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Abstract

Cognitive radio has been considered as a promising way to deal with the over-

crowded wireless spectrum. In cognitive radio, when licensed users (primary users)

do not use their licensed spectrum, they may lease the spectrum to unlicensed users

(secondary user). In a cognitive radio network, a secondary user may target at max-

imizing its utility, while a primary user may target at maximizing its revenue. In this

thesis, the utility maximization of a secondary user and the revenue maximization

of a primary user are both investigated.

For a secondary user’s utility maximization, we investigate the spectrum sens-

ing and access strategy of the secondary user. The secondary user pays rental fee

to the primary user when accessing the licensed channel. In addition, a penalty fee

is charge if the secondary user fails to detect primary activities and interferes with

primary reception. The setting of the penalty price is discussed. The secondary

utility maximization problem is formulated, which selects the optimal spectrum

sensing duration and secondary transmission power. The problem is shown to be

nonconvex. Some properties of the problem are derived, and accordingly, an itera-

tive algorithm is provided to solve the problem.

For primary user’s revenue maximization, long-term spectrum leasing with mul-
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tiple rounds is considered, and the target is to find optimal price values over the

rounds. Cases with discrete and continuous spectrum demand are investigated. For

each case, revenue optimization problems are formulated, and solving methods are

also provided. Some interesting properties of the optimal solutions are also pre-

sented as well.
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Chapter 1

Introduction

1.1 Wireless Networks

Wireless communication networks have played more and more significant role and

are already integrated in our daily life. Various wireless communication networks

have been developed and deployed in the past two decades, including cellular net-

works [1]–[4], WiFi and ad hoc networks [5]–[8], and wireless sensor network [9]–

[14].

Cellular networks have experienced rapid development, and can provide ubiq-

uitous wireless coverage. The 1G (first generation) cellular network used analogue

technique and frequency division multiple access (FDMA), to support voice ser-

vices only [1]. The 2G (second generation) cellular network started to use digital

technique and time division multiple access (TDMA). It mainly supported voice

service, and very limited data service as well [2]. The 3G (third generation) cellu-

lar network adopted code diversion multiple access (CDMA) technique, supporting

voice service as well as high-speed multimedia services (such as video service) to

satisfy the increasing requirements of wireless customers [3]. The main purpose of

the 4G (fourth generation) cellular network is to achieve much higher transmission

rate than 3G networks [4].

Cellular networks are able to provide wireless service to a large service area.

On the other hand, sometimes we need wireless service over a small area, and
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a fixed network infrastructure may not exist. For this purpose, WiFi and ad hoc

networks have been developed. The advantages of WiFi and ad hoc networks can be

summarized as follows: First, due to its flexibility, it can be deployed very quickly.

Second, it is less costly than cellular network, since a network infrastructure is not

necessary. Third, due to the small distance between transmitters and receivers, very

high-speed transmission is possible. Thanks to those advantages, WiFi and ad hoc

networks have been popularly deployed in hotspot areas (such as airport, cafe, and

conferences) and in scenarios like earthquake rescue (in which cellular network

infrastructure may have been destroyed).

Wireless sensor network has been popularly used in applications such as forest

fire alarm, military sensing, and data collection in dangerous/hazardous environ-

ments. To set up a wireless sensor network, the sensor nodes can be placed man-

ually or by the help of helicopters. Each sensor senses its local environment, and

forwards its sensed data to a fusion center (also referred to as a base station). Since

the sensors may not be evenly deployed, there may exist some areas that are not

covered by sensors. Accordingly, one major research topic in wireless sensor net-

works is to improve the coverage. For coverage improvement [10], [11], one pos-

sible solution is to enhance some sensor nodes with moving capability, and move

those mobile sensor nodes to uncovered areas. Sometimes, damages to the sensor

nodes (for example, by enemy or animals) or node energy depletion may disconnect

the sensor network. Therefore, bi-connectivity [12] has been introduced such that

any two sensors in the network have at least two independent paths between them.

Therefore, if any node in one path fails, the two sensors can still communicate by

using the other path. In general, a bi-connected wireless sensor network can remain

connected if any node failure happens. For maintaining the network connectivity,

one important issue is to achieve energy efficiency so as to postpone the moment

that the network does not function well due to energy depletion of sensor nodes.

For this, efficient routing [13] method or effective packet scheduling [14] may be

used, to minimize energy consumption of the sensor nodes.
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1.2 Cognitive Radio: A Solution to Spectrum Scarcity

Although many research efforts have been conducted in the literature to improve the

performance of wireless networks to meet the service requirement, the Global Mo-

bile Data Traffic Forecast by Cisco expected that global mobile data traffic would

increase 13-fold from the year of 2012 to the year of 2017. However, we do not

have new available wireless spectrum to support the increase, and thus we will ex-

perience a spectrum scarcity problem in the near future [15]. Because of this, it

has been a challenging research problem to efficiently utilize wireless spectrum. To

solve this problem, the concept “Cognitive Radio” has been proposed [16]–[19].

According to the original idea, cognitive radio is a smart radio that can “probe” its

environment and can adapt its communication parameters accordingly. In cognitive

radio, users that have license to access a licensed spectrum band (referred to as li-

censed channel) are called primary users, while those that do not have the license

are called secondary users. Secondary users are permitted to access the licensed

channel if their transmissions do not interfere with primary activities, referred to as

opportunistic channel access. Secondary users need to pay fees to primary users

for their opportunistic channel access.

Generally, there exist two modes for secondary users in their accessing licensed

channels: overlay mode and underlay mode [20]. In overlay mode, a secondary user

could only use the licensed channels when there is no primary activity. Normally

the secondary user will not know in advance whether or not primary activities exist.

So before secondary users’ channel access, they need to sense the channel, which

is widely known as spectrum sensing or channel sensing [21]. In the overlay node,

secondary users’ transmission will not bring any interference to primary users; and

further, secondary users do not receive interference from primary users. There-

fore, the overlay mode is most popularly used in the research society. On the other

hand, for underlay mode, a secondary user can access the channels when primary

users are transmitting over the channels, but the secondary user needs to manage its

transmission power such that its interference at the primary user’s receiver side is
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minimized (or below a threshold level).

In the literature, many researchers have contributed a lot in the area of cognitive

radio. Among all the research topics, two important topics are: channel sensing

and access of secondary users [22]–[31], and spectrum leasing of primary users

[32]–[41].

For channel sensing, the work in [23] analyzes the performance of energy de-

tection based sensing under fading channels. A single-user case is first investigated,

in which analytical expressions of average detection probability are given. Then,

collaborative detection scenarios are studied, in which square-law selection (SLS)

diversity is explored. It is shown that the detector performance is significantly af-

fected by severe fading. When there are more collaborating users or branches, the

detection performance can be enhanced. The work in [24] investigates spectrum

sensing in a case that the primary signals are wide sense stationary. Spectral feature

detection is adopted. Further, since it takes time to perform spectrum sensing, which

reduces the channel access time, there are research efforts on sensing-throughput

tradeoff. The work in [26] uses a Bayesian decision rule based algorithm to deal

with sensing-throughput tradeoff, subject to a constraint on primary throughput.

Then, a more general case is studied, in which the number of secondary users in

cooperative sensing is limited. The work in [27] investigates sensing-throughput

tradeoff when the wireless channels are Rayleigh faded. Since a decision statistic

based on receiver error count (REC) does not work well, a new decision statistic

with REC and combiner coefficient is provided, which works very well in maximal

ratio combining (MRC) scenarios. The receiver operating characteristics are ana-

lyzed, which demonstrate the effectiveness of the new decision statistic. The work

in [29] considers mobility of primary users. Optimal spectrum sensing efficiency is

achieved.

For spectrum leasing, normally two typical modes are used: monopoly market

and oligopoly market. In a monopoly market, there is only one single primary user

that leases its spectrum. The work in [33] uses a model of a two dimensional power-

time-price contract for a monopoly market. The necessary and sufficient condition
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of the formulated problem is investigated, as well as a feasible solution of the prob-

lem. The work in [35] uses Stackelberg game to model price-based power control.

