NMR Spectroscopy of Exotic Quadrupolar Nuclei in Solids

by

Alexandra Faucher

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Chemistry University of Alberta

© Alexandra Faucher, 2016

Abstract

This thesis is concerned with NMR studies of solids containing NMR-active quadrupolar nuclei typically overlooked due to their unfavorable NMR properties, particularly moderate to large nuclear electric quadrupole moments. It is shown that ⁷⁵As, ⁸⁷Sr, and ^{121/123}Sb NMR spectra of a wide range of solid materials can be obtained. Traditional 1D pulse sequences (e.g., Bloch pulse, spin echo, QCPMG) are used alongside new methods (e.g., WURST echo, WURST-QCPMG) to acquire the NMR spectra; the advantages of these new methods are illustrated. Most of these NMR spectra were acquired at an external magnetic field strength of $B_0 = 21.14$ T. Central transition ($m_1 = 1/2$ to -1/2) linewidths of half-integer quadrupolar nuclei of up to a breadth of ca. 32 MHz are obtained at $B_0 = 21.14$ T, demonstrating that nuclear sites with large nuclear quadrupolar coupling constants can be characterized. Many of the NMR spectra contained in this research depict situations in which the nuclear quadrupolar interaction is on the order of or exceeds the magnitude of the Zeeman interaction, thus rendering the high-field approximation invalid and requiring exact treatment in which the full Zeeman-quadrupolar Hamiltonian is diagonalized in order to properly simulate the NMR spectra and extract NMR parameters. It is also shown that both direct (R_{eff}) and indirect (J) spin-spin coupling between quadrupolar nuclei can be quantified in some circumstances, and that the signs of the isotropic indirect spin-spin coupling and the nuclear quadrupolar coupling constants can be obtained experimentally in cases of high-field approximation breakdown. This research represents a relatively large and valuable contribution to the available ⁷⁵As, ⁸⁷Sr, and ^{121/123}Sb NMR data in the literature. For example, experimentally determined chemical shift anisotropy is reported for the ⁸⁷Sr nucleus in a powdered solid for the first time, and the NMR parameters for ¹¹B-⁷⁵As spin-spin coupling constants reported here add to a sparse collection of information on

quadrupolar spin-pairs. Overall, this research is a step towards the goal of utilizing the entire NMR periodic table for the characterization of molecular and crystallographic structure as well as structural dynamics.

Preface

This thesis is an original work by Alexandra Faucher.

Chapter 3 of this thesis has been reprinted with permission from Faucher, A.; Terskikh, V. V.; Wasylishen, R. E. Assessing distortion of the AF_6^- (A = As, Sb) octahedra in solid hexafluorometallates(V) via NMR spectroscopy. *Can. J. Chem.* **2015**, *93*, 938-944.

Chapter 4 of this thesis has been reprinted with permission from Faucher, A.; Terskikh, V. V.; Wasylishen, R. E. Feasibility of arsenic and antimony NMR spectroscopy in solids: An investigation of some group 15 compounds. *Solid State Nucl. Magn. Reson.* **2014**, *61-62*, 54-61. Copyright 2014 Elsevier.

Chapter 5 of this thesis has been reprinted with permission from Faucher, A.; Terskikh, V. V.; Wasylishen, R. E. Spin-spin coupling between quadrupolar nuclei in solids: ¹¹B-⁷⁵As spin pairs in Lewis acid-base adducts. *J. Phys. Chem. A.* **2015**, *119*, 6949-6960. Copyright 2015 American Chemical Society.

For the above publications, I acquired all NMR data at $B_0 = 7.05$ and 11.75 T. Some of the ⁷⁵As and ^{121/123}Sb NMR experiments performed at $B_0 = 21.14$ T were also performed by me during my visits to the National Ultrahigh-Field NMR Facility for Solids in Ottawa, ON, Canada. The majority of the NMR spectra acquired at $B_0 = 21.14$ T were collected by Victor V. Terskikh, the manager of our ultrahigh-field NMR facility. Data analysis was made by me, with the exception of the variable temperature NMR spectra acquired at $B_0 = 21.14$ T shown in Chapter 3 and the

⁷⁵As NMR spectrum of arsenobetaine bromide shown in Chapter 4. I have prepared all of the above manuscripts for publication.

Chapter 6 of this thesis has been reprinted with permission from Faucher, A.; Terskikh, V. V.;
Ye, E.; Bernard, G. M.; Wasylishen, R. E. Solid-State ⁸⁷Sr NMR Spectroscopy at Natural
Abundance and High Magnetic Field Strength. *J. Phys. Chem. A*, **2015**, *119*, 11847-11861.
Copyright 2015 American Chemical Society. Data were collected for this project by each listed
author, analysis of the data was made by Victor V. Terskikh, Eric Ye, and myself, and I prepared
the manuscript for publication.

The published abstracts for these articles have been used in Chapter 1 as a summary of each project.

Minor details (e.g., symbols) have been modified from their original published appearance for the sake of consistency throughout this thesis.

To my family

Acknowledgements

I would like to acknowledge Rod Wasylishen for giving me the opportunity to study solid-state NMR spectroscopy in his laboratory. Rod's encouragement, enthusiasm, and dedication to scientific rigor were a large part of what made working in this lab so enjoyable. I thank him for his guidance and support throughout my studies at the University of Alberta.

I would like to thank my supervisory committee, Alex Brown and Jonathan Veinot, for inspiring and assisting me throughout my studies. I also thank Rob Schurko and Nils Petersen for serving on my Ph.D. examination committee.

I thank all of the present and former members of the Wasylishen group. Specifically, I thank Tom Nakashima and Kris Harris for their guidance during my early days in the group, and Guy Bernard for his much-appreciated assistance over the years. I owe a huge thank you to my office-mate and friend, Rosha Teymoori, for keeping me sane over the last few years.

My studies here would not have been possible without the help of the support staff and facilities in our Department. I am incredibly grateful to Mark Miskolzie, Ryan McKay, and Nupur Dabral for their training, troubleshooting assistance, and helpful conversations. I would also like to thank Mark for taking the time to teach me many things about NMR spectrometer maintenance. I thank Dieter Starke and Allan Chilton for their time/assistance fixing electronics and other equipment, Robert McDonald and Stanislav Stoyko for their assistance in X-ray crystallography, and Wayne Moffat for many other analytical services.

Klaus Eichele and David Bryce are thanked for the development and maintenance of NMR simulation programs WSolids and QUEST, without which this work could not have been completed. Frédéric Perras is thanked for writing QUEST and providing me with the program used to simulate the RDC NMR spectra in Chapter 5. I also thank Victor Terskikh at the

vii

National Ultrahigh-field NMR Facility for Solids in Ottawa, ON, Canada. Victor is thanked for acquiring and analyzing some of the spectra contained in this work, as well as for training and supervising me during my visits to the facility.

I am grateful to my friends and family for their love and support. Specifically, I thank Julia, Don, and Christina Palech, Bryan Faucher, and Christine Newlands. A special thanks goes to my dad for frequently reminding me why not to eat expired dip.* Thank you for all of the wonderful nights of board games, wine, and delicious food. I love you all!

* "I am sure your food poisoning was from that chip dip dated Feb 5 as I was pretty sick after eating some from that container last night!" – Don Palech, February 26, 2012

Table of Contents

1	Introduction				
		1.1	Backgro	ound and Motivation	1
	1.2	Overvie	ew of Projects	4	
		1.2.1	Assessing Distortion of the AF_6^- (A = As, Sb) Octahedra in Solid	4	
			Hexafluorometallates(V) via NMR Spectroscopy		
		1.2.2	Feasibility of Arsenic and Antimony NMR Spectroscopy in Solids:	5	
			An Investigation of Some Group 15 Compounds		
		1.2.3	Spin-spin Coupling Between Quadrupolar Nuclei in Solids: ¹¹ B-	6	
			⁷⁵ As Spin Pairs in Lewis Acid-Base Adducts		
		1.2.4	Solid-State ⁸⁷ Sr NMR Spectroscopy at Natural Abundance and	7	
			High Magnetic Field Strength		
2	The	oretical B	ackground	8	
	2.1	Nuclear	⁻ Spin Angular Momentum	8	
		2.1.1	Classical Angular Momentum	8	
		2.1.2	Quantum (Orbital) Angular Momentum	9	
		2.1.3	Quantum Spin Angular Momentum	10	

	2.1.4	Origin of Nuclear Spin Number	11
	2.1.5	Nuclear Magnetic Moments and the Gyromagnetic Ratio	12
2.2	The NMR Hamiltonian		
	2.2.1	The Zeeman Interaction	16
	2.2.2	The Boltzmann Distribution and the Net Magnetization	18

	2.2.3	Radiofrequency Pulses	19
	2.2.4	Magnetic Shielding and Chemical Shift	22
	2.2.5	Direct Dipolar Coupling	25
	2.2.6	Indirect Spin-Spin Coupling	27
	2.2.7	Quadrupolar Interaction	27
	2.2.8	Exact Calculations for Large Quadrupolar Interactions	34
2.3	Nuclear	Relaxation	35
2.4	The Fou	rier Transform	38
2.5	Experin	nental NMR Techniques	40
	2.5.1	Magic Angle Spinning (MAS)	40
	2.5.2	Spin Echo	41
	2.5.3	QCPMG	41
	2.5.4	WURST	42
	2.5.5	WURST-QCPMG	44
	2.5.6	Acquiring Ultrawideline NMR Spectra	44
	2.5.7	Assembling Ultrawideline NMR Spectra	45
	2.5.8	Computational Methods	46
		2.5.8.1 Amsterdam Density Functional (ADF)	46
		2.5.8.2 Cambridge Serial Total Energy Package (CASTEP)	46
Asse	essing Dis	tortion of the AF_6^- (A = As, Sb) Octahedra in Solid	48
Hex	afluorom	etallates(V) via NMR Spectroscopy	

3.1	Introduction	48

3.2	Backgr	round	49
3.3	Crystal	Structure and Dynamics	52
	3.3.1	KAsF ₆	52
	3.3.2	KSbF ₆	53
3.4	Experi	mental Section	54
3.5	Results	and Discussion	57
	3.5.1	KAsF ₆	66
	3.5.2	KSbF ₆	70
3.6	Conclu	sions	71
3.7	Acknow	vledgements	72
Feas	sibility of	Arsenic and Antimony NMR Spectroscopy in Solids: An	73
Inve	estigation	of Some Group 15 Compounds	
4.1	Introdu	iction	73
4.2	Experi	mental Section	77
	4.2.1	NMR Measurements	77
		4.2.1.1 AsPh ₄ Br	79
		4.2.1.2 $(CH_3)_3AsCH_2CO_2H^+Br^-$	79
		4.2.1.3 KSb(OH) ₆	79
		4.2.1.4 SbPh ₄ Br	80
	4.2.2	EFG and Magnetic Shielding Computations	81
4.3	Results	and Discussion	82
	4.3.1	Experimental NMR Parameters	86

4

		4.3.1.1	AsPh ₄ Br	86
		4.3.1.2	$(CH_3)_3AsCH_2CO_2H^+Br^-$	86
		4.3.1.3	KSb(OH) ₆	89
		4.3.1.4	SbPh ₄ Br	92
	4.3.2	Calculat	ed NMR Parameters and Crystal Structure	95
		4.3.2.1	AsPh ₄ Br and SbPh ₄ Br	95
		4.3.2.2	Arsenobetaine Bromide	100
		4.3.2.3	Potassium Hexahydroxoantimonate(V)	100
4.4	Conclu	sions		101
4.5	Acknow	wledgemen	nts	102
Pair 5.1	s in Lew Introd	is Acid-Ba uction	se Adducts	103
5.1	Racko	ound		105
5.3	Experi	mental Sec	ction	113
	5.3.1	Material	s	113
	5.3.2	NMR M	leasurements	114
	5.3.3	Simulati	ons and Calculations	117
5.4	Results	and Discu	ission	118
	5.4.1	Arsenic-	75 NMR Spectra	121
	5.4.2	Boron-1	1 NMR Spectra	132
	5.4.3	Structure	e in Solution	143

	5.5	Conclus	sions		145
	5.6	Acknow	vledgemen	its	145
6	Solie	d-State ⁸⁷	Sr NMR S	Spectroscopy at Natural Abundance and High Magnetic	147
	Field	d Strengt	h		
	6.1	Introdu	ction		147
	6.2	Experin	nental Sec	tion	150
		6.2.1	Samples	and NMR Measurements	150
		6.2.2	Spectral	Simulations and First-Principles Calculations	153
	6.3	Results	and Discu	ission	154
		6.3.1	Spectral	Acquisition and Analysis	160
			6.3.1.1	Strontium at Sites of Cubic Symmetry	165
			6.3.1.2	Strontium at Sites of Axial Symmetry	167
			6.3.1.3	Strontium at Sites with Low Symmetry	171
			6.3.1.4	Strontium Salts with Organic Anions	182
			6.3.1.5	Salts with Experimentally Measureable ⁸⁷ Sr Chemical	183
				Shift Anisotropy	
			6.3.1.6	Unsuccessful ⁸⁷ Sr NMR Experiments	189
		6.3.2	CASTE	P Results	189
			6.3.2.1	Magnetic Shielding	189
			6.3.2.2	Electric Field Gradients	194
		6.3.3	Chemica	al Shift Trends	194
			6.3.3.1	⁸⁷ Sr Chemical Shift Trends and Absolute Shielding Scale	194

	6.3.3.2 Group II Periodic Trends in Magnetic Shielding	199
	6.4 Conclusions	202
	6.5 Acknowledgements	203
7	Summary and Future Outlook	205
	References	209
	Appendix A: Example Input Files for ADF Calculations	233

List of Tables

3.1	NMR parameters determined for $KAsF_6$ at 21.14 T.	58
3.2	NMR parameters determined for KSbF ₆ at 21.14 T.	59
3.3	CASTEP calculated parameters for ⁷⁵ As and ¹²¹ Sb in KAsF ₆ and KSbF ₆ . $Q(^{75}As)$	60
	$= 31.1 \text{ fm}^2$, $Q(^{121}\text{Sb}) = -54.3 \text{ fm}^2$.	
4.1	Select properties for the nuclei ⁷⁵ As, ¹²¹ Sb, and ¹²³ Sb.	74
4.2	Experimental arsenic-75, antimony-121 and antimony-123 NMR parameters for	83
	AsPh ₄ Br, (CH ₃) ₃ AsCH ₂ CO ₂ H ⁺ Br ⁻ , KSb(OH) ₆ , and SbPh ₄ Br, determined through	
	simulation. Resonance frequencies of ⁷⁵ As, ¹²¹ Sb, and ¹²³ Sb nuclei at 21.14 T	
	were 154.1 MHz, 215.4 MHz, and 116.6 MHz, respectively. Where available,	
	data acquired at $B_0 = 11.75$ T were used in addition to 21.14 T data to determine	
	simulated fits.	
4.3	Antimony-121 and arsenic-75 electric field gradient parameters as calculated by	84
	ADF using the ZORA/QZ4P basis set.	
4.4	Antimony-121 electric field gradient parameters for the compound $SbPh_4Br$ as	85
	calculated by CASTEP.	
4.5	Antimony-121 and arsenic-75 magnetic shielding tensor parameters as calculated	98
	by ADF using the BP86 functional and the ZORA/QZ4P basis set.	
5.1	¹¹ B and ⁷⁵ As NMR properties.	107
5.2	Details of ¹¹ B and ⁷⁵ As NMR experiments.	115
5.3	Experimental ¹¹ B and ⁷⁵ As NMR parameters for Lewis acid-base adducts.	120
5.4	Experimental ⁷⁵ As NMR parameters for Ph ₃ As.	121
5.5	Calculated NMR parameters for Et ₃ AsB(C ₆ F ₅) ₃ , Me ₃ AsBPh ₃ , Ph ₃ AsBH ₃ , and	126

Ph₃As.

- 5.6 Calculated and experimental NMR parameters for a series of arsenic-contaning
 130 molecules. Calculated parameters determined using the ADF program package,
 the BP86 functional, and the ZORA/QZ4P basis set.
- 5.7 Calculated ⁷⁵As quadrupolar, magnetic shielding, and indirect spin-spin coupling 131 NMR parameters for the model compounds Me₃AsBH₃, Et₃AsBH₃, Me₃AsBMe₃, and Et₃AsBMe₃. DFT calculations were performed using the ADF program package. Structures of these model compounds were determined via geometry optimization in the gas phase. All calculations were carried out using the BP86 functional and the ZORA/QZ4P basis set (i.e., relativistic effects were included).
- 5.8 Calculated indirect spin-spin coupling constants for compounds H₃AsBH₃, 135
 Et₃AsB(C₆F₅)₃, Me₃AsBPh₃, H₃PBH₃, and Ph₃PBH₃. DFT calculations were carried out with the ADF program package using the molecules' experimental geometries, the BP86 functional, and the ZORA/QZ4P basis set.
- 5.9 Calculated indirect spin-spin coupling constants for the compound H₃AsBH₃
 139 (experimental geometry) calculated using the ADF program package with the
 BP86 functional, both with and without the inclusion of relativistic effects. The
 basis sets used are indicated below.
- 5.10 Calculated spin-spin coupling constants for the adduct H₃AsBH₃ where the
 140 arsenic-boron bond distance was varied, using the ADF program package, the
 BP86 functional, and the QZ4P basis set, either with or without the inclusion of relativistic effects.
- 5.11 Calculated indirect spin-spin coupling constants for the compound H₃AsBH₃ 141

xvi

(experimental geometry) using the Gaussian 09 program.

5.12	Calculated spin-spin coupling constants for the adduct H ₃ AsBH ₃ where the	142
	arsenic-boron bond distance was varied, using the Gaussian 09 program and the	
	cc-pVQZ basis set.	
5.13	Solution-phase and solid-state values for $\delta(^{11}B)$.	144
6.1	Experimental parameters used in the acquisition of ⁸⁷ Sr NMR spectra of	152
	stationary samples at $B_0 = 21.14$ T.	
6.2	Crystal structure information for strontium compounds.	156
6.3	⁸⁷ Sr chemical shift tensors calculated using CASTEP.	158
6.4	Experimental and calculated ⁸⁷ Sr NMR parameters for inorganic strontium	161
	compounds.	
6.5	Experimental and calculated ⁸⁷ Sr NMR parameters for strontium compounds	163
	containing organic ligands.	
6.6	Experimental and calculated ⁸⁷ Sr NMR parameters for SrBr ₂ ·6H ₂ O, SrCl ₂ ·6H ₂ O	164
	and SrCO ₃ . Estimated isotropic magnetic shielding values were calculated using	
	CASTEP.	
6.7	Calculated ⁸⁷ Sr NMR parameters for small molecules in the gas phase. DFT	198
	calculations performed with ADF used the BP86 functional and the ZORA/QZ4P	
	basis set. $Q(^{87}Sr) = 30.5 \text{ fm}^2$.	

6.8Select NMR properties of the group II nuclei.201

List of Figures

- Classical angular momentum of a) an object rotating about an external rotation
 axis, and b), an object rotating about an internal rotation axis corresponding to the
 object's centre of mass.
- 2.2 Spatial quantization of angular momentum for a particle with spin I = 1. 11
- 2.3 Nuclear spin periodic table depicting the nuclear spin quantum numbers of the 12 NMR-active isotopes with the highest natural abundance. The most stable NMR-active nuclides of synthetic elements are also included. Spin-1/2 isotopes are highlighted for clarity.
- 2.4 Illustration of the ZYZ convention for tensor rotation. 15
- 2.5 Nuclear spin angular momentum orientations (I = 3/2) in a magnetic field as a 17 result of the Zeeman interaction.
- 2.6 Dynamic magnetic field (B₁) in the *x-y* plane represented by a) a plane wave, and20b) two counter-rotating vectors.
- 2.7 The Bloch pulse sequence, including a) the RF pulse ($\approx \mu s$), b) a short delay to 21 allow for probe ringdown ($\approx \mu s$), c) FID acquisition ($\approx ms$ to s), and d) a recycle delay allowing the Boltzmann equilibrium to re-establish ($\approx ms$ to hours).
- 2.8 Solid-state NMR powder patterns due to anisotropic magnetic shielding.
 25 Simulation parameters are δ_{iso} = 0 ppm; Ω = 200 ppm. Figure shows cases with three unique tensor components (a and b), as well as the case of axial symmetry (c).
- 2.9 Oblate (a), spherical (b), and prolate (c) nuclear charge distributions. Quadrupolar 28 nuclei are (a) and (c), while (b) represents a spin-1/2 nucleus.

xviii

- 2.10 Energy levels of a spin-3/2 nucleus in a strong magnetic field. The $m_I = 1/2$ to m_I 31 = -1/2 transition is affected by the second-order perturbative correction to the Zeeman energy. Note the perturbations to the Zeeman energy are not shown to scale.
- 2.11 Solid state NMR powder patterns of the central transition of a half-integer 33 quadrupolar nucleus as modeled as the 2nd order perturbation of the Zeeman energy. NMR parameters are as follows: I = 3/2, $C_Q = 3.0$ MHz; $\delta_{iso} = 25$ ppm, $v_0 = 80$ MHz, 50 Hz line broadening.
- 2.12 Spin-lattice relaxation of nuclei with $T_1 = 1.0$ s. After 5 T_1 , $M_z = 0.993 M_0$. 36
- 2.13 Spin-spin relaxation of nuclei with $T_2 = 1.0$ s.
- 2.14 Vector diagram depicting simultaneous T_1 and T_2 relaxation. The system is at equilibrium (a) and is perturbed by a 90_x° pulse (b). After a period of time much less than 5 T_1 , M_z has begun to recover, whilst M_{xy} begins to dephase (c). This continues over time (d) until M_{xy} reaches zero (e). It is typical for M_{xy} to reach zero before M_z fully recovers. After a period of time greater than 5 T_1 , M_z has effectively reached equilibrium once more (f).
- 2.15 The spin echo pulse sequence.
 2.16 The QCPMG pulse sequence.
 2.17 The WURST echo pulse sequence.
 3.1 ⁷⁵As MAS NMR spectra of KAsF₆ recorded at different temperatures. Spectra 61 were recorded with (lower traces) and without (upper traces) ¹⁹F decoupling. Spectra are shown together with simulated spectra calculated using parameters contained in Table 3.1. Insets show corresponding ¹⁹F MAS NMR spectra.

37

- 3.2 ¹²¹Sb and ¹²³Sb MAS NMR spectra of KSbF₆ recorded for the low temperature 62 phase (II) at 293 K and for the high temperature phase (I) at 343 K. Spectra were recorded with (lower traces) and without (upper traces) ¹⁹F decoupling. Experimental spectra are shown together with simulated spectra calculated using parameters contained in Table 3.2.
- 3.3 ¹²¹Sb MAS NMR spectra recorded with broadband ¹⁹F decoupling upon gradual 63 heating of the KSbF₆ sample. (II \rightarrow I) phase transition occurs at 301 K and is accompanied by abrupt changes both in C_Q and η (see Table 3.2 for NMR parameters used in simulations). Similar effects were observed in corresponding ¹²³Sb MAS NMR spectra of this compound (not shown).
- ¹⁹F MAS NMR spectra of KSbF₆ recorded for the low temperature phase (II) at
 ²⁹³ K and for the high temperature phase (I) at 343 K. Both spectra are shown
 together with simulated spectra calculated using parameters contained in Table
 3.2.
- 3.5 Arsenic-75 NMR spectrum of solid polycrystalline KAsF₆ at 386 ± 1 K acquired 65 with ¹⁹F decoupling at $B_0 = 9.4$ T. The distortions on either side of the peak are decoupling artifacts.
- 3.6 Nutation curves for 0.5 M NaAsF₆ in CD₃CN at room temperature (upper trace) 69 and solid polycrystalline KAsF₆ at 393 K (lower trace). Pulse widths are in μs. The 90° pulse widths were determined to be 10.75 μs and 10.5 μs, respectively. Note that if the spectrum of solid KAsF₆ included signal from the central transition only, the determined 90° pulse width would be approximately half of that determined in solution. The slight discrepancy between the solid and solution

XX

90° pulse values is likely due to magnetic susceptibility differences between samples.

- 4.1 Experimental (lower trace) and simulated (upper trace) ⁷⁵As NMR spectra of 87 AsPh₄Br acquired at 21.14 T using the quadrupolar echo pulse sequence (90°- τ_1 -90°- τ_2 -acquire). The same model parameters fit ⁷⁵As NMR spectra recorded for this compound at 11.75 T (not shown).
- 4.2 Experimental (lower trace) and simulated (upper trace) ⁷⁵As NMR spectra of 88 arsenobetaine bromide acquired at 21.14 T using the quadrupolar echo pulse sequence.
- 4.3 Experimental (middle left and lower traces) and simulated (upper traces) ¹²¹Sb
 90 NMR spectra of KSb(OH)₆ acquired at 21.14 T (left) and 11.75 T (right). Lower traces acquired using the WURST-QCPMG pulse sequence, middle trace acquired using a quadrupolar echo.
- 4.4 Experimental (lower trace) and simulated (upper trace) ¹²³Sb NMR spectra of 91
 KSb(OH)₆ acquired at 21.14 T using the WURST-QCPMG pulse sequence.
- 4.5 Antimony-121 NMR spectra of SbPh₄Br acquired at a field strength of 21.14 T.
 93 Experimental skyline projection created from WURST echo spectra (lower trace) and simulated spectrum (upper trace).
- 4.6 QCPMG (lower trace), spin echo (middle trace) and simulated (upper trace) ¹²¹Sb 94
 NMR spectra of SbPh₄Br acquired at 21.14 T. The ¹²¹Sb NMR spectrum was simulated using WSolids1.
- 5.1 Experimental and simulated ⁷⁵As NMR spectra of powdered $Ph_3AsB(C_6F_5)_3$, 123 Ph_3AsBH_3 , and Ph_3As samples. Spectra were acquired using the WURST-

QCPMG pulse sequence with proton decoupling at $B_0 = 21.14$ T and simulated using QUEST software. See Tables 5.3 and 5.4 for the simulation parameters.

- 5.2 Experimental and simulated ⁷⁵As NMR spectra of powdered Me₃AsB(C₆F₅)₃, 124 Et₃AsB(C₆F₅)₃, Ph₃AsB(C₆F₅)₃, Me₃AsBPh₃, and Ph₃AsBPh₃ samples. Spectra were acquired using the WURST-QCPMG pulse sequence with proton decoupling at $B_0 = 21.14$ T and simulated using the QUEST program.
- 5.3 Experimental (lower traces) and simulated (upper traces) ⁷⁵As NMR spectra of 125 solid polycrystalline triphenylarsine acquired at $B_0 = 21.14$ T with higher definition quadrupolar singularities using the WURST-QCPMG pulse sequence. The QUEST program was used to carry out the simulation. The total spectral breadth is ca. 31.7 MHz.
- 5.4 Experimental (lower traces) and simulated (upper traces) solid-state ¹¹B MAS 136 NMR spectra acquired at two magnetic field strengths using a Bloch pulse sequence with proton decoupling. From top to bottom, compounds studied are Me₃AsB(C₆F₅)₃, Et₃AsB(C₆F₅)₃, Ph₃AsB(C₆F₅)₃, Me₃AsBPh₃, and Ph₃AsBPh₃. See Table 5.3 for the simulation parameters. Asterisks on spectra of compounds Me₃AsBPh₃ and Ph₃AsBPh₃ indicate the position of a spinning sideband assigned to free BPh₃.
- 5.5 Experimental (lower traces) and simulated (upper traces) ¹¹B MAS NMR spectra 137 of powdered Ph₃AsBH₃ acquired at three different magnetic field strengths. See Table 5.3 for simulation parameters.
- 6.1 Strontium-87 NMR spectra of stationary (upper traces) and MAS (lower traces) 166 SrF_2 , $SrCl_2$, SrO, SrS, and $SrTiO_3$. Spectra were acquired at $B_0 = 21.14$ T.

Parameters used to simulate these spectra (simulations not shown) are summarized in Table 6.4. All scales are in ppm. Note that with the exception of SrF₂, these spectra were referenced to 1 M Sr(NO₃)₂ (aq) at δ (⁸⁷Sr) = 0.0 ppm. Parameters in Table 6.4 have been corrected to reflect δ (⁸⁷Sr) of 0.5 M SrCl₂ in D₂O at 0.0 ppm.

- 6.2 Experimental (lower traces) and simulated (upper traces) ⁸⁷Sr NMR spectra of 169 stationary solid powdered samples of $Sr(NO_3)_2$, $SrWO_4$, and $SrMoO_4$. Experimental spectra were acquired at $B_0 = 21.14$ T using the quadrupolar echo or WURST-QCPMG pulse sequences. Simulations were performed with the QUEST program. Parameters used in the simulations are summarized in Table 6.4.
- 6.3 Strontium coordination geometry and electric field gradient tensor orientation for 170 SrMoO₄ and Sr(NO₃)₂. $V_{ZZ}(^{87}Sr)$ in SrMoO₄ lies parallel to the *c*-axis, directed out of the plane of the page. V_{ZZ} in Sr(NO₃)₂ lies along a 3-fold rotation axis (green arrow). SrMoO₄ and SrWO₄ are isostructural.
- 6.4 Experimental (lower traces) and simulated (upper traces) ⁸⁷Sr NMR spectra of 175 stationary powdered samples of SrZrO₃, SrSnO₃, SrSO₄, and SrCrO₄. Experimental spectra were acquired at $B_0 = 21.14$ T with the WURST-QCPMG pulse sequence. Parameters used in the simulations are summarized in Table 6.4.
- 6.5 Experimental (lower traces) and simulated (upper traces) ⁸⁷Sr NMR spectra of 176 stationary powdered samples of strontium malonate, $Sr(ClO_4)_2 \cdot 3H_2O$, and $Sr(NO_2)_2 \cdot H_2O$. Experimental spectra were acquired at $B_0 = 21.14$ T using the WURST-QCPMG pulse sequence. Asterisks show the location of impurities

(SrCO₃ and SrCl₂· $6H_2O$ for strontium malonate and strontium nitrite monohydrate, respectively). Parameters used in the simulations are summarized in Tables 6.4 and 6.5.

6.6 Experimental (lower traces) and simulated (upper traces) ⁸⁷Sr NMR spectra of 177 stationary powdered samples of SrBr₂ and SrI₂. Experimental spectra were acquired at $B_0 = 21.14$ T with either the WURST-QCPMG or quadrupole echo pulse sequences. The ⁸⁷Sr NMR spectrum of SrBr₂ includes signal from the impurity Sr(NO₃)₂ (marked with asterisks).

6.7 Experimental (lower trace) and simulated (upper trace) ⁸⁷Sr NMR spectra of a 178 stationary powdered sample of Sr(NO₂)₂·H₂O. The simulation includes the ⁸⁷Sr NMR signal from SrCl₂·6H₂O (sample impurity) at 7% intensity. The SrCl₂·6H₂O central transition and a discontinuity from a satellite transition overlap with the Sr(NO₂)₂·H₂O central transition.

- 6.8 Experimental (lower trace) and simulated (upper trace) ⁸⁷Sr NMR spectra of 179 SrAl₂O₄. The crystal structure for SrAl₂O₄ indicates two unique strontium sites, and the ⁸⁷Sr NMR spectrum is correspondingly a sum of two overlapping NMR powder patterns with similar EFG and CS tensor parameters. The simulated NMR spectrum was generated using QUEST and contains spectral contributions from the central ($m_I = 1/2$ to -1/2) and satellite transitions.
- 6.9 Unit cell for celestine, SrSO₄. Oxygen atoms are shown in red, and sulfur atoms
 180 are shown in yellow. Strontium atoms at the top left and bottom right of the figure are related by a center of inversion, as are the two strontium atoms at the top right and bottom left of the image.

- 6.10 Central portion of the ⁸⁷Sr NMR spectrum of a single crystal of celestine, SrSO₄, 181 at a random orientation in B_0 . The two peaks present for each spectroscopic transition correspond to two sets of magnetically nonequivalent strontium atoms in the celestine unit cell (Figure 6.9).
- 6.11 Experimental (lower traces) and simulated (upper traces) ⁸⁷Sr NMR spectra of 186 stationary solid powdered samples of strontium hexafluoro-2,4-pentanedionate, strontium oxalate, strontium acetate hemihydrate, and strontium acetylacetonate monohydrate. Experimental spectra were acquired at $B_0 = 21.14$ T using the quadrupolar echo and WURST-QCPMG pulse sequences. Simulations were performed using the QUEST program. Parameters used in the simulation are summarized in Table 6.5.
- 6.12 Experimental (lower traces) and simulated (upper traces) ⁸⁷Sr NMR spectra of 187 solid powdered samples of SrCl₂·6H₂O, SrBr₂·6H₂O, and SrCO₃. Experimental spectra were acquired at $B_0 = 21.14$ T using a quadrupolar echo. Simulated spectra were generated using WSolids1. Spectra acquired under MAS conditions (left) show orientation-dependent line shape effects from the quadrupolar interaction (second-order correction to the Zeeman energy), whereas spectra of stationary samples (right) show line shape contributions from both quadrupolar coupling and chemical shift anisotropy. Blue dotted lines indicate simulated ⁸⁷Sr NMR spectra that only include quadrupolar effects derived from MAS spectra for comparison. Parameters used in the simulations are summarized in Table 6.6.
- 6.13 Strontium-87 EFG and magnetic shielding tensor orientations in SrCO₃ and 188 SrCl₂·6H₂O, as calculated by CASTEP. In SrCO₃, V_{YY} and σ_{11} are parallel to the

a-axis, whereas V_{ZZ} and σ_{11} are parallel to the *c*-axis in SrCl₂·6H₂O. SrCl₂·6H₂O has axially symmetric EFG and magnetic shielding tensors.

- 6.14 Correlation between calculated isotropic ⁸⁷Sr magnetic shielding constants and 191 experimentally determined isotropic ⁸⁷Sr chemical shift values listed in Table 6.4 (Except SrI₂). $\sigma_{iso}(^{87}Sr) = 3007 \text{ ppm} 1.118 \delta_{iso}(^{87}Sr), R^2 = 0.9528$. The experimental ⁸⁷Sr NMR chemical shift values are referenced to 0.5 M SrCl₂ in D₂O at $\delta_{iso} = 0.0$ ppm.
- 6.15 Correlation between calculated and experimental $C_Q(^{87}Sr)$ values. $C_Q(^{87}Sr)_{calc} = 192$ 0.9591 $C_Q(^{87}Sr)_{expt} - 0.0105$ MHz, $R^2 = 0.9571$.
- 6.16 Trends in ⁸⁷Sr magnetic shielding. Coordination numbers for each compound are 193 those given in the crystallography literature (see text).
- 6.17 Chemical shift ranges of the primary NMR-active group II elements. The 202 chemical shift of the group II metal oxide, M(II)O, is represented by a vertical black line. The isotropic chemical shift values for MgO, CaO, and BaO are with reference to a 1 M aqueous solution of the corresponding metal chloride, M(II)Cl₂ at $\delta_{iso} = 0$ ppm. The isotropic chemical shift of SrO is with reference to a 0.5 M solution of SrCl₂ in D₂O at $\delta_{iso} = 0$ ppm.

List of Symbols

$ar{ar{A}}$	3×3 tensor
\bar{A}^{PAS}	3×3 tensor in its principal axis system
Â	Eigenfunction (general)
A	Amplitude
A _{mn}	Element of tensor $\overline{\overline{A}}(m, n = x, y, z)$
A _{MM}	Element of tensor $\overline{\overline{A}}^{PAS}$ (M = X, Y, Z)
A _{iso}	Isotropic value of \bar{A}^{PAS}
ΔA	Anisotropy in A
а	Eigenvalue (general)
B_0	Applied static magnetic field strength
B_1	Applied dynamic magnetic field strength
$B_{\rm local}$	Magnetic field strength at a specific location
b_{mn}	Constant
С	Constant
$C_{\rm Q}$	Nuclear quadrupolar coupling constant
C _{mn}	Constant
\overline{D}	Direct dipolar coupling tensor
$\overline{\overline{D}}{}^{PAS}$	Direct dipolar coupling tensor in its principal axis system
Ε	Energy
е	Elementary charge
eq	Electric field gradient

- \mathcal{H}_{DD} Direct dipolar Hamiltonian
- \mathcal{H}_{I} Indirect spin-spin Hamiltonian
- \mathcal{H}_{MS} Magnetic shielding Hamiltonian
- \mathcal{H}_{NMR} NMR Hamiltonian
- \mathcal{H}_{O} Quadrupolar Hamiltonian
- \mathcal{H}_0^1 First-order correction to the Zeeman energy due to the quadrupolar interaction
- \mathcal{H}_0^2 Second-order correction to the Zeeman energy due to the quadrupolar interaction
- \mathcal{H}_{RF} Radiofrequency Hamiltonian
- \mathcal{H}_{Z} Zeeman Hamiltonian
- \mathcal{H}_{ZO} Zeeman-quadrupolar Hamiltonian
 - *h* Planck constant
 - \hbar Reduced Planck constant, $h/2\pi$
 - *I* Moment of inertia
 - *I* Nuclear spin quantum number
 - \bar{I} Angular momentum operator (vector) for I nuclei
- \hat{I}_n n^{th} component of the angular momentum operator for *I* nuclei
- \hat{I}_+ Raising operator for *I* nuclei
- \hat{I}_{-} Lowering operator for *I* nuclei
- $\overline{\overline{I}}$ Indirect spin-spin coupling tensor
- \overline{I}^{PAS} Indirect spin-spin coupling tensor in its principal axis system
- ^{x}J Indirect spin-spin coupling constant over x bonds
- *J*_{iso} Isotropic indirect spin-spin coupling constant

ΔI	Anisotropy	in J
_,	1 moon op j	

k Boltzmann constant

 $\vec{L}_{classical}$ Classical angular momentum

- \hat{L} Operator for the total angular momentum
- \hat{L}_n Operator for the *n*th component of the total angular momentum (*n* = *x*, *y*, *z*)
- *l* Angular quantum number
- \overline{M} Bulk (net) magnetization
- M_0 Magnitude of the net magnetization at equilibrium
- M_n Magnitude of the net magnetization in the *n*-direction (n = x, y, z)
- M_{xy} Magnitude of the net magnetization in the x-y plane
- m Mass
- *m* Azimuthal/magnetic quantum number
- m_I Nuclear spin state
- *n* Principal quantum number
- *Q* Nuclear electric quadrupole moment
- *r* Distance
- \vec{r} Distance (vector quantity)
- \overline{R} Rotation matrix

$R(\alpha, \beta, \gamma)$ Rotation matrix

- $R_{\rm DD}$ Direct dipolar coupling constant
- $R_{\rm eff}$ Effective dipolar coupling constant
- \bar{S} Angular momentum operator (vector) for *S* nuclei

- \hat{S}_n n^{th} component of the angular momentum operator for S nuclei
- \hat{S}_+ Raising operator for *S* nuclei
- \hat{S}_{-} Lowering operator for *S* nuclei
- T Temperature
- T_1 Spin-lattice relaxation time constant
- T_2 Spin-spin relaxation time constant
- T_2^* Effective spin-spin relaxation time constant
- t Time
- \vec{v} Velocity
- \overline{V} Electric field gradient tensor
- \overline{V}^{PAS} Electric field gradient tensor in its principal axis system
- *V* Electrostatic potential
- V_{mn} Element of the electric field gradient tensor, $\overline{V}(m, n = x, y, z)$
- V_{ii} Element of the electric field gradient tensor, \overline{V}^{PAS} (*i* = X, Y, Z)
- ΔV Anisotropy in the electric field gradient
- *x* Position
- *x*, *y*, *z* Principal Cartesian directions (laboratory frame)
- \overline{ZQ} Zeeman-quadrupolar matrix
- zq_{IS} Elements of the Zeeman-quadrupolar matrix
- α, β, γ Euler angles relating principal directions of two NMR interaction tensors
 - β Angle between NMR sample rotor and B_0
 - γ Gyromagnetic ratio

- Δ Sweep range of WURST pulse
- δ Chemical shift
- $\bar{\delta}$ Chemical shift tensor
- $\bar{\delta}^{PAS}$ Chemical shift tensor in its principal axis system
- δ_{mn} Element of the chemical shift tensor, $\overline{\delta}(m, n = x, y, z)$
- δ_{jj} Element of the chemical shift tensor, $\bar{\delta}^{PAS}$ (*j* = 1, 2, 3)
- δ_{iso} Isotropic chemical shift
- δ_{aniso} Anisotropy in chemical shift
 - η Asymmetry parameter
 - Θ Angle between NMR interaction principal direction(s) and the axis of sample rotation (MAS)
 - θ Angle between NMR interaction principal direction(s) and B_0
 - θ_i Angle between the magnetic shielding tensor principal directions and B_0
 - $\theta_{\rm p}$ Tip angle
 - ϑ Polar angle between the dipolar vector and B_0
 - κ Skew of the chemical shift or magnetic shielding tensor
 - λ Wavelength
 - μ Nuclear magnetic moment
- μ_0 Magnetic constant (permeability of free space)
- v Frequency
- ν_0 Larmor frequency
- v_1 Nuclear precession frequency about B_1
- v_a Nuclear precession frequency in the rotating frame of reference

v_{off} Centre freque	ency of WURST pulse
-------------------------	---------------------

Vo	Ouadrupo	lar fred	uencv
V0	Zuuurupo	iui iiv	Juoney

- $v_{reference}$ Reference resonance frequency
- v_{sample} Sample resonance frequency
 - $\nu_{\rm T}$ Transmitter frequency
- $\Delta v_{\rm CT}$ Central transition breadth
 - $\bar{\sigma}$ Magnetic shielding tensor
- $\bar{\sigma}^{PAS}$ Magnetic shielding tensor in its principal axis system
- σ_{mn} Element of the magnetic shielding tensor, $\overline{\sigma}(m, n = x, y, z)$
- σ_{ij} Element of the magnetic shielding tensor, $\bar{\sigma}^{PAS}$ (*j* = 1, 2, 3)
- $\sigma_{\rm iso}$ Isotropic magnetic shielding
- σ_{aniso} Anisotropy in magnetic shielding
- τ Time delay (in pulse sequences)
- $\tau_{\rm p}$ Pulse length
- φ Azimuthal angle between the dipolar vector and B_0
- ϕ Phase
- Ψ Wave function
- Ω Span of the chemical shift or magnetic shielding tensor
- ω Angular velocity
- ω Frequency (in radians)
- ω_0 Larmor frequency
- ω_1 Pulse amplitude

 ω_{\max} Maximum pulse amplitude

List of Abbreviations

ADF	Amsterdam density functional
CASTEP	Cambridge serial total energy package
CS	Chemical shift
CSA	Chemical shift anisotropy
DFT	Density functional theory
EFG	Electric field gradient
GIPAW	Gauge-including projector augmented wave
QCPMG	Quadrupolar Carr-Purcell Meiboom-Gill
QUEST	Quadrupolar exact software
MAS	Magic angle spinning
MS	Magnetic shielding
NMR	Nuclear magnetic resonance
NQR	Nuclear quadrupole resonance
PAS	Principal axis system
RDC	Residual dipolar coupling
RF	Radio frequency
WURST	Wideband, uniform rate, smooth truncation
ZQ	Zeeman-quadrupolar

Chapter 1

Introduction

1.1 Background and Motivation

Though I worked on many different projects with different goals throughout my time in the Wasylishen lab, my focus shifted to one problem in particular. That is, the acquisition and interpretation of NMR spectra of traditionally difficult quadrupolar nuclei. NMR spectroscopy has long since been established as an invaluable characterization technique in the fields of chemistry and physics, but the majority of NMR experiments are still performed on a relatively small subset of elements. In part, this is due to the ubiquity of some elements in nature and chemistry (e.g., hydrogen, carbon, nitrogen, oxygen and silicon), and in part, this is due to the relative difficulty of studying many NMR-active nuclei. There exist several NMR-active nuclei for which few, if any, NMR data are reported. Over the past ten years, many advances in NMR software and pulse sequences have opened up new opportunities to expand the NMR literature to include more of the NMR periodic table. Ultimately, one would like to be able to study virtually any NMR-active nucleus in any molecular or crystallographic environment and obtain NMR parameters useful for the determination of structure, bonding, and symmetry.

The majority of stable, NMR-active elements are quadrupolar,¹ meaning that in addition to interacting with the external magnetic field and the magnetic moments of other, nearby nuclei, they also possess a nuclear electric quadrupole moment, Q, which interacts with the surrounding electric field gradient (EFG). The nuclear quadrupolar coupling constant is dependent on the product of the nuclear quadrupole moment and the magnitude of the EFG. This interaction is often much larger in magnitude than nuclear spin-spin interactions, causing significant spectral broadening and increasing nuclear relaxation rates. This can make spectral acquisition challenging, if not impossible.

The main purpose of the research contained in this thesis is to demonstrate the feasibility of studying traditionally "challenging" quadrupolar nuclei, which have historically been largely overlooked due to unfavorable NMR properties, e.g., large nuclear electric quadrupole moments or low gyromagnetic ratios. Thus, initial studies of nuclei possessing large *Q* values (e.g., ⁷⁵As, ^{121/123}Sb) in favorable environments, e.g., highly symmetric environments with small EFG tensor parameters, are highlighted at the beginning of this thesis. Following this, the work is extended to nuclei in non-symmetric environments in which the EFG is relatively large. Finally, the ⁸⁷Sr nucleus is studied in a variety of crystallographic environments. This nucleus presents the additional challenges of possessing low natural abundance and a low gyromagnetic ratio in addition to possessing a moderate nuclear quadrupole moment. In this research, it is demonstrated that several traditionally challenging nuclei (e.g., ⁷⁵As, ⁸⁷Sr, ^{121/123}Sb) can now be studied with relative ease, and under the right circumstances, a variety of nuclear spin interactions for these nuclei may be quantified. That being said, it is also apparent based on this

2

body of literature that the ability to successfully study these nuclei is contingent on the availability of the most modern NMR technology, i.e., broadband signal-to-noise enhancing pulse sequences and high magnetic field strengths. The majority of the work collected in this thesis would have been extremely difficult, if not impossible, to carry out without access to the $B_0 = 21.14$ T magnet at the Canadian National Ultrahigh-Field NMR Facility for Solids in Ottawa, ON.²

As such little NMR data exist on the majority of the nuclei featured in this thesis, spectroscopic parameters obtained via other methods of spectroscopy and by means of quantum chemistry calculations were extremely valuable. In particular, I made use of nuclear quadrupolar coupling constants determined experimentally from microwave and nuclear quadrupole resonance (NQR) spectroscopy, as well as nuclear spin-rotation and nuclear magnetic shielding constants obtained from microwave and molecular beam resonance spectroscopy. Calculated estimates of NMR parameters based on X-ray crystal structures of potential molecules for study were necessary in order to gauge the feasibility of acquiring NMR spectra in many cases. Quantum chemistry calculations were also necessary in most cases to determine the signs of NMR parameters. The aforementioned NMR parameters obtained from other fields of spectroscopy served as benchmark values with which to test my computational methods. Occasionally, the results of microwave or NQR experiments were used to verify experimental NMR spectroscopy results. It soon became obvious that though my research focused specifically on the NMR spectroscopy of solids, my knowledge of spectroscopy would have to be multidisciplinary. To this end, I have co-authored a book chapter on the connection between microwave, molecular beam resonance, and NMR spectroscopy.³
The nuclei that I have chosen as examples to explore the capabilities of modern NMR spectroscopy were selected first and foremost for their NMR properties, but consideration was also given to their role in the field of chemistry as a whole. For example, the arsenic nucleus is featured heavily in this thesis. This element has a unique place in human history, pop culture, and environmental chemistry. It is my hope that the insights gained in this research will be later applied to studying arsenic- and/or strontium-containing species which play a larger role in the environment and in human health.

1.2 Overview of Projects

1.2.1 Assessing Distortion of the AF_6^- (A = As, Sb) Octahedra in Solid Hexafluorometallates(V) via NMR Spectroscopy

Arsenic and antimony hexafluoride salts have played an important role in the history of both solution and solid-state NMR spectroscopy. Here, solid polycrystalline KAsF₆ and KSbF₆ have been studied via high-resolution variable temperature ¹⁹F, ⁷⁵As, ¹²¹Sb, and ¹²³Sb solid-state NMR spectroscopy at high magnetic field ($B_0 = 21.14$ T). Both KAsF₆ and KSbF₆ undergo solid-solid phase transitions at approximately 375 and 301 K, respectively. We use variable temperature NMR experiments to explore the effects of crystal structure changes on NMR parameters. $C_Q(^{75}As)$ values for KAsF₆ at 293, 323, and 348 K are -2.87 ± 0.05 MHz, $-2.58 \pm$ 0.05 MHz, and -2.30 ± 0.05 MHz, respectively. The signs of these values are determined via DFT calculations. In the higher temperature cubic phase, $C_Q(^{75}As) = 0$ Hz, consistent with the point-group symmetry at the arsenic nucleus in this phase. In contrast, C_Q values for ¹²¹Sb and ¹²³Sb in the cubic phase of KSbF₆ are nonzero; e.g., at 293 K, $C_Q(^{121}Sb) = 6.42 \pm 0.10$ MHz, and $C_Q(^{123}Sb) = 8.22 \pm 0.10$ MHz. In the higher temperature tetragonal phase (343 K) of KSbF₆, these values are 3.11 ± 0.20 MHz and 4.06 ± 0.20 MHz, respectively. CASTEP calculations performed on the cubic and tetragonal structures support this trend. Isotropic indirect spin-spin coupling constants are ${}^{1}J({}^{75}\text{As}, {}^{19}\text{F}) = -926 \pm 10$ Hz (293 K) and -926 ± 3 Hz (348 K), and ${}^{1}J({}^{121}\text{Sb}, {}^{19}\text{F}) = -1884 \pm 3$ Hz (293 K), and -1889 ± 3 Hz (343 K). Arsenic-75 and antimony-121,123 chemical shift values show little variation over the studied temperature ranges.

1.2.2 Feasibility of Arsenic and Antimony NMR Spectroscopy in Solids: An Investigation of Some Group 15 Compounds

The feasibility of obtaining ⁷⁵As and ^{121/123}Sb NMR spectra for solids at high and moderate magnetic field strengths is explored. Arsenic-75 nuclear quadrupolar coupling constants and chemical shifts have been measured for arsenobetaine bromide and tetraphenylarsonium bromide. Similarly, ^{121/123}Sb NMR parameters have been measured for tetraphenylstibonium bromide and potassium hexahydroxoantimonate. The predicted pseudotetrahedral symmetry at arsenic and the known trigonal bipyramidal symmetry at antimony in their respective tetraphenyl-bromide "salts" are reflected in the measured ⁷⁵As and ¹²¹Sb nuclear quadrupole coupling constants, $C_0(^{75}\text{As}) = 7.8 \text{ MHz}$ and $C_0(^{121}\text{Sb}) = 159 \text{ MHz}$, respectively. Results of density functional theory quantum chemistry calculations for isolated molecules using ADF and first-principles calculations using CASTEP, a gauge-including projector augmented wave (GIPAW) method to deal with the periodic nature of solids, are compared with experiment. Although the experiments can be time consuming, measurements of ⁷⁵As and ¹²¹Sb NMR spectra (at 154 and 215 MHz, respectively, i.e., at $B_0 = 21.14$ T) with linewidths in excess of 1 MHz are feasible using uniform broadband excitation shaped pulse techniques (e.g., WURST and WURST-QCPMG).

1.2.3 Spin-spin Coupling Between Quadrupolar Nuclei in Solids: ¹¹B-⁷⁵As Spin Pairs in Lewis Acid-Base Adducts

Solid-state ¹¹B NMR measurements of Lewis acid-base adducts of the form R₃AsBR'₃ (R = Me, Et, Ph; R' = H, Ph, C₆F₅) were carried out at several magnetic field strengths (e.g., B_0 = 21.14, 11.75, and 7.05 T). The ¹¹B NMR spectra of these adducts exhibit residual dipolar coupling under MAS conditions, allowing for the determination of effective dipolar coupling constants, $R_{\rm eff}({}^{75}\text{As}, {}^{11}\text{B})$, as well as the sign of the ${}^{75}\text{As}$ nuclear quadrupolar coupling constants. Values of $R_{\text{eff}}(^{75}\text{As},^{11}\text{B})$ range from 500 to 700 Hz. Small isotropic J-couplings are resolved in some cases, and the sign of ${}^{1}J({}^{75}As, {}^{11}B)$ is determined. Values of $C_{0}({}^{75}As)$ measured at $B_{0} =$ 21.14 T for these triarylborane Lewis acid–base adducts range from -82 ± 2 MHz for Et₃AsB(C_6F_5)₃ to -146 ± 1 MHz for Ph₃AsBPh₃. For Ph₃AsBH₃, two crystallographically nonequivalent sites are identified with $C_0(^{75}\text{As})$ values of -153 and -151 ± 1 MHz. For the uncoordinated Lewis base, Ph₃As, four ⁷⁵As sites with C_0 (⁷⁵As) values ranging from 193.5 to 194.4 ± 2 MHz are identified. At these applied magnetic field strengths, the ⁷⁵As quadrupolar interaction does not satisfy high-field approximation criteria, and thus, an exact treatment was used to describe this interaction in ¹¹B and ⁷⁵As NMR spectral simulations. NMR parameters calculated using the ADF and CASTEP program packages support the experimentally derived parameters in both magnitude and sign. These experiments add to the limited body of literature on solid-state ⁷⁵As NMR spectroscopy and serve as examples of spin-spin-coupled quadrupolar spin pairs, which are also rarely treated in the literature.

1.2.4 Solid-State ⁸⁷Sr NMR Spectroscopy at Natural Abundance and High Magnetic Field Strength

Twenty-five strontium-containing solids were characterized via ⁸⁷Sr NMR spectroscopy at natural abundance and high magnetic field strength ($B_0 = 21.14$ T). Strontium nuclear quadrupole coupling constants in these compounds are sensitive to the strontium site symmetry and range from 0 to 50.5 MHz. An experimental ⁸⁷Sr chemical shift scale is proposed, and available data indicate a chemical shift range of approximately 550 ppm, from –200 to +350 ppm relative to Sr²⁺ (aq). In general, magnetic shielding increased with strontium coordination number. Experimentally measured chemical shift anisotropy is reported for stationary samples of solid powdered SrCl₂·6H₂O, SrBr₂·6H₂O, and SrCO₃, with $\delta_{aniso}(^{87}Sr)$ values of +28, +26, and –65 ppm, respectively. NMR parameters were calculated using CASTEP, a gauge including projector augmented wave (GIPAW) DFT-based program which addresses the periodic nature of solids using plane-wave basis sets. Calculated NMR parameters are in good agreement with those measured.

