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Abstract 

Demand for heart transplants far exceeds supply. This is often attributed to the high percentage of 

donor hearts that are discarded due to cell injury and to the narrow six-hour time window currently 

available for transplantation. A method called ex vivo heart perfusion (EVHP) enables the use of 

damaged donor hearts and extends the available time window by preserving the heart’s beating 

function outside the body from the time of donation until transplantation. To-date, research efforts 

have focused on controlling the metabolic environment required to maintain cardiac tissue health. 

However, the effect of the fluid mechanics of the system on cardiac performance has yet to be 

investigated. The region of the system where the fluid mechanics are most complex and the potential 

for adverse organ-machine interaction is highest is the region following the left ventricle where, in vivo, 

blood is ejected into the body’s largest and most compliant artery, the aorta. The well-understood 

expansion-recoil function of the aorta plays the crucial roles in vivo of ensuring forward blood flow in 

the peripheral vasculature and reducing cardiac workload. These functions help mitigate the fatigue and 

remodeling of cardiac muscle that occur in response to elevated cardiac workload. It is likely that the 

introduction of compliant aortic response into the EVHP system would have a similarly positive effect on 

cardiac performance, but this idea has not been explored prior to this investigation. 

This work has been undertaken to study of aortic compliant response in a mechanical flow loop 

analogous to the left side of the EVHP system in order to determine the impact of compliance on system 

performance. To this end, two experiments were performed; one established a fundamental case and 

the other explored a physiological case. The first experiment studied the pulsatile flow from a peristaltic 

pump in the analog system to establish a fundamental case of compliant response in a pulsatile flow 

regime. This experiment also compared the response of a Newtonian fluid to that of non-Newtonian 

fluid to ascertain whether or not non-Newtonian effects in the system warrant further investigation. The 
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second experiment generated a simulated cardiac flow through the system using a commercial 

ventricular assist device (VAD). This experiment addressed the effect of compliance in a physiological 

pulsatile flow regime. For both experiments, three parameters were used to assess the impact of 

compliance on system performance: pressure, tube response and downstream velocity fields. Pressure 

was monitored at the inlet and outlet of the compliant section, as well as downstream where the 

velocity fields were obtained. Tube response was monitored with a camera and the downstream flow 

fields were captured using time-resolved particle imaging velocimetry (PIV). These parameters were 

used to assess the performance of the pump by applying unsteady Bernoulli analysis to the system and 

comparing these values to those obtained with a rigid test section.  

In the case of the peristaltic pump experiment, it was found that the introduction of compliance into the 

system smoothed out the pressure and velocity responses and increased the energy applied by the 

pump for both fluids. The relationship between pulse frequency and pump energy was different for each 

fluid; the Newtonian case reached a peak at a pulse frequency of 1.67 Hz, while the non-Newtonian case 

maintained a positive linear relationship across the range of tested frequencies. 

For the VAD experiment, the introduction of compliant response into the system was found to improve 

all evaluated system performance parameters. The compliant mock aorta case demonstrated healthier 

pressure waveform profiles, less downstream reverse flow and lower pump energy requirements. This is 

an important finding, as is suggests that the introduction of aortic response into the EVHP system is 

likely to have a positive impact on cardiac performance. Further, this work on pump energy 

requirements may serve as a useful proxy for quantifying cardiac performance in future work. 
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Preface 

This thesis is original work by Katie Cameron. Part of the content contained in Chapter 4 and 5 of this 

thesis are published as Cameron, K., Freed, D.H., Nobes, D.S. (2016) Time-resolved PIV of the pulsatile 

flow from an ex vivo heart perfusion model in the proceedings of the 18th International Symposium on 

the Application of Laser and Imaging Techniques to Fluid Mechanics. Part of the content contained in 

Chapter 5 is under review for being published as Cameron K., Yu, B., Freed, D.H., Nobes, D.S. (2017) 

Time-resolved PIV of the pulsatile flow field downstream of a mock aorta in an ex vivo heart perfusion 

model in the proceedings of the ASTFE 2nd Thermal and Fluid Engineering Conference.  
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Chapter 1. Literature Review 

 

1.1 Introduction 

Heart transplantation is the gold standard treatment for end stage heart failure patients [1] but demand 

for viable donor hearts far outweighs supply. In Europe and the United States, 10-12% of patients on the 

heart transplant waitlist die prior to receiving a heart [2] and there are many others who are removed 

from the waitlist due to irreversible disease degeneration. The critical shortage of donor hearts is often 

attributed [1], [3], [4] to three factors: high discard rate amongst available donor hearts, the limited 

time window available for transplantation, and the non-utilization of hearts from Donation after 

Circulatory Death (DCD) donors.  

Currently, the only reliable source of donor hearts is Donation after Brain Death (DBD) donors but there 

are issues associated with hearts from donors of this type. During the process of brain death, donor 

organs experience an increased intracranial pressure which leads to a compensatory response of 

vasoconstriction and tachycardia, known as a “catecholamine storm” [5]. Although the majority of the 

myocardium is intact and healthy, this compensatory response often results in localized cell injury that 

can preclude donor hearts from being viable for transplantation [1], [5]. In North America only 36-39% 

of available donor hearts are successfully transplanted [6], [7]. In cases where the rest of the cardiac 

tissue is healthy, the localized cell injury is repairable [1] but the current method of donor heart storage 

and transportation does not facilitate this rehabilitation. 

The current standard of donor heart storage is hypothermic static storage [8]. It involves lowering the 

temperature of the heart to reduce its metabolic demands and mitigate the effects of ischemia and 

hypoxia that result from removing the heart from its native environment [9]. While this method is the 

standard for organ transplant storage and transportation, it presents significant challenges that 

contribute to the shortage of available donor hearts. First, it imposes a six hour limitation on the time 

window available for transplantation [9]. Also, in addition to not facilitating rehabilitation of existing 

tissue injuries, the method can expose the organs to mechanical injuries [8]. Due to these limitations of 

the current method, there is a need to look for both a better method of preserving the available hearts 

and another reliable source of donor hearts. 



2 
 

Another source of donor hearts that remains largely untapped is Donation after Circulatory Death (DCD) 

donors. DCD donors are patients whose deaths are confirmed using circulatory criteria but not 

necessarily using neurological criteria [10]. This occurs most often in patients who have suffered cardiac 

arrest after being taken off life support but maintain brainstem response. In such cases, there is a short 

period of time after the heart stops beating and blood supply has terminated that the heart experiences 

oxygen deprivation while still at body temperature; this is known as the warm ischemic time [11]. The 

warm ischemic time is much longer for DCD donors than for DBD donors, therefore the risk of tissue 

damage is higher. This is the primary reason why DCD donor organ usage has yet to be widely accepted 

into clinical practice [3]. 