The formulated research problem is nonconvex, which is transformed into a convex

optimization problem by some mathematical manipulations. Asymptotic analysis

is obtained for the number of admitted secondary users with various interference-

to-noise ratio levels. On the other hand, in an oligopoly market, there are multiple

primary users that sell their licensed channels, called sellers. There are also multi-

ple secondary uses that are willing to purchase channel access, called buyers. Each

seller sets a price. The sellers may have competition or cooperation with each

other, to attract more buyers and achieve more revenue. The work in [37] investi-

gates spectrum leasing by using a three pricing model, namely Market-Equilibrium,

Competitive, and Cooperative Pricing model. The work in [38] uses an evolution-

ary game to model buyers’ behavior, while using a noncooperative game to model

sellers’ competition. Nash Equilibrium is analyzed and found. The work in [39]

proposes an economic framework and uses it to study dynamic spectrum allocation

and service pricing mechanism. Targeting at maximal revenue and spectrum utility,

a knapsack based auction model is used. Optimal spectrum utility can be achieved

by the proposed model, in which collisions among wireless service providers can

be successfully avoided.

1.3 Thesis Motivation and Contributions

Although there are a lot of research efforts in spectrum sensing & access and spec-

trum leasing in cognitive radio networks, there are still some open research prob-

lems, as follows.

For spectrum sensing & access, in the literature, the optimal sensing duration

setting has been investigated for single-channel and multiple channel cases. In those

research efforts, a secondary user maximizes its average throughput, assuming that

it can achieve a certain level of transmission rate even if it miss-detects the primary

activities. When a missed detection happens, there is no penalty to the secondary
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user for the interference generated to primary users. In this thesis, penalty to sec-

ondary user is considered. In specific, in Chapter 3, the case of one primary user pair

and one secondary user pair with one licensed channel is studied. The penalty price

value is investigated, with lower and upper bounds discussed. Then, the channel

sensing & access of the secondary user is formulated as an optimization problem.

The problem is shown to be nonconvex. And an iterative algorithm is presented to

find a solution to the problem.

For spectrum leasing, the works in the literature normally assume that all spec-

trum buyers have spectrum requests at the same time. However, in reality, since the

buyers are independent from each other, it is more likely that they have spectrum

requests at different time instants. This means the spectrum leasing of a primary

user may take several rounds, and in each round, the spectrum price may have a

unique value. In this thesis, the setting of spectrum prices in the multiple rounds is

investigated, targeting at maximal revenue of the primary user. In specific, in Chap-

ter 4, under the monopoly spectrum market with one seller and multiple buyers, we

consider the dynamic spectrum pricing strategies over multiple rounds with both

discrete and continuous spectrum demand cases. In each case, random and deter-

ministic spectrum demand scenarios are investigated. Optimal pricing strategies in

different scenarios are presented.

1.4 Thesis Outline

The remainder of this thesis is organized as follows. Background introduction of

several spectrum sensing methods is given in Chapter 2. The channel sensing & ac-

cess of a secondary user with penalty for missed detection is investigated in Chapter

3. In Chapter 4, dynamic pricing strategies are studied for long-term revenue max-

imization of a primary user. Chapter 5 concludes the thesis and indicates future

work directions.
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Chapter 2

Background: Spectrum Sensing

Techniques

In cognitive radio, spectrum sensing is a core technology. Based on spectrum sens-

ing, secondary users can know about current transmission status of primary users

and then determine whether or not to access the channels. Three typical spectrum

sensing techniques are energy detection, matched filter, and feature detection. Fur-

ther, to improve spectrum sensing accuracy, cooperative sensing is a viable solution

that needs participation of multiple secondary users [42].

2.1 Energy Detection

In energy detection, prior information about primary users’ transmitted signals is

not needed. Rather, a secondary user collects energy in the targeted spectrum band

and compares with a pre-determined threshold, and considers the spectrum is busy

(i.e., primary user is using the spectrum) if the collected energy is larger than the

threshold, or considers the spectrum is idle otherwise.

The binary hypothesis problem for spectrum sensing is given as follows:

H0 : y(n) = v(n), n = 1, 2, ..., Ns

H1 : y(n) = s(n) + v(n), n = 1, 2, ..., Ns

(2.1)

7



where H0 and H1 denote that the targeted spectrum band is idle and busy, respec-

tively, n represents sample index, s(n) is the n-th primary signal sample received

at the secondary user, v(n) is the background noise between primary and secondary

user, assumed to be independent and identically distributed (i.i.d.) additive white

Gaussian noise (AWGN) with zero mean and variance σ2
v , y(n) is summation of n-

th signal sample and noise, and Ns is the number of samples. The detection statistic

is given [43] as:

T (y) =
1

Ns

Ns∑
n=1

|y(n)|2. (2.2)

Denote τ as sensing time that the secondary user spends in sensing the spectrum

band and fs as sampling frequency. Then from [43], the total number of samples

can be expressed as Ns = τfs . Under hypothesis H0, the detection statistic fol-

lows a Chi-square distribution with Ns degree of freedom. Normally, the number

of samples Ns is large enough. So by applying Central Limit Theorem [45], the

distribution could be approximated as a Gaussian distribution with mean μ0 = σ2
v

and variance σ2
0 = 2

Ns
σ4
v . Then the false alarm probability can be derived as:

PE
f (ξ, τ) = Pr(T (y) ≥ ξ|H0) = Q

((
ξ

σ2
v

− 1

)√
τfs
2

)
(2.3)

where ξ represents detection threshold, Pr(·) means probability of an event, and

Q(·) is Q-function, given as

Q(x) =
1√
2π

∫ ∞

x

exp

(
−z2

2

)
dz. (2.4)

Similarly, under hypothesis H1, denote γ as signal-to-noise ratio (SNR). Then the

mean of approximated Gaussian distribution is μ1 = (1 + γ)σ2
v while the variance

is σ2
1 = 2

Ns
(2γ + 1)σ4

v . Then detection probability is given as

PE
d (ξ, τ) = Pr(T (y) ≥ ξ|H1) = Q

((
ξ

σ2
v

− γ − 1

)√
τfs

2(2γ + 1)

)
. (2.5)
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For a target detection probability PE
d , based on formula (2.3) and (2.5), the receiver

operating characteristic (ROC) expression of false alarm probability of energy de-

tection is given as

PE
f = Q

(√
2γ + 1Q−1

(
PE
d

)
+

√
τfs
2

γ

)
. (2.6)

2.2 Matched Filter Detection

In a communication system, matched filter can be used to improve SNR of output

signals at the receiver side [46]. In spectrum sensing, assuming that secondary

users know information of primary users’ transmitted signals, matched filter can be

employed to correlate the received signal with the known primary signal waveform,

to make a detection decision. According to the binary hypothesis problem in (2.1),

for a typical matched filter detection, its detection statistic is given as [42]:

Y (y) =
1

Ns

Re

[
Ns∑
n=1

y(n)s∗(n)

]
(2.7)

in which s∗(n) is the conjugate of s(n).

Similar to Section 2.1, the background noise is i.i.d. AWGN. Then the corre-

sponding false alarm and detection probabilities are given as

PM
f (ξ, τ) = Pr(Y (y) ≥ ξ|H0) = Q

(
ξ

σ2
v

√
τfs
γ

)
(2.8)

and

PM
d (ξ, τ) = Pr(Y (y) ≥ ξ|H1) = Q

((
ξ

σ2
v

− γ

)√
τfs
γ

)
. (2.9)

Consequently, for a target detection probability PM
d , we can obtain the ROC ex-

pression as

PM
f (τ) = Q

(
Q−1

(
PM
d

)
+
√

τfsγ
)
. (2.10)

Figure 2.1 shows the ROC curves of energy detection and matched filter de-
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tection. It can be seen that matched filter detection performs better than energy

detection. The major drawbacks of matched filter detection are that it needs prior

knowledge of transmitted signal waveforms and its complexity is higher.

2.3 Feature Detection

In some cases, the primary signals have some spectral features, for example, cyclic

feature. Then feature detection can be an alternative spectrum sensing method. Its

basic idea is to decide on whether or not the received signals have the features, to

make a detection decision. Normally, this method is employed for detecting signals

of wide sense stationary (WSS) such as video signals, television (TV) broadcast

signals and so on. And the procedure of feature detection is as follows [24], for a

binary hypothesis problem of received WSS signal similar to (2.1):

• Get autocorrelation function of the received signal as

ryy(m) = E[y(t)y∗(t−m)].

• By using discrete-time Fourier transform (DTFT), calculate the power spec-

trum density (PSD) of received signal as

SY Y (ω) =
+∞∑

m=−∞
ryy(m) exp(−jmω)

where 0 ≤ ω ≤ 2π.

• Calculate
∫ 2π

0
SY Y (ω)SXX(ω)dω (here SXX(ω) is the PSD of the transmitted

signal, the information of which is available at the detector), and decide on H1

if the value is more than a pre-defined threshold, or decide on H0 otherwise.