Chapter 2 Theoretical Background

2.1 Nuclear Spin Angular Momentum

2.1.1 Classical Angular Momentum

Given an object that is rotating about an external origin, the angular momentum,

 $\vec{L}_{classical}$, is described by the vector cross product⁴

$$\vec{L}_{classical} = \vec{r} \times m\vec{v}$$
 2.1

where \vec{r} is the distance between the object and the centre of rotation, *m* is the mass of the object, and \vec{v} is the linear velocity of the object (Fig. 2.1a).

Figure 2.1. Classical angular momentum of a) an object rotating about an external rotation axis, and b), an object rotating about an internal rotation axis corresponding to the object's centre of mass.

Alternatively, one can have an object rotating about its centre of mass (Figure 2.1b). In this case, $\vec{L}_{classical}$ is defined as⁴

$$\overline{L}_{classical} = I\omega \qquad 2.2$$

where *I* is the moment of inertia of the object, and ω is the angular velocity of the object. In this scenario, the angular momentum of the object is referred to as classical spin angular momentum. These two descriptions of classical angular momentum are interchangeable.

2.1.2 Quantum (Orbital) Angular Momentum

The term *quantum* (plural *quanta*) refers to the discrete nature of the energy of small objects, such as nuclei or electrons. Small objects can only possess specific values of angular momentum; their angular momentum is *quantized*.^{4,5} This is illustrated by the solutions to the Schrödinger equation⁶

$$\hat{A}\psi = a\psi \qquad 2.3$$

where \hat{A} is a quantum mechanical operator, ψ is an eigenfunction that satisfies the conditions of the Schrödinger equation, and a is the eigenstate corresponding to \hat{A} . The quantum mechanical operators we are concerned with for determining angular momentum are the square of the total angular momentum, \hat{L}^2 , and the z-component of the total angular momentum vector, \hat{L}_z . The eigenfunctions used in the Schrödinger equation with these operators are spherical harmonic functions, and the calculated eigenstates for these two operators are as follows,⁴

$$\hat{L}^2 |l,m\rangle = \hbar^2 l(l+1)|l,m\rangle \qquad (l=0,1,2,...)$$
2.4

$$\hat{L}_{z}|l,m\rangle = \hbar m|l,m\rangle$$
 (*m* = *l*, *l* - 1, *l* - 2, ..., -*l*) 2.5

where \hbar is the reduced Planck constant, $h/2\pi$ or 1.054 571 726(47) × 10⁻³⁴ J·s. The quantum numbers *l* and *m* indicate the quantized nature of the angular momentum. The quantum number

m, which represents the projection of the total angular momentum vector onto the *z*-axis, ranges from *l* to -l. The magnitude (length) of the total angular momentum vector is equal to $\hbar[l(l + 1)]^{1/2}$, or the square root of the eigenvalue for \hat{L}^2 . As indicated in Equation 2.5, there are 2l+1 possible values of *m*.

2.1.3 Quantum Spin Angular Momentum

Quantum mechanical treatment of spin angular momentum is mathematically similar to what we have described for orbital angular momentum. That is, the solutions to the Schrödinger equation are of the same form. Here, *I* represents the nuclear spin quantum number (analogous to *l*), and m_1 represents the nuclear spin state (analogous to *m*). For quantum numbers *I* and m_1 , the eigenvalues of the operators \hat{I}^2 and \hat{I}_z are analogously $\hbar^2[I(I + 1)]$, I = 0, 1/2, 1, 3/2, ...,and $\hbar m_I, m_I = I, I - 1, I - 2, ..., -I$, respectively (see Figure 2.2).⁴ Colloquially, *I* is called the "spin" or "spin number" of the particle. Leptons, protons, and neutrons possess I = 1/2, photons possess unit spin, and atomic nuclei possess a range of integral and half-integral spin numbers (vide infra).⁷ Classical spin is not perfectly analogous to the corresponding quantum mechanical descriptions, and the concept of spin is difficult to grasp.⁸⁻¹⁰ It is widely accepted that spin angular momentum is an intrinsic property of a quantum mechanical object.

Figure 2.2. Spatial quantization of spin angular momentum for a particle with spin I = 1.

2.1.4 Origin of Nuclear Spin Number

There is no straightforward method to determine the ground state nuclear spin number for a given nuclide, though there are a few rules when it comes to this.

- 1. If the number of protons and the number of neutrons are both even, I = 0.
- If the number of neutrons is odd and the number of protons is even, or vice versa,
 I will be half-integer.
- 3. If the number of both protons and neutrons is odd, *I* will be integer.

Collectively, the known elements feature nuclear spin quantum numbers ranging from I = 0 to I

= 9/2 (half-integer spins), or I = 7 (integer spins). See Figure 2.3 for more details.

1/2														1/2			
3/2	3/2											3/2	1/2	1	5/2	1/2	3/2
3/2	5/2										5/2	1/2	1/2	3/2	3/2		
3/2	7/2	7/2	5/2	7/2	3/2	5/2	1/2	7/2	3/2	3/2	5/2	3/2	9/2	3/2	1/2	3/2	9/2
5/2	9/2	1/2	5/2	9/2	5/2	6	5/2	1/2	5/2	1/2	1/2	9/2	1/2	5/2	1/2	5/2	1/2
7/2	3/2	7/2	7/2	7/2	1/2	5/2	3/2	3/2	1/2	3/2	1/2	1/2	1/2	9/2	1/2	5	
3/2		3/2															

5/2	7/2	5/2	7/2	5/2	3/2	3/2	5/2	7/2	7/2	1/2	5/2	7/2
3/2	7/2	5/2	1/2	5/2	9/2			7/2				

Figure 2.3. Nuclear spin periodic table depicting the nuclear spin quantum numbers of the NMR-active isotopes with the highest natural abundance. The most stable NMR-active nuclides of synthetic elements are also included. Spin-1/2 isotopes are highlighted for clarity.

2.1.5 Nuclear Magnetic Moments and the Gyromagnetic Ratio

Atomic nuclei are charged particles, thus a nucleus that possesses nuclear spin angular momentum also possesses a nuclear magnetic dipole moment.⁷ The magnetic moment of a nucleus is quantized analogously to the nuclear spin angular momentum. For a spin-1/2 nucleus, this magnetic moment can be oriented either parallel or antiparallel to the nuclear spin angular momentum. These two quantities are related by the equation,

$$\bar{\mu} = \gamma \hbar \bar{I}$$
 2.6

where $\bar{\mu}$ is the magnetic dipole moment of the nucleus, and γ is the gyromagnetic ratio. The magnitude of the gyromagnetic ratio is an intrinsic property of the nuclide, and γ is most often positive, denoting parallel alignment of the magnetic moment and spin angular momentum.

2.2 The NMR Hamiltonian

The Hamiltonian is the quantum mechanical operator corresponding to the total energy of a system. The NMR Hamiltonian consists of several terms that describe the way a nucleus interacts with its environment,^{11,12}

$$\mathcal{H}_{\rm NMR} = \mathcal{H}_{\rm Z} + \mathcal{H}_{\rm RF} + \mathcal{H}_{\rm O} + \mathcal{H}_{\rm MS} + \mathcal{H}_{\rm DD} + \mathcal{H}_{\rm I}$$
 2.7

where these terms, in order, represent the Zeeman interaction, the interaction between an oscillating magnetic field and the nucleus, the quadrupolar interaction, magnetic shielding, and the direct dipolar and indirect spin-spin interactions.

With the exception of the quadrupolar interaction, which does not affect nuclei with a spin number of I = 1/2, these interactions may affect every magnetically active nucleus in an NMR experiment to some extent. The Zeeman and RF interactions are referred to as external interactions as they are under the control of the experimentalist. The remaining interactions are referred to as internal interactions, and depend on the properties of the system under study, e.g., bond distances, molecular symmetry, and the intrinsic properties of the nuclides present. Internal interactions are orientation-dependent (anisotropic), i.e., they depend on the orientation of the crystallographic unit cell with respect to the applied magnetic (Zeeman) field. In a solid powder, crystallites are oriented randomly and the NMR spectrum consists of contributions from all orientations. In solution, rapid molecular tumbling changes the instantaneous orientation of molecules, and the magnitude of internal interactions contributing to NMR spectra are in most cases an average over every possible orientation, i.e., an isotropic value. Exceptions include partially ordered solutions such as liquid crystalline materials¹³ and molecules with anisotropic magnetic susceptibilities in high magnetic fields.¹⁴

In general, terms in the NMR Hamiltonian can be written in Cartesian coordinates in the laboratory frame as¹²

$$\mathcal{H}_{\mathsf{A}} = C\bar{I} \cdot \bar{\bar{A}} \cdot \bar{S} \tag{2.8}$$

$$\mathcal{H}_{A} = C(\hat{I}_{x}, \hat{I}_{y}, \hat{I}_{z}) \begin{bmatrix} A_{xx} & A_{xy} & A_{xz} \\ A_{yx} & A_{yy} & A_{yz} \\ A_{zx} & A_{zy} & A_{zz} \end{bmatrix} \begin{pmatrix} \hat{S}_{x} \\ \hat{S}_{y} \\ \hat{S}_{z} \end{pmatrix}$$
2.9

where *C* is a constant, \bar{I} and \bar{S} are vectors, and \bar{A} is a 3 × 3 tensor. The vector $\bar{I} = (\hat{I}_x, \hat{I}_y, \hat{I}_z)$ corresponds to the spin angular momentum of the observed nuclei, the vector \bar{S} describes what these nuclei are coupled to (e.g., the spin angular momentum of neigbouring nuclei *S*), and \bar{A} represents the manner in which they are coupled. In the case of internal NMR interactions, the elements of \bar{A} are molecular properties. The symmetric component of every internal NMR interaction tensor has a special axis system called the principal axis system (PAS) in which the tensor \bar{A} is diagonal.

$$\bar{A}^{PAS} = \begin{bmatrix} A_{XX} & 0 & 0\\ 0 & A_{YY} & 0\\ 0 & 0 & A_{ZZ} \end{bmatrix}$$
 2.10

Note that both the magnetic shielding and indirect spin-spin coupling tensors also possess an antisymmetric component.¹⁵ \bar{A}^{PAS} has a specific orientation within the molecular or crystallographic reference frame, which can be described by three Euler angles.¹⁶ The ZYZ convention¹² is used in this thesis. This involves, starting with the axes of \bar{A}^{PAS} coincident with the laboratory axes, rotation about *z* by the angle α , followed by rotating about the (new) *y* axis by the angle β and again about the new *z* direction by the angle γ (see Figure 2.4). Mathematically, this is equivalent to multiplication of the tensor by the rotation matrix $R(\alpha,\beta,\gamma)$,^{17,18}

$$R(\alpha,\beta,\gamma) = \begin{bmatrix} \cos\alpha\cos\beta\cos\gamma - \sin\alpha\sin\gamma & \sin\alpha\cos\beta\cos\gamma + \cos\alpha\sin\gamma & -\sin\beta\cos\gamma \\ -\cos\alpha\cos\beta\sin\gamma - \sin\alpha\cos\gamma & -\sin\alpha\cos\beta\sin\gamma + \cos\alpha\cos\gamma & \sin\beta\sin\gamma \\ \cos\alpha\sin\beta & \sin\alpha\sin\beta & \cos\beta \end{bmatrix}$$
2.11

if the laboratory frame is rotated away from the NMR interaction tensor (passive rotation).

The QUEST program¹⁹ is used to simulate the majority of the NMR spectra in this thesis. To quantify the Euler angles describing the relative orientation of the EFG and CS tensors, this program holds the EFG tensor coincident with the applied magnetic field, and rotates the applied magnetic field away from the chemical shift tensor using Equation 2.13.

Figure 2.4. Illustration of the ZYZ convention for tensor rotation.

The elements of \overline{A}^{PAS} are often represented using the Haeberlen-Mehring-Spiess convention,²⁰ though other conventions may be used (see Section 2.2.4). Note the magnitudes of the elements of \overline{A}^{PAS} are defined as $|A_{ZZ} - A_{iso}| \ge |A_{XX} - A_{iso}| \ge |A_{YY} - A_{iso}|$.

$$A_{iso} = \frac{1}{3}Tr\bar{A} = \frac{1}{3}(A_{XX} + A_{YY} + A_{ZZ})$$
 2.12

$$\Delta A = A_{\rm ZZ} - \frac{(A_{\rm XX} + A_{\rm YY})}{2}$$
 2.13

$$\eta = \frac{3}{2} \frac{(A_{\rm YY} - A_{\rm XX})}{\Delta A}$$
 2.14

Here, A_{iso} is the isotropic value of A, ΔA is the anisotropy in A, and η is the asymmetry parameter. In special cases where nuclei occupy molecular or crystallographic sites of high symmetry, NMR interaction tensor components are confined. E.g., in the presence of a C_n , $n \ge 3$ rotation axis at the nucleus, the interaction tensors are axially symmetric, and \overline{A}^{PAS} contains only two unique components (i.e., either $A_{XX} = A_{YY}$ or $A_{YY} = A_{ZZ}$). For nuclei at sites with, e.g., T_d or O_h point-group symmetry, $A_{XX} = A_{YY} = A_{ZZ}$.

2.2.1 The Zeeman Interaction

In the absence of an external magnetic field, spin states of the same absolute value are degenerate in energy (e.g., $\pm 1/2$, $\pm 3/2$, etc.). When nuclear spins couple to an external magnetic field this degeneracy is broken, and all spin states possess a unique energy dependent on the magnitude of the applied magnetic field (Figure 2.5). Most importantly, the $m_I = 1/2$ to $m_I = -1/2$ transition, which is the only available transition for nuclei with I = 1/2 and the most easily studied transition for half-integer quadrupolar nuclei, becomes accessible to spectroscopists. The latter case makes up the bulk of this work. The Zeeman interaction is described by its Hamiltonian,¹²

$$\mathcal{H}_{Z} = -\gamma (\hat{I}_{x}, \hat{I}_{y}, \hat{I}_{z}) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} B_{0,x} \\ B_{0,y} \\ B_{0,z} \end{pmatrix}$$
2.15

where B_0 is the strength of the static magnetic field. If the direction of this field is defined as the +*z* direction in the laboratory frame, i.e., $\overline{B}_0 = (0,0,B_0)$, the Hamiltonian is simplified.

$$\mathcal{H}_{Z} = -\gamma B_0 \hat{I}_Z \qquad 2.16$$

Figure 2.5. Nuclear spin angular momentum orientations (I = 3/2, positive γ) in a magnetic field as a result of the Zeeman interaction. Arrow indicates direction of B_0 .

After operating with the Zeeman Hamiltonian on $|m_1\rangle$, it is apparent that the energy levels of each spin state are unique,¹¹

$$E_{\rm Z} = -m_I \gamma \hbar B_0 \qquad 2.17$$

and that these energy levels have even spacing. The selection rule for NMR transitions is $\Delta m_I = \pm 1$.

$$\Delta E_{\rm Z} = \gamma \hbar B_0 = h\nu \qquad 2.18$$

$$\nu_0 = \frac{\gamma B_0}{2\pi} \tag{2.19}$$

Equation 2.19 is referred to as the Larmor equation, and it is the basis for the NMR experiment. It describes the magnetic field oscillation frequency required to perturb the ensemble of nuclear spins from equilibrium. Note that the total angular momentum vector is offset from the *z*-direction (Figure 2.5), thus, according to the classical model of spin, torque supplied by the external magnetic field causes nuclear spin precession about the direction of B_0 . This occurs at frequency v_0 for the bare nucleus, which falls in the radio frequency range at typical magnetic field strengths.

2.2.2 The Boltzmann Distribution and the Net Magnetization

The relative population of spin states at equilibrium is determined by the Boltzmann distribution,¹¹

$$\frac{n_{\rm upper}}{n_{\rm lower}} = e^{-\Delta E/kT} = e^{-\gamma \hbar B_0/kT}$$
 2.20

where n_{upper} and n_{lower} are the populations of spin states with higher and lower energy, respectively, ΔE is the energy difference between the two states, *k* is the Boltzmann constant, and *T* is the temperature in Kelvin.

The significance of this relationship becomes apparent when one considers the relative populations of nuclear spin states during a routine experiment (e.g., performed at moderate field strength, $B_0 = 11.75$ T, at room temperature). A typical sample used for a solid-state NMR experiment contains on the order of 10^{20} nuclei under observation. If these are ¹H nuclei, $v_0 = 500.3$ MHz and $\Delta E = 3.3 \times 10^{-25}$ J, making the ratio $n_{upper}/n_{lower} = 0.99992$. That is, for every 10^{20} nuclei in the $m_1 = -1/2$ state, there are 1.00008×10^{20} nuclei in the $m_1 = +1/2$ state, a difference of approximately 0.004 %. Since the observed NMR signal is collected from all nuclei simultaneously, the amplitude of the detected signal is proportional to the difference in population between the two states. Note that at NMR transition frequencies, spontaneous emission is negligible.²¹

NMR spectroscopy is performed on a bulk sample with many nuclei, so it is convenient to consider the *net magnetization*, or the vector sum of the individual nuclear spin angular momenta. At equilibrium, for nuclei with positive γ , the net magnetization is aligned parallel to the applied static magnetic field, i.e., in the +*z* direction (laboratory frame), as this corresponds to the slight excess of nuclei in the ground spin state. At equilibrium, our vector model indicates that the precession of the nuclear spin angular momentum has no preferred phase, therefore the net magnetic moment in the *x*- and *y*-directions is zero. The bulk effects of applying a dynamic magnetic field are modeled by the behaviour of the net magnetization vector, \overline{M} .

2.2.3 Radiofrequency Pulses

The nuclear spin system is perturbed from equilibrium by a dynamic magnetic field which oscillates at radio frequency. This magnetic field is applied for a short duration of time, referred to as a pulse. The simplest commonly-used pulse is a Bloch pulse,²² which is rectangular in shape and consists of a single oscillation frequency and phase. The combination of a series of pulses and delays with one or more oscillation frequency is called a pulse sequence. Some relevant pulse sequences will be reviewed later in this chapter.

The time-dependent, secondary magnetic field, B_1 , arises primarily from Faraday induction near the transmitting coil due to the oscillating electrical current applied to the coil.²³ The RF Hamiltonian is¹²

$$\mathcal{H}_{\rm RF} = -\gamma (\hat{I}_x, \hat{I}_y, \hat{I}_z) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} B_{1,x}(t) \\ B_{1,y}(t) \\ B_{1,z}(t) \end{pmatrix}.$$
 2.21

For a rectangular pulse applied in the *x*-direction in the laboratory frame, $B_{1,x}(t) = 2B_1 \cos 2\pi v_T t$, while $B_{1,y}(t)$ and $B_{1,z}(t)$ are zero, making the RF Hamiltonian

$$\mathcal{H}_{\rm RF} = -2\gamma B_1 \cos 2\pi v_{\rm T} t \, \hat{I}_x. \qquad 2.22$$

This is mathematically equivalent to two counter-rotating vectors of length B_1 (Figure 2.6). In this case only the resonant component (the vector precessing in the same direction as the nuclear spin angular momenta, depicted here as counter clockwise for nuclei with a positive gyromagnetic ratio) is considered.²⁴

Figure 2.6. Dynamic magnetic field (B_1) in the *x-y* plane represented by a) a plane wave, and b) two counter-rotating vectors.

In the rotating frame of reference,

$$\nu_{\rm a} = \nu_0 - \nu_{\rm T} \tag{2.23}$$

where v_0 is the nuclear resonance frequency in the laboratory frame, v_T is the transmitter (RF) frequency, and v_a is the nuclear resonance frequency in the rotating frame, which often falls in the audio frequency range. In the rotating frame, the RF Hamiltonian becomes

$$\mathcal{H}_{\rm RF}' = -\gamma B_1 \hat{I}_x \qquad 2.24$$

for a pulse applied along the *x*-axis. During an RF pulse, the net magnetization will undergo precession about the B_1 direction at frequency v_1 .

$$\nu_1 = \frac{\gamma B_1}{2\pi} \tag{2.25}$$

RF pulse lengths are in the μ s to ms range, and the net magnetization may not undergo a full rotation about the B_1 direction during this time. The tip angle, θ_p , is

$$\theta_p = \gamma B_1 \tau_p \tag{2.26}$$

where τ_p is the pulse width, in units of time. B_1 magnitude is optimized to achieve specific tip angles, often 90° or less for a Bloch pulse.

Figure 2.7. The Bloch pulse sequence, including a) the RF pulse ($\approx \mu s$), b) a short delay to allow for probe ringdown ($\approx \mu s$), c) FID acquisition ($\approx ms$ to s), and d) a recycle delay allowing the Boltzmann equilibrium to re-establish ($\approx ms$ to hours).

After the pulse is applied, the free-induction decay (FID) is observed. The FID is the graphical representation of the induced electrical current in a receiver coil caused by the magnetic moments of the observed nuclei. According to our model, the amplitude of the FID is thus proportional to the net sum of the nuclear magnetic moments in the *x*-*y* plane; this quantity is time-dependent. If the transmitter frequency is offset from the resonance frequency of the observed nuclei, the FID will contain oscillations at v_a . Following FID acquisition, a time delay long enough to allow the spin system to return to Boltzmann equilibrium occurs before the

sequence is repeated. Signal from individual transients are added together to produce the final FID, which undergoes Fourier transformation to produce the NMR spectrum in the frequencydomain. The signal-to-noise ratio of the final NMR spectrum is proportional to \sqrt{N} , where *N* is the number of transients.

2.2.4 Magnetic Shielding and Chemical Shift

The total magnetic field strength at a nucleus is dependent on the local electronic environment at that nucleus. Electrons experience a torque in the B_0 direction, causing them to circulate perpendicular to B_0 . This movement induces a secondary local magnetic field, either opposing or augmenting the applied magnetic field (B_0). The magnetic shielding Hamiltonian¹² describes the correction to the Zeeman energy as a result of this process.

$$\widehat{\mathcal{H}}_{\rm MS} = \gamma \left(\hat{l}_x, \hat{l}_y, \hat{l}_z \right) \begin{bmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{bmatrix} \begin{pmatrix} 0 \\ 0 \\ B_0 \end{pmatrix}$$
 2.27

$$\widehat{\mathcal{H}}_{MS} = \gamma \left[\hat{I}_x \sigma_{xz} B_0 + \hat{I}_y \sigma_{yz} B_0 + \hat{I}_z \sigma_{zz} B_0 \right]$$
 2.28

One only considers terms of the Hamiltonian which commute with the Zeeman Hamiltonian, as these terms describe the NMR spectrum.

$$\widehat{\mathcal{H}}_{\rm MS} = \gamma \sigma_{zz} B_0 \widehat{I}_z \tag{2.29}$$

The magnitude of the local magnetic field at a nucleus is thus

$$B_{\text{local}} = (1 - \sigma_{zz})B_0 \tag{2.30}$$

where the induced magnetic field is proportional to the applied magnetic field, B_0 . Correcting for magnetic shielding, the Larmor equation becomes,

$$\nu = \frac{\gamma B_0}{2\pi} \left(1 - \sigma_{zz}(\theta) \right)$$
 2.31

22

where the value of $\sigma_{zz}(\theta)$ depends on the orientation of the chemical shift tensor within the applied magnetic field. For a given nucleus in a powder sample, the values of the shielding constant σ_{zz} are determined by¹¹

$$\sigma_{zz}(\theta) = \frac{1}{3}Tr\bar{\sigma}^{PAS} + \frac{1}{3}\sum_{j=1}^{3} (3\cos^2\theta_j - 1)\sigma_{jj}$$
 2.32

where $Tr\bar{\sigma}^{PAS}$ is the trace of the magnetic shielding tensor, and θ_j (j = 1, 2, 3) is the angle between the magnetic shielding tensor axis and the applied magnetic field. The elements of $\bar{\sigma}^{PAS}$ are often written with numeric subscripts.

$$\bar{\bar{\sigma}}^{PAS} = \begin{bmatrix} \sigma_{11} & 0 & 0\\ 0 & \sigma_{22} & 0\\ 0 & 0 & \sigma_{33} \end{bmatrix}$$
 2.33

In the PAS, the three magnetic shielding tensor components are defined such that $\sigma_{11} \leq \sigma_{22} \leq \sigma_{33}$. In other words, σ_{11} is the component in the direction of minimum shielding and σ_{33} is in the direction of the greatest shielding.

Obtaining magnetic shielding values is not a straightforward task, as precise values for B_0 and γ are generally not known. Instead, spectroscopists use the chemical shift (CS) to quantify this interaction. The chemical shift is defined as,¹

$$\delta = \frac{\left(\nu_{\text{sample}} - \nu_{\text{reference}}\right)}{\nu_{\text{reference}}} \times 10^{6}$$
 2.34

where v_{sample} and $v_{\text{reference}}$ are the resonance frequencies for the sample peak and a standard reference peak, respectively, measured in the same magnetic field, and δ is in units of ppm. Note that in some NMR software, the denominator used to calculate the chemical shift is actually the nominal transmitter frequency of the observed nucleus, and not the frequency of the reference peak, which can introduce errors for nuclei with large chemical shift ranges. The elements of $\bar{\delta}^{PAS}$ are defined such that $\delta_{11} \geq \delta_{22} \geq \delta_{33}$ (the magnetic shielding and chemical shift scales run in opposite directions, i.e., $\delta \approx \sigma_{\text{reference}} - \sigma_{\text{sample}}$ for nuclei with small values of σ). For all practical cases, chemical shift values expressed in units of ppm are independent of external magnetic field strength.

It is common to represent the chemical shift tensor elements using the Maryland convention,²⁵ whose terms are outlined below.

$$\delta_{iso} = \frac{(\delta_{11} + \delta_{22} + \delta_{33})}{3}$$
 2.35

$$\Omega = \delta_{11} - \delta_{33} \tag{2.36}$$

$$\kappa = \frac{3(\delta_{22} - \delta_{iso})}{\Omega}$$
 2.37

Here, Ω is the span and κ is the skew, where $-1 \le \kappa \le 1$. For an axially symmetric site, κ will be either 1, where $\delta_{11} = \delta_{22}$, or -1, where $\delta_{22} = \delta_{33}$. See Figure 2.8 for examples of NMR spectra of powdered solids for which the magnetic shielding interaction is the only contributor to the NMR line shape.

Figure 2.8. Solid-state NMR powder patterns due to anisotropic magnetic shielding. Simulation parameters are $\delta_{iso} = 0$ ppm and $\Omega = 200$ ppm. Figure shows cases with three unique tensor components in $\overline{\sigma}^{PAS}$ (a and b), as well as the case of axial symmetry (c).

2.2.5 Direct Dipolar Coupling

Dipolar coupling occurs when the nuclear magnetic moment of a nucleus couples to the magnetic moments of surrounding nuclei. The direct dipolar Hamiltonian for an isolated spin pair, which describes this through-space coupling, is¹²

$$\mathcal{H}_{\rm DD} = R_{\rm DD}(\hat{I}_x, \hat{I}_y, \hat{I}_z) \begin{bmatrix} (r^2 - 3x^2)/r^2 & -3xy/r^2 & -3xz/r^2 \\ -3xy/r^2 & (r^2 - 3y^2)/r^2 & -3yz/r^2 \\ -3xz/r^2 & -3yz/r^2 & (r^2 - 3z^2)/r^2 \end{bmatrix} \begin{pmatrix} \hat{S}_x \\ \hat{S}_y \\ \hat{S}_z \end{pmatrix}$$
 2.38

where R_{DD} is the dipolar coupling constant, x, y, and z are components of the vector \bar{r} (i.e., $r = [x^2 + y^2 + z^2]^{1/2}$), which is the internuclear distance between spins I and S, and r is the length of \bar{r} .

$$R_{\rm DD} = \frac{\mu_0 \gamma_1 \gamma_2 \hbar}{8\pi^2} \langle \frac{1}{r_{1,2}^3} \rangle \qquad 2.39$$

Here, μ_0 is the magnetic constant and γ_n (n = 1, 2) are the gyromagnetic ratios of the coupled nuclei. Assuming \bar{r} lies along the laboratory *z*-axis (i.e. in the PAS), the dipolar tensor is axially symmetric and traceless, except in some cases due to vibrational effects.²⁶

$$\overline{\overline{D}}^{PAS} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$
 2.40

In spherical coordinates, the direct dipolar Hamiltonian is,¹²

$$\mathcal{H}_{\rm DD} = R_{\rm DD} \left[\hat{A} + \hat{B} + \hat{C} + \hat{D} + \hat{E} + \hat{F} \right]$$
 2.41

$$\hat{A} = -(3\cos^2\vartheta - 1)\hat{I}_z\hat{S}_z \qquad 2.42$$

$$\hat{B} = -\frac{1}{2}(3\cos^2\vartheta - 1)(\hat{I}_z\hat{S}_z - \bar{I}\cdot\bar{S})$$
2.43

$$\hat{C} = -\frac{3}{2}\sin\vartheta\cos\vartheta \,e^{-i\varphi} (\hat{I}_z \hat{S}_+ + \hat{I}_+ \hat{S}_z)$$
2.44

$$\widehat{D} = -\frac{3}{2}\sin\vartheta\cos\vartheta \,e^{i\varphi}(\widehat{I}_{z}\widehat{S}_{-} + \widehat{I}_{-}\widehat{S}_{z})$$
2.45

$$\hat{E} = -\frac{3}{4}\sin^2\vartheta \,e^{-i2\varphi}\hat{I}_+\hat{S}_+ \qquad 2.46$$

$$\hat{F} = -\frac{3}{4}\sin^2\vartheta \,e^{i2\varphi}\hat{I}_-\hat{S}_- \qquad 2.47$$

where ϑ and φ are the polar and azimuthal angles between the dipolar vector and the applied magnetic field (laboratory *z*-axis), respectively, \hat{I}_+ and \hat{S}_+ are the raising operators for the *I* and *S* spins, and \hat{I}_- and \hat{S}_- are the lowering operators for those spins. In cases of residual dipolar coupling between quadrupolar nuclei, all six terms of the "dipolar alphabet" must be considered to accurately model NMR spectra.²⁷

2.2.6 Indirect Spin-Spin Coupling

Indirect spin-spin coupling, often referred to as *J*-coupling, describes the through-bond coupling of nuclear magnetic moments. This Hamiltonian is of the same form as the direct dipolar Hamiltonian,¹² as it too represents coupling of the *I* and *S* spins. Both direct and indirect spin-spin coupling result in field-independent peak splitting of the resonances of the coupled nuclei under typical conditions, though there are rare examples of field dependence in these parameters.²⁸

$$\mathcal{H}_{J} = \left(\hat{I}_{x}, \hat{I}_{y}, \hat{I}_{z}\right) \begin{bmatrix} J_{xx} & J_{xy} & J_{xz} \\ J_{yx} & J_{yy} & J_{yz} \\ J_{zx} & J_{zy} & J_{zz} \end{bmatrix} \begin{pmatrix} \hat{S}_{x} \\ \hat{S}_{y} \\ \hat{S}_{z} \end{pmatrix}$$
2.48

The isotropic *J*-coupling is most often measured in high-resolution NMR spectra. Anisotropy in *J* is typically negligibly small for light nuclei but can be important for heavier nuclides. Effects from ΔJ on the NMR spectrum generally cannot be experimentally distinguished from those from direct dipolar coupling, leading to an experimentally measured effective dipolar coupling constant, $R_{\text{eff.}}$

$$R_{\rm eff} = R_{\rm DD} - \frac{\Delta J}{3}$$
 2.49

2.2.7 Quadrupolar Interaction

Quadrupolar nuclei have a non-spherical charge distribution, and therefore possess a nuclear electric quadrupole moment, Q. The magnitude of the quadrupole moment describes the extent to which the nuclear charge distribution is distorted from spherical symmetry. A

quadrupolar nucleus can have either an oblate (disc-like) or prolate (roughly cylindrical) charge distribution (Figure 2.9). Nuclei with prolate and oblate charge distributions have positive and negative nuclear quadrupole moments, respectively.

Figure 2.9. Oblate (a), spherical (b), and prolate (c) nuclear charge distributions. Quadrupolar nuclei are (a) and (c), while (b) represents a spin-1/2 nucleus.

What makes quadrupolar nuclei unique is that, in addition to the other internal NMR interactions which are magnetic in nature, quadrupolar nuclei interact electrically with their surroundings. A charged object possesses an associated local electric potential. For a point charge, the electrostatic potential is

$$V = \frac{e}{r}$$
 2.50

where e is the elementary charge, and r is the distance from the point charge. The electric field is the distance derivative of the electric potential.

$$E = \frac{-e}{r^2}$$
 2.51

The electric field gradient is the distance derivative of the electric field, or

$$eq = \frac{2e}{r^3} \tag{2.52}$$

where eq is the electric field gradient. All charged particles in a molecule or crystal contribute to the electric field gradient at a particular nucleus. The electric field gradient (EFG) at a nucleus is represented by the tensor \overline{V} , which in its principal axis system has three components (the principal components).

$$\bar{\bar{V}}^{PAS} = \begin{bmatrix} V_{XX} & 0 & 0\\ 0 & V_{YY} & 0\\ 0 & 0 & V_{ZZ} \end{bmatrix}$$
 2.53

where $eq_{ii} = V_{ii}$ (i = X, Y, Z), and V_{XX} , V_{YY} , and V_{ZZ} are defined such that $|V_{XX}| \le |V_{YY}| \le |V_{ZZ}|$. The full quadrupolar Hamiltonian is¹²

$$\mathcal{H}_{Q} = \frac{eQ}{2I(2I-1)\hbar} (\hat{I}_{x}, \hat{I}_{y}, \hat{I}_{z}) \begin{bmatrix} V_{xx} & V_{xy} & V_{xz} \\ V_{yx} & V_{yy} & V_{yz} \\ V_{zx} & V_{zy} & V_{zz} \end{bmatrix} \begin{pmatrix} \hat{I}_{x} \\ \hat{I}_{y} \\ \hat{I}_{z} \end{bmatrix}$$
2.54

where the *I* spins correspond to the observed quadrupolar nucleus. The EFG tensor is traceless and symmetric, so the terms in the Haeberlen representation of the elements of \overline{V}^{PAS} are $V_{iso} = 0$ (not considered), $\Delta V = \frac{3}{2}V_{ZZ}$, and $\eta_Q = (V_{XX} - V_{YY})/V_{ZZ}$. The anisotropy in \overline{V}^{PAS} is most commonly represented by the nuclear quadrupolar coupling constant, C_Q , which is proportional to ΔV .

$$C_{\rm Q} = \frac{eQV_{\rm ZZ}}{h}$$
 2.55

The quadrupolar Hamiltonian is typically rewritten in spherical polar coordinates,^{29,30}

$$\mathcal{H}_{Q} = \frac{eQ}{4I(2I-1)\hbar} \left[\frac{1}{3} \sqrt{6} \left(3\hat{l}_{z}^{2} - I(I+1) \right) V_{0} + \left(\hat{l}_{z}\hat{l}_{+} + \hat{l}_{+}\hat{l}_{z} \right) V_{-1} - \left(\hat{l}_{z}\hat{l}_{-} + \hat{l}_{-}\hat{l}_{z} \right) V_{1} + \hat{l}_{+}^{2} V_{-2} + \hat{l}_{-}^{2} V_{2} \right]$$

$$2.56$$

where the elements $V_{(2,q)}$ are as follows.

$$V_0 = 3\sqrt{\frac{1}{6}}V_{zz}$$
 2.57

$$V_1 = -V_{xz} - iV_{yz}$$
 2.58

$$V_{-1} = V_{xz} - iV_{yz} 2.59$$

$$V_2 = \frac{1}{2} (V_{xx} - V_{yy}) + i V_{xy}$$
 2.60

$$V_{-2} = \frac{1}{2} \left(V_{xx} - V_{yy} \right) - i V_{xy}$$
 2.61

In the high-field approximation, one assumes that internal NMR interactions are small in magnitude compared to the Zeeman interaction and can be described using perturbation theory. Accurately describing the NMR spectra of quadrupolar nuclei often requires consideration of the first- and second-order energy corrections to the Zeeman energy levels, though as will be discussed later in this chapter, the high-field approximation is not valid for the quadrupolar interactions of some of the nuclei in this work. The first- and second-order energy corrections are as follows.

$$\mathcal{H}_{Q}^{1} = \frac{eQ}{4I(2I-1)\hbar} \frac{\sqrt{6}}{3} [3\hat{I}_{z}^{2} - I(I+1)]V_{0} \qquad 2.62$$

$$\mathcal{H}_{Q}^{2} = -\frac{1}{2\pi\nu_{0}} \left[\frac{eQ}{4I(2I-1)\hbar}\right]^{2} [2V_{-1}V_{1}\hat{I}_{z}(4I(I+1)-8\hat{I}_{z}^{2}-1) + 2V_{-2}V_{2}\hat{I}_{z}(2I(I+1)-2\hat{I}_{z}^{2}-1)] \qquad 2.63$$

30

Figure 2.10. Energy levels of a spin-3/2 nucleus in a strong magnetic field. The $m_{\rm I} = 1/2$ to $m_{\rm I} = -1/2$ transition is affected by the second-order perturbative correction to the Zeeman energy. Note the perturbations to the Zeeman energy are not shown to scale.

The central transition is not affected by the first-order energy correction. The breadth of the central transition, Δv_{CT} , of the quadrupolar powder pattern is determined by the second-order correction to the energy (Figure 2.10),³¹

$$\Delta \nu_{CT} = \frac{(25 + 22\eta + \eta^2)}{144} \left(\frac{\nu_Q^2}{\nu_0}\right) [I(I+1) - 3/4]$$
 2.64

where η is the asymmetry parameter, and v_Q is the quadrupolar frequency.

$$\nu_{\rm Q} = \frac{3C_Q}{2I(2I-1)} \tag{2.65}$$

The central transition undergoes a second order quadrupolar shift, $v_{CT}^{\prime\prime}$,

$$\nu_{CT}^{\prime\prime} = \left(\frac{\nu_Q^2}{\nu_0}\right) \frac{[A\sin^4\beta - (2A+B)\sin^2\beta + 4\eta^2]}{144} [I(I+1) - 3/4]$$
 2.66

31

where α and β are angles describing the orientation of the applied magnetic field with respect to the principal axes of the EFG tensor, and *A* and *B* are as follows.

$$A = 9(3 - \eta \cos 2\alpha)^2 \qquad 2.67$$

$$B = 12\eta^2 - 90 + 48\eta \cos 2\alpha - 18\eta^2 \cos^2 2\alpha \qquad 2.68$$

Examples of quadrupolar powder NMR lineshapes are given in Figure 2.11.

Figure 2.11. Solid-state NMR powder patterns of the central transition of a half-integer quadrupolar nucleus expected based on the 2nd order perturbation of the Zeeman energy. NMR parameters are as follows: I = 3/2, $C_Q = 3.0$ MHz, $\delta_{iso} = 25$ ppm, $v_0 = 80$ MHz, 50 Hz line broadening.

2.2.8 Exact Calculations for Large Quadrupolar Interactions

The key assumption in the high-field approximation is that the magnitudes of the internal NMR interactions are small compared to the magnitude of the Zeeman interaction. This is not always the case. In fact, it is common for some nuclei, such as ⁷⁵As and ^{121/123}Sb (featured heavily in this work) to have v_Q values that are on the order of or exceed the Larmor frequency. In these cases, the full Zeeman-quadrupolar Hamiltonian must be considered. The elements of the Zeeman-quadrupolar matrix are¹⁹

$$zq_{IS} = \langle m_I | \mathcal{H}_{ZQ} | m_S \rangle$$
 2.69

where $m_{\rm I}$ and $m_{\rm S}$ are the nuclear spin states. For a spin-3/2 nucleus such as ⁷⁵As, the Zeemanquadrupolar matrix is

$$\overline{ZQ} = \begin{bmatrix} \left\langle +\frac{3}{2} \middle| \mathcal{H}_{ZQ} \middle| +\frac{3}{2} \right\rangle & \left\langle +\frac{3}{2} \middle| \mathcal{H}_{ZQ} \middle| +\frac{1}{2} \right\rangle & \left\langle +\frac{3}{2} \middle| \mathcal{H}_{ZQ} \middle| -\frac{1}{2} \right\rangle & \left\langle +\frac{3}{2} \middle| \mathcal{H}_{ZQ} \middle| -\frac{3}{2} \right\rangle \\ \left\langle +\frac{1}{2} \middle| \mathcal{H}_{ZQ} \middle| +\frac{3}{2} \right\rangle & \left\langle +\frac{1}{2} \middle| \mathcal{H}_{ZQ} \middle| +\frac{1}{2} \right\rangle & \left\langle +\frac{1}{2} \middle| \mathcal{H}_{ZQ} \middle| -\frac{1}{2} \right\rangle & \left\langle +\frac{1}{2} \middle| \mathcal{H}_{ZQ} \middle| -\frac{3}{2} \right\rangle \\ \left\langle -\frac{1}{2} \middle| \mathcal{H}_{ZQ} \middle| +\frac{3}{2} \right\rangle & \left\langle -\frac{1}{2} \middle| \mathcal{H}_{ZQ} \middle| +\frac{1}{2} \right\rangle & \left\langle -\frac{1}{2} \middle| \mathcal{H}_{ZQ} \middle| -\frac{1}{2} \right\rangle & \left\langle -\frac{1}{2} \middle| \mathcal{H}_{ZQ} \middle| -\frac{3}{2} \right\rangle \\ \left\langle -\frac{3}{2} \middle| \mathcal{H}_{ZQ} \middle| +\frac{3}{2} \right\rangle & \left\langle -\frac{3}{2} \middle| \mathcal{H}_{ZQ} \middle| +\frac{1}{2} \right\rangle & \left\langle -\frac{3}{2} \middle| \mathcal{H}_{ZQ} \middle| -\frac{3}{2} \right\rangle \end{bmatrix}$$

$$2.70$$

where the zero-, single-, double-, and triple-quantum terms are as follows.

$$\langle m | \mathcal{H}_{ZQ} | m \rangle = -\nu_0 + \frac{\sqrt{6}C_Q}{12I(2I-1)} (3m^2 - I(I+1))V_0$$
 2.71

$$\langle m \pm 1 | \mathcal{H}_{ZQ} | m \rangle = \frac{\pm C_Q}{4I(2I-1)} \Big[(2m \pm 1) \sqrt{I(I+1) - m(m \pm 1)} \Big] V_{\mp 1}$$
 2.72

$$\langle m \pm 2 | \mathcal{H}_{ZQ} | m \rangle = \frac{C_Q}{4I(2I-1)} \left[\sqrt{I(I+1) - m(m\pm 2)} \sqrt{I(I+1) - m(m\pm 1)} \right] V_{\mp 2}$$
 2.73

$$\langle m \pm 3 | \mathcal{H}_{ZQ} | m \rangle = 0 \tag{2.74}$$

If the Zeeman states $|m_I\rangle$ are eigenfunctions of the Zeeman-quadrupolar Hamiltonian, a diagonal matrix would be obtained, with non-zero elements corresponding to the Zeeman-quadrupolar

eigenvalues. In order to obtain the eigenvalues of this Hamiltonian, as well as the Zeemanquadrupolar eigenfunctions, $|n\rangle$, which are written as linear combinations of Zeeman states,

$$|n\rangle = \sum_{m=-I}^{I} (b_{mn} + ic_{mn})|m\rangle \qquad 2.75$$

where b_{mn} and c_{mn} are constants, the Zeeman-quadrupolar matrix must be diagonalized. Programs such as QUEST¹⁹ carry out this procedure. After diagonalization, the diagonal ZQ tensor elements (eigenvalues) are used to simulate the NMR spectrum. When modelling other nuclear interactions such as dipolar or indirect spin-spin coupling, the Zeeman-quadrupolar eigenfunctions, $|n\rangle$, are used in place of the Zeeman states for the nucleus with the large quadrupolar interaction. The other NMR interactions are then treated as perturbations to the Zeeman-quadrupolar energy.

2.3 Nuclear Spin Relaxation

Spin-lattice relaxation requires a fluctuating field with a frequency approximately equal to the Larmor frequency. These fluctuating fields are provided by molecular motion modulating the instantaneous magnitude of the internal NMR interactions, which are orientation dependent. Spin-lattice (T_1) relaxation occurs when the system interacts with and loses energy to the "lattice," e.g., by the emission of a phonon. This type of relaxation is what restores the equilibrium magnetization in the z (B_0) direction. Following an RF pulse, spin-spin (T_2) relaxation decreases magnetization in the x and y directions. Both T_1 and T_2 relaxation occur simultaneously, until the nuclear spin ensemble reaches equilibrium. In liquids, this process is described by the Bloch equations.³² For T_1 relaxation,

$$\frac{dM_z}{dt} = \frac{-(M_z - M_0)}{T_1}$$
 2.76

where M_z is the magnetization in the *z* direction, and M_0 is the magnitude of the net magnetization at equilibrium. This equation is rewritten below.

$$M_{z}(t) = M_{0} \left(1 - e^{-t/T_{1}} \right)$$
 2.77

Spectroscopists typically recycle pulse sequences after anywhere from 1.5 to 5 T_1 , depending on experimental requirements.

Figure 2.12. Spin-lattice relaxation of nuclei with $T_1 = 1.0$ s. After 5 T_1 , $M_z = 0.993 M_0$.

Note that nuclear relaxation in solids can be much more complicated, e.g., requiring multiple exponential terms to accurately model. Magnetization decay in the *x-y* plane due to spin-spin relaxation is described by,³²

$$\frac{dM_x}{dt} = \frac{-M_x}{T_2}$$
 2.78

$$\frac{dM_y}{dt} = \frac{-M_y}{T_2} \tag{2.79}$$

where M_x and M_y are the magnetization in the *x* and *y* directions, respectively. The net magnetization in the *x*-*y* plane is described below.

$$M_{xy}(t) = M_0 e^{-t/T_2} 2.80$$

In an NMR experiment, T_2 determines the rate of decay in the FID.

Figure 2.13. Spin-spin relaxation of nuclei with $T_2 = 1.0$ s.

In reality, magnetic field inhomogeneity over the sample volume also contributes to the dephasing of nuclear spin magnetization in the *x*-*y* plane, and the total decay rate of M_{xy} is represented by the time constant T_2^* .

Figure 2.14. Vector diagram depicting simultaneous T_1 and T_2 relaxation. The system is at equilibrium (a) and is perturbed by a 90_x° pulse (b). After a period of time much less than 5 T_1 , M_z has begun to recover, whilst M_{xy} begins to dephase (c). This continues over time (d) until M_{xy} reaches zero (e). It is typical for M_{xy} to reach zero before M_z fully recovers. After a period of time greater than 5 T_1 , M_z has effectively reached equilibrium once more (f).

2.4 The Fourier Transform

A function is periodic if it meets the condition³³

$$f(x+P) = f(x) \tag{2.81}$$

where P is a constant equal to the function's period. The general form of a sinusoidal periodic function is

$$f(x) = A\sin(\omega x + \phi)$$
 2.82

where A is the amplitude of the waveform, ω is the angular frequency of the waveform, and ϕ is the initial phase. This function has a period of $2\pi/\omega$. The above equation is equivalent to

$$f(x) = A[a\sin(\omega x) + b\cos(\omega x)]$$
 2.83

where $a = \cos \phi$ and $b = \sin \phi$. Any periodic function can be represented by an infinite series of simpler sine and cosine functions, i.e., a Fourier series.³³ In NMR spectroscopy, each nucleus excited by the RF pulse(s) contributes to the observed time-domain signal (FID), resulting in an often complicated waveform that is not straightforward to analyze visually. The FID is treated as a Fourier series, and Fourier transformation is used to generate a frequency-domain spectrum which depicts all of the individual contributions to the FID. The Fourier transform and its inverse are written below.³⁴

$$F(\nu) = \int_{-\infty}^{\infty} f(t)e^{-i2\pi\nu t}dt \qquad 2.84$$

$$f(t) = \int_{-\infty}^{\infty} F(v)e^{i2\pi v t} dv \qquad 2.85$$

In this equation, f(t) is a function in the time domain, and F(v) is a function in the frequency domain. If we recall Euler's formula,

$$e^{i2\pi\nu t} = \cos(2\pi\nu t) + i\sin(2\pi\nu t)$$
 2.86

it becomes clear that if f(t) is real, F(v) consists of both a real and an imaginary component.

$$Re[F(\nu)] = \int_{-\infty}^{\infty} f(t) \cos(2\pi\nu t) dt \qquad 2.87$$

$$Im[F(\nu)] = \int_{-\infty}^{\infty} f(t) \sin(2\pi\nu t) dt \qquad 2.88$$

In NMR spectroscopy, the real data set is referred to as "absorptive," and the imaginary data set is referred to as "dispersive." These two data sets differ in phase by 90 degrees. Note that for experimental NMR data sets, the collected data is digital, and a discrete Fourier transform is carried out via the fast Fourier transform (FFT) algorithm. There are many relationships
between time-domain and frequency-domain variables that are of importance in NMR spectroscopy, e.g., the inverse relationships between data sampling intervals (dwell time) and spectral width, acquisition time and digital resolution, and RF pulse length and excitation bandwidth in the frequency domain.

2.5 Experimental NMR Techniques

2.5.1 Magic Angle Spinning (MAS)

Rapid rotation of solid NMR samples about an axis 54.74° from the applied magnetic field direction removes or modulates NMR line shapes caused by the orientation dependence of internal NMR interactions. MAS can be used to simplify NMR spectra, improve signal-to-noise ratio, and, in some cases, results in NMR spectra that mimic those of compounds in solution. This phenomenon arises because the values of internal NMR interaction constants (e.g., σ_{zz}) have ($3 \cos^2 \theta - 1$) dependence on the angle between the axes of \overline{A}^{PAS} and the applied magnetic field; at an angle of 54.74°, this expression is equal to zero. Note that the angle θ , defined as the angle between relevant principal axes and B_0 , does not refer to the same angle as that between the rotor and the applied magnetic field (β), but that these two angles are related by the equation below.³⁵

$$\left<\frac{1}{2}(3\cos^2\theta - 1)\right> = \frac{1}{2}(3\cos^2\beta - 1) \times \frac{1}{2}(3\cos^2\theta - 1)$$
 2.89

Here, Θ is the angle between the principal axis direction and the axis of sample rotation. If the sample rotation frequency exceeds the spectral breadth, the resulting MAS NMR spectrum mimics the NMR spectrum of a compound in solution, whereas slower spinning frequencies result in an isotropic peak flanked by spinning side bands separated by the rotor frequency.³⁶ Thus this technique is typically the most useful when the total NMR spectral breadth is smaller

in magnitude than the available MAS rotor frequencies. Note that the orientation-dependent splitting described by the 2nd-order term for the quadrupolar interaction is not completely removed by MAS, but instead reduced in breadth by approximately 1/3.

2.5.2 Spin Echo

The spin echo pulse sequence³⁷ begins with a rectangular 90° pulse along the *x*-axis followed by a short time delay, τ_1 . Following this period, a 180° pulse is applied (along either the *x*- or *y*-axis). The 180° pulse inverts the magnetization which has dephased in the *x*-*y* plane. After another delay τ_2 , the spins re-phase in the *x*-*y* plane, either along the –*y*-axis or the +*y*-axis, depending on the direction of the 180 degree pulse.

Figure 2.15. The spin echo pulse sequence.

2.5.3 QCPMG

The quadrupolar Carr-Purcell Meiboom-Gill (QCPMG) pulse sequence³⁸⁻⁴⁰ is a method of obtaining NMR spectra with enhanced signal-to-noise ratio. In essence, it is a "train" of spin echoes, where *x-y* magnetization is refocused periodically a set number of times. Consequently, the frequency-domain consists of a series of spikelets mimicking the stationary powder NMR spectrum. The overall decay of the echo manifold in the time-domain is determined by the T_2 relaxation constant. The signal-to-noise enhancement is especially important for the acquisition of wideline NMR powder patterns where the signal is spread out over a broad frequency range.

Figure 2.16. The QCPMG pulse sequence.

2.5.4 WURST

WURST (wideband, uniform rate, and smooth truncation) pulses were introduced by Kupče and Freeman in 1995⁴¹ for the purpose of the adiabatic inversion of nuclear spin magnetization, and were later applied to the acquisition of broadband NMR spectra of quadrupolar nuclei using a spin-echo-like pulse sequence (WURST echo) by Bhattacharyya and Frydman.⁴² WURST pulses consist of a sausage-shaped pulse amplitude profile in the time domain and are quadratic in phase.⁴³ The effective frequency of a WURST pulse varies linearly in time over the frequency range Δ , often ca. 1 to 2 MHz in the experiments documented in this thesis. The WURST pulse is generated using the equations

$$\omega_1(t) = \omega_{\max}\left(1 - \left|\cos\left(\frac{\pi t}{\tau_w}\right)\right|^N\right)$$
 2.90

$$\phi(t) = \pm \left\{ \left(\nu_{\text{off}} + \frac{\Delta}{2} \right) t - \left(\frac{\Delta}{2\tau_w} \right) t^2 \right\}$$
 2.91

where $\omega_1(t)$ is the pulse amplitude in the time domain, ω_{max} is the maximum pulse amplitude, τ_w is the pulse duration, $\phi(t)$ is the pulse phase, ν_{off} is the centre frequency of the sweep, and Δ is the total sweep range in Hz.

In the adiabatic regime, the net magnetization is spin-locked to the effective magnetic field, \overline{B}_{eff} , as it traverses from the +z to -z axis, thus inverting the net magnetization over a broad frequency range. A WURST pulse which meets the condition⁴³

$$\left|\frac{d\theta}{dt}\right| < |\gamma \bar{B}_{\rm eff}| \qquad 2.92$$

is considered to fall in the adiabatic regime. Here, θ is the angle between \overline{B}_{eff} and the laboratory *x*-axis in the accelerating rotating frame of reference.⁴³ In the non-adiabatic regime, isochromats are excited in a linear sequence from the initial to the final pulse frequency, as though successive $\pi/2$ pulses of linearly varying frequencies were applied. In essence, in the non-adiabatic regime, a WURST pulse is used as a chirp pulse.⁴⁴ A WURST-echo is comprised of two WURST pulses separated by a time delay, analogous to the quadrupolar echo pulse sequence (Figure 2.17).

Figure 2.17. The WURST echo pulse sequence.

2.5.5 WURST-QCPMG

The WURST-QCPMG pulse sequence was first reported by Luke O'Dell in 2008.^{45,46} It features a WURST pulse repeated in a CPMG-like echo train. This pulse sequence provides broadband excitation analogous to a WURST pulse, whilst also offering the improvements to signal-to-noise ratio available via QCPMG experiments. The intensity of the frequency-domain NMR spectrum, like in a QCPMG experiment, is distributed into spikelets whose frequency separation is inversely proportional to the time between echoes.