In order to reconcile demand for heart transplants with supply, the donor pool must be expanded. Three 

important opportunities to do so involve facilitating repair of tissue injury, extending the time window 

available for transplantation, and using hearts from DCD donors. Ex vivo heart perfusion (EVHP) has 

been proposed [1], [12], [13] as a method by which damaged donor hearts, from DBD or DCD donors, 

can be resuscitated, preserved and monitored. This method provides an opportunity to repair damaged 

hearts, extend the time window available for transplantation and utilize hearts from DCD donors [1]. It 

involves connecting a donor heart to a mechanical system that maintains its natural beating function 

outside the body. While the heart is operating, metabolic and mechanical conditions can be controlled 

in response to monitored changes in cardiac performance. This ability to functionally assess heart 

performance ex vivo is crucial for determining transplantation viability and providing the opportunity for 

resuscitation and preservation of donated hearts that is unique to this method [1]. Existing transplant 

technologies have not addressed these aspects of EVHP so there is great opportunity for further 

research into device optimization. 

In order to maintain the heart’s natural beating function, the flow loop of the EVHP system currently 

being researched [1] is set up to mimic the two circulatory loops in the body: pulmonary circulation and 

systemic circulation. The circulatory systems are shown in Figure 1-1, in which red and blue lines denote 

pathways of oxygenated and deoxygenated blood, respectively. The heart is comprised of two receiving 

chambers and two pumping chambers, the left and right atrium (LA & RA) and the left and right ventricle 

(LV & RV), respectively. The left atrium receives oxygenated blood from the lungs and the left ventricle 

pumps that blood to the body’s organs against the resistance of the body’s vasculature. Following 

delivery to the organs, the now deoxygenated blood is returned to the right atrium. This loop of 

oxygenated blood being delivered to the organs and deoxygenated blood being returned to the heart is 
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called systemic circulation. Similarly, the right ventricle pumps deoxygenated blood to the lungs and the 

newly oxygenated blood is delivered to the left atrium. This flow loop, which encompasses the 

oxygenating of blood in the lungs and corresponding delivery to the left atrium, is called pulmonary 

circulation. 

 

Figure 1-1: Schematic representation of in vivo circulatory systems, adapted from [14] 

In the EVHP system, the heart is connected to a mechanical flow loop via four connection points: LA, LV, 

RA, RV. As the heart beats via pacemaker stimulation, blood flows through the system; this allows the 

heart to receive and eject blood in its natural beating cycle. Current research is being conducted with 

porcine hearts, which have traditionally been used to represent human heart behavior in research 

environments. The current flow loop components, including the heart and mechanical components, are 

shown in Figure 1-2. The system is comprised of a pacemaker-implanted heart, a reservoir, arterial filter, 

two centrifugal pumps, an oxygenator and a series of tubes, as shown in Figure 1-2. Pump 1 (P1) 

supplies flow to the left and right atria of the heart which, upon pacemaker stimulation, contract. This 

ejects perfusate, a mixture of blood and support nutrients, into ⅜” and ½” tubing in the mock systemic 

and pulmonary circulatory loops, respectively. Pump 2 (P2) simulates vascular afterload by supplying a 

constant flow against the direction of ventricular ejection. This provides resistance to the flow and a 

back pressure that allows the aortic valve to close. Flow ejected from the left ventricle combines with 

flow supplied by P2, passes through an oxygenator, then combines with flow from the right ventricle 
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and finally, returns to the reservoir. Pressure and flow monitoring at several locations provides direct 

feedback of the conditions and performance of the heart.  

 

Heart 

LA Left Atrium 

MV Mitral Valve 

LV Left Ventricle 

AV Aortic Valve 

RA Right Atrium 

TV Tricuspid Valve 

RV Right Ventricle 

PV Pulmonary Valve 

  EVHP System 

FIC Flow Indicating Controller 

FT  Flow Transmitter 

PT Pressure Transmitter 
 

Figure 1-2: Schematic of the current EVHP system setup 

To date, research efforts have been largely focused on controlling the metabolic environment required 

to sustain cardiac performance and on developing monitoring procedures [1], [12], [13]. The fluid 

mechanics of the system and their corresponding impact on cardiac performance have yet to be 

investigated. The most complex region of flow in the system is the left flow loop which simulates in vivo 

systemic circulation. Immediately following the heart’s primary pumping chamber, the left ventricle, is 

the body’s largest artery, the aorta. During the cardiac cycle, the aorta exhibits a compliant response in 

response to the pressure pulse generated by the heart, which is known as the Windkessel effect [15]. 

This compliant response is not currently present in the EVHP system as a consequence of the 

attachment method in which the explanted donor heart aortic root is connected to the device with rigid 

tubing. It is likely that the lack of elastic response in this region of flow is impairing cardiac performance of 

donor hearts. However, this impact has not been quantified and the possibility of adding a mock aorta into 

the system to replicate the Windkessel effect has not been explored prior to this investigation. The 

remainder of this chapter will provide an overview of the relevant topics and literature that were 

reviewed during this work.  
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1.2 Cardiac cycle 

The heart undergoes a well-defined mechanical contraction-relaxation process known as the cardiac 

cycle [16]. The pressure pulse generated by the heart during contraction is impacted both by the 

intrinsic properties of the heart muscle, such as contractility, and by the hemodynamic conditions in the 

vasculature, such as blood pressure. Information about cardiac performance and cardiovascular health is 

most commonly understood through interpretation of pressure waveforms in the peripheral arteries, 

those that are far away from the heart. While this is common clinical practice due to the non-invasive 

nature of such measurement, more important information about cardiovascular function can be 

obtained from central aortic pressure waveforms that are obtained directly in the aorta [17]. 

Understanding the values that can be obtained from central aortic pressure waveforms provides a 

foundation upon which to study cardiovascular flow.  

A labelled diagram of a generic central aortic pressure waveform is shown in Figure 1-3.The cardiac cycle 

occurs in two stages called systole and diastole which represent ventricular contraction and relaxation, 

respectively. When the LA receives oxygenated blood from the lungs, left atrial pressure rises until it 

exceeds left ventricular pressure at which point the MV opens and blood flows into the LV. Once left 

ventricular pressure exceeds left atrial pressure the MV closes. Once the MV is closed, the LV receives 

an electrical impulse which induces it to contract. The minimum pressure of the cycle occurs just prior to 

ejection and is referred to as the diastolic foot [18]. This initiation of isovolumetric contraction marks 

the beginning of mechanical systole, the period of ventricular ejection which, under ideal conditions, 

lasts approximately one third of the cardiac cycle duration. The LV pressure rise continues until the LV 

pressure exceeds the back pressure of the systemic vasculature, at which point the aortic valve opens 

and blood is ejected into the aorta. During this stage, there is a rapid increase in aortic pressure. The 

corresponding rise in pressure on the aortic pressure waveform is referred to as the anacrotic limb 

during which time the compliant aorta expands to store a portion of the ejected blood. Once the 

ventricle is finished contracting and the systolic peak is reached, both left ventricular and aortic pressure 

begin to drop. Once left ventricular pressure drops below aortic pressure, the aortic valve closes which 

marks the end of systole. When the aortic valve closes, there is a momentary rise in aortic pressure due 

to the elastic recoil of the aortic wall against a closed aortic valve [16]; this is referred to as the dicrotic 

notch. Now that both the mitral and aortic valves are closed, the ventricle undergoes isovolumetric 

relaxation, which marks the beginning of diastole. This period of ventricular relaxation and aortic 

pressure drop is referred to as the dicrotic limb on the aortic pressure waveform. Once the ventricle 
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relaxes to a pressure lower than the left atrial pressure, the mitral valve opens and left ventricular filling 

begins again. During this period, aortic pressure is decreasing as blood is being delivered to the body’s 

organs, and it will continue to do so until the aortic valve opens and systole begins again. At the same 

time, blood flows through the coronary ostia behind the aortic valve into the coronary arteries, allowing 

nourishment and oxygenation of the heart tissue.  