The feature detection needs prior knowledge of primary signals’ spectrum features.

It is more complex than energy detection. And it does not work well or even fails

to work for non-WSS signals.
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2.4 Cooperative Spectrum Sensing

To further improve the accuracy of spectrum sensing, cooperative sensing has been

introduced in the literature, which makes a decision based on information from a

number of secondary users. In specific, each secondary user first gets its own test

statistic for primary signals. Then the secondary users send their data to a fusion

center by using either of two methods: data fusion mode or decision fusion mode.

In data fusion mode, each secondary user sends the value of its test statistic to

the fusion center. Then the fusion center takes a sum or a weighted sum of the

collected test statistics and makes a decision on presence or absence of primary

signals.

In decision fusion mode, each secondary user makes its own decision on pres-

ence or absence of primary signals, and sends the one-bit decision information to

the fusion center. The fusion centre makes the final decision based on its fusion

rule. Three typical fusion rules are as follows [43]:

• Logic OR Rule: among all the decisions received from secondary users, if

one decision is presence of primary signals, then the fusion center decides

on presence of primary signals. The fusion center decides on absence of

primary signals only when all individual decisions from secondary users are

absence of primary signals. Assuming that the individual decisions from the

secondary users are independent, the detection and false alarm probabilities

of the fusion center are given as

Pd,OR = 1−
M∏
l=1

(1− P
(l)
d )

and

Pf,OR = 1−
M∏
l=1

(1− P
(l)
f )

in which M is the number of individual decisions, P
(l)
d and P

(l)
f are detection

and false alarm probability of the lth decision, respectively.
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• Logic AND Rule: In this mode, the fusion center decides on presence of

primary signals only when all the individual decisions are presence of primary

signals. Then, the detection and false alarm probabilities of the fusion center

are

Pd,AND =
M∏
l=1

P
(l)
d

and

Pf,AND =
M∏
l=1

P
(l)
f .

• Majority Rule: In this mode, the fusion center takes the majority decision

among all individual decisions received from secondary users. In other words,

the fusion center decides on presence of primary signals if M/2 or more in-

dividual decisions are on presence of primary signals; or decides on absence

of primary signals otherwise. By assuming each individual decision has the

same detection and false alarm probability denoted as Pd and Pf , respectively,

the detection and false alarm probabilities of the fusion center are given as

Pd,Majority =
M∑

l=M/2

(
M

l

)
(Pd)

l(1− Pd)
M−l

and

Pf,Majority =
M∑

l=M/2

(
M

l

)
(Pf )

l(1− Pf )
M−l

respectively.
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Chapter 3

Channel Sensing and Access of

Secondary User

In this chapter, the channel sensing and access of a secondary user is investigated.

If a secondary user accesses the licensed channel of a primary user, it pays rental

fee to the primary user. However, if the secondary user accesses the channel when

the primary user is using the channel, a penalty is charged based on interference

generated to the primary activity. The bounds for the penalty price are investigated.

Further, we investigate optimal sensing duration and transmission power of the sec-

ondary user. An alternative algorithm is provided to find a solution.

3.1 System Model

In this research, we consider a monopoly market, with one primary owner (the

seller) and one secondary user. The primary spectrum owner is assumed to have a

single licensed channel with bandwidth ω while the secondary user only needs one

channel. The primary user is assumed to have a fixed network structure, while the

secondary network is an ad hoc network. Figure 3.1 provides an example of them.

The secondary user shares the licensed channel in an overlay mode, i.e., it can

access the channel as long as the primary user is idle. Therefore, the secondary user

first senses the channel, and can transmit its information data if it senses the channel
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Fig. 3.1. Considered cognitive radio network.

to be free. The secondary user pays some rental fee for this opportunistic channel

access. If a missed detection happens, the primary user is using the channel, but the

secondary user mistakenly estimates the channel is idle and transmits. A penalty

is charged to the secondary user based on the interference level generated to the

primary receiver.

Assuming the background noise at the secondary receiver side is AWGN with

distribution as N(0, σ2
v). Since it may be hard for the secondary user to know prior

knowledge about primary transmitted signals, the secondary user adopts energy de-

tection as its spectrum sensing method, with detection threshold being ξ and sam-

pling frequency being fs.

For the secondary user, assume it has a total duration of T , which is a constant.

Within T , the secondary user needs to perform spectrum sensing for duration τ (a

parameter to be determined). If channel is sensed idle, the secondary user transmits

in the subsequent duration T − τ . Denote the rental price as pa per time unit per

Hz, and penalty price as pb per time unit per interference unit. Denote transmission

power of the secondary user as P s (a parameter to be determined). Denote the

transmission power of the primary user as P p. Denote channel gain from secondary

transmitter to secondary receiver, from primary transmitter to secondary receiver,

and from secondary transmitter to primary receiver as Iss, Ips and Isp, respectively.

Here only path loss attenuation is considered. Thus, Iss, Ips and Isp depend only

on distances of the corresponding paths, and are known in advance at the secondary

15



user.

3.2 Setting of Price

Consider that the primary user is idle. The following is a model for the secondary

user utility [47]. For a well-behaved secondary user (i.e., it successfully detects the

availability of the channel), its utility can be given as

U1 = ω(T − τ)
[
log2

(
1 + IssP s

σ2
v

)
− pa

]
= ω(T − τ)V1

(3.1)

in which V1 = log2

(
1 + IssP s

σ2
v

)
− pa.

On the other hand, if the primary user is using the channel, and a missed detec-

tion happens, then the secondary user can still achieve a certain level of transmis-

sion rate. A penalty will also be charged. So the utility of the secondary user can

be expressed as

U2 = ω(T − τ)
[
log2

(
1 + IssP s

IpsP p+σ2
v

)
− pbI

spP s
]

= ω(T − τ)V2

(3.2)

in which V2 = log2

(
1 + IssP s

IpsP p+σ2
v

)
− pbI

spP s.

For a proper rental price pa, it should make U1 in (3.1) no smaller than zero,

because otherwise the secondary user will not rent the channel. Thus, we have

0 ≤ pa ≤ log2

(
1 +

IssP s

σ2
v

)
. (3.3)

For a proper pb, it should make U2 in (3.2) a negative value, which means

pb >
log2

(
1 + IssP s

IpsP p+σ2
v

)
IspP s

. (3.4)

Next we give further bounds of penalty price. Before that, we give the expres-
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sion of the utility of the secondary user first, as follows.

Denote the idle and busy probabilities of the channel as P (H0) and P (H1),

respectively. To obtain an expression for the secondary user’s utility, similar to

[43], [44], the following four scenarios should be taken into consideration.

• The channel is idle and is correctly estimated by the secondary user, the prob-

ability of which is given as

P (H0)

[
1−Q

((
ξ

σ2
v

− 1

)√
τfs
2

)]
(3.5)

with utility given in (3.1).

• The channel is idle but the secondary user estimates it as busy (i.e., a false

alarm happens), the probability of which is given as

P (H0)Q

((
ξ

σ2
v

− 1

)√
τfs
2

)
(3.6)

with utility being zero.

• The channel is busy and is successfully detected by the secondary user, the

probability of which is given as

P (H1)Q

((
ξ

σ2
v

− γ − 1

)√
τfs

2(2γ + 1)

)
(3.7)

with utility being zero.

• The channel is busy but the secondary user estimates it as idle (i.e., a missed

detection happens), the probability of which is given as

P (H1)

[
1−Q

((
ξ

σ2
v

− γ − 1

)√
τfs

2(2γ + 1)

)]
(3.8)

with utility given in (3.2).
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Overall, the utility of the secondary user can be expressed as:

π = P (H0)

[
1−Q

((
ξ
σ2
v
− 1

)√
τfs
2

)]
U1

+ P (H1)
[
1−Q

((
ξ
σ2
v
− γ − 1

)√
τfs

2(2γ+1)

)]
U2.

(3.9)

In general the detection threshold ξ should be set such that the detection proba-

bility is more than 0.5 and the false alarm probability is less than 0.5, given as

Pf (ξ, τ) = Q

((
ξ

σ2
v

− 1

)√
τfs
2

)
< 0.5 (3.10)

and

Pd(ξ, τ) = Q

((
ξ

σ2
v

− γ − 1

)√
τfs

2(2γ + 1)

)
> 0.5. (3.11)

To satisfy (3.10) and (3.11), ξ should satisfy

σ2
v < ξ < σ2

v(1 + γ). (3.12)

Lemma 3.1. proper penalty price should satisfy

log2

(
1 + IssP s

IpsP p+σ2
v

)
IspP s

+
P (H0)V1

P (H1)IspP s
< pb

<
log2

(
1 + IssP s

IpsP p+σ2
v

)
IspP s

+
P (H0)[1− Pf (ξ, T )]V1

P (H1)[1− Pd(ξ, T )]IspP s
.