2.5.6 Acquiring Ultrawideline NMR Spectra

Many of the NMR spectra in this thesis feature central transition line breadths on the order of MHz. The breadth of these NMR spectra exceed available pulse excitation bandwidths and digitization rates (i.e., dwell times necessary to meet Nyquist criteria).³⁴ Thus the technique of frequency stepping⁴⁷⁻⁴⁹ is used to acquire the NMR spectra. Frequency stepping involves systematically moving the transmitter offset frequency over the frequency range of the NMR spectrum to acquire the entire spectrum in separate pieces. The intervals between transmitter offset frequencies are determined primarily by the pulse excitation bandwidth. It is desirable for the overall collection of pulses to exhibit a flat excitation profile over the entire NMR spectrum. In QCPMG-like pulse sequences, transmitter offset steps should be integer multiples of the spikelet spacing, thus when multiple pieces of the total NMR spectrum are displayed simultaneously, the spikelets overlap and, if added together (vide infra), increase the signal-tonoise ratio in the final NMR spectrum.

Nuclear relaxation can lead to difficulties in acquiring broadband NMR spectra. Some of the ⁸⁷Sr NMR spectra featured in Chapter 6 were acquired at a single transmitter offset frequency using a broadband, frequency-swept pulse (i.e., WURST or WURST-QCPMG). In these cases, NMR spectra were often distorted (i.e., spectral intensity was more intense on one side of the NMR powder pattern). Distortions in NMR powder patterns are possibly due to nuclear relaxation occurring over the duration of the frequency-swept pulse, though other factors such as T_2 anisotropy may also contribute to spectral distortions. In these cases, NMR spectra acquired with multi-directional sweeps (both low-to-high and high-to-low frequency) were added together to reduce distortions.

2.5.7 Assembling Ultrawideline NMR Spectra

The two techniques used in this thesis to assemble frequency-stepped NMR spectra are the skyline projection technique⁵⁰ and a simple co-added sum. The skyline projection technique involves overlaying the partial NMR spectra and taking the most intense points to define the line shape of the final NMR spectrum. This is analogous to how the shadow of a cityscape mimics the maximum "intensity" (or height) of the buildings. To construct a co-added sum, the partial NMR spectra are added together to produce the final spectrum (i.e., the final signal intensity at a given frequency is a sum of all signal intensities recorded at that resonance frequency). This can be advantageous as it leads to an increase in signal-to-noise ratio, but can sometimes lead to lesswell-defined spectral features and/or spectral distortions.

2.5.8 Computational Methods

2.5.8.1 Amsterdam Density Functional (ADF)

Amsterdam Density Functional⁵¹⁻⁵³ is a DFT-based program for calculating molecular properties. In this thesis, the ADF program package is used to perform calculations on isolated ("gas phase") molecules, though it is noted that the ADF modelling suite includes methods for dealing with periodic solids (BAND). BAND was not used in this research, as use of the CASTEP code (*vide infra*) is more established in the solid-state NMR literature. Unless otherwise noted, calculations of NMR properties carried out with ADF feature relativistic corrections using the zeroth-order regular approximation (ZORA) to the Dirac equation, including effects from spin-orbit coupling. The inclusion of relativistic effects is important for the computation of both EFG and magnetic shielding parameters. All electrons are correlated in these calculations. The majority of the ADF calculations carried out in this research use the ZORA/QZ4P basis set, a basis set composed of Slater-type orbitals tailored for relativistic calculations. The GGA functional BP86 is used to describe the exchange-correlation energy. Example input files for ADF calculations are included in Appendix A.

2.5.8.2 Cambridge Serial Total Energy Package (CASTEP)

CASTEP⁵⁴⁻⁵⁷ is a DFT-based program used to perform first-principles calculations of molecular and crystallographic properties. The version of CASTEP used in this thesis calculates molecular/crystallographic properties in the non-relativistic limit. CASTEP simulates the periodic nature of crystalline solids by the use of plane-wave basis sets and periodic boundary conditions. Pseudopotentials are used to approximate the potential arising from the atomic nuclei and core electrons. Ultrasoft pseudopotentials describing core-valence interactions are

calculated on-the-fly, and the PBE functional in the generalized gradient approximation^{58,59} is used to describe the exchange-correlation energy. The basis set size is specified by setting a maximum cutoff energy; plane waves with this and lower energy are used to construct the total basis set. The cutoff energy thus depends on the desired accuracy of the calculation as well as the size of the crystallographic unit cell. The Materials Studio 4.4 environment was used to generate input files for CASTEP calculations.

Chapter 3

Assessing Distortion of the AF_6^- (A = As, Sb) Octahedra in Solid Hexafluorometallates(V) via NMR Spectroscopy

3.1 Introduction

Naturally occurring NMR-active isotopes of arsenic and antimony include ⁷⁵As, ¹²¹Sb, and ¹²³Sb. These nuclei are quadrupolar, with I = 3/2, 5/2, and 7/2, respectively.⁶⁰ The NMR properties of these nuclei are for the most part favorable; all three nuclei have moderate to high natural abundance and moderate magnetogyric ratios. The large nuclear quadrupole moments of these nuclei, ^{60,61} $Q(^{75}As) = 30.0 \pm 5.0 \text{ fm}^2$, $Q(^{121}Sb) = -54.3 \pm 1.1 \text{ fm}^2$, and $Q(^{123}Sb) = -69.2 \pm$ 1.4 fm^2 , result in the nuclear quadrupolar coupling constant, C_Q , being highly sensitive to structural changes at the arsenic or antimony crystal sites.⁶² It is therefore possible to use experimental arsenic and antimony quadrupolar parameters as a probe of crystal symmetry. Note that the large quadrupole moments of these nuclei can also present challenges to the NMR spectroscopist; C_Q values and hence the breadth of the NMR powder pattern can be very large for nuclei at sites with large local electric field gradient, e.g., for antimony or arsenic atoms which occupy crystallographic positions with low point-group symmetry.

Quadrupolar parameters are of particular use in monitoring changes in the symmetry at specific nuclear sites of solids that undergo phase transitions. Abrupt changes in these

parameters upon changes in temperature are a clear indicator that the phase transition has occurred, as the magnitude of C_0 and the quadrupolar asymmetry parameter, η_0 , in each phase can be indicative of the point group symmetry about a particular crystallographic site, in this case a site occupied by either an arsenic or antimony atom. Both the hexafluoroarsenate(V) and hexafluoroantimonate(V) anions have played a significant role in pioneering work in the field of nuclear magnetic resonance, and both of these ions were among the first compounds to be studied via ⁷⁵As, ¹²¹Sb, and ¹²³Sb NMR spectroscopy (vide infra). In view of this historic importance, we have measured the arsenic-75 (natural abundance = 100%), antimony-121 (natural abundance = 57.2%), and antimony-123 (natural abundance = 42.8%) NMR spectra of solid polycrystalline samples of KAsF₆ and KSbF₆ at several temperatures. Both solids undergo phase transitions above room temperature, and the high-resolution spectra presented here show that the antimony nucleus in both the cubic and tetragonal phases experiences a nonzero electric field gradient (EFG). Furthermore, our measurements of the cubic phase of KSbF₆ highlight the advantages of studying many non-integer spin quadrupolar nuclei at the highest possible magnetic field strengths. This work is a fitting contribution to the recent special issue of the Canadian Journal of Chemistry dedicated to Dr. J.A. Ripmeester, who studied related systems early in his career.⁶³

3.2 Background

NMR studies involving arsenic and antimony have been few and far between, in part owing to the large nuclear quadrupole moments of these nuclides. The first accurate determination of the ⁷⁵As nuclear magnetic moment via an NMR experiment was published in 1951 by Dharmatti and Weaver,⁶⁴ and again in a more comprehensive study in 1953.⁶⁵ Here the ⁷⁵As NMR resonance frequency in an aqueous solution of 2 mol/L Na₂HAsO₄ and 2 mol/L NaOH (i.e., to observe the AsO₄³⁻ anion) was observed, and the magnetic moment of ⁷⁵As was determined to be +1.4347(3) nuclear magnetons (μ_N). A similar value, +1.4350(3) μ_N , was obtained by Jeffries and Loeliger in 1952.⁶⁶ These values are close to the currently accepted value of +1.43948(7) μ_N .⁶⁰ The ¹²¹Sb and ¹²³Sb nuclear magnetic moments were determined via NMR spectroscopy by Proctor and Yu and reported in 1951.⁶⁷ Experiments were performed on an aqueous solution of NaSbF₆, and values for the ¹²¹Sb and ¹²³Sb nuclear magnetic moments were performed on ereported to be +3.3427(6) and +2.5341(4) μ_N , respectively. The currently accepted values are +3.3634(3) and +2.5498(2) μ_N for ¹²¹Sb and ¹²³Sb, respectively.⁶⁰

Despite these three nuclides receiving relatively little attention from the NMR spectroscopy community on the whole, the hexafluoroarsenate(V) and hexafluoroantimonate(V) anions have an important place in the history of NMR spectroscopy. KAsF₆ was one of the first compounds to be studied in the solution phase using Fourier transform ⁷⁵As NMR spectroscopy.⁶⁸ These early experiments were performed by Balimann and Pregosin on a series of tetrahedral arsenic salts in solution, at which time aqueous K⁺AsF₆⁻ was chosen as the reference compound for the ⁷⁵As chemical shift scale. Previous to this, ¹⁹F NMR measurements shed light on the indirect spin-spin coupling and relaxation behavior of the ⁷⁵As nucleus in the hexafluoroarsenate ion. Arnold and Packer^{69,70} studied the ⁷⁵As spin-lattice relaxation time of the hexafluoroarsenate ion via ¹⁹F NMR spectroscopy in nonaqueous solutions and reported ¹*J*(⁷⁵As,¹⁹F) = 933 Hz. Andrew, Farnell, and Gledhill reported ¹*J*(⁷⁵As,¹⁹F) to be 905 Hz in solid KAsF₆, determined via ¹⁹F MAS NMR spectroscopy.⁷¹ This 1967 study was the first publication to report the observation of resolved splittings due to indirect spin-spin coupling constants in solids. Spectra were acquired at a field strength of 0.6 T and a magic angle spinning (MAS) frequency of 5.5 kHz. The AsF_6^- ion received more attention recently in a comprehensive multinuclear magnetic resonance and powder X-ray diffraction study of the phase transition in solid $NaAsF_6^{72}$.

The hexafluoroantimonate(V) ion was the first species reported to exhibit splittings that could be attributed to indirect spin-spin coupling, or J-coupling in solution. In their efforts to measure magnetic moments of various NMR-active nuclei, Proctor and Yu⁶⁷ noticed that the antimony-121 resonance of the SbF₆⁻ anion, measured in solution, consisted of five lines, each separated by 1.90 G. This structure was initially attributed to direct magnetic dipole interactions between the antimony and the surrounding fluorine nuclei. This initial interpretation was supported by Andrew⁷³ who predicted that the ¹²¹Sb NMR spectrum should consist of nine lines; however in 1952, Dharmatti and Weaver⁷⁴ showed that the antimony resonance of SbF_6^- in fact consisted of seven equally spaced peaks with relative intensity 1:6:15:20:15:6:1. On the basis of earlier work by the research groups of Gutowsky,⁷⁵⁻⁷⁷ Hahn,⁷⁸ and of Ramsey and Purcell,⁷⁹ Dharmatti and Weaver concluded that the spin-spin coupling must take place via the intervening electrons – a so-called indirect spin-spin coupling mechanism. Andrew and co-workers⁷¹ resolved splittings from $J(^{121}Sb,^{19}F)$ and $J(^{123}Sb,^{19}F)$ in ¹⁹F NMR spectra of solid potassium hexafluoroantimonate(V), which, along with their measurement of ${}^{1}J({}^{75}As, {}^{19}F)$ discussed above, marked the first reported measurement of indirect spin-spin couplings in solid materials. The value of $J(^{121}Sb,^{19}F)$ was found to be 1820 Hz, somewhat smaller than the value of 1945 Hz reported in solution NMR studies.^{80,81} In a follow-up study, Andrew and co-workers⁸² found that by spinning the solid sample at 7 kHz, the spectral resolution could be improved sufficiently to permit direct ¹⁹F NMR measurement of both ¹J(¹²¹Sb,¹⁹F) and ¹J(¹²³Sb,¹⁹F). The values obtained were 1914 ± 20 Hz and 1018 ± 10 Hz, respectively. In 1987, Kozlova, Kriger, and Goncharuk

investigated the phase transition in KSbF₆ via variable temperature ¹⁹F and ¹²¹Sb NMR spectroscopy.⁸³ Fluorine-19 relaxation data presented in their study shed light on the reorientation behavior of the SbF₆⁻ octahedra. $C_Q(^{121}Sb)$ values were determined at several temperatures between 120 and 360 K, however ¹²¹Sb NMR spectra were acquired on a continuous wave NMR spectrometer, the spectra were not shown, and the precision of individual experimental $C_Q(^{121}Sb)$ values was not mentioned.

3.3 Crystal Structure and Dynamics

3.3.1 KAsF₆

Potassium hexafluoroarsenate(V) exists in two stable crystalline solid phases at atmospheric pressure, a rhombohedral phase (II) at lower temperature and a cubic phase (I) at higher temperature,⁸⁴ with the phase transition occurring at around 375 K.⁸⁵ Differential thermal analysis (DTA) shows that the phase transition occurs at 378 K when heated and at 372 K when cooled. The space group of the room temperature phase was originally reported to be either $R\overline{3}$ (No. 148) or $R\overline{3}m$ (No. 166),^{86,87} though was later confirmed to be $R\overline{3}$.^{85,88,89} In this phase, the arsenic atoms are surrounded by six fluorine atoms at a nearly octahedral site that possesses C_3 point-group symmetry. According to the most recently determined structure,⁸⁹ the As–F bond distance is 1.712 Å. The space group of the high temperature phase is $Fm\overline{3}m$, wherein the arsenic atoms occupy a site of octahedral point-group symmetry.⁸⁵ This phase change is accompanied by an increase in cell volume, which at the transition temperature is 116.06 Å³ in the rhombohedral phase and 129.88 Å³ in the cubic phase.⁸⁵ The reorientation behavior of the As anions in KAsF₆ was studied by Niemelä in 1973.⁹⁰ Data in that work show greater hysteresis than do the DTA data mentioned above, with the phase transitions taking place at 391.7 and 362.8 K upon heating and cooling, respectively. The ¹⁹F T_1 data exhibit a discontinuity at the phase-transition temperature. Fluorine-19 T_1 relaxation times in the high temperature phase of KAsF₆ decreased with increasing temperature, indicative of the spin-rotation relaxation mechanism dominating due to rapid isotropic rotational reorientation of the As octahedra. Using the ¹⁹F T_1 data of Niemelä in the low temperature phase, ⁹⁰ the rotational correlation time, τ_c , of this reorientational motion is calculated to be 3.7×10^{-7} , 4.9×10^{-8} , and 1.2×10^{-8} s at 293, 323, and 348 K, respectively. Relaxation behavior in the related hexafluoride salt IF₆AsF₆ has been studied via variable temperature solid-state ¹⁹F NMR spectroscopy by Albert and Ripmeester.⁶³ These data show similar trends, with $T_1(^{19}F)$ in the high temperature phase being essentially independent of temperature.

3.3.2 KSbF₆

Potassium hexafluoroantimonate(V) occurs in two stable crystalline forms at ambient pressure, a tetragonal form stable above 301 K (phase I) and a cubic form stable below 301 K (phase II).⁸⁴ This is particularly interesting, as it is rare for a crystal to exhibit cubic symmetry in a lower temperature phase.⁹¹ DTA has shown that the cubic-to-tetragonal phase transition occurs at 301 K, while the tetragonal-to-cubic phase transition occurs at 277 K.⁹² The cubic phase belongs to space group $I2_13$ (No. 199),⁹²⁻⁹⁴ wherein the antimony atoms lie at a site with C_3 point-group symmetry, though the available X-ray crystallography data are refined in space group $Ia\overline{3}$ (No. 206).⁹⁵ Note that although KSbF₆ belongs to a cubic space group, the antimony atoms do not occupy an octahedral lattice position. The Sb ions, according to X-ray crystallographic data,⁹⁵ are distorted octahedra with F-Sb-F bond angles between 84.5° and 95.2°. The tetragonal higher temperature phase belongs to space group $P\overline{4}2m$ (No. 111),⁹⁶

53

wherein the antimony atoms lie at a distorted octahedral site with C_{2v} symmetry.⁹⁴ It was proposed in 1975 that reorientation of the Sb ions caused nuclear spin-lattice relaxation in NaSbF₆ and KSbF₆.⁹⁷ Based on that work, the rotational correlation times for reorientation of the Sb octahedra are 1.6×10^{-8} , 5.9×10^{-11} , and 3.5×10^{-11} s at 293 (low temperature phase), 308, and 348 K, respectively. Early ¹⁹F NMR investigations of solid KSbF₆ indicated that at temperatures above 260 K, the Sb octahedra reorientate "isotropically."⁹³ Based on ¹⁹F NMR relaxation data, Kozlova et al. later suggested that the reorientation may be strongly anisotropic and involved motion about either the C_3 or C_4 axes of the Sb ion.⁸³ On the basis of a more recent infrared study, Heyns and co-workers⁹⁴ have suggested that the reorientation of the anions is more complex.

3.4 Experimental Section

KAsF₆ and KSbF₆ were obtained commercially and used without further purification. NMR experiments were performed at $B_0 = 21.14$ T on a Bruker Avance II NMR spectrometer at the Canadian National Ultrahigh-Field NMR Facility for Solids in Ottawa, Ontario² on phase II of KAsF₆ and phases I and II of KSbF₆. Note that a solids probe, both operational above the KAsF₆ phase transition temperature and capable of ¹⁹F decoupling, was not available at $B_0 = 21.14$ T. The sample spinning frequency was 15 kHz using a 2.5 mm double resonance Bruker MAS probe. Arsenic-75 NMR spectra were recorded at a resonance frequency of 154.1 MHz, using a 1 µs RF pulse ($\pi/2$ solid pulse) and a 1 s relaxation delay using single pulse acquisition. For each ⁷⁵As NMR spectrum with ¹⁹F decoupling, 256 transients were acquired, and 1024 transients were acquired for spectra without ¹⁹F decoupling. Arsenic-75 NMR spectra were referenced to 0.5 mol/L KAsF₆ in MeCN at $\delta_{iso} = 0.0$ ppm. Antimony-121 NMR spectra were

recorded at a resonance frequency of 215.5 MHz, using a 1 μ s RF pulse ($\pi/2$ solid pulse) and a 1 s relaxation delay. For each ¹²¹Sb spectrum with ¹⁹F decoupling, 256 transients were acquired, and 1024 transients were acquired for spectra without ¹⁹F decoupling. Antimony-123 NMR spectra were recorded at a resonance frequency of 116.7 MHz, using a 1 μ s RF pulse ($\pi/2$ solid pulse) and a 1 s relaxation delay. For each ¹²³Sb spectrum with ¹⁹F decoupling, 1024 transients were acquired, and 4096 transients were acquired for spectra without ¹⁹F decoupling. Antimony NMR spectra were referenced to 0.5 mol/L KSbF₆ in MeCN at $\delta_{iso} = 0.0$ ppm. Fluorine-19 NMR spectra were recorded at a resonance frequency of 847.0 MHz, using a 2 μ s RF pulse ($\pi/4$) and a 5 s relaxation delay. For each ¹⁹F spectrum, 32 transients were acquired. Fluorine-19 NMR spectra were referenced to external CF₃COOH at $\delta_{iso} = 0.0$ ppm. Broadband ¹⁹F decoupling in ⁷⁵As, ¹²¹Sb, and ¹²³Sb NMR experiments was applied using 50 kHz decoupling power. The sample temperature was controlled with a Bruker BVT 3000 temperature control unit. The actual sample temperature under MAS conditions was calibrated using a ²⁰⁷Pb signal in $Pb(NO_3)_2^{98}$ with estimated accuracy of ± 2 K. Spectral simulations were performed using the WSolids1⁹⁹ and the DMFit programs.¹⁰⁰ Arsenic-75 NMR spectra of phase I of KAsF₆ were acquired at $B_0 = 9.39$ T on an Agilent/Varian Inova 400 MHz spectrometer running VNMRJ 4.2A with a double-channel broadband switchable probe designed for experiments on solutions. The ⁷⁵As resonance frequency was 68.5 MHz. The solid sample was packed in a 5 mm o.d. glass tube and remained stationary for all experiments at this magnetic field strength, as magic angle spinning was not available. A 0.5 s recycle delay was used, and 76 transients were acquired. Fluorine-19 decoupling was applied using a WURST-40 pulse and a maximum decoupling frequency of 2.84 kHz. Decoupling schemes typically used in experiments on solid samples were unavailable due to the pulse width and maximum power limitations of the probe. A 19 F

55

NMR spectrum of KAsF₆ was obtained in phase I, which consisted of 8 transients that were acquired with a recycle delay of 2 s at a resonance frequency of 376.3 MHz. The sample temperature for experiments performed at 9.39 T was controlled with a Highland Technology Model L900 NMR temperature controller. The actual sample temperature was determined via the chemical shift difference between the methylene and hydroxyl protons in a sample of neat ethylene glycol, with an estimated accuracy of ± 1 K.

EFG and CS tensor parameters were calculated using the CASTEP⁵⁴⁻⁵⁷ program (Materials Studio 4.4). Atom positions in the unit cell for phases I and II of KSbF₆ and phase II of KAsF₆ were calculated using geometry optimizations in which the initial atomic coordinates were at the experimental geometry.^{89,95,96} The geometry optimization of atom positions was necessary due to significant residual forces on the fluorine atoms caused by short As-F and Sb-F bond lengths in the experimental crystal structures. During the geometry optimization, the unit cell dimensions were kept constant. Since a crystal structure was not available for phase I of KAsF₆, unit cell parameters determined through X-ray powder diffraction experiments⁹² along with atom positions in reported isostructural cubic $NaSbF_6^{101}$ were used to create an initial structure for KAsF₆. Final atom positions in this unit cell were determined via a geometry optimization. NMR parameter calculations for KAsF₆ in phase II and KSbF₆ in phase I were performed with a plane wave basis set cutoff energy of 550 eV using a fine accuracy basis set, and calculations of parameters in KSbF₆ in phase II used a cutoff energy of 500 eV with a medium accuracy basis set. Calculations were carried out using "on-the-fly" pseudopotentials, and the generalized gradient approximation (GGA) was used with the Perdew, Burke, and Ernzerhof (PBE) functionals to calculate the exchange correlation energy.^{58,59}

56

3.5 Results and Discussion

Experimental ⁷⁵As, ¹²¹Sb, and ¹²³Sb NMR data are summarized in Tables 3.1 and 3.2. Results of CASTEP calculations are summarized in Table 3.3. Experimental and simulated ⁷⁵As NMR spectra of phase II of KAsF₆ are shown in Figure 3.1, and ^{121/123}Sb NMR spectra are shown in Figures 3.2 and 3.3. Fluorine-19 NMR spectra of KSbF₆ are shown in Figure 3.4. Arsenic-75 NMR spectra of phase I of KAsF₆ are shown in Figure 3.5. At high field, ^{121/123}Sb NMR spectra were obtained for KSbF₆ in both phases I and II, whilst ⁷⁵As NMR data were acquired at several temperatures for phase II of KAsF₆. High temperature NMR data for KAsF₆, i.e., above the phase transition at 375 K, were not obtained at $B_0 = 21.14$ T due to hardware limitations. High temperature ⁷⁵As NMR nutation data for phase I of a stationary sample of powdered KAsF₆ were acquired at 386 ± 1 K on a 9.39 T NMR spectrometer. The ¹⁹F NMR spectrum acquired for phase I of KAsF₆ consisted of a single broad resonance similar to that reported by Gabuda et al.¹⁰² and is not shown.

i abie 0.1. I think parameters determined for 12151 h at 21.1 I i

	0.5M KAsF ₆ /MeCN	Phase II	Phase II	Phase II	Phase I
		293 K	323 K	348 K	386 K
$\partial (^{19}F) / ppm^a$	12.60 ± 0.05	12.70 ± 0.30	12.70 ± 0.05	13.00 ± 0.05	-
${}^{1}J({}^{75}As, {}^{19}F) / Hz^{b}$	-930 ± 5	-926 ± 10	-926 ± 3	-926 ± 3	-
$^{1}K(\text{As,F}) / 10^{20} \text{ N A}^{-2} \text{ m}^{-3}$	-47.9 ± 0.1	-47.7 ± 0.1	-47.7 ± 0.1	-47.7 ± 0.1	-
$\partial(^{75}\mathrm{As})/\mathrm{ppm}$	0.0 ^c	-3.5 ± 0.1	-3.2 ± 0.1	-3.1 ± 0.1	-2.5 ± 1
$C_{\rm Q}(^{75}{\rm As})$ / MHz ^b	-	-2.87 ± 0.05	-2.58 ± 0.05	-2.30 ± 0.05	0.0
$\eta(^{75}\text{As})$	-	0.00 - 0.05	0.00 - 0.05	0.00 - 0.05	-

^a Referenced to external CF₃COOH.

^b Signs of ${}^{1}J({}^{75}As, {}^{19}F)$ and $C_Q({}^{75}As)$ values were determined from DFT calculations (see text).

^c Used as a chemical shift reference.

	0.5M KSbF ₆ /MeCN	Phase II	Phase I	Phase I
		293 K	308 K	343 K
δ ⁽¹⁹ F) / ppm ^a	-45.35 ± 0.05	-47.05 ± 0.03	-46.86 ± 0.03	-46.07 ± 0.03
${}^{1}J({}^{121}Sb,{}^{19}F) / Hz^{b}$	-1929 ± 10	-1884 ± 3	-1885 ± 3	-1889 ± 3
${}^{1}J({}^{123}Sb,{}^{19}F) / Hz^{b}$	-1042 ± 10	-1019 ± 3	-1023 ± 3	-1026 ± 3
$^{1}K(Sb,F) / 10^{20} \text{ N A}^{-2} \text{ m}^{-3}$	-70.8 ± 0.1	-69.2 ± 0.1	-69.3 ± 0.1	-69.5 ± 0.1
δ(¹²¹ Sb, ¹²³ Sb) / ppm	0.0^{c}	-17.6 ± 0.2	-17.5 ± 0.2	-16.5 ± 0.3
$C_{\rm Q}(^{121}{\rm Sb})/{\rm MHz}$	-	6.42 ± 0.10	4.30 ± 0.10	3.11 ± 0.20
$C_{\rm Q}(^{123}{\rm Sb})/{\rm MHz}$	-	8.22 ± 0.10	5.48 ± 0.10	4.06 ± 0.20
$\eta(^{121}\text{Sb},^{123}\text{Sb})$	-	0.00 - 0.10	0.32 - 0.37	0.40 - 0.60

Table 3.2. NMR parameters determined for KSbF₆ at 21.14 T.

^a Referenced to external CF₃COOH.

^b Signs of ${}^{1}J({}^{121}Sb, {}^{19}F)$ and ${}^{1}J({}^{123}Sb, {}^{19}F)$ values were determined from DFT calculations (see text).

^c Used as a chemical shift reference.

Table 3.3. CASTEP calculated parameters for ⁷⁵As and ¹²¹Sb in KAsF₆ and KSbF₆. $Q(^{75}As) =$ 31.1 fm², $Q(^{121}Sb) = -54.3$ fm².

	$C_{\rm Q}$ / MHz	η	$\sigma_{ m iso}$ / ppm	Ω / ppm ^a	κ^{b}
KAsF ₆ Phase II	-2.562	0.01	1531.7	1.7	0.960
KAsF ₆ Phase I	0.00	-	1594.4	0.0	-
KSbF ₆ Phase II	12.42	0.00	3115.8	0.9	-1
KSbF ₆ Phase I	2.695	0.63	3121.1	27.8	-0.960

^a $\Omega = \delta_{11} - \delta_{33}$

 $^{\rm b}\kappa = 3(\delta_{22} - \delta_{iso})/\Omega$

Figure 3.1. ⁷⁵As MAS NMR spectra of KAsF₆ recorded at different temperatures. Spectra were recorded with (lower traces) and without (upper traces) ¹⁹F decoupling. Spectra are shown together with simulated spectra calculated using parameters contained in Table 3.1. Insets show corresponding ¹⁹F MAS NMR spectra.

Figure 3.2. ¹²¹Sb and ¹²³Sb MAS NMR spectra of KSbF₆ recorded for the low temperature phase (II) at 293 K and for the high temperature phase (I) at 343 K. Spectra were recorded with (lower traces) and without (upper traces) ¹⁹F decoupling. Experimental spectra are shown together with simulated spectra calculated using parameters contained in Table 3.2.

Figure 3.3. ¹²¹Sb MAS NMR spectra recorded with broadband ¹⁹F decoupling upon gradual heating of the KSbF₆ sample. (II \rightarrow I) phase transition occurs at 301 K and is accompanied by abrupt changes both in C_Q and η (see Table 3.2 for NMR parameters used in simulations). Similar effects were observed in corresponding ¹²³Sb MAS NMR spectra of this compound (not shown).

Figure 3.4. ¹⁹F MAS NMR spectra of KSbF₆ recorded for the low temperature phase (II) at 293 K and for the high temperature phase (I) at 343 K. Both spectra are shown together with simulated spectra calculated using parameters contained in Table 3.2.

Figure 3.5. Arsenic-75 NMR spectrum of solid polycrystalline KAsF₆ at 386 ± 1 K acquired with ¹⁹F decoupling at $B_0 = 9.4$ T. The distortions on either side of the peak are decoupling artifacts.

3.5.1 KAsF₆

As mentioned above, the arsenic site in phase II of $KAsF_6$ possesses C_3 point-group symmetry, which confines the arsenic electric field gradient tensor parameters such that V_{XX} = $V_{\rm YY}$, in other words, the tensor must be axially symmetric. In phase I, the octahedral symmetry about arsenic requires that the electric field gradient in all directions is zero, meaning the nuclear quadrupolar coupling constant for ⁷⁵As will also have a value of zero, and a solution-like spectrum that includes signal contribution from the central transition ($m_1 = 1/2 \leftrightarrow -1/2$) and the satellite transitions ($m_I = -3/2 \leftrightarrow -1/2$, and $1/2 \leftrightarrow 3/2$) should be obtained. We have found that in phase II at 293 K, $C_Q(^{75}As) = -2.87 \pm 0.05$ MHz (Table 3.1). $C_Q(^{75}As)$ values in phase II show some temperature dependence, with a variation of 570 kHz over a 55 K range in temperature. $|C_0(^{75}As)|$ values decreased with increasing temperature. As $V_{ZZ}(^{75}As)$ lies along a three-fold rotation axis, the ⁷⁵As electric field gradient tensor in this phase is axially symmetric, and the quadrupolar asymmetry parameter is zero. CASTEP calculations performed on phase II of KAsF₆ predict $C_0(^{75}\text{As}) = -2.562$ MHz, close to our experimental values, which lie between -2.30 and -2.87 MHz. Note that signs of quadrupolar coupling constants are typically unavailable from NMR experiments, and thus only the absolute value of $C_0(^{75}As)$ is available from the line shape simulations. We have chosen to include the signs predicted by the DFT calculations. In phase I of KAsF₆, $C_Q(^{75}As)$ is zero. This was confirmed by nutation experiments at a sample temperature of 386 K, which showed that the ⁷⁵As nuclei contributing to the NMR spectrum of solid KAsF₆ possessed the same nutation behavior as those in the room temperature setup sample, 0.5 mol/L NaAsF₆ in CD₃CN (see Figure 3.6). In agreement with previous studies,⁶⁸⁻⁷⁰ the solution value of ${}^{1}J({}^{75}As,{}^{19}F)$ in 0.5 mol/L KAsF₆ in MeCN is -930 ± 5 Hz. In the solid, ${}^{1}J({}^{75}As, {}^{19}F)$ did not exhibit any temperature dependence in phase II, remaining,

within error, at a value of -926 Hz over the temperature range studied. The sign of ${}^{1}J({}^{75}\text{As}, {}^{19}\text{F})$ for the hexafluoroarsenate ion is unavailable from experiment, however, on the basis of previous DFT calculations 103 the sign is negative. Splitting due to indirect spin-spin coupling was not resolved in ${}^{19}\text{F}$ or ${}^{75}\text{As}$ NMR spectra (acquired without ${}^{19}\text{F}$ decoupling) of phase I at 386 K. Arsenic-75 isotropic chemical shift values showed little variation over the temperature range studied, with $\delta_{iso}({}^{75}\text{As}) = -3.5 \pm 0.1$ ppm at 293 K and -3.1 ± 0.1 ppm at 348 K.

Previous attempts at ⁷⁵As NMR measurements of KAsF₆ were carried out by Niemelä,⁹⁰ though the experiments were unsuccessful, and spectra of neither the low nor the high temperature phase were acquired. Gabuda et al. studied the phase transition in this solid in 1979,¹⁰² but reported the transition at 355 ± 1 K, somewhat lower than the current literature value of 375 K, suggesting that the sample may have been impure or that their reported temperatures were not properly calibrated. In addition, ⁷⁵As NMR data were not collected below a temperature of 347 K, and information about $C_0(^{75}As)$ values in the low temperature phase (II) was ambiguous. The related hexafluoroarsenate salt NaAsF₆ was investigated previously via variable temperature solid-state ²³Na, ⁷⁵As, and ¹⁹F NMR spectroscopy.⁷² Like KAsF₆, NaAsF₆ belongs to space group $R\overline{3}$ at low temperature and $Fm\overline{3}m$ at high temperature. The transition between these two phases takes place at approximately 310 K, though like KAsF₆, the actual transition temperature depends on whether the sample is being heated or cooled. Biswal et al.⁷² reported this transition taking place at 325 and 309 K upon heating and cooling, respectively. $C_Q(^{75}As)$ in the high temperature phase of NaAsF₆ (343 K) was reported⁷² to be 0 Hz, like KAsF₆. In the low temperature phase at 308 K, the experimental $C_0(^{75}As)$ value in NaAsF₆ was -820 ± 20 kHz, much smaller in magnitude than our $C_0(^{75}\text{As})$ values for KAsF₆, which fell between -2 and -3 MHz at around the same temperature. Based on these values, it is evident

67

that subtle changes in the structure caused by the substitution of sodium atoms with potassium atoms can lead to significant changes in the ⁷⁵As quadrupolar coupling constant. As mentioned, the sensitivity of $C_Q(^{75}As)$ values to crystal structure changes is due to the large quadrupole moment of ⁷⁵As, which leads to large $C_Q(^{75}As)$ values even in the presence of small electric field gradient tensor parameters. The small $C_Q(^{75}As)$ value in NaAsF₆ also made it possible to obtain high-quality spectra at $B_0 = 7 \text{ T}$.⁷² The ¹⁹F-⁷⁵As isotropic spin-spin coupling constants measured for NaAsF₆ were ¹ $J(^{75}As,^{19}F) = 910 \pm 5 \text{ Hz}$ (from the ¹⁹F NMR spectra) and 900 $\pm 20 \text{ Hz}$ (from the ⁷⁵As NMR spectra) for both phases. This is similar to our ¹ $J(^{75}As,^{19}F)$ value of –926 Hz. Fluorine-19 isotropic chemical shift values differ by ca. 15 ppm between the NaAsF₆ and KAsF₆ salts, and ⁷⁵As isotropic chemical shift values differ by less than 10 ppm.

The discussion of NMR spectroscopy of KAsF₆ would not be complete without commenting on the present ¹⁹F NMR spectra in comparison to that of Andrew et al. published in 1967.⁷¹ As one can see from the previous data,⁷¹ the ¹⁹F NMR spectrum acquired at room temperature with $B_0 = 0.6$ T, $v_0(^{19}\text{F}) = 24.0$ MHz shows well-resolved splitting due to indirect spin-spin coupling to ⁷⁵As. In our work the ¹⁹F NMR spectrum of KAsF₆ acquired at 293 K and 21.14 T, however, does not show any resolved splitting (Figure 3.1). This effect can be attributed to a distribution of ¹⁹F chemical shift values across the bulk of the sample. Line broadening mechanisms such as this are well-known, and possible causes for chemical shift distributions in solids include crystal defects and effects from the bulk magnetic susceptibility.¹⁰⁴ Note that at $B_0 = 0.6$ T, a chemical shift spread of 1 ppm corresponds to 24 Hz, whereas at our experimental field strength of $B_0 = 21.14$ T, 1 ppm corresponds to 847 Hz. Therefore, the splitting resulting from ¹ $J(^{75}As, ^{19}F) = 926$ Hz is approximately 39 ppm at low field and just over 1 ppm at $B_0 = 21.14$ T. Differences in chemical shifts of even a few ppm in the latter case obscure the expected splitting pattern. Preliminary CASTEP dynamics simulations in KAsF₆ predict that at 293 K the ¹⁹F chemical shift distribution can be as broad as 10 to 12 ppm, or 8.5 to 10.2 kHz at $B_0 = 21.14$ T. The *J*-splitting is clearly observed in ¹⁹F NMR spectra at $B_0 = 21.14$ T recorded at elevated temperatures due to increased dynamics of As octahedra and more effective averaging of intermolecular dipolar interactions (Figure 3.1).

Figure 3.6. Nutation curves for 0.5 M NaAsF₆ in CD₃CN at room temperature (upper trace) and solid polycrystalline KAsF₆ at 393 K (lower trace). Pulse widths are in μ s. The 90° pulse widths were determined to be 10.75 μ s and 10.5 μ s, respectively. Note that if the spectrum of solid KAsF₆ included signal from the central transition only, the determined 90° pulse width would be approximately half of that determined in solution. The slight discrepancy between the solid and solution 90° pulse values is likely due to differences in magnetic susceptibility between samples.

3.5.2 KSbF₆

Measurements performed at $B_0 = 21.14$ T and $v_0(^{121}\text{Sb}) = 215.5$ MHz, both with and without ¹⁹F decoupling, show clearly resolved ¹²¹Sb quadrupolar powder patterns, whose breadths are approximately 3 kHz at 293 K (phase II) under MAS conditions (Figure 3.2). Measured $C_0(^{121}\text{Sb})$ values at 293 K (phase II) and at 343 K (phase I) are 6.42 ± 0.10 and $3.11 \pm$ 0.20 MHz, respectively. Abrupt changes in $C_0(^{121,123}\text{Sb})$ values between spectra acquired at 298 and 308 K are indicative of the phase transition at 301 K (see Figure 3.3). The nonzero $C_0(^{121,123}\text{Sb})$ values along with the determined $\eta_0(^{121,123}\text{Sb})$ value of zero are in agreement with the literature point-group symmetry of C_3 at the antimony crystal site in phase II of KSbF₆. In phase I, $\eta_0(^{121,123}\text{Sb}) = 0.50 \pm 0.10$, a value consistent with a non-axial EFG tensor (i.e., it is in agreement with the literature point group, C_{2y}). CASTEP calculations support the experimental trend, with calculated $C_0(^{121}\text{Sb})$ values of 12.42 and 2.695 MHz in phases II and I, respectively. Note that these CASTEP calculations do not include effects from vibrational motion, and the temperature at which the crystal structure of phase II was obtained is unknown, possibly accounting for the discrepancy between the calculated and experimental $C_0(^{121}\text{Sb})$ values in phase II of KSbF₆. Previous measurements of $C_0(^{121}Sb)$ in KSbF₆ were carried out by Kozlova et al. on a continuous wave (CW) NMR spectrometer operating at an ¹²¹Sb resonance frequency of 20 MHz.⁸³ Temperature-dependent $C_0(^{121}\text{Sb})$ values and their corresponding errors were not explicitly reported, however, experimental $C_0(^{121}\text{Sb})$ values were extrapolated to the low temperature limit, i.e., at 0 K. Reported $C_0(^{121}\text{Sb})$ values at this limit were 10.1 ± 0.3 and $15.1 \pm$ 1 MHz for phases II and I, respectively. Antimony-121 NMR spectra were not shown. Based on our experimental $C_0(^{121}\text{Sb})$ value in KSbF₆ at 293 K, quadrupolar linewidths are predicted to be

ca. 70 kHz at an ¹²¹Sb resonance frequency of 20 MHz, neglecting the effects of ¹⁹F-⁷⁵As indirect spin-spin coupling.

Experimentally measured ${}^{1}J({}^{121}Sb, {}^{19}F)$ values in the cubic and tetragonal phases are -1884 ± 3 Hz (293 K) and -1889 ± 3 Hz (343 K), and ${}^{1}J({}^{123}Sb, {}^{19}F)$ values are -1019 ± 3 Hz (293 K) and -1026 ± 3 Hz (343 K). Again, based on DFT calculations performed previously, 103 ${}^{1}J({}^{121}Sb, {}^{19}F)$ values are predicted to be negative. The reduced indirect spin-spin coupling, ${}^{1}K(Sb,F)$, in KSbF₆ is greater in magnitude than ${}^{1}K(As,F)$ in KAsF₆ in both solid phases and in solution (Tables 3.1 and 3.2). Values for one-bond reduced coupling constants in analogous molecules are known to increase as one moves down a group in the periodic table, 105 so this result is expected. Similar to that observed in KAsF₆, ${}^{121/123}Sb$ and ${}^{19}F$ chemical shift values vary little over the studied temperature range.

3.6 Conclusions

The present multinuclear magnetic resonance data on the hexafluoroarsenate(V) and hexafluoroantimonate(V) anions in KAsF₆ and KSbF₆ demonstrate some of the advantages of studying half-integer quadrupolar nuclei with large quadrupole moments at high field. Well-resolved ⁷⁵As and ¹²¹Sb quadrupolar powder patterns were collected both with and without ¹⁹F decoupling, allowing for accurate determination of chemical shift and quadrupolar parameters as well as indirect spin-spin coupling constants. Fluorine-19 NMR parameters are in agreement with previous studies. Experimental and computed ^{121/123}Sb quadrupolar coupling constants and asymmetry parameters support structures and symmetry determined via X-ray crystallography and Raman spectroscopy. The nonzero ^{121/123}Sb nuclear quadrupolar coupling constants in cubic KSbF₆ show that antimony does not lie at a site of octahedral symmetry, despite its cubic crystal

structure. Current ¹²¹Sb NMR parameters provide a much needed update to the continuous wave experiments published in 1987. NMR parameters determined via CASTEP calculations are qualitatively in agreement with experimentally determined parameters.

3.7 Acknowledgements

Access to the 21.14 T NMR spectrometer and CASTEP software was provided by the National Ultrahigh-Field NMR Facility for Solids (Ottawa, Canada), a national research facility funded by a consortium of Canadian Universities, supported by the National Research Council Canada and Bruker BioSpin, and managed by the University of Ottawa (http://nmr900.ca). The authors thank Mr. Mark Miskolzie for acquiring the high-temperature NMR data of KAsF₆ at B_0 = 9.4 T. Funding was provided by NSERC of Canada, the Alberta Ingenuity Fund, the Canada Research Chairs program, and the University of Alberta.

Chapter 4

Feasibility of Arsenic and Antimony NMR Spectroscopy in Solids: An Investigation of Some Group 15 Compounds

4.1 Introduction

Arsenic-75, antimony-121, and antimony-123 are not well explored in the NMR literature.¹⁰⁶⁻¹⁰⁹ From the available NMR literature, the chemical shift (CS) ranges of arsenic-75 and antimony-121 are moderate, with the ⁷⁵As chemical shifts spanning approximately 800 ppm, and the ^{121/123}Sb chemical shifts spanning approximately 4000 ppm.¹⁰⁷ However, ⁷⁵As and ¹²¹Sb CS anisotropies for AsP, SbN, and SbP have been calculated from nuclear spin rotation constants measured in high-resolution microwave spectroscopy^{110,111} and are reported to be approximately 4070 ppm, 7770 ppm, and 8062 ppm, respectively (note that these are non-relativistic calculations and may be different from the actual values by several percent, vide infra). As it is not uncommon for CS anisotropies to span the chemical shift range of a given nucleus,¹¹² these results suggest that the chemical shift range of both ⁷⁵As and ¹²¹Sb is much greater than what is reported in the NMR literature. Both NMR-active isotopes of antimony, ¹²¹Sb and ¹²³Sb, as well as the NMR-active isotope of arsenic, ⁷⁵As, are quadrupolar. They possess spin quantum numbers 3/2 for arsenic-75, 5/2 for antimony-121, and 7/2 for antimony-123 (Table 4.1). Despite the higher spin quantum number of antimony-123, the higher natural abundance and larger magnetogyric ratio, as well as the smaller nuclear quadrupole moment of antimony-121 make it the favored isotope for NMR spectroscopy.¹ All three of these isotopes have relatively large nuclear quadrupole moments. It should be noted that the current (2007) IUPAC⁶⁰ values for the ¹²¹Sb and ¹²³Sb quadrupole moments, -36.0 and -49.0 fm², respectively, are outdated. The ratio between the quadrupole moments of these two isotopes is known very precisely from microwave studies of diatomics^{111,113} and a recent study conducted by Haiduke et al.¹¹⁴ has provided the more accurate values of $Q = -54.3 \pm 1.1$ fm² for ¹²¹Sb, and $Q = -69.2 \pm 1.4$ fm² for ¹²³Sb. This is highlighted by Pyykkö,⁶¹ and supported by work carried out in our group, in which the quadrupole moment of ¹²¹Sb was calculated to be -53.8 ± 2.0 fm² (F. Chen and R. E. Wasylishen, unpublished). Recently, a more precise value of the ⁷⁵As quadrupole moment has been calculated, ¹¹⁵ $Q = 31.1 \pm 0.2$ fm², however, the accepted⁶⁰ value of $Q = 30.0 \pm 5.0$ fm² will be used in this work.

Isotope	⁷⁵ As	¹²¹ Sb	¹²³ Sb
Natural Abundance / %	100	57.21	42.79
Spin Number, I	3/2	5/2	7/2
Quadrupole Moment, Q / fm^2	30.0	-54.3	-69.2
Gyromagnetic Ratio, $\gamma / 10^7$ rad s ⁻¹ T ⁻¹	4.596	6.4435	3.4892
Frequency Ratio, $\Xi / \%^a$	17.122 614	23.930 577	12.959 217
Resonance Frequency (21.14 T) / MHz	154.1	215.4	116.6
Resonance Frequency (11.75 T) / MHz	85.6	119.6	64.8

Table 4.1. Select properties for the nuclei ⁷⁵As, ¹²¹Sb, and ¹²³Sb.^{1,60,61}

^a Defined as $[\nu_{reference}(X)]/[\nu_{TMS}(^{1}H)]$ with TMS at infinite dilution.

The first determination of the magnetic moments of ¹²¹Sb and ¹²³Sb were by Crawford and Bateson,¹¹⁶ from the hyperfine structure observed in atomic spectra of gaseous antimony. The magnetic moment of arsenic-75 was first determined in 1933 by Crawford and Crooker.¹¹⁷ Most of the early ⁷⁵As and ¹²¹Sb NMR studies were carried out on samples in solution and involved either tetrahedral or octahedral species. This early literature is summarized in Chapter 11 of NMR and the Periodic Table¹⁰⁶ and Chapter 13 of Multinuclear NMR.¹⁰⁹ The large nuclear quadrupole moments of these three isotopes generally result in large quadrupolar coupling constants and broad or unobservable peaks in NMR spectra acquired for liquid (solution) samples due to efficient relaxation via the quadrupolar mechanism. In the solid state, the large nuclear quadrupolar coupling constants result in broad line shapes even in compounds that have near tetrahedral or octahedral symmetry at ⁷⁵As or ^{121/123}Sb. The small molecules arsine (AsH₃) and stibine (SbH₃) possess nuclear quadrupolar coupling constants of $C_0(^{75}As) =$ -162.6 MHz and $C_0(^{121}\text{Sb}) = 460.3$ MHz, respectively, ¹¹⁸ both of which would theoretically produce NMR quadrupolar central transition ($m_I = 1/2$ to $m_I = -1/2$) powder patterns spanning several MHz even if acquired on a high field NMR instrument. Such spectra typically exhibit low signal-to-noise ratios, particularly when nucleus concentration is low, and as shown, often require the use of frequency stepping to acquire the entire powder pattern. As a result, one of the most pervasive signal-enhancing techniques in solid-state NMR spectroscopy, magic angle spinning (MAS), is not useful in most cases as available spinning frequencies are much less than the breadth of the second-order quadrupolar linewidth of the central transition. These factors combined generally make acquiring ⁷⁵As, ¹²¹Sb, and ¹²³Sb NMR spectra a difficult task. The majority of existing information on electric field gradients at antimony or arsenic nuclear sites has been determined from either microwave spectroscopy or nuclear quadrupole resonance
(NQR) studies. However, these techniques have their limitations as well. Microwave spectroscopy is performed on gas-phase samples and thus is limited in terms of which molecules can be characterized. Furthermore, in cases where the asymmetry parameter η_Q is not zero, it is difficult or may not be possible to characterize the EFG in its principal axis system. NQR has been used extensively for the characterization of ^{121/123}Sb compounds, however, since ⁷⁵As has *I* = 3/2, the parameters C_Q and η_Q cannot be obtained independently by NQR for this nucleus.¹¹⁹ Additionally, NQR studies can be challenging because one does not necessarily know where to look in terms of frequency in order to observe a transition.

Despite the difficulties encountered in acquiring ⁷⁵As and ^{121/123}Sb NMR data, there have been efforts in the past to obtain NMR spectra of these three isotopes. Applications of antimony and arsenic in NMR spectroscopy include structural characterization in solution, notably of weakly coordinating anions, such as $[M(OTeF_5)_6] - (M=As, Sb, Bi)$, ¹²⁰⁻¹²² of heteropoly oxometalates,¹²³ and of alkali metal hydroxoantimonates.¹²⁴ Glassy Ge-As-Se^{125,126} and As₂Se₃,^{127,128} as well as the synthetic semiconductor GaAs¹²⁹⁻¹³¹ have been studied via solid-state ⁷⁵As NMR spectroscopy. In 2002, ⁷⁵As NMR experiments performed on powdered AsPh₄ReO₄ were included in a study of a series of compounds containing XO₄⁻ groups.¹³² Arsenic oxysalts were studied in the solid state in 2007¹³³ in which NMR parameters were determined from QCPMG and spin echo experiments, with C_Q values ranging from 2.85 ± 0.10 MHz in Li₃AsO₄ to 21.3 ± 0.2 MHz in As₂O₅. A more recent study focused on the solid-state ⁷⁵As NMR and NQR spectroscopy of four natural minerals, whose quadrupolar coupling constants range from 5.32 MHz in Cu₃AsS₄ to 161.7 MHz in FeAsS (the latter value determined from NQR).¹³⁴ Arsenic-75 NMR spectroscopy was also utilized as part of a recent study of NaAsF₆, wherein ¹⁹F and ⁷⁵As NMR results assisted in the structural characterization of β -NaAsF₆.⁷² This is by no

means an exhaustive list of references. For the most part, the compounds investigated via antimony and arsenic NMR spectroscopy to date have been fairly symmetric (pseudo-tetrahedral or -octahedral) where the EFGs are small.

Here we explore the application of high-field NMR spectroscopy along with the use of modern pulse programming for the acquisition of ⁷⁵As and ^{121/123}Sb NMR spectra of solids that do not exhibit perfect symmetry about the arsenic or antimony site. Four antimony- and arseniccontaining compounds, KSb(OH)₆, SbPh₄Br, AsPh₄Br, and (CH₃)₃AsCH₂CO₂H⁺Br⁻, were studied in the solid state. Arsenobetaine bromide, (CH₃)₃AsCH₂CO₂H⁺Br⁻, was first isolated from marine animals, and it is the primary arsenic species found in aquatic life commonly consumed by humans, e.g., lobster and many species of fish.^{135,136} Although a crystal structure is unavailable for AsPh₄Br, evidence from related compounds suggest an "ionic" structure, ^{137,138} with tetrahedral symmetry about the arsenic atom. Tetraphenylammonium halides and tetraphenylphosphonium halides are known to be ionic salts, whereas SbPh₄Br contains a covalent Sb-Br bond. This trend is seen in other pentavalent arsenic and antimony compounds.¹³⁹ Compounds with the composition Ph₄SbX and Ph₃SbX₂ (X=OH, OR, halogen) have been characterized, and in most cases these compounds exhibit trigonal bipyrimidal geometry.¹⁴⁰ The solid-state NMR spectra of these compounds should reflect the local symmetry about the group 15 elements (vide infra).

4.2 Experimental Section

4.2.1 NMR Measurements

The compounds $KSb(OH)_6$ and $SbPh_4Br$ were purchased from Sigma-Aldrich. AsPh_4Br was obtained from Alfa Aesar. $(CH_3)_3AsCH_2CO_2H^+Br^-$ (arsenobetaine bromide) was provided

by Dr. X. Chris Le (University of Alberta). These compounds were characterized via ¹³C and/or ¹H solution-phase NMR spectroscopy at a magnetic field strength of 11.75 T and were not further purified. Arsenic-75 samples were referenced to 0.5 M NaAsF₆ in CH₃CN ($\delta_{iso} = 0.0$ ppm), and ¹²¹Sb and ¹²³Sb samples were referenced to 0.5 M KSbF₆ in CH₃CN ($\delta_{iso} = 0.0$ ppm), and ¹²¹Sb and ¹²³Sb samples were referenced to 0.5 M KSbF₆ in CH₃CN ($\delta_{iso} = 0.0$ ppm). Note that SbF₆⁻(aq) has a chemical shift $\delta = 88 \pm 3$ ppm with respect to the IUPAC ^{121/123}Sb recommended reference, saturated KSbCl₆ in CH₃CN.¹ 90° pulse widths were calibrated using the reference samples. For solid samples, a selective pulse was applied to excite only the central ($m_1 = 1/2$ to $m_1 = -1/2$) transition. The selective pulse width was $PW_{90}/(I + \frac{1}{2})$, where PW_{90} is the 90° pulse width used for the solution phase reference sample, and *I* is the spin number of the nucleus studied.¹⁴¹

Solid samples were packed in 4 mm o.d. zirconia rotors. Solid-state ⁷⁵As, ¹²¹Sb, and ¹²³Sb NMR spectra were acquired at room temperature at field strengths of 11.75 T and 21.14 T. These were acquired on either a Bruker Avance 500 MHz NMR spectrometer (University of Alberta), or a Bruker Avance II 900 MHz NMR spectrometer located in Ottawa, ON at the National Ultrahigh-Field NMR Facility for Solids.² Spectra were obtained using 4 mm MAS probes operating in double-resonance mode. ¹H decoupling (CW) was applied during acquisition for all spectra acquired at 21.14 T. Proton decoupling did not significantly affect the observed overall linewidths or lineshapes and therefore at 11.75 T most spectra were acquired without ¹H decoupling. Generally, compounds were first studied using the QCPMG^{40,142} pulse sequence, followed by the WURST⁴¹ and WURST-QCPMG^{45,46} pulse sequences. In some cases, single quadrupolar echoes were acquired. WURST pulses used were 50 µs in duration. Echo times used for spin echoes, QCPMG, and WURST-QCPMG varied between 40 and 50 µs. All samples were stationary when spectra were acquired. Detailed conditions are outlined below.

