activation in the frontal cortex
(left) in both groups is statistically significant (p < .01), but that is not the
case for the activation in the motor cortex (right) (p = .63)

in both groups is shown in Figure 2.3. After running a t-test for finding

statistically significant differences between both groups (association study),

one could erroneously conclude that the activation in the motor cortex plays no

role for distinguishing people with schizophrenia from healthy controls. Also,

we observe that there is an overlap between the distribution of the activation

of the frontal cortex in both groups.

On the other side, a prediction study would consider combinations of both

features, seeking a separation surface that allows classification of new in-

stances. Figure 2.4 shows the result of the prediction study where, because of

the correlation structure of both variables, the activation of the motor cortex

plays an important role in defining the decision boundary represented by the

dotted line. In this particular case, if we encode the people with schizophrenia

as yscz = −1, healthy controls as yhc = 1, activation in the frontal cortex

as x1, and activation in the motor cortex as x2; then the decision boundary

is defined by the line f(x1, x2) = 26.48x1 − 14.39x2 − 30.06 = 0, and a new

instance, x(i) = (x
(i)
1 , x

(i)
2 ), would be classified as yi = sign(f(x

(i)
1 , x

(i)
2 )). Note

also that the overlap between the distribution decreases when both features

are used together, in comparison with using only the features that are statisti-

cally significant in an association study; however, the interpretation becomes

problematic since it is difficult to explain what a linear combination of the ac-

14



Figure 2.4: Distribution of two hypothetical features across two groups of in-
terest. Recall from Figure 2.3 that the difference in the means of the activation
in the frontal cortex in both groups is statistically significant (p < .01), but
that is not the case for the activation in the motor cortex (p = .63)

tivation in two regions of the brain means. (This problem only increases with

more dimensions: What does a linear combination of 500,000 voxels mean?

What if we use basis functions to project the data into a different feature

space?).

This simple example shows that features whose difference between groups is

not statistically significant can still have predictive power and simply ignoring

them might have a negative impact on the prediction accuracy. The opposite

is also true: two features can have statistically significant differences between

two groups without having any predicting power. This situation is illustrated

in Figure 2.5.
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Figure 2.5: Distribution of two hypothetical features in two groups of inter-
est. Even when both features have statistically significant differences between
groups (p < 0.01), their predictive power is very limited.
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Chapter 3

fMRI analysis from the machine
learning perspective

In a classification problem using supervised machine learning, the objective is

to learn a mapping from inputs x to outputs y, where x ∈ Rp is a p-dimensional

vector containing the values of a set of features, and y ∈ {1, 2, ..., C}, with C

being the number of classes, indicates the class to which x belongs. This

typically assumes that there exist an unknown function y = f(x) that makes

this mapping (or at least that f(x) is a good approximation), and the goal is to

apply a learning algorithm, L(·) on a labeled training set with n instances D =

{(x1, y1), (x2, y2), . . . (xn, yn)} to get an estimate of the function, f̂ = L(D).

It is then possible to make predictions on new instances ŷnew = f̂(xnew) [41].

This process is depicted on Figure 3.1, which is a generalization of Figure 1.1.

Feature Vector (X) Class (Y)

x1
T 1

x2
T 2

... ...

xn
T 1

Learning 
Algorithm 

(L)

Classifier

ynew

xT
new

f

Training dataset (D)

Figure 3.1: Machine learning approach for classification problems
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Learning 
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Predictions
Test (30%)

(a) (b)

Figure 3.2: The two scenarios explored in this dissertations: a) Training set
and test set come from the same scanning site, b) Add data from an external
site to the training set.

3.1 Task description

Given a training set of labeled fMRI scans obtained from people with schizophre-

nia (SCZ) and demographically matched healthy controls (HC), create a clas-

sifier that makes predictions in a (disjoint) test set of fMRI scans with an

accuracy above chance level when either:

1. The fMRI scans in the training set and test set where acquired in the

same scanning site; or

2. fMRI scans from a different scanning site are added to the training set,

but the fMRI scans in the test set are still from a single site. Since more

data is available, the accuracy in scenario 2 should be higher than the

accuracy obtained in scenario 1.

Both scenarios are depicted in Figure 3.2, and their performance will be

evaluated computing the accuracy of the learned function f̂(·) over a labeled

test dataset D

Accf̂(·)(D ) =
1

|D|
∑

[xi,yi]∈D

I(yi = f̂(xi)) (3.1)

where xi represents the fMRI scan of the ith subject, yi ∈ {SCZ,HC} is

his/her true class, f̂(xi) is the predicted class, and I(·) is the indicator function.
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3.2 Dataset

For our experiments, we used the FBIRN phase II dataset, which is a multisite

study developed by the Function Biomedical Informatics Research Network

(FBIRN). It contains data from 87 individuals with schizophrenia (59 males)

and 85 healthy controls (70 males), both in the age range 18 – 70. Keator et

al. provides a complete description of the study [31].

We used the data corresponding to the Auditory Oddball task, in which ev-

ery participant is presented with a continuous sequence of two types of discrete

stimuli: Standards and Targets. Each participant completes 4 experimental

runs of 280 s each. Every run begins with a block of silence (15 s), followed by

the presentation of Standard Tones (1000 Hz) that last 100 ms. Every 6 – 15

seconds, the Target tone (1200 Hz), of duration of 100 ms, is presented. While

listening to the tones, the subjects are looking at a constant fixation cross in

the middle of a screen, and they are instructed to press a button when they

hear a Target tone.

After preprocessing the data, we eliminated the subjects who presented

head movement greater than the size of one voxel at any point in time in any

of the axis, a rotation displacement greater than 0.06 radians, or that did not

pass a visual quality control assessment. The original released data contains

scans extracted from 6 different scanning sites; however, we only used 4 of

them. One of the sites was discarded because it lacked T1-weighted images,

which were required as part of our preprocessing pipeline. The second site

discarded contained only 6 subjects (5 with schizophrenia) after the quality

control assessment, so it was not suitable for our analysis. Table 3.1 shows the

number of instances that we used in the experiments.

3.3 Feature extraction

There are two common methods for computing the functional connectivity

of the brain: Region of interest (ROI) based, and Independent Component

Analysis (ICA). Literature in neuroscience that compares both methodologies
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Table 3.1: Number of participants in the dataset used for the experiments.
Every participant was scanned 4 times, the total number of scans (instances)
is 4 times the number of participants.

Original description Site 3 Site 9 Site 10 Site 18
Alias Site 1 Site 2 Site 3 Site 4
# Healthy controls 10 10 10 11
# Schizophrenia 11 12 13 12
# Instances (m) 84 88 92 92

report similar results when using one or the other [49]. For our experiments

we decided to use a ROI approach for the following reasons:

• As shown in Figure 3.3, nearby voxels contain redundant information

(they have very similar time series), so exploring all the voxels increases

the computational cost without adding too much new information.

• ICA analyzes all the available data, which involves nearly 500,000 voxels

per scan. On the other side, the number of regions of interest is usually

just a few hundreds. Hence, a ROI approach dramatically reduces the

number of features, which becomes a critical issue due to the limited

number of instances in the training set.

• There exists extensive literature about the functional connectivity of the

brain in schizophrenia. The information obtained from the association

studies has found that the connectivity in some parts of the brain, like the

prefrontal cortex, might be decreased in people with schizophrenia [7].

Since some regions of interest are deliberately located in these points of

interest, we can take advantage of this domain-specific knowledge.

3.3.1 Parcellation of the brain

We used the regions of interest defined by Power et al. [45]. They parcellated

the brain into 264 functional areas, with every area belonging to exactly one

of 14 functional networks, and provided the coordinates (in the MNI space)
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(a) (b)

Figure 3.3: (a) Mask used for extracting the time series of every region of
interest. (b) Zero-mean time signals of all the voxel within the mask in a
region of interest.

of the center of every functional area. Every region was modeled as a 10 mm

diameter spheres.

For determining the time series associated with every ROI, r, we approx-

imated the 10 mm sphere with the mask of 33 voxels shown in Figure 3.3

centered at the coordinates of every region (every voxel is a 2 × 2 × 2 mm3

cube). We then took the average of the zero-mean time signals of all the voxels

within the mask independently for every subject s :

v(r, s) =
1

|Nr(s)|
∑

xi∈Nr(s)

(xi − µi1) (3.2)

where xi is the vector containing the time series of a single voxel, µi =

1
p

∑p
j=1 x

(j)
i is the empirical average of all the p entries of the vector xi, |Nr(s)| =

33 is the cardinality of the set of vectors Nr(s), which represents the voxels

within the mask centered at the coordinates of the region r for the subject s,

and 1 is a vector of the same dimensions as xi whose entries are all 1. The

output of this process is a matrix X ∈ Rp×264 for every subject that contains

the time series associated to the 264 regions of interest.

3.3.2 Feature matrix

The functional connectivity of every subject can be estimated by computing

the Pearson’s correlation coefficient between the time series of every possible

pair of regions of interest [47, 71]. The correlation coefficient between two
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ROI 1 ROI 2 ROI 3 ... ROI 264

ROI 1 1 0.71 -0.28 ... 0.45

ROI 2 0.71 1 0.23 ... 0.11

ROI 3 -0.28 0.23 1 ... -.39

... ... ... ... ... ...

ROI 264 0.45 0.11 -.39 ... 1

Corr 
(1,2)

Corr 
(1,3) ...

Patienti 0 .71 -0.28 ...