Proof. The secondary user’s utility in (3.9) should be nonnegative, from which we

have

pb ≤
log2

(
1+ IssPs

IpsPp+σ2
v

)

IspP s +
P (H0)[1−Pf (ξ,τ)]V1

P (H1)[1−Pd(ξ,τ)]IspP s

<
log2

(
1+ IssPs

IpsPp+σ2
v

)

IspP s +
P (H0)[1−Pf (ξ,T )]V1

P (H1)[1−Pd(ξ,T )]IspP s

(3.13)

in which the second inequality is because when τ increases, Pf (ξ, τ) decreases and

Pd(ξ, τ) increases.

On the other hand, assume there is a secondary user that does not perform spec-
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trum sensing, but just transmits over the licensed channel. Its utility, demoted π′, is

given as

π′ = P (H0)ωTV1 + P (H1)ωTV2.

Apparently, π′ should be less than zero to avoid this kind of secondary user, from

which we have

pb >
log2

(
1 + IssP s

IpsP p+σ2
v

)
IspP s

+
P (H0)V1

P (H1)IspP s
.

This completes the proof.

With properly set rental price pa, penalty price pb, and detection threshold ξ ,

we still need to set up sensing time τ and transmission power P s to get maximal

secondary user utility, to be investigated in the next section.

3.3 The Optimization Problem of Setting Sensing Du-

ration and Transmission Power

The sensing period τ and transmission power P s are continuous variables, to be op-

timized. The utility maximization problem of the secondary user can be formulated

as follows:

Problem 3.1.

max
τ,P s

π = P (H0)(1− Pf (τ))U1 + P (H1)(1− Pd(τ))U2

s.t. 0 < τ ≤ T,

0 < P s ≤ P s
max.

Here P s
max is the maximal allowable transmission power of the secondary user.

Problem 3.1 is nonconvex, and thus, cannot be solved by traditional convex

optimization methods. Note that the constraints of Problem 3.1 are linear. Next

we show that if one of the two variables, i.e., τ and P s, is fixed, then the problem
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is convex. This equivalently means that the objective function of Problem 3.1 is

concave with respect to one variable if the other variable is fixed, or in other words,

the second-order partial derivative of the objective function with respect to each

variable is negative.

We first consider ∂2π
∂τ2

. From the objective function of Problem 3.1, the expres-

sion of ∂2π
∂τ2

should have two terms, one with
∂2{[1−Pf (τ)](T−τ)}

∂τ2
and the other with

∂2{[1−Pd(τ)](T−τ)}
∂τ2

, given as follows:

∂2{[1−Pf (τ)](T−τ)}
∂τ2

= −P (H0)
1√
2π
(fs2 )

0.5
(

ξ
σ2
v
− 1

)
τ−1.5 exp

(
−1

2

(
( ξ
σ2
v
− 1)

√
τfs
2

)2
)

×
(
1
4

[
1 + fs

2 (
ξ
σ2
v
− 1)2τ

]
(T − τ) + τ

)
< 0

(3.14)

∂2{[1−Pd(τ)](T−τ)}
∂τ2

= P (H1)
1√
2π
( fs
2(2γ+1))

0.5
(
1 + γ − ξ

σ2
v

)
τ−1.5 exp

(
−1

2

(
( ξ
σ2
v
− γ − 1)

√
τfs

2(2γ+1)

)2
)

×
(
1
4

[
1 + fs

2(2γ+1)(
ξ
σ2
v
− γ − 1)2τ

]
(T − τ) + τ

)
> 0.

(3.15)

Together with V1 > 0 and V2 < 0, we have ∂2π
∂τ2

< 0.

Next we consider ∂2π
∂(P s)2

. From the objective function of Problem 3.1, the ex-

pression of ∂2π
∂(P s)2

should have two terms, one with ∂2V1

∂(P s)2
and the other with ∂2V2

∂(P s)2
,

given as follows:

∂2V1

∂(P s)2
= −|Iss|2

σ4
v

1(
1 + IssP s

σ2
v

)2

ln 2
< 0 (3.16)

∂2V2

∂(P s)2
= − |Iss|2

(IpsP p + σ2
v)

2

1(
1 + IssP s

IpsP p+σ2
v

)2

ln 2
< 0. (3.17)

Therefore, ∂2π
∂(P s)2

< 0.
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Algorithm 3.1 Iterative Algorithm for Problem 3.1

1: Iteration index i ← 1, P s∗ ← an initial point of P s, π0 ← 0.

2: Fix P s as P s∗, and get optimal value of τ by Lagrange decomposition as{
∂L(τ)
∂τ

= 0
λL(τ − T ) = 0.

3: Fix τ with the value determined in Step 2, find optimal value of P s by Lagrange

decomposition as {
∂L(P s)
∂P s = 0.

μL(P
s − P s

max) = 0.

Denote πi as the optimal objective function. P s∗ ← the optimal value of P s

determined above.

4: If |πi − πi−1| ≤ δ, terminate the algorithm and output the values of τ and P s;

otherwise, i ← i+ 1, and go to Step 2.

From the analysis above, we can conclude that the objective function of Problem

3.1 is concave with respected to τ when P s is fixed, and is also concave with respect

to P s when τ is fixed. In other words, for Problem 3.1, if one variable is fixed, it is a

convex problem, and thus can be solved by traditional solving methods. Therefore,

we present an iterative algorithm to solve Problem 3.1. We first fix P s, and find

the optimal value of τ that maximizes the objective function by using Lagrange

decomposition. Then with the optimal τ , we find the optimal value of P s. With this

P s, we find optimal τ again. This procedure is repeated until it converges.

When fixing P s, assume λL ≥ 0 , the Lagrange function [48] with respected to

τ can be derived as

L(τ) = π(τ)− λL(τ − T ).

When fixing τ , assume μL ≥ 0 , the Lagrange function with respected to P s

can be derived as

L(P s) = π(P s)− μL(P
s − P s

max).

Based on these notations, the procedure of the iterative algorithm is illustrated

in Algorithm 3.1. In Step 4 of the algorithm, δ is a very small value to indicate the
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convergence of the procedure.

3.4 Simulation Results

Computer simulation is carried out to verify the theoretical analysis in this chap-

ter. This section consists of two subsections. In the first subsection, the impact

of penalty price value as well as the channel idle probability is demonstrated. In

the second subsection, the features of the Problem 3.1 and the proposed iterative

algorithm are evaluated.

Simulation setup is as follows. The noise at the secondary receiver side is

AWGN, which power is 1mW. The channel gains Iss, Ips and Isp are 0.81, 0.49

and 0.64, respectively. The transmission power of the primary transmitter is 20mW.

The total duration for channel sensing and access is T = 20ms. The detection

threshold ξ is set to be 5, which meets the requirements in (3.12). The rental price

is pa = 2. The bandwidth of the channel is 1 KHz. The sampling frequency is 3

KHz.

3.4.1 Impact of Penalty Value as well as the Channel Idle Prob-

ability

For different values of channel idle probability P (H0) = 0.2, 0.5, and 0.8 (which

represent low channel idle probability, intermediate channel idle probability and

high channel idle probability), we vary the penalty price value pb, and calculate the

utility of the secondary user given in (3.9). The results are shown in Figures 3.2–3.4

with different sensing time and transmission power of the secondary user.

From Figures 3.2–3.4, firstly, it could be seen that the secondary user utility

decreases when the penalty increases. And the decreasing rate is larger with less

sensing time or more secondary transmission power. This is because less sensing

time leads to more missed detections, while more secondary transmission power

means more interference to primary activities, and more penalty charge as well.
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Fig. 3.2. Secondary user utility versus penalty price with P (H0) = 0.2.
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Fig. 3.3. Secondary user utility versus penalty price with P (H0) = 0.5.
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Fig. 3.4. Secondary user utility versus penalty price with P (H0) = 0.8.
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With a higher channel idle probability P (H0), it seems that the secondary user can

tolerate more penalty price. This is because higher P (H0) means less chance to

have missed detections.