4.2.1.1 AsPh₄Br

Arsenic-75 NMR spectra were acquired at 21.14 T using both spin echo and WURST-QCPMG. For the former, 5100 transients were acquired, with a recycle delay of 0.5 s and a spectral width of 500 kHz, for a total experiment time of 42.5 min. The latter spectrum was obtained from 16 echoes, 7494 transients, a 0.5 s recycle delay, and a spectral width of 1 MHz. This experiment required approximately 1 h to complete. Both the spin echo and QCPMG experiments were also carried out at 11.75 T, the former with 985,750 transients using a recycle delay of 0.5 s, and the latter with 29,560 transients and the same recycle delay. The QCPMG spectrum consisted of 20 echoes. Though all of these spectra were acquired in a single spectral window, it took more than five days to complete the spin echo experiment at 11.75 T.

4.2.1.2 (CH₃)₃AsCH₂CO₂H⁺Br⁻

Arsenic-75 NMR spectra of arsenobetaine bromide were acquired at 21.14 T using the spin echo pulse sequence. A total of 51,574 transients were acquired, with a recycle delay of 1.0 s and a spectral width of 1 MHz. The spectrum took approximately 14.3 h to acquire.

4.2.1.3 KSb(OH)₆

The ¹²¹Sb NMR spectra of KSb(OH)₆ at 21.14 T were acquired using both a spin echo and WURST-QCPMG. The WURST-QCPMG spectrum consisted of 30 echoes, with a recycle delay of 0.5 s, a bandwidth of 1 MHz, and 276 transients (less than 3 min). The spin echo required 20,480 transients, with the same pulse delay. Antimony-121 NMR spectroscopy was also carried out at 11.75 T, using WURST-QCPMG. 38,884 scans were acquired, with a 1 MHz bandwidth and a 0.5 s recycle delay; a total of 5.5 h was required. Antimony-123 NMR spectra of $KSb(OH)_6$ were acquired at 21.14 T as well using the WURST-QCPMG pulse sequence. This consisted of 30 echoes, 1024 transients, and a 1 MHz bandwidth. The recycle delay was increased to 1.0 s for this nucleus, for a total experiment time of 17 min.

4.2.1.4 SbPh₄Br

Spin echo, QCPMG, and a WURST echo were used to acquire antimony-121 NMR spectra of SbPh₄Br at 21.14 T. These spectra required frequency stepping and were assembled using the skyline projection technique. The QCPMG NMR spectrum consisted of 32 steps with a transmitter separation of 100 to 250 kHz, collecting 2048 transients with a recycle delay of 0.5 s, for a total experiment time of 9 h. The spin echo spectra required anywhere from 30,000 to 120,000 transients per spectral window, each step requiring at least 4 h to complete. This was used in conjunction with the QCPMG spectrum to confirm the positions of the spectral shoulders and discontinuities. The WURST echo spectrum is comprised of a series of twelve frequency-stepped WURST echoes. This consisted of transmitter steps of 0.5 MHz, with 40,960 transients per step and a recycle delay of 0.5 s. The entire spectrum required approximately three days of experiment time. The spectral width for each window was 5 MHz.

Simulations used in conjunction with experimental data to determine the NMR parameters for these compounds were carried out using the programs WSolids⁹⁹ and QUEST.¹⁹ WSolids uses perturbation theory to the second order to calculate quadrupolar powder patterns, whereas QUEST diagonalizes the full Zeeman-quadrupolar Hamiltonian. Spectra were simulated by visual inspection and errors were determined by this method as well. 1000 to 5000

Hz of line broadening was used in the simulations to approximate the lineshape of the experimental spectra.

4.2.2 EFG and Magnetic Shielding Computations

Calculations performed on antimony- and arsenic-containing compounds were carried out using the Amsterdam Density Functional (ADF) software package, with the GGA functional BP86 and the ZORA/QZ4P basis set.⁵¹⁻⁵³ Where hydrogen positions were not given in the crystal structures (i.e., in the phenyl groups of AsPh₄Br and SbPh₄Br), hydrogen atoms were added assuming planar geometry in the phenyl groups and a C–H bond length of 1.08 Å. Similarly, hydrogen coordinates were also modified if existing hydrogen positions were included in these structures. Since the crystal structure for AsPh₄Br is not experimentally known, a fivecoordinate structure was calculated by performing a geometry optimization using Gaussian 09,¹⁴³ the B3LYP functional and the basis set 6-311G*. The initial atomic parameters before optimization for the AsPh₄Br structure was obtained from the known crystal structure of SbPh₄Br.^{144,145} Calculation of the electric field gradient tensor was subsequently carried out using ADF. In addition, calculations were performed on the near-tetrahedral compound AsPh₄I for comparison.

The CASTEP NMR program⁵⁴⁻⁵⁷ in the Materials Studio 4.4 environment was used to calculate ¹²¹Sb EFG tensor parameters in SbPh₄Br. Calculations were performed on a HP xw4400 workstation with a single Intel Dual-Core 2.67 GHz processor and 8 GB DDR RAM, using the structure model from reported crystallographic data.^{144,145} Using the "on-the-fly" method provided in the CASTEP code, ultrasoft pseudopotentials were generated to calculate ¹²¹Sb EFG tensor parameters with a plane wave basis set cutoff energy of 250 eV in a coarse

81

accuracy basis set limited by the large unit cell volumes; the Monkhorst-Pack k-space grid size was $1 \times 1 \times 1$. The Perdew, Burke, and Ernzerhof (PBE) functional was used in the generalized gradient approximation (GGA) for the exchange correlation energy.^{58,59}

4.3 Results and Discussion

The experimental results for the compounds studied here are summarized in Table 4.2. No substantial improvements in the simulated spectra could be made by adding CS anisotropy except where noted. The relative orientation of the EFG and CS tensors (where CS anisotropy was simulated) was not determined as the sensitivity of the spectral line shape to these changes was relatively low. Simulations assumed the two tensors were coincident, though in reality this may not necessarily be the case.¹⁴⁶ The C_Q values of a series of small molecules for which C_Q is well known were calculated using the ADF program for proof of concept (Table 4.3). In general these calculated values of C_Q corresponded with experimental values, however, the calculations for the larger molecules studied here were less accurate (see Table 4.3). CASTEP calculations performed on SbPh₄Br gave more accurate results compared with those from ADF (Table 4.4).

Table 4.2. Experimental arsenic-75, antimony-121 and antimony-123 NMR parameters for AsPh₄Br, $(CH_3)_3AsCH_2CO_2H^+Br^-$, KSb(OH)₆, and SbPh₄Br, determined through simulation. Resonance frequencies of ⁷⁵As, ¹²¹Sb, and ¹²³Sb nuclei at 21.14 T were 154.1 MHz, 215.4 MHz, and 116.6 MHz, respectively. Where available, data acquired at $B_0 = 11.75$ T were used in addition to 21.14 T data to determine simulated fits.

Compound	KSb(OH) ₆		KSb(OH) ₆ SbPh ₄ Br Asl		$(CH_3)_3AsCH_2CO_2H^+Br^-$
Nucleus	¹²¹ Sb	¹²³ Sb	¹²¹ Sb	⁷⁵ As	⁷⁵ As
$C_{\rm Q}$ / MHz	46.0 ± 0.1	58.6 ± 0.1	159.0 ± 0.5	7.8 ± 0.1	24.1 ± 0.1
η	0.46 ±	0.46 ± 0.01		0.97 ± 0.05	0.28 ± 0.01
$\delta_{ m iso}$ / ppm	240	± 3	490 ± 30	215 ± 5	220 ± 2
$arOmega^{\mathrm{a}}$ / ppm	150	150 ± 10		80 ± 10	-
$\kappa^{ m b}$	0.5 ± 0.1		-	0.9 ± 0.1	-

 $^{a}\Omega = \delta_{11} - \delta_{33}$

 $^{\rm b}\kappa = 3(\delta_{22} - \delta_{iso})/\Omega$

	Calculated			Experimental			
Compound	V_{ZZ} / a.u.	C_Q / MHz	η	V _{ZZ} / a.u.	C_Q / MHz	η	Reference
SbN	-5.360	683.8	0	-5.09	649.669	0	111
SbP	-4.921	627.8	0	-4.86	620.35	0	111
SbF	4.720	-602.2	0	4.60	-586.802	0	113
SbCl	4.364	-556.7	0	4.05	-516.3611	0	113
SbH ₃	-3.498	446.3	0.00	-3.61	460.31	0	118
SbPh ₄ Br	0.4658	-59.43	0.82	1.25 ^e	159.0 ^e	0.58	This work
Sb(OH) ₆ ^{-b}	0.2206	-28.14	0.60	0.361 ^e	46.0 ^e	0.46	This work
SbPh ₄ I	-0.5157	65.79	0.75	-	-	-	-
AsP	-3.409	-240.3	0	-3.52	-247.9495	0	110
AsH ₃	-2.160	-159.4	0.00	-2.31	-162.63	0	118
AsPh ₄ I	-0.2591	-18.26	0.70	-	-	-	-
AsPh ₄ Br (pentacoordinate) ^c	0.3845	27.10	0.77	0.111 ^e	7.8 ^e	0.97	This work
Arsenobetaine bromide ^d	-0.7282	-51.33	0.81	0.342 ^e	24.1 ^e	0.28	This work

Table 4.3. Antimony-121 and arsenic-75 electric field gradient parameters as calculated by ADF using the BP86 functional and the ZORA/QZ4P basis set.^a

^a A value of $Q(^{121}Sb) = -54.3 \text{ fm}^2$ was used in these calculations.

^b ADF calculations performed using the structure for the anion of the sodium salt, NaSb(OH)₆.

^c Structure used in calculations of NMR parameters determined by performing a geometry optimization on the known structure for SbPh₄Br using Gaussian 09, the B3LYP functional and the 6-311G* basis set.

^d DFT calculations of NMR parameters performed on arsenobetaine hydrate.

^e Absolute value.

Calculated			Experimental		
Reference Structure	C _Q / MHz	η	$\left C_{Q}\right $ / MHz	η	
145 ^b	-110.1	0.62			
145°	-126.3	0.61	150.0	0.59	
144 ^b	-131.7	0.58	139.0	0.38	
144 ^c	-128.4	0.63			

Table 4.4. Antimony-121 electric field gradient parameters for the compound SbPh₄Br as calculated by CASTEP.^a

^a The results have been corrected to reflect $Q = -54.3 \text{ fm}^2$.

^b Hydrogen atoms added where absent assuming a bond length of 1.08 Å.

^c Full geometry optimization carried out pre-calculation.

4.3.1 Experimental NMR Parameters

4.3.1.1 AsPh₄Br

The spin echo spectrum acquired at 11.75 T (not shown) was used in conjunction with the data acquired at 21.14 T (see Figure 4.1) to determine the ⁷⁵As NMR parameters for AsPh₄Br. Attempts to acquire QCPMG spectra at 11.75 T were unsuccessful. The central transition linewidth at 11.75 T is approximately 198 kHz, and at 21.14 T it is approximately 108 kHz. Since the second-order quadrupolar linewidth scales as C_Q^2/ν_0 , a linewidth of approximately 110 kHz is expected at 21.14 T based on the central transition linewidth at 11.75 T. The close agreement between the experimental and calculated values strongly suggests that CS anisotropy is not a significant contributor to line width or line shape. The parameters obtained for ⁷⁵As in this compound are $C_Q(^{75}As) = 7.8 \pm 0.1$ MHz, $\eta_Q(^{75}As) = 0.97 \pm 0.05$, $\delta_{iso}(^{75}As) = 215 \pm 5$ ppm, $Q(^{75}As) = 80 \pm 10$ ppm, and $\kappa(^{75}As) = 0.9 \pm 0.1$.

4.3.1.2 (CH₃)₃AsCH₂CO₂H⁺Br⁻

The ⁷⁵As spectrum of arsenobetaine bromide is shown in Figure 4.2. This spectrum was acquired using a single frequency offset resulting in minor distortion of the lineshape (attenuation of intensity) towards the outer edges due to limited excitation profile. This distortion does not affect the quality of the simulation since all of the singularities are clearly defined. The parameters used to simulate this spectrum are $C_Q(^{75}As) = 24.1 \pm 0.1$ MHz, $\eta_Q(^{75}As) = 0.28 \pm 0.1$, and $\delta_{iso}(^{75}As) = 220 \pm 2$ ppm. The simulation indicates that there is no significant CS anisotropy.

Figure 4.1. Experimental (lower trace) and simulated (upper trace) ⁷⁵As NMR spectra of AsPh₄Br acquired at 21.14 T using the quadrupolar echo pulse sequence (90°- τ_1 -90°- τ_2 -acquire). The same model parameters fit ⁷⁵As NMR spectra recorded for this compound at 11.75 T (not shown).

Figure 4.2. Experimental (lower trace) and simulated (upper trace) ⁷⁵As NMR spectra of arsenobetaine bromide acquired at 21.14 T using the quadrupolar echo pulse sequence.

4.3.1.3 KSb(OH)₆

Solid KSb(OH)₆ was studied at 11.75 T and 21.14 T by both antimony-121 and antimony-123 NMR spectroscopy. Spin echo, QCPMG, and WURST-QCPMG spectra were obtained (see Figure 4.3 for ¹²¹Sb results, and Figure 4.4 for ¹²³Sb results). Spectra were acquired at 21.14 T using a single frequency offset, resulting in somewhat distorted lineshapes. Nevertheless, all of the singularities are clearly visible. This compound was found through simulation to have $C_Q(^{121}Sb) = 46.0 \pm 0.1$ MHz and $C_Q(^{123}Sb) = 58.6 \pm 0.1$ MHz, with $\eta_Q = 0.46 \pm 0.01$. It was necessary to include the effects of CS anisotropy in the simulations (see Table 4.2). The overall central transition linewidth in the ¹²¹Sb spectrum is approximately 450 kHz at 21.14 T and approximately 820 kHz at 11.75 T. Simulated spectra were far less sensitive to changes in CS parameters than to changes in quadrupolar parameters.

Figure 4.3. Experimental (middle left and lower traces) and simulated (upper traces) ¹²¹Sb NMR spectra of KSb(OH)₆ acquired at 21.14 T (left) and 11.75 T (right). Lower traces acquired using the WURST-QCPMG pulse sequence, middle trace acquired using a quadrupolar echo.

Figure 4.4. Experimental (lower trace) and simulated (upper trace) ¹²³Sb NMR spectra of KSb(OH)₆ acquired at 21.14 T using the WURST-QCPMG pulse sequence.

4.3.1.4 SbPh₄Br

The ¹²¹Sb NMR spectrum of this compound is quite remarkable, with a central transition linewidth spanning approximately 5.5 MHz at 21.14 T (see Figure 4.5). Due to the breadth of this powder pattern, studies were only carried out at 21.14 T. Chronologically, the first spectra acquired of this compound were the series of quadrupolar echoes and the QCPMG spectra shown in Figure 4.6. These data were valuable as they provided clear information about the discontinuities in the powder pattern. The WURST echo (Figure 4.5) provided the clearest results. Even at a relatively high field strength, spectral acquisition of this compound was difficult, with each of the twelve pieces in the skyline projection taking approximately 6 h to acquire. It should be noted, however, that the probe used in the acquisition of these spectra, a 4 mm double resonance MAS probe, was not ideally suited to acquiring wideline NMR powder patterns; the availability of a stationary probe with an RF coil oriented perpendicular to B_0 would have significantly decreased the experiment time given the same quality of spectra.

Figure 4.5. Antimony-121 NMR spectra of SbPh₄Br acquired at a field strength of 21.14 T. Experimental skyline projection created from WURST echo spectra (lower trace) and simulated spectrum (upper trace).

Figure 4.6. QCPMG (lower trace), spin echo (middle trace) and simulated (upper trace) ¹²¹Sb NMR spectra of SbPh₄Br acquired at 21.14 T. The ¹²¹Sb NMR spectrum was simulated using WSolids1.

Preliminary simulation parameters obtained in WSolids were $C_Q(^{121}Sb) = 159.0$ MHz, $\eta_Q(^{121}Sb) = 0.59$, $Q(^{121}Sb) = 0$ ppm, and $\delta_{iso}(^{121}Sb) = 380$ ppm. Due to the magnitude of C_Q , the program QUEST was employed in addition to WSolids for spectral simulation in order to determine if perturbation theory to second order is adequate to describe the line shape. The parameters determined using QUEST and all three SbPh₄Br spectra are $C_Q(^{121}Sb) = 159.0 \pm 0.5$ MHz, $\eta_Q(^{121}Sb) = 0.58 \pm 0.01$, $\delta_{iso}(^{121}Sb) = 490 \pm 30$ ppm, and $Q(^{121}Sb) = 0$ ppm. Minor adjustments were made to the parameters; clearly the spectrum of SbPh₄Br does not quite satisfy the assumptions made when using perturbation theory. In the simulations it was assumed that the quadrupolar interaction was the only interaction that contributed to the line shape. Given the lack of symmetry at the Sb site, some CS anisotropy must be present (see Table 4.5), but it is dwarfed by the magnitude of the quadrupolar interaction.

4.3.2 Calculated NMR Parameters and Crystal Structure

4.3.2.1 AsPh₄Br and SbPh₄Br

Examining the group trend (P, As, Sb), tetraphenylphosphonium halides, PPh₄X, exhibit structures involving a tetrahedral or near-tetrahedral tetraphenyl cation bonded ionically to the halide anion. Two crystal structures are available for tetraphenylphosphonium bromide, PPh₄Br, the phosphorous compound analogous to AsPh₄Br, both of which feature an ionic structure and a near-tetrahedral cation.^{147,148} To date there is no crystal structure reported in the literature for AsPh₄Br. However, other tetraphenylarsonium halides and trihalides have been characterized, and like their phosphonium counterparts, they have approximately tetrahedral tetraphenylarsonium cations bonded ionically to the corresponding halide anions. Tetraphenylarsonium iodide, AsPh₄I, has been characterized via X-ray diffraction and it

crystallizes in the space group $I\overline{4}$ with cell parameters a = 12.174(2) Å and c = 6.885(2) Å.¹⁴⁹ Another tetraphenylarsonium halide for which the crystal structure is known is tetraphenylarsonium diiodobromide. This is isostructural with reported tetraphenylphosphonium interhalides, with space group P2/n.¹³⁸ These known structures suggest that in AsPh₄Br, the bonding environment about arsenic is likely tetrahedral.

Tetraphenylstibonium bromide, SbPh₄Br, has been characterized twice via X-ray crystallography, both reporting the space group P21/n.^{144,145} The molecule is pentacoordinate about antimony and the Sb–Br bond is considered covalent. The antimony site displays distorted trigonal bipyrimidal symmetry with the bromine atom located in the axial position. The structure determined by Ferguson et al.¹⁴⁴ has cell parameters a = 16.293(3) Å, b = 10.616(3) Å, c = 12.507(2) Å, and $\beta = 105.60(1)^{\circ}$. This structure has an Sb–Br bond distance of 2.965(1) Å, which is long for antimony(V), and Sb–C bond distances of 2.151(9) Å and 2.102(9) Å for the apical and equatorial phenyl groups, respectively. The structure determined by Knop et al.¹⁴⁵ has cell parameters a = 12.282(2) Å, b = 10.656(1) Å, c = 16.156(1) Å, and $\beta = 104.92(7)^{\circ}$ (note in this space group, a and c are interchangeable). The Sb–Br bond distance is 2.950(1) Å, and the Sb–C bond distances are 2.131(8) Å (apical) and 2.114(23) Å (equatorial). Both of these studies used SbPh₄Br recrystallized from nitromethane and carried out the diffraction experiments at room temperature, and though the structures contain minor differences when compared, they can be considered essentially identical.

It is apparent that the value for $C_Q(^{121}Sb)$ calculated by ADF for an isolated SbPh₄Br molecule using the structure by Knop et al. –59.4 MHz (see Table 4.3), is much smaller than the experimental value of (±)159.0 MHz. CASTEP (see Table 4.4) was more accurate, calculating the $C_Q(^{121}Sb)$ value to be –110.0 MHz for the original structure determined by Knop et al.¹⁴⁵ and -126.3 MHz for the optimized structure, with asymmetry parameters of 0.62 and 0.61, respectively. For the structure determined by Ferguson et al.¹⁴⁴ CASTEP calculated $C_Q(^{121}Sb)$ and $\eta_Q(^{121}Sb)$ to be -131.7 MHz and 0.58 for the original structure, and -128.4 MHz and 0.63 for the optimized structure. Based on the improved $C_Q(^{121}Sb)$ accuracy observed in CASTEP, approximately a factor of two in magnitude greater than ADF, it seems that the lattice is contributing to the electric field gradient at antimony. ADF calculations (see Table 4.5) predict a CS span of approximately 320 ppm for this compound; inclusion of this parameter when simulating the experimental spectra causes only a slight variation from the original fit. The known crystal structure for SbPh₄Br does not have higher-order symmetry about the antimony site, and therefore an appreciable local electric field gradient at that site is consistent with the structure.

Calculated				Experimental		
Compound	σ_{iso}/ppm	Ω / ppm	κ^{d}	Ω^{e} / ppm	Reference	
SbN	457.0	8442	-1	7769.4	111	
SbP	0.9947	9141	-1	8061.6	111	
SbF	-928.4	9520	-1	-	-	
SbCl	-374.4	8647	-1	-	-	
SbPh ₄ Br	2834	319.0	-0.67	-	This work	
Sb(OH) ₆ ^{-a}	3669	39.27	0.14	150 ± 10	This work	
AsP	-256.6	4997	-1	4070	110	
AsPh ₄ I	1469	888.7	0.65	-	-	
AsPh ₄ Br	1240	170.0	0.22	<u> 20 + 10</u>	This work	
(pentacoordinate) ^b	1249	1/9.9	-0.33	80 ± 10	THIS WOLK	
Arsenobetaine	1304	188.0	-0.66		This work	
bromide ^c	1304	100.0	0.00	-	THIS WORK	

Table 4.5. Antimony-121 and arsenic-75 magnetic shielding tensor parameters as calculated by

 ADF using the BP86 functional and the ZORA/QZ4P basis set.

^a Structure used in calculation is for the anion of the sodium salt, NaSb(OH)₆.

^b Structure determined by performing a geometry optimization on the known structure for SbPh₄Br using the B3LYP functional and the 6-311G* basis set with Gaussian 09.

^c Calculations performed on arsenobetaine hydrate.

$$^{\rm d}\kappa = 3(\delta_{22} - \delta_{iso})/\Omega$$

 $^{\rm e}\,\Omega=\delta_{11}-\delta_{33}$

Since the crystal structure of AsPh₄Br is not known, DFT calculations to determine EFG and CS parameters were carried out both on the near-tetrahedral iodide salt AsPh₄I, as well as on a distorted trigonal bipyrimidal representation of AsPh₄Br created by performing a geometry optimization with the initial atomic coordinates matching those of $SbPh_4Br$ (see Table 4.3). The fabricated trigonal bipyrimidal version of AsPh₄Br had a calculated $C_0(^{75}As)$ of 27.1 MHz and $\eta_0(^{75}\text{As})$ of 0.77, far larger than the experimental $C_0(^{75}\text{As}) = 7.8$ MHz. ADF also predicted the $C_0(^{75}\text{As})$ of AsPh₄I to be much larger than what is measured experimentally for AsPh₄Br, with a calculated $C_0(^{75}\text{As})$ of -18.3 MHz and $\eta_0(^{75}\text{As})$ of 0.70. Based on X-ray diffraction studies of other tetraphenylarsonium halides, as well as the small $C_0(^{75}\text{As})$ found for AsPh₄Br, the geometry about the arsenic site in this compound is likely near-tetrahedral. This conclusion is supported by the calculated values of V_{ZZ} (see Table 4.3) which show an order of magnitude difference for the compounds AsPh₄Br and SbPh₄Br. The latter possesses a V_{ZZ} of -1.25 au, while V_{ZZ} at the arsenic site in AsPh₄Br is only 0.106 au. Furthermore, comparison between C_{QS} of other analogous antimony and arsenic compounds show that it is unlikely compounds SbPh₄Br and AsPh₄Br possess the same or a similar structure. As already mentioned, isostructural AsH₃ and SbH₃ have $C_0(^{75}As) = -162.6$ MHz and $C_0(^{121}Sb) = 460.3$ MHz, respectively.¹¹⁸ The ratio between these two coupling constants, $C_0(SbH_3)/C_0(AsH_3)$, is -2.83. For the triphenylphosphines, AsPh₃ and SbPh₃, the ratio between the quadrupolar coupling constants $C_Q(^{75}\text{As})_{\text{NQR}} \approx 191.6 \text{ MHz}$ (assuming $\eta_Q = 0$) and $C_Q(^{121}\text{Sb})_{\text{NQR}} \approx 503.4 \text{ MHz}$ ($\eta_Q \approx$ 0.028) is (-)2.63.^{150,151} The phosphides AsP and SbP (see Table 4.3) show similar results, with a calculated ratio of -2.50. On the other hand, the ratio of the AsPh₄Br and SbPh₄Br C_0 values is \approx 20.4, an order of magnitude larger, suggesting that the structures are not similar. It would appear from the NMR data that, like other tetraphenylarsonium halides, AsPh₄Br is an ionic

compound in which the cation displays near tetrahedral symmetry, as opposed to the more covalent Sb–Br bonding and pentahedral coordination about antimony in SbPh₄Br.

4.3.2.2 Arsenobetaine Bromide

While the crystal structure of arsenobetaine bromide is unknown, arsenobetaine hydrate has been characterized via X-ray diffraction.¹³⁵ The arsenic atoms are located at a neartetrahedral site, with As–C bond distances between 1.86 and 1.92 Å. The ⁷⁵As NMR spectrum of arsenobetaine bromide actually shows a moderate $C_Q(^{75}As)$ even though the geometry about arsenic is near tetrahedral, a result of the large quadrupole moment of ⁷⁵As. The geometry about arsenic is reflected by the small magnitude of $\Omega(^{75}As)$, i.e., it was not necessary to include effects from CS anisotropy in our simulated fit.

4.3.2.3 Potassium Hexahydroxoantimonate(V)

To date, there is no reported crystal structure for KSb(OH)₆. However, the structure for its sodium analogue, NaSb(OH)₆, is known.¹⁵² NaSb(OH)₆ crystallizes in the tetragonal space group P42/n with cell parameters a = 8.029(2) Å and c = 7.894(3) Å. In this structure, the antimony atoms reside in a near octahedral environment with Sb–O bond distances between 1.972 Å and 1.999 Å. Like AsPh₄Br, the Sb NMR spectra of KSb(OH)₆ give us insight into the crystal structure of this compound. The $C_Q(^{121}Sb)$ quadrupolar coupling constant determined here is moderate; clearly the antimony atoms do not reside in a crystallographic site with perfect octahedral symmetry. However, the electric field gradient in KSb(OH)₆ is similar in magnitude to what has been determined for the arsenic compounds AsPh₄Br and (CH₃)₃AsCH₂CO₂H⁺Br⁻ (Table 4.3), which deviate slightly from tetrahedral symmetry. The sensitivity of C_Q to local

structure in the near-tetrahedral compounds indicates that though the antimony site in KSb(OH)₆ is not perfectly octahedral it is likely nearly so. The calculated EFG parameters of the Sb(OH)₆⁻ anion based on the crystal structure of NaSb(OH)₆ are $C_Q(^{121}Sb) = -28.1$ MHz and $\eta_Q(^{121}Sb) = 0.595$, close in magnitude to the experimental values for KSb(OH)₆ (Table 4.2).

4.4 Conclusions

There have been relatively few studies of antimony- and arsenic-containing compounds via ⁷⁵As, ¹²¹Sb and ¹²³Sb NMR spectroscopy. The spectra presented herein are the first published solid-state ¹²¹Sb and ¹²³Sb NMR spectra for which $C_{\rm Q}$ is appreciable, and an addition to the limited ⁷⁵As NMR data for solids. Insights were made into the solid-state structure of compounds AsPh₄Br, KSb(OH)₆, and (CH₃)₃AsCH₂CO₂H⁺Br⁻, while solid-state NMR data were consistent with the known structure of SbPh₄Br. From the NMR data it is clear that the arsenic compound AsPh₄Br, like other tetraphenylarsonium halides, bears more resemblance in the solid state to its phosphonium counterpart. This is shown by its relatively small value for $V_{ZZ}(^{75}As)$, especially when compared with the sizeable V_{ZZ} ⁽¹²¹Sb) in the five-coordinate SbPh₄Br. The compound KSb(OH)₆ has an EFG comparable to the near-tetrahedral arsenic sites in AsPh₄Br and $(CH_3)_3AsCH_2CO_2H^+Br^-$, suggesting that the symmetry about the antimony site is close to but deviates slightly from the predicted octahedral symmetry, similar to its sodium analogue, NaSb(OH)₆. Calculations performed using the programs ADF and CASTEP support these results. Through this work it is shown that characterization of both antimony and arsenic compounds via solid-state NMR spectroscopy is promising, though it does have its limitations. High magnetic field strengths and modern pulse engineering were pivotal in the acquisition of

101

these data, and with recent advances in hardware it is expected that acquiring ⁷⁵As and ^{121,123}Sb NMR spectra of solid-state compounds should become more practical.

4.5 Acknowledgments

The authors thank Dr. X. Chris Le (University of Alberta) for providing the arsenobetaine bromide sample. Dr. Guy Bernard and Dr. Tom Nakashima (University of Alberta) are thanked for helpful advice and suggestions. Computing resources (access to the program Gaussian 09) have been provided by WestGrid and Compute/Calcul Canada. Access to the 900 MHz NMR spectrometer and CASTEP software was provided by the National Ultrahigh-Field NMR Facility for Solids (Ottawa, Canada), a national research facility funded (at the time of publication) by the Canada Foundation for Innovation, the Ontario Innovation Trust, Recherche Québec, the National Research Council of Canada, and Bruker BioSpin and managed by the University of Ottawa (www.nmr900.ca). R.E.W. thanks the Natural Sciences and Engineering Research Council of Canada (NSERC) for financial support via a Major Resources Support grant, as well as the Canada Research Chairs program for research support.

Chapter 5

Spin-Spin Coupling Between Quadrupolar Nuclei in Solids: ¹¹B-⁷⁵As Spin Pairs in Lewis Acid-Base Adducts

5.1 Introduction

Here, we present a ¹¹B and ⁷⁵As solid-state NMR study of five Lewis acid–base adducts containing triarylborane Lewis acids and a central boron–arsenic bond. These compounds were first synthesized and isolated by Conrad et al. in 2010¹⁵³ and are prototypical examples of arsenic-containing group 13–group 15 Lewis acid–base adducts. They are pseudotetrahedral at the arsenic and boron sites, with the general formula R₃AsBR'₃ (R = Me, Et, Ph; R' = Ph, C₆F₅). We also re-examined the Lewis acid–base adduct Ph₃AsBH₃, previously studied via ¹¹B NMR spectroscopy,¹⁵⁴ and report the first ⁷⁵As NMR study of a Lewis base of the form AsR₃, the trigonal pyramidal Ph₃As. These arsenic-containing Lewis acid–base adducts may be of interest as group 13–group 15 adducts have been used for semiconductor fabrication via metal–organic chemical vapor deposition (MOCVD).¹⁵⁵ For the fabrication of semiconductors such as GaAs and InP, single-source adducts such as Me₃GaAsMe₃ have offered advantages over conventional MOCVD precursors (e.g., AsH₃ and GaMe₃), such as decreased precursor toxicity and improved stoichiometry control.¹⁵⁶ Though not routine for semiconductor production, use of Lewis acid–

base adducts has aided chemists in understanding surface growth mechanisms in these materials.¹⁵⁶

Arsenic-75 and the most commonly studied NMR-active boron isotope, ¹¹B, are both quadrupolar nuclei (I = 3/2) and exist essentially as an isolated spin pair in these compounds. Pairs of guadrupolar nuclei^{154,157-159} have not been studied nearly as extensively as spin-1/2 pairs or pairs that include one spin-1/2 and one quadrupolar nucleus.^{160,161} However, a considerable amount of valuable information can be obtained from the NMR spectra of quadrupolar spin pairs. In any two-spin system that features spin-spin coupling to a quadrupolar nucleus that exhibits large C_0 values, spectroscopists potentially have access to not only the magnitude of the quadrupolar, dipolar, and indirect spin-spin coupling interactions for both nuclei but also the signs of the quadrupolar and indirect spin-spin coupling constants.^{162,163} In practice, in the case of pairs of two quadrupolar nuclei, quadrupolar line breadths and broadening often obscure spinspin coupling information,^{27,158,164} and interpreting the powder NMR spectrum arising from a quadrupolar spin-pair can be complicated due to the many parameters required to describe such spectra. In this study, samples were selected to minimize some of these complications. The Lewis acid-base adducts investigated here possess near- C_3 rotation symmetry about the As-B bond, the presence of which simplifies analysis of the resulting NMR powder spectra by confining the NMR tensor orientation within the molecular reference frame. These adducts therefore provide us the opportunity to study direct and indirect spin-spin coupling interactions between quadrupolar nuclei in detail.

We demonstrate that by using high magnetic field strengths and state-of-the-art pulse techniques one can carry out solid-state NMR measurements on isotopes which have been largely overlooked (e.g., ⁷⁵As). In addition to extracting relatively small values of spin–spin

104

coupling constants between quadrupolar nuclei, we demonstrate that ⁷⁵As NMR spectra with central transition widths in excess of 30 MHz can be acquired (the largest NMR powder pattern width reported in the literature that we are aware of). While the focus of this chapter is on ¹¹B and ⁷⁵As NMR spectroscopy, the techniques illustrated here can be applied to many other quadrupolar nuclei that have large nuclear electric quadrupolar coupling constants (e.g., ¹²¹Sb, ²⁰⁹Bi). We sincerely hope that the methodology demonstrated here will encourage others to expand NMR studies of solids beyond traditional isotopes.

5.2 Background

The natural abundances of ⁷⁵As and ¹¹B, $C(^{75}As) = 100\%$ and $C(^{11}B) = 80.1(7)\%$, respectively, lend themselves favorably to the NMR experiment, as do their moderate frequency ratios, $\Xi(^{75}As) = 17.12\%$ and $\Xi(^{11}B) = 32.08\%$.¹ Table 5.1 provides a list of ⁷⁵As and ¹¹B NMR properties relevant to this study. Arsenic-75 has a moderate nuclear electric quadrupole moment and a fairly large Sternheimer antishielding factor ($\gamma_{\infty} = -7.09$)¹⁶⁵ which leads to generally large nuclear quadrupolar coupling constants (e.g., values on the order of 100 MHz or larger are common).^{110,118,134,150,166-170} The muonic $Q(^{75}As) = 30.0(50)$ fm² currently recommended by IUPAC⁶⁰ is believed to be less precise than $Q(^{75}As) = 31.1(2)$ fm², recently determined from microwave spectroscopic data for AsP¹¹⁰ and coupled-cluster calculations performed at the CCSD(T) level of theory.¹¹⁵ The latter value will therefore be used in this work. Large $C_Q(^{75}As)$ values lead to broad and tedious-to-acquire ⁷⁵As NMR spectra in solids as the breadth of the central transition ($m_1 = 1/2$ to $m_1 = -1/2$) can be on the order of MHz at the applied magnetic fields currently available (vide infra). In ⁷⁵As NMR studies of liquids, large $C_Q(^{75}As)$ values lead to extremely efficient quadrupolar relaxation and broadening, limiting studies to ⁷⁵As nuclei at tetrahedral or octahedral sites since $C_Q \approx 0$ in those cases. Relatively few examples of ⁷⁵As NMR spectra of nonmetallic solids are documented in the NMR literature.^{62,128-134,171-180} In solids, $C_Q(^{75}As)$ values are mostly known from nuclear quadrupole resonance (NQR)^{134,150,168-170} and microwave spectroscopy experiments.^{110,118,166,167} Note that information obtained from ⁷⁵As NQR studies of nonsymmetric molecules in powdered samples is limited, as $C_Q(^{75}As)$ and the quadrupolar asymmetry parameter, $\eta_Q(^{75}As)$, are difficult to determine independently from experiment due to ⁷⁵As possessing a nuclear spin number of I = 3/2, giving the nucleus only one NQR transition ($m_I = \pm 1/2 \leftrightarrow m_I = \pm 3/2$) dependent on both parameters in zero-field conditions.¹¹⁹ There are, however, techniques available to get around this limitation.¹⁸¹ Arsenic-75 NMR experiments both in solids and in the solution phase have primarily been focused thus far on symmetry at arsenic.^{68,106,107,109} Boron-11, on the other hand, has a relatively small nuclear electric quadrupole moment,⁶⁰ making ¹¹B NMR spectral acquisition a relatively easy and straightforward process for both solid and liquid samples.

Isotope	¹¹ B	⁷⁵ As
Natural Abundance, C / %	80.1	100
Spin Number, I	3/2	3/2
Quadrupole Moment, Q / fm^2	4.07	31.1
Gyromagnetic Ratio, $\gamma / 10^7$ rad s ⁻¹ T ⁻¹	8.585	4.596
Frequency Ratio, Ξ / %	32.083 ^a	17.122 ^b
Resonance Frequency (21.14 T) / MHz	288.8	154.1
Resonance Frequency (11.75 T) / MHz	160.4	85.6
Resonance Frequency (7.05 T) / MHz	96.2	51.4
$\frac{3}{150}$ $\frac{150}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$		

Table 5.1. ¹¹B and ⁷⁵As NMR properties.¹

^a For 15% (by volume) BF₃·Et₂O in CDCl₃.

^b For 0.5 M NaAsF₆ in CD₃CN.

Under the *high-field approximation*, internal NMR interactions are assumed to be much smaller in magnitude than the Zeeman interaction and are therefore usually treated using perturbation theory.³⁰ Perturbation theory to second order has been used extensively to accurately produce simulated NMR spectra of quadrupolar nuclei;¹⁰⁸ third-order corrections only influence the satellite transitions¹⁸² and have been measured.^{183,184} However, the large $C_Q(^{75}As)$ values of the adducts investigated here do not meet the high-field criteria. To describe a system using perturbation theory, the following relationship should be met¹⁸⁵

$$\frac{|C_{\rm Q}|}{4I(2I-1)|\nu_0|} \ll 1$$
 5.1

where *I* is the spin quantum number of the quadrupolar nucleus and $|v_0|$ is the Larmor frequency of the quadrupolar nucleus. In the adducts considered in the present work, the smallest

 $|C_Q(^{75}As)|$ is 82 MHz (vide infra), which at $B_0 = 21.14$ T produces a ratio of approximately 0.04, while the largest experimentally determined $|C_Q(^{75}As)| = 153$ MHz produces a ratio of approximately 0.08. At $B_0 = 7.05$ T, this ratio is 0.25. Clearly the high-field approximation is not valid for the quadrupolar interaction of the ⁷⁵As nuclei at these external magnetic field strengths, and the influence of the quadrupolar interaction on NMR spectra cannot be modeled using perturbation theory. Since the Zeeman states are not true eigenfunctions of the Zeeman-quadrupolar (ZQ) Hamiltonian, the full ZQ Hamiltonian for the ⁷⁵As quadrupolar interaction must be considered in order to properly analyze both ¹¹B and ⁷⁵As NMR spectra, since ¹¹B is spin–spin coupled to ⁷⁵As.¹⁸⁶ The Zeeman-quadrupolar Hamiltonian can be described, using the spherical tensor representation, as

$$\begin{aligned} \widehat{\mathcal{H}}_{ZQ} &= -\nu_0 \widehat{I}_z + \frac{C_Q}{4I(2I-1)} \Big[\frac{1}{3} \sqrt{6} \Big(3\widehat{I}_z^2 - I(I+1) \Big) V_0 + \Big(\widehat{I}_z \widehat{I}_+ + \widehat{I}_+ \widehat{I}_z \Big) V_{-1} \\ &- \Big(\widehat{I}_z \widehat{I}_- + \widehat{I}_- \widehat{I}_z \Big) V_1 + \widehat{I}_+^2 V_{-2} + \widehat{I}_-^2 V_2 \Big] \end{aligned}$$
5.2

where spherical tensor components V_0 , $V_{\pm 1}$, and $V_{\pm 2}$ are

$$V_0 = 3\sqrt{\frac{1}{6}}V_{zz}$$
 5.3

$$V_1 = -V_{xz} - iV_{yz} 5.4$$

$$V_{-1} = V_{xz} - iV_{yz} 5.5$$

$$V_2 = \frac{1}{2} (V_{xx} - V_{yy}) + i V_{xy}$$
 5.6

$$V_{-2} = \frac{1}{2} \left(V_{xx} - V_{yy} \right) - i V_{xy}$$
 5.7

following the work of Man²⁹ and Mehring.³⁰ From the diagonalization of the Zeemanquadrupolar matrix, the eigenfunctions and eigenvalues of the ZQ Hamiltonian are obtained. The Zeeman-quadrupolar eigenfunctions are expressed in terms of Zeeman eigenfunctions

$$|n\rangle = \sum_{m=-I}^{I} (b_{mn} + ic_{mn})|m\rangle$$
 5.8

where b_{mn} and c_{mn} are constants, $|m\rangle$ are the Zeeman states, and $|n\rangle$ represent the ZQ eigenfunctions. These eigenfunctions are used in place of the Zeeman eigenfunctions for the ⁷⁵As nucleus in spin–spin coupling calculations, where the direct and indirect spin–spin coupling is treated as a perturbation of \hat{H}_{ZQ} . The elements of the diagonalized matrix represent Zeemanquadrupolar energy levels and are used to simulate the ⁷⁵As NMR powder spectra. This is described in detail by Perras and Bryce.²⁷

As the static magnetic field strength of commercially available instruments increases, allowing faster acquisition of broad quadrupolar powder patterns, and as broadband pulse sequences are developed,⁴⁶ the acquisition of solid-state NMR spectra that fall outside of the high-field regime is becoming more practical. Recent examples of very broad quadrupolar powder patterns in solids, acquired at $B_0 = 21.14$ T, include the ¹²⁷I NMR spectrum of SrI₂, with a breadth of approximately 10 MHz,¹⁸⁷ and the ^{185/187}Re NMR spectrum of NaReO₄, spanning 15 MHz.¹⁸⁸ These two examples feature nuclear quadrupolar coupling constants of $C_0(^{127}\text{I}) = 105.2$ MHz (site 1) and 214.0 MHz (site 2), $C_0(^{185}\text{Re}) = 300.68$ MHz, and $C_0(^{187}\text{Re}) = 284.54$ MHz, with corresponding Larmor frequencies of $v_0(^{127}I) = 180.1 \text{ MHz}$, $v_0(^{185}\text{Re}) = 202.7 \text{ MHz}$, and $v_0(^{187}\text{Re}) = 204.8 \text{ MHz}$. In 2009, ²⁰⁹Bi NMR experiments were reported by Hamaed et al.,¹⁸⁹ featuring compounds with $C_0(^{209}\text{Bi})$ values of up to 256 MHz. These NMR spectra span up to 4.5 MHz at $v_0 = 144.6$ MHz (21.14 T) and 15 MHz at $v_0 = 64.3$ MHz (9.4 T). A series of ³⁵Cl NMR spectra reported by Bryce and Perras in 2012 have central transition breadths of approximately 7 MHz at 21.14 T, with $v_0({}^{35}\text{Cl}) = 88.2$ MHz and $C_0({}^{35}\text{Cl})$ between 66 and 75 MHz.¹⁹⁰ Finally, a recent study we have conducted features the ¹²¹Sb NMR spectrum of solid

Ph₄SbBr, whose central transition spans 5.5 MHz with a $C_Q(^{121}Sb)$ value of 159 MHz ($v_0(^{121}Sb)$ = 215.4 MHz).⁶² Note that the breadth of a quadrupolar powder pattern at a specific magnetic field strength depends not only on the magnitude of the quadrupolar interaction (i.e., values of C_Q and η_Q), but also on the spin number of the nucleus, with the total width of the powder pattern decreasing for increasing values of I.¹⁴⁶ The central transition NMR spectra featured in this study are the broadest (in terms of MHz) reported in the current NMR literature for the ⁷⁵As nucleus, and among the broadest spectra reported in the NMR literature for any nucleus.

When it comes to relating experimental NMR spectra to molecular or crystallographic structure, the direct dipolar interaction is uniquely useful since it depends on only one variable, the internuclear distance between the coupled nuclei,¹⁶¹

$$R_{DD} = \frac{\mu_0 \gamma_1 \gamma_2 \hbar}{8\pi^2} \langle \frac{1}{r_{1,2}^3} \rangle$$
 5.9

and hence can be used to determine structural information about the studied system. However, dipolar couplings are rarely the dominant interaction contributing to solid-state NMR spectral lineshapes of quadrupolar nuclei, and it is often difficult or impossible to quantify this interaction in the presence of others. One method of determining the effective dipolar coupling constant, $R_{\rm eff}$, between quadrupolar nuclei (or one quadrupolar and one spin-1/2 nucleus), is to take advantage of residual dipolar coupling under magic angle spinning (MAS) conditions.^{160,191} In MAS NMR spectra, residual dipolar coupling manifests itself as additional orientation-dependent frequency shifts proportional to the magnitude of the quadrupolar interaction for the coupled nucleus. Residual dipolar coupling arises from incomplete averaging of the direct dipolar interaction under MAS conditions due to the off-Zeeman quantization axis of a quadrupolar nucleus' nucleus' nuclear spin angular momentum. Such spectra can also be utilized to obtain difficult-

to-extract information about other NMR interactions. The effective dipolar coupling constant,

 $R_{\rm eff}$, is related to the direct dipolar coupling constant by

$$R_{\rm eff} = R_{DD} - \frac{\Delta J}{3}$$
 5.10

if the dipolar and *J* tensors are coincident. See Harris and Olivieri¹⁶⁰ for a description of the case where they are not coincident. The Hamiltonian for the direct dipolar and indirect spin–spin interactions are of the same form,^{30,192}

$$\widehat{\mathcal{H}}_{DD} = R_{DD}\widehat{I}_1 \cdot \overline{\overline{D}} \cdot \widehat{I}_2$$
5.11

and

$$\widehat{\mathcal{H}}_J = \widehat{I}_1 \cdot \overline{J} \cdot \widehat{I}_2. \tag{5.12}$$

As a consequence, the anisotropy in the indirect spin–spin coupling in general cannot be experimentally separated from the direct dipolar interaction. Internuclear distances between nonhydrogen atoms can usually be determined accurately from X-ray diffraction experiments allowing calculation of R_{DD} (Equation 5.9), and therefore, it is sometimes possible, when ΔJ is large, to extract its value from the experimental effective dipolar coupling constant (Equation 5.10). Where perturbation theory fails to describe the quadrupolar interaction of the coupled nucleus and an exact treatment is instead used, it is also possible to obtain the sign of J_{iso} .^{27,162-164} In most cases, C_Q values are obtained by observing the NMR powder pattern of the central transition of a nucleus, whose breadth is dependent on the square of C_Q and the inverse of v_0 . As such, the signs of nuclear quadrupolar coupling constants are typically unavailable from NMR experiments.^{163,193} Since the residual dipolar splitting depends directly on the nuclear quadrupolar coupling constant of the coupled nucleus, it is sometimes possible to determine the sign of C_Q of the coupled nucleus. In the systems studied here, ¹¹B NMR spectra acquired using the MAS technique exhibit residual dipolar coupling to ⁷⁵As. By examining ¹¹B NMR spectra of
As–B Lewis acid–base adducts, we demonstrate that it is possible to extract values for $R_{\text{eff}}(^{75}\text{As},^{11}\text{B})$, the sign of $C_Q(^{75}\text{As})$, and $^{1}J(^{75}\text{As},^{11}\text{B})$ values, including their sign.

Solid-state NMR measurements of residual dipolar couplings can be extremely useful for quantifying the above mentioned NMR parameters; however, these types of measurements have been applied mainly to systems involving one spin-1/2 and one quadrupolar nucleus.¹⁶⁰ Studies of quadrupolar spin pairs are relatively few in the literature, and even rarer for cases that fall outside of the high-field approximation. A ¹¹B 3QMAS NMR study of the boron-arsenic spin pair of H₃BAsPh₃ was reported by Wi et al. in 2001.¹⁵⁴ In their work, the ⁷⁵As nucleus was treated exactly using the full ZQ Hamiltonian whereas the high-field approximation was assumed for ¹¹B, whose quadrupolar interaction was treated using perturbation theory. In 2011, Perras and Bryce published a solid-state NMR study of B-chlorocatecholborane under ¹¹B MAS and DOR conditions.¹⁶⁴ The quadrupolar interaction for ¹¹B was again treated using a perturbation theory approach, while the full ZQ interaction for ³⁵Cl was considered. These authors published a subsequent study in 2013,²⁷ wherein spin–spin couplings between several different quadrupolar nuclei were measured. In 2013, Jakobsen et al. reported an ¹⁷O NMR study of ¹⁷O-^{185/187}Re spin pairs in KReO₄ and NH₄ReO₄.¹⁹⁴ The present contribution expands upon this little-investigated field of study, and as well is an addition to the relatively small body of NMR literature on the ⁷⁵As nucleus.

5.3 Experimental Section

5.3.1 Materials

 $Me_3AsB(C_6F_5)_3$, $Et_3AsB(C_6F_5)_3$, $Ph_3AsB(C_6F_5)_3$, Me_3AsBPh_3 , and Ph_3AsBPh_3 were synthesized and characterized by Burford and co-workers¹⁵³ under an atmosphere of argon. The adduct Ph₃AsBH₃ was synthesized according to the literature¹⁹⁵ under an atmosphere of nitrogen and was characterized via 11 B NMR spectroscopy in a C₆D₆ solution. A sample of solid polycrystalline triphenylarsine was obtained from Sigma-Aldrich, characterized via ¹³C solution NMR spectroscopy, and used without further purification. Lewis acid-base adducts were stored in a refrigerator when not in use. Crystal structures of $Et_3AsB(C_6F_5)_3$ and Me_3AsBPh_3 are available¹⁵³ and indicate near- C_3 rotation symmetry about the As–B bond. These two Lewis acid-base adducts belong to space groups P21/n and $P\overline{3}$, respectively, and have As-B bond lengths of 2.1905(18) Å and 2.148(3) Å. The coordination about the As-B bond is close to eclipsed, with the smallest C–As–B–C angle of 9.89(13)° belonging to Et₃AsB(C₆F₅)₃.¹⁵³ The crystal structures of Lewis acid-base adducts Me₃AsB(C₆F₅)₃, Ph₃AsB(C₆F₅)₃, Ph₃AsBPh₃, and Ph₃AsBH₃ are not yet available. For the structures of the corresponding borane–phosphine adducts Me₃PB(C₆F₅)₃ and Ph₃PB(C₆F₅)₃, see Chase et al.¹⁹⁶ and Jacobsen et al.,¹⁹⁷ respectively. The phosphines, like the known arsines, possess near- C_3 symmetry and near-eclipsed conformation about the P–B bond. The C–P–B bond angles in $Ph_3PB(C_6F_5)_3$ range from 113.3° to 114.1°. For the structure of Ph₃PBH₃, see Huffman et al.¹⁹⁸ Ph₃PBH₃ crystallizes in space group $P\overline{1}$ and has two crystallographically nonequivalent molecules in the unit cell, both of which possess near- C_3 rotation symmetry about the P–B bond direction. The crystal structure of triphenylarsine, Ph₃As, indicates four nonequivalent arsenic sites within the unit cell.¹⁹⁹ Triphenylarsine crystallizes in the space group $P\overline{1}$, and the triphenylarsine molecules have near C_3 rotation symmetry at arsenic and As–C bond lengths that vary between 1.935 and 1.966 Å, with an average value of 1.957 Å.

5.3.2 NMR Measurements

All samples were packed in 4 mm o.d. zirconia rotors under an atmosphere of either argon or dry nitrogen, with the exception of triphenylarsine, which was packed under ambient atmosphere. Boron-11 NMR spectra were collected at magnetic field strengths of $B_0 = 7.05$ and 11.75 T using 4 mm MAS probes operating in double resonance mode. The sample spinning frequency was $v_{rot} = 10$ kHz, and the Bloch pulse sequence with a TPPM proton decoupling scheme at a frequency of ca. 60 kHz was used. Boron-11 chemical shifts were referenced to BF₃:Et₂O ($\delta_{iso} = 0$ ppm) by setting the isotropic chemical shift of secondary reference NaBH₄(s) to $\delta_{iso} = -42.0$ ppm.²⁰⁰ A recycle delay of 30 s was used for each sample. Note that some probe components include boron-containing materials, and thus a significant background signal is present in ¹¹B NMR spectra acquired using these probes. In our case, the desired signal overlapped with the background signal, and thus, a background correction was required. Spectra of the empty probe were acquired under experimental conditions identical to those used for each of the adducts and were subsequently subtracted from the spectra of each sample in order to produce the background-free spectra. **Table 5.2.** Details of 11 B and 75 As NMR experiments.