ρ = 0.71 ROI 1
ROI 2

Figure 3.4: Every entry in the matrix on the left is the Pearson’s correlation
coefficient between two regions of interest. The correlation (ρ = 0.71) between
the time series of ROI1 and ROI2 is shown as an example. Then, the upper
triangular matrix (green) can be concatenated into a single vector, of length
l =

(
264
2

)
.

random variables, X and Y , is in the range [−1, 1], and is defined as:

ρ(X, Y ) =
E[ (X − µX) (Y − µY ) ]

Var(X) Var(Y )
(3.3)

where µX , µY represent the mean of the random variables X and Y respec-

tively, and Var(X), Var(Y ) represent their variances.

It is possible to represent the pairwise correlation of a single subject as a

symmetric matrix R, where the entry Ri,j contains the correlation coefficient

between the regions of interest i and j. Note that all the elements in the

diagonal of R are equal to 1. Therefore, we can characterize a single patient

by extending the upper (or lower) triangular part of R into a feature vector.

This process is exemplified on Figure 3.4. After repeating the same procedure

to every fMRI scan, and creating a vector storing the label of every scan,

we will have the labeled dataset D = {(x1, y1), (x2, y2), . . . , (xn, yn)}, where

xi, of length l =
(

264
2

)
, is the feature vector obtained from the ith scan, and

yi ∈ {scz, hc} is its corresponding label.

3.4 Support Vector Machine (SVM)

Support Vector Machine is a learner that creates an optimal separating hyper-

plane for two classes that are linearly separable. It finds the hyperplane that
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maximizes the margin between the training instances; see the linear boundary

shown in the Figure 3.5 [22]. For the non-separable case, it is possible to add

slack variables, ξ, that quantify the distance from points inside the margin, or

in the wrong side of the boundary to the hyperplane. The decision boundary

is then defined by the equation f(x) = ωTx + b = 0, where the weight vector

ω is found by optimizing the following function (primal form of SVM):

min
ω

1

2
||ω||2 + C

m∑
i=1

ξi

s.t. (3.4)

yi(ω
Txi + b) ≥ 1− ξi, (i = 1, 2, . . . ,m)

ξi ≥ 0, (i = 1, 2, . . . ,m)

The parameter C controls the width of the margin. It is possible to transform

this constrained optimization problem into an unconstrained one by using

Lagrangian multipliers and, after some mathematical manipulation along with

the Karush-Kuhn-Tucker conditions, express its equivalent dual problem:

max
α

m∑
i=1

αi −
1

2

∑
i,j

αiαjyiyjx
T
i xj

s.t. (3.5)

0 ≤ αi ≤ C, (i = 1, 2, . . . ,m)
m∑
i=1

αiyi = 0

It is also possible create non-linear boundaries by transforming the data,

using basis expansions, into a new feature space φ(x), and then compute a lin-

ear boundary on it. Note that if we substitute the basis functions φ(xi), φ(xj)

for the vectors xi, xj in Equation 3.5, the maximization problem is still in

terms of the dot product of the basis function. This allows the use of the

kernels (represented as K(xi, xj)) to efficiently create the linear boundary in

the new feature space without having to explicitly compute φ(x).

The formulation of the dual problem present also an advantage when the

number of features greatly exceeds the number of training instances (which is
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margin
ξ1

ξ2

ξ3

(a) (b)

Figure 3.5: a) SVM creates a decision boundary that maximizes the margin
between the decision boundary and the closest points to it. b)For the non-
linearly separable case the slack variables ξ quantify the distance between the
decision boundary and the points inside the margin, or in the wrong side of
the decision surface.

the case with fMRI data). Note that in the primal formulation the variable

to optimize is w, which means that it will estimate one coefficient per feature.

The dual form, on the other side, optimizes α, so it will estimate a coefficient

for every training instance.

Assuming a binary classification problem, where the label y ∈ {−1, 1}, the

label of a new instance is computed by:

ynew = sign

(
b+

∑
i

αiyiK(xnew, xi)

)
(3.6)

with b = yk −
∑

i αiyiK(xk, xi) for any k where C > αk > 0.

3.5 Learning algorithm and accuracy estima-

tion

For learning a classifier that distinguishes between people with schizophre-

nia and healthy controls, we use a SVM with linear kernel1 using the SVM

library SVMLIB2 [8]. For determining the best parameters for the classi-

1We also experimented with the RBF kernel; however its high variance prevented it from
generalizing to new data for this task. Therefore, we only report the results with the linear
kernel.

2Software freely available at: http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
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Algorithm 1 Learning algorithm
Input: DTrain, C
Output: Model

1: procedure FindBestSVMModel
2: Divide DTrain into 5 disjoint subsets {D1, D2, . . . , D5}; set D−i = D −
Di

3: for c in C do
4: for k = 1:5 do
5: Model ← trainSVM(D−k, c)
6: Predictions ← predictSVM(Dk, Model)
7: TempAccuracy(k) ← getAccuracy(Predictions, GroundTruth)
8: end for
9: Accuracy(c) ← Average(TempAccuracy)

10: end for
11: Cbest ← arg max

c
(Accuracy(c))

12: Model = trainSVM(D, Cbest)
13: return Model
14: end procedure

fier, we used 5-fold cross validation and a grid search over the parameters

C = [2−5, 2−3, . . . , 215] as suggested by the authors of the library. The learn-

ing procedure is described in Algorithm 1. The subroutine trainSVM on line 5

refers to solving the problem described in Eq. 3.5, predictSVM refers to solving

Eq. 3.6, while getAccuracy refers to solving Eq. 3.1. Also, when dividing the

training set into 5 disjoint subsets (Line 2), we ensured that the proportion of

elements of the different classes were essentially the same in every subset.

For estimating the accuracy of the learning algorithm, we followed to pro-

cedure described in Algorithm 2. Our objective was to estimate a distribution

of accuracies for different partitions of a dataset, D, into a training set DT and

a hold out set DH . The number of times that the experiment is repeated is

set by the user in the variable numExp. For the purposes of this dissertation,

we set numExp = 30. Note also that the output of Algorithm 2 is a vector

containing the accuracy of every partition, instead of a single-point estimate

of the accuracy. From this vector it is possible to estimate the mean expected

accuracy and graph a histogram to get an estimate of the shape of the accuracy

distribution.
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As depicted in Figure 3.2, we partitioned the data into 70% for training set

and 30% for the hold-out set in the case of single site classification. For the

multisite case, we added 100% of the data obtained from a different scanning

site to the training set.

Algorithm 2 Expected accuracy of the learning algorithm
Input: D, numExp
Output: Accuracy

1: procedure getExpectedAccuracy
2: for i = 1:numExp do
3: Divide D into 2 disjoint subsets DT and DH

4: Model ← findBestSVMModel(DT , C)
5: Predictions ← predictSVM(DH , Model)
6: Accuracy(i) ← getAccuracy(Predictions, GroundTruth)
7: end for
8: return Accuracy
9: end procedure
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Chapter 4

Classification results

4.1 Single site

For each single site classification experiment, we used data from one scanning

site at a time for both training and testing, as depicted in Figure 3.2 (left). We

computed the accuracy as described in the Algorithm 2. The data from every

scanning site is represented as a matrix D ∈ Rm×p, with m being the number

of scans and p being the number of features1. Table 4.1 summarizes the results

when using as features the pairwise correlation of the 264 ROI (p =
(

264
2

)
=

34,716 features) described in Section 3.3.2. Every participant in the dataset

was scanned 4 times, and every scan counts as an individual instance; however,

we split the data into a training set DT and hold-out set DH at a subject level

– i.e., all the 4 scans of a single subjects were part either of the training set

or the hold-out set.

Note from Table 4.1 that only the data extracted from sites 2 and 4 have

an accuracy that is statistically significant greater than the baseline, which is

defined as the accuracy obtained by classifying all the instances as the majority

class. One possible explanation for this result is that, even when the number

of features was greatly reduced by the ROI analysis, the number of features is

more than 350 times the number of instances, so the learning algorithm has

problems identifying useful patterns.

It is possible to reduce the number of features even more by using domain-

1We also performed the experiment using coherence, partial coherence, and the Fast
Fourier Transform as features, but pairwise correlation achieved the best results.
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Table 4.1: Single site dataset size and results using the 264 regions of interest.
Statistically significant differences (using t-test, p < 0.05) between the mean
accuracy and the baseline are marked in bold.

Site 1 Site 2 Site 3 Site 4
# Participants 21 22 23 23
# Instances (m) 84 88 92 92
Baseline 57.14% 57.14% 57.14% 50 %
Accuracy 61.67% 67.5% 53.69% 62.91%
Std 17.0% 9.2% 10.4% 11.4%

specific knowledge about schizophrenia. For example, previous studies have

found that there are important differences in the functional connectivity of

the prefrontal cortex [7]. By limiting the nodes to those belonging to the

Fronto-Parietal network and the auditory network (since the participants are

performing and auditory task), the number of ROI analyzed decreases to only

38, instead of the original 264. This reduces the actual number of features

from ∼ 35, 000 to only 703. Table 4.2 shows that using this new approach

the accuracy improved in all cases but site 3. Note this both increases the

mean accuracy (among the 30 experiments) and also decreases the standard

deviation of the results. Figure 4.1 shows the accuracy distribution estimated

after applying Algorithm 2. Many prediction fMRI studies only report a single-

point estimate of the accuracy. As shown in the figure, this is not a good

estimator, since it can drastically change depending on the test set used. For

example, an incorrectly computed single-point estimate for the accuracy in the

data from site 1 could be > 80% when the distribution shows that, on average,

the accuracy is only 64.33%.