 

Figure 1-3: Labelled diagram of a generic central aortic waveform, adapted from waveform presented in [16] 

There are four important pressure readings that can be determined from Figure 1-3: diastolic pressure 

(𝑃𝑑), systolic pressure (𝑃𝑠), mean arterial pressure (�̅�𝑎) and pulse pressure (𝑃𝑝). Diastolic pressure is the 

minimum pressure in the cycle, which occurs at the diastolic foot prior to aortic valve opening and 

ventricular ejection. Systolic pressure is the maximum pressure achieved during the cycle, which occurs 

at the systolic peak. Mean arterial pressure is a consequence of peripheral arterial vasculature and is 

calculated as the mean pressure of the aortic pressure waveform [19]: 

�̅�𝑎  = ∫ 𝑃𝐴𝑜(𝑡)𝑑𝑡
𝑡𝑐

0

 ( 1-1 ) 

where 𝑡𝑐 is the cycle time [s] and 𝑃𝐴𝑜(𝑡) is the periodic aortic pressure waveform function. Lastly, pulse 

pressure is defined as the difference between the systolic peak pressure and diastolic pressure: 
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𝑃𝑝 = 𝑃𝑠 − 𝑃𝑑 ( 1-2 ) 

The generic central aortic waveform presented in Figure 1-3 provides a simplified understanding of the 

pressure responses seen in the aorta during the cardiac cycle. The nuances of this waveform will vary 

based on specific hemodynamic conditions, but understanding the definitions of the pressure values 

represented on this waveform enables a general understanding of the systemic pressure cycle pertinent 

to this investigation. The nature of this pressure waveform produced by the heart greatly influences 

systemic flow conditions, and while pressure waveforms are often used as the sole basis for evaluating 

cardiovascular health, the resulting flow conditions can also provide important information about 

cardiac performance. A review of cardiovascular flow properties will be discussed in the following 

sections.  

1.3 Non-Newtonian nature of blood 

The pressure fluctuations involved in the cardiac cycle induce flow with a time-varying shear rate. Blood 

is a non-Newtonian fluid, meaning that such variations in shear rate induce non-linear changes in the 

fluid’s viscosity [20]. There are a number of models that can be used to describe non-Newtonian fluid 

behaviour, but the one of concern to this investigation is the Ostwald-de Waele power-law model [20], 

[21] which defines the relationship between viscosity and shear rate as: 

𝜇 = 𝑘(�̇�)𝑛−1 ( 1-3 ) 

where 𝜇 is the fluid viscosity [Pa.s], 𝑘 is the flow consistency [Pa.sn], �̇� is the shear rate [s-1] and 𝑛 is the 

flow index. Flow index and consistency are determined using the log-log relationship between viscosity 

and shear rate: 

log(𝜇) = (𝑛 − 1) log (�̇�) + log(𝑘) ( 1-4 ) 

The slope of this relationship, (𝑛 − 1), is used to determine the flow index of the fluid, 𝑛, and the 

intercept, log(𝑘), is used to determine the flow consistency, 𝑘. Based on the value of 𝑛, non-Newtonian 

fluids are classified as either shear thickening or shear thinning. Shear thickening fluids are characterized 

by a positive relationship between shear rate and viscosity as indicated by 𝑛 > 1 in the power-law 

model. Shear thinning fluids exhibit decreasing viscosity at increasing shear rates, described in the 

power-law model by 𝑛 < 1. Fluids with 𝑛 = 1 are classified as Newtonian fluids. 

Blood is classified as a shear-thinning fluid due to its reduced viscosity at high shear rates [22]. Examples 

of viscosity vs. shear rate plots for whole blood, obtained from [23], [24], are shown in Figure 1-4. The 
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value of 𝑛 is strongly related to the percentage red blood cell composition, the hematocrit, of the blood 

but typical values of 𝑛 for human blood can vary between 0.67-0.72 for normal hematocrit ranges[23], 

[24]. Prolonged changes in blood viscosity can have significant consequences to overall health. In 

particular, plasma hyperviscosity has been associated with conditions such as hypertension, heart 

disease and stroke [22] due to its effect of increasing peripheral resistance and cardiac workload [25]. 

 

Figure 1-4: Plot of viscosity vs. shear rate of whole blood [23], [24] 

Traditionally, the shear thinning behavior of blood has only been considered in small arteries where flow 

velocities, and therefore shear rates, are low. In the large arteries, shear rates are often greater than 

100 s-1 [25]–[27] and non-Newtonian effects are neglected because at such high shear rates blood 

reaches its Newtonian limit viscosity of approximately 3.4-3.7 mPa.s [22]–[25], [28], [29]. However, a 

recent model [30] suggests that while this assumption holds during systole, it likely does not provide a 

complete picture of velocity distributions or wall shear stresses throughout the cardiac cycle because it 

does not account for the impact of the low shear rates during diastole. To the author’s knowledge, there 

has been minimal experimental investigation into this model in an ex vivo large compliant artery model. 

Due to the opaque appearance of blood, investigations involving fluid imaging techniques require the 

use of transparent blood analog fluids to study the impact of blood’s viscoelastic properties on flow 

fields. The most common blood analogs used for experimental investigations are aqueous 

polyacrylamide and xanthan gum/glycerol solutions [31]. Polyacrylamide provides a good representation 

of the viscous component of blood’s shear thinning behavior but has been shown to have a larger elastic 
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component than blood [31]. A log-log plot of the viscosity-shear rate relationship for a 0.1 wt.% aqueous 

polyacrylamide solution is compared to that of blood in Figure 1-5, and their 𝑛 and 𝑘 values are 

summarized in Table 1-1.  

 

Figure 1-5: Log-log plot of viscosity vs. shear rate for whole blood and 0.1 wt.% polyacrylamide solution [20], 
[23], [24] 

 

Table 1-1: Summary of flow index and flow consistency values for blood and 0.1 wt.% aqueous polyacrylamide 
solution 

Fluid Flow Index, 𝒏 [--] Flow Consistency, 𝒌 [Pa.sn] 

Whole Blood [23], [24] 0.7050 – 0.7054 0.0180 – 0.0203 

0.1 wt.% aqueous polyacrylamide solution [20] 0.469 0.054 

 

1.4 Pulsatile flow 

The periodic pressure gradient produced by the heart induces a pulsatile flow through the systemic 

arteries. Understanding the flow fields induced in the vasculature due to the heart’s pumping cycle 

provides crucial information about the efficiency of the heart and about arterial health. Flow 

information can aid in determining how much energy is being successfully imparted to the fluid and how 

arterial properties affect cardiac workload.  
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The theory behind pulsatile flow is well-understood [26], [32]–[34]. The axial pressure gradient driving 

flow along a length of tube is a periodic function that consists of a steady component and an overlaid 

oscillatory component [35]: 

𝜕𝑝(𝑡)

𝜕𝑧
=

𝑝1(𝑡) − 𝑝2(𝑡)