		75	¹¹ B			
	No.	No. Steps	Time/step	Probe	No. Transients	No. Transients
	Transients/step				$(B_0 = 7.05 \text{ T})$	$(B_0 = 11.75 \text{ T})$
$Me_3AsB(C_6F_5)_3$	4096	16	35 minutes	H/X	3280	1536
$Et_3AsB(C_6F_5)_3$	49 152	3	7 hours	H/X	2048	100
$Ph_3AsB(C_6F_5)_3$	4096	17	35 minutes	H/X	2048	400
Me ₃ AsBPh ₃	4096	1	35 minutes	H/X	4096	3860
Ph ₃ AsBPh ₃	8192	7	70 minutes	H/X	2752	2048
Ph ₃ AsBH ₃	2048	24	17 minutes	H/X	628	102
	6144	12	26 minutes	Х	-	-
Ph ₃ As	4096	65	17 minutes	Х	-	-

Arsenic-75 NMR experiments were carried out at $B_0 = 21.14$ T at the National Ultrahigh-Field NMR Facility for Solids in Ottawa, ON.² These experiments were performed on a Bruker Avance II NMR spectrometer using either a home-built stationary 5 mm H/X or stationary 5 mm X (single-channel) NMR probe. Arsenic-75 NMR spectra were referenced using 1 M KAsF₆ in MeCN ($\delta_{iso} = 0$ ppm). All ⁷⁵As NMR spectra were acquired using the WURST-QCPMG pulse sequence,⁴⁵ and those acquired on the H/X probe were acquired with proton decoupling. The decoupling frequency, $\gamma({}^{1}\text{H})B_{1}/2\pi$, was approximately 60 kHz. Applying ${}^{1}\text{H}$ decoupling reduces effects on the ⁷⁵As effective transverse relaxation time caused by the heteronuclear dipolar coupling relaxation mechanism, which is particularly relevant for these compounds. The bandwidth of the WURST-QCPMG pulse was 2 MHz, with a sweep from high to low frequency. For the Lewis acid-base adducts, 172 echoes were collected in the time domain for all samples except $Et_3AsB(C_6F_5)_3$, for which 48 echoes were acquired. The frequency domain spikelet separation was 8 kHz, and the recycle delays were 0.5 s (H/X probe) or 0.25 s (X probe). All spectra of triarylborane adducts were acquired on the double-channel H/X probe, whereas the low-frequency portion of the spectrum of Ph₃AsBH₃ was acquired on the single-channel probe. Systematic moving of the transmitter offset was employed to collect the entire frequency-domain spectrum,⁴⁷ which spanned several MHz in all cases. The transmitter offset was moved by 560 kHz for each step and the resulting spectra were added together to produce the final spectrum for each compound. For the compounds Me₃AsBPh₃ and Ph₃AsBPh₃, acquisition of the entire spectrum was not possible due to the limited tuning frequency range of the H/X probe and fast T_2 relaxation of ⁷⁵As nuclei which prevented feasible spectral acquisition without proton decoupling. For the compound $Et_3AsB(C_6F_5)_3$, low signal-to-noise and lengthy experiment times due to rapid spin–spin relaxation prevented acquisition of the entire spectrum in a reasonable

time frame. Thus, only the higher-frequency region of these spectra was collected (see discussion). Arsenic-75 NMR spectra of triphenylarsine were collected in a manner similar to those for the adducts, using the single-channel probe with a recycle delay of 0.25 s, 96 echoes in the time domain, a 20 kHz spikelet separation in the frequency domain, and with transmitter steps of 500 kHz. In addition, more detailed spectra of the high- and low-frequency discontinuities were acquired by using transmitter steps of 200 kHz. The ⁷⁵As NMR spectra of the high- and low-frequency discontinuities consisted of 14 and 22 steps, respectively. The acquisition of each complete ⁷⁵As NMR powder pattern required anywhere from 10 to 20 h of spectrometer time at $B_0 = 21.14$ T. Further experimental details are given in Table 5.2.

5.3.3 Simulations and Calculations

Experimental ⁷⁵As NMR spectra were simulated using QUEST,¹⁹ which diagonalizes the full Zeeman-quadrupolar Hamiltonian and can accurately simulate both NMR and NQR spectra. Simulations of the experimental ¹¹B NMR spectra were carried out using a program provided by the Bryce research group at the University of Ottawa. This program treats the ⁷⁵As quadrupolar interaction exactly, while retaining a perturbation theory approach for describing the ¹¹B quadrupolar interaction, which is much smaller. The specifics of these simulations, including a detailed description of the theory, are discussed by Perras and Bryce.^{27,164} Uncertainties in NMR parameters were determined by visual inspection of the agreement between simulated and experimental NMR spectra.

Relativistic DFT calculations using the zeroth order regular approximation (ZORA) to the Dirac equation were carried out on $Et_3AsB(C_6F_5)_3$ and Me_3AsBPh_3 to estimate the magnetic shielding and EFG tensors. These were performed with the ADF program package⁵¹⁻⁵³ using the

117

BP86 functional in the generalized gradient approximation (GGA) and the ZORA/QZ4P basis set. Calculations were carried out with hydrogen atom positions in the crystal structures modified to $r_{\rm CH} = 1.09$ Å (alkyl hydrogen atoms) or $r_{\rm CH} = 1.08$ Å (aryl hydrogen atoms), and all heavier atoms were at the positions given by the diffraction data. The CASTEP program⁵⁴⁻⁵⁷ in the Materials Studio 4.4 environment was used to calculate EFG and magnetic shielding tensor parameters for these two compounds, as well as for Ph₃As and several models of Ph₃AsBH₃. The latter were created based on the known structure of Me₃AsBPh₃ and were set up by exchanging the arsenic and boron atom positions, replacing the methyl groups with hydrogen atoms, and adjusting the As–Ph and B–H bond lengths. After this preparation, a full geometry optimization was carried out in three different scenarios using either a trigonal unit cell ($P\overline{3}$, identical to that of Me₃AsBPh₃), a primitive unit cell (P1), or an isolated molecule (gas phase). Note that the unit cell parameters for Ph₃AsBH₃ are not known, and thus, these models may not reflect the true crystal packing of Ph₃AsBH₃ molecules. Due to large residual forces on arsenic atoms in calculations using the experimental geometry of triphenylarsine, a full geometry optimization of atom positions was carried out while the unit cell parameters were kept constant. All CASTEP calculations used a coarse accuracy basis set due to the volume of the unit cells. Cutoff energies for Lewis acid-base adducts were 250 eV, and the cutoff energy for triphenylarsine was 200.0 eV. The Perdew, Burke, and Ernzerhof (PBE) functional in the generalized gradient approximation was used to calculate the exchange-correlation energy.^{58,59}

5.4 Results and Discussion

The main focus of this research involves analyzing the ¹¹B MAS NMR spectra of the Lewis acid–base adducts in order to quantify arsenic–boron spin–spin coupling interactions, for

which knowledge of ⁷⁵As quadrupolar parameters is necessary. It is therefore logical to first discuss the acquisition and analysis of ⁷⁵As NMR spectra. Following this, the ¹¹B NMR spectra will be discussed, and finally, the structure of the Lewis acid–base adducts in the solution and solid phases will be touched on. A summary of the experimental ¹¹B and ⁷⁵As NMR parameters for the Lewis acid–base adducts is given in Table 5.3, and experimental ⁷⁵As NMR parameters for Ph₃As are given in Table 5.4. Boron-11 and arsenic-75 NMR spectral simulations fit the experimental spectra well. The ¹¹B NMR spectra acquired at multiple magnetic field strengths were simulated with consistent parameters within the experimental errors given in Table 5.3.

	$Me_3AsB(C_6F_5)_3$	$Et_3AsB(C_6F_5)_3$	$Ph_3AsB(C_6F_5)_3$	Me ₃ AsBPh ₃	Ph ₃ AsBPh ₃	Ph ₃ A	sBH ₃
						(site 1)	(site 2)
$C_{\rm Q}(^{75}{\rm As})/{\rm MHz}$	-91.8 ± 0.5	-82 ± 2^{a}	-101.7 ± 1	-125 ± 1	-146 ± 1	-151.4 ± 1	-153.2 ± 1
$\eta(^{75}\text{As})$	0 ± 0.01	0.08 ± 0.01	0.017 ± 0.01	0 ± 0.01	0.05 ± 0.01	0 ± 0.01	0 ± 0.01
$\delta_{\rm iso}(^{75}{\rm As})$ / ppm	150 ± 100	0 ^b	250 ± 100	0^{b}	0^{b}	475 ± 100	350 ± 100
$C_{\rm Q}(^{11}{\rm B})/{\rm MHz}$	1.30 ± 0.01	1.34 ± 0.02	2.05 ± 0.02	2.0 ± 0.1	2.8 ± 0.1	1.85 ±	= 0.05
$\eta(^{11}\text{B})$	0 ± 0.06	0 ± 0.1	0 ± 0.05	0 ± 0.1	0 ± 0.1	0 ±	0.1
$\delta_{ m iso}(^{11} m B)$ / ppm	-13.2 ± 0.5	-12.2 ± 0.5	-3.1 ± 0.5	-0.25 ± 0.5	9.3 ± 0.5	-34.6	± 0.5
$R_{\rm eff}(^{75}{\rm As},^{11}{\rm B}) / {\rm Hz}$	610 ± 20	c	500 ± 20	590 ± 40	520 ± 40	700	± 40
$^{1}J(^{75}\text{As},^{11}\text{B}) / \text{Hz}$	50 ± 15	_c	25 ± 10	0 ± 30	0 ± 40	20 =	± 20

Table 5.3. Experimental ¹¹B and ⁷⁵As NMR parameters for Lewis acid-base adducts.

^a Negative based on DFT calculations.

^b Not determined. Error in $C_Q(^{75}As)$ determined from simulating ⁷⁵As spectra at edges of ⁷⁵As chemical shift range, see text.

^c Not observed due to short $T_2(^{75}As)$, see text.

	(site 1)	(site 2)	(site 3)	(site 4)
$C_{\rm Q}(^{75}{\rm As})$ / MHz	193.5 ± 2	194.2 ± 2	194.2 ± 2	194.4 ± 2
$\eta(^{75}\text{As})$	0.038 ± 0.05	0.022 ± 0.05	0.043 ± 0.05	0.03 ± 0.05
$\delta_{\rm iso}(^{75}{\rm As})$ / ppm	150 ± 300	150 ± 300	150 ± 300	150 ± 300

Table 5.4. Experimental ⁷⁵As NMR parameters for Ph₃As.

5.4.1 Arsenic-75 NMR Spectra

Experimental and simulated ⁷⁵As NMR spectra of Ph₃As, Ph₃AsBH₃, and Ph₃AsB(C₆F₅)₃ are shown in Figure 5.1. Arsenic-75 NMR spectra of the remaining Lewis acid-base adducts are shown in Figure 5.2. Acquiring spectra with central transition line widths on the order of MHz is not routine and thus it is important to demonstrate that with the correct experimental conditions, acquisition of these spectra is feasible. Arsenic-75 NMR spectra of the triarylborane Lewis acid–base adducts acquired at $B_0 = 21.14$ T possessed total central transition breadths between 6.1 and 18.7 MHz, and that for Ph₃AsBH₃ was approximately 19.5 MHz (Figure 5.1). Though the acquisition of the ⁷⁵As NMR spectra was expected to be a difficult task based on this breadth, the spectral quality is relatively high. This is especially noteworthy given several other challenges that were encountered, including rapid spin-spin relaxation in some samples, low sample volume (ca. 10 to 100 mg), and rather dilute ⁷⁵As nuclei in each sample. Rapid spin–spin relaxation of ⁷⁵As (T_2 values on the order of μ s to ms) was observed even with proton decoupling, though this is not surprising given the magnitude of the experimental $C_0(^{75}As)$ values. Experimental spectra clearly show quadrupolar discontinuities ("horns") and the spectra of Ph₃AsB(C₆F₅)₃ and Ph₃AsBH₃ possess an unambiguous chemical shift discontinuity (Figure 5.1). Simulating the ⁷⁵As NMR spectra was therefore a relatively straightforward task. The

 $C_Q(^{75}As)$ values for the triarylborane adducts ranged from -82 ± 2 MHz to -146 ± 1 MHz. These values belonged to the compounds $Et_3AsB(C_6F_5)_3$ and Ph_3AsBPh_3 , respectively. The largest $C_Q(^{75}As)$ values were for the two triphenylborane adducts, and the $C_Q(^{75}As)$ values determined for the triphenylarsine adducts were the largest in their respective triarylborane series. The ⁷⁵As NMR spectrum of Ph₃AsBH₃ (Figure 5.1) indicates that there are two crystallographically nonequivalent sites with axial electric field gradient tensors (i.e., $\eta_0(^{75}As) =$ 0.00 ± 0.01) and $C_0(^{75}\text{As})$ values of -151.4 ± 1 MHz and -153.2 ± 1 MHz. Signs for all but the smallest $C_0(^{75}\text{As})$ value were determined to be negative through simulation of the ¹¹B NMR spectra (discussed below). It is reasonable to assume that the sign of $C_0(^{75}As)$ for Et₃AsB(C₆F₅)₃ is also negative based on DFT calculations, which agreed with the experimental $C_0(^{75}\text{As})$ values for the other adducts (see Table 5.5). $\eta_0(^{75}\text{As})$ values determined experimentally for Me₃AsBPh₃ and Me₃AsB(C₆F₅)₃ were zero, suggesting that the compounds possess C_3 or very close to C_3 symmetry about the As–B bond. Note that the angle between V_{ZZ} ⁷⁵As) and the arsenic–boron bond in Me₃AsBPh₃ calculated with the ADF program is 0.1°, a negligible deviation from what would be expected in a perfect C_3 environment. The ⁷⁵As NMR data indicate that arsenic atoms bonded to groups –Et and –Ph show nonzero asymmetry parameters, with $\eta_Q(^{75}As) = 0.08$, 0.017, and 0.05 for Et₃AsB(C₆F₅)₃, Ph₃AsB(C₆F₅)₃, and Ph₃AsBPh₃, respectively. Nevertheless, values of $\eta_0(^{75}As) < 0.10$ point to near-axial symmetry about the As–B bond. Arsenic-75 isotropic chemical shift values determined for Me₃AsB(C₆F₅)₃ and Ph₃AsB(C₆F₅)₃ were 150 \pm 100 ppm and 250 ± 100 ppm. The two sites in Ph₃AsBH₃ have $\delta_{iso}(^{75}As)$ values of 350 ± 100 and 475 ± 100 ppm (see Table 5.3). With respect to the precision of these values, note that at B_0 = 21.14 T, 1.0 ppm in an 75 As NMR spectrum covers approximately 154 Hz. Our uncertainty of 200 ppm in δ_{iso} (⁷⁵As) values covers an area of approximately 30.8 kHz (\approx four spikelets), small

compared to the overall ⁷⁵As NMR central transition line widths, which are on the order of MHz. $\delta_{iso}(^{75}As)$ values for Et₃AsB(C₆F₅)₃, Me₃AsBPh₃, and Ph₃AsBPh₃ were assumed to be zero. This assumption has negligible influence on our experimental values of $C_Q(^{75}As)$ and $\eta_Q(^{75}As)$ (vide infra).

Figure 5.1. Experimental and simulated ⁷⁵As NMR spectra of powdered Ph₃AsB(C₆F₅)₃, Ph₃AsBH₃, and Ph₃As samples. Spectra were acquired using the WURST-QCPMG pulse sequence with proton decoupling at $B_0 = 21.14$ T and simulated using QUEST software. See Tables 5.3 and 5.4 for the simulation parameters.

Figure 5.2. Experimental and simulated ⁷⁵As NMR spectra of powdered Me₃AsB(C₆F₅)₃, Et₃AsB(C₆F₅)₃, Ph₃AsB(C₆F₅)₃, Me₃AsBPh₃, and Ph₃AsBPh₃ samples. Spectra were acquired using the WURST-QCPMG pulse sequence with proton decoupling at $B_0 = 21.14$ T and simulated using the QUEST program.

Figure 5.3. Experimental (lower traces) and simulated (upper traces) ⁷⁵As NMR spectra of solid polycrystalline triphenylarsine acquired at $B_0 = 21.14$ T with higher definition quadrupolar singularities using the WURST-QCPMG pulse sequence. The QUEST program was used to carry out the simulation. The total spectral breadth is ca. 31.7 MHz

		$C_{\rm Q}(^{75}{\rm As})^{\rm a}$ /	$\eta(^{75}\text{As})$	$\sigma_{\rm iso}(^{75}{\rm As})$	$\Omega(^{75}\mathrm{As})$	$C_{\rm Q}(^{11}{\rm B})^{\rm a}$ /	$\eta(^{11}\text{B})$
		MHz		/ ppm	/ ppm	MHz	
$Et_3AsB(C_6F_5)_3$	Exp.	$(\pm)82 \pm 2$	0.08 ± 0.01	_	< 800	1.34 ± 0.02	< 0.1
	ADF	-83.9	0.03	1297	116	1.60	0.009
	CASTEP	-66.3	0.06	1330	117	1.53	0.04
Me ₃ AsBPh ₃	Exp.	-125 ± 1	< 0.01	_	< 800	2.0 ± 0.1	< 0.1
	ADF	-133.0	0.01	1342	37	2.43	0.009
	CASTEP	-106.5	0.01	1401	9	2.32	0.01
Ph ₃ AsBH ₃	Exp. (site 1)	-151.4 ± 1	< 0.01	-	< 800	1.85 ± 0.05	< 0.1
	Exp. (site 2)	-153.2 ± 1	< 0.01	-	< 800	_	-
	CASTEP $(P\overline{3})$	-135.4	0.00	1224	77	2.40	0.01
	CASTEP (P1, site 1)	-138.5	0.18	1223	87	2.35	0.01
	CASTEP (P1, site 2)	-138.5	0.18	1223	87	2.35	0.01
	CASTEP (gas phase)	-143.2	0.12	1238	136	2.39	0.01
Ph ₃ As ^b	Exp. (site 1)	193.5 ± 2	0.038	-	< 800	_	-
	Exp. (site 2)	194.2 ± 2	0.022	-	< 800	_	-
	Exp. (site 3)	194.2 ± 2	0.043	-	< 800	_	-
	Exp. (site 4)	194.4 ± 2	0.03	-	< 800	_	-
	CASTEP (site 1)	167.2	0.06	1257	64	_	-
	CASTEP (site 2)	168.3	0.10	1253	90	_	-
	CASTEP (site 3)	170.0	0.12	1241	154	_	-
	CASTEP (site 4)	170.8	0.13	1223	103	_	-

Table 5.5. Calculated NMR parameters for Et₃AsB(C₆F₅)₃, Me₃AsBPh₃, Ph₃AsBH₃, and Ph₃As.

^a The results of calculations have been corrected to $Q(^{75}As) = 31.1 \text{ fm}^2 \text{ and } Q(^{11}B) = 4.07 \text{ fm}^2$.

^b X-ray diffraction data indicate that there are four crystallographically nonequivalent arsenic atoms in the Ph₃As unit cell.

The ⁷⁵As NMR spectrum of triphenvlarsine had a total central transition powder pattern breadth of 31.7 MHz at $B_0 = 21.14$ T (see Figure 5.1). Figure 5.3 shows the more detailed ⁷⁵As NMR spectra of the quadrupolar discontinuities of Ph₃As, including four-site simulations of the spectra. Simulations that used only one arsenic site did not conform to the experimental line shape. This is especially evident at the low-frequency "horn", which is considerably less intense than theoretically expected for a single site. As previously mentioned, the structure of triphenylarsine from X-ray diffraction consists of four nonequivalent arsenic atoms in the unit cell; thus, the experimental ⁷⁵As NMR spectrum should also consist of four overlapping quadrupolar powder patterns, each with different ⁷⁵As NMR parameters. Indeed, the higher quality spectra of the horns (Figure 5.3), with closely spaced transmitter steps (i.e., 200 kHz apart) clearly showed four ⁷⁵As sites with unique quadrupolar parameters (Table 5.4). Simulations that included four arsenic sites more accurately reproduced the experimental ⁷⁵As NMR line shape (Figure 5.3). The $C_Q(^{75}As)$ values used in these simulations ranged from 193.5 to 194.4 ± 2 MHz, and all $\eta_{\rm Q}$ (⁷⁵As) values were nonzero, ranging from 0.022 to 0.043 ± 0.05 (see Table 5.4). CASTEP calculations (Table 5.5) also indicate that the four arsenic sites possess slightly different values for $C_0(^{75}As)$ and $\eta_0(^{75}As)$, with a predicted range in $C_0(^{75}As)$ values of approximately 3 MHz and $\eta_0(^{75}\text{As})$ values ranging from 0.06 to 0.13. We note the tendency in CASTEP to systematically underestimate $C_0(^{75}As)$ values (Table 5.5), possibly because the calculations do not include relativistic effects. The quadrupolar frequency, $v_0(^{75}As)$, determined for this compound via nuclear quadrupole resonance spectroscopy was reported as 97.05 MHz in 1972^{201} and 95.81 MHz in 1974,¹⁵⁰ which if $\eta_0(^{75}As)$ is zero, correspond to nuclear quadrupolar coupling constants of 194 and 191 MHz (both measured at T = 300 K), close to our experimental values. In the 1972 NQR study of Brill and Long,²⁰¹ the reported $v_0(^{75}As)$ value is an average of

four observed resonances, consistent with the crystallographic data. It does not appear as though NQR resonances for four sites were resolved in the 1974 study.¹⁵⁰

It is clear on the basis of the values of $C_0(^{75}As)$ and the breadth of the ⁷⁵As NMR central transitions that the ⁷⁵As NMR line shapes are completely dominated by the quadrupolar interaction. Line shape contributions from the orientation-dependence of the ⁷⁵As chemical shift were not observed. Arsenic-75 NMR chemical shifts of near-tetrahedral and near-octahedral compounds typically fall within a range of approximately 800 ppm, from 400 ppm to -400 ppm relative to 0.5 M NaAsF₆ in CD₃CN,¹⁰⁷ though exceptions have been noted.^{133,173} Proof-ofconcept calculations using the ADF program package are shown in Table 5.6. Calculations performed on available experimental structures as well as model Lewis acid-base adducts (see Tables 5.4 and 5.7) estimate that in the studied compounds the spans of the ⁷⁵As chemical shift tensors, $\Omega = \delta_{11} - \delta_{33}$ where $\delta_{11} > \delta_{33}$, are less than 200 ppm. The analogous adduct Ph₃PB(C₆F₅)₃ was reported to have $\Omega(^{31}P) = 39$ ppm, covering ca. 5% of the ³¹P chemical shift range.^{109,202} Simulations of the ⁷⁵As NMR spectra that included a span of 800 ppm (123 kHz at 21.14 T) did not affect the determined $C_0(^{75}\text{As})$ or $\eta_0(^{75}\text{As})$ values within error. $\delta_{iso}(^{75}\text{As})$ values in Et₃AsB(C₆F₅)₃, Me₃AsBPh₃, and Ph₃AsBPh₃ (the partial ⁷⁵As NMR spectra) were assumed to be zero, though they are probably closer to the values obtained for $Me_3AsB(C_6F_5)_3$ and Ph₃AsB(C₆F₅)₃. Calculations (Tables 5.4 and 5.7) predict σ_{iso} (⁷⁵As) values of the adducts fall within a 200 ppm range, and ³¹P NMR experiments performed on solid Ph₃PBH₃²⁰³ and Ph₃PB(C₆F₅)₃²⁰² indicated similar δ_{iso} ³¹P) values of 18.6 and 21.4 ppm, respectively. For these three compounds, we have estimated the error in $C_0(^{75}\text{As})$ values by simulating the partially acquired spectra with δ_{iso} (⁷⁵As) values of -500 and 500 ppm, a range which comfortably includes all of our experimentally determined $\delta_{iso}(^{75}As)$ values. The difference between the experimental

 $C_Q(^{75}As)$ values reported here and those determined at the edge of this range is less than 2 MHz. The remaining NMR interactions contributing to the breadth of the NMR powder pattern that must be considered in the ⁷⁵As NMR simulations are the direct dipolar coupling and indirect spin–spin coupling. These interactions are typically on the order of kHz or less and would not noticeably affect the ⁷⁵As NMR powder line shape. This is supported by the $R_{eff}(^{75}As,^{11}B)$ and $^{1}J(^{75}As,^{11}B)$ values determined via analysis of the ¹¹B NMR spectra (vide infra).

	$C_{\rm Q}(^{75}$	$C_{\rm Q}(^{75}{\rm As})$ / MHz		arOmega / ppm		$\sigma_{ m iso}$ / ppm	
	Calc.	Expt.	Calc.	Expt.	Calc.	Expt.	
AsN	-282	-	4162	-	286	740.95 ^a	204
AsP	-252	-247.9495(46)	4997	4070(110)	-256.64	25	110
	-	-	-	-	-257	245.39 ^a	204
AsAs	-216	-	5522	-	-563	-8.01^{a}	204
AsH ₃	-159	-162.63 ± 0.03	125	-	1982	-	118
AsF ₃	-203	-235	450	-	977	-	167
AsMe ₃	-192	-203.15	44	-	1535	-	166

Table 5.6. Calculated and experimental NMR parameters for a series of arsenic-contaning molecules. Calculated parameters determined using the ADF program package, the BP86 functional, and the ZORA/QZ4P basis set.

^a Calculated using CCSD(T)/cc-pV5Zs,p-unc with relativistic corrections included (see Ref. 204).

Table 5.7. Calculated ⁷⁵As quadrupolar, magnetic shielding, and indirect spin-spin coupling NMR parameters for the model compounds Me₃AsBH₃, Et₃AsBH₃, Me₃AsBMe₃, and Et₃AsBMe₃. DFT calculations were performed using the ADF program package. Structures of these model compounds were determined via geometry optimization in the gas phase. All calculations were carried out using the BP86 functional and the ZORA/QZ4P basis set (i.e., relativistic effects were included).

	C _Q / MHz	η	$\sigma_{ m iso}$ / ppm	arOmega / ppm	$^{1}J(^{75}\text{As},^{11}\text{B}) / \text{Hz}$	$\Delta J(^{75}\text{As},^{11}\text{B}) / \text{Hz}$
Me ₃ AsBH ₃	-155.6	0.00242	1266	138	-48	105
Et ₃ AsBH ₃	-147.0	0.02831	1204	171	-45	99
Me ₃ AsBMe ₃	-156.7	0.00005	1319	75	-57	78
Et ₃ AsBMe ₃	-148.9	0.02282	1278	106	-54	73

5.4.2 Boron-11 NMR Spectra

Experimental and simulated ¹¹B{¹H} NMR spectra are given in Figure 5.4. An impurity contributing to ¹¹B MAS NMR spectra for compounds Me₃AsBPh₃ and Ph₃AsBPh₃ is most evident in the spectra acquired at $B_0 = 7.05$ T, where a spinning sideband from the impurity overlaps with peaks from the adduct. Independent experiments (not shown) confirm the identity of the impurity to be free triphenylborane. No signals from impurities were detected in the ¹¹B NMR spectra of the B(C₆F₅)₃-containing adducts.

The ¹¹B NMR spectra are influenced by several different interactions, including the quadrupolar and magnetic shielding interactions for the ¹¹B nuclei and spin-spin coupling interactions involving ⁷⁵As. Values for $C_Q(^{75}As)$ and $\eta_Q(^{75}As)$ were determined from ⁷⁵As NMR experiments as described above. The remaining parameters required to fit the ¹¹B NMR spectra include the quadrupolar parameters $C_0(^{11}\text{B})$ and $\eta_0(^{11}\text{B})$, spin-spin interaction constants $R_{\rm eff}({}^{75}\text{As},{}^{11}\text{B})$ and ${}^{1}J({}^{75}\text{As},{}^{11}\text{B})$, the isotropic chemical shift $\delta_{\rm iso}({}^{11}\text{B})$, as well as Euler angles relating the EFG tensors of the two nuclei, α_Q , β_Q , and γ_Q , and angles orienting the dipolar vector with respect to the ⁷⁵As EFG tensor, α_D and β_D . Following the work of the Bryce group,²⁷ we have used the ZYZ convention to relate the two EFG tensors. Since these molecules have near- C_3 symmetry along the As–B bond, it was assumed in the simulations that $V_{ZZ}(^{11}B)$ and $V_{ZZ}(^{75}As)$ lie along the As–B bond axis and that the dipolar vector is coincident with $V_{ZZ}(^{75}As)$. In other words, the angles β_Q and β_D are zero, and α_D is undefined. Spectral simulations indicate $\beta_Q = 0 \pm 10^\circ$. Varying angles α_Q and γ_Q does not visibly affect our simulated spectra. The NMR parameters required to fit the ¹¹B NMR spectra are therefore reduced to $C_0(^{75}\text{As})$ and $\eta_0(^{75}\text{As})$, determined accurately from high-field ⁷⁵As NMR experiments, as well as $C_0(^{11}\text{B})$, $\eta_0(^{11}\text{B})$, $\delta_{iso}(^{11}B)$, $R_{eff}(^{75}As, ^{11}B)$, and $^{1}J(^{75}As, ^{11}B)$. In order to determine the remaining ^{11}B NMR

parameters confidently, ¹¹B NMR spectra acquired at both $B_0 = 7.05$ and 11.75 T were simulated. As the line width of the central transition due to the second-order quadrupolar interaction scales as the reciprocal of the magnetic field strength and the magnitude of the spin–spin interactions are independent of field strength, fitting spectra at both fields is expected to yield reliable results.

Simulations indicate that the ¹¹B quadrupolar coupling constants fall in the range of 1.30 to 2.8 MHz (Table 5.3), which are within the expected range for tetracoordinate ¹¹B in Lewis acid–base adducts.²⁰² Note that for the Lewis acids $B(C_6F_5)_3$ and $B(Mes)_3 C_0(^{11}B)$ values are 4.26 and 4.75 MHz, respectively, 202,205 and $C_0(^{11}\text{B})$ values in the Lewis acid–base adducts are expected to be smaller. $C_0(^{11}\text{B})$ values for R₃AsB(C₆F₅)₃ range from approximately 1.3 MHz (R = Me, Et) to ca. 2.0 MHz (R = Ph). $C_0(^{11}B)$ values for R₃AsBPh₃ show a similar trend, with $C_0(^{11}\text{B}) = 2.0 \text{ MHz}$ when R = Me, and 2.8 MHz when R = Ph. DFT calculations reproduce this trend and show that $\eta_0(^{11}B)$ values are very close to zero (Table 5.5). Simulations indicate $\eta_Q(^{11}B)$ values of 0 ± 0.05 to 0.1 (sample dependent). Experimental $R_{eff}(^{75}As,^{11}B)$ values for the triarylborane adducts varied from ca. 500 to 610 Hz (see Table 5.3). The expected $R_{DD}(^{75}As,^{11}B)$ values based on the experimental As-B bond lengths of Et₃AsB(C₆F₅)₃ and Me₃AsBPh₃ are 630 and 668 Hz, respectively. DFT calculations predict ΔJ values of approximately 80 Hz for both $Et_3AsB(C_6F_5)_3$ and Me_3AsBPh_3 (see Table 5.8). Anisotropy in J is theoretically possible to measure for the compound Me₃AsBPh₃, as we have experimental values for both $R_{DD}(^{75}As,^{11}B)$ and $R_{\rm eff}({}^{75}\text{As}, {}^{11}\text{B})$. However, given the error in $R_{\rm eff}({}^{75}\text{As}, {}^{11}\text{B})$ as well as the small calculated value of ΔJ , any meaningful conclusions regarding ΔJ are beyond the scope of this research. It is possible that some anisotropy in J is contributing to $R_{eff}(^{75}As,^{11}B)$ values for the remaining compounds, and thus calculated As–B bond lengths based on the assumption that $R_{DD} = R_{eff}$ are likely unreliable and will not be reported in this work.

For the adducts Me₃AsB(C_6F_5)₃ and Ph₃AsB(C_6F_5)₃, including contributions from isotropic *J*-coupling was necessary to reproduce experimental ¹¹B NMR spectral line shapes. The measured ${}^{1}J({}^{75}As, {}^{11}B)$ values for these two compounds were 50 ± 15 and 25 ± 10 Hz, respectively. Note that ${}^{1}J({}^{31}P, {}^{11}B)$ values in phosphine–boranes have been reported to be ca. 50 Hz,²⁰² and given the ratio $\gamma(^{75}\text{As})/\gamma(^{31}\text{P}) \approx 0.42$, as well as group trends in ¹K magnitudes (i.e., ¹K values typically increase as one moves down a group),¹⁰⁹ we expect that ⁷⁵As-¹¹B one-bond Jcoupling values will be similar in analogous molecules. Therefore, the measured ${}^{1}J({}^{75}As, {}^{11}B)$ values reported in this work are reasonable. This contrasts with the value of ${}^{1}J({}^{75}As, {}^{11}B) = 650$ Hz reported by Wi et al.¹⁵⁴ in the Lewis acid–base adduct Ph₃AsBH₃. This value, along with their reported value of $\Delta J = -300$ Hz, seems anomalous compared to our results for the series of triarylborane adducts. Furthermore, these values are not consistent with DFT calculations that we have carried out on model systems, which predict ${}^{1}J({}^{75}As, {}^{11}B)$ values near zero and $\Delta J(^{75}As,^{11}B)$ values of approximately 70–100 Hz (see Table 5.8). Our ¹¹B MAS NMR spectra of Ph₃AsBH₃ were fit assuming a single site, as the ¹¹B NMR powder patterns of the two sites overlapped closely and the spectra did not possess discontinuities unique to only one site. As this was the case, our simulated fit (Figure 5.5) and the experimental line shape are slightly different. Our experimentally determined value for ${}^{1}J({}^{75}As, {}^{11}B)$ in Ph₃AsBH₃ is 20 ± 20 Hz. This compares with ${}^{1}J({}^{31}P,{}^{11}B) = 60$ Hz in Ph₃PBH₃²⁰³ and is consistent with the values obtained for the other Lewis acid-base adducts in this work. For Ph₃AsBH₃, our ¹¹B NMR simulations indicate $R_{eff}({}^{75}As, {}^{11}B) = 700 \pm 40$ Hz. There is no available X-ray diffraction data for this molecule, and the reported As–B bond distance in Me₃AsBH₃ used by Wi et al. $(2.03 \text{ Å})^{154}$ is less than that reported for Me₃AsBPh₃ $(2.148 \text{ Å})^{153}$ and our geometry optimized structures for Ph₃AsBH₃ (2.08 Å in the "gas phase" model). Thus, between the uncertainty in As–B bond

length and in the measured $R_{eff}(^{75}As,^{11}B)$ value, the value of ΔJ is unclear. Quadrupolar and chemical shift parameters determined previously¹⁵⁴ for ¹¹B in Ph₃AsBH₃ are very close to our experimental values of $\delta_{iso}(^{11}B) = -34.6 \pm 0.5$ ppm, $C_Q(^{11}B) = 1.85 \pm 0.1$ MHz, and $\eta_Q(^{11}B) = 0$. However, ⁷⁵As quadrupolar parameters differ by several percent, and the sign of $C_Q(^{75}As)$ determined by Wi et al.¹⁵⁴ is in conflict with that determined here. The data presented here demonstrate the importance of acquiring NMR spectra for both quadrupolar nuclei in order to extract reliable spin–spin coupling information.

Table 5.8. Calculated indirect spin-spin coupling constants for compounds H_3AsBH_3 , Et₃AsB(C₆F₅)₃, Me₃AsBPh₃, H₃PBH₃, and Ph₃PBH₃. DFT calculations were carried out with the ADF program package using the molecules' experimental geometries,^{153,206-208} the BP86 functional, and the ZORA/QZ4P basis set.

	${}^{1}J(E, {}^{11}B), E = {}^{31}P, {}^{75}As / Hz$	$\Delta J(E, {}^{11}B), E = {}^{31}P, {}^{75}As / Hz$
H ₃ AsBH ₃	-44	103
$Et_3AsB(C_6F_5)_3$	0.4	82
Me3AsBPh ₃	-26	81
H ₃ PBH ₃	-23	96
Ph ₃ PBH ₃ (site 1)	10	90
Ph ₃ PBH ₃ (site 2)	6	90

Figure 5.4. Experimental (lower traces) and simulated (upper traces) solid-state ¹¹B MAS NMR spectra acquired at two magnetic field strengths using a Bloch pulse sequence with proton decoupling. From top to bottom, compounds studied are Me₃AsB(C₆F₅)₃, Et₃AsB(C₆F₅)₃, Ph₃AsB(C₆F₅)₃, Me₃AsBPh₃, and Ph₃AsBPh₃. See Table 5.3 for the simulation parameters. Asterisks on spectra of compounds Me₃AsBPh₃ and Ph₃AsBPh₃ indicate the position of a spinning sideband assigned to free BPh₃.

Figure 5.5. Experimental (lower traces) and simulated (upper traces) ¹¹B MAS NMR spectra of powdered Ph₃AsBH₃ acquired at three different magnetic field strengths. See Table 5.3 for simulation parameters.

The sign of $C_0(^{75}As)$ was readily determined in five of six cases, as the ¹¹B NMR spectral line shapes were dependent on this value. The exception to this was the compound $Et_3AsB(C_6F_5)_3$, whose ⁷⁵As NMR free-induction decay showed complete relaxation in less than 1 ms. For this compound alone, the only resolved contribution to the ¹¹B NMR line shape is from the quadrupolar interaction of the boron nuclei (see Figure 5.4). Therefore, boron-arsenic spinspin coupling constants as well as the sign of $C_0(^{75}As)$ could not be determined experimentally for this compound. It is likely that the ⁷⁵As nuclei are self-decoupling from boron due to their short spin–spin relaxation times. The signs for the $C_Q(^{75}As)$ values in the five cases where information was experimentally available were determined to be negative. DFT calculations predict negative $C_0(^{75}As)$ values for compounds Et₃AsB(C₆F₅)₃ and Me₃AsBPh₃, as well as for the model structures of Ph₃AsBH₃. The sign of ${}^{1}J({}^{75}As, {}^{11}B)$ has been determined somewhat less confidently. Simulations are indeed sensitive to this sign, however, the small splittings due to this coupling in the case of $Ph_3AsB(C_6F_5)_3$ produce a less obvious difference between the simulated spectra with $+^{1}J(^{75}As,^{11}B)$ or $-^{1}J(^{75}As,^{11}B)$. That being said, the spectrum simulated using a positive value for the indirect spin-spin coupling produces a slightly better fit. The splitting features caused by indirect spin-spin coupling in Me₃AsB(C₆F₅)₃ are more obvious, and the sign of ${}^{1}J({}^{75}As, {}^{11}B)$ was also determined to be positive. This is consistent with calculated J_{iso} values in other group 13-group 15 Lewis acid-base adducts.^{193,202,209} Computations performed on model compounds indicate $|{}^{1}J({}^{75}As, {}^{11}B)|$ values are small (< 50 Hz), and the exact sign and magnitude is sensitive to the geometry (see Tables 5.9 to 5.12).

Table 5.9. Indirect spin-spin coupling constants for the compound H_3AsBH_3 (experimental geometry)²⁰⁶ calculated using the ADF program package with the BP86 functional, both with and without the inclusion of relativistic effects. The basis sets used are indicated below.

	TZP		TZ	22P	QZ4P	
	Rel.	Non-Rel.	Rel.	Non-Rel.	Rel.	Non-Rel.
$^{1}J(^{75}\text{As},^{11}\text{B})/\text{Hz}$	-33.865	-27.760	-33.842	-27.538	-44.203	-35.001
¹ <i>J</i> (⁷⁵ As, ¹ H)/Hz	183.280	211.117	179.992	207.822	190.471	202.169
¹ <i>J</i> (¹¹ B, ¹ H)/Hz	101.787	101.454	99.005	98.658	102.723	102.376
$^{2}J(^{1}\mathrm{H},^{1}\mathrm{H})_{\mathrm{As}}/\mathrm{Hz}$	7.319	6.082	7.443	6.219	8.977	7.810
$^{2}J(^{1}\mathrm{H},^{1}\mathrm{H})_{\mathrm{B}}/\mathrm{Hz}$	-8.599	-8.885	-8.397	-8.677	-8.397	-8.633
3 J(1 H, 1 H) _{trans} /Hz	27.221	26.673	28.323	27.770	29.400	28.809
³ J(¹ H, ¹ H) _{gauche} /Hz	-0.262	0.085	-0.349	-0.008	-0.161	0.154

r _{AsB} / Å	2.	00	2.	05	2.	10	2.	15
	Rel.	Non-Rel.	Rel.	Non-Rel.	Rel.	Non-Rel.	Rel.	Non-Rel.
$^{1}J(^{75}\text{As},^{11}\text{B})/\text{Hz}$	-39.813	-30.354	-45.775	-36.707	-49.776	-41.232	-52.056	-44.134
¹ <i>J</i> (⁷⁵ As, ¹ H)/Hz	193.597	204.449	189.058	201.120	184.084	197.353	178.780	193.249
¹ <i>J</i> (¹¹ B, ¹ H)/Hz	101.183	100.819	103.369	103.029	105.454	105.142	107.435	107.149
$^{2}J(^{1}\mathrm{H},^{1}\mathrm{H})_{\mathrm{As}}/\mathrm{Hz}$	9.339	8.149	8.825	7.668	8.333	7.210	7.862	6.775
$^{2}J(^{1}\mathrm{H},^{1}\mathrm{H})_{\mathrm{B}}/\mathrm{Hz}$	-8.619	-8.841	-8.294	-8.535	-7.915	-8.174	-7.485	-7.761
3 J(1 H, 1 H) _{trans} /Hz	31.068	30.443	28.697	28.120	26.410	25.876	24.220	23.726
³ J(¹ H, ¹ H) _{gauche} /Hz	0.063	0.397	-0.250	0.058	-0.515	-0.235	-0.734	-0.481

Table 5.10. Calculated spin-spin coupling constants for the adduct H_3AsBH_3 where the arsenic-boron bond distance was varied, using the ADF program package, the BP86 functional, and the QZ4P basis set, either with or without the inclusion of relativistic effects.

	cc-pVTZ		cc-p	VQZ	cc-pV5Z	
	RHF	B3LYP	RHF	B3LYP	RHF	B3LYP
$^{1}J(^{75}\text{As},^{11}\text{B})/\text{Hz}$	30.0	-19.5	37.9	-12.8	41.3	-13.6
¹ <i>J</i> (⁷⁵ As, ¹ H)/Hz	390.0	259.4	391.4	238.7	435.6	281.7
¹ <i>J</i> (¹¹ B, ¹ H)/Hz	122.2	114.0	123.5	112.5	130.2	120.0
$^{2}J(^{1}\mathrm{H}^{1}\mathrm{H})_{\mathrm{As}}/\mathrm{Hz}$	-6.8	3.6	-6.3	4.5	-6.3	5.4
$^{2}J(^{1}\mathrm{H}^{1}\mathrm{H})_{\mathrm{B}}/\mathrm{Hz}$	-20.6	-9.9	-20.8	-10.7	-22.7	-11.7
³ J(¹ H ¹ H) _{trans} /Hz	21.3	22.7	22.5	24.0	24.8	26.7
³ J(¹ H ¹ H) _{gauche} /Hz	-0.3	0.06	-0.3	0.2	-0.08	0.4

Table 5.11. Calculated indirect spin-spin coupling constants for the compound H_3AsBH_3 (experimental geometry)²⁰⁶ using the Gaussian 09 program.

r _{As−B} /Å	2	.00	2	.05	2.	.10	2	.15	2	.20
	RHF	B3LYP								
$^{1}J(^{75}\text{As},^{11}\text{B})/\text{Hz}$	48.7	-60.2	33.4	-15.4	19.4	-23.2	6.8	-29.4	-4.2	-34.0
¹ <i>J</i> (⁷⁵ As, ¹ H)/Hz	393.3	241.3	390.0	237.4	386.8	233.1	382.4	228.4	377.4	223.4
¹ <i>J</i> (¹¹ B, ¹ H)/Hz	121.3	110.6	124.5	-3.9	127.7	115.9	130.8	118.3	133.9	120.7
$^{2}J(^{1}\mathrm{H}^{1}\mathrm{H})_{\mathrm{As}}/\mathrm{Hz}$	-5.7	4.8	-6.5	4.3	-7.2	3.8	-7.9	3.3	-8.5	2.9
$^{2}J(^{1}\mathrm{H}^{1}\mathrm{H})_{\mathrm{B}}/\mathrm{Hz}$	-21.3	-10.9	-20.6	-10.5	-19.9	-10.1	-19.2	-9.6	-18.5	-9.1
$^{3}J(^{1}\mathrm{H}^{1}\mathrm{H})_{\mathrm{trans}}/\mathrm{Hz}$	24.0	25.5	21.8	23.4	19.8	21.4	17.9	19.4	16.2	17.6
³ J(¹ H ¹ H) _{gauche} /Hz	0.1	0.5	-0.4	0.7	-0.9	-0.3	-1.3	-0.6	-1.6	-0.8

Table 5.12. Calculated spin-spin coupling constants for the adduct H₃AsBH₃ where the arsenic-boron bond distance was varied, using

the Gaussian 09 program and the cc-pVQZ basis set.

5.4.3 Structure in Solution

There is a notable discrepancy between the solid-state $\delta_{iso}(^{11}B)$ values and $\delta(^{11}B)$ determined for the samples in CD₂Cl₂ or CD₃CN solution by Burford et al.¹⁵³ (see Table 5.13). Given the relatively small chemical shift range for ¹¹B, approximately 250 ppm,¹⁰⁹ this difference is significant, particularly for Me₃AsBPh₃ and Ph₃AsBPh₃, whose chemical shifts in solution differ from the solid-state values by over 50 ppm. This disparity indicates that the structures in the two phases are dissimilar. Exchange phenomena are known to occur in Lewis acid–base adducts of triarylboranes and phosphines, where a free phosphine molecule replaces the phosphine in the adduct via a two-step mechanism.^{210,211} It is possible that a similar process is occurring in these samples, and the $\delta(^{11}B)$ values obtained in solution are a weighted average of those of the free ligand and the coordinated adduct. In the studies conducted by Bradley et al.,^{210,211} triphenylborane demonstrated a greater propensity to exchange versus its fluorinated analogue, tris(pentafluorophenyl)borane. This is expected as the Lewis acidity of triarylboranes increases as the hydrogen atoms in the phenyl rings are replaced with fluorine atoms.^{211,212}

The chemical shifts in solution for Me₃AsBPh₃ and Ph₃AsBPh₃ are $\delta(^{11}\text{B}) = +53.6$ ppm and +67.8 ppm, respectively. These values lie within the expected range for tricoordinate boron, whereas those determined for the solid adducts lie within the range expected for tetracoordinate boron compounds.¹⁰⁹ Free triphenylborane has a literature chemical shift of $\delta(^{11}\text{B}) = 68$ ppm,²¹³ which corresponds within error to the value reported for Ph₃AsBPh₃ in solution. This suggests that Ph₃AsBPh₃ is completely dissociated into its tricoordinate constituents in solution, making it (not surprisingly) the least stable Lewis acid–base adduct of the five studied. The chemical shift of Me₃AsBPh₃ in solution is closer to its value in the solid state, suggesting it is spending some time as an adduct in solution. Free tris(pentafluorophenyl)borane has a literature chemical shift between $\delta(^{11}\text{B}) = 59$ and 61 ppm.^{202,210} The boron chemical shift values for Me₃AsB(C₆F₅)₃ and Et₃AsB(C₆F₅)₃, $\delta(^{11}\text{B}) = -11.0$ ppm and -11.8 ppm, obtained in solution match closely with the values obtained in the solid state, $\delta_{iso}(^{11}\text{B}) = -13.3 \pm 0.5$ ppm and -12.2 ± 0.5 ppm, suggesting these adducts remain intact in solution. The final compound, Ph₃AsB(C₆F₅)₃, had ¹¹B chemical shift values in solution and in the solid state of -11.6 ppm and -3.1 ± 0.5 ppm, respectively. In this case, the $\delta_{iso}(^{11}\text{B})$ value obtained in the solid is somewhat higher in frequency than the solution-phase value. Note that the difference in chemical shift in the solid state between Me₃AsBPh₃ and Ph₃AsBPh₃ is very similar to that between compounds Me₃AsB(C₆F₅)₃ and Ph₃AsB(C₆F₅)₃, approximately 10 ppm in each case. As with the trends in $C_Q(^{11}\text{B})$, this may indicate that the solid-state environment about boron is influenced by the substituents on arsenic in a systematic manner. Specifically, the shift to higher frequency is evidence for an increase in the As–B bond length in the solid triphenylarsine adducts.²⁰²

Compound	$\delta(^{11}\mathrm{B})$ / ppm	$\delta_{\rm iso}(^{11}{ m B})$ / ppm	
	Solution Phase	Solid State (This	Difference / ppm
	(Burford et al.) ¹⁵³	Work)	
$Me_3AsB(C_6F_5)_3$	-11.0	-13.2	2.2
$Et_3AsB(C_6F_5)_3$	-11.8	-12.2	0.4
$Ph_3AsB(C_6F_5)_3$	-11.6	-3.1	8.5
Me ₃ AsBPh ₃	53.6	-0.25	53.9
Ph ₃ AsBPh ₃	67.8	9.3	58.5

Table 5.13. Solution-phase and solid-state values for $\delta(^{11}B)$.

5.5 Conclusions

Six boron–arsenic spin pairs in Lewis acid–base adducts were studied via ¹¹B and ⁷⁵As solid-state NMR spectroscopy. The observation of boron–arsenic spin–spin coupling in ¹¹B MAS NMR spectra allowed for the determination of R_{eff} (⁷⁵As,¹¹B) and ¹J(⁷⁵As,¹¹B), as well as the signs of the latter and of C_0 (⁷⁵As). DFT calculations supported the experimental results. Despite several challenges, it was shown that ⁷⁵As NMR powder spectra with central transition line widths on the order of 30 MHz can be acquired in favorable systems and that if the quadrupolar interaction is significantly large for this nucleus, it is possible to reliably determine ⁷⁵As quadrupolar parameters based solely on the position and shape of the high-frequency discontinuity of the quadrupolar powder pattern. This technique may be useful for fast NMR spectral acquisition for other nuclei that exhibit large quadrupolar coupling values. This research also provided information about the chemical exchange behavior of the Lewis acid–base adducts in solution. The relative Lewis acid strength of the triarylborane species observed here is consistent with what has been determined for related triarylborane adducts with phosphines in solution.

5.6 Acknowledgements

We thank Prof. Neil Burford and Dr. Eamonn Conrad (Ref. 153) for providing us with the triarylborane Lewis acid–base adducts as well as Dr. Paul Lummis and Prof. Eric Rivard (University of Alberta) for providing the Ph₃AsBH₃ sample. Prof. David Bryce and Dr. Frédéric Perras are thanked for providing us with the programs that were used to simulate the ¹¹B and ⁷⁵As NMR spectra (e.g., QUEST). Dr. Guy Bernard is thanked for helpful discussions and for providing us with Gaussian calculations of spin–spin coupling parameters in model Lewis acid– base adducts. Access to the Gaussian program was provided by WestGrid (www.westgrid.ca) and Compute Canada Calcul Canada (www.computecanada.ca). Access to the 21.14 T NMR spectrometer and CASTEP software was provided by the National Ultrahigh-Field NMR Facility for Solids (Ottawa, Canada), a national research facility funded by a consortium of Canadian Universities, the Canada Foundation for Innovation, the Ontario Innovation Trust, Recherche Québec, and Bruker BioSpin and managed by the University of Ottawa (http://nmr900.ca). We thank Dr. Jonathan Schaeffer, Dean of Science, University of Alberta, Dr. Lorne Babiuk, VP Research, University of Alberta, and the Deans and VPs of several other Canadian universities for supporting our ultrahigh-field NMR facility. The research described here would be impossible without this support. Funding was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada Research Chairs program, and the University of Alberta.

Chapter 6

Solid-State ⁸⁷Sr NMR Spectroscopy at Natural Abundance and High Magnetic Field Strength

6.1 Introduction

Strontium-containing materials have many applications, some old and some new.²¹⁴⁻²²³ For example, strontium salts are widely used in pyrotechnics to produce deep red colors, strontium aluminate is used in phosphorescent ("glow-in-the-dark") paints, and SrAl₂O₄ nanoparticles are a potential source of photoluminescent probes for environmental and biological diagnostic testing.²¹⁴ Organic strontium compounds such as strontium citrate and strontium ranelate are used for the treatment of osteoporosis,²¹⁵ and tablets containing strontium compounds are available over-the-counter at many supermarkets and pharmacies in North America. As a calcium analogue, strontium ions are incorporated into bone tissue and regular ingestion of strontium supplements is purported to reduce the risk of bone fractures.²¹⁵ Strontium-containing bioactive glasses have also garnered a lot of interest in the medical and materials science communities.^{216,224} Bioactive glasses are surgically implanted at defect bone sites to effect bone repair and regeneration, and the inclusion of strontium is thought to give additional antiosteoporotic benefits similar to those gained from taking strontium supplements.²¹⁶
strontium-containing perovskites, e.g., BSCCO²¹⁹ and La_{2-x}Sr_xCuO₄ (LSCO).²¹⁸ SrTiO₃-based perovskites such as Pb_xSr_{1-x}TiO₃, Ba_xSr_{1-x}TiO₃, and other materials such as SrBi₂Ta₂O₉ are of interest for the manufacture of capacitors and other electronics.^{220,221} Strontium-containing perovskites have also recently been under investigation for use in fuel cells²²² and in hybrid perovskite solar cells.²²³ Arguably the most important naturally occurring form of strontium is the mineral celestine, SrSO₄, as this is the primary source from which the metal is obtained. Other naturally occurring strontium minerals include strontianite, SrCO₃, another important strontium source, as well as the less-common mineral tausonite, SrTiO₃.²²⁵

Strontium-87 is the only naturally occurring isotope of strontium that is NMR-active. Early optical hyperfine structure measurements reported by Heyden and Kopfermann indicate that ⁸⁷Sr has spin I = 9/2.²²⁶ Strontium-87 has a natural abundance of 7.00 %, a gyromagnetic ratio of $\gamma(^{87}Sr) = -1.164 \times 10^7$ rad T⁻¹ s⁻¹, and a quadrupole moment of $Q(^{87}Sr) = 30.5(2)$ fm².^{1,61} The moderate nuclear quadrupole moment, low natural abundance, and small gyromagnetic ratio of this nucleus make it challenging to study via NMR spectroscopy, particularly in the case of solid samples.

The first reported ⁸⁷Sr NMR experiment was performed by Jeffries and Sogo and published in 1953.²²⁷ This experiment was carried out on a saturated aqueous solution of SrBr₂, which resonated at 1.84 MHz in a field of $B_0 = 1.0$ T. Jeffries and Sogo reported the magnetic moment of ⁸⁷Sr to be $-1.0892 \pm 0.00015 \,\mu_N$. Weber and Allen reported the first ⁸⁷Sr NMR experiments performed on a solid compound in 1963, in a study of the phase transition at 110 K in strontium titanate, SrTiO₃.²²⁸ Published data on the ⁸⁷Sr chemical shifts of SrCl₂, SrBr₂, Sr(ClO₄)₂, and Sr(NO₃)₂ in aqueous solutions were reported ten years later by Banck and Schwenk,²²⁹ along with an updated value for the ⁸⁷Sr magnetic moment, $-1.089273(9) \,\mu_N$. Note, however, that this magnetic moment is for Sr^{2+} in aqueous solution, not the bare nucleus. Banck and Schwenk noted that the ⁸⁷Sr NMR signal in a 1 M aqueous solution of the strontium salts was about 6 orders of magnitude weaker than the ¹H NMR signal of protons in water. The first modern solid-state ⁸⁷Sr NMR measurements were included in a feasibility study of several low- γ nuclei in 2000.²³⁰ To a limited extent, ⁸⁷Sr NMR spectroscopy has been used to study strontium halides,²³¹ strontium-containing minerals,²³²⁻²³⁴ perovskites,²²⁰ and other simple inorganic strontium compounds.²³⁰ Most recently, ⁸⁷Sr NMR spectroscopy has been applied to study bioactive glasses and the over-the-counter antiosteoporotic strontium malonate (⁸⁷Srenriched).²²⁴ For quadrupolar nuclides, in addition to NMR spectroscopy, nuclear electric quadrupolar coupling constants are often obtained via nuclear quadrupole resonance (NQR) or microwave spectroscopy. Microwave data are available for the diatomic molecules SrO and SrS in the gas phase, 235,236 with $C_0(^{87}$ Sr, SrO) = -42.729(37) MHz and $C_0(^{87}$ Sr, SrS) = -21.959(85) MHz in the ground vibrational state. As far as the authors are aware, no $C_0(^{87}\text{Sr})$ values determined via NQR spectroscopy have been reported, and other determinations of $C_0(^{87}\text{Sr})$ are few in the literature, the majority known from the aforementioned collection of solid-state ⁸⁷Sr NMR experiments.