3.4.2 Feature of Problem 3.1 and the Iterative Algorithm

As discussed before, for Problem 3.1, for the two variables τ and P s, the objective

function is concave with respect to one variable if the other variable is fixed. Here

we use simulation to verify this feature. In the simulation setting, the maximal

allowable transmission power of the secondary user is 35 mW; the channel idle

and busy probabilities P (H0) and P (H1) are both 0.5; and the penalty price is 4.5.

Among the two variables τ and P s, we fix one variable and obtain the secondary

user utility versus the other variable. The simulation results are shown in Figures

3.5 and 3.6.

From Figure 3.5 (or Figure 3.6), indeed the secondary user utility is a concave

function with respected to sensing time (or secondary user transmission power)

when secondary user transmission power (or sensing time) is fixed.

For the same simulation setup, we run the proposed iterative algorithm. Figure

3.7 shows how the objective function of Problem 3.1 changes with the iterations.

It can be seen that after around 10 iterations, the proposed iterative algorithm con-

verges.

3.5 Conclusion

In this chapter, we have investigated the channel sensing and access strategy of

a secondary user to maximize its utility. The ranges of rental price and penalty

price are analyzed. Some features of the formulated optimization problem, which

optimizes the sensing duration and secondary transmission power, are explored,

and accordingly an iterative algorithm is given to find a solution of the problem.

This chapter should provide some insights for a secondary user to select its channel

sensing and access strategy.
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Chapter 4

Dynamic Pricing over Multiple

Rounds of Spectrum Leasing

In this chapter, the problem of dynamic pricing over multiple rounds of spectrum

leasing is investigated. One primary user is considered. If the primary user does

not use its licensed spectrum, it leases its licensed spectrum to secondary users.

To accommodate different arrival instants of secondary users’ spectrum requests,

spectrum leasing is performed in multiple rounds, and in each round, a separate

spectrum price is set. For cases with discrete or continuous spectrum demand, op-

timization problems are formulated to set up the spectrum prices in the multiple

rounds, with the purpose of maximizing the total revenue of the primary user. The

solving methods of the formulated optimization problems are presented. Addition-

ally, some special properties of the optimal solutions are also presented, such as

monotonicity and convexity of the maximal total revenue with respect to round in-

dex, lower/upper bounds of the maximal total revenue, and monotonicity of the

optimal price with respect to round index. Numerical results are provided to verify

the research findings.
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4.1 Introduction

In spectrum leasing, the spectrum price is the most important design parameter

[37], which directly affects the primary users’ revenue as well as the willingness of

secondary users to lease the spectrum. Spectrum leasing has been investigated in

the literature, with two major settings: monopoly spectrum leasing and oligopoly

spectrum leasing.

Monopoly spectrum leasing features one single primary user (or broker), target-

ing at revenue maximization of the primary user (or broker) [49]–[51]. A broker

is considered in [49], which first decides on the spectrum amount that will be pur-

chased from primary users, and then sets spectrum leasing price for secondary users

to purchase. The research problem, i.e., to maximize the revenue of the broker, is

formulated as a Stackelberg game. Authors of [50] take a similar model, but con-

sider that secondary users’ spectrum demand is random. In [51], a primary licence

holder sets the spectrum price to achieve the optimal balance between the earned

revenue and the cost due to extra interference (received from secondary transmis-

sions) and reduced coverage area (by letting secondary users access the spectrum).

Oligopoly spectrum leasing features multiple primary users (or brokers). So

the spectrum price is also affected by the competition among primary users (or

brokers), and one major research focus in the literature is to achieve equilibrium

among primary users (or brokers) [32], [38], [52]–[54]. The work in [52] considers

two brokers, and uses a three-stage game. In Stage one, the two brokers purchase

spectrum from primary users; In Stage two, the two brokers set and announce their

spectrum prices; In Stage three, secondary users decide on their spectrum demand

from one broker. The work in [32] also considers two brokers. Each broker has a

common spectrum band to be shared by secondary users. So multiple secondary

users that lease spectrum from the same broker will generate interference to each

other. Potential interference is considered in secondary users’ strategies. In [38],

multiple primary and secondary users exist. When secondary users make purchase,

they are unaware of the spectrum price or spectrum bandwidth that will be allocated.
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The purchasing process of secondary users is formulated as an evolutionary game.

In [53], there are multiple primary users, one broker and multiple secondary users.

The utility function of a primary user reflects both the revenue earned and quality-

of-service loss due to leasing some spectrum to secondary users. In [54], multiple

primary users compete with each other by price setting, while each secondary user

may have a unique criterion on whether or not to lease the spectrum. In all works

listed above, Nash equilibrium among primary users (or brokers) is achieved.

All the research efforts mentioned above focus on the static decision making

(i.e., the price of a primary user or broker is fixed, and secondary users have spec-

trum requests at the same time). However, for spectrum leasing in a long term,

secondary users may have spectrum demand at different time moments, and thus,

the stock of available spectrum should vary with time. In [55], a pricing strategy for

dynamic cognitive networks in monopoly spectrum leasing is investigated, consid-

ering the arrivals and departures of secondary users. The primary user decides on

spectrum price dynamically to maximize the average revenue over an infinite time

duration.

In this chapter, we investigate dynamic pricing for monopoly spectrum leasing

with a primary user. Since it is unlikely that the primary user always has spectrum to

lease (i.e., the primary user may not have spectrum to lease to secondary users if it

needs to use the spectrum), we consider spectrum leasing for a finite time duration.

The time duration for spectrum leasing is equally divided into multiple stages, and

in each stage a spectrum price is set. The spectrum demand in each stage depends

on the spectrum price. Our target is to set up the spectrum price values in the stages

such that the total revenue of the primary user over all stages is maximized.

The rest of this chapter is organized as follows. The considered system model

is presented in Section 4.2. Dynamic pricing in the cases of discrete spectrum

demand and continuous spectrum demand are investigated in Section 4.3 and 4.4,

respectively. Numerical results are provided in Section 4.5. Finally concluding

remarks are given in Section 4.6.
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4.2 System Model

Consider one primary user with a licensed spectrum band and multiple secondary

users. When the primary user does not need to use the spectrum for a period of

time (say duration T ), the primary user would like to lease its licensed spectrum

to secondary users. As the secondary users may have spectrum access requests at

different time instants, it is reasonable for the primary user to perform spectrum

leasing once for a while.

For simplicity of presentation, the whole duration T is equally divided into N

stages, indexed as Stages N,N−1, ..., 1, respectively (in other words, the first stage

is called Stage N while the last stage is called Stage 1). At the beginning of each

stage, the primary user first announces a price for leasing a spectrum unit with unit

time. Then the secondary users who can accept the announced price make a contract

with the primary user. Once a part of spectrum is leased to a secondary user, the

lease will last until the end of the spectrum leasing duration T . This rule is easier

for the primary user to manage its spectrum leasing. If a secondary user leases a

portion of spectrum and finishes all its transmissions before the end of duration T , it

can rent out its spectrum portion until the end of duration T in a secondary market.

In the following two sections, we consider two cases, when the spectrum de-

mand of secondary users is discrete and continuous, respectively. With discrete

spectrum demand, the total licensed spectrum band is equally partitioned into M

sub-bands, called M channels. A secondary user can lease an integer number of

channels. With continuous spectrum demand, a secondary user can lease a contin-

uous value of spectrum bandwidth portion.

4.3 Dynamic Pricing with Discrete Spectrum Demand

With discrete spectrum demand, the price is the amount of money a secondary user

needs to pay for using one channel for one stage duration.
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4.3.1 Properties of dynamic pricing

Denote pn,m as the price at Stage n when there are m available channels (i.e., m

channels remain un-leased). Here we assume that the price is taken from a finite set

of discrete values. For a given price value x, the spectrum demand (i.e., the number

of requested channels by secondary users) is a random variable (with integer val-

ues), and we denote g(y; x) as the probability mass function of the demand value

y (i.e., some secondary users agree on the price and request y channels). However,

if the number of requested channels is more than the number of available channels

(m), the primary user only accepts totally m channels’ requests. Therefore, for a

given price value x, the probability mass function of the accepted demand value y

when there are m available channels is given by

fm(y; x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

g(y; x) if y < m∑∞
i=m g(i; x) if y = m

0 if y > m.

(4.1)

Denote V (n,m) as the maximum attainable revenue of the primary user from

Stage n with m available channels to the last stage (i.e., Stage 1). Then, we have

V (n,m) = max
pn,m

m∑
m′=0

fm(m
′; pn,m) [pn,m × n×m′ + V (n− 1,m−m′)] (4.2)

in which the term pn,m×n×m′ represents the revenue the primary user can collect

from Stage n until Stage 1 by leasing m′ channels to secondary users at Stage n at

price pn,m; V (0,m) = 0, ∀m ∈ M � {1, 2, ...,M}; and V (n, 0) = 0, ∀n ∈ N �
{1, 2, ..., N}.