A further analysis of the results shows that in all sites, but site 3, adding

more data to the training set has a positive impact on the accuracy of the

classifier produced by the learning algorithm; see Figure 4.2. The x-axis shows

the percentage of the data that was used for creating a classifier, the rest

was used as a hold-out set to estimate the accuracy (y-axis). These graphs

suggest that adding more data in the training set should increase the expected

accuracy of the learning algorithm. The assumption is that the data obtained
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Table 4.2: Single site dataset size and results using the 38 regions of interest
corresponding to the fronto-parietal network and auditory network. Statisti-
cally significant differences between the mean accuracy and the baseline are
marked in bold.

Site 1 Site 2 Site 3 Site 4
# Participants 21 22 23 23
# Instances (m) 84 88 92 92
Baseline 57.14% 57.14% 57.14% 50 %
Accuracy 63.33% 70.35% 55.0% 70.20%
Std 14.4% 7.3% 7.3% 9.1%

Mean accuracy

Baseline

Figure 4.1: Distribution of the accuracy on every scanning site after 30 exper-
iments
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Scanning site 1 Scanning site 2

Scanning site 3 Scanning site 4

Figure 4.2: Influence of the size of the training set on the performance in a
hold out set.

in the different scanning sites come from the same distribution. Therefore, we

should be able to merge data from different sites in the training site in order to

improve the performance of the classifier. Note that this is not the case for the

scanning site 3, whose accuracy is at chance level regardless of the number of

instances including in the training phase. These results suggest that the signal

present in the data extracted from this scanning site is very weak, preventing

the learning algorithm from detecting useful patterns for classification.

4.2 Multiple sites

The experiments using data extracted from multiple scanning sites follow the

scheme depicted in Figure 3.2(b). Figure 4.3 shows the result of using data

from two sites for training, while testing in data from only one site (we used

only the 38 ROI for the multiple sites experiments.) The scanning site used
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Additional Train Set

Hospital 1 Hospital 2 Hospital 3 Hospital 4

Test 
set

Hospital 1 63.33 % 64.45 % 62.85 % 64.64 %

Hospital 2 72.73 % 70.35 % 67.14 % 64.76 %

Hospital 3 55.11 % 65.35 % 55.00 % 56.78 %

Hospital 4 76.35 % 58.54 % 63.02 % 70.20 %

Not Statistically
Significant

Improvement 
over single hosp.

Decline over 
single hosp.

Figure 4.3: Average accuracy after merging datasets from different scanning
sites.

for test purposes is represented in the rows, while the scanning site added

for training is represented in the columns. Ideally, the values in the diago-

nal should be the lowest in every row, since they include data from a single

site; however, this is not the case. In most of the experiments, the changes in

the accuracy were not statistically significant, even when Figure 4.2 suggested

that more data should increase the accuracy. Only in 2 out of 12 cases did

the accuracy increase significantly, but in 3 cases it significantly decreased.

Besides, the behavior of the accuracy is not symmetrical. For example, adding

data from the scanning site 1 to the data from scanning site 4 improved the

accuracy over just using site 4; however, the “opposite” is not true: the accu-

racy of site 1 did not improve when adding data from site 4. Note that since

we are using all the available data from a new site, the size of the augmented

training set is more than double than the one in the experiments reported in

Section 4.1.

Adding even more data to the training set does not correct this situation.

If instead of adding data from one additional site, we could add the data from

all the other sites into the training set; this leads to the accuracies shown on

Figure 4.4. An interesting effect occurred in this case. Note that the accuracy

of the scanning sites 1 and 3, which had a relatively low accuracy on the single

site experiment, dramatically increased their average accuracy to 73.09% and

68.45%; however, the accuracy of the scanning sites 2 and 4 presented an

important decrease in their accuracies relative to the single site experiment

(although for the case of scanning site 4, the difference is not statistically
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Test Set

Hospital 1 Hospital 2 Hospital 3 Hospital 4

Train 
Set

 Single 
hospital 63.33 % 70.35 % 55.00% 70.20 %

All 
hospitals 73.09 % 62.85% 68.45 % 65.83 %

Not Statistically
Significant

Improvement 
over single hosp.

Decline over 
single hosp.

Figure 4.4: Mean accuracy after including data from all the scanning sites in
the training set.

significant).

The results reported in Figures 4.3 and 4.4 reveal a big problem with

multisite data. These results show that it is very difficult to determine if adding

more data from a different site will have a positive, negative, or no effect in the

classification accuracy. Unfortunately, this is not just a hypothetical scenario.

If the objective is to develop classifiers that can be deployed for clinical use,

the users will be interested in the prediction accuracy in their scanning site

and typically have the option of incorporating data from different studies in

order to improve their own performance. We see that there is no easy answer

to this question.

4.3 Batch effects

In genomic studies, the noise added to the biological signals due to technical

factors in the development of the experiments, and that differ from one ex-

periment to another, is known as batch effects [37]. This phenomenon is also

present in fMRI data, where we view it to be altering the joint distribution

of the data in two different scanning sites, a and b, making P(X, Y | a ) 6=

P(X, Y | b ). The way in which these probabilities differ is still an open prob-

lem, but research suggest that it is influenced by a variety of factors including:

field strength of the magnet, manufacturers and parameters of the MRI scan-

ner, radiofrequency noise environments, differences in the scanning protocol,

and the general experience of the participants in the study [21].

While several association studies claim that the effects introduced by the

merging data extracted from different scanning sites plays no significant role
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Table 4.3: Classification accuracy for prediction of scanning site (binary clas-
sification)

Site 2 Site 3 Site 4
Site 1 88.0% 92.0% 87.4%
Site 2 - 96.2% 92.5%
Site 3 - - 93.4%

in their analysis [53, 11, 60, 57, 9], we found that it does play a very important

role in prediction studies. Usually association studies include the scanning site

as an extra feature in an effort to reduce its influence in their analysis, but

this strategy did not improve the results in our study.

4.3.1 Scanning site classification

The batch effects can be further analyzed by changing the target variable in

the classification task from y ∈ {scz, hc} to y ∈ {Site1, Site2, Site3, Site4}

(the feature matrix is the same as the one used for learning a model to predict

schizophrenia). As shown in Table 4.3, the accuracy is > 88% for binary

classification (Sitei vs Sitej) in all cases. For the 4-class classification scenario

the accuracy was, on average, 83.56%± 5.0%, which is well above the chance

level of ∼ 25%.

Scanning site classification results indicate that there are important dif-

ferences in the feature vectors depending on the origin of the data. These

differences are shown in Figure 4.5. Every row in the figure corresponds to a

participant in the experiment, while every column represents a feature (corre-

lation between two regions of interest). The color represent the value of the

correlation coefficient. In hospital 1, there is a high correlation between all the

features, across all the participants. On the other side, participants in the hos-

pital 3 present much lower correlation values when compared with the other

hospitals. This visualization reinforces the idea that the data from different

scanning sites follow different joint distributions, and partially explains why

simply merging the data for creating an augmented dataset does now achieve

the expected results.
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Figure 4.5: The feature vector for all subjects (both schizophrenia and healthy
control) looks different across different scanning sites.

An interesting aspect of Figure 4.5 is that, despite the obvious differences

across different hospitals, there are features that consistently present a high

correlation value regardless of the scanning site. These features can be ob-

served as vertical lines in the figure. A deeper analysis reveals that those

features are mostly part of the auditory network – i.e., the ROI inside this

network are highly connected (see Figure 4.6). To address the concern that

the high correlation values might be due to spatial proximity, we identify the

physical location of the connected nodes; see Figure 4.7. The high connectivity

occurs even if the ROI are in different brain hemispheres, eliminating the idea

that the robustness across sites is due to an artifact, or spatial proximity. The

visualization was performed using the package BrainNet Viewer [67].

Extending the analysis to include all the 264 ROI, we observe that the

sensory/somatomotor network, auditory network and visual network present

consistently high connectivity. These three networks are closely related to

the fMRI task: watch a screen, hear sounds, and press a button (Figure 4.8).

This is an interesting insight that suggests that not all the regions of interest
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Figure 4.6: Analysis of the 2 networks used for prediction. Regions with high
pairwise connectivity that are consistent across the different scanning site are
shown in green. Note that the voxels corresponding to the auditory network
are highly interconnected.

Frontoparietal network

Auditory network

Figure 4.7: Physical location of the regions of interest that presented high
connectivity across all the scanning sites.
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Sensory/Somatomotor 
hand

Cingulo-Opercular task 
control

Auditory

Default Mode

Visual

Fronto Parietal

Salience

Subcortical

Dorsal attention

Figure 4.8: Analysis of the 264 ROI. Regions consistent across the different
scanning site are shown in green. Note that sensory/somatomotor, visual and
auditory networks present high connectivity.

are affected by batch effects in the same way. In particular, brain networks

that are directly related to the task that participants are performing are more

robust to noise than networks that are not directly related. Unfortunately,

these high connectivity is not only consistent among scanning sites, but also

between people with schizophrenia and healthy controls, which means that

they have little predictive power for distinguishing between the two groups.