As there are very little data available in the NMR literature concerning the ⁸⁷Sr nucleus, we present a collection of ⁸⁷Sr NMR parameters for several strontium-containing solids. Quadrupolar parameters for several strontium salts are quantified. We report the ⁸⁷Sr isotropic chemical shifts for studied compounds, and, for the first time, experimental evidence for ⁸⁷Sr magnetic shielding anisotropy in powdered samples is presented. Note that ⁸⁷Sr magnetic shielding anisotropy in NMR spectra of single crystal Sr(NO₃)₂ has been reported previously.²³⁷ We also perform experiments on previously studied strontium-containing compounds to clarify discrepancies in isotropic chemical shift values in the NMR literature. A ⁸⁷Sr absolute shielding scale, based on a recently calculated value for the magnetic shielding of the Sr²⁺ ion coordinated to water molecules,²³⁸ is proposed. The results of this research are discussed in the context of the other group II elements.

6.2 Experimental Section

6.2.1 Samples and NMR Measurements

Strontium malonate and strontium nitrite monohydrate, Sr(NO₂)₂·H₂O, were synthesized according to the literature.^{239,240} The remaining compounds were acquired commercially and used without further purification. Karl Fischer analysis²⁴¹ was performed on bulk powdered samples of strontium acetylacetonate, strontium acetate, and strontium oxalate to determine the number of water molecules per formula unit.

All ⁸⁷Sr NMR spectra were acquired at natural abundance. Spectra were acquired at 39.0 MHz using a Bruker Avance II 900 MHz NMR spectrometer ($B_0 = 21.14$ T). Access to this spectrometer was provided by the National Ultrahigh-Field NMR Facility for Solids, located in Ottawa, ON, Canada.² Samples were packed in either 7 mm o.d. zirconia rotors or glass tubes. Hygroscopic samples (e.g., the strontium halides) were packed in a glovebox under argon. Experimental solid-state ⁸⁷Sr NMR spectra were acquired using either a 7 mm single channel (X) MAS Bruker probe for MAS samples, or a home-built single channel 7 mm solenoid probe for stationary samples. When required, 30 to 50 kHz proton decoupling was used in either a 7 mm H/X MAS Bruker probe or a 7 mm H/X home-built solenoid probe with a dual-coil design, although the decoupling effects were generally insignificant. Pulse sequences used include the Bloch pulse, quadrupolar echo (90°- τ_1 -90°- τ_2 -acquire), and the WURST-QCPMG^{45,46} pulse

sequence. For experiments using rectangular pulses, a selective pulse with width,

 $PW_{90}/(I+1/2)$, was used to selectively excite the central transition ($m_{\rm I} = 1/2$ to $m_{\rm I} = -1/2$), where PW_{90} was the 90° pulse width calibrated using the reference solution. WURST pulses in the WURST-QCPMG pulse sequence were 50 µs in length with a 1 MHz excitation bandwidth. Most of the experimental spectra were acquired in one spectral window. Broader spectra required the acquisition of multiple spectra for which the transmitter offset was adjusted systematically to cover the entire spectral region.^{47,48} These spectra were assembled either by adding the pieces together (coadded sum) or by means of the skyline projection technique. The DMFit program¹⁰⁰ was used to generate skyline projections.⁵⁰ Experiment times ranged from approximately 10 min (SrO, SrS, SrTiO₃, and SrCl₂) to 62 h (SrBr₂). The delays between scans were checked in each case to ensure adequate relaxation. Typically, the strontium spectra featured here required on the order of hours to acquire, usually less than 1 day. Acquisition details specific to each strontium compound are found in Table 6.1. Strontium-87 chemical shift values were referenced with respect to a 0.5 M solution of SrCl₂ in D₂O ($\delta = 0.0$ ppm). Note that the concentration dependence of $\delta(^{87}\text{Sr})$ in aqueous SrCl₂ has been measured by Banck and Schwenk.²²⁹ On the basis of molecular dynamics simulations and relativistic quantum chemistry computations,²³⁸ the absolute shielding of $Sr^{2+}(aq)$ is 3536 ± 106 ppm. Using this value, Antušek et al.²³⁸ determined an updated value for the ⁸⁷Sr magnetic moment, $-1.09316(11) \mu_N$.

Table 6.1. Experimental parameters used in the acquisition of ⁸⁷ Sr NMR spectra of stationary	y
samples at $B_0 = 21.14$ T.	

Compound	Pulse sequence	Recycle delay /s	Number of frequency offset steps	Number of scans per step	Co-added sum or skyline projection	Total expt.time /hrs.
SrO	single pulse	5	1	512	-	0.7
SrS	single pulse	5	1	128	-	0.2
SrI ₂	quadrupole echo	2	1	25 k	-	14.3
SrBr ₂	WURST-QCPMG	1	1	8 k	-	2.3
	quadrupole echo	0.5	1	432 k	-	62
SrSnO ₃	WURST-QCPMG	2	3	24 k	skyline projection	41.0
SrZrO ₃	WURST-QCPMG	2	1	16 k	-	9.1
SrTiO ₃	single pulse	5	1	128	-	0.2
SrCl ₂	single pulse	5	1	128	-	0.2
SrF ₂	single pulse	5	1	512	-	0.7
SrWO ₄	WURST-QCPMG	2	1	1024	-	0.6
SrMoO ₄	quadrupole echo	1	1	67 k	-	19
SrClO ₄ ·3H ₂ O	QCPMG	0.5	3	4 k	-	1.7
Sr(NO ₃) ₂	quadrupole echo	0.5	1	94 k	-	13.4
SrSO ₄	WURST-QCPMG	1	3	8 k	skyline projection	7.0
(single crystal)	single pulse	0.5	1	10 k	-	1.4
SrCrO ₄	WURST-QCPMG	2	3	2 k	skyline projection	3.4
SrAl ₂ O ₄	WURST-QCPMG	0.5	9	4 k	co-added sum	5.1
SrBr ₂ ·6H ₂ O	quadrupole echo	1	1	6.5 k	-	1.9
SrCl ₂ ·6H ₂ O	quadrupole echo	1	1	16 k	-	4.6
SrCO ₃	quadrupole echo	0.5	1	101.5 k	-	14.4

$Sr(NO_2)_2 \cdot H_2O$	WURST-QCPMG	1	3	56 k	-	49.2
$Sr(acac)_2 \cdot H_2O$	WURST-QCPMG	1	1	50 k	-	14.2
	quadrupole echo	0.25	1	544 k	-	38.7
$Sr(F-acac)_2$	QCPMG	1	1	50 k	-	14.2
$Sr(acetate)_2 \frac{1}{2}H_2O$	WURST-QCPMG	1	1	100 k	-	28.5
	quadrupole echo	0.25	1	576 k	-	42
Sr(oxalate)	quadrupole echo	2	1	24.1 k	-	6.8
Sr(malonate)	WURST-QCPMG	1	2	40 k	co-added sum	22.8

6.2.2 Spectral Simulations and First-Principles Calculations

Strontium-87 NMR parameters were determined by simulating the experimental spectra. Uncertainties in NMR parameters were determined via visual inspection of the simulated fits. The majority of the ⁸⁷Sr NMR spectra were simulated using the computer program QUEST,¹⁹ which treats the Zeeman-quadrupolar (ZQ) interaction exactly (i.e., the full Zeeman-quadrupolar Hamiltonian is diagonalized to determine the ZQ eigenvalues). Note that due to the low resonance frequency of the ⁸⁷Sr nucleus (ca. 39 MHz at $B_0 = 21.14$ T), even samples with moderate to low $|C_Q|$ values may not meet the criteria of the high-field approximation.¹⁸⁵ Spectra acquired under both stationary and MAS sample conditions for the compounds $SrCl_2 \cdot 6H_2O$, $SrBr_2 \cdot 6H_2O$, and $SrCO_3$ were simulated with the program WSolids1.⁹⁹ This program treats all NMR interactions as perturbations of the Zeeman interaction and includes both first- and secondorder corrections for the quadrupolar interaction. Note that $|C_Q(^{87}Sr)|$ values for these three compounds are relatively small; the effects of their ⁸⁷Sr quadrupolar interactions are accurately described as second-order corrections to the Zeeman energy.

First-principles calculations of NMR parameters were performed using the CASTEP NMR program⁵⁴⁻⁵⁷ running in the Materials Studio 4.4 environment using the experimental geometries^{239, 242-262} determined via diffraction methods, "on-the-fly" pseudopotentials, and the Perdew, Burke, and Ernzerhof (PBE) functional in the generalized gradient approximation (GGA).^{58,59} The gauge including projector augmented wave (GIPAW) method implemented in CASTEP provides accurate computed values of molecular properties and its use is wellestablished in the solid-state NMR literature.^{263,264} See Table 6.2 for a summary of select crystallographic structure details for the strontium compounds. Cutoff energies ranged from 299 to 550 eV (Table 6.3) depending on the unit cell size. In some cases (where noted), calculations were carried out after a geometry optimization of all hydrogen atom positions, keeping the unit cell parameters and other atom positions constrained at their experimentally determined values. DFT calculations were carried out using the ADF program package⁵¹⁻⁵³ on isolated SrO, SrS, and SrCl₂ molecules. The NMR parameters calculated using ADF include a relativistic correction determined using the zeroth-order regular approximation (ZORA). Calculations were carried out using the GGA functional BP86 and the ZORA/QZ4P basis set.

6.3 Results and Discussion

This section begins with a discussion of ⁸⁷Sr NMR spectral analysis and experimentally determined NMR parameters. We begin with strontium compounds for which the ⁸⁷Sr NMR spectra are simulated as Zeeman-quadrupolar spectra; that is, anisotropic broadening effects from other NMR interactions (e.g., magnetic shielding) either are not present or are too small to quantify. Compounds with the highest point-group symmetry at the strontium crystallographic site are discussed first, as high-order symmetry confines the NMR interaction tensor orientation

and thus simplifies spectral acquisition and interpretation. In order, compounds with cubic symmetry (no anisotropy), high-order rotational symmetry (axial interaction tensors), and those with no tensor parameter-confining symmetry elements are discussed. Following this, the three compounds whose ⁸⁷Sr NMR spectra (stationary samples) show line shape effects from magnetic shielding anisotropy, SrCl₂·6H₂O, SrBr₂·6H₂O, and SrCO₃, are discussed. After the ⁸⁷Sr NMR experiments are discussed, the results of first-principles CASTEP calculations are summarized and compared with experiment. Trends in ⁸⁷Sr NMR isotropic chemical shift values are then discussed, followed by a discussion of how the ⁸⁷Sr chemical shift range and chemical shift values fit into the broader picture of NMR trends noted for other group II nuclei.

	Space group	Crystal system	Sr coordination	Strontium bonding	Reference
			number	symmetry	
SrO	$Fm\overline{3}m$	cubic	6	octahedral	258
	(no. 225)				
SrS	$Fm\overline{3}m$	cubic	6	octahedral	255
	(no. 225)				
SrSnO ₃	Pbnm	orthorhombic	8		256
	(no. 62)				
SrAl ₂ O ₄	P2 ₁	monoclinic	9		245
	(no. 4)				
SrI ₂	Pnma	orthorhombic	7	monocapped trigonal	243
	(no. 62)			prismatic	
SrZrO ₃	Pbnm	orthorhombic	8		254
	(no. 62)				
SrBr ₂	P4/n	tetragonal	8	distorted square	261
				antiprismatic	
SrTiO ₃	$Pm\overline{3}m$	cubic	12	cuboctahedral	253
	(no. 221)				
SrCl ₂	$Fm\overline{3}m$	cubic	8	cubic	242
	(no. 225)				
Sr(NO ₂) ₂ ·H ₂ O	P2 ₁	monoclinic	9, 10		247
	(no. 4)				
SrWO ₄	14 ₁ /a	tetragonal	8	snub disphenoidal	244
	(no. 88)				
SrMoO ₄	14 ₁ /a	tetragonal	8	snub disphenoidal	244
	(no. 88)				

Table 6.2.	Crystal	structure	information	for strontium	compounds.

Sr(oxalate)	C2/c	monoclinic	8	distorted square	252
	(no. 15)			antiprismatic	
Sr(malonate)	Pnan	orthorhombic	9	distorted tricapped	239
	(no. 52)			trigonal prismatic	
$SrCl_2 \cdot 6H_2O$	P321	trigonal	9	tricapped trigonal	249
	(no. 150)			prismatic	
$SrBr_2 \cdot 6H_2O$	P321	trigonal	9	tricapped trigonal	251
	(no. 150)			prismatic	
SrCO ₃	Pmcn	orthorhombic	9		257
	(no. 62)				
$S_{\tau}(C(\Omega)) \rightarrow 2U(\Omega)$	$P2_1/n$	monoclinic	9		262
51(C104)2-51120	(no. 14)				
SrF ₂	$Fm\overline{3}m$	cubic	8	cubic	242
	(no. 225)				
Sr(NO ₃) ₂	Pa3	cubic	12	distorted	246
	(no. 205)			cuboctahedral	
				with broken square	
				faces	
SrSO ₄	Pbnm	orthorhombic	12		250
	(no. 62)				
SrCrO ₄	$P2_1/n$	monoclinic	10		248
	(no. 14)				

	$\sigma_{ m iso}$	$\sigma_{ m aniso}$	η	Cutoff energy / eV	Crystal Structure Reference
SrO	2620	0	-	550	258
SrS	2630	0	-	299	255
SrSnO ₃	2849	109.4	0.63	550	256
SrAl ₂ O ₄	2901	-145.4	0.92	550	245
	2878	76.99	0.75	-	
SrI ₂	2767	-111.6	0.68	299	243
SrZrO ₃	2886	115.2	0.48	550	254
SrBr ₂	2870	-50.6	0.96	299	261
	2852	8.4	0	-	
SrTiO ₃	2941	0	-	550	253
SrCl ₂	2936	0	-	299	242
Sr(NO ₂) ₂ ·H ₂ O	3004	-142	0.31	550	247
	3018	-83.8	0.74	-	
SrWO ₄	3002	26.7	0	550	244
SrMoO ₄	3014	34.3	0	550	244
Sr(oxalate)	3023	14.6	0.72	550	252
Sr(malonate)	3013	-74.2	0.88	500	239
SrCl ₂ ·6H ₂ O	2994	-27.1	0	550	249
SrBr ₂ ·6H ₂ O	2953	-128.6	0	550	251
$SrBr_2 \cdot 6H_2O^a$	2984	-34.6	0	550	251

 Table 6.3.
 ⁸⁷Sr chemical shift tensors calculated using CASTEP.

SrCO ₃	3009	77.2	0.46	550	257
Sr(ClO ₄) ₂ ·3H ₂ O	3038	73.4	0.43	300	262
	3069	69.1	0.47	-	
SrF ₂	3007	0	-	550	242
Sr(NO ₃) ₂	3097	19.4	0	550	246
SrSO ₄	3113	106.8	0.52	550	250
SrCrO ₄	3168	-167.9	0.63	550	248
Sr(oxalate)·H ₂ O	2899	108.9	0.23	550	259
Sr(oxalate) · H ₂ O ^a	2927	114.3	0.29	550	259
Sr(oxalate) · 2H ₂ O	2899	46.8	0.19	500	259
SrSe	2620	0	-	310	242
Sr(MnO ₄) ₂ ·3H ₂ O	3022	58.2	0	550	260

^a Calculation was performed after a geometry optimization for all hydrogen positions.

6.3.1 Spectral Acquisition and Analysis

Strontium-87 NMR spectra and parameters for 25 strontium-containing compounds are reported in this study (Tables 6.4-6.6). Eight of the compounds for which data are reported have been studied previously, SrO, SrF₂, SrCl₂, Sr(NO₃)₂, SrMoO₄, SrSO₄, SrCO₃, and Sr(malonate).^{224,230-232,234} As our research focuses on characterizing ⁸⁷Sr chemical shift tensors and establishing ⁸⁷Sr chemical shift trends, and there are discrepancies between the reported ⁸⁷Sr chemical shift values, it was logical to repeat previous experiments in high-field conditions to determine isotropic ⁸⁷Sr chemical shift values. In many cases, short recycle delays, relatively narrow spectral breadth, and sufficient signal intensity allowed the acquisition of quadrupolar echo NMR spectra within a reasonable time frame. This allowed for more precise determination of the singularity positions versus what may be achieved from analysis of the QCPMG NMR spectra. A comparison of NMR spectral simulations carried out using QUEST and WSolids1 indicated that the high-field approximation begins to break down when $v_0 \approx 1$ MHz ($C_0(^{87}\text{Sr}) =$ 24 MHz), resulting in shifts of the quadrupolar discontinuity positions of ca. 5 ppm versus those predicted by the exact simulations at $v_0 = 39$ MHz. At $v_0 = 2$ MHz ($C_0(^{87}Sr) = 48$ MHz), the discrepancies between singularity positions increase to ca. 45 ppm at $v_0 = 39$ MHz. The Haeberlen convention²⁰ is used here to report all chemical shift (CS) and electric field gradient (EFG) tensor parameters, however, occasionally in the text we cite the span of the chemical shift tensor ($\Omega = \delta_{11} - \delta_{33}$),²⁵ when it is relevant to the discussion.

		$\delta_{ m iso}$ / ppm ^a	$\sigma_{ m iso}$ / ppm	$ C_{\rm Q} $ / MHz ^b	$\eta_{ m Q}$	Crystal
						Structure Ref.
SrO	Expt.	340.8 ± 0.5	-	0	-	-
	Ref. 231	340 ± 1	-	0	-	-
	Calc.	-	2620	0	-	258
SrS	Expt.	322.5 ± 0.5	-	0	-	-
	Calc.	-	2630	0	-	255
SrSnO ₃	Expt.	150 ± 50	-	31.6 ± 0.2	0.73 ± 0.01	-
	Calc.	-	2849	-30.9	0.71	256
SrAl ₂ O ₄	Expt. (site 1)	130 ± 100	-	50.5 ± 5	0.70 ± 0.04	-
	Expt. (site 2)	150 ± 100	-	43.0 ± 5	0.88 ± 0.04	-
	Calc. (site 1)	-	2901	-46.1	0.72	245
	Calc. (site 2)	-	2878	39.7	0.87	
SrI ₂	Expt.	100 ± 50	-	10.5 ± 1	0.90 ± 0.05	-
	Calc.	-	2767	11.8	0.68	243
SrZrO ₃	Expt.	91 ± 50	-	31.2 ± 0.2	0.62 ± 0.02	-
	Calc.	-	2886	-30.6	0.47	254
SrBr ₂	Expt. (site 1)	80 ± 30	-	26.0 ± 1.0	0.30 ± 0.02	-
	Expt. (site 2)	85 ± 10	-	9.25 ± 0.3	0 ± 0.01	-
	Calc. (site 1)	-	2870	25.5	0.26	261
	Calc. (site 2)	-	2852	8.1	0	
SrTiO ₃	Expt.	63.4 ± 0.5	-	0	-	-
	Calc.	-	2941	0	-	253
SrCl ₂	Expt.	46.3 ± 0.5	-	0	-	-
	Ref. 231	45.9 ± 1.2	_	0	_	_

Table 6.4. Experimental and calculated ⁸	⁷ Sr NMR parameters for inorganic strontium
compounds.	

	Calc.	-	2936	0	-	242
$Sr(NO_2)_2 \cdot H_2O$	Expt.	40 ± 50	-	28.3 ± 0.2	0.31 ± 0.02	-
	Calc. (site 1)	-	3004	20.2	0.67	247
	Calc. (site 2)	-	3018	22.2	0.77	
SrWO ₄	Expt.	20 ± 50	-	22.4 ± 0.2	0 ± 0.01	-
	Calc.	-	3002	-20.6	0	244
SrMoO ₄	Expt.	15 ± 5	-	22.8 ± 0.2	0 ± 0.01	-
	Ref. 230	-5 ± 5	-	22.7 ± 0.2	0.03 ± 0.05	-
	Calc.	-	3014	-21.1	0	244
$Sr(ClO_4)_2 \cdot 3H_2O$	Expt.	0 ± 50	-	25.5 ± 0.5	0.40 ± 0.03	-
	Calc. (site 1)	-	3038	-30.6	0.34	262
	Calc. (site 2)	-	3069	-27.8	0.31	
SrF ₂	Expt.	-12.3 ± 1	-	0	-	-
	Ref. 231	-13 ± 1.2	-	0	-	-
	Calc.	-	3007	0	-	242
Sr(NO ₃) ₂	Expt.	-70 ± 5	-	15.3 ± 0.2	0 ± 0.01	-
	Ref. 234	-323	-	15.3	0.03	-
	Ref. 230	-84 ± 5	-	15.4 ± 0.2	0.03 ± 0.05	-
	Ref. 224	-70 ± 30	-	15.3	0.03	
	Calc.	-	3097	-18.7	0	246
SrSO ₄	Expt.	-87 ± 50	-	28.3 ± 0.2	0.70 ± 0.01	-
	Ref. 234	-47	-	28.1	0.71	-
	Calc.	-	3113	29.9	0.68	250
SrCrO ₄	Expt.	-175 ± 50	-	35.0 ± 0.5	0.33 ± 0.03	-
	Calc.	-	3168	37.4	0.32	248

^a The ⁸⁷Sr NMR chemical shifts are referenced to 0.5 M SrCl₂ in D_2O at 0 ppm.

^b Experimental signs of $C_Q(^{87}Sr)$ are not available. CASTEP calculated $C_Q(^{87}Sr)$ signs are indicated.

Table 6.5. Experimental and	calculated ⁸⁷ Sr NMR param	eters for strontium compound	ls
containing organic ligands.			

					Crystal
		$\delta_{ m iso}$ / ppm	$ C_{\rm Q} $ / MHz ^a	$\eta_{ m Q}$	Structure
					Ref.
$Sr(acac)_2 \cdot H_2O$	Expt.	30 ± 10	14.1 ± 0.2	0.25 ± 0.01	-
Sr(F-acac) ₂	Expt.	-15 ± 50	15.4 ± 0.2	0.61 ± 0.01	-
$Sr(acetate)_2 \cdot \frac{1}{2}H_2O$	Expt. (site 1)	5 ± 10	14.9 ± 0.3	0.31 ± 0.02	-
	Expt. (site 2)	30 ± 10	15.9 ± 0.3	0.62 ± 0.02	-
Sr(oxalate)	Expt.	5 ± 5	13.6 ± 0.2	0.79 ± 0.01	-
	Calc.	-14.3 ^b	-10.9	0.54	252
Sr(malonate)	Expt.	0 ± 50	31.6 ± 0.2	0.79 ± 0.01	-
	Ref. 224	0 ± 60	31.5	0.80	-
	Calc.	-5.4 ^b	30.1	0.89	239

^a Experimental signs of $C_Q(^{87}Sr)$ are not available. CASTEP calculated $C_Q(^{87}Sr)$ signs are indicated.

^b The calculated chemical shifts were obtained by converting the calculated magnetic shielding values using the correlation in Figure 6.14.

		S.	Œ.	δ.		$ C_{\rm o} $	$C_{\rm Q} $ $\eta_{\rm Q}$	Fuler angles	Crystal
		0150	U _{ISO}	Janiso	$\eta_{ m CS}$			$\alpha, \beta, \gamma / \circ$	Structure
		/ppm	/ppm	/ppm		/MHz			Ref.
SrBr ₂ ·6H ₂ O	Expt.	1 ± 2	-	26 ± 5	0 ± 0.05	3.5 ± 0.3	0 ± 0.05	$\alpha^{\rm b}, 90 \pm 10, 180 \pm 10$	-
	Calc.	-	2953	-129	0	20.3	0	182, 90, 180	251
	Calc. ^a	-	2984	-35	0	2.8	0	97, 90, 180	251
SrCl ₂ ·6H ₂ O	Expt.	1 ± 2	-	28 ± 5	0 ± 0.05	4.9 ± 0.3	0 ± 0.05	$\alpha^{\rm b}, 90 \pm 10, 0 \pm 10$	-
	Calc.	-	2994	-27	0	3.4	0	181, 90, 0	249
SrCO. E	Fynt	1 + 5	_	-65 + 5	0.67 ± 0.05	8 1 + 0 3	0.16 ± 0.05	$0 \pm 10, 25 \pm 10, 90 \pm$	_
51003	LAPI.	1 ± 5	_	05 ± 5	0.07 ± 0.05	0.5		10	-
	Ref. 232	$\approx 500^{\circ}$	-	-	-	8.6 ± 2	0.27 ± 0.03	-	-
	Ref. 234	-133	-	-	-	8.91	0.14	-	-
	Ref. 224	0 ± 20	-	-	-	8.91	0.14	-	-
	Calc.	-	3009	77.2	0.46	5.6	0.1	0, 24, 90	257

Table 6.6. Experimental and calculated ⁸⁷Sr NMR parameters for $SrBr_2 \cdot 6H_2O$, $SrCl_2 \cdot 6H_2O$ and $SrCO_3$. Estimated isotropic magnetic shielding values were calculated using CASTEP.

^a Calculation was performed after a geometry optimization for all proton positions.

^b The angle α cannot be determined unambiguously for this compound.

^c The chemical shift was referenced to solid SrTiO₃ at 0 ppm and has not been corrected (see text).

6.3.1.1 Strontium at Sites of Cubic Symmetry

The most readily studied strontium compounds are those with structures exhibiting high symmetry (e.g., cubic), as quadrupolar coupling and magnetic shielding anisotropy do not contribute to the NMR spectral line shape, leading to relatively narrow peaks and higher signal-to-noise ratios. These compounds are SrO, SrS, SrTiO₃, SrF₂, and SrCl₂. SrO and SrS are isostructural, crystallizing in space group $Fm\bar{3}m$ with the Sr and O or S atoms occupying the vertices of a cube, i.e., with octahedral coordination geometry.^{255,258} Strontium chloride and strontium fluoride also belong to space group $Fm\bar{3}m$, and possess 8-coordinate, cubic coordination geometry about the strontium atoms.²⁴² SrTiO₃ is an example of an ideal cubic perovskite structure, with 12 oxygen atoms coordinating to each strontium atom in a cuboctahedral arrangement.²⁵³ The ⁸⁷Sr NMR spectra of these compounds (Figure 6.1) consisted of a single peak centered at the isotropic chemical shift values found in Table 6.4. Our experimentally determined chemical shift values of 340.8 ± 0.5 , -12.3 ± 1 , and 46.3 ± 0.5 ppm for SrO, SrF₂ and SrCl₂, respectively, are in excellent agreement with the previously reported values of 340 ± 1 , -13.0 ± 1.2 , and 45.9 ± 1.2 ppm.²³¹

Figure 6.1. Strontium-87 NMR spectra of stationary (upper traces) and MAS (lower traces) SrF₂, SrCl₂, SrO, SrS, and SrTiO₃. Spectra were acquired at $B_0 = 21.14$ T. Parameters used to simulate these spectra (simulations not shown) are summarized in Table 6.4. All scales are in ppm. Note that with the exception of SrF₂, these spectra were referenced to 1 M Sr(NO₃)₂ (aq) at $\delta(^{87}Sr) = 0.0$ ppm. Parameters in Table 6.4 have been corrected to reflect $\delta(^{87}Sr)$ of 0.5 M SrCl₂ in D₂O at 0.0 ppm.

6.3.1.2 Strontium at Sites of Axial Symmetry

Strontium-87 NMR spectra of Sr(NO₃)₂, SrMoO₄, and SrWO₄ are shown in Figure 6.2. Experimental and CASTEP calculated NMR parameters for these compounds are summarized in Table 6.4. $Sr(NO_3)_2$ possesses C_3 rotational symmetry at the strontium site, ²⁴⁶ whereas $SrMoO_4$ and SrWO₄ possess C_{4h} point-group symmetry at the strontium site,²⁴⁴ thus, in all three cases, the EFG tensor is confined to have axial symmetry (i.e., $|V_{XX}| = |V_{YY}| < |V_{ZZ}|$) with V_{ZZ} along the axis of highest symmetry (see Figure 6.3). Therefore, $\eta_0(^{87}Sr)$ is necessarily zero for these three compounds, which is in agreement with our experimental observations. $Sr(NO_3)_2$ has been investigated previously by several research groups.^{224,230,234} Previously reported $C_0(^{87}\text{Sr})$ values^{230,234} for Sr(NO₃)₂ of 15.3 and 15.4 MHz are in agreement with our experimental value of 15.3 ± 0.2 MHz. Previously reported^{230,234} $\eta_0(^{87}$ Sr) values were 0.03, close to the expected value of zero on the basis of the crystal structure of Sr(NO₃)₂. X-ray crystal diffraction data²⁴⁴ indicate that SrMoO₄ and SrWO₄ are isostructural, with scheelite-type structures, where the SrO₈ coordination polyhedra assume snub disphenoidal geometry. $C_0(^{87}\text{Sr})$ values for SrMoO₄ and SrWO₄ are similar, with $C_0(^{87}\text{Sr}) = 22.8$ and 22.4 MHz, respectively. The V_{ZZ} direction in SrMoO₄ and SrWO₄ is along the 4-fold rotation axis, and is parallel to the *c*-axis of the unit cell. The V_{ZZ} direction in Sr(NO₃)₂ lies parallel to the diagonal of the unit cell (Figure 6.3). Isotropic chemical shifts determined for Sr(NO₃)₂, SrMoO₄, and SrWO₄ are -70 ± 5 , 15 ± 5 , and 20 ± 50 , respectively. Note that the ⁸⁷Sr NMR spectrum of SrWO₄ was acquired with the WURST-QCPMG pulse sequence, rendering the location of the isotropic chemical shift less certain. Larsen et al.²³⁰ reported $\delta_{iso}(^{87}Sr) = -84$ and -5 ± 5 ppm for Sr(NO₃)₂ and SrMoO₄, respectively, both values in disagreement with our experimental values. The chemical shift values reported by Larsen et al. differ from ours systematically. Note that although Larsen et al.²³⁰ report $\delta_{iso}(^{87}\text{Sr})$

= -84 ppm for Sr(NO₃)₂ in their tables, determined from their ⁸⁷Sr QCPMG NMR spectrum, text in their discussion mentions an additional fit of a quadrupolar echo NMR spectrum with $\delta_{iso}(^{87}Sr)$ = -93 ppm. Chemical shift values of -323 and -70 ppm were reported for Sr(NO₃)₂ by Bowers et al.²³⁴ and Bonhomme et al.,²²⁴ respectively. In general (Table 6.4), the chemical shift values reported by Bowers et al.²³⁴ in their 2006 paper are in disagreement with our values. This discrepancy is not systematic, with the absolute difference between their reported chemical shift values and ours varying from 40 to 253 ppm. Our research and the recent study by Bonhomme et al.²²⁴ are in excellent agreement, supporting that of the three reported values for $\delta_{iso}(^{87}Sr)$ in Sr(NO₃)₂, the most recently determined value of -70 ± 5 ppm is the most accurate.

Figure 6.2. Experimental (lower traces) and simulated (upper traces) ⁸⁷Sr NMR spectra of stationary solid powdered samples of $Sr(NO_3)_2$, $SrWO_4$, and $SrMoO_4$. Experimental spectra were acquired at $B_0 = 21.14$ T using the quadrupolar echo or WURST-QCPMG pulse sequences. Simulations were performed with the QUEST program. Parameters used in the simulations are summarized in Table 6.4.

Figure 6.3. Strontium coordination geometry and electric field gradient tensor orientation for $SrMoO_4$ and $Sr(NO_3)_2$. $V_{ZZ}(^{87}Sr)$ in $SrMoO_4$ lies parallel to the *c*-axis, directed out of the plane of the page. V_{ZZ} in $Sr(NO_3)_2$ lies along a 3-fold rotation axis (green arrow). $SrMoO_4$ and $SrWO_4$ are isostructural.

6.3.1.3 Strontium at Sites with Low Symmetry

Strontium-87 WURST-QCPMG NMR spectra of SrSO₄, SrBr₂, SrI₂, Sr(NO₂)₂·H₂O, SrAl₂O₄, SrSnO₃, SrZrO₃, SrCrO₄, and Sr(ClO₄)₂·3H₂O are shown in Figures 6.4–6.8. These inorganic strontium salts do not possess high-order symmetry at the strontium site, allowing nonzero $C_Q(^{87}Sr)$ values as well as nonaxial EFG tensors. These compounds possess $C_Q(^{87}Sr)$ values between 10.5 MHz and 50.5 MHz, with $\eta_Q(^{87}Sr)$ values between 0.31 and 0.89. Experimental NMR parameters for these compounds are summarized in Table 6.4.

In the mineral celestine, SrSO₄, which belongs to the orthorhombic space group *Pbnm*, the strontium atoms are coordinated by 12 oxygen atoms. The strontium atoms are, in pairs, related by a center of inversion, i.e., there are two sets of two strontium atoms that share inversion symmetry (see Figure 6.9). Crystal symmetry considerations indicate that all four strontium atoms in the SrSO₄ unit cell are crystallographically equivalent and must possess identical EFG and magnetic shielding tensor components. Note, however, that only the strontium atoms related by a center of inversion are magnetically equivalent,²⁶⁵ and those that are not magnetically equivalent will possess different tensor orientations with respect to the crystallographic reference frame. The single-crystal ⁸⁷Sr NMR spectrum of SrSO₄ at one orientation in the laboratory frame is shown in Figure 6.10. As the EFG tensor orientation of each magnetically nonequivalent strontium site in celestine differs with respect to the crystallographic reference frame, their relative orientation also differs with respect to the applied magnetic field direction (laboratory z-axis), resulting in sets of two ⁸⁷Sr NMR peaks for each of the five observed ⁸⁷Sr spectroscopic transitions (e.g., $m_1 = 5/2 \leftrightarrow m_1 = 3/2$, $m_1 = 3/2 \leftrightarrow m_1 = 1/2$, etc). Note that ⁸⁷Sr has I = 9/2; the single-crystal NMR spectrum should consist of nine spectroscopic transitions for each site (not shown due to the breadth of the outer satellite

transitions, likely due to crystal imperfections). Examples of magnetic nonequivalence such as this have been discussed previously, for example, the ¹³³Cs NMR spectrum of CsCd(SCN)₃ reported by Kroeker et al. in 1997.²⁶⁶ The ⁸⁷Sr NMR spectrum of solid, powdered celestine is shown in Figure 6.4. All orientations of the EFG tensor axes with respect to the applied magnetic field direction are represented in the ⁸⁷Sr NMR spectrum of the powdered sample, resulting in an NMR powder spectrum consistent with a single strontium site, as further supported by CASTEP calculations. The ⁸⁷Sr NMR spectrum of the central transition of the powdered sample was thus fit using a single ⁸⁷Sr site, with $C_Q(^{87}Sr) = 28.3 \pm 0.2$ MHz, $\eta_Q(^{87}Sr) =$ 0.70 ± 0.01 , and $\delta_{iso}(^{87}Sr) = -87 \pm 50$ ppm. Our quadrupolar parameters are in good agreement with the previous data of Bowers et al.²³⁴ The isotropic chemical shift value of -47 ppm reported by Bowers et al.²³⁴ is in agreement within error with our experimental value of -87 ± 50 ppm.

The ⁸⁷Sr NMR spectra of SrBr₂ and SrI₂ complete the strontium halide series that began above with cubic SrF₂ and SrCl₂. At room temperature, strontium fluoride and strontium chloride both possess cubic fluorite crystal structures.²⁴² Strontium bromide belongs to tetragonal space group *P*4/*n*, and possesses 8-coordinate strontium atoms with distorted square antiprismatic geometry.²⁶¹ Note that SrBr₂ undergoes a solid-solid phase transition at ca. 915-919 K,²⁶¹ adopting a cubic fluorite structure (space group *Fm*3*m*), analogous to SrF₂ and SrCl₂. At room temperature, SrBr₂ possesses two crystallographically nonequivalent strontium sites, one with 4-fold rotation symmetry (i.e., with an axially symmetric EFG tensor), and the other lacking any high-order symmetry. The ⁸⁷Sr NMR spectrum (Figure 6.6) correspondingly possesses two unique strontium NMR powder patterns, with $C_Q(^{87}Sr)$ and $\eta_Q(^{87}Sr)$ values of 26 ± 1 and 9.25 ± 0.3 MHz, and 0.30 ± 0.02 and 0 ± 0.01, respectively. Strontium iodide crystallizes in space group *Pnma*, and is 7-coordinate, with monocapped trigonal prismatic coordination geometry.²⁴³ SrI₂ has one unique strontium site in the crystal structure, with $C_Q(^{87}Sr) = 10.5 \pm 1$ MHz and $\eta_Q(^{87}Sr) = 0.90 \pm 0.05$. Chemical shifts for these two haldies are similar, with $\delta_{iso}(^{87}Sr)$ = 80 ± 30 and 85 ± 10 ppm for the two sites of SrBr₂, and $\delta_{iso}(^{87}Sr) = 100 \pm 50$ ppm for SrI₂. Isotropic chemical shift trends in the entire halide series are discussed below.

The crystal structure of strontium nitrite monohydrate, $Sr(NO_2)_2 \cdot H_2O_2^{247}$ indicates two nonequivalent ⁸⁷Sr sites coordinated to a mixture of 9 or 10 oxygen and nitrogen atoms. CASTEP calculations estimate that the two sites possess different NMR parameters, e.g., $C_0(^{87}\text{Sr})$ values were estimated to be 20.2 and 22.2 MHz. The experimental ⁸⁷Sr NMR spectrum of Sr(NO₂)₂·H₂O did not have resolved discontinuities consistent with two ⁸⁷Sr sites, thus the NMR spectrum was fit using a single site. This is not surprising, as the parameters estimated by CASTEP for the two sites were similar. The crystal structure for strontium perchlorate trihydrate²⁶² indicates two nonequivalent strontium atoms, each coordinated to five oxygen atoms belonging to H₂O molecules and four oxygen atoms belonging to perchlorate anions. CASTEP calculations predict similar NMR parameters for both sites. The ⁸⁷Sr NMR spectrum of Sr(ClO₄)₂·3H₂O was fit with a single strontium site, with $C_0(^{87}Sr)$ and $\eta_0(^{87}Sr)$ values of 25.5 ± 0.5 MHz and 0.40 ± 0.03 . The ⁸⁷Sr NMR spectrum of SrAl₂O₄ (Figure 6.8) is also expected to consist of two overlapping powder patterns belonging to two crystallographically nonequivalent strontium sites.²⁴⁵ Simulations that included only one ⁸⁷Sr site did not conform to the experimental line shape, which displays discontinuities indicative of two quadrupolar NMR sites. $C_0(^{87}\text{Sr})$ values determined for SrAl₂O₄ were 50.5 and 43.0 ± 5 MHz, with $\eta_0(^{87}\text{Sr}) = 0.70$ and 0.88 ± 0.04 , respectively, and with $\delta_{iso}(^{87}\text{Sr})$ values of 130 and 150 ± 100 ppm, respectively. Our two-site simulation is admittedly a poor fit; the parameters must be considered as preliminary estimates until access to higher magnetic field strengths are available.

Strontium stannate and strontium zirconate are both examples of orthorhombic perovskites with 8-coordinate strontium atoms.²⁴⁴ SrSnO₃ and SrZrO₃ possess similar quadrupolar parameters, with $C_Q(^{87}Sr) = 31.6 \pm 0.2$ and 31.2 ± 0.2 MHz, and $\eta_Q(^{87}Sr) = 0.73 \pm$ 0.01 and 0.62 ± 0.02, respectively. Strontium chromate possesses a monazite-type structure, though according to Effenberger and Pertlik,²⁴⁸ the strontium atom is coordinated to ten surrounding oxygen atoms with interatomic distances between 2.575(2) and 3.264(2) Å, rather than the nine expected²⁶⁷ for the classic monazite structure. SrCrO₄ has the most shielded ⁸⁷Sr nucleus of all the compounds investigated here, with a chemical shift of -175 ± 50 ppm. Note that the central discontinuity in our simulated NMR spectrum for SrCrO₄ does not fit perfectly with that shown on the experimental spectrum when chemical shift anisotropy is disregarded, suggesting that some CSA may be present. However, spectra simulated with the inclusion of CSA, while giving a better fit for the central discontinuity, gave poorer fits for the two quadrupolar "horns." It was thus assumed in our spectral simulation (Figure 6.4) that $\Omega(^{87}Sr) = 0$ ppm.

Figure 6.4. Experimental (lower traces) and simulated (upper traces) ⁸⁷Sr NMR spectra of stationary powdered samples of SrZrO₃, SrSnO₃, SrSO₄, and SrCrO₄. Experimental spectra were acquired at $B_0 = 21.14$ T with the WURST-QCPMG pulse sequence. Parameters used in the simulations are summarized in Table 6.4.

Figure 6.5. Experimental (lower traces) and simulated (upper traces) ⁸⁷Sr NMR spectra of stationary powdered samples of strontium malonate, $Sr(ClO_4)_2 \cdot 3H_2O$, and $Sr(NO_2)_2 \cdot H_2O$. Experimental spectra were acquired at $B_0 = 21.14$ T using the WURST-QCPMG pulse sequence. Asterisks show the location of impurities (SrCO₃ and SrCl₂·6H₂O for strontium malonate and strontium nitrite monohydrate, respectively). Parameters used in the simulations are summarized in Tables 6.4 and 6.5.

Figure 6.6. Experimental (lower traces) and simulated (upper traces) ⁸⁷Sr NMR spectra of stationary powdered samples of SrBr₂ and SrI₂. Experimental spectra were acquired at $B_0 = 21.14$ T with either the WURST-QCPMG or quadrupole echo pulse sequences. The ⁸⁷Sr NMR spectrum of SrBr₂ includes signal from the impurity Sr(NO₃)₂ (marked with asterisks).

Figure 6.7. Experimental (lower trace) and simulated (upper trace) ⁸⁷Sr NMR spectra of a stationary powdered sample of $Sr(NO_2)_2 \cdot H_2O$. The simulation includes the ⁸⁷Sr NMR signal from $SrCl_2 \cdot 6H_2O$ (sample impurity) at 7% intensity. The $SrCl_2 \cdot 6H_2O$ central transition and a discontinuity from a satellite transition overlap with the $Sr(NO_2)_2 \cdot H_2O$ central transition.

Figure 6.8. Experimental (lower trace) and simulated (upper trace) ⁸⁷Sr NMR spectra of SrAl₂O₄. The crystal structure for SrAl₂O₄ indicates two unique strontium sites, and the ⁸⁷Sr NMR spectrum is correspondingly a sum of two overlapping NMR powder patterns with similar EFG and CS tensor parameters. The simulated NMR spectrum was generated using QUEST and contains spectral contributions from the central ($m_I = 1/2$ to -1/2) and satellite transitions.

Figure 6.9. Unit cell for celestine, SrSO₄. Oxygen atoms are shown in red, and sulfur atoms are shown in yellow. Strontium atoms at the top left and bottom right of the figure are related by a center of inversion, as are the two strontium atoms at the top right and bottom left of the image.

Figure 6.10. Central portion of the ⁸⁷Sr NMR spectrum of a single crystal of celestine, SrSO₄, at a random orientation in B_0 . The two peaks present for each spectroscopic transition correspond to two sets of magnetically nonequivalent strontium atoms in the celestine unit cell (Figure 6.9).

6.3.1.4 Strontium Salts with Organic Anions

Several strontium salts with monodentate or bidentate organic anions were also included in this research. These compounds include the antiosteoporotic drug strontium malonate, as well as strontium acetylacetonate, strontium hexafluoro-2,4-pentanedionate (Sr(F-acac)₂), strontium acetate, and strontium oxalate. Unfortunately, the crystal structures of strontium acetylacetonate and strontium acetate are not currently available in the literature. Karl Fischer analysis of our bulk powdered samples indicates approximately 0.8 water molecules per strontium acetylacetonate unit (i.e., the monohydrate), approximately 0.5 water molecules per strontium acetate unit (i.e., the hemihydrate), and that our sample of strontium oxalate is anhydrous. Spectra of some of these compounds are shown in Figure 6.11, whereas the ⁸⁷Sr NMR spectrum of Sr(malonate) is shown in Figure 6.5, and the ⁸⁷Sr NMR parameters are summarized in Table 6.5. Our experimental NMR parameters of $C_0(^{87}\text{Sr}) = 31.6 \pm 0.2 \text{ MHz}, \eta_0(^{87}\text{Sr}) = 0.79 \pm 0.01$, and $\delta_{iso}(^{87}Sr) = 0 \pm 50$ ppm for Sr(malonate) are in excellent agreement with parameters reported by Bonhomme et al.²²⁴ for their ⁸⁷Sr-enriched sample. $C_0(^{87}Sr)$ values for the remaining four strontium compounds with organic ligands fell between 13.6 and 15.9 MHz, and experimental $\delta_{iso}(^{87}\text{Sr})$ values ranged from -15 to +30 ppm. The experimental ^{87}Sr NMR spectra of strontium acetate hemihydrate (Figure 6.11) did not conform to a one-site powder pattern, so two ⁸⁷Sr sites were used in the spectral simulation. The NMR parameters for these two sites were similar, with $C_0(^{87}\text{Sr}) = 14.9$ and 15.9 ± 0.3 MHz, and $\delta_{iso} = 5$ and 30 ppm, for sites 1 and 2, respectively. The resulting simulated line shape accurately reproduces both the WURST-QCPMG and quadrupolar echo NMR spectra. These five organic anions are all coordinated to strontium through oxygen atoms, with Sr(oxalate) possessing an 8-coordinate strontium site, and Sr(malonate) possessing a 9-coordinate strontium site (Table 6.2). It is thus reasonable to expect similar coordination

environments for strontium acetate hemihydrate, strontium acetylacetonate hydrate, and strontium hexafluoro-2,4-pentanedionate, given their similarities in both isotropic chemical shifts and quadrupolar coupling constants.

6.3.1.5 Salts with Experimentally Measureable ⁸⁷Sr Chemical Shift Anisotropy

Strontium-87 NMR spectra of $SrCl_2 \cdot 6H_2O$, $SrBr_2 \cdot 6H_2O$, and $SrCO_3$ (strontianite) were acquired under both MAS and stationary sample conditions (Figure 6.12). These spectra were simulated using the WSolids program⁹⁹ as $C_Q(^{87}Sr)$ values are relatively small (note also that the current version of QUEST is not able to simulate NMR spectra acquired under MAS conditions). A summary of the NMR parameters used in the simulations is available in Table 6.6. The parameters used to simulate both experimental conditions, stationary samples and samples undergoing MAS, agree within the reported error.

Both $SrCl_2 \cdot 6H_2O$ and $SrBr_2 \cdot 6H_2O$ have axially symmetric ⁸⁷Sr NMR interaction tensors, meaning η_{CS} and η_Q are both zero. $C_Q(^{87}Sr)$ values are 4.9, 3.5, and 8.4 MHz, for $SrCl_2 \cdot 6H_2O$, $SrBr_2 \cdot 6H_2O$, and $SrCO_3$, respectively. Isotropic chemical shift values for all three compounds are approximately 1 ppm. Note that these compounds all feature strontium atoms coordinated to nine surrounding oxygen atoms, making their coordination geometry similar to that of the Sr^{2+} ion in solution,²³⁸ which is used as our chemical shift reference. Strontium malonate also possesses a similar coordination geometry and an isotropic chemical shift value of 0 ppm (see above). Chemical shift anisotropy was measured experimentally for all three compounds (Figure 6.12). As MAS NMR spectra do not exhibit broadening due to anisotropy in magnetic shielding, but retain some orientation-dependent broadening due to the quadrupolar interaction, MAS NMR spectra of these three compounds were used to characterize the electric field gradient tensors.
Orientation-dependent (anisotropic) broadening due to both the quadrupolar and magnetic shielding interactions contributes to the NMR line shapes of stationary SrCl₂·6H₂O, SrBr₂·6H₂O, and SrCO₃; the chemical shift tensors were characterized on the basis of the NMR line shapes of the stationary samples. Euler angles relating the EFG and CS tensor principal directions estimated by CASTEP calculations were used to simulate experimental NMR spectra (see Figure 6.13). Note we use the ZYZ convention.³⁰ The axial symmetry of the ⁸⁷Sr CS and EFG tensors of SrCl₂·6H₂O and SrBr₂·6H₂O simplifies analysis by confining the possible Euler angles (i.e., β = 0 or 90°). Simulated fits showed good agreement with experimental line shapes using the CASTEP calculated Euler angles. $\delta_{aniso}(^{87}Sr)$ values of +28, +26, and -65 ppm were measured for SrCl₂·6H₂O, SrBr₂·6H₂O, and SrCO₃, respectively. Note the latter corresponds to a span of ca. 80 ppm ($\eta_{CS}(^{87}Sr) = 0.67$). These values are in good agreement with those estimated by CASTEP, with $\sigma_{aniso}(^{87}Sr) = -27$, -35, and +77.2 ppm for SrCl₂·6H₂O, SrBr₂·6H₂O, and SrCO₃, respectively (an estimated span of 89 ppm for SrCO₃).

Strontianite, SrCO₃, has been studied via solid-state ⁸⁷Sr NMR spectroscopy several times previously,^{224,232,234} where NMR parameters were obtained under the assumption that the only source of spectral broadening was the quadrupolar interaction. $C_Q(^{87}Sr)$ values of 8.6 and 8.91 MHz were reported previously for SrCO₃, the former in agreement with our experimental value of 8.4 ± 0.3 MHz. As with Sr(NO₃)₂, reported isotropic chemical shifts for SrCO₃ vary greatly. The reported value of 0 ppm by Bonhomme et al.²²⁴ is in agreement with our experimental value, whereas Bowers et al.²³⁴ and Bastow²³² report $\delta_{iso}(^{87}Sr) = -133$ and ≈ 500 ppm, respectively, in disagreement with our value. The value reported by Bastow²³² was referenced to SrTiO₃ at 0 ppm, which possesses a chemical shift of 63.4 ppm with respect to 0.5 M SrCl₂ in D₂O (Table 6.4). The corrected value of ≈ 563 ppm is in even further disagreement with ours. We are confident in our experimental $\delta_{iso}(^{87}Sr)$ value for SrCO₃ as it is consistent with $\delta_{iso}(^{87}Sr)$ values for compounds with similar coordination environments as well as the 9coordinate Sr²⁺ ion in solution (our chemical shift reference), and because this value was determined independently by Bonhomme et al.²²⁴

Though we have shown that chemical shift anisotropy can visibly contribute to ⁸⁷Sr NMR spectra of solids, the ⁸⁷Sr NMR spectra of the stationary samples of SrCl₂·6H₂O and SrBr₂·6H₂O could easily be mistaken for pure Zeeman-quadrupolar spectra, as the intensity and position of the spectral discontinuities are not drastically altered by the inclusion of CSA. Thus it may be necessary to acquire ⁸⁷Sr NMR spectra under MAS conditions or, when MAS is not available, at multiple magnetic field strengths to recognize CSA as a contributor to the ⁸⁷Sr NMR powder line shape. Certainly, if one is only acquiring QCPMG spectra it may not be possible to resolve effects from CSA; resolving these effects would be dependent on the NMR spectral resolution. CASTEP calculations reported in this work as well as by Bonhomme et al.²²⁴ indicate σ_{aniso} values of up to -170 ppm (a maximum span of ca. 200 ppm), whereas the entire ⁸⁷Sr chemical shift range available in the current literature spans approximately 550 ppm. This would suggest that ⁸⁷Sr spans on the order of 500 ppm are possible (vide infra).

Figure 6.11. Experimental (lower traces) and simulated (upper traces) ⁸⁷Sr NMR spectra of stationary solid powdered samples of strontium hexafluoro-2,4-pentanedionate, strontium oxalate, strontium acetate hemihydrate, and strontium acetylacetonate monohydrate. Experimental spectra were acquired at $B_0 = 21.14$ T using the quadrupolar echo and WURST-QCPMG pulse sequences. Simulations were performed using the QUEST program. Parameters used in the simulation are summarized in Table 6.5.

Figure 6.12. Experimental (lower traces) and simulated (upper traces) ⁸⁷Sr NMR spectra of solid powdered samples of SrCl₂·6H₂O, SrBr₂·6H₂O, and SrCO₃. Experimental spectra were acquired at $B_0 = 21.14$ T using a quadrupolar echo. Simulated spectra were generated using WSolids1. Spectra acquired under MAS conditions (left) show orientation-dependent line shape effects from the quadrupolar interaction (second-order correction to the Zeeman energy), whereas spectra of stationary samples (right) show line shape contributions from both quadrupolar coupling and chemical shift anisotropy. Blue dotted lines indicate simulated ⁸⁷Sr NMR spectra that only include quadrupolar effects derived from MAS spectra for comparison. Parameters used in the simulations are summarized in Table 6.6.

Figure 6.13. Strontium-87 EFG and magnetic shielding tensor orientations in SrCO₃ and SrCl₂·6H₂O, as calculated by CASTEP. In SrCO₃, V_{YY} and σ_{11} are parallel to the *a*-axis, whereas V_{ZZ} and σ_{11} are parallel to the *c*-axis in SrCl₂·6H₂O. SrCl₂·6H₂O has axially symmetric EFG and magnetic shielding tensors.

6.3.1.6 Unsuccessful ⁸⁷Sr NMR Experiments

Attempts were made at acquiring ⁸⁷Sr NMR spectra of solid powdered strontium gluconic acid, strontium oxalate monohydrate and dihydrate, strontium ranelate, strontium neodecanoate, strontium citrate pentahydrate, and strontium selenide, but no reliable NMR data were obtained. Strontium-87 NMR spectra of Sr(oxalate)·H₂O, Sr(oxalate)·2H₂O, and Sr(citrate)·5H₂O were acquired with and without ¹H decoupling. Proton decoupling did not have any discernible effect on the NMR spectra of these compounds. Strontium ranelate exists in the solid phase as a number of different hydrates, including a tetrahydrate, heptahydrate, octahydrate, and nonahydrate.^{268,269} Preparations of the nonahydrate were reported to dehydrate rapidly in atmosphere, e.g., larger crystals broke down into smaller crystals containing ca. five to seven hydrated water molecules per formula unit.²⁶⁸ It is thus not clear if our sample of strontium ranelate was pure or a mixture of hydrates, the latter being likely. Each hydrate is expected to produce a unique ⁸⁷Sr NMR spectrum, and the resulting multiple NMR powder patterns with weak intensity may account for why we were unable to observe ⁸⁷Sr NMR signal for this compound. Strontium selenide was likely nonstoichiometric and showed metallic behavior.