Using the formula in Eqn. (4.2), V (n,m) can be calculated iteratively from

V (n, 0), ∀n ∈ N and V (0,m), ∀m ∈ M, by using dynamic programming, and

the optimal price pn,m for n ∈ N ,m ∈ M, denoted as p∗n,m, can be determined

accordingly.
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Next we present some special properties of the dynamic pricing problem.

Lemma 4.1. The function V (n,m) is an increasing function with respect to n,

∀m ∈ M.

Proof. We use mathematical induction for proving. The proof consists of two steps.

In the first step, we should prove V (1,m) − V (0,m) ≥ 0, ∀m ∈ M. Since

V (1,m) ≥ 0 and V (0,m) = 0, apparently we have V (1,m)− V (0,m) ≥ 0.

In the second step, we should prove that if V (n,m)− V (n− 1,m) ≥ 0, ∀m ∈
M, then V (n+1,m)−V (n,m) ≥ 0, ∀m ∈ M. Suppose V (n,m)−V (n−1,m) ≥
0, ∀m ∈ M holds, then based on (4.2), we have

V (n+ 1,m)− V (n,m)

=
m∑

m′=0

fm(m
′; p∗n+1,m)

[
p∗n+1,m × (n+ 1)×m′ + V (n,m−m′)

]
−

m∑
m′=0

fm(m
′; p∗n,m)

[
p∗n,m × n×m′ + V (n− 1,m−m′)

]
≥

m∑
m′=0

fm(m
′; p∗n,m)

[
p∗n,m × (n+ 1)×m′ + V (n,m−m′)

]
−

m∑
m′=0

fm(m
′; p∗n,m)

[
p∗n,m × n×m′ + V (n− 1,m−m′)

]
=

m∑
m′=0

fm(m
′; p∗n,m)

[
p∗n,m ×m′ + V (n,m−m′)− V (n− 1,m−m′)

]
≥ 0

(4.3)

in which the first inequality is due to the fact that p∗n+1,m is the optimal price at

Stage n + 1 when there are m available channels, and the last inequality comes

from V (n,m)− V (n− 1,m) ≥ 0, ∀m ∈ M.

This completes the proof.

Lemma 4.2. The function V (n,m) is an increasing function with respect to m,

∀n ∈ N .

Proof. We can use mathematical induction for proving, which includes two steps.

In the first step, it is apparent that we have V (0,m + 1) − V (0,m) ≥ 0, ∀m ∈
{0, 1, 2, ...,M − 1}.
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In the second step, we should prove that if V (n,m + 1)− V (n,m) ≥ 0, ∀m ∈
{0, 1, 2, ...,M − 1}, then we have V (n + 1,m + 1) − V (n + 1,m) ≥ 0, ∀m ∈
{0, 1, 2, ...,M − 1}. We have

V (n+ 1,m+ 1)− V (n+ 1,m)

=
m+1∑
m′=0

fm+1(m
′; p∗n+1,m+1)

[
p∗n+1,m+1 × (n+ 1)×m′ + V (n,m+ 1−m′)

]
−

m∑
m′=0

fm(m
′; p∗n+1,m)

[
p∗n+1,m × (n+ 1)×m′ + V (n,m−m′)

]
≥

m+1∑
m′=0

fm+1(m
′; p∗n+1,m)

[
p∗n+1,m × (n+ 1)×m′ + V (n,m+ 1−m′)

]
−

m∑
m′=0

fm(m
′; p∗n+1,m)

[
p∗n+1,m × (n+ 1)×m′ + V (n,m−m′)

]
(a)
=

m∑
m′=0

g(m′; p∗n+1,m)
[
p∗n+1,m × (n+ 1)×m′ + V (n,m+ 1−m′)

]
+

∞∑
m′=m+1

g(m′; p∗n+1,m)
[
p∗n+1,m × (n+ 1)× (m+ 1) + V (n, 0)

]
−

m∑
m′=0

g(m′; p∗n+1,m)
[
p∗n+1,m × (n+ 1)×m′ + V (n,m−m′)

]
−

∞∑
m′=m+1

g(m′; p∗n+1,m)
[
p∗n+1,m × (n+ 1)×m+ V (n, 0)

]
=

m∑
m′=0

g(m′; p∗n+1,m) [V (n,m+ 1−m′)− V (n,m−m′)]

+

[ ∞∑
m′=m+1

g(m′; p∗n+1,m)

]
× p∗n+1,m × (n+ 1)

(b)

≥ 0

(4.4)

in which (a) comes from (4.1), and (b) comes from the assumption that V (n,m +

1)− V (n,m) ≥ 0, ∀m ∈ {0, 1, 2, ...,M − 1}.

This completes the proof.

Remark: From Lemma 4.1 and Lemma 4.2, it can be seen that V (n,m) grows

with the increase of n and m. In other words, when there is more time or channels

left for spectrum leasing, the maximum attainable revenue of the primary user is

larger.

Lemma 4.3.

nV (1,m) ≤ V (n,m) ≤ n(n+ 1)

2
V (1,m), ∀m ∈ M, n ∈ N .
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Proof. First, we prove the left-handside inequality in Lemma 4.3. According to

(4.2), we have

V (n,m)

=
m∑

m′=0

fm(m
′; p∗n,m)

[
p∗n,m × n×m′ + V (n− 1,m−m′)

]
≥

m∑
m′=0

fm(m
′; p∗1,m)

[
p∗1,m × n×m′ + V (n− 1,m−m′)

]
≥

m∑
m′=0

fm(m
′; p∗1,m)× p∗1,m × n×m′

= nV (1,m).

(4.5)

Next we prove the right-handside inequality in Lemma 4.3. Still according to (4.2),

we have

V (n,m)

=
m∑

m′=0

fm(m
′; p∗n,m)

[
p∗n,m × n×m′ + V (n− 1,m−m′)

]
(c)

≤
m∑

m′=0

fm(m
′; p∗n,m)

[
p∗n,m × n×m′ + V (n− 1,m)

]
(d)
=

[
m∑

m′=0

fm(m
′; p∗n,m)× p∗n,m × n×m′

]
+ V (n− 1,m)

(e)

≤ nV (1,m) + V (n− 1,m)

(4.6)

in which (c) follows from Lemma 4.2, (d) comes from the fact
m∑

m′=0

fm(m
′; p∗n,m) =

1, and (e) is due to V (1,m) = max
p1,m

m∑
m′=0

fm(m
′; p1,m)× p1,m × 1×m′. Accord-

ingly,

V (n,m) = V (1,m) +
n∑

n′=2

(
V (n′,m)− V (n′ − 1,m)

)
≤ V (1,m) +

n∑
n′=2

n′V (1,m)

= n(n+1)
2

V (1,m)

(4.7)

where the inequality comes from (4.6).

This completes the proof.

Remark: Lemma 4.3 shows that V (n,m) grows with n superlinearly, but less

than degree-2 polynomial. Specifically, when n = N and m = M , the inequality
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in Lemma 4.3 becomes NV (1,M) ≤ V (N,M) ≤ (N+1)
2

× NV (1,M). In this

inequality, the term NV (1,M) is the maximal attainable revenue over the whole

spectrum leasing duration T by only performing spectrum leasing once (at the be-

ginning of the spectrum leasing duration). The inequality NV (1,M) ≤ V (N,M)

shows that the maximal attainable revenue by only performing spectrum leasing

once for the whole spectrum leasing duration is less than the maximal attainable

revenue by performing dynamic pricing over the N stages (V (N,M)). In other

words, the way of dynamic pricing over multiple rounds of spectrum leasing can

help to raise the revenue of the primary user. On the other hand, the inequality

V (N,M) ≤ (N+1)
2

× NV (1,M) shows that the ratio of V (N,M) to NV (1,M),

which represents the benefit of dynamic pricing, is upper bounded by N+1
2

.

Lemma 4.4.

V (n,m)− V (n− 1,m) ≤ V (n+ 1,m)− V (n,m), ∀m ∈ M, n ∈ N\{N}.

Proof. We use mathematical induction for proving. The proof consists of two steps.

In the first step, it should be proved that the lemma holds for n = 1, i.e.,

V (1,m)− V (0,m) ≤ V (2,m)− V (1,m), ∀m ∈ M. (4.8)

From Lemma 4.3, we have 2V (1,m) ≤ V (2,m), ∀m ∈ M. Together with the fact

that V (0,m) = 0, it can be seen that inequality (4.8) holds.