𝐿
 ( 1-5 ) 

where 𝑝1(𝑡) and 𝑝2(𝑡) are the inlet and outlet pressure waveforms, respectively and 𝐿 is the distance 

between the pressure measurement points. The axial pressure gradient can then be deconstructed into 

its steady and unsteady components using a Fourier expansion [36] such that: 

𝜕𝑃(𝑡)

𝜕𝑧
= 𝑃0 + ∑ 𝑃𝑛

𝑁

𝑛=1

𝑒𝑖2𝜋𝑓𝑡𝑛𝐻−∅𝑛 ( 1-6 ) 

where 𝑃0 is the steady component of the pressure gradient, 𝑃𝑛 is the array of wave amplitudes for the 

unsteady component of the pressure gradient, 𝑓 is the pulse frequency [Hz], 𝑡 is time [s], 𝑛𝐻 is the 

number of the harmonic of each term of the expansion, 𝑁 is the total number of harmonics of the wave 

being included in the expansion and ∅𝑛 is the array of wave phase changes for the unsteady component 

of the pressure gradient. 

The time-dependent axial pressure gradient induces a periodic flow through the vasculature that also 

has a steady and an unsteady component. A method for quantifying the velocity and flow rate of this 

pulsatile flow in a straight, rigid circular pipe subjected to a known unsteady pressure gradient was first 

developed by Womersley [32]. At that time, the non-dimensional Womersley number, α, was defined to 

describe the relationship between unsteady and viscous effects in a pulsatile flow regime [32]: 

𝛼 =
𝐷

2
√

𝜌𝜔

𝜇
 ( 1-7 ) 

where D is the tube diameter [m], 𝜌 is the fluid density [kg/m3], ω is the pulse frequency [rad/s] and μ is 

the fluid’s dynamic viscosity [Pa.s]. This non-dimensional number is now widely accepted as the 

foremost dynamic similarity parameter used for scaling pulsatile flow experiments [37]. Flow of 

Newtonian fluids through rigid tubes in laminar pulsatile flow regimes is well-described [32], [35], [38]–

[41] and it has been suggested that α = 10 is the limit where the fluid behavior varies significantly from 

the quasi-static case [42]. In human aortas, α ranges from approximately 12-20 [26], [43], [44]. 
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Womersley numbers are much lower in the peripheral arteries; for example, α ≅ 4 in the femoral artery 

[43]. For these low α regimes present in small arteries, the flow has a dominant steady component and 

is therefore well-represented by Bernoulli’s equation defined at points 1 and 2 in a fluid system [45]: 

𝑃1 + 𝜌𝑔𝑧1 +
𝜌𝑢1

2

2
= 𝑃2 + 𝜌𝑔𝑧2 +

𝜌𝑢2
2

2
 ( 1-8 ) 

where P1 and P2 are the pressures at points 1 and 2, respectively, g is the acceleration due to gravity 

[m/s2], z1 and z2 are the elevations of points 1 and 2, respectively and u1 and u2 are the flow speeds at 

points 1 and 2, respectively. This equation represents the conservation of energy in a fluid system under 

steady, incompressible flow conditions. 

In high α flows, there are significant local changes in acceleration caused by the unsteady component of 

the pressure gradient. These changes in acceleration impact the energy in the system, therefore an 

extra term must be added to the Bernoulli equation to correctly represent the conservation of energy in 

a high 𝛼 regime [33]: 

𝑃1 + 𝜌𝑔𝑧1 +
𝜌𝑢1

2

2
+ ∫

𝑑𝑢1

𝑑𝑡
𝑑𝑠

1

0

= 𝑃2 + 𝜌𝑔𝑧2 +
𝜌𝑢2

2

2
+ ∫

𝑑𝑢2

𝑑𝑡
𝑑𝑠

2

0

 ( 1-9 ) 

where 
du1

dt
 and 

du2

dt
 are the flow accelerations at points 1 and 2, respectively being integrated along a 

streamline, ds. The integral terms of this equation represent how the fluid acceleration changes in the 

axial direction in response to the fluctuating pressure gradient. Previous investigations [33], [46], [47] 

have employed the use of this equation in cardiovascular analog flow regimes to relate the forces acting 

on the fluid to the temporal and convective accelerations that those forces induce using the assumption 

of uniform tube thickness from point 1 to point 2: 

Δ𝑃(𝑡) − 𝑃𝑙𝑜𝑠𝑠𝑒𝑠 = 𝜌𝐿𝑒𝑓𝑓

𝑑𝑢2

𝑑𝑡
+

1

2
𝜌(𝑢2

2 − 𝑢1
2) ( 1-10 ) 

where ΔP(t) is the time-varying pressure gradient between the two locations in the system, plosses are 

the frictional losses that occur along the tube length, and Leff is the length of the fluid column being 

accelerated. This form of the equation is useful for understanding the types of energy present in 

systemic circulation. During ventricular contraction, work is done by the heart on the blood. The 

resulting energy of the fluid can then be expressed as the sum of its potential, kinetic and hemodynamic 

energy [48]. These concepts are useful to this investigation because, through the collection of pressure 

information and time-resolved velocity data, the energy relationship between pumping energy and fluid 
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energy can be ascertained. This can then be used as a basis for assessing system performance which can 

be used as a proxy for understanding stress conditions of the heart. 

1.4.1 Profiles of velocity 

Velocity profiles are commonly used for assessing flow behaviour. While basic flow conditions can be 

determined from centerline velocities, which can be obtained from standard flow meter measurements, 

velocity profiles allow evaluation of more specific flow characteristics. They show directional changes 

across the tube geometry which indicate the locations of shear regions and provide information about 

the system’s resistance to flow. Analysis of velocity profiles is particularly important in a pulsatile flow 

regime where the time-dependent pressure fluctuations often result in flow directional changes. This 

impact of pressure fluctuations is dependent on the relative magnitudes of the Womersley (unsteady) 

and Poiseuille (steady) component. For low α flows, velocity profiles closely resemble parabolic profiles 

characteristic of steady laminar flows. For high α regimes, the significant Womersley component will 

induce stronger regions of reverse flow [40], [42], resulting in high shear regions away from the 

boundary. The presence of such shear regions often produces flow instabilities which in vivo have been 

associated with atherosclerosis [44]. The presence of such flow instabilities occurs as a result of flow 

deceleration in the aorta during diastole [37], [44], [49] and is therefore strongly influenced by the 

compliant behavior of the aorta. Previous experimental investigations [50]–[54] have studied the 

velocity distributions through compliant phantoms using particle imaging velocimetry (PIV) and particle 

tracking velocimetry (PTV). To the author’s knowledge, the effect of physiological aortic compliance on 

downstream flow fields has yet to be investigated experimentally. The following sections outline the 

theory behind Newtonian and non-Newtonian pulsatile profiles of velocity.  