6.3.2 CASTEP Results

6.3.2.1 Magnetic Shielding

The correlation between calculated and experimental magnetic shielding and chemical shift values is shown in Figure 6.14. This figure includes chemical shift and magnetic shielding values for all inorganic strontium compounds except SrI₂. The version of the CASTEP program used does not include relativistic contributions to the magnetic shielding, and as the iodine atoms directly bonded to strontium are expected to introduce significant relativistic effects, SrI₂ was not

included in the correlation. Indeed, the calculated value of $\sigma(^{87}Sr)$ for SrI₂ is a clear outlier. Values calculated by CASTEP and experimental values show strong correlation, with $R^2 =$ 0.9528 and a slope of -1.118. As strontium is a fifth-period element, relativistic effects introduced by the mass of the strontium nuclei are expected to be important.²⁷⁰ The strong correlation indicates that relativistic contributions to the magnetic shielding are likely similar for all of the studied strontium salts. The relationship found in the least squares linear regression was used to determine calculated isotropic chemical shift values for strontium oxalate and strontium malonate (Table 6.5). Several CASTEP calculations estimating magnetic shielding values were performed for strontium-containing compounds that were not studied experimentally (Table 6.3). As there is a strong correlation between calculated and experimental magnetic shielding and chemical shift values, these additional CASTEP calculations are expected to be reliable additions to the known⁸⁷Sr chemical shift scale. In addition, the CASTEP estimated values for the magnetic shielding anisotropy and asymmetry parameters are likely an accurate representation of the general magnitudes of chemical shift anisotropy and asymmetry parameters for the ⁸⁷Sr nucleus.

Figure 6.14. Correlation between calculated isotropic ⁸⁷Sr magnetic shielding constants and experimentally determined isotropic ⁸⁷Sr chemical shift values listed in Table 6.4 (Except SrI₂). $\sigma_{iso}(^{87}Sr) = 3007 \text{ ppm} - 1.118\delta_{iso}(^{87}Sr), R^2 = 0.9528$. The experimental ⁸⁷Sr NMR chemical shift values are referenced to 0.5 M SrCl₂ in D₂O at $\delta_{iso} = 0.0$ ppm.

Figure 6.15. Correlation between calculated and experimental $C_Q(^{87}\text{Sr})$ values. $C_Q(^{87}\text{Sr})_{\text{calc}} = 0.9591C_Q(^{87}\text{Sr})_{\text{expt}} - 0.0105 \text{ MHz}, R^2 = 0.9571.$

Figure 6.16. Trends in ⁸⁷Sr magnetic shielding. Coordination numbers for each compound are those given in the crystallography literature (see text).

6.3.2.2 Electric Field Gradients

The correlation between calculated and experimental $C_Q(^{87}\text{Sr})$ values is shown in Figure 6.15. All nonzero $C_Q(^{87}\text{Sr})$ values obtained in this work were used in this correlation. An average of the two calculated $C_Q(^{87}\text{Sr})$ values for the two nonequivalent strontium sites in both $Sr(NO_2)_2 \cdot H_2O$ and $Sr(ClO_4)_2 \cdot 3H_2O$ were used in conjunction with the experimentally determined $C_Q(^{87}\text{Sr})$ values for these compounds, as both experimental NMR spectra were fit with a single ⁸⁷Sr site. These data have $R^2 = 0.9571$ and a slope of 0.9591. Note, however, that the signs of $C_Q(^{87}\text{Sr})$ are not available from experiment, and signs predicted by CASTEP vary (Tables 6.4-6.6). In general, the magnitudes of $C_Q(^{87}\text{Sr})$ values predicted by CASTEP were in reasonable agreement with the experimental values.

6.3.3 Chemical Shift Trends

6.3.3.1 ⁸⁷Sr Chemical Shift Trends and Absolute Shielding Scale

Trends in chemical shifts based on the available ⁸⁷Sr isotropic chemical shift data are illustrated in Figure 6.16. The absolute shielding scale depicted in Figure 6.16 is based on the recently calculated value of 3536 ± 106 ppm for the absolute shielding of the Sr²⁺ ion coordinated to nine water molecules,²³⁸ corresponding to our ⁸⁷Sr chemical shift reference, 0.5 M Sr²⁺ ions (SrCl₂) in aqueous solution. This value is fairly close to that predicted by the correlation of our experimental $\delta_{iso}(^{87}Sr)$ and CASTEP calculated values, which indicates $\sigma_{iso}(^{87}Sr) = 3007$ ppm at $\delta_{iso}(^{87}Sr) = 0$ ppm. Note that CASTEP performs nonrelativistic calculations for magnetic shielding values, and the relativistic contribution to the magnetic shielding of Sr²⁺ is estimated to be ca. 400 ppm (i.e., $\sigma_{iso}(^{87}Sr)_{nonrel} = 3142$ ppm according to Antušek et al.).²³⁸ As mentioned, some of the previous ⁸⁷Sr chemical shift data (e.g., for Sr(NO₃)₃ and SrCO₃) are in conflict with those determined here and in Bonhomme et al.²²⁴ Excluding data with large discrepancies to those in the present work and to those of Bonhomme et al.,²²⁴ the ⁸⁷Sr isotropic chemical shifts currently available range from approximately –200 to 350 ppm, covering approximately 550 ppm. CASTEP calculations indicate a similar chemical shift range. Note that some of the chemical shift values, particularly those obtained from WURST-QCPMG NMR spectra, have large associated uncertainties (e.g., 50–100 ppm), as indicated in Tables 6.4-6.6.

Of course, the chemistry of the group II elements is mainly that of M^{2+} ionic compounds; therefore, the chemical shift range discussed here is primarily relevant for Sr²⁺ and its compounds. To estimate whether or not the ⁸⁷Sr chemical shift range differs significantly for strontium compounds with coordination geometry not found in solid strontium salts (e.g., oneand two-coordinate compounds in the gas phase), DFT calculations have been performed on small, isolated strontium-containing molecules (Table 6.7) using CASTEP and ADF. According to calculations performed using CASTEP, estimated ⁸⁷Sr isotropic chemical shifts of isolated SrO and SrS molecules are 3176 and 2956 ppm, respectively. These fall in the range of the most shielded ⁸⁷Sr nuclei we have studied in the solid state, e.g., CASTEP calculates $\sigma_{iso}(^{87}Sr)$ values of 3097, 3113, and 3168 ppm for Sr(NO₃)₂, SrSO₄, and SrCrO₄, respectively. The calculated magnetic shielding anisotropy for the isolated diatomic molecules SrO and SrS, 604 and 933 ppm, respectively, is much greater than what is calculated for the solid strontium salts. These large spans suggest that the ⁸⁷Sr chemical shift range may cover closer to 1000 ppm, rather than the 550 ppm we have observed experimentally. DFT calculations of the magnetic shielding tensors in SrO and SrS performed using ADF provide estimates of σ_{iso} ⁽⁸⁷Sr, SrO) = 3348 ppm and $\sigma_{iso}({}^{87}Sr, SrS) = 3090$ ppm. These two $\sigma_{iso}({}^{87}Sr)$ values, calculated with the inclusion of

relativistic effects using a two-component approximation to the Dirac equation (ZORA), are approximately 150 ppm larger than those determined by CASTEP. DFT calculations were also carried out on the isolated triatomic molecule SrCl₂, at the experimental ground-state geometry as well as at the estimated equilibrium geometry²⁷¹ (Table 6.7) using ADF. The results of these calculations, which estimate $\sigma_{iso}(^{87}Sr) = 2931$ ppm for the ground-state model, also fall within the chemical shift range established by the solid compounds studied here. The magnetic shielding anisotropy for isolated ground-state SrCl₂ is estimated to be 1040 ppm, corresponding to a span of ca. 1102 ppm. It should be noted that all of the studied strontium salts as well as those structures used in additional DFT calculations are diamagnetic, nonmetallic materials, thus this chemical shift range does not include effects from paramagnetic (contact or pseudocontact) shifts or Knight shifts.

The acquisition of ⁸⁷Sr NMR spectra of several analogous compounds with substitutions down a group in the periodic table allows us to qualitatively assess group trends in ⁸⁷Sr isotropic chemical shift values. Readers are at this point reminded that the strontium environments in these crystal structures are not necessarily analogous within each set of compounds (Table 6.2). The sets of strontium titanate and strontium zirconate (group 4), strontium chromate, molybdate, and tungstate (group 6), as well as the halogen series of strontium fluoride, chloride, bromide, and iodide, display the same trend in ⁸⁷Sr isotropic magnetic shielding. That is, ⁸⁷Sr magnetic shielding decreases (chemical shift increases) as one increases the atomic number of the substituted element. The ⁴³Ca NMR chemical shifts of calcium analogues CaF₂, CaCl₂, and CaBr₂ also display inverse halogen dependence,²⁷² with chemical shifts of δ_{iso} (⁴³Ca, CaF₂) = -1.4 \pm 2.0 ppm, δ_{iso} (⁴³Ca, CaCl₂) = 64.0 \pm 2.0 ppm, and δ_{iso} (⁴³Ca, CaBr₂) = 83.5 \pm 2.0 ppm. The isotropic ⁴³Ca NMR chemical shifts of CaMoO₄ and CaWO₄ are very close, at 1.1 and 2.6 \pm 2.0 ppm, respectively,²⁷² analogous to what we observe for the corresponding strontium compounds. The ⁴³Ca NMR magnetic shielding of CaTiO₃ and CaZrO₃ decreases from Ti to Zr. The magnesium-containing analogues display the opposite trend, with $\delta_{iso}(^{25}Mg, MgMoO_4) = -10.6$ and -8.3 ± 0.3 ppm (sites 1 and 2), and $\delta_{iso}(^{25}Mg, MgWO_4) = -1.7 \pm 1$ ppm.²⁷³ Note that room-temperature MgMoO₄ is not isostructural with MgWO₄, the former adopting space group C2/m,²⁷⁴ and the latter P2/c.²⁷⁵ Strontium-87 magnetic shielding values increase from strontium oxide to strontium sulfide. This is again consistent with what is observed for ⁴³Ca in calcium(II) chalcogenides.²⁷²

As shown in Figure 6.16, $\sigma_{iso}(^{87}Sr)$ tends to increase as the strontium coordination number increases, i.e., $6 < 8 \approx 9 \le 10 \ge 12$. This is, however, very qualitative. As chemical shift data for ⁸⁷Sr are still limited, we expect that the regions defining each coordination number will be updated in the future. Furthermore, in the crystallography literature there is no single agreed upon method of assigning coordination number. For the compounds featured in this research, the bond distance cutoff used to determine the size of the coordination sphere and the coordination number varied. For example, on the basis of a bond distance cutoff of 3.0 A, Abrahams et al.²⁷⁶ assigned a coordination number of 9 to one strontium site in $Sr(NO_2)_2 \cdot H_2O_2$, and a coordination number of 10 to the other strontium site. The strontium-oxygen and strontium-nitrogen bond distances in Sr(NO₂)₂·H₂O range from approximately 2.56 to 2.83 Å (site 1) or 2.54 to 2.88 Å (site 2) in intervals of less than 0.1 Å. The next nearest nitrogen atoms to each strontium site are 3.197(1) or 3.231(2) Å away, respectively. Therefore, the approximate 0.35 Å break in interatomic distances for each strontium site is a logical boundary for the coordination sphere. A cutoff distance of 3.5 Å from the central strontium ion was used to assign a coordination number of 10 for SrCrO₄.²⁴⁸ Effenberger and Pertlik²⁴⁸ concede that the matter of assigning the

coordination number of strontium in SrCrO₄ is not clear-cut. In SrAl₂O₄, Sr–O bond distances that exceed 3.5 Å are included in the coordination sphere,²⁴⁵ and the two 9-coordinate strontium sites in SrAl₂O₄ have isotropic chemical shift values that are much less shielded than the 9-coordinate strontium atoms in other compounds. As the bonding circumstances such as interatomic distances and coordination geometry change from structure to structure, there is no simple way to standardize the determination of coordination number.²⁷⁷ It would also be naïve to think δ_{iso} depends only on coordination number. It is with this consideration that we recommend that the trends in Figure 6.16 be treated as rough guidelines.

Table 6.7. Calculated ⁸⁷Sr NMR parameters for small molecules in the gas phase. DFT calculations performed with ADF used the BP86 functional and the ZORA/QZ4P basis set. $Q(^{87}Sr) = 30.5 \text{ fm}^2$.

		$\sigma_{ m iso}(^{ m 87} m Sr)$ /	$\Delta\sigma(^{87}\mathrm{Sr})$ /	$\eta_{\rm MS}(^{87}{ m Sr})$	$C_{\rm Q}(^{87}{\rm Sr})$ /	$\eta_{\rm Q}(^{87}{ m Sr})$	Structure
		ppm	ppm		MHz		Reference
SrO	CASTEP	3176	604	0	-47.6	0	235
	ADF	3348	571	0	-64.7	0	
	Expt.	-	-		-42.729(37)	0	
SrS	CASTEP	2956	933	0	-30.2	0	236
	ADF	3090	963	0	-39.6	0	
	Expt.	-	-	-	-21.959(85)	0	
$SrCl_2$	ADF	2931	1040	0.18	-171.9	0.11	271
${\rm SrCl_2}^a$	ADF	2913	1073	0.17	-178.0	0.11	

^a Estimated equilibrium geometry from joint ED-SP analysis, see Ref. 271.

6.3.3.2 Group II Periodic Trends in Magnetic Shielding

At present, there exists relatively little NMR data on the NMR-active nuclei of group II elements in general. For the most recent literature survey, see Moudrakovski.²⁷⁸ The gyromagnetic ratios of ²⁵Mg, ⁴³Ca, and ⁸⁷Sr are all relatively low, and these nuclei also have relatively low natural abundances,¹ making spectral acquisition challenging. Magnesium-25, strontium-87, and barium-137 also have moderate nuclear electric quadrupole moments,^{1,61} leading to broad NMR line shapes due to the quadrupolar interaction in solid samples. Beryllium and its compounds are highly toxic, a deterrent to spectroscopists. NMR properties of the group II elements are summarized in Table 6.8, and the currently known chemical shift ranges of the group II elements are shown in Figure 6.17. The CS ranges of these nuclei increase as one moves down the group. This is expected on the basis of similar trends in other element groups.²⁷⁹

The ⁹Be chemical shift range was reported to be ca. 50 ppm by Bryce and Wasylishen in 1999.²⁸⁰ In their research, spans of 3.4 and 6.6 ppm were measured experimentally for two unique ⁹Be sites in Be(acac)₂. Available ²⁵Mg data indicate a chemical shift range of approximately 200 ppm, from ca. –100 to +100 ppm,²⁷³ though the isotropic chemical shifts of most molecules/compounds fall between –15 and +25 ppm. CASTEP calculations estimate magnesium spans of up to approximately 40 ppm in magnesium nitride, Mg₃N₂. The available solid-state NMR data for the ⁴³Ca nucleus was summarized in a 2013 review by Laurencin and Smith,²⁷² and has been supplemented by recent studies by Widdifield et al.²⁸¹ and Burgess et al.²⁸² The available chemical shift data for ⁴³Ca cover approximately 280 ppm, from –70 to +210 ppm. The largest experimentally determined span for ⁴³Ca is 70 ppm for vaterite (CaCO₃), and CASTEP calculations indicate that spans are in general less than 110 ppm. Shielded

 $\delta_{iso}(^{25}Mg)$ values exceed those of ^{43}Ca , which is expected to have a larger chemical shift range than $^{25}Mg.^{279}$ This suggests that our picture of the ^{43}Ca chemical shift range may not be complete. Note that there is only one reported $\delta_{iso}(^{25}Mg)$ value below -15 ppm, for bis(cyclopentadienyl)magnesium at -91 ± 3 ppm, 283 and that no NMR data for a ^{43}Ca analogue are known to have been reported.

With little data,²⁸⁴⁻²⁸⁶ our picture of the chemical shift range of ¹³⁷Ba is also likely incomplete. Some of the literature chemical shift data for ¹³⁷Ba, like that for ⁸⁷Sr, are in conflict. For example, the largest $\delta_{iso}(^{137}Ba)$ value reported in the solid-state NMR literature, to our knowledge, is that for BaCO₃, at 1070 ppm. This value was obtained in 2000 by MacKenzie and Meinhold.²⁸⁷ However, in a more recent study by Hamaed et al.,²⁸⁵ a value of 50 ppm is reported for the same compound. The majority of the large chemical shifts available for ¹³⁷Ba were reported in the year 2000 study. As evidence against a systematic referencing error by MacKenzie and Meinhold, their measured $\delta_{iso}(^{137}Ba)$ value for BaO of 748 ppm is in reasonable agreement with $\delta_{iso}(^{137}Ba) = 760$ ppm, reported by Dec et al.²⁸⁸ in 1993. The $\delta_{iso}(^{137}Ba)$ values reported by Hamaed et al. are supported by the results of CASTEP calculations, which agree reasonably well with their experimental δ_{iso} (¹³⁷Ba) values. Note, though, that relativistic corrections to chemical shift values may be on the order of hundreds of ppm for sixth-row elements.^{289,290} A recent calculation by Antušek et al.²³⁸ suggests that the relativistic contribution to the ¹³⁷Ba magnetic shielding in aqueous Ba^{2+} is ca. 1500 ppm. It is thus not clear exactly how broad the ¹³⁷Ba chemical shift range is, though on the basis of the available literature, we believe a value of 1500 ppm (ca. -500 to 1000 ppm) is a reasonable estimate.

Recent research by Antušek et al.²³⁸ provide estimated values determined via careful ab initio quantum chemistry calculations for the isotropic magnetic shielding of all the group II

metal ions, M^{2+} , coordinated to a full solvation shell of water molecules. Their calculated values also include a relativistic correction based on M^{2+} shielding values in smaller water-ion clusters. In general, both the absolute shielding values for M^{2+} in solution and the relativistic contribution to the magnetic shielding increase as one moves down the group, the latter increasing by approximately 4 orders of magnitude, from 0.38 to 1516 ppm, as one moves from Be²⁺ to Ba²⁺. Isotropic magnetic shielding values for Be, Mg, Ca, Sr, and Ba in aqueous M^{2+} were calculated to be 112 ± 3 , 602 ± 18 , 1259 ± 38 , 3536 ± 106 , and 6854 ± 206 ppm, respectively. As M^{2+} solutions of each of these nuclei are commonly used as chemical shift references, these calculated values are highly useful in relating the results of quantum chemistry calculations to experimentally determined chemical shift values.

Isotope	Nuclear Spin	Natural	<i>v</i> ₀ / MHz (21.14 T)	Q/fm^2	Chemical Shift
	Number, I	Abundance, $C / \%$			Range / ppm
⁹ Be	3/2	100	126.5	5.288	50^{280}
²⁵ Mg	5/2	10.0	55.10	19.94	200 ²⁷³
⁴³ Ca	7/2	0.135	60.58	-4.08(8)	280 ²⁷²
⁸⁷ Sr	9/2	7.00	39.01	30.5(2)	550
¹³⁵ Ba	3/2	6.592	89.42	16.0	1500 ²⁸⁴⁻²⁸⁶
¹³⁷ Ba	3/2	11.232	100.0	24.6(1)	1500 ²⁸⁴⁻²⁸⁶

Table 6.8. Select NMR properties of the group II nuclei.^{1,61}

Figure 6.17. Chemical shift ranges of the primary NMR-active group II elements. The chemical shift of the group II metal oxide, M(II)O, is represented by a vertical black line. The isotropic chemical shift values for MgO, CaO, and BaO are with reference to a 1 M aqueous solution of the corresponding metal chloride, M(II)Cl₂ at $\delta_{iso} = 0$ ppm. The isotropic chemical shift of SrO is with reference to a 0.5 M solution of SrCl₂ in D₂O at $\delta_{iso} = 0$ ppm.

6.4 Conclusions

Strontium-87 quadrupolar and chemical shift parameters have been determined for 25 strontium salts. Though our samples were not ⁸⁷Sr-labeled, we achieved satisfactory signal intensity and were able to unambiguously determine NMR parameters. $C_Q(^{87}Sr)$ values measured experimentally were up to 50.5 MHz in magnitude. We have shown experimental evidence for the existence of ⁸⁷Sr chemical shift anisotropy, as well as presented a case based on the results of CASTEP calculations that CSA should not be neglected in the fitting of some ⁸⁷Sr NMR spectra, particularly those with relatively small $C_Q(^{87}Sr)$ values. For ⁸⁷Sr NMR spectra acquired with QCPMG-based pulse sequences on existing hardware, however, it is unlikely that chemical shift anisotropy can be easily quantified. Several ⁸⁷Sr experimental chemical shift

values for compounds previously featured in the literature were updated or confirmed, and a ⁸⁷Sr magnetic shielding scale based on the current NMR literature was proposed. Our experimental ⁸⁷Sr chemical shift range is in line with what is expected on the basis of periodic trends in chemical shifts, given the current data for other group II nuclei. However, it must be stressed that given the limited data available for the majority of the group II elements, the chemical shift ranges for some of these nuclei may need amending as more data become available. The BRAIN-CP technique may be useful for acquiring ⁸⁷Sr NMR spectra in the future, provided that the studied compounds are protonated.²⁹¹ Our study indicates the importance of acquiring NMR spectra at the highest possible magnetic field strengths if one wishes to observe quadrupolar nuclei with unfavorable NMR properties like those in ⁸⁷Sr. This work could not have been completed without access to the Canadian National Ultrahigh-Field NMR Facility for Solids (http://nmr900.ca/).

6.5 Acknowledgements

Prof. David Bryce and Dr. Frédéric Perras (Ottawa) are thanked for developing and distributing QUEST. Dr. Klaus Eichele (Tübingen) is thanked for the development, distribution and maintenance of WSolids1. Dr. Dominique Massiot is thanked for the development of DMFit. Dr. Klaus Eichele and Dr. Robert McDonald (Alberta) are thanked for insightful discussions on crystal symmetry. We thank Prof. Michael Doschak (Alberta) for stirring our interest in this project. Access to the 21.1 T NMR spectrometer and CASTEP software was provided by the National Ultrahigh-Field NMR Facility for Solids located in Ottawa, Canada, a national research facility funded by a consortium of Canadian Universities, supported by the National Research Council Canada and Bruker BioSpin, and managed by the University of

Ottawa (http://nmr900.ca). We specifically thank Dr. Jonathan Schaeffer, Dean of Science, Dr. Lorne Babiuk, VP Research (both at the University of Alberta), and the Deans and VPs of several other Canadian universities for supporting our ultrahigh-field NMR facility. Research funding was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada Research Chairs program, and the University of Alberta.

Chapter 7 Summary and Future Outlook

All of the projects presented in this thesis utilize current state-of-the-art NMR hardware and software, in conjunction with modern quantum chemistry computations, to tackle difficult problems in the field of NMR spectroscopy. Even in the recent past (i.e., ca. 5 to 10 years), experiments such as these were impractical, or, in some cases, even thought to be impossible. This research was focused on the acquisition of NMR spectra of exotic quadrupolar nuclei in solid materials. The exoticism of these nuclei stems primarily from their unfavorable NMR properties, e.g., low gyromagnetic ratios, low natural abundances, and/or moderate to large nuclear electric quadrupole moments, rendering them largely overlooked in the current NMR literature. Much of this research is foundational, and adds to limited literature on the studied nuclei (e.g., ⁷⁵As, ⁸⁷Sr, and ^{121/123}Sb) or on the type of system studied (e.g., isolated pairs of spinspin coupled quadrupolar nuclei where the quadrupolar interaction is large for one of the paired nuclei). Thus, much of the data presented in this work can be used as benchmark values for subsequent NMR experiments and quantum chemistry calculations.

Each of these projects required the use of the $B_0 = 21.14$ T NMR spectrometer located at our National Ultrahigh-Field NMR Facility for Solids,² demonstrating that access to high-field instruments is crucial to carrying out modern NMR research of this nature. Quantum chemistry calculations using the DFT-based programs ADF and CASTEP were used extensively to support experimental results, to help establish trends in NMR parameters, as well as to gauge the feasibility of performing NMR experiments. The availability of more reliable quantum chemistry methods were a vital aspect of these projects. It is shown that DFT calculations carried out using both the CASTEP and ADF codes support experimental data, and the choice between the two program suites may come down to what is applicable to the system under study (e.g., relativistic effects, long-range interactions, etc.). The development of accurate NMR spectral simulation software has also played an important role in the growing utilization of NMR spectroscopy to address difficult systems such as these. QUEST and its residual dipolar coupling-oriented derivative were used extensively in this work to accurately model NMR spectra for which the high-field approximation is not valid.

Of course, there is a lot of potential work that can be carried out to continue the projects mentioned in this thesis. It may be interesting to extend the work on quadrupolar spin-pairs of boron and arsenic nuclei in Lewis acid-base adducts to other pairs of quadrupolar nuclei, including As-Al and As-Ga pairs in analogous adducts.¹⁵³ NMR parameters derived for the latter may be of particular use given that there is some interest in using Lewis acid-base adducts as precursors for the fabrication of GaAs semiconductors.^{155,156} Many of the $v_Q(^{75}As)$ values quantified in this work are moderate to large, thus nuclear quadrupole resonance experiments at zero field could be performed to verify the values determined via NMR spectroscopy, since $\eta_Q(^{75}As)$ values are now known. Further work could also include a more detailed interpretation of EFG tensor orientations within the molecular reference frame, and how these tensor orientations as well as the signs of C_Q values relate to or shed light on molecular or crystallographic structure.²⁹² In this thesis it is shown that high-field NMR experiments on spin-3/2 nuclei with C_Q values of up to ca. 200 MHz are now clearly a feasible undertaking, opening up possibilities of studying exotic quadrupolar nuclei in non-symmetric environments. For example, the techniques demonstrated in this thesis would be suitable for studying the structure of arsenic-containing hydrocarbons and fatty acids present in fish and other marine animals as well as marine oil supplements.²⁹³ Exposure to arsenic through the environment and through the ingestion of food is a growing concern²⁹⁴⁻²⁹⁶ and thus far there are few toxicological data on many organic arsenic compounds found in the environment.²⁹⁷

Strontium-87 NMR spectroscopy has the potential to be of importance in the field of materials chemistry as, for example, strontium-containing perovskites possess many interesting electrical properties and are currently being investigated for applications such as capacitors²²¹ and solid oxide fuel cells.^{222,298,299} The use of strontium in devices is of particular interest due to its relatively low toxicity; there have even been recent efforts to synthesize a strontium-containing analogue for the lead halogen perovskite material CH₃NH₃PbI₃, which is currently being investigated for use in the production of solar cells.³⁰⁰ The materials chemistry community has already shown interest in characterizing bioactive glasses using ⁸⁷Sr NMR spectroscopy,²²⁴ and ⁸⁷Sr NMR spectroscopy could be incredibly useful for the characterization of many related strontium-containing glasses and ceramics.

The techniques demonstrated here are by no means limited to ⁷⁵As, ⁸⁷Sr, and ^{121/123}Sb NMR studies; it is hoped that our promising demonstration of the capabilities of NMR spectroscopy inspires spectroscopists to pursue studies of more challenging systems and nuclei. Having the option of studying almost any quadrupolar nucleus in the NMR periodic table gives scientists access to a potentially rich collection of structural information and hence to insights into the chemical properties of materials. It is clear that the field of solid-state NMR spectroscopy still has a lot of room to grow. Newly developed pulse techniques such as BRAIN-CP (BRoadband Adiabatic INversion – Cross Polarization)³⁰¹ have been utilized for the acquisition of wideline NMR spectra of spin-1/2 and quadrupolar nuclei³⁰²⁻³⁰⁴ and offer additional signal enhancements to the WURST and WURST-QCPMG methods demonstrated here. The field of dynamic nuclear polarization (DNP) NMR spectroscopy,³⁰⁵⁻³⁰⁷ which involves the transfer of polarization from electrons to atomic nuclei, is a promising candidate for the study of quadrupolar nuclei. To this end, polarization transfer techniques such as PRESTO³⁰⁸ may be of use for observing MAS NMR spectra of quadrupolar nuclei. New NMR hardware is also being developed; a 36 T series-connected hybrid magnet will soon be available for NMR users at the National High Magnetic Field Laboratory (NHFML) in Tallahassee, FL.³⁰⁹ It is likely that the NMR spectroscopy of "challenging" quadrupolar nuclei in solids will continue to advance beyond what we have demonstrated here.

References

¹ Harris, R. K.; Becker, E. D.; de Menezes, S. M. C.; Goodfellow, R.; Granger, P. *NMR Nomenclature. Nuclear Spin Properties and Conventions for Chemical Shifts. Pure Appl. Chem.* **2001**, *73*, 1795-1818.

² The National Ultrahigh-Field NMR Facility for Solids. http://nmr900.ca (Accessed October 21, 2015).

³ Faucher, A.; Wasylishen, R. E. Obtaining Gas-Phase NMR Parameters from Molecular Beam and High-Resolution Microwave Spectroscopy. To be published as Chapter 2 in *Gas Phase NMR*; Jackowski, K., Jaszuński, M., Eds.; New Developments in NMR; RSC Publishing.

⁴ Griffiths, D. J. *Introduction to Quantum Mechanics*, 2nd edition; Pearson Prentice Hall: Upper Saddle River, 2005.

⁵ Atkins, P.; Friedman, R. *Molecular Quantum Mechanics*, 4th edition; Oxford University Press: Oxford, 2005.

⁶ Schrödinger, E. An Undulatory Theory of the Mechanics of Atoms and Molecules. *Phys. Rev.* **1926**, *28*, 1049-1070.

⁷ Levitt, M. H. Spin Dynamics: Basics of Nuclear Magnetic Resonance; Wiley: Chichester, 2001.

⁸ Levitt, M. H. *Spin Dynamics: Basics of Nuclear Magnetic Resonance*; Wiley: Chichester, 2001; pp 6-17.

⁹ Commins, E. D. Electron Spin and Its History. Annu. Rev. Nucl. Part. Sci. 2012, 62, 133-157.

¹⁰ Ohanian, H. C. What is Spin? Am. J. Phys. **1986**, 54, 500-505.

¹¹ Apperley, D. C.; Harris, R. K.; Hodgkinson, P. *Solid State NMR: Basic Principles & Practice*; Momentum Press: New York, 2012; pp 1–38.

¹² Mehring, M. *Principles of High Resolution NMR in Solids*, 2nd ed.; Springer-Verlag: New York, 1983; pp 8–62.

¹³ Domenici, V. The Role of NMR in the Study of Partially Ordered Materials: Perspectives and Challenges. *Pure Appl. Chem.* **2011**, *83*, 67-94.

¹⁴ Heist, L. M.; Poon, C.-D.; Samulski, E. T.; Photinos, D. J.; Jokisaari, J.; Vaara, J.; Emsley, J. W.; Mamone, S.; Lelli, M. Benzene at 1 GHz. Magnetic Field-Induced Fine Structure. *J. Magn. Reson.* **2015**, *258*, 17-24.

¹⁵ Harris, K. J.; Bryce, D. L.; Wasylishen, R. E. NMR Line Shapes from AB Spin Systems in Solids – The Role of Antisymmetric Spin-Spin Coupling. *Can. J. Chem.* **2009**, *87*, 1338-1351.

¹⁶ Apperley, D. C.; Harris, R. K.; Hodgkinson, P. *Solid State NMR: Basic Principles & Practice*; Momentum Press: New York, 2012; pp 97–101.

¹⁷ Mueller, L. J. Tensors and Rotations in NMR. *Concepts Magn. Reson., Part A*, **2011**, *38*, 221-235.

¹⁸ Schmidt-Rohr, K.; Spiess, H. W. *Multidimensional Solid-State NMR and Polymers*; Academic Press: London, 1994; pp 444–452.

¹⁹ Perras, F. A.; Widdifield, C. M.; Bryce, D. L. QUEST–QUadrupolar Exact SofTware: A Fast Graphical Program for the Exact Simulation of NMR and NQR Spectra for Quadrupolar Nuclei. *Solid State Nucl. Magn. Reson.* **2012**, *45-46*, 36-44.

²⁰ Haeberlen, U. *High Resolution NMR in Solids: Selective Averaging*; Academic Press: London, 1976; p 9.

²¹ Hollas, J. M. *Modern Spectroscopy*; Wiley: Chichester, 1987; pp 27–39.

²² Bloch, F.; Hansen, W. W.; Packard, M. Nuclear Induction. Phys. Rev. 1946, 69, 127.

²³ Hoult, D. I. The Origins and Present Status of the Radio Wave Controversy in NMR. *Concepts Magn. Reson., Part A*, **2009**, *34*, 193-216.

²⁴ Keeler, J. Understanding NMR Spectroscopy, 2nd Edition; Wiley: Chichester, 2010.

²⁵ Mason, J. Conventions for the Reporting of Nuclear Magnetic Shielding (or Shift) Tensors Suggested by Participants in the NATO ARW on NMR Shielding Constants at the University of Maryland, College Park, July 1992. *Solid State Nucl. Magn. Reson.* **1993**, *2*, 285-288.

²⁶ Ishii, Y.; Terao, T.; Hayashi, S. Theory and Simulation of Vibrational Effects on Structural Measurements by Solid-State Nuclear Magnetic Resonance. *J. Chem. Phys.* **1997**, *107*, 2760-2774.

²⁷ Perras, F. A.; Bryce, D. L. Measuring Dipolar and *J* Coupling Between Quadrupolar Nuclei Using Double-Rotation NMR. *J. Chem. Phys.* **2013**, *138*, 174202.

²⁸ Raynes, W. T.; Stevens, S. J. Magnetic Field-Dependent Nuclear Spin-Spin Coupling. *Magn. Reson. Chem.* **1992**, *30*, 124-128.

²⁹ Man, P. P. Quadrupolar Interactions. In *NMR of Quadrupolar Nuclei in Solid Materials*; Wasylishen, R. E., Ashbrook, S. E., Wimperis, S., Eds.; Wiley: Chichester, West Sussex, 2012; pp 4–16. ³⁰ Mehring, M. *Principles of High Resolution NMR in Solids*, 2nd ed.; Springer-Verlag: Berlin, 1983.

³¹ Amoureux, J. P.; Fernandez, C.; Granger, P. Interpretation of Quadrupolar Powder Spectra: Static and MAS Experiments. (Tutorial Session). In *Multinuclear Magnetic Resonance in Liquids and Solids – Chemical Applications*; Granger, P., Harris, R. K., Eds.; Kluwer Academic Publishers: Dordrecht, 1990; pp 409–424.

³² Abragam, A. *Principles of Nuclear Magnetism*; International Series of Monographs on Physics, Vol. 32; Oxford University Press: Croydon, 2011; pp 44–53.

³³ Tolstov, G. P. *Fourier Series*; Dover Publications: Mineola, 1976.

³⁴ Derome, A. E. *Modern NMR Techniques for Chemistry Research*; Pergamon Press: Oxford, 1987, pp 9–29.

³⁵ Apperley, D. C.; Harris, R. K.; Hodgkinson, P. *Solid State NMR: Basic Principles & Practice*; Momentum Press: New York, 2012; pp 32–35.

³⁶ Maricq, M. M.; Waugh, J. S. NMR in Rotating Solids. J. Chem. Phys. 1979, 70, 3300-3316.

³⁷ Hahn, E. L. Spin Echoes. *Phys. Rev.* **1950**, *80*, 580-594.

³⁸ Shore, S. E.; Ansermet, J. P.; Slichter, C. P.; Sinfelt, J. H. Nuclear-Magnetic-Resonance Study of the Bonding and Diffusion of Co Chemisorbed on Pd. *Phys. Rev. Lett.* **1987**, *58*, 953-956.

³⁹ Barrett, S. E.; Durand, D. J.; Pennington, C. H.; Slichter, C. P.; Friedmann, T. A.; Rice, J. P.; Ginsberg, D. M. ⁶³Cu Knight Shifts in the Superconducting State of YBa₂Cu₃O_{7- δ} (*T*_c = 90 K). *Phys. Rev. B*, **1990**, *41*, 6283-6296.

⁴⁰ Larsen, F. H.; Jakobsen, H. J.; Ellis, P. D.; Nielsen, N. C. Sensitivity-Enhanced Quadrupolar-Echo NMR of Half-Integer Quadrupolar Nuclei. Magnitudes and Relative Orientation of Chemical Shielding and Quadrupolar Coupling Tensors. *J. Phys. Chem. A*, **1997**, *101*, 8597-8606.

⁴¹ Kupče, Ē.; Freeman, R. Adiabatic Pulses for Wideband Inversion and Broadband Decoupling. *J. Magn. Reson. Ser. A*, **1995**, *115*, 273-276.

⁴² Bhattacharyya, R.; Frydman, L. Quadrupolar Nuclear Magnetic Resonance Spectroscopy in Solids Using Frequency-Swept Echoing Pulses. *J. Chem. Phys.* **2007**, *127*, 194503.

⁴³ O'Dell, L. A. The WURST Kind of Pulses in Solid-State NMR. *Solid State Nucl. Magn. Reson.* **2013**, *55-56*, 28-41.

⁴⁴ Böhlen, J.-M.; Bodenhausen, G. Experimental Aspects of Chirp NMR Spectroscopy. J. Magn. Reson., Ser. A, **1993**, 102, 293-301.

⁴⁵ O'Dell, L. A.; Schurko, R. W. QCPMG Using Adiabatic Pulses for Faster Acquisition of Ultra-Wideline NMR Spectra. *Chem. Phys. Lett.* **2008**, *464*, 97–102.

⁴⁶ Schurko, R. W. Acquisition of Wideline Solid-State NMR Spectra of Quadrupolar Nuclei. In *NMR of Quadrupolar Nuclei in Solid Materials*; Wasylishen, R. E., Ashbrook, S. E., Wimperis, S., Eds.; Wiley: Chichester, 2012; pp 77-93.

⁴⁷ Massiot, D.; Farnan, I.; Gautier, N.; Trumeau, D.; Trokiner, A.; Coutures, J. P. ⁷¹Ga and ⁶⁹Ga Nuclear Magnetic Resonance Study of β-Ga₂O₃: Resolution of Four- and Six-Fold Coordinated Ga Sites in Static Conditions. *Solid State Nucl. Magn. Reson.* **1995**, *4*, 241-248.

⁴⁸ Medek, A.; Frydman, V.; Frydman, L. Central Transition Nuclear Magnetic Resonance in the Presence of Large Quadrupole Couplings: Cobalt-59 Nuclear Magnetic Resonance of Cobaltophthalocyanines. *J. Phys. Chem. A*, **1999**, *103*, 4830-4835.

⁴⁹ Schurko, R. W. Ultra-Wideline Solid-State NMR Spectroscopy. *Acc. Chem. Res.* **2013**, *46*, 1985-1995.

⁵⁰ Lipton, A. S.; Wright, T. A.; Bowman, M. K.; Reger, D. L.; Ellis, P. D. Solid-State ⁶⁷Zn NMR Spectroscopy in Bioinorganic Chemistry. Spectra of Four- and Six-Coordinate Zinc Pyrazolylborate Complexes Obtained by Management of Proton Relaxation Rates with a Paramagnetic Dopant. J. Am. Chem. Soc. **2002**, 124, 5850-5860.

⁵¹ ADF2012, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands. http://www.scm.com (Accessed October 20, 2015).

⁵² te Velde, G.; Bickelhaupt, F. M.; van Gisbergen, S. J. A; Guerra, C. F.; Baerends, E. J.; Snijders, J. G.; Ziegler, T. Chemistry with ADF. *J. Comput. Chem.* **2001**, *22*, 931-967.

⁵³ Guerra, C. F.; Snijders, J. G.; te Velde, G.; Baerends, E. J.; Towards an Order-N DFT Method. *Theor. Chem. Acc.* **1998**, *99*, 391-403.

⁵⁴ Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. J.; Refson, K.; Payne, M. C. First Principles Methods Using CASTEP. *Z. Kristallogr.* **2005**, *220*, 567-570.

⁵⁵ Profeta, M.; Mauri, F.; Pickard, C. J. Accurate First Principles Prediction of ¹⁷O NMR Parameters in SiO₂: Assignment of the Zeolite Ferrierite Spectrum. *J. Am. Chem. Soc.* **2003**, *125*, 541-548.

⁵⁶ Pickard, C. J.; Mauri, F. All-Electron Magnetic Response with Pseudopotentials: NMR Chemical Shifts. *Phys. Rev. B*, **2001**, *63*, 245101.

⁵⁷ Yates, J. R.; Pickard, C. J.; Mauri, F. Calculation of NMR Chemical Shifts for Extended Systems Using Ultrasoft Pseudopotentials. *Phys. Rev. B*, **2007**, *76*, 024401.

⁵⁸ Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1996**, *77*, 3865-3868.

⁵⁹ Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple (vol 77, pg 3865, 1996). *Phys. Rev. Lett.* **1997**, *78*, 1396.

⁶⁰ Cohen, E. R.; Cvitaš, T.; Frey, J. G.; Holmström, B.; Kuchitsu, K.; Marquardt, R.; Mills, I.; Pavese, F.; Quack, M.; Stohner, J., et al. *Quantities, Units and Symbols in Physical Chemistry*, 3rd ed.; RSC Publishing: Cambridge, 2007.

⁶¹ Pyykkö, P. Year-2008 Nuclear Quadrupole Moments. Mol. Phys. 2008, 106, 1965-1974.

⁶² Faucher, A.; Terskikh, V. V.; Wasylishen, R. E. Feasibility of Arsenic and Antimony NMR Spectroscopy in Solids: An Investigation of Some Group 15 Compounds. *Solid State Nucl. Magn. Reson.* **2014**, *61-62*, 54-61.

⁶³ Albert, S.; Ripmeester, J. A. Ionic Reorientations and Phase Transition in Solid IF₆AsF₆. *Can. J. Chem.* **1988**, *66*, 3153-3156.

⁶⁴ Dharmatti, S. S.; Weaver, H. E., Jr. The Magnetic Moment of ⁷⁵As. *Phys. Rev.* 1951, *84*, 367.

⁶⁵ Weaver, H. E., Jr. Magnetic Moments of Si²⁹, S³³, Zn⁶⁷, As⁷⁵, Se⁷⁷, Te¹²³, and Te¹²⁵. *Phys. Rev.* **1953**, *89*, 923-930.

⁶⁶ Jeffries, C. D.; Loeliger, H.; Staub, H. H. The Nuclear Magnetic Resonance of Titanium and Arsenic. *Phys. Rev.* **1952**, *85*, 478-479.

⁶⁷ Proctor, W. G.; Yu, F. C. On the Nuclear Magnetic Moments of Several Stable Isotopes. *Phys. Rev.* **1951**, *81*, 20-30.

⁶⁸ Balimann, G.; Pregosin, P. S. Arsenic-75 Nuclear Magnetic Resonance. A Study of Some Arsenic Salts. *J. Magn. Reson.* **1977**, *26*, 283-289.

⁶⁹ Arnold, M. St. J.; Packer, K. J. Non-Aqueous Solutions of Electrolytes I. The ⁷⁵As Nuclear Magnetic Spin-Lattice Relaxation Times of the Hexafluoroarsenate Ion. *Mol. Phys.* **1966**, *10*, 141.

⁷⁰ Arnold, M. St. J.; Packer, K. J. Non-Aqueous Solutions of Electrolytes II. Temperature and Cation Dependence of ⁷⁵As Nuclear Magnetic Spin-Lattice Relaxation Times of Hexafluoroarsenate Ion. *Mol. Phys.* **1968**, *14*, 249.

⁷¹ Andrew, E. R.; Farnell, L. F.; Gledhill, T. D. Resolved Spin Multiplets in the Nuclear Magnetic Resonance Spectra of Solids. *Phys. Rev. Lett.* **1967**, *19*, 6-7.

⁷² Biswal, M.; Body, M.; Legein, C.; Corbel, G.; Sadoc, A.; Boucher, F. Structural Investigation of α- and β-Sodium Hexafluoroarsenate, NaAsF₆, by Variable Temperature X-Ray Powder Diffraction and Multinuclear Solid-State NMR, and DFT Calculations. *J. Phys. Chem. C*, **2012**, *116*, 11682-11693.

⁷³ Andrew, E. R. Nuclear Magnetic Resonance Absorption in NaSbF₆. *Phys. Rev.* **1951**, *82*, 443-444.

⁷⁴ Dharmatti, S. S.; Weaver, H. E. Nuclear Magnetic Resonance Lines of Antimony in Antimony Hexafluoride Ion. *Phys. Rev.* **1952**, *87*, 675.

⁷⁵ Gutowsky, H. S.; McCall, D. W. Nuclear Magnetic Resonance Fine Structure in Liquids. *Phys. Rev.* **1951**, *82*, 748-749.

⁷⁶ Gutowsky, H. S.; McCall, D. W.; Slichter, C. P. Coupling Among Nuclear Magnetic Dipoles in Molecules. *Phys. Rev.* **1951**, *84*, 589-590.

⁷⁷ McNeil, E. B.; Slichter, C. P.; Gutowsky, H. S. "Slow Beats" in F¹⁹ Nuclear Spin Echoes. *Phys. Rev.* **1951**, *84*, 1245-1246.

⁷⁸ Hahn, E. L.; Maxwell, D. E. Chemical Shift and Field Independent Frequency Modulation of the Spin Echo Envelope. *Phys. Rev.* **1951**, *84*, 1246-1247.

⁷⁹ Ramsey, N. F.; Purcell, E. M. Interactions Between Nuclear Spins in Molecules. *Phys. Rev.* **1952**, *85*, 143-144.

⁸⁰ Hatton, J. V.; Saito, Y.; Schneider, W. G. Nuclear Magnetic Resonance Investigations of Some Group V Metal Fluorides and Oxyions. *Can. J. Chem.* **1965**, *43*, 47.

⁸¹ Kidd, R. G.; Matthews, R. W. Antimony-121 Nuclear Magnetic Resonance in Some Antimony(V) Compounds. J. Inorg. Nucl. Chem. **1975**, *37*, 661-663.

⁸² Andrew, E. R.; Firth, M.; Jasinski, A.; Randall, P. J. ¹⁹F Nuclear Spin Coupling Constants in Solids by High-Speed Rotation Method. *Phys. Lett. A*, **1970**, *31*, 446.

⁸³ Kozlova, S. G.; Kriger, Yu. G.; Goncharuk, V. K. Quadrupole Interactions and NMR Relaxation in KSbF₆. *J. Struct. Chem.* **1987**, *28*, 321-323.

⁸⁴ Mazej, Z.; Hagiwara, R. Hexafluoro-, Heptafluoro-, and Octafluoro-Salts, and $[M_nF_{5n-1}]^-$ (n = 2, 3, 4) Polyfluorometallates of Singly Charged Metal Cations, Li⁺-Cs⁺, Cu⁺, Ag⁺, In⁺ and Tl⁺. *J. Fluorine Chem.* **2007**, *128*, 423-437.

⁸⁵ Heyns, A. M.; Pistorius, C. W. F. T. Vibrational Spectra, High-Pressure Polymorphism and Force Constants of KAsF₆. *Spectrochim. Acta A*, **1975**, *31*, 1293-1301.

⁸⁶ Roof, R. B. The Crystal Structure of KAsF₆. Acta Crystallogr. **1955**, *8*, 739.

⁸⁷ Ibers, J. A. A Note on the Least-Squares Method: The Refinement of the Structure of KAsF₆. *Acta Crystallogr.* **1956**, *9*, 967-969.

⁸⁸ Gafner, G.; Kruger, G. J. Potassium Arsenic Hexafluorine: A Redetermination. *Acta Crystallogr., Sect. B: Struct. Sci.* **1974**, *30*, 250-251.

⁸⁹ Peterková, J.; Dušek, M.; Petříček, V.; Loub, J. Structures of Fluoroarsenates $KAsF_{6-n}(OH)_n$, n = 0, 1, 2: Application of the Heavy-Atom Method for Modulated Structures. *Acta Crystallogr.*, *Sect. B: Struct. Sci.* **1998**, *54*, 809-818.

⁹⁰ Niemelä, L. Pulsed NMR Studies of Phase Transitions and Reorientation of AsF₆⁻-Ions in Solid NaAsF₆ and KAsF₆. *Ann. Univ. Turku. Ser. A1*, **1973**, *162*, 99-105.

⁹¹ Parsonage, N. G.; Staveley, L. A. K. *Disorder in Crystals*; Clarendon Press: Oxford, 1978.

⁹² Heyns, A. M.; Pistorius, C. W. F. T. Polymorphism, High-Pressure Phase-Diagram and Vibrational-Spectra of KSbF₆. *Spectrochim. Acta A*, **1976**, *32*, 535-545.

⁹³ Heyns, A. M.; Reynhardt, E. C. A Raman and NMR Study of KSbF₆. J. Phys. Chem. Solids, **1981**, 42, 461-471.

⁹⁴ Heyns, A. M.; Prinsloo, L. C.; Range, K. J. KSbF₆ Revisited Part II. An Infrared Study of the I-II Phase Transition. *Vib. Spectrosc.* **1996**, *11*, 151-157.

⁹⁵ Bode, H.; Voss, E. Die Kristallstruktur des Kaliumhexafluoroantimonats(V). Z. Anorg. Allg. Chem. **1951**, 264, 144-150.

⁹⁶ Kruger, G. J.; Pistorius, C. W. F. T.; Heyns, A. M. Potassium Hexafluoroantimonate (I). *Acta Crystallogr., Sect. B: Struct. Sci.* **1976**, *32*, 2916-2918.

⁹⁷ Niemelä, L. K. E.; Vesanen, O. A. Pulsed NMR Studies of Reorientation and Phase Transitions in Solid NaSbF₆ and KSbF₆. *Chem. Phys. Lett.* **1975**, *31*, 507-510.

⁹⁸ Takahashi, T.; Kawashima, H.; Sugisawa, H.; Baba, T. ²⁰⁷Pb Chemical Shift Thermometer at High Temperature for Magic Angle Spinning Experiments. *Solid State Nucl. Magn. Reson.* **1999**, *15*, 119-123.

⁹⁹ Wsolids1 simulation software package ver. 1.17.30 was provided by Dr. Klaus Eichele, Institut für Anorganische Chemie, Universität Tübingen, Germany.

¹⁰⁰ Massiot, D.; Fayon, F.; Capron, M.; King, I.; Le Calvé, S.; Alonso, B.; Durand, J.-O., Bujoli, B.; Gan, Z.; Hoatson, G. Modelling One- and Two-Dimensional Solid-State NMR Spectra. *Magn. Reson. Chem.* 2002, *40*, 70-76.

¹⁰¹ Sowa, H. Pressure-Induced $Fm\overline{3}m \rightarrow R\overline{3}$ Phase Transition in NaSbF₆. *Acta Crystallogr., Sect. B: Struct. Sci.* **1997**, *53*, 25-31.

¹⁰² Gabuda, S. P.; Maifat, M. A.; Zil'berman, B. D.; Panich, A. M.; Ippolitov, E. G. Structural and Dynamic Characteristics in Phase Transitions of Alkali Metal Hexafluoroarsenates. *Koordinats. Khim.* **1979**, *5*, 850-854.

¹⁰³ Feindel, K. W.; Wasylishen, R. E. A Relativistic DFT Study of One-Bond Fluorine-X Indirect Spin-Spin Coupling Tensors. *Magn. Reson. Chem.* **2004**, *42*, S158-S167.

¹⁰⁴ Vanderhart, D. L.; Earl, W. L.; Garroway, A. N. Resolution in ¹³C NMR of Organic Solids Using High-Power Proton Decoupling and Magic-Angle Sample Spinning. *J. Magn. Reson.* **1981**, *44*, 361-401.

¹⁰⁵ Jameson, C. J.; Gutowsky, H. S. Systematic Trends in the Coupling Constants of Directly Bonded Nuclei. *J. Chem. Phys.* **1969**, *51*, 2790.

¹⁰⁶ Harris, R. K.; Mann, B. E. NMR and the Periodic Table; Academic Press: New York, 1978.

¹⁰⁷ Pettinari, C.; Marchetti, F.; Rafaiani, G. Heteronuclear NMR Applications (As, Sb, Bi). In *Encyclopedia of Spectroscopy and Spectrometry*; Lindon, J. C., Tranter, G. E., Holmes, J. L., Eds.; Academic Press: London, San Diego, 2000; Volume 1, 685-690.

¹⁰⁸ *NMR of Quadrupolar Nuclei in Solid Materials*; Wasylishen, R. E., Ashbrook, S. E., Wimperis, S., Eds.; Wiley: Chichester, 2012.

¹⁰⁹ Multinuclear NMR; Mason, J., Ed.; Plenum Press: New York, 1987.

¹¹⁰ Leung, F.; Cooke, S. A.; Gerry, M. C. L. The Rotational Spectrum and Hyperfine Structure of Arsenic Monophosphide, AsP. *J. Mol. Spectrosc.* **2006**, *238*, 36-41.

¹¹¹ Cooke, S. A.; Gerry, M. C. L. The Pure Rotational Spectra and Hyperfine Constants of SbN and SbP. *Phys. Chem. Chem. Phys.* **2004**, *6*, 4579-4585.

¹¹² Duncan, T. M. *Principal Components of Chemical Shift Tensors: A Compilation*, 2nd Edition; The Farragut Press: Chicago, 1994.

¹¹³ Gerry, M. C. L.; Cooke, S. A. Born-Oppenheimer Breakdown Effects and Hyperfine Structure in the Rotational Spectra of SbF and SbCl. *J. Mol. Spectrosc.* **2005**, *234*, 195-203.

¹¹⁴ Haiduke, R. L. A.; da Silva, A. B. F.; Visscher, L. The Nuclear Electric Quadrupole Moment of Antimony from the Molecular Method. *J. Chem. Phys.* **2006**, *125*, 064301.

¹¹⁵ Demovič, L.; Kellö, V.; Sadlej, A. J. The Quadrupole Moment of the As Nucleus from Molecular Microwave Data and Calculated Relativistic Electric Field Gradients. *Chem. Phys. Lett.* **2010**, *498*, 10-13.

¹¹⁶ Crawford, M. F.; Bateson, S. Nuclear Moments of Antimony Isotopes – Discussion of Landé's Theory. *Can. J. Res.* **1934**, *10*, 693-702.