In the second step, we need to prove that

V (n,m)− V (n− 1,m) ≤ V (n+ 1,m)− V (n,m), ∀m ∈ M (4.9)

holds if

V (n− 1,m)− V (n− 2,m) ≤ V (n,m)− V (n− 1,m), ∀m ∈ M. (4.10)
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Note that

V (n− 1,m)− V (n− 2,m) ≤ V (n,m)− V (n− 1,m), ∀m ∈ M (4.11a)

⇔ 2V (n− 1,m) ≤ V (n,m) + V (n− 2,m), ∀m ∈ M (4.11b)

⇒
m∑

m′=0

fm(m′; p∗n,m) [2V (n− 1,m−m′)]

≤
m∑

m′=0

fm(m′; p∗n,m) [V (n,m−m′) + V (n− 2,m−m′)]

⇒
m∑

m′=0

fm(m′; p∗n,m)
[
2p∗n,m × n×m′ + 2V (n− 1,m−m′)

]
≤

m∑
m′=0

fm(m′; p∗n,m)
[
2p∗n,m× n×m′+ V (n,m−m′)+V (n−2,m−m′)

]
(4.11c)

⇔
m∑

m′=0

fm(m′; p∗n,m)
[
2p∗n,m × n×m′ + 2V (n− 1,m−m′)

]
≤

( m∑
m′=0

fm(m′; p∗n,m)
[
p∗n,m × (n+ 1)×m′ + V (n,m−m′)

]
+

m∑
m′=0

fm(m′; p∗n,m)
[
p∗n,m × (n− 1)×m′ + V (n− 2,m−m′)

] )
(4.11d)

⇒ 2
m∑

m′=0

fm(m′; p∗n,m)
[
p∗n,m × n×m′ + V (n− 1,m−m′)

]
≤

( m∑
m′=0

fm(m′; p∗n+1,m)
[
p∗n+1,m × (n+ 1)×m′ + V (n,m−m′)

]
+

m∑
m′=0

fm(m′; p∗n−1,m)
[
p∗n−1,m × (n− 1)×m′ + V (n− 2,m−m′)

] )
(4.11e)

⇔ 2V (n,m) ≤ V (n+ 1,m) + V (n− 1,m) (4.11f)

⇔ V (n,m)− V (n− 1,m) ≤ V (n+ 1,m)− V (n,m) (4.11g)

in which the inequality in (4.11e) holds as

p∗n+1,m = argmax
p

(
m∑

m′=0

fm(m
′; p) [p× (n+ 1)×m′ + V (n,m−m′)]

)

and

p∗n−1,m = argmax
p

(
m∑

m′=0

fm(m
′; p) [p× (n− 1)×m′ + V (n− 2,m−m′)]

)

according to (4.2), and the inequality in (4.11f) holds by following the definition in

(4.2).
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This completes the proof.

Remark: Lemma 4.1 and Lemma 4.4 show that V (n,m) is an increasing convex-

shaped function with respect to n.

4.3.2 Discussion when Spectrum Demand is Non-random

In this subsection, we investigate the special case when the spectrum demand is

non-random and can be solely determined by the price.

For price p, the spectrum demand d (i.e., the number of requested channels)

can be expressed as d = D(p).1 As d ∈ I where I means the set of non-negative

integers, D(p) is a piecewise function mapping intervals of price into non-negative

integers. In Stage n, denote pn as the price, and dn = D(pn) as the demand for the

number of channels. Without loss of generality, it is assumed that the demand dn is

not more than the number of remaining available channels at Stage n.2 This means

dn is also the accepted demand at Stage n. The achieved revenue of the leased

channels in Stage n can be expressed as pndnn. So the total revenue over all the

stages is
N∑

n=1

pndnn, i.e.,
N∑

n=1

pnD(pn)n. Then the revenue maximization problem

can be formulated as

Problem 4.1.

max
p1,p2,...,pN

N∑
n=1

pnD(pn)n

s.t.
N∑

n=1

D(pn) ≤ M,

pn ≥ 0, n ∈ N ,

D(pn) ∈ I, n ∈ N .

For the ease of analysing, by defining P (d) = max
D(p)=d

p,3 Problem 4.1 can be

reformulated as

1Here we assume that, for any demand value d ∈ {0, 1, 2, ...,M}, there exists at least a price p
such that D(p) = d. It is also assume that D(·) is a decreasing function.

2This assumption is reasonable because, if dn is more than the number of remaining available

channels, the revenue of the primary user can always be increased by increasing the price pn such

that dn is equal to the number of remaining available channels.
3The conceptional meaning of P (·) is the inverse function of D(·). Since D(·) is a piecewise

function, its inverse function does not exist mathematically. Therefore, P (d) is defined as the maxi-

mal price such that D(P (d)) = d, rather than D−1(d).

40



Problem 4.2.

max
d1,d2,...,dN

N∑
n=1

dnP (dn)n

s.t.
N∑

n=1

dn ≤ M,

dn ≥ 0, dn ∈ I, n ∈ N .

For the price function with respect to demand, P (d), three characteristics are

assumed and justified in the following.

• P (d) is a decreasing function with respect to demand d. This assumption

is in concordance with the fact that when the announced price is higher, the

spectrum for leasing is less attractive to secondary users, and there is less

demand.

• d · P (d) is an increasing function with respect to demand d. This assumption

is reasonable as the total revenue of the primary user should be more if more

channels are leased.

• d · P (d) is “concave”, which means

[(d+ 1)P (d+ 1)− dP (d)] ≤ [dP (d)− (d− 1)P (d− 1)] , ∀d > 0, d ∈ I.

This assumption conforms to the law of diminishing returns [56] in eco-

nomics: the increase of revenue slows down as the sale volume grows.

For Problem 4.2, the following lemma is in order.

Lemma 4.5. The maximal value of the objective function
N∑

n=1

dnP (dn)n is achieved

when
N∑

n=1

dn = M .

Proof. We use proof by contradiction. According to the second assumption on

P (d), the objective function
N∑

n=1

dnP (dn)n is an increasing function with respect to

dn, n ∈ N . Define the optimal dn as d∗n, n ∈ N . Suppose
N∑

n=1

d∗n = M ′ < M ,

then the objective function in Problem 4.2 can be further increased by increasing d∗1
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to d∗1 + M − M ′, which contradicts the assumption that d∗n, n ∈ N is the optimal

solution.

This completes the proof.

After substituting the constraint
N∑

n=1

dn ≤ M with
N∑

n=1

dn = M , Problem 4.2 has

the following features: the objective function is separable and “concave”, and the

constraints are linear with variable coefficients all being 1’s. Thus, an incremental

algorithm [57] can be used to solve Problem 4.2.

The procedure of the incremental algorithm for Problem 4.2, referred to as Al-

gorithm 4.1, is as follows.

Algorithm 4.1 Incremental Algorithm for Problem 4.2.

1: Set dn = 0, n ∈ N .

2: If
N∑

n=1

dn < M , find n∗ = argmax
n∈N

(
(dn + 1)P (dn + 1)n − dnP (dn)n

)
, and

proceed to Step 3; Otherwise, proceed to Step 4.

3: dn∗ = dn∗ + 1, proceed to Step 2.

4: Output {dn, n ∈ N}.

Based on the procedure of Algorithm 4.1, the following lemma can be proved.

Lemma 4.6. d∗n increases when n increases, and p∗n decreases when n increases,

where d∗n and p∗n are optimal dn and pn for Problem 4.2.4

Proof. To prove that d∗n increases when n increases, we use proof by contradiction.

Suppose there exist n1, n2 ∈ N such that n1 > n2 and d∗n1
< d∗n2

. Accord-

ing to Algorithm 4.1, there are M rounds of search. In each round, the n∗ =

argmax
n∈N

(
(dn + 1)P (dn + 1)n − dnP (dn)n

)
is found. Before the first round,

dn1 = dn2 = 0, while after the last round, d∗n1
< d∗n2

. Then there should exist

a round such that: before the round we have dn1 = dn2 , while after the round, dn2

4At Stage n, the optimal demand d∗n is actually the demand corresponding to the optimal price

p∗n.
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is increased by 1. In other words, before this round we have

[(dn1 + 1)P (dn1 + 1)− dn1P (dn1)]n1 ≤ [(dn2 + 1)P (dn2 + 1)− dn2P (dn2)]n2.