4.3.2 Traveling subject dataset

In an effort to better understand the effects that different scanning sites have

on the data, the Biomedical Informatics Research Network (BIRN) designed

an experiment in which 5 healthy participants traveled to 10 scanning sites,

and were scanned 8 times in every site while performing the same set of ac-

tivities [31]. To gain a visual intuition of these effects, it is possible to project

the feature matrix into their principal components using Principal Component

Analysis (PCA) and then plot the first two component to get a 2-D represen-

tation of the data. Figure 4.9 shows the result of this procedure. Every color
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Figure 4.9: Projection of the feature matrix of the traveling subjects dataset
into the first two principal components. Every point represents an fMRI scan,
whose color represents a participantand whose shape identifies the scanning
site.

in the figure represents a participant in the study, every shape represents a

scanning site (we plotted only two sites for easiness of visualization), and every

point represents an fMRI scan.

Figure 4.9 shows that the participants look different in different scanning

sites. More important, there is a clear division between scans taken in one site

versus the scans taken in the other one – i.e., it is possible to create a linear

decision boundary that separates both sites even in the reduced 2–D space.

4.3.3 Solving the traveling subject problem

An intuitive idea to deal with the batch effects is to assume that an un-

known function, g(X), maps the feature matrix X for a single patient from

one scanning site A to a scanning site B, such that XB = g(XA). When

these input/output pairs are available, like in the case of the traveling subject

dataset, a neural network with a single hidden layer is sufficient to compute an

approximation of g(x) for the input/output pairs used on the training set [24].

After computing this approximation, ĝ(·), we can concatenate XB and ĝ(XA)

into a single dataset, and use any learning algorithm to learn a classifier (SVM
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Figure 4.10: Neural network architecture, which is essentially the same as the
one used by autoencoders. The objective of the network is to produce an
approximation of how data from scanning site A is represented in scanning
site B.

in this case). The architecture of the proposed neural network is shown in Fig-

ure 4.10. Note that is identical to the architecture to an autoencoder, with

the difference that instead trying to copy its input into its output, it will map

feature vectors from SiteA to SiteB.

The output of the neurons in the hidden and output layers is given by the

function fω,b(x) = σ
(
ωTx+ b

)
, where σ(x) = e2x−1

e2x+1
. The cost function opti-

mized by the neural network is similar to the one used in sparse autoencoders,

with the variation that the error is computed as the difference between the

output of the neural network and the representation of the feature vector in a

different site [42]:

J(ω, b) =
1

m

m∑
p=1

(
||xBp − g

(
xAp
)
||2
)

+ λ
∑
i,j,l

(
ω

(l)
i,j

)2

+ β
k∑
i=1

KL(ρ||ρ̂i) (4.1)

where m is the number of participants whose feature vector are available for

both site A and site B, xBp and xAp is the feature vector of obtained in scanning

site B and A of the pth participant, g(·) is the output of the neural network,

38



ω
(l)
i,j is the weight that connects the ith neuron of the layer l with the j th

neuron of layer l+ 1, λ is a regularization term that controls the magnitude of

the weights ω, β is a second regularization term that forces that the average

activation (ρ̂i) of the ith neuron in the hidden layer to be close to a desired

average activation ρi (usually a low number like 0.05), k is the number of

neurons in the hidden layer, and KL(p||q) = p log
(
p
q

)
+ (1− p) log 1−p

1−q is

the Kullback-Leibler divergence between two Bernoulli random variables with

mean p and q, respectively.

One way of measuring if this neural network is effective for decreasing the

impact of batch effects in prediction studies is by creating two classifiers whose

target variable are: (1) participant ID (y ∈ {1, 2, . . . , 5}), versus (2) scanning

site (y ∈ {A,B}). Ideally, the first classifier should be successful, but the

performance of the second task should be at chance level. In the dataset,

every participant was scanned 8 times at each scanning site. Here, we used

4 scans for training the model (both, the neural network and the classifiers),

and the other 4 were left as a hold-out set for estimating the performance.

Defining T si,j as the matrix containing the time series corresponding to the j th

scan of participant i in scanning site s, we apply Algorithm 3 to estimate the

performance of the two tasks described above. Given the small number of

instances available, we reduced the number of ROI to be analyzed. Since the

participants were doing a task involving a visual activity, we analyzed only the

visual network. Therefore T si,j ∈ R31×89 because the visual network involves 31

ROI, and the time series associated with every region has 89 timepoints.

The first step is to create the input/output pairs for the neural network.

Every scan in the training set from the subject i obtained from the scanner

A (input) will be mapped to the average scan (output) of the same subject

obtained from scanner B in Algorithm 3. After that, the feature vector can

be obtained for all the inputs/outputs. This feature vector is obtained by

computing the pairwise correlation of the time series associated with each ROI

as described in Section 3.3.2. The next step is to train the neural network by

finding the values ω, b that minimize Equation 4.1. Then, using ω and b we can

translate the feature vectors from site A to site B and learn two classifiers to
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Algorithm 3 Traveling subject problem

Input: {T si,j | i ∈ {1, . . . 5}, j ∈ {1 . . . 8}, s ∈ {A,B} }
Output: Accuracysubject,Accuracysite

1: procedure PerformanceTravelingSubject
2: # Train a neural network to estimate how participants in site A look like

in site B.
3: for i in 1:5 do
4: T̄Bi ← 1

4

∑4
j=1 T

B
i,j

5: XB
i ← getFeatureVector(T̄Bi )

6: for j = 1:4 do
7: XA

i,j ← getFeatureVector(TAi,j)
8: Generate input/output pairs 〈XA

i,j, X
B
i 〉

9: end for
10: end for
11: Concatenate the input/output pairs into a train set D

(NN)
T

12: ModelNN ← trainNeuralNetwork(D
(NN)
T )

13:

14: # Estimate how participants in A look like in B
15: for i = 1:5 do
16: for j = 1:8 do
17: X̂B

i,j ← ModelNN(XA
i,j)

18: XB
i,j ← getFeatureVector(TBi,j)

19: end for
20: end for
21: Merge X̂B

i,j and XB
i,j into a training set DT for i ∈ {1, . . . , 5},

j ∈ {1, . . . , 4}.
22: Merge X̂B

i,j and XB
i,j into a hold-out set DH for i ∈ {1, . . . , 5},

j ∈ {5, . . . , 8}.
23: Define the target vectors Y site

T , Y participant
T , Y site

H , Y participant
H

24:

25: # Create the classifiers
26: ModelsiteSVM ← trainSVM(DT , Y

site
T )

27: ModelparticipantSVM ← trainSVM(DT , Y
participant
T )

28:

29: Predictionssite ← ModelsiteSVM(DH)
30: Predictionsparticipant ← ModelparticipantSVM (DH)
31: Accuracysite = getAccuracy(Predictionssite, Y

site
H )

32: Accuracysubject = getAccuracy(Predictionssubject, Y
subject
H )

33: end procedure
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Table 4.4: Accuracy comparison in prediction of scanning site and participant
ID before versus after batch effects correction. (Results on the hold-out set
using the traveling subject data)

Before correction After correction
Site Participant Site Participant

100% 100% 65% 100%

Figure 4.11: Projection of the traveling subject dataset into the first two
components after correcting the batch effects using a neural network.

distinguish: (a) participant ID and (b) site. Finally, we test the performance

of this algorithm in a hold-out set.

The results of applying Algorithm 3 to the traveling subject dataset are

presented in Table 4.4. This table shows that this approach decreased the

impact of batch effects, since it is not possible to distinguish between scan-

ning site, but it is still possible to identify the subject perfectly. Figure 4.11

shows this results graphically. Note how, after projecting the output of the

neural network into the two first principal components, the data is clustered

by participant, but not by scanning site.
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Chapter 5

Reducing the influence of batch
effects

The solution proposed in Section 4.3.3 is effective when the same participants

are scanned in both scanning sites; however, this is not the case in real scenar-

ios. Without the matching input/output pairs, it is not possible to directly

use a neural network to estimate the function x̂B = g(xA) that estimates

the feature vector that would represent participants scanned in site A if they

would have been scanned in site B. For this standard case, a different sets of

techniques should be used for decreasing the batch effects.

5.1 Simple transformations I: Translation and

scaling

An intuitive starting point is to use techniques that remove simple linear data

transformations such as translations, rotations and scaling. The physical prop-

erties of a scanner influence the signal-to-noise ratio of the fMRI time sig-

nals [21]. This will in turn affect the correlation values between the time

signals. If we assume that a scanner influences the correlation between the

time signals of two regions of interest in the same way for all the patients, we

can represent the relationship between every feature (pairwise correlation) in

scanning sites A and B as:

XB
i = αiX

A
i + βi, i = 1, 2, . . . ,m (5.1)

where XB
i is a random variable representing the ith feature in the data ex-
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tracted from scanning site B, XA
i is its equivalent for scanning site A, αi, βi

are the scaling and translation coefficients for the ith feature, and m is the

number of features. Since we do not have pairs (xAi , x
B
i ) for any subject, it

is not possible to estimate the coefficients directly; however, we can remove

their influence by using z-score normalization independently on data from each

scanning site:

X̄A
i =

XA
i − E[XA

i ]√
V ar(XA

i )
(5.2)

X̄B
i =

XB
i − E[XB

i ]√
V ar(XB

i )

=
αiX

A
i + βi − E[αiX

A
i + βi]√

V ar(αiXA
i + βi)

=
αi
(
XA
i − E[XA

i ]
)√

α2
iV ar(X

A
i )

=
XA
i − E[XA

i ]√
V ar(XA

i )
, for αi > 0

= X̄A
i

(5.3)

Note that even if we cannot recover the original values XA
i and XB

i , we

can transform both variables into a new space X̄A
i and X̄B

i where they are

equivalent. The effect of the translation is removed by subtracting E[X],

while the effect of a scaling by a positive number is removed by dividing by√
V ar(X). Figure 5.1 shows this effect graphically for a simple example in two

dimensions.