1.4.1.1 Newtonian Velocity Profiles 

The steady flow component for a Newtonian pulsatile flow regime is defined by the equation of motion 

of fully developed laminar flow [45]: 

𝜕2𝑢

𝜕𝑟2
+

1

𝑟

𝜕𝑢

𝜕𝑟
+

1

𝜇
𝑃0 = 0 

( 1-11 ) 

where u is the fluid velocity [m/s], and r is the radial distance [m] from the tube axis. The resulting 

solution for the steady component of a pulsatile flow velocity profile is therefore: 

[𝑢𝑧(𝑟)𝑠𝑡𝑒𝑎𝑑𝑦]
𝑁𝑒𝑤𝑡

=
1

4𝜇
𝑃0(𝑅2 − 𝑟2) ( 1-12 ) 

where R is the radius of the tube [m]. 
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For the unsteady component, since the pressure gradient is periodic in time, the governing equation of 

motion is [32]: 

𝜕2𝑤

𝜕𝑟2
+

1

𝑟

𝜕𝑤

𝜕𝑟
−

1

𝜈

𝜕𝑤

𝜕𝑡
= −

𝑃𝑛𝐻

𝜇
𝑒−𝑖𝑛𝐻𝜔𝑡 ( 1-13 ) 

where w is the axial velocity of the fluid [m/s] and ν is the kinematic viscosity of the fluid [m2/s]. 

Since the pressure gradient is harmonic, the resulting velocity will also be described by a periodic 

function, w = ueinHωt. Substituting this into the equation of motion gives: 

𝜕2𝑢

𝜕𝑟2
+

1

𝑟

𝜕𝑢

𝜕𝑟
−

𝑖𝑛𝐻

𝜈
𝑢 = −

𝑃𝑛

𝜇
 ( 1-14 ) 

The solution for the Womersley component of the velocity profile is therefore: 

[𝑢𝑧(𝑟, 𝑡)𝑢𝑛𝑠𝑡𝑒𝑎𝑑𝑦]
𝑁𝑒𝑤𝑡

= ℜ [
𝑖𝜔

𝜌
(1 −

𝐽0 (𝛼𝑖
3

2⁄ 𝑟
𝑅

)

𝐽0 (𝛼𝑖
3

2⁄ )
) 𝑃𝑛𝑒𝑖𝑛𝐻𝜔𝑡−∅𝑛] ( 1-15 ) 

where J0 is a zeroth order Bessel function. 

Combining this solution with the steady solution produces the complete velocity profile equation for a 

Newtonian fluid in a pulsatile flow regime [32], [33], [42], [55]: 

𝑢𝑧(𝑟, 𝑡) =
1

4𝜇
𝑝0(𝑅2 − 𝑟2) + ℜ [

𝑖𝜔

𝜌
(1 −

𝐽0 (𝛼𝑖
3

2⁄ 𝑟
𝑅

)

𝐽0 (𝛼𝑖
3

2⁄ )
) 𝑃𝑛𝑒𝑖𝑛𝐻𝜔𝑡−∅𝑛] ( 1-16 ) 

This equation provides a theoretical comparison for the experimentally obtained Newtonian velocity 

profiles obtained during investigation.  

1.4.1.2 Non-Newtonian Velocity Profiles 

The steady flow component for a power-law fluid pulsatile flow regime is defined by the same equation 

of motion as the Newtonian case, but the presence of a shear-rate varying viscosity yields a velocity 

profile equation that is dependent on the flow index and consistency of the power law fluid, as defined 

for this case in Section 1.3. The resulting steady component of the velocity profile for a power-law fluid 

in a pulsatile flow regime is [34]: 
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[𝑢𝑧(𝑟)𝑠𝑡𝑒𝑎𝑑𝑦]
𝑛𝑜𝑛−𝑁𝑒𝑤𝑡

= (−
1

2
𝑃0

1

𝑘𝐿
)

1
𝑛⁄

(
𝑛

𝑛 + 1
) [𝑅

𝑛+1
𝑛 − 𝑟

𝑛+1
𝑛 ] ( 1-17 ) 

For the unsteady component, both the pressure gradient and the shear rate are periodic in time, and 

the governing equation of motion can be expressed using the Maxwell model momentum equation for 

viscoelastic flow in a tube [34]: 

𝛼2
𝜕𝑢𝑧

𝜕𝑡
= −

𝜕𝑃

𝜕𝑧
+

1

𝑟

𝜕

𝜕𝑟
(𝑟𝜏𝑟𝑧) ( 1-18 ) 

where α is the Womersley number and τrz is shear stress [Pa]. For a power law fluid, this becomes: 

De
𝜕𝜏𝑟𝑧

𝜕𝑡
+ 𝜏𝑟𝑧 = �̇� ( 1-19 ) 

where De=
tch

τ
=

tch
1

f⁄
 is the Deborah number, where tch is the characteristic relaxation time of the fluid as 

defined by the time taken for the stress vs strain rate plot of the fluid to reach its asymptotic value [s], 

τ  is the characteristic time of the flow, the cycle time, [s], and f is the pulse frequency [Hz] [56]. 

Solving this ordinary differential equation with harmonic solutions for pressure, velocity and shear stress 

gives the resulting equation for the unsteady component of the velocity profile, which is [32]: 

[𝑢𝑧(𝑟, 𝑡)𝑢𝑛𝑠𝑡𝑒𝑎𝑑𝑦]
𝑛𝑜𝑛−𝑁𝑒𝑤𝑡

= ℜ [
𝑖𝜔

𝜌
(1 −

𝐽0 (𝛼∗𝑖
3

2⁄ 𝑟
𝑎)

𝐽0 (𝛼∗𝑖
3

2⁄ )
) 𝑃𝑛𝑒𝑖𝑛𝐻𝜔𝑡] ( 1-20 ) 

where α*=α√
ω(1+iDe)

ν
=ω√(1+iDe) is the complex Womersley number. 

Combining this solution with the steady solution yields the complete velocity profile equation for a 

power-law fluid in a pulsatile flow regime: 

𝑢𝑧(𝑟, 𝑡) = (−
1

2
𝑃0

1

𝑘𝐿
)

1
𝑛⁄

(
𝑛

𝑛 + 1
) [𝑅

𝑛+1
𝑛 − 𝑟

𝑛+1
𝑛 ] + 𝑅𝑒 [

𝑖𝜔

𝜌
(1 −

𝐽0 (𝛼∗𝑖
3

2⁄ 𝑟
𝑎)

𝐽0 (𝛼∗𝑖
3

2⁄ )
) 𝑃𝑛𝑒𝑖𝑛𝐻𝜔𝑡] ( 1-21 ) 

This section outlined the theoretical flow response of a pulsatile system to a known unsteady pressure 

gradient. The derived theoretical velocity profile equations provide a basis for comparing the response 

of the test system to the measured axial pressure gradients in the rigid and compliant cases. The 

presence of compliance in the system alters the axial pressure gradient, so the theoretical profiles of the 

rigid and compliant cases are expected to differ. This difference is expected to be particularly 
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pronounced when highly compliant vessels such as the aorta are being considered. The next section 

outlines the theory behind the compliant function of the aorta and its clinical significance.  

1.5 Aorta function 

There have been many numerical and experimental investigations into pulsatile flows through rigid 

tubes [35], [37], [39], [57], but these are ultimately limited in their physiological relevance because in 

vivo, blood interacts with compliant arteries. This compliant response is particularly pronounced in the 

aorta, which expands to 120-160% of its end diastolic volume [53] during systole and stores 

approximately 50% of the stroke volume [15].  