¹¹⁷ Crawford, M. F.; Crooker, A. M. Nuclear Moment of Arsenic. *Nature*, **1933**, *131*, 655-656.

¹¹⁸ Helminger, P.; Beeson, E. L.; Gordy, W. Microwave Spectra and Molecular Constants of Arsine and Stibine. *Phys. Rev. A: At. Mol. Opt. Phys.* **1971**, *3*, 122-126.

¹¹⁹ Das, T. P.; Hahn, E. L. Nuclear Quadrupole Resonance Spectroscopy; Academic Press: New York, 1958.

¹²⁰ Mercier, H. P. A.; Sanders, J. C. P.; Schrobilgen, G. J. Hexakis(pentafluorooxotellurato)pnictate(v) Anions, $M(OTeF_5)_6^-$ (M = As, Sb, Bi): A Series of Very Weakly Coordinating Anions. *J. Am. Chem. Soc.* **1994**, *116*, 2921-2937.

¹²¹ Casteel, W. J.; Kolb, P.; LeBlond, N.; Mercier, H. P. A.; Schrobilgen, G. J. Tetrachloro- and Tetrabromostibonium(v) Cations: Raman and ¹⁹F, ¹²¹Sb, and ¹²³Sb NMR Spectroscopic Characterization and X-Ray Crystal Structures of SbCl₄⁺Sb(OTeF₅)₆⁻ and SbBr₄⁺Sb(OTeF₅)₆⁻. *Inorg. Chem.* **1996**, *35*, 929-942.

¹²² Collins, M. J.; Rao, U. R. K.; Schrobilgen, G. J. ⁷⁵Arsenic NMR Study of $[As(OTeF_5)_6]^-$ in Solution. *J. Magn. Reson.* **1985**, *61*, 137-140.

¹²³ McGarvey, G. B.; Moffat, J. B. An Arsenic-75 Nuclear Magnetic Resonance Study of Heteropoly Oxometalates in Solution. *J. Mag. Res.* **1990**, *88*, 305-310.

¹²⁴ Mikhaylov, A. A.; Mel'nik, E. A.; Churakov, A. V.; Novotortsev, V. M.; Howard, J. A. K.; Sladkevich, S.; Gun, J.; Bharathi, S.; Lev, O.; Prikhodchenko, P. V. Synthesis, Crystal Structure and Characterization of Alkali Metal Hydroxoantimonates. *Inorg. Chim. Acta.* **2011**, *378*, 24-29.

¹²⁵ Mammadov, E.; Taylor, P. C.; Reyes, A.; Mehdiyeva, S.; Kuhns, P. ⁷⁵As NMR Relaxation in Glassy Ge–As–Se. *Phys. Status Solidi* .**2010**, *207*, 635-638.

¹²⁶ Mammadov, E.; Bobela, D.; Reyes, A.; Mehdiyeva, S.; Taylor, P. C. Magnetic Resonance Study of Arsenic Bonding Sites in Ternary Chalcogenide Glasses. *Solid State Commun.* **2011**, *151*, 1459-1462.

¹²⁷ Hari, P.; Taylor, P. C.; Kleinhammes, A.; Kuhns, P. L.; Moulton, W. G.; Sullivan, N. S. Asymmetry in the Local Structural Order in Arsenic Chalcogenide Glasses: High Field NMR in Crystalline and Glassy As₂Se₃. *Solid State Commun.* **1997**, *104*, 669-672.

¹²⁸ Taylor, P. C.; Su, T.; Hari, P.; Ahn, E.; Kleinhammes, A.; Kuhns, P. L.; Moulton, W. G.; Sullivan, N. S. Structural and Photostructural Properties of Chalcogenide Glasses: Recent Results from Magnetic Resonance Measurements. *J. Non-Cryst. Solids*, **2003**, *326-327*, 193-198.

¹²⁹ Potter, L. D.; Wu, Y. NMR Measurements of Homonuclear Indirect Couplings in GaAs. *J. Magn. Reson. A*, **1995**, *116*, 107-112.

¹³⁰ Potter, L. D.; Guzelian, A. A.; Alivisatos, A. P.; Wu, Y. Structure of Chemically Synthesized Nanophase GaAs Studied by Nuclear Magnetic Resonance and X-Ray Diffraction. *J. Chem. Phys.* **1995**, *103*, 4834-4840.

¹³¹ Suemitsu, M.; Nakajo, N. Charged Point Defects in GaAs Crystals Evaluated by NMR Spin Echo. *J. Appl. Phys.* **1989**, *66*, 3178-3186.

¹³² Schurko, R. W.; Wi, S.; Frydman, L. Dynamic Effects on the Powder Line Shapes of Half-Integer Quadrupolar Nuclei: A Solid-State NMR Study of XO₄⁻ Groups. *J. Phys. Chem. A*, **2002**, *106*, 51-62.

¹³³ Bowers, G. M.; Kirkpatrick, R. J. High-Field ⁷⁵As NMR Study of Arsenic Oxysalts. *J. Magn. Reson.* **2007**, *188*, 311-321.

¹³⁴ Lehmann-Horn, J. A.; Miljak, D. G.; Bastow, T. J. ⁷⁵As, ⁶³Cu NMR and NQR Characterization of Selected Arsenic Minerals. *Solid State Nucl. Magn. Reson.* **2013**, *54*, 8-12.

¹³⁵ Cannon, J. R.; Edmonds, J. S.; Francesconi, K. A.; Raston, C. L.; Saunders, J. B.; Skelton, B. W.; White, A. H. Isolation, Crystal Structure and Synthesis of Arsenobetaine, a Constituent of the Western Rock Lobster, the Dusky Shark, and Some Samples of Human Urine. *Aust. J. Chem.* **1981**, *34*, 787-798.

¹³⁶ Lawrence, J. F.; Michalik, P.; Tam, G.; Conacher, H. B. S. Identification of Arsenobetaine and Arsenocholine in Canadian Fish and Shellfish by High-Performance Liquid Chromatography with Atomic Absorption Detection and Confirmation by Fast Atom Bombardment Mass Spectrometry. *J. Agric. Food. Chem.* **1986**, *34*, 315-319.

¹³⁷ Encyclopedia of Inorganic Chemistry, 2nd Edition; King, B. R., Ed.; Wiley: Chichester, 2005; Volume 1.

¹³⁸ Chernov'yants, M. S.; Burykin, I. V.; Aleshina, N. V. Crystal and Molecular Structure of Tetraphenylarsonium Diiodobromide. *Russ. J. Gen. Chem.* **2008**, *78*, 1345-1349.

¹³⁹ Wells, A. F. Structural Inorganic Chemistry, 5th Edition; Oxford: New York, 1984.

¹⁴⁰ Cotton, F. A.; Wilkinson, G. *Advanced Inorganic Chemistry*, 5th Edition; Wiley: New York, 1988.

¹⁴¹ Vega, A. J. Quadrupolar Nuclei in Solids. In *NMR of Quadrupolar Nuclei in Solid Materials*; Wasylishen, R. E., Ashbrook, S. E., Wimperis, S., Eds.; Wiley: Chichester, West Sussex, 2012; pp 17-44.

¹⁴² Siegel, R.; Nakashima, T. T.; Wasylishen, R. E. Signal-to-Noise Enhancement of NMR Spectra of Solids Using Multiple-Pulse Spin-Echo Experiments. *Concepts Magn. Reson. A.* 2005, *26*, 62-77.

¹⁴³ Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A., et al. Gaussian 09, Revision C.01; Gaussian, Inc.: Wallingford CT, 2009.

¹⁴⁴ Ferguson, G.; Glidewell, C.; Lloyd, D.; Metcalfe, S. Effect of the Counter-Ion on the Structures of Tetraphenylantimony(v)-Stibonium Compounds: Crystal and Molecular Structures of Tetraphenylantimony(v) Bromide, Perchlorate, and Tetraphenylborate. *J. Chem. Soc. Perkin Trans. II.* **1988**, *5*, 731-735.

¹⁴⁵ Knop, O.; Vincent, B. R.; Cameron, T. S. Pentacoordination and Ionic Character: Crystal Structure of Ph₄SbBr. *Can. J. Chem.* **1989**, *67*, 63-70.

¹⁴⁶ Bryce, D. L.; Wasylishen, R. E. Quadrupolar Nuclei in Solids: Influence of Different Interactions on Spectra. In *NMR of Quadrupolar Nuclei in Solid Materials*, Wasylishen, R. E., Ashbrook, S. E., Wimperis, S., Eds.; Wiley: Chichester, 2012; pp 63-74.

¹⁴⁷ Alcock, N. W.; Pennington, M.; Willey, G. R. Structure of Tetraphenylphosphonium Bromide. *Acta Crystallogr. C.* **1985**, *41*, 1549-1550.

¹⁴⁸ Schweizer, E. E.; Baldacchini, C. J.; Rheingold, A. L. Tetraphenylphosphonium Chloride Monohydrate, Tetraphenylphosphonium Bromide and Tetraphenylphosphonium Iodide. *Acta Crystallogr. C*, **1989**, *45*, 1236-1239.

¹⁴⁹ Dean, P.A. W.; Craig, D. C.; Scudder, M. L.; Dance, I. G. Tetraphenylarsonium Iodide, A New Determination. *Acta Crystallogr.* C, **2003**, *59*, m484-m486.

¹⁵⁰ Van der Kelen, G. P.; de Ketelaere, R. F. Organo Group VB Chemistry. Part IV: On the NQR Spectra of Tertiary Aryl Group VB Compounds (³⁵Cl, ⁷⁵As, ¹²¹Sb, ²⁰⁹Bi). *J. Mol. Struct.* **1974**, *23*, 329-335.

¹⁵¹ Bryukhova, E. V.; Ginzburg, A. G.; Khotsyanova, T. L.; Saatsazov, V. V.; Semin, G. K. Nuclear Quadrupole Resonance Spectra on ⁵⁵Mn, ⁷⁵As, ¹²¹Sb, ¹²³Sb Atoms of C₅H₅Mn(CO)₂ – Ligand Complexes. *Izvestiya Akademii Nauk SSSR, Seriya Khimicheskay*, **1973**, *3*, 681-683.
¹⁵² Asai, T. Refinement of Crystal-Structure of Sodium Hexahydroxoantimonate(v), NaSb(OH)₆. *Bull. Chem. Soc. Jpn.* **1975**, *48*, 2677-2679.

¹⁵³ Conrad, E.; Pickup, J.; Burford, N.; McDonald, R.; Ferguson, M. J. Prototypical Arsine-Triel Adducts (R₃AsEX₃ for E = B, Al, and Ga). *Can. J. Chem.* **2010**, *88*, 797-803.

¹⁵⁴ Wi, S.; Frydman, V.; Frydman, L. Residual Dipolar Couplings Between Quadrupolar Nuclei in Solid State Nuclear Magnetic Resonance at Arbitrary Fields. *J. Chem. Phys.* **2001**, *114*, 8511-8519.

¹⁵⁵ Jones, A. C.; O'Brien, P. CVD of Compound Semiconductors: Precursor Synthesis, Development and Applications; VCH: Weinheim, 1997.

¹⁵⁶ Maury, F. Organometallic Molecular Precursors for Low-Temperature MOCVD of III-V Semiconductors. *Adv. Mater.* **1991**, *3*, 542-548.

¹⁵⁷ Wi, S.; Frydman, L. Residual Dipolar Couplings Between Quadrupolar Nuclei in High Resolution Solid State NMR: Description and Observations in the High-Field Limit. *J. Chem. Phys.* **2000**, *112*, 3248-3261.

¹⁵⁸ Wu, G.; Yamada, K. Residual Dipolar Couplings in MAS and MQMAS NMR Spectra of Quadrupolar Nuclei. *Chem. Phys. Lett.* **1999**, *313*, 519-524.

¹⁵⁹ Facey, G.; Gusev, D.; Morris, R. H.; Macholl, S.; Buntkowsky, G. ²H MAS NMR of Strongly Dipolar Coupled Deuterium Pairs in Transition Metal Dihydrides: Extracting Dipolar Coupling and Quadrupolar Tensor Orientations from the Lineshape of Spinning Sidebands. *Phys. Chem. Chem. Phys.* **2000**, *2*, 935-941.

¹⁶⁰ Harris, R. K.; Olivieri, A. C. Quadrupolar Effects Transferred to Spin-1/2 Magic-Angle Spinning Spectra of Solids. *Prog. Nucl. Magn. Reson. Spectrosc.* **1992**, *24*, 435-456.

¹⁶¹ Wasylishen, R. E. Dipolar and Indirect Coupling: Basics. In *NMR Crystallography*; Harris, R. K., Wasylishen, R. E., Duer, M. J., Eds.; Wiley: Chichester, 2009; pp 127-136.

¹⁶² Alarcón, S. H.; Olivieri, A. C.; Harris, R. K. Quadrupole Effects of Spin-3/2 Nuclei on the Solid-State Magic-Angle Spinning Nuclear Magnetic Resonance Spectra of Spin-1/2 Nuclei. Deviations from First-Order Theory and Implications Concerning the Sign of the Indirect Coupling Constant. *Solid State Nucl. Magn. Reson.* **1993**, *2*, 325-334.

¹⁶³ Eichele, K.; Wasylishen, R. E.; Grossert, J. S.; Olivieri, A. C. The Influence of Chlorine-Carbon Dipolar and Indirect Spin-Spin Interactions on High-Resolution Carbon-13 Spectra of Chloroketosulfones in the Solid State. *J. Phys. Chem.* **1995**, *99*, 10110-10113. ¹⁶⁴ Perras, F. A.; Bryce, D. L. Residual Dipolar Coupling Between Quadrupolar Nuclei Under Magic-Angle Spinning and Double-Rotation Conditions. *J. Magn. Reson.* **2011**, *213*, 82-89.

¹⁶⁵ Gusev, A. A.; Reznik, I. M.; Tsitrin, V. A. Electron-Electron Interaction and Antishielding Constants of Core Shells of Atoms. *J. Phys.: Condens. Mat.* **1995**, *7*, 4855-4863.

¹⁶⁶ Lide, D. R., Jr. Microwave Spectrum of Trimethyarsine. *Spectrochim. Acta*, **1959**, *15*, 473-476.

¹⁶⁷ Townes, C. H.; Dailey, B. P. Determination of Electronic Structure of Molecules from Nuclear Quadrupole Effects. *J. Chem. Phys.* **1949**, *17*, 782-795.

¹⁶⁸ Brill, T. B.; Long, G. G. Studies of Pentavalent Organoarsenic, -antimony, and -bismuth Halide Compounds by Nuclear Quadrupole Resonance Spectroscopy. *Inorg. Chem.* **1970**, *9*, 1980-1985.

¹⁶⁹ Ege, O.; Hamai, S.; Negita, H. Zeeman NQR Studies on Polycrystals of Copper Compounds, Arsenic Compounds, and Chlorine Compounds. *Z. Naturforsch.* **1992**, *47a*, 401-408.

¹⁷⁰ Zakirov, D. U.; Savdur, V. I.; Gamayurova, V. S.; Chernokal'skii, B. D.; Safin, I. A. ⁷⁵As NQR Spectra of Some Tetracoordinated Arsenic Acids. *B. Acad. Sci. USSR Ch+.* **1977**, *26*, 834-836.

¹⁷¹ Goswami, M.; Knijn, P. J.; Bauhuis, G. J.; Janssen, J. W. G.; van Bentum, P. J. M.; de Wijs, G. A.; Kentgens, A. P. M. Stripline ⁷⁵As NMR Study of Epitaxial III-V Semiconductor Al_{0.5}Ga_{0.5}As. *J. Phys. Chem. C*, **2014**, *118*, 13394-13405.

¹⁷² Knijn, P. J.; van Bentum, P. J. M.; van Eck, E. R. H.; Fang, C.; Grimminck, D. L. A. G.; de Groot, R. A.; Havenith, R. W. A.; Marsman, M.; Meerts, W. L.; de Wijs, G. A., et al. A Solid-State NMR and DFT Study of Compositional Modulations in Al_xGa_{1-x}As. *Phys. Chem. Chem. Phys.* **2010**, *12*, 11517-11535.

¹⁷³ Cossairt, B. M.; Cummins, C. C.; Head, A. R.; Lichtenberger, D. L.; Berger, R. J. F.; Hayes, S. A.; Mitzel, N. W.; Wu, G. On the Molecular and Electronic Structures of AsP₃ and P₄. *J. Am. Chem. Soc.* **2010**, *132*, 8459-8465.

¹⁷⁴ Egorov, A.; Mukhamedshin, I. R.; Suzuki, H. NMR Powder Spectra in Case of Strong Quadrupole Interaction. *Physica B*. **2003**, *329-333*, 1397-1398.

¹⁷⁵ Hari, P.; Guzel, S.; Su, T.; Taylor, P. C.; Kuhns, P. L.; Moulton, W. G.; Sullivan, N. S. Photodarkening Effect in Glassy As₂S₃ and As₂O₃. *J. Non-Cryst. Solids*, **2003**, *326-327*, 199-204.

¹⁷⁶ Blinc, R.; Apih, T. NMR in Multidimensionally Modulated Incommensurate and CDW Systems. *Prog. Nucl. Magn. Reson. Spectrosc.* **2002**, *41*, 49-82.

¹⁷⁷ Bastow, T. J. Arsenic-75 NMR: Knight Shifts in Arsenic Metal. J. Phys.: Condens. Matter, **1999**, 11, 569-574.

¹⁷⁸ Taylor, P. C.; Hari, P.; Kleinhammes, A.; Kuhns, P. L.; Moulton, W. G. Asymmetries in Local Bonding Sites in Amorphous Semiconductors: Very High Field NMR of ⁷⁵As. *J. Non-Cryst. Solids*, **1998**, *227-230*, 770-774.

¹⁷⁹ Takeuchi, J.; Nakamura, H.; Yamada, H.; Kita, E.; Tasaki, A.; Erata, T. Quadrupolar Nutation NMR on a Compound Semiconductor Gallium-Arsenide. *Solid State Nucl. Magn. Reson.* **1997**, *8*, 123-128.

¹⁸⁰ Newitt, D. C.; Hahn, E. L. Detection of Two-Quantum Nuclear Coherence by Nuclear-Quadrupole-Induced Electric Polarization. *J. Magn. Reson. A*, **1994**, *106*, 140-143.

¹⁸¹ Harbison, G. S.; Slokenbergs, A.; Barbara, T. M. Two-Dimensional Zero-Field Nutation Nuclear-Quadrupole Resonance Spectroscopy. *J. Chem. Phys.* **1989**, *90*, 5292-5298.

¹⁸² Bain, A. D. A Simple Proof that Third-Order Quadrupole Perturbations of the NMR Central Transition of Half-Integral Spin Nuclei are Zero. *J. Magn. Reson.* **2006**, *179*, 308-310.

¹⁸³ Gan, Z.; Srinivasan, P.; Quine, J. R.; Steuernagel, S.; Knott, B. Third-Order Effect in Solid-State NMR of Quadrupolar Nuclei. *Chem. Phys. Lett.* **2003**, *367*, 163-169.

¹⁸⁴ Wolf, F.; Kline, D.; Story, H. S. ⁹³Nb and ²³Na NMR in Polycrystalline Sodium Niobate. *J. Chem. Phys.* **1970**, *53*, 3538-3543.

¹⁸⁵ Menger, E. M.; Veeman, W. S. Quadrupole Effects in High-Resolution ³¹P Solid-State NMR Spectra of Triphenylphosphine Copper(I) Complexes. *J. Magn. Reson.* **1982**, *46*, 257-268.

¹⁸⁶ Bain, A. D. Exact Calculation, Using Angular Momentum, of Combined Zeeman and Quadrupolar Interactions in NMR. *Mol. Phys.* **2003**, *101*, 3163-3175.

¹⁸⁷ Widdifield, C. M.; Bryce, D. L. Solid-State ¹²⁷I NMR and GIPAW DFT Study of Metal Iodides and their Hydrates: Structure, Symmetry, and Higher-Order Quadrupole-Induced Effects. *J. Phys. Chem.* **2010**, *114*, 10810-10823.

¹⁸⁸ Widdifield, C. M.; Bain, A. D.; Bryce, D. L. Definitive Solid-State ^{185/187}Re NMR Spectral Evidence for and Analysis of the Origin of High-Order Quadrupole-Induced Effects for I = 5/2. *Phys. Chem. Chem. Phys.* **2011**, *13*, 12413-12420.

¹⁸⁹ Hamaed, H.; Laschuk, M. W.; Terskikh, V. V.; Schurko, R. W. Application of Solid-State ²⁰⁹Bi NMR to the Structural Characterization of Bismuth-Containing Materials. *J. Am. Chem. Soc.* **2009**, *131*, 8271-8279.

¹⁹⁰ Perras, F. A.; Bryce, D. L. Direct Investigation of Covalently Bound Chlorine in Organic Compounds by Solid-State ³⁵Cl NMR Spectroscopy and Exact Spectral Line-Shape Simulations. *Agnew. Chem.* **2012**, *124*, 4303-4306.

¹⁹¹ Bryce, D. L. Tensor Interplay. In *Encyclopedia of Nuclear Magnetic Resonance*; Harris, R. K., Wasylishen, R. E., Eds.; Wiley: Chichester, 2012; pp 5039-5049.

¹⁹² Wasylishen, R. E. Dipolar and Indirect Coupling Tensors in Solids. In *Encyclopedia of Nuclear Magnetic Resonance*; Harris, R. K., Wasylishen, R. E., Eds.; Wiley: Chichester, 2012; 1066-1076.

¹⁹³ Chen, F.; Ma, G; Bernard, G. M.; Cavell, R. G.; McDonald, R.; Ferguson, M. J.; Wasylishen, R. E. Solid-state ¹¹⁵In and ³¹P NMR Studies of Triarylphosphine Indium Trihalide Adducts. *J. Am. Chem. Soc.* **2010**, *132*, 5479-5493.

¹⁹⁴ Jakobsen, H. J.; Bildsøe, H.; Brorson, M.; Gan, Z.; Hung, I. Direct Observation of ¹⁷O-^{185/187}Re ¹*J*-Coupling in Perrhenates by Solid-State ¹⁷O VT MAS NMR: Temperature and Self-Decoupling Effects. *J. Magn. Reson.* **2013**, *230*, 98-110.

¹⁹⁵ Goetze, R.; Nöth, H. Contributions to the Chemistry of Boron, LXXII. Some Studies on Arsine Boranes. *Z. Naturforsch.* **1975**, *30B*, 343-349.

¹⁹⁶ Chase, P. A.; Parvez, M.; Piers, W. E. Trimethylphosphine-tris(pentafluorophenyl)borane. *Acta Crystallogr. Sect. E: Struct. Rep. Online*, **2006**, *62*, o5181-o5183.

¹⁹⁷ Jacobsen, H.; Berke, H.; Döring, S.; Kehr, G.; Erker, G.; Fröhlich, R.; Meyer, O. Lewis Acid Properties of Tris(pentafluorophenyl)borane. Structure and Bonding in L–B(C₆F₅)₃ Complexes. *Organometallics*. **1999**, *18*, 1724-1735.

¹⁹⁸ Huffman, J. C.; Skupinski, W. A.; Caulton, K. G. Structure of Triphenylphosphine Borane at –165 Degrees C₁₈H₁₈BP. *Cryst. Struct. Commun.* **1982**, *11*, 1435-1440.

¹⁹⁹ Sobolev, A. N.; Belsky, V. K.; Chernikova, N. Yu.; Akhmadulina, F. Yu. Structure Analysis of Triaryl Derivatives of the Group V Elements. VIII. The Crystal and Molecular Structure of Triphenylarsine, C₁₈H₁₅As. *J. Organomet. Chem.* **1983**, *244*, 129-136.

²⁰⁰ Hayashi, S.; Hayamizu, K. Shift References in High-Resolution Solid-State NMR. *Bull. Chem. Soc. Jpn.* **1989**, *62*, 2429-2430.

²⁰¹ Brill, T. B.; Long, G. G. Substituent Transmission Effects in Some Substituted Triphenylarsines and -stibines Using Nuclear Quadrupole Resonance Spectroscopy. *Inorg. Chem.* **1972**, *11*, 225-228.

²⁰² Wiegand, T.; Eckert, H.; Ekkert, O.; Fröhlich, R.; Kehr, G.; Erker, G.; Grimme, S. New Insights Into Frustrated Lewis Pairs: Structural Investigations of Intramolecular Phosphane-

Borane Adducts by Using Modern Solid-State NMR Techniques and DFT Calculations. J. Am. Chem. Soc. 2012, 134, 4236-4249.

²⁰³ Power, W. P. Phosphorus-31 Solid-State NMR of a Phosphine-Borane Adduct: Phosphorus Chemical Shielding Trends in the Isoelectronic Series R_3PX , where $X = BH_3$, CH_2 , NH, O. *J. Am. Chem. Soc.* **1995**, *117*, 1800-1806.

²⁰⁴ Antušek, A.; Jaszuński, M.; Olejniczak, M. Ab Initio Study of NMR Shielding Constants and Spin-Rotation Constants in N, P and As Diatomic Molecules. *Comp. Theor. Chem.* **2011**, *970*, 54-60.

²⁰⁵ Bryce, D. L.; Wasylishen, R. E.; Gee, M. Characterization of Tricoordinate Boron Chemical Shift Tensors: Definitive High-Field Solid-State NMR Evidence for Anisotropic Boron Shielding. *J. Phys. Chem. A.* **2001**, *105*, 3633-3640.

²⁰⁶ Durig, J. R.; Hudgens, B. A.; Odom, J. D. Microwave, Infrared, Raman, and Nuclear Magnetic Resonance Spectra and Structure of Trimethylarsine-Borane. *Inorg. Chem.* **1974**, *13*, 2306-2312.

²⁰⁷ Durig, J. R.; Li, Y. S.; Carreira, L. A.; Odom, J. D. Microwave Spectrum, Structure, Dipole Moment, and Barrier to Internal Rotation of Phosphine-Borane. *J. Am. Chem. Soc.* **1973**, *95*, 2491-2496.

²⁰⁸ Lutz, M.; Spek, A. L.; Azghay, A.; Slootweg, J. C. CCDC 745335: Experimental Crystal Structure Determination, 2009.

²⁰⁹ Chen, F.; Ma, G.; Bernard, G. M.; Wasylishen, R. E.; Cavell, R. G.; McDonald, R.; Ferguson, M. J. An Investigation of 1:1 Adducts of Gallium Trihalides with Triarylphosphines by Solid-State ^{69/71}Ga and ³¹P NMR Spectroscopy. *Chem. Eur. J.* **2013**, *19*, 2826-2838.

²¹⁰ Bradley, D. C.; Hawkes, G. E.; Haycock, P. R.; Sales, K. D.; Zheng, D. H. Intermolecular Exchange in a Triarylborane-Phosphine Complex: A Multinuclear Magnetic Resonance Study. *Phil. Trans. R. Soc. Lond. A*, **1994**, *348*, 315-322.

²¹¹ Bradley, D. C.; Harding, I. S.; Keefe, A. D.; Motevalli, M.; Zheng, D. H. Reversible Adduct Formation Between Phosphines and Triarylboron Compounds. *J. Chem. Soc., Dalton Trans.*, **1996**, 3931-3936.

²¹² Sivaev, I. B.; Bregadze, V. I. Lewis Acidity of Boron Compounds. *Coordin. Chem. Rev.* **2014**, *270-271*, 75-88.

²¹³ Odom, J. D.; Moore, T. F. Nuclear Magnetic Resonance Studies of Boron Compounds XVI. Carbon-13 Studies of Organoboranes: Phenylboranes and Boron-Substituted Aromatic Heterocycles. *J. Organomet. Chem.* **1979**, *173*, 15-32. ²¹⁴ Paterson, A. S.; Raja, B.; Garvey, G.; Kolhatkar, A.; Hagström, A. E. V.; Kourentzi, K.; Lee, T. R.; Willson, R. C. Persistent Luminescence Strontium Aluminate Nanoparticles as Reporters in Lateral Flow Assays. *Anal. Chem.* **2014**, *86*, 9481-9488.

²¹⁵ Reginster, J.-Y.; Brandi, M.-L.; Cannata-Andía, J.; Cooper, C.; Cortet, B.; Feron, J.-M.; Genant, H.; Palacios, S.; Ringe, J. D.; Rizzoli, R. The Position of Strontium Ranelate in Today's Management of Osteoporosis. *Osteoporos. Int.* **2015**, *26*, 1667-1671.

²¹⁶ Rabiee, S. M.; Nazparvar, N.; Azizian, M.; Vashaee, D.; Tayebi, L. Effect of Ion Substitution on Properties of Bioactive Glasses: A Review. *Ceram. Int.* **2015**, *41*, 7241-7251.

²¹⁷ Maeno, Y.; Rice, T. M.; Sigrist, M. The Intriguing Superconductivity of Strontium Ruthenate. *Phys. Today.* **2001**, *54*, 42-47.

²¹⁸ Maeno, Y.; Nohara, M.; Nakamura, F.; Suzuki, T.; Fujita, T. Structural Instabilities and Superconductivity in La-214 Compounds. *J. Supercond.* **1994**, *7*, 39-43.

²¹⁹ Umemura, T.; Egawa, K.; Kinouchi, S.; Utsunomiya, S.; Nojiri, M. Synthesis and Superconducting Properties of BSCCO Including Precipitates with High Density. *Phase Transitions*, **1993**, *42*, 47-51.

²²⁰ Gervais, C.; Veautier, D.; Smith, M. E.; Babonneau, F.; Belleville, P.; Sanchez, C. Solid State ^{47,49}Ti, ⁸⁷Sr, and ¹³⁷Ba NMR Characterization of Mixed Barium/Strontium Titanate Perovskites. *Solid State Nucl. Magn. Reson.* **2004**, *26*, 147-152.

²²¹ Chung, H. J.; Kim, J. H.; Woo, S. I. (Pb,Sr)TiO₃ thin films for a ULSI DRAM capacitor prepared by liquid source misted chemical deposition. *Chem. Mater.* **2001**, *13*, 1441-1443.

²²² Yang, G.; Feng, J.; Sun. W.; Dai, N.; Hou, M.; Hao, X.; Qiao, J.; Sun, K. The characteristic of strontium-site deficient perovskites $Sr_xFe_{1.5}Mo_{0.5}O_{6-\delta}$ (x = 1.9-2.0) as intermediate-temperature solid oxide fuel cell cathodes. *J. Power Sources*, **2014**, *268*, 771-777.

²²³ Bera, A.; Wu, K.; Sheikh, A.; Alarousu, E.; Mohammed, O. F.; Wu, T. Perovskite oxide SrTiO₃ as an efficient electron transporter for hybrid perovskite solar cells. *J. Phys. Chem. C.* **2014**, *118*, 28494-28501.

²²⁴ Bonhomme, C.; Gervais, C.; Folliet, N.; Pourpoint, F.; Diogo, C. C.; Lao, J.; Jallot, E.; Lacroix, J.; Nedelec, J.-M.; Iuga, D., et al. ⁸⁷Sr Solid-State NMR as a Structurally Sensitive Tool for the Investigation of Materials: Antiosteoporotic Pharmaceuticals and Bioactive Glasses. *J. Am. Chem. Soc.* **2012**, *134*, 12611-12628.

²²⁵ USGS Minerals Information: Publications and Data Products. <u>http://minerals.usgs.gov/minerals/pubs/</u> (accessed September 22, 2015). ²²⁶ Heyden, M.; Kopfermann, H.; About the MRI Changes During Radioactive Beta-Decay Process ⁸⁷Rb \rightarrow ⁸⁷Sr. *Z. Physik*, **1938**, *108*, 232-243.

²²⁷ Jeffries, C. D.; Sogo, P. B. The Nuclear Magnetic Moment of ⁵³Cr and ⁸⁷Sr. *Phys. Rev.* **1953**, *91*, 1286.

²²⁸ Weber, M. J.; Allen. R. R. Nuclear Magnetic Resonance Study of the Phase Transition in Strontium Titanate. *J. Chem. Phys.* **1963**, *38*, 726.

²²⁹ Banck, J.; Schwenk, A. ⁸⁷Strontium NMR Studies. Z. Physik, **1973**, 265, 165-171.

²³⁰ Larsen, F. H.; Skibsted, J.; Jakobsen, H. J.; Nielsen, N. C. Solid-State QCPMG NMR of Lowγ Quadrupolar Metal Nuclei in Natural Abundance. *J. Am. Chem. Soc.* **2000**, *122*, 7080-7086.

²³¹ Bowers, G. M.; Mueller, K. T. Electric Field Gradient Distributions about Strontium Nuclei in Cubic and Octahedrally Symmetric Crystal Systems. *Phys. Rev. B*, **2005**, *71*, 224112.

²³² Bastow, T. J. Electric Field Gradients at the M-Site in MCO₃: M = Mg, Ca, Sr and Ba. *Chem. Phys. Lett.* **2002**, *354*, 156-159.

²³³ Bowers, G. M.; Ravella, R.; Komarneni, S.; Mueller, K. T. NMR Study of Strontium Binding by a Micaceous Mineral. *J. Phys. Chem. B*, **2006**, *110*, 7159-7164.

²³⁴ Bowers, G. M.; Lipton, A. S.; Mueller, K. T. High-Field QCPMG NMR of Strontium Nuclei in Natural Minerals. *Solid State Nucl. Magn. Reson.* **2006**, *29*, 95-103.

²³⁵ Blom, C. E.; Hedderich, H. G.; Lovas, F. J.; Suenram, R. D.; Maki, A. G. Infrared and Microwave Spectra of SrO and BaO. *J. Mol. Spectrosc.* **1992**, *152*, 109-118.

²³⁶ Etchison, K. C.; Dewberry, C. T.; Cooke, S. A. Born-Oppenheimer Breakdown Effects and Hyperfine Structure in the Rotational Spectrum of Strontium Monosulfide, SrS. *Chem. Phys.* **2007**, *342*, 71-77.

²³⁷ Kye, Y.-S.; Zhao, X.; Harbison, G. S. Orientation of Single Crystals Using Linear Approximations to NMR Transits. *J. Magn. Reson.* **2005**, *174*, 54-59.

²³⁸ Antušek, A.; Rodziewicz, P.; Kędziera, D.; Kaczmarek-Kędziera, A.; Jaszuński, M. Ab Initio Study of NMR Shielding of Alkali Earth Metal Ions in Water Complexes and Magnetic Moments of Alkali Earth Metal Nuclei. *Chem. Phys. Lett.* **2013**, *588*, 57-62.

²³⁹ Briggman, B.; Oskarsson, Å. The Crystal Structures of Calcium Malonate Dihydrate and Strontium Malonate. *Acta Crystallogr., Sect. B: Struct. Sci.* **1977**, *33*, 1900-1906.

²⁴⁰ Abrahams, S. C.; Liminga, R.; Marsh, P.; Loiacono, G. M. Strontium Nitrite Monohydrate: A New Pyroelectric Nonlinear Optic Material. *J. Appl. Phys.* **1983**, *54*, 6776-6778.

²⁴¹ Fischer, K. Neues Verfahren zur maßanalytischen Bestimmung des Wassergehaltes von Flüssigkeiten und festen Körpern. *Angew. Chem.* **1935**, *48*, 394-396.

²⁴² R. W. G. Wyckoff, *Crystal Structures*, 2nd ed.; Interscience: New York, 1963; Vol. 1, pp 239-244.

²⁴³ Liu, G.; Eick, H. A. The Structure of a Metastable Form of SrI₂ by the X-Ray Rietveld Procedure. *J. Less-Common Met.* **1989**, *156*, 237-245.

²⁴⁴ Gürmen, E.; Daniels, E.; King, J. S. Crystal Structure Refinement of SrMoO₄, SrWO₄, CaMoO₄, and BaWO₄ by Neutron Diffraction. *J. Chem. Phys.* **1971**, *55*, 1093-1097.

²⁴⁵ Schulze, A. R.; Müller Buschbaum, Hk. Zur Verbindungsbildung von MeO: M₂O₃. IV. Zur Struktur von Monoklinem SrAl₂O₄. *Z. Anorg. Allg. Chem.* **1981**, *475*, 205-210.

²⁴⁶ Nowotny, H.; Heger, G. Structure Refinement of Strontium Nitrate, Sr(NO₃)₂, and Barium Nitrate, Ba(NO₃)₂. *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.* **1983**, *39*, 952-956.

²⁴⁷ Lundgren, J.-O.; Kvick, Å.; Liminga, R.; Abrahams, S. C. Neutron Diffraction Structural Study of Pyroelectric Sr(NO₂)₂·H₂O at 294, 100, and 20 K. *J. Chem. Phys.* **1985**, *83*, 2426-2432.

²⁴⁸ Effenberger, H.; Pertlik, F. Four Monazite Type Structures: Comparison of SrCrO₄, SrSeO₄, PbCrO₄ (Crocoite), and PbSeO₄. *Z. Kristallogr.* **1986**, *176*, 75-83.

²⁴⁹ Agron, P. A.; Busing, W. R. Calcium and Strontium Dichloride Hexahydrates by Neutron Diffraction. *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.* **1986**, *42*, 141-143.

²⁵⁰ Jacobsen, S. D.; Smyth, J. R.; Swope, R. J.; Downs, R. T. Rigid-Body Character of the SO₄ Groups in Celestine, Anglesite, and Barite. *Can. Mineral.* **1998**, *36*, 1053-1060.

²⁵¹ Abrahams, I.; Vordemvenne, E. Strontium Dibromide Hexahydrate. *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.* **1995**, *51*, 183-185.

²⁵² Price, D. J.; Powell, A. K.; Wood, P. T. Hydrothermal Crystallisation and X-Ray Structure of Anhydrous Strontium Oxalate. *Polyhedron*, **1999**, *18*, 2499-2503.

²⁵³ Mitchell, R. H.; Chakhmouradian, A. R.; Woodward, P. M. Crystal Chemistry of Perovskite-Type Compounds in the Tausonite-Loparite Series, $(Sr_{1-2x}Na_xLa_x)TiO_3$. *Phys. Chem. Miner*. **2000**, *27*, 583-589.

²⁵⁴ Ahtee, A.; Ahtee, M.; Glazer, A. M.; Hewat, A. W. The Structure of Orthorhombic SrZrO₃ by Neutron Powder Diffraction. *Acta Crystallogr., Sect. B: Struct. Sci.* **1976**, *32*, 3243-3246.
 ²⁵⁵ Rutt, O. J.; Williams, G. R.; Clarke, S. J. Reversible Lithium Insertion and Copper Extrusion in Layered Oxysulfides. *Chem. Commun.* **2006**, 2869-2871.

²⁵⁶ Aleksovska, S.; Dimitrovska, S.; Kuzmanovski, I. Crystal Structure Prediction in Orthorhombic ABO₃ Perovskites by Multiple Linear Regression and Artificial Neural Networks. *Acta Chim. Slov.* **2007**, *54*, 574-582.

²⁵⁷ Antao, S. M.; Hassan, I. The Orthorhombic Structure of CaCO₃, SrCO₃, PbCO₃ and BaCO₃: Linear Structural Trends. *Can. Mineral.* **2009**, *47*, 1245-1255.

²⁵⁸ Verbraeken, M. C.; Suard, E.; Irvine, J. T. S. Structural and Electrical Properties of Calcium and Strontium Hydrides. *J. Mater. Chem.* **2009**, *19*, 2766-2770.

²⁵⁹ Christensen, A. N.; Hazell, R. G. Thermal Analysis and Crystal Structure of Tetragonal Strontium Oxalate Dihydrate and of Triclinic Strontium Oxalate Hydrate. *Acta. Chem. Scand.* **1998**, *52*, 508-512.

²⁶⁰ Ferrari, A.; Braibanti, A.; Bigliardi, G.; Lanfredi, A. M. M. The Crystal Structure of Strontium Permanganate Trihydrate. *Acta Crystallogr*. **1966**, *21*, 681-685.

²⁶¹ Hull, S.; Norberg, S. T.; Ahmed, I.; Eriksson, S. G.; Mohn, C. E. High Temperature Crystal Structures and Superionic Properties of SrCl₂, SrBr₂, BaCl₂, and BaBr₂. *J. Solid State Chem.* **2011**, *184*, 2925-2935.

²⁶² Hennings, E.; Schmidt, H.; Voigt, W. Crystal Structures of Sr(ClO₄)₂·3H₂O, Sr(ClO₄)₂·4H₂O and Sr(ClO₄)₂·9H₂O. *Acta Crystallogr., Sect. E: Struct. Rep. Online*, **2014**, *70*, 510-514.

²⁶³ Bonhomme, C.; Gervais, C.; Babonneau, F.; Coelho, C.; Pourpoint, F.; Azaïs, T.; Ashbrook, S. E.; Griffin, J. M.; Yates, J. R.; Mauri, F., et al. First-Principles Calculation of NMR Parameters Using the Gauge Including Projector Augmented Wave Method: A Chemist's Point of View. *Chem. Rev.* **2012**, *112*, 5733-5779.

²⁶⁴ Charpentier, T. The PAW/GIPAW Approach for Computing NMR Parameters: A New Dimension Added to NMR Study of Solids. *Solid State Nucl. Magn. Reson.* **2011**, *40*, 1-20.

²⁶⁵ Haeberlen, U. High Resolution NMR in Solids: Selective Averaging; Academic Press: London, 1976; p 18.

²⁶⁶ Kroeker, S.; Eichele, K.; Wasylishen, R. E.; Britten, J. F. Cesium-133 NMR Study of CsCd(SCN)₃: Relative Orientation of the Chemical Shift and Electric Field Gradient Tensors. *J. Phys. Chem. B*, **1997**, *101*, 3727-3733.

²⁶⁷ Clavier, N.; Podor, R.; Dacheux, N. Crystal Chemistry of the Monazite Structure. *J. Eur. Ceram. Soc.* **2011**, *31*, 941-976.

²⁶⁸ Stahl, K.; Frankaer, C. G.; Raffalt, A. C.; Sørensen, S. R.; Andersen, J. E. T. Polymeric Strontium Ranelate Nonahydrate. *Acta Crystallogr., Sect. E: Struct. Rep. Online*, **2011**, *67*, m471-m472.

²⁶⁹ Horvath, S.; Demuynck, I.; Damien, G. Alpha Crystalline Form of Strontium Ranelate. US 7,459,568 B2, December 2, 2008.

²⁷⁰ Jameson, C. J.; De Dios, A. C. Theoretical and physical aspects of nuclear shielding. In *Nuclear Magnetic Resonance*; Kamieńska-Trela, K., Wójcik, J., Eds.; RSC Publishing: Cambridge, 2015; Volume 44.

²⁷¹ Varga, Z.; Lanza, G.; Minichino, C.; Hargittai, M. Quasilinear Molecule par Excellence, SrCl₂: Structure from High-Temperature Gas-Phase Electron Diffraction and Quantum-Chemical Calculations – Computed Structures of SrCl₂·Argon Complexes. *Chem. Eur. J.* **2006**, *12*, 8345-8357.

²⁷² Laurencin, D.; Smith, M. E. Development of ⁴³Ca Solid State NMR Spectroscopy as a Probe of Local Structure in Inorganic and Molecular Materials. *Prog. Nucl. Magn. Reson. Spectrosc.* **2013**, *68*, 1-40.

²⁷³ Pallister, P. J.; Moudrakovski, I. L.; Ripmeester, J. A. Mg-25 Ultra-High Field Solid State NMR Spectroscopy and First Principles Calculations of Magnesium Compounds. *Phys. Chem. Chem. Phys.* **2009**, *11*, 11487-11500.

²⁷⁴ Gemmi, M.; La Placa, M. G. I.; Galanis, A. S.; Rauch, E. F.; Nicolopoulos, S. Fast Electron Difftraction Tomography. *J. Appl. Crystallogr.* **2015**, *48*, 718-727.

²⁷⁵ Macavei, J.; Schulz, H. The Crystal Structure of Wolframite Type Tungstates at High Pressure. *Z. Kristallogr.* **1993**, *207*, 193-208.

²⁷⁶ Abrahams, S. C.; Marsh, P.; Liminga, R.; Lundgren, J.-O. Pyroelectric Sr(NO₂)₂·H₂O: Room Temperature Crystal Structure. *J. Chem. Phys.* **1983**, *79*, 6237-6241.

²⁷⁷ Müller, U. *Inorganic Structural Chemistry*, 2nd Edition; Wiley: Chichester, 2007; pp 3–7.

²⁷⁸ Moudrakovski, I. L. Recent Advances in Solid-State NMR of Alkaline Earth Elements. In *Annual Reports on NMR Spectroscopy*; Webb, G. A., Ed.; Academic Press: Oxford, 2013; Volume 79, pp 129-240.

²⁷⁹ Jameson, C. J. The Chemical Shift. In *Multinuclear NMR*; Mason, J., Ed.; Plenum Press: New York, 1987; pp 61-62.

²⁸⁰ Bryce, D. L.; Wasylishen, R. E. Beryllium-9 NMR Study of Solid Bis(2,4-pentanedionato-O,O')beryllium and Theoretical Studies of ⁹Be Electric Field Gradient and Chemical Shielding Tensors. First Evidence for Anisotropic Beryllium Shielding. J. Phys. Chem. A, **1999**, 103, 7364-7372.

²⁸¹ Widdifield, C. M.; Moudrakovski, I.; Bryce, D. L. Calcium-43 Chemical Shift and Electric Field Gradient Tensor Interplay: A Sensitive Probe of Structure, Polymorphism, and Hydration. *Phys. Chem. Chem. Phys.* **2014**, *16*, 13340-13359.

²⁸² Burgess, K. M. N.; Perras, F. A.; Moudrakovski, I. L.; Xu, Y.; Bryce, D. L. High Sensitivity and Resolution in ⁴³Ca Solid-State NMR Experiments. *Can. J. Chem.* **2015**, *93*, 799-807.

²⁸³ Hung, I.; Schurko, R. W. Solid-State ²⁵Mg QCPMG NMR of Bis(cyclopentadienyl)magnesium. *Solid State Nucl. Magn. Reson.* **2003**, *24*, 78-93.

²⁸⁴ MacKenzie, K. J. D.; Smith, M. E. *Multinuclear Solid-State NMR of Inorganic Materials*; Pergamon: Oxford, 2002.

²⁸⁵ Hamaed, H.; Ye, E.; Udachin, K.; Schurko, R. W. Solid-State ¹³⁷Ba NMR Spectroscopy: An Experimental and Theoretical Investigation of ¹³⁷Ba Electric Field Gradient Tensors and their Relation to Structure and Symmetry. *J. Phys. Chem. B*, **2010**, *114*, 6014-6022.

²⁸⁶ O'Dell, L. A.; Moudrakovski, I. L. A Combined Ultra-Wideline Solid-State NMR and DFT Study of ¹³⁷Ba Electric Field Gradient Tensors in Barium Compounds. *Chem. Phys. Lett.* **2013**, *565*, 56-60.

²⁸⁷ MacKenzie, K. J. D.; Meinhold, R. H. Prospects for ¹³⁷Ba MAS NMR Spectroscopy of Ceramics and Related Inorganic Materials. *Ceram. Int.* **2000**, *26*, 87-92.

²⁸⁸ Dec, S. F.; Davis, M. F.; Maciel, G. E.; Bronnimann, C. E.; Fitzgerald, J. J.; Han, S.-S. Solid-State Multinuclear NMR Studies of Ferroelectric, Piezoelectric, and Related Materials. *Inorg. Chem.* **1993**, *32*, 955-959.

²⁸⁹ Malkin, E.; Komorovsky, S.; Repisky, M.; Demissie, T. B.; Ruud, K. The Absolute Shielding Constants of Heavy Nuclei: Resolving the Enigma of the ¹¹⁹Sn Absolute Shielding. *J. Phys. Chem. Lett.* **2013**, *4*, 459-463.

²⁹⁰ Xiao, Y.; Zhang, Y.; Liu, W. New Experimental NMR Shielding Scales Mapped Relativistically from NSR: Theory and Application. *J. Chem. Theory Comput.* **2014**, *10*, 600-608.

²⁹¹ Bonhomme, C.; Gervais, C.; Smith, M.; Laurencin, D. Solid State NMR Studies of Alkaline Earth Metal Ions. Presented at the 9th Alpine Conference on Solid-State NMR, Chamonix-Mont Blanc, France, Sept 13-17, 2015; T 27.

²⁹² Autschbach, J.; Zheng, S.; Schurko, R. W. Analysis of Electric Field Gradient Tensors at Quadrupolar Nuclei in Common Structural Motifs. *Concepts Magn. Reson., Part A*, **2010**, *36*, 84-126.

²⁹³ Sele, V.; Sloth, J. J.; Holmelid, B.; Valdersnes, S.; Skov, K.; Amlund, H. Arsenic-Containing Fatty Acids and Hydrocarbons in Marine Oils – Determination Using Reversed-Phase HPLC–ICP-MS and HPLC–qTOF-MS. *Talanta*, **2014**, *121*, 89-96.

²⁹⁴ Erickson, B. E. Reducing Arsenic Exposure. Chem. Eng. News, 2015, 93, 27-28.

²⁹⁵ Lougheed, T. Arsenic – A Foe with Many Faces. Can. Chem. News, 2015, 67, 30-33.

²⁹⁶ Gundert-Remy, U.; Damm, G.; Foth, H.; Freyberger, A.; Gebel, T.; Golka, K.; Röhl, C.; Schupp, T.; Wollin, K.-M.; Hengstler, J. G. High Exposure to Inorganic Arsenic by Food: The Need for Risk Reduction. *Arch. Toxicol.* **2015**, *89*, 2219-2227.

²⁹⁷ Meyer, S.; Raber, G.; Ebert, F.; Taleshi, M. S.; Francesconi, K. A.; Schwerdtle, T. Arsenic-Containing Hydrocarbons and Arsenic-Containing Fatty Acids: Transfer Across and Presystemic Metabolism in the Caco-2 Intestinal Barrier Model. *Mol. Nutr. Food Res.* **2015**, *59*, 2044-2056.

²⁹⁸ Park, B.-K.; Kim, D.-W.; Song, R.-H.; Lee, S.-B.; Lim, T.-H.; Park, S.-J.; Park, C.-O.; Lee, J.-W. Design of a Dual-Layer Ceramic Interconnect based on Perovskite Oxides for Segmentedin-Series Solid Oxide Fuel Cells. *J. Power Sources*, **2015**, *300*, 318-324.

²⁹⁹ Burye, T. E.; Nicholas, J. D. Nano-Ceria Pre-Infiltration Improves La_{0.6}Sr_{0.4}Co_{0.8}Fe_{0.2}O_{3-x} Infiltrated Solid Oxide Fuel Cell Cathode Performance. *J. Power Sources*, **2015**, *300*, 402-412.

³⁰⁰ Jacobsson, T. J. Pazoki, M.; Hagfeldt, A.; Edvinsson, T. Goldschmidt's Rules and Strontium Replacement in Lead Halogen Perovskite Solar Cells: Theory and Preliminary Experiments on CH₃NH₃SrI₃. *J. Phys. Chem. C*, **2015**, *119*, 25673-25683.

³⁰¹ Harris, K. J.; Lupulescu, A.; Lucier, B. E. G.; Frydman, L.; Schurko, R. W. Broadband Adiabatic Inversion Pulses for Cross Polarization in Wideline Solid-State NMR Spectroscopy. *J. Magn. Reson.* **2012**, *224*, 38-47.

³⁰² Harris, K. J.; Veinberg, S. L.; Mireault, C. R.; Lupulescu, A.; Frydman, L.; Schurko, R. W. Rapid Acquisition of ¹⁴N Solid-State NMR Spectra with Broadband Cross Polarization. *Chem. Eur. J.* **2013**, *19*, 16469-16475.

³⁰³ Lucier, B. E. G.; Johnston, K. E.; Xu, W.; Hanson, J. C.; Senanayake, S. D.; Yao, S.; Bourassa, M. W.; Srebro, M.; Autschbach, J.; Schurko, R. W. Unravelling the Structure of Magnus' Pink Salt. *J. Am. Chem. Soc.* **2014**, *136*, 1333-1351.

³⁰⁴ Veinberg, S. L.; Friedl, Z. W.; Harris, K. J.; O'Dell, L. A.; Schurko, R. W. Ultra-Wideline ¹⁴N Solid-State NMR as a Method for Differentiating Polymorphs: Glycine as a Case Study. *CrystEngComm*, **2015**, *17*, 5225-5236.

³⁰⁵ Overhauser, A. W. Polarization of Nuclei in Metals. *Phys. Rev.* 1953, *92*, 411-415.

³⁰⁶ Carver, T. R.; Slichter, C. P. Polarization of Nuclear Spins in Metals. *Phys. Rev.* **1953**, *92*, 212-213.

³⁰⁷ Maly, T.; Debelouchina, G. T.; Bajaj, V. S.; Hu, K.-N.; Joo, C.-G.; Mak-Jurkauskas, M. L.; Sirigiri, J. R.; van der Wel, P. C. A.; Herzfeld, J.; Temkin, R. J.; Griffin, R. G. Dynamic Nuclear Polarization at High Magnetic Fields. *J. Chem. Phys.* **2008**, *128*, 052211.

³⁰⁸ Perras, F. A.; Kobayashi, T.; Pruski, M. PRESTO Polarization Transfer to Quadrupolar Nuclei: Implications for Dynamic Nuclear Polarization. *Phys. Chem. Chem. Phys.* **2015**, *17*, 22616-22622.

³⁰⁹ National High Magnetic Field Laboratory. https://nationalmaglab.org/ (Accessed January 26, 2016).

Appendix A: Example Input Files for ADF Calculations A.1 Electric Field Gradient

#! /bin/sh mkdir AsP_efg cd AsP_efg

\$ADFBIN/adf -n 4 << eor> AsP_efg_out.txt Atoms As 0.00000000 0.00000000 0.00000000 P 0.00000000 0.00000000 2.001623730 End

qtens

relativistic spinorbit zora symmetry NOSYM xc lda vwn gga becke perdew end

integration 6

Basis
Type ZORA/QZ4P
Core None
End
End input
eor

rm TAPE21 logfile

A.2 Magnetic Shielding

#! /bin/sh
mkdir AsP_csa
cd AsP_csa

\$ADFBIN/adf -n 4 << eor> AsP_csa_out.txt Atoms As 0.00000000 0.00000000 0.00000000 P 2.001623730 0.00000000 0.00000000 End

relativistic spinorbit zora symmetry NOSYM xc lda vwn gga becke perdew end

integration 6

Basis Type ZORA/QZ4P Core None End

save TAPE10

End input eor

\$ADFBIN/nmr -n 4 << eor

NMR U1K Best OUT tens NUC 1 2 END eor

rm TAPE21 logfile TAPE10