We applied z-score normalization independently to every dataset, and then

repeated the experiments for the second scenario described in Section 3.1

(healthy controls versus people with schizophrenia in a multisite context).

In addition, we attempted site classification, as described in Section 4.3.1,

but using the fBIRN phase II dataset instead of the traveling subjects one.

Table 5.1 shows the result for the schizophrenia versus healthy controls case.

Ideally, the off-diagonal elements of the table should be higher than the di-

agonal elements (since the diagonal results use only information of a single
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Z-score
Normalization

Original Dataset
Modified dataset (translation and scaling)

Original Dataset
Modified dataset after normalization

Figure 5.1: Graphical representation of z-score removing translation and scal-
ing.

Table 5.1: Classification accuracy for the problem of healthy controls versus
patients with schizophrenia after using z-score normalization. Values in bold
indicate single site classification.

Additional train set
Site 1 Site 2 Site 3 Site 4

Test set

Site 1 63.3% 63.5% 56.9% 62.5%
Site 2 69.5% 70.4% 67.0% 60.5%
Site 3 45.7% 50.7% 55.0% 60.5%
Site 4 74.2% 55.7% 63.9% 70.2%

scanning site); however, this is not the case. Also, comparing the results of

Table 5.1 with those shown in Figure 4.3, we can appreciate that the new

results are even worse than naively merging the datasets! On the other side,

it is no longer possible to predict the scanning site (accuracies at the chance

level for all cases). If only the last test were performed, it would give the false

intuition that z-score normalization is enough for removing the batch effects;

however, as the performance of the task of diagnosing schizophrenia reveals,

this is not the case.

At first sight, the results obtained after normalizing the data using z-score

are counter-intuitive. The mean and standard deviation of every feature are

now the same in datasets from different scanning sites, so they should be more

compatible, which should be reflected as an increase in the prediction accuracy,

not a decrease. A closer look into z-score normalization suggests why this
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Z-score
Normalization

Original Dataset
Modified dataset (translation and scaling)

Original Dataset
Modified dataset after normalization

Figure 5.2: Z-score normalization only corrects batch effects caused by trans-
lation and scaling of the data, but it is insufficient for other types of transfor-
mations.

might the case. Consider XA ∈ Rn×m as a dataset extracted from scanning

site A that contains the m-dimensional feature vector of n participants. Also,

consider XB as the result of applying a linear transformation to XA:

XB = XAα + 1βT α ∈ Rm×m, β ∈ Rm (5.4)

z-score normalization removes the effects of this linear transformation only

when α is a diagonal matrix; however, it is insufficient when the off-diagonal

elements αi,j 6= 0. This case is illustrated on Figure 5.2 and shows the lim-

itation of any algorithm that exclusively removes the effects of scaling and

translation.

5.2 Simple transformations II: Rotation and

translation

Whitening is a linear transformation that can be viewed as a generalization

of the z-score normalization. Besides making the mean of every feature equal

to zero and its variance equal to one, it also removes the correlation between

features by making its covariance matrix the identity matrix. One of the most

common procedures to perform this process is PCA Whitening [32]. This

transformation first rotates the data by projecting it into its principal compo-

nents, and then it scales the rotated data by the square root of its eigenvalues
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(which represent the variance of each new variable in the PCA space).

If the batch effects are caused by a rotation and translation of the datasets,

then applying the whitening transformation to every dataset independently

will remove the batch effects. To see why this is the case, consider the datasets

XA and XB as defined in Equation 5.4. The zero-mean datasets, X̄A, can be

obtained as:

X̄A = XA − 1E[XA] (5.5)

E[XA] = [ E[X1
A], E[X2

A], . . . , E[Xm
A ] ]

while for the case of X̄B:

X̄B = XAα + 1βT − 1E[XAα + 1βT ]

= XAα + 1βT − 1
(
E[XAα]− E[1βT ]

)
= (XA − 1[XA])α

= X̄Aα

(5.6)

The eigenvalues of the covariance matrix ΣA = 1
n−1

X̄T
AX̄A are obtained

by solving the equation det(ΣA − λI) = 0. For the special case when α is

an orthogonal matrix with det(α) = 1 (which represents a rotation matrix)1,

αT = α−1 [10], the eigenvalues of the covariance matrix of X̄B:

det

(
1

n− 1
(X̄Aα)T (X̄Aα)− λI

)
= 0

det

(
1

n− 1
αT X̄T

AX̄Aα− λI
)

= 0

det
(
αTΣAα− λI

)
= 0

det
(
α−1ΣAα− α−1λIα

)
= 0

det
(
α−1(ΣA − λI)α

)
= 0

det(α−1) det(ΣA − λI) det(α) = 0

det(ΣA − λI) = 0

(5.7)

1All orthogonal matrices,α, have a determinant equal to +1, or -1. If it is positive, α is
a rotation matrix. When the determinant is negative, it is a reflection matrix.
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Whitening
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Original Dataset
Modified dataset (translation and scaling)

Original Dataset
Modified dataset after normalization

Figure 5.3: Whitening can correct batch effects caused by rotations and trans-
lations of a dataset.

As for the eigenvectors: if v is an eigenvector of ΣA with an associated

eigenvalue λ, then ΣAv = λv. Doing some mathematical manipulations:

αΣAv = αλv

αΣAIv = αλv

αΣAα
−1αv = λαv

ΣB(αv) = λ(αv)

(5.8)

Equations 5.7 and 5.8 show that, when the transformation matrix α is an

orthogonal matrix with positive determinant, XA and XB will have the same

eigenvalues, and the eigenvectors of XB are just a rotation of the eigenvectors

of XA. Therefore, by projecting the data into those eigenvector, we obtain the

exact same representation, removing the effects of translation and rotation.

Figure 5.3 shows an example of this process with a 2-dimensional dataset.

Table 5.2 show the results of applying whitening to the problem of classi-

fying schizophrenia versus healthy controls and site classification. Similar to

z-score normalization, whitening reduces the performance of a scanning site

classifier to chance level; however, it also decreased the accuracy of the classi-

fier aimed to diagnose schizophrenia in a multisite context relative to naively

merging the datasets.

Z-score normalization and whitening are common procedures applied to

reduce the discrepancies between two datasets. In the first one, the marginal
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Table 5.2: Classification accuracy for the problem of healthy controls versus
patients with schizophrenia after using whitening. Values in bold indicate
single site classification.

Additional train set
Site 1 Site 2 Site 3 Site 4

Test set

Site 1 63.3% 39.4% 44.6% 66.1%
Site 2 41.5% 70.4% 52.1% 36.1%
Site 3 47.4% 45.3% 55.0% 47.5%
Site 4 66.4% 34.8% 57.3% 70.2%

probabilities of every feature are the same for XA and XB; however, it does not

remove correlations present between features. Whitening, in addition, makes

the covariance matrix equal to the identity matrix, making the features in

the new space decorrelated. These techniques solve batch effects caused by

translations and scaling, or rotation and translation of the dataset; however,

they were insufficient for solving the batch effects in fMRI data, indicating

that they are caused by more complex mechanisms that cannot be modeled

by these simple linear transformations.

5.3 BECCA

BECCA (which stands for Batch Effect correction using Canonical Correlation

Analysis) is a tool designed to remove batch effects caused by technical noise

that confounds the true biological signal in the context of gene expression

microarrays data [61]. It assumes that data extracted from two batches, XA

and XB, are random samples of a common population, and that the two sets

share a common biological signal shadowed by technical confounds that can

be decomposed as:

XA = αY A + βAZA + εA

XB = αY B + βBZB + εB
(5.9)

where X i ∈ Rm×ni , which are matrices with m features and ni instances,

represent the observed data. αY i, with α ∈ Rm×q and Y i ∈ Rq×ni
, represents
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Figure 5.4: Intuition of the decomposition assumed by BECCA. Assume that
there are q = 3 prototypes, and every participant can be represented as a
linear combination of them. (Noise and batch effects are not represented in
the figure.)

the biological component. βiZi, with βi ∈ Rn×ri and Zi ∈ Rri×ni
, represents

the influence of the batch effects, and εi represents noise in the measurements.

Note that the matrix α is the same in both batches, indicating that they share

a common biological signal.

To gain an intuition of this decomposition, imagine that the functional

connectivity of every person is a function of their personality. For simplicity,

assume that there are 3 prototype personalities : A, B and C, whose functional

connectivity is known, and that the functional connectivity of a person is a

linear combination of these 3 prototypes. In the context of Equation 5.9, α

represents the functional connectivity of the prototypes, and Yi represents the

weights of every patient . A similar rationale follows for βiZi. Figure 5.4 is a

representation of this example in the absence of noise and batch effects.

In general, we can only observe XA and XB, while the other matrices

are unknown. Under the assumption of this additive model, and that the

batch effects are orthogonal to each other and to the signals of interest:

(αTβA = 0, αTβB = 0, (βA)TβB = 0), BECCA eliminates the noise and

batch effect components of Equation 5.9 without explicitly modeling any of

the matrices [61].