1.5.1 Elastic response 

The amount of expansion is determined by the intrinsic and operative distensibility of the tissue [58] as 

well as the difference between the pulse pressure generated by the LV and the pressure surrounding the 

aorta, the transmural pressure. Typical aortic distensibility values range from approximately 1.33 - 8.90 x 

10-3 mmHg-1 [59], [60] depending on the person’s age and health. Although the physical meaning of 

distensibility is percent expansion per mmHg of internal fluid pressure, the literature [59]–[61]most 

commonly represents it in units of mmHg-1 so that is the unit that will be adopted in this thesis. During 

diastole, the aorta recoils, inducing forward flow of blood to the periphery. This expansion-recoil 

response of the aorta is thought to serve the primary purpose of dampening out pressure fluctuations 

from the heart’s ejection in order to sustain nearly constant peripheral blood flow [62] which prevents 

damage to the peripheral vessels [63] and insufficient organ perfusion [64]. During systole, the heart 

ejects against the resistance of the body’s vasculature which is essentially an incompressible column of 

blood. The aorta expands to make room for the stroke volume and stores some of the ejection energy as 

elastic energy. When the aorta recoils, the pressure increase creates the pressure gradient required to 

maintain forward blood flow to the periphery [15], [64]–[66].  

The elastic response of the aorta is theoretically characterized by Windkessel theory, which models the 

aorta as a capacitor in parallel with a resistor representing the peripheral vessels [15]. Windkessel 

theory has been investigated using two-element, three-element and four-element models [65] which 

have been applied through the use of pulse contour wave analysis wherein in vivo central aortic 

waveforms are derived using generalized transfer functions of peripheral waveforms [67]. These models 

and corresponding analysis make the assumption of simultaneous pressurization of all points in the 

system and therefore fall short in being able to account for wave propagation effects or independent 

local changes in aortic compliance [65], [67].  
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1.5.2 Wave propagation 

In reality, aortic compliance has a significant impact on pressure wave propagation effects in vivo so 

variations in aortic compliance are widely recognized as having a significant impact on overall 

cardiovascular health [67]–[69]. Aortic stiffening has been associated with cardiovascular diseases [70] 

such as hypertension [58], [67], [71], coronary artery disease [58], [63], [72], left ventricular hypertrophy 

[63], stroke, heart attack and organ damage [71]. A few metrics are used to clinically assess aortic 

health. The first is the speed at which pressure waves propagate through the aortic tissue, known as 

pulse wave velocity (PWV). PWV is defined by the Moens-Korteweg equation as [73]: 

PWV = √
𝐸ℎ

𝐷𝜌
 ( 1-22 ) 

where E is the Young’s modulus of the tissue [Pa] and h is the vessel wall thickness [m]. PWV is dependent 

on the geometry of the aorta and the Young’s modulus of the tissue. It is a clinically significant marker of 

cardiovascular health because it provides information about overall vascular resistance and about the 

impact of pressure wave transmission speed on hemodynamic conditions.  

A large PWV indicates a large Young’s modulus and therefore stiff aortic tissue. Stiffness reduces the 

amount of stroke volume that can be stored during ejection and therefore increases the amount of 

energy the heart has to expend to overcome the high inertial forces of the vascular afterload. This 

manifests in an elevated pulse pressure and, over time, the development of pathophysiology associated 

with heart disease [64].  

In addition to aortic stiffness increasing overall vascular resistance, changes in aortic compliance induce 

changes in systemic pressure waveforms and therefore flow conditions. In a body with a healthy 

compliant aorta, there exists a steep stiffness gradient between the aorta and peripheral vessels. 

Stiffening of aortic tissue decreases this stiffness gradient, and since the aorta stiffens much quicker 

than the peripheral vessels [74], stiffness gradient decreases with age [75] and often reverses[59]. 

Typical values of PWV for various age groups [59], [76] are presented in Table 1-2 to provide a basis for 

evaluating the mock aorta used in this investigation. 

Table 1-2: Average pulse wave velocity (PWV) values by age group 

Age [yrs] 13 – 17 20 – 29 30 – 39 40 – 49 50 – 59 60 – 69 70 + 

PWV [m/s] 5.1 – 5.2 6.2 ± 0.7 6.7 ± 1.0 8.8 ± 1.9 9.5 ± 1.8 12.8 ± 3.9 13.8 ± 5.3 
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The PWV of the aorta has a significant impact on the shape of central aortic waveforms, which are 

interpreted as a summation of the forward traveling pressure pulse from the heart’s ejection and a 

backward traveling wave that is reflected from peripheral sites of vessel impedance mismatch [64], [75], 

[77]–[79]. As such, the overall pressure waveform is most commonly analyzed using frequency domain 

analysis which describes the pressure wave as a summation of sinusoidal harmonic components [77]. 

Investigations have found that using Fast Fourier transform (FFT) filtering or zero-phase filtering with 

cutoff frequencies between the 6th and 15th harmonics adequately distinguishes the features required to 

perform central aortic waveform assessment [77], [80]–[83].

1.5.3 Central aortic pressure waveform analysis 

In addition to the key features of a central aortic pressure waveform discussed in Section 1.2, wave 

reflections introduce other important features. While the systolic peak is the global maximum of the 

pressure waveform, reflected waves introduce a second local peak pressure. The anacrotic notch, an 

inflection point that marks the arrival of the reflected wave, identifies the location of this reflected 

wave. The relationship between the incident and reflected wave is clinically used to assess aortic and 

overall cardiovascular health. The parameter commonly used to do such assessment is central 

augmentation index, cAIx, calculated as: 

𝑐𝐴𝐼𝑥 =
𝑃2 − 𝑃1

𝑃𝑠 − 𝑃𝑑
=

𝑃2 − 𝑃1

𝑃𝑝
 ( 1-23) 

where P1 is the first occurring peak and P2 is the second occurring peak. 

Central aortic pressure waveforms are typically classified into one of three categories: Type A, Type B or 

Type C based on the relationship between the incident and reflected wave and corresponding value of 

cAIx [81], [84]. This is referred to as Murgo’s classification scheme. Labeled diagrams of each of these 

waveform types are shown in Figure 1-6, Figure 1-7 and Figure 1-8.  
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Figure 1-6: Labelled plot of Murgo's Types A central aortic pressure waveform [85] 

 

Figure 1-7: Labelled plot of Murgo's Types B central aortic pressure waveform [86] 
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Figure 1-8: Labelled plot of Murgo's Types C central aortic pressure waveform[85] 

Each of these waveform types have unique characteristics that are associated varying degrees of cardiac 

performance. Type C waveforms represent the healthiest, most compliant case so it will be discussed 

first. Type C waveforms are characterized by a peak systolic wave occurring in early systole, followed by 

a well-defined reflected wave [81], resulting in a cAIx < 0. This indicates a slow traveling reflected wave 

which is characteristic of a young patient with a healthy, compliant aorta. Due to the dampening effect 

of the compliant aorta, the reflected wave arrives back at the heart during diastole [48]. This assists 

coronary perfusion which is imperative for maintaining healthy cardiac tissue. It also helps maintain 

relatively low systolic and pulse pressure values, as shown in Figure 1-6. Type B waveforms are 

characterized by an early systolic reflected wave followed by a late systolic peak, resulting in a cAIx 

between 0 and 12 [81]. When compared to Type C waveforms, Type B waveforms have slightly elevated 

systolic pressures due to the early arrival of the reflected wave slightly augmenting systolic peak 

pressure. Type A is similarly characterized by a reflected wave that occurs in early systole followed by a 

systolic peak occurring in late systole. However, for a type A waveform, cAIx > 12. This is typical for 

older patients whose aortas have high PWV, resulting in a fast moving reflected wave. In this case, the 

reflected wave arrives back at the heart during early systole causing it to significantly augment the 

forward traveling wave. This results in elevated afterload and therefore greater workload on the heart. 