(4.12)

Since we have dn1 = dn2 before this round, the inequality in (4.12) is equivalent to

n1 ≤ n2, which contradicts the assumption that n1 > n2. So we have d∗n1
≥ d∗n2

,

∀n1 > n2, i.e., d∗n increases with respect to n.

As p∗n = P (d∗n), the function P (·) is a decreasing function, and d∗n increases

when n increases, it is easy to conclude that p∗n decreases when n increases.

This completes the proof.

Remark: According to Lemma 4.6, as the time approaches the end of the spec-

trum leasing duration T , the primary user should set the price higher, while in early

stages, the primary user should set lower prices to attract more spectrum demand.

This conclusion shares some similarity with pricing strategy in flight ticket book-

ing: long before the flight departure date, the flight ticket price is low which can

attract more bookings, while as the flight departure date is approaching, the flight

ticket price goes higher.

4.4 Dynamic Pricing with Continuous Spectrum De-

mand

In this section, we assume that spectrum demand (i.e., the spectrum bandwidth

requested) is a continuous variable.

4.4.1 Properties of Dynamic Pricing

Suppose W is the bandwidth of one channel as defined in Section 4.3. For a given

price x, the spectrum demand is a random variable. When the available spectrum

bandwidth amount is w at a stage, for spectrum price x, we denote the probability

density function of the accepted spectrum demand y as fw(y; x), where y ∈ [0, w].
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Here the price means the fee to use one spectrum bandwidth unit for one stage

duration.

Denote qn,w as the price at Stage n when the available spectrum bandwidth

amount is w, and Z(n,w) as the maximum attainable revenue of the primary user

from Stage n to the last stage (Stage 1). Then the following formulation can be

given:

Z(n,w) = max
qn,w

∫ w

w′=0

fw(w
′; qn,w) [qn,w × n× w′ + Z(n− 1, w − w′)]dw′

(4.13)

in which Z(n,w) ≥ 0, ∀n ∈ N , w ∈ [0,MW ]; Z(0, w) = 0, ∀w ∈ [0,MW ]; and

Z(n, 0) = 0, ∀n ∈ N .

The optimal prices q∗n,w can be obtained by dynamic programming. Similar to

Section 4.3.1, we have the following properties of the dynamic pricing:

• The function Z(n,w) is an increasing function with respect to n, ∀w ∈
[0,MW ];

• The function Z(n,w) is an increasing function with respect to w, ∀n ∈ N ;

• nZ(1, w) ≤ Z(n,w) ≤ n(n+1)
2

Z(1, w), ∀w ∈ [0,MW ], n ∈ N ;

• Z(n,w) − Z(n − 1, w) ≤ Z(n + 1, w) − Z(n,w), ∀w ∈ [0,MW ], n ∈
N\{N}.

The proofs are similar to those in Section 4.3.1, and are omitted.

4.4.2 Discussion when Spectrum Demand is Non-random

In this subsection, we investigate the special case when the spectrum demand is non-

random and can be solely determined by the spectrum price. Since the spectrum

demand can take continuous values from [0,MW ], the spectrum price can also

take continuous values.

Similar to Section 4.3.2, denote the price function for a continuous demand r as

q = Pc(r), and we have three similar assumptions on Pc(·):
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• Pc(r) is a decreasing function with respect to r;

• r · Pc(r) is an increasing function with respect to r;

• r · Pc(r) is a concave function with respect to r.

Denote qn and rn as the price and demand for spectrum in Stage n, respectively.

The revenue maximization problem with non-random and continuous demand can

be formulated as follow.

Problem 4.3.

max
r1,r2,...,rN

N∑
n=1

rnPc(rn)n

s.t.
N∑

n=1

rn ≤ MW,

rn ≥ 0, n ∈ N .

Problem 4.3 is a convex problem and can be solved by traditional convex opti-

mization techniques.

Similar to Lemma 4.6, the following lemma shows a property of the optimal

solution of Problem 4.3.

Lemma 4.7. Demand r∗n increases with respect to n, and price q∗n decreases with

respect to n, where r∗n and q∗n are optimal rn and qn for Problem 4.3.

4.5 Numerical Results

In this section, numerical results are given to verify the properties in Section 4.3.

4.5.1 Verification of Lemmas 4.1 – 4.4

In this subsection, Lemmas 4.1–4.4 are numerically verified. In the numerical ex-

ample, N is set as 10 and M is set as 50. Define g(y; x) as a discrete uniform

distribution over {m0,m0 + 1, ...,m0 + 4} where m0 � 
 1
x2 � (here 
·� is the floor

function), i.e., g(y; x) = {0.2, 0.2, 0.2, 0.2, 0.2} for y = {m0,m0+1,m0+2,m0+

3,m0 + 4}. The spectrum price in a stage is selected from a discrete set of 100
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values that are evenly spaced between 0.1474 and 1.001, where the minimum se-

lectable price 0.1474 makes m0 +4 = 50, and the maximum selectable price 1.001

makes m0 = 0.

Figures 4.1–4.3 show V (n,m) and its lower and upper bounds, given respec-

tively as nV (1,m) and
n(n+1)

2
V (1,m), when n grows from 1 to N with m = 10,

m = 20 and m = 30. It can be seen that V (n,m) increases when n or m increases,

as indicated in Lemma 4.1 and Lemma 4.2. In addition, V (n,m) lies between the

lower bound and upper bound, which is consistent with the conclusion in Lemma

4.3. And V (n,m) is convex-shaped with n, as indicated by Lemma 4.4.

4.5.2 Verification of Lemma 4.6

For discrete and non-random spectrum demand, N is set as 10, the function P (d)

is set to be 1√
d
, which satisfies the three assumptions on P (d) in Section 4.3.2. In

Figures 4.4–4.5, the optimal price p∗n and optimal demand d∗n are plotted, when

M = 100, M = 200 or M = 400. It can be seen that the optimal price p∗n decreases

with n, while the optimal demand d∗n grows with n. This result matches Lemma

4.6.

4.6 Conclusions

In this chapter, we have investigated the problem of dynamic pricing over multiple

rounds of spectrum leasing. With discrete and continuous spectrum demand, we

have formulated optimization problems that find the optimal price in each round

so as to maximize the total revenue of the primary user. We have presented the

solving methods for the optimization problems, as well as properties of the optimal

solutions, such as monotonicity and convexity of the maximal total revenue with

respect to stage index n, lower/upper bounds of the maximal total revenue, and

monotonicity of the optimal price with respect to stage index n.
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Chapter 5

Conclusions and Future Research

Works

This chapter summarizes the contributions of the thesis, and some future research

directions are highlighted as well.

5.1 Conclusions

This thesis investigates the spectrum sharing, spectrum access, and spectrum leas-

ing in cognitive radio, which has been demonstrated as a promising technique to

improve spectrum efficiency in future wireless networks.

The spectrum sharing and access of secondary users are investigated in Chapter

3. Like existing research efforts, spectrum rental fee is charged to secondary users.

Different from existing works, we also take into account penalty price for misbe-

haved secondary users. The setting of the penalty price is studied. A problem is

formulated to maximize the secondary user’s utility by setting the spectrum sensing

time and the transmission power. Although the formulated problem is not a convex

problem, we show that the problem can be convex if one of the two variables (spec-

trum sensing time and the transmission power) is fixed. Accordingly, we provide an

iterative algorithm to find a solution of the problem. We also show that the iterative

algorithm can converge quickly.
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Chapter 4 investigates spectrum leasing from the primary user’s perspective.

A long-term leasing period is considered, and thus, the primary user takes several

rounds in its spectrum leasing. Two cases, with discrete and continuous spectrum

demand respectively, are studied. For each case, we formulate the revenue maxi-

mization problem, and provide methods to solve the problem. Some special features

of the optimal pricing strategy are also derived. This research provides a solution

for long-term spectrum leasing in varying scenarios.

5.2 Future Works

In the channel sensing and access in Chapter 3, only path loss is considered. In fu-

ture work, we may take into account channel fading, which means the channel gains

of the links vary with time. Therefore, if a missed detection happens, the penalty

charge depends on the instantaneous channel gains of the links. An interesting re-

search problem is to select sensing time and transmission power (which will be used

for a long term) such that the average secondary user utility is maximized.

In the spectrum leasing in Chapter 4, only one seller (primary user) is consid-

ered. In future work, we may consider multiple sellers, and investigate the impact

of competition among sellers on the price setting in the multiple rounds. Methods

from game theoretical approaches might be helpful, and deserve further investiga-

tion.
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