We applied BECCA2 to the schizophrenia dataset in order to remove the

2Software freely available at: https://sites.google.com/site/svaisipour/utilities
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Table 5.3: Classification accuracy for the problem of healthy controls versus
patients with schizophrenia after using BECCA. Values in bold indicate single
site classification.

Additional train set
Site 1 Site 2 Site 3 Site 4

Test set

Site 1 63.3% 70.5% 63.5% 55.8%
Site 2 68.1% 70.4% 65.9% 64.3%
Site 3 57.3% 57.4% 55.0% 48.5%
Site 4 73.6% 68.4% 56.5% 70.2%

batch effects, and then we used SVM to classify healthy controls versus people

with schizophrenia; however, as shown in the Table 5.3, this approach was not

successful either. Note that BECCA’s efficiency depends on how accurately it

can estimate the covariance matrices of XA and XB. Unfortunately, the high

dimensionality of the data, along with the small number of training instances

and the high variance of the functional connectivity among the instances [14],

might cause an inaccurate estimation of these matrices. Moreover, BECCA is

not designed to optimize for classification accuracy; instead it is an unsuper-

vised algorithm that attempts to remove the information that is not correlated

between the two batches – so BECCA is not guaranteed to increase the pre-

diction accuracy. On the other side, it is effective in removing signals that are

not correlated between batches. When we applied BECCA to our data, the

performance of the site prediction dropped to chance level, so it is no longer

possible identify the scanning site using the extracted features.

5.4 Non-linear transformations

5.4.1 Self-learning a feature representation

A different approach to the problem is to use representation learning algo-

rithms that attempt to transform the original data into a different space that

facilitates supervised learning tasks. Self-taught learning is a paradigm that

uses sparse coding to construct higher-level features in an unsupervised fash-

ion [46]. The hope is that more abstract features of the data will be more
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Figure 5.5: The stacked autoencoders train each layer independently: a) The
raw inputs are mapped to themselves. b) The hidden layer of the previous
autoencoder becomes the input for the next one. This process is repeated
until the desired depth is achieved. The hidden layer of the last autoencoder
can be used as the input to a learning algorithm.

likely to be shared among data extracted from different scanning sites [40].

One way of obtaining this representation is to use autoencoders as the basic

building block, and then stack them into a deep architecture. The hidden layer

of an autoencoder is used as the input to the next one (see Figure 5.5). Each

autoencoder is trained independently in an unsupervised way, and the last

hidden layer is the input to a supervised layer. Finally, a fine tuning of the

network is performed to optimize all the weights. The idea is that the pre-

training of the autoencoders will locate the parameters in a region parameter

space that will reach a good local optimum [5].

Every autoencoder optimizes the cost function previously described in

Equation 4.1, with the difference that now every input will map to itself. For

the supervised learning task we used a softmax layer, which contains K = 2

output neurons, one for each class. Softmax regression minimizes the cost

function [42]:

J(ω) = −
m∑
i=1

K∑
k=1

1{yi = k} log
exp(ωTk xi)∑K
j=1 exp(ωTj xi)

(5.10)

where yi represents the class of the i -th instance, K represents the number

of output neurons (clases), ωj represents the weights connected to the j -th
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Figure 5.6: Architecture of the neural network. The number of neurons of
each layer is indicated at the top.

Table 5.4: Classification accuracy for the problem of healthy controls versus
patients with schizophrenia after using BECCA. Values in bold indicate single
site classification.

Additional train set
Site 1 Site 2 Site 3 Site 4

Test set

Site 1 63.3% 56.1% 51.8% 58.6%
Site 2 65.7% 70.4% 52.5% 62.9%
Site 3 59.3% 59.6% 55.0% 60.7%
Site 4 56.9% 52.8% 54.4% 70.2%

output neuron, and xi is the feature vector of the i -th training example.

For experimental purposes we used the architecture of the neural network

shown in Figure 5.6. Its consists in a network with 2 hidden layers. The

first one had 200 hidden neurons and the second 50 (these parameters, along

with the regularization coefficients were selected by cross-validation). The

input layer consists of 703 neurons, while the output layer has 2 neurons (one

for each class). The inputs to the network are the functional connectivity

features extracted from fMRI data, new instances are classified to the class

of the neuron with highest output. The results of using this neural networks

for schizophrenia diagnosis in multisite data is shown in Table 5.4. As can be

observed, this approach did not achieve the expected results.

Although disappointing, the results of applying neural networks to this

problem is not unexpected. It was not even effective for decreasing the per-
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formance of scanning site identification (the accuracy remains above 75% for

most of the cases). Deep learning approaches usually require a vast number

of training examples [46], which we do not have in this application. Note how

the number of parameters to fit far exceed the number of training instances,

which leads to overfitting (indeed, all the tested models achieved near 100%

classification accuracy on the training set, but had a low accuracy on the test

set). At the same time, these model have proven successful when there is

structure in the data [42], such as images or audio; however, which might not

be the case for pairwise correlation between regions of the brain.

5.4.2 Bi-shifting autoencoders

As seen in Section 4.3.3, using an approach similar to autoencoder could solve

the batch effects problem for the traveling subject dataset. What prevents

that approach for being used in the diagnosis of schizophrenia is that it re-

quires fMRI scans from the same participants obtained in different scanning

sites. Kan et al. proposed a bi-shifting autoencoder for unsupervised domain

adaptation that is designed for cases when the training sample and test sam-

ple follow different distributions [30]. In this context, the discrepancy is not

between training and test samples, but between data obtained from different

scanning sites. The architecture of a bi-shifting autoencoder is depicted in

Figure 5.7.

The main idea of the bi-shifting autoencoder is to have a set of weights

Wc that transform the raw inputs x from the source or target domain into a

common shared space by means of a non-linear transformation z = fc(x) =

σ(Wcx+bc), where bc represents the bias term, and σ(·) is non-linear squashing

function, such as the sigmoid function, or the hyperbolic tangent. Then a set of

weights Ws,Wt, bs and bt, map z to itself, and to an estimation of how it would

be represented in the other domain. For the source domain gs(z) = σ(Wsz+bs),

and gt(z) = σ(Wtz + bt).

Since we only know the representation of the i -th instance in one of the

domains, Kai et al. proposed to estimate its representation as linear combina-

tion of the instances in the other domain: x
(i)
s = Xtβ

T
i or x

(i)
t = Xsβ

T
i , where
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Figure 5.7: Bishifting Autoencoder. Every input from the one domain (target
or source) is mapped to itself and to an approximation of how it would be
represented in the other domain.

Xt ∈ Rm×nt is the matrix with the nt m-dimensional vectors of the target do-

main, Xs is its analogue for the source domain, and βi is the vector containing

the coefficients of the linear combination of the instances. The cost function

to be minimized is then:

arg min
Wc,bc,Ws,bs,Wt,bt,Bs,Bt

||Xs − gs(zs)||22 + ||XtBt − gt(zs)||22

+ ||XsBs − gs(zt)||22 + ||Xt − gt(zt)||22 + γ

(
ns∑
i=1

|βti |1 +
nt∑
i=1

|βsi |1

)
(5.11)

where zs = σ(WcXs + bc), zt = σ(WcXt + bc), Bs ∈ Rns×nt and Bt ∈ Rnt×ns are

matrices containing the β vectors that will reconstruct every instance of the

source (target) domain as a linear combination of the instances in the target

(source) domain, and γ is a regularization parameter that controls the sparsity

in β.

The authors proposed an iterative method similar to expectation maxi-

mization to solve this problem [30]. They applied their idea to the task of

face recognition and empirically showed that it improves the accuracy when

using datasets from different distributions for the task of face recognition; how-
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Table 5.5: Classification accuracy for the problem of healthy controls versus
patients with schizophrenia after using bishifting autoencoders. Values in bold
indicate single site classification.

Additional train set
Site 1 Site 2 Site 3 Site 4

Test set

Site 1 63.3% 65.6% 59.5% 64.7%
Site 2 71.1% 70.4% 65.4% 68.2%
Site 3 53.8% 60.0% 55.0% 58.9%
Site 4 63.9% 62.5% 69.3% 70.2%

ever, they did not guarantee that their optimization methods will converge.

The results of applying this methodology to our dataset reduced the discrep-

ancy between the feature representation in different scanning sites. Scanning

site classification decreased to chance level after using bishifting autoencoders.

Table 5.5 presents the results for the schizophrenia diagnosis. Note that the

accuracy when using multiple site data is slightly better than the one obtained

when naively merging the data in most of the experiments (see Section 4.2)

for most instances. The exceptions are the ones that involve site 3, which had

a bad performance on its own; however the performance in the diagnosis of

schizophrenia did not improve relative to using data from a single site, which

is our main objective.

5.5 Summary of methods

Figure 5.8 summarizes the performance of the different methods used in an at-

tempt to decrease the impact of batch effects for the task of separating patients

with schizophrenia from healthy controls, and identification of scanning site.