This increased systolic load is often also associated with prolonged systolic duration, which can impair 

diastolic relaxation [86]. Additionally, a strong relationship has been found between stiffness gradient 
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and aortic reverse flow; low or reverse stiffness gradients have been associated with increased flow 

reversal in the aorta and increased risk of stroke [70]. It has been suggested that this is a consequence of 

systolic flow suppression due to the early arrival of the reflected wave [70]. 

There has been a great deal of clinical investigation into wave propagation effects in vivo [78], and into 

experimental investigations of flow fields through compliant phantoms in low α regimes [50], [51], [54], 

but, to the author’s knowledge, there has been little experimental investigation into controlled changes 

in aortic compliance within a physiological range in an ex vivo environment. The impact of such 

compliant response on peripheral flow fields and upstream pump performance has also not been 

evaluated.  

1.6 Research objectives  

This research sought to understand the impact of introducing a compliant mock aorta into an EVHP test 

system on the pressure waveforms, peripheral flow fields, and on the work done by the pump. To 

accomplish this objective, a fundamental understanding of the fluid mechanics involved in a pulsatile 

flow interacting with compliant vessels, in both Newtonian and non-Newtonian flow regimes, was 

required. Therefore, the first experiment established a fundamental case by comparing the downstream 

flow fields and pressure waveforms obtained in a EVHP analog system with a compliant tube to those 

obtained with a rigid tube. This was undertaken using a peristaltic pump which delivered a known stroke 

volume at a fixed rate. In this way, the effect of compliance in a pulsatile flow regime could be 

determined in a well-defined, reliable system. The potential impact of non-Newtonian effects in such an 

ex vivo environment could also be discovered to determine whether or non-Newtonian exploration is 

warranted in future experiments.  

After establishing this fundamental case which quantified the phenomena of the fluid mechanics 

involved and established an experimental methodology, a more complex physiologically accurate case 

was explored. This case employed the use of a commercial ventricular assist device (VAD) (Thoratec® 

Corporation) to generate a simulated contraction-relaxation cycle. The VAD delivered a fixed stroke 

volume at a variable rate that was dependent on the afterload conditions of each individual experiment 

since the preload conditions were fixed. This more accurately reflected in vivo conditions, which respond 

to changing hemodynamic conditions, but made isolated control over variables difficult. The objectives 

of this case were aimed at understanding the energy requirements on the VAD, the analog heart, when 

compliant tubing was introduced as compared to the rigid case. In this way, this experiment sought to 
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provide experimental verification of Windkessel theory and corresponding clinical theory about the 

effect of PWV on cardiac workload in the context of their potential application in the EVHP system. 

Central aortic pressure waveforms as well as peripheral flow fields were used to quantify the impact of 

compliance on flow conditions and pump performance.  

1.7 Content & outline of thesis 

The content of this thesis is organized into five additional chapters. Chapter 2 provides a detailed 

explanation of the two experimental setups used for this investigation. In addition, it includes a detailed 

overview of the design and manufacturing procedure involved in making the compliant tube used for 

both experiments, as well as an overview of the optical measurement technique used to obtain flow 

field data. Chapter 3 outlines the processing methodology used to obtain results from each experiment. 

Chapter 4 presents the results obtained from the first experiment. It investigates the impact of 

compliance and non-Newtonian effects in the system subjected to the well-controlled pulsatile flow 

from a peristaltic pump. Chapter 5 presents the results obtained from the second experiment. It 

compares system performance parameters of a rigid and compliant mock aorta test section subjected to 

the physiological pulsatile flow from a VAD. Finally, Chapter 6 outlines conclusions that can be drawn 

from the results presented in previous chapters and proposes directions for future research. 
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Chapter 2. Experimental Setup 

The general approach to this experimental setup was to simulate the left side of the EVHP system in 

order to facilitate testing of tubing compliance on downstream flow fields and upstream pump 

performance. The basic components of the setup were a pump, a compliant test section and an imaging 

section1. The performance of the compliant test section was compared with that of the rigid test section 

through monitoring of pressure waveforms, tube expansion response, and peripheral flow fields.  

The fluid mechanics involved in a physiological flow field with compliant vessels are complex due to 

wave propagation effects, so two different versions of this analog system were used to establish both a 

fundamental case and a physiological case. The first experiment involved the use of a peristaltic pump to 

generate a well-controlled low flow rate pulsatile flow and the second utilized a VAD to generate a 

physiological pulsatile flow. The goal of the first setup was to obtain a fundamental case of compliant 

tube response in a simplified pulsatile flow regime and compare these behaviors using Newtonian and 

non-Newtonian fluids. Since the peristaltic pump delivered a fixed stroke volume at a fixed rate, 

quantification of system behavior was reliable and provided a good basis for verifying future results 

from the physiological flow. The second setup was then able to address a more complex physiological 

flow environment with the goal of understanding the impact of a compliant mock aorta on peripheral 

flow and pump performance.  

This chapter provides a detailed outline of both experimental setups. The first three sections address 

those aspects that were common to both setups: the mock aorta, the Camera 1 setup and the method 

of flow field acquisition, PIV. The final two sections offer detailed descriptions of both experimental 

setups. 

                                                           
1 Detailed drawings of the imaging section base and lid are provided in Appendices A-2.1 and A-2.2 
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2.1 Mock aorta development 

Previous investigations have established that silicone rubbers can demonstrate similar elastic response 

as human arteries under physiological pressure conditions [87]. Off-the-shelf silicones are commonly 

used to mimic small arterial properties but for the purposes of this investigation, more compliant 

response was required so a two-part silicone (Ecoflex® 00-50, Smooth-On Inc.) was chosen. The extent 

to which silicone tubes can reflect in vivo response is largely based on tube thickness and diameter, so a 

custom-made tube was designed and molded in-house to reflect in vivo aortic compliant conditions in 

for use in this experiment. The tube design and molding process are outlined in the following sections.  

2.1.1.1 Tube design 

The mock aorta, shown in Figure 2-1, was designed to accommodate the range of typical in vivo 

distensbility values reported in Section 1.5.1. The material and geometric properties are summarized in 

Table 2-1. The length of the tube was selected using an average length across all aortic sections based 

on geometric data obtained from CT images reported by [53] scaled to fit the tube diameter used in the 

experimental setup which was chosen to ensure consistency with the current EVHP experiment. In 

future experiments, this could be scaled to accommodate other geometries. Given the material 

properties of the base silicone material, the desired distensibility range and expected Pp from the VAD, 

an optimal wall thickness was calculated using distensibility equations [53], [60]: 

𝑑 =
𝐴𝑚𝑎𝑥 − 𝐴𝑚𝑖𝑛

𝐴𝑚𝑖𝑛
×

1

𝑃𝑝
= ⋯ =

∆𝐷

𝐷
×

1

𝑃𝑝
 ( 2-1 ) 

𝑑 =
1

𝐸 (
ℎ
𝐷

)
 

( 2-2 ) 

where d is tube distensibility [mmHg-1] and Amin and Amax are the minimum and maximum cross 

sectional areas of the tube, respectively [mm2]. The tube was designed to have a flange with four 

clearance holes on the top, as shown in Figure 2-1(a) to facilitate connection to the bracket that 

connected the experiment to the optical rail. The flange was connected to a square piece with threaded 

holes that were mounted to the bracket. A square sleeve was placed on the other side of the flange to 

provide extra security to the connection2. 

                                                           
2 Detailed drawings of the connector and sleeve are provided in Appendices A-2.6 and A-2.7, respectively 
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(a) (b) 
Figure 2-1: Mock aorta (a) labelled side and top view and (b) image 

 

Table 2-1: Mock Aorta Properties 

Property Value Unit 

Length  137 mm 

Inner diameter 12.7 mm 

Wall thickness 4.1 mm 

100% modulus [88] 621 mmHg 

PWV 5.1 m/s 

 



25 
 

2.1.1.2 Moulding process 

A mould was 3D printed (Form 2, Formlabs®) for manufacturing the mock aorta. The mould was 

comprised of three pieces: the base piece, side piece and center piece3. Figure 2-2 provides (a) a section 

and top view of the mould assembly as well as (b) a labelled image of the mould. The inside surface of 

the base and side pieces formed the outside diameter of the tube and the center piece formed the 

desired inner diameter, as depicted in Figure 2-2. The mould was assembled by first fitting the side piece 

into the groove at the bottom of the base piece, shown in Figure 2-2(b). Then, the center piece was 

inserted in the space between the two previously assembled pieces. Included in the bottom of the base 

piece was a groove, visible in Figure 2-2(a), into which the center piece was fit to ensure its proper 

alignment.  

The moulding process involved several steps. First, the mould was sprayed with a release agent (Easy 

Release 200, Smooth-On Inc.) and left to dry for 30 minutes. Next, one-third of the required silicone was 

mixed and degassed within the 18-minute pot life of the silicone. Once the silicone was degassed and 

the mould release agent was dry, the silicone was poured into the top of the mould. A stirring stick was 

used to puncture any visible bubbles generated during the pouring process. To aid in the removal of air 

bubbles an air bleed line, shown in Figure 2-2(b), was included in the base piece. This first third of the 

silicone was left to partially cure for 90 minutes to minimize the potential for bubbles developing with 

subsequent pours. This process was repeated for the remaining 2/3 of required silicone and then the 

tube was left to cure of 3 hours following the final pour. 

                                                           
3 Detailed drawings of each of these components are provided in Appendices A-2.3, A-2.4 and A-2.5 
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(a) (b) 

  

(c) (d) 
Figure 2-2: 3D printed mould (a) dimensioned section view, (b) image (side view) (c) 3D rendering (isometric 

view) and (d) image (isometric view) 
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2.2 Mock aorta imaging setup 

In both experiments, a camera (Basler pioneer®, Basler Vision Technologies) with a resolution of 

648 x 488 pixels was used to acquire images of the mock aorta that were used to quantify the tube’s 

compliant response over multiple pulse cycles. A labelled schematic of the optical setup is shown in 

Figure 2-3, in which the camera is labelled Camera 1. The camera was positioned to image a field of view 

(FOV) at the approximate axial mid-point of the tube. All results were expressed as percent expansions, 

so the size of the field of view in millimeters was not calibrated. Instead, an image was taken prior to 

beginning the experiment of the tube in its unloaded position and the tube width was calculated in 

pixels. This provided the relaxed diameter required to calculate percent expansion without requiring a 

pixel to millimeter conversion factor. The camera frame rate was controlled by Function Generator 1 

which was set to output a 113 Hz square wave function for the peristaltic pump experiment and a 210 

Hz square wave function for the VAD experiment. This output signal was split to both trigger the camera 

and be collected by the DAQ (data acquisition) system used in the setup. The image acquisition was 

triggered by in-house software (LabWindows CVI, National Instruments) on Computer 1.  

 

Figure 2-3: Labelled schematic of Camera 1 optical setup 

2.3 Particle imaging velocimetry (PIV) 

The technique used to obtain the downstream flow fields in this investigation is time-resolved PIV which 

is a method of flow visualization that is used to obtain instantaneous fluid velocity measurements [89]. 

A standard PIV setup includes tracer particles, a laser and a high-speed camera. The flow is seeded with 

small, neutrally buoyant tracer particles that are assumed to have minimal inertia such that they only 

follow the flow, not affect it. A high-speed camera is focused on a small field of view in the center of the 
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flow and a laser illuminates the tracer particles. As the fluid moves, the camera triggers simultaneously 

with the laser pulses to capture images of the illuminated particles. An alternative to traditional PIV is 

shadowgraph PIV [90], which uses an LED backlight instead of a laser sheet to illuminate the particles. A 

basic schematic of a shadowgraph PIV setup is displayed in Figure 2-4. The LED, situated behind the flow 

channel, illuminates tracer particles in a thin focal plane in the center of the channel. The high-speed 

camera captures images of the illuminated particles from a small field of view in the focal plane. 

Shadowgraph PIV was employed in this investigation for the sake of experiment portability and for 

overcoming the limited access that comes with introducing a laser light sheet into the system.  

 
Figure 2-4: Labelled schematic of basic components of shadowgraph PIV setup 

With an appropriate seeding density, the images can be processed using a cross-correlation algorithm to 

determine average particle displacement over a specific region in the image from frame to frame. With 

known displacement and known time, velocity is calculated. PIV is advantageous for studying pulsatile 

flow because it is non-intrusive and capable of capturing a complete flow field instantaneously at several 

instances in time so the time-variant behavior of the fluid can be observed and quantified. For this 

reason, PIV is commonly used to study velocity distributions in cardiovascular flow [49].  

Several experimental investigations have been performed to study pulsatile flow through compliant 

phantoms [50], [51], [53], [54], [91], [92], including simulated stenosed arteries [61], [93]. Additionally, 
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PIV has been used to study flow dynamics in the LV [94] and around the aortic valve [95]–[97]. In this 

study, PIV is appealing because time-resolved velocity data provides the opportunity for understanding 

the time-dependent changes in flow behavior and enables the understanding of changes in a fluid’s 

kinetic energy over time. PIV was used in both experimental setups used during this investigation but 

different variations of the setup had to be employed to accommodate the vastly different flow rates in 

each case. Detailed descriptions of both optical setups are included in the following sections which 

describe the components and procedures involved in both experimental setups.  

2.4 Peristaltic pump experimental setup 

The focus of this experimental setup, shown in the schematic in Figure 2-5 and the digital image in 

Figure 2-6, was to investigate the flow fields downstream from a mock aortic test section. Velocity 

distributions were compared for a Newtonian and non-Newtonian case using both rigid and