Each method made different assumptions about the data and the nature of

batch effects. Z-score normalization (resp., whitening) are effective methods

for removing translation and scaling, (resp., translation and rotation of the

data); however, their lack of success in increasing the accuracy of schizophre-

nia diagnosis is a strong indication that batch effects in fMRI go beyond these

simple linear transformations. BECCA assumes that the observed data is a
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Figure 5.8: Bishifting Autoencoder. Every input from the one domain (target
or source) is mapped to itself and to an approximation of how it would be
represented in the other domain.

linear combination of some unknown prototypes plus technical noise introduced

by unknown sources. It removes the signal from the batches (data from dif-

ferent scanning sites) that is not correlated with each other. Finally, stacked

autoencoders and bishifting autoencoders use the self-taught [46] paradigm

to learn a set of high-level features that extract commonalities between the

dataset. Most of the approaches were successful in removing the signals in

the datasets that allow the identification of the scanning site. Unfortunately,

none of them were successful for increasing the accuracy of the classifier that

separated people with schizophrenia from healthy controls.
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Chapter 6

Conclusions

One of the biggest challenges for the application of machine learning algorithms

into neuroimaging data is the tremendous disparity between the number of

instances, usually in the range of few hundreds, and the number of features,

usually in the range of tens of millions. To overcome this problem, two intuitive

solutions are: (1) to reduce the number of features, and (2) to increase the

number of instances. In this dissertation, we explored both approaches in

the context of the diagnosis of schizophrenia. The objective was to build a

classifier that could distinguish between people with schizophrenia and healthy

controls using the FBIRN Phase II dataset. We tested the performance under

two scenarios: (1) when the training and test data are obtained in a single

scanning site and (2) when the training data is obtained from multiple sites,

but the test data is a disjoint subset of only one of them.

For decreasing the number of features, we used the parcellation of the

brain, proposed by Power et al. [45], that divides it in 264 regions of interest.

These regions are also divided in 13 networks. Based on the nature of the

task and literature about schizophrenia, we decided to extract the functional

connectivity of the nodes corresponding to the auditory and fronto-parietal

networks in order to learn a SVM classifier with linear kernel. This approach

was successful, as it achieved an average accuracy of 63.33%, 70.35%, 55.0%

and 70.20% in scanning sites 1, 2, 3 and 4 when using data from a single

site. For sites 1, 2 and 4, the reported accuracy was statistically significant

above the chance level. That was not the case for site 3. After analyzing
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how an increase in the amount of data affected the performance of the learned

classifier, we discover that for site 3, the accuracy was at chance level regardless

of the increase in the size of the training data. This suggest that the signal

extracted from data in this scanning site was too weak to be learned by the

classifier.

For the multisite data scenario, we expected an increase of accuracy relative

to using data from a single site in the training phase; however, naively merging

the dataset into a single training set proved to be problematic. The accuracy

went down, even when the size of the training set was double the size in

the single site scenario. We attribute the decrease in the performance to the

batch effects – i.e., P(X, Y | a ) 6= P(X, Y | b ) for two scanning sites a and b,

where this difference is due to technical factors that confound the biological

signal. The difference is such that, if we set as the target variable the scanning

site, it is possible to achieve accuracies > 88% for the problem of binary site

classification.

Multiple association studies have reported that the scanning site is a minor

problem in neuroimaging, and that it does not have statistically significant

interaction with the target variable (schizophrenia versus healthy control). In

this work, we empirically show that this is not the case for prediction studies.

For such prediction studies, the batch effect matters, and has a huge influence

in the performance of the learning algorithms. We highlighted some important

differences between association studies and prediction studies, and argued that

not having a statistically significant effect does not mean that it is irrelevant.

The empirical results that we present are consistent with this claim.

We empirically showed that if the fMRI scans of the same n participants

are acquired at two sites a and b – i.e., we have pairs (Xa
i , X

b
i ), i = 1, . . . , n –

then it is possible to learn a function X̂b
i = f(Xa

i ) that decreases the impact

of the batch effects. We successfully used neural networks, with an architec-

ture similar to autoencoders, in the traveling subject dataset and achieved an

accuracy of 100% in the task of subject identification, but only 65% for the

task of scanning site identification – as desired.

For the case of the schizophrenia dataset, in which every participant was
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scanned only at a single site, we attempted to decrease the influence of the

batch effects in the performance of the classifier using techniques that correct

for translation, rotation or scaling in the data, such as z-score normalization

and whitening. The negative results obtained suggest that batch effects are a

more complex phenomenon than these simple linear transformations. We then

tried BECCA, an algorithm that has successfully been used for batch effect

corrections in microarray data by removing the data that is not correlated

between two sites. However, it did not improve the accuracy in schizophre-

nia diagnosis using fMRI data. Functional connectivity has been reported to

have high variance between subjects, even in studies using only healthy peo-

ple. This high variance, in addition to the low number of instances, can be

problematic for the estimation of the covariance matrices of the data, whose

correct estimation are essential for BECCA to work. Finally, we used stacked

autoencoders and bishifiting autoencoders. Both have been successful in the

problem of domain adaptation in image classification tasks, but were not suc-

cessful in fMRI data using functional connectivity as features. Researchers

in the community that use deep learning approaches agree that the number

of training instances, and structure in the data, are important factors for the

success of these approaches; unfortunately, we have a very small number of

instances (relative to the number of instances available for imaging tasks) and

it is not clear what kind of structure is present in a functional connectivity

matrix. These negative results suggest that batch effects is not a trivial prob-

lem, and that more information about their nature is required in order to

successfully apply machine learning algorithms to fMRI data.

These results also indicate that special careful should be taken when using

any these methodologies for doing association studies. Note that, in absence

of the prediction task of schizophrenia versus healthy controls, someone might

incorrectly assume that these procedures are enough for removing the effects

introduced by using data extracted from different scanning sites. It is true that

after applying these methodologies, the data has more common characteris-

tics: same mean and standard deviation for z-score and whitening, a higher

correlation between batches after using BECCA, or a set of common high-level
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features after using approaches based on autoencoders; however, the different

datasets are still not compatible in the sense that a classifier learned from sites

A and B will be less accurate in predicting the class of new instances from

site A, versus a classifier learned using data only from site A, even if the size

of the first training set is twice as large of for the second.

6.1 What is next?

The work presented in this dissertation is a first step towards directly removing

the batch effect in fMRI data for classification purposes. The negative results

obtained are an indication that further analysis is needed to better understand

this problem. The next steps in our research in this field includes explicitly

including in the model the different sources of noise that are known to distort

the fMRI signals, such as the magnetic field inhomogeneity, or the drift in the

time signals. These parameters can be estimated with the use of phantoms [21].

A second approach would be the create a classifier for a single scanning site,

but using as priors the information learned from the rest of the scanning sites.

Some groups are already researching the application of multitask learning to

achieve this objective, and they are showing promising results, suggesting that

is a direction worth pursuing [65].

6.2 Highlights

This dissertation focused on the challenges of applying machine learning algo-

rithms to multisite fMRI data. Its main contributions were:

• It offered empirical evidence that batch effects is a problem that nega-

tively impacts the task of schizophrenia diagnosis using fMRI data and

machine learning techniques. Many association studies report that in-

terscanner variability does not interfere with their analysis, which is not

consistent with our results. We highlighted the differences between asso-

ciation studies and prediction studies (like ours), and argue that batch

effects play an important role in the latter.
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• It showed that z-score normalization or whitening are sufficient to solve

batch effect problems caused by translations and scaling, or rotation and

scaling, respectively. Our experiments suggest that batch effects for the

diagnosis of schizophrenia go beyond these linear transformations. It

also empirically showed that a neural network can solve the batch effects

problems when the same participants are scanned in different scanning

sites, achieving an accuracy of 100% in subject identification, and near

chance accuracy in scanning site classification, as desired.

• It empirically showed that BECCA, stacked autoencoders, and bishifting

autoencoders, which have been successful in similar problems in different

fields, cannot be directly applied to solve our batch effects problem. This

strongly suggest that more research effort is needed to solve this problem

that is usually overlooked by most of the recent studies that use multi-

site fMRI data.

• It empirically showed that, using features related to functional connec-

tivity, it is possible to learn a classifier that distinguishes between people

with schizophrenia and healthy controls with 70% accuracy using data

extracted from a single site. Incorporating domain specific knowledge,

like parcellating the brain in 264 regions of interest, and limiting the anal-

ysis to brain networks known to be related to schizophrenia improved

the accuracy of the classifiers and decreased the computational cost of

the learning algorithm relative to not using domain specific knowledge.
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Appendix A

Male versus female classification

Besides the large n, small p problem that is present in the analysis of most

fMRI datasets, and the problem of batch effects in multi-site analysis, there is

an extra layer of complexity that complicates the task of creating an automatic

tool for diagnosis of schizophrenia: the reliability of the labels used for learning

the classifier. As discussed on Chapter 3, supervised learning techniques apply

a learning algorithm L to a labeled dataset D = {(x1, y1), (x2, y2), . . . (xn, yn)}

to learn a function, f̂ = L(D), in order to make predictions ŷnew = f̂(xnew),

for xnewinstances. In consequence, if the labels {y1, . . . , yn} are misleading

–i.e. some people with schizophrenia are erroneously labeled as healthy con-

trol (or vice versa), the learning algorithm might not find the patterns that

distinguishes one group from the other. Unfortunately, this might be the case

for the case of diagnosis in psychiatry. Since there is no standard biologically-

based clinical test yet [2] for the identification of mental diseases, different

psychiatrists might make different diagnoses.

In order to test the performance of the learning algorithm without the am-

biguity of the labels, we learned a classifier to distinguish between males and

females. Unlike the case of diagnosis of schizophrenia, for the task of sex classi-

fication Gaussian Markov Random Fields achieved a better accuracy than Sup-

port Vector Machines. Surprisingly, this task was more difficult than expected,

and the accuracy achieved was just slightly above chance level (see Table A.1 in

section A.3). Despite that many research articles report important differences

in the structure and function of the brain in males and females [26, 66, 68, 59],

70



many of these studies are association studies. This means that they find group

differences, which are not necessarily predictive [29]. A few studies report near

70 % accuracy in sex classification in large, single site, studies [52, 64]; how-

ever, we were unable to replicate their results in our data. Besides, we noticed

that using multi-site data did not increase the accuracy relative to using data

from only a single site. These results motivated the research presented in this

dissertation. The rest of this appendix presents the techniques used and the

experiments performed for the task of sex classification.

A.1 Gaussian Markov Random Fields

A Gaussian Markov Random Field (GMRF) is similar to Markov Random

Fields, with the difference that now the random variables take continuous

values [35]. A multivariate Gaussian distribution over the random variables

X1, X2, . . . , Xn is parametrized by an n dimensional mean vector µ and an

n× n covariance matrix Σ. The density function is then defined as:

p(x) =
1

(2π)n/2|Σ|1/2
exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]
Any Gaussian distribution can be represented as a pairwise Markov Net-

work with quadratic node and edge potentials. These kind of networks are

known as Gaussian Markov Random Fields [35]. One advantage of these

models is that two Gaussian variables, Xi and Xj are conditionally indepen-

dent given the rest of the variables if and only if their corresponding entries

Σ−1
i,j = Σ−1

j,i = 0 [36]. Therefore, learning the structure of a GMRF reduces to

the problem of finding zero entries on the inverse of the covariance matrix Σ−1,

which is also known as the precision matrix Ω = Σ−1. Using this approach,

we generated a functional connectivity graph (parameterized by Ω) for males

(Ωm) and another for females (Ωf ). Given the fMRI scan of a new participant,

xnew, we computed P(xnew |Ωm ) and P(xnew |Ωf ), and assigned xnew to the

class with highest probability.

A common approach when finding probabilistic graphical models is to chose
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the simplest one that adequately explains the data [48]. One metric that can

be used for evaluating the model fit is the likelihood function, which measures

the probability of the data given the model. Since a fully connected model will

output the highest likelihood function on the training data, a regularization

term for penalizing complex models is required.

For a dataset D with n independent and identically distributed samples

x1, x2, . . . , xn, where each variable in xi follows a Gaussian distribution with

zero mean, its log-likelihood function can be expressed as:

L(D) =
n

2
[log(|Ω|)− tr(AΩ)] + const

A =
1

n

n∑
i=1

xix
T
i

(A.1)

Since the constant term is independent of the mean and covariance, it can

be ignored in the optimization function. The objective is then to find the

model that maximizes the penalized likelihood function with a restriction in

the number of parameters, which is known as the sparse inverse covariance

selection problem:

max
Ω

log(|Ω|)− tr(XTXΩ)− λ||Ω||1 (A.2)

where X is an n×m matrix. n is the number of instances in the dataset,

m is the number of random variables, λ is the regularization term, and ||Ω||1
is the l1 norm of the precision matrix. For our specific task of sex classification

using fMRI data, m = 264 is the number of regions of interest, while n is the

number of timepoints in the time series of a particular region multiplied by

the number of participants included in the training set.

A.2 Learning the models

Our methodology involves steps depicted in Figure A.1. In general terms,

it involves creating a graphical model for every class that we are interested

in classifying. Then, for every subject to be classified, we will compute the
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likelihood of the data given a particular model. The subject will be classified

with the class whose model has the highest likelihood.

ROI 
data

Z-score 
normalization

Norm. 
data

(μ = 0, 
  σ = 1)

Train / Test 
segmentation

70 % 
train

30 % 
test

Learning 
algorithm

(GLASSO)

Classifier

Classification 
accuracy

Do for every subject

Figure A.1: Our methodology for classifying the resting-state fMRI scans as
male or female.

1. Extract regions of interest. Since every time series consists of 91 time

points, every subject is represented by a matrix, x, of 91× 264.

2. Normalize data. We normalized the data of every region of interest

of every subject independently. Every time series (column of x) was

normalized to mean µ = 0 and standard deviation σ = 1.

3. Separate data into train and test set. Separate the dataset in groups of

interest. For this particular case the classes are male or female. Then

randomly select the data of 70% of the subjects in each class for training

and use the remaining 30% for testing purposes.

4. Concatenate time series. Steps 5 and 6 are implemented using 5-fold

cross validation and the training set from the last step. Using the 4

subsets of each round, concatenate the time series corresponding to the

same region of interest. This will result in a matrix X of n ∗ 91 x 264

per class, where n is the number of subjects present in the subsets.

5. Construct the model. Using Eq. A.2, construct a model for each class.

Then, test the performance of the model on the remaining subset of

data (of the cross validation process). Performance was measured as
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the percentage of samples correctly classified on the subset not used for

training. To classify a new instance x we simply compute the likeli-

hood of x given each model using Eq. A.1, and assign x to the class

whose model gave the highest likelihood. Since the constant term is

independent of the model, it can be ignored for the classification step.

We experimented with the following values for the regularization term:

λ = [0.001, 0.003, 0.01, 0.03, 0.1, 0.3], and selected the value of λ with the

highest (internal) cross-validation accuracy.

6. Classify new data. After selecting the best model for each class (steps

5 and 6), test the performance of the model on the test set created on

step 4. Report the accuracy on this test set.

A.3 Dataset and results

We used the ADHD-200 [1] dataset for our experiments. It contains 973

resting-state fMRI scans from both healthy controls and people diagnosed

with attention deficit and hyperactivity disorder (ADHD), collected across 8

independent imaging sites. The age range of the entire sample is 7-21 years.

The ADHD-200 dataset was preprocessed for Brown et al. [6], and we used

these preprocessed data for our experiments.

Out of the 973 scans, we used only the ones corresponding to healthy sub-

jects. We performed two sets of experiments, one using single-site data (using

only the data from each of the 3 scanning sites with the higher number of in-

stances), and another one using multi-site data, using data from all the healthy

subjects across the 8 scanning sites. Table A.1 shows the results of these ex-

periments in the hold out set, as well of the number of instances available for

every class. From the total of instances, 70% were used for training purposes.

The remaining 30% formed the hold-out set. We repeated the experiments

30 times, with different 70/30 splits, and the reported accuracy is the average

over the 30 experiments. As can be seen, the accuracy is slightly above chance

level (baseline) for all the cases, but the improvement is very small. It was also

surprising to see that the accuracy did not improved by a large margin in the
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Table A.1: Accuracy of Gaussian Markov Random Fields in the task of male
versus female classification using the ADHD dataset (healthy controls)

Data # Male # Female Baseline Accuracy
Site 1 84 59 58.6% 64.7%
Site 5 55 53 50.9% 58.3%
Site 7 48 42 55.5% 66.9%

Multi-site 301 259 54.0% 61.2%

multi-site scenario, even when the amount of the available data is more than

triple than in single site experiments. These results motivated the research

about batch effects presented in this dissertation.
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Appendix B

Additional approaches

Section 3 discussed how we extracted features from the fMRI datasets using

functional connectivity, which was estimated by taking the pairwise correlation

between the 264 regions of interest defined by Power et al. [45]. After extract-

ing these features, we used support vector machines to learn a classifier that

produced the results shown in Section 4. In addition to the results reported in

the main body of this dissertation, we also implemented several approaches to

learn a classifier that could distinguish between people with schizophrenia and

healthy controls, or between males and females (in the case of the sex classifi-

cation problem). Since this approaches achieved a lower accuracy than the one

achieved using pairwise correlation, they are not included in the main text;

however, we list them in this appendix along with references for the interested

reader:

• Adding site as feature: This is the most naive approach to try to solve the

batch effects problem; however, the problem was not solved by including

scanning site as one of the features.

• Gaussian Markov Random Fields: This approach was explained in Sec-

tion A.1. In this approach, every point in a time series is considered as

an independent and identically distributed instance, which is evidently

not true. We removed the temporal autocorrelation in an effort to reduce

the impact of this deviation of the assumption.

• Fast Fourier Transform: We concatenated the power spectrum of the
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time series corresponding to the 264 regions of interest into a single

vector for every patient. Details about the Fast Fourier Transform can

be consulted in the book of Shumway and Stoffer [55].

• Coherence: Similar to correlation, coherence is a measure of linear re-

lationship between two time series, with the difference that coherence

focuses on the frequency domain, while correlation does it on the time

domain [3].

• Regional homogeneity: This approach consists in using a metric, such

as the Kendall’s coefficient concordance, to measure the similarity of a

given voxel with its nearest neighbors. This similarity is condensed into

a single number per every voxel, resulting in a regional homogeneity map

that can be used as a feature for further classification [72]

• Partial correlation/coherence: In some cases, two random variables X

and Y are correlated because of a common third variables Z ; however,

they might be uncorrelated given Z. Pairwise correlation (coherence) is

unable to distinguish this particular scenario. Partial correlation (coher-

ence) identifies an additional lineal association between X and Y after

removing the effects of Z [58, 39].

• Graph statistics: After computing a functional connectivity graph for

every participant in the experiment, it is possible to extract some addi-

tional measures of brain connectivity by analyzing the graph. Rubinov

and Sporns provide a good overview of some of the relevant graph met-

rics for neuroscience [50]. We used node strength and node degree in our

experiments.

• Feature selection: In addition to the feature selection described in this

dissertation, we also used the feature selection algorithms: minimum

redundancy maximum relevance (MRMR) [12] and fast correlation based

filter (FCBF) [70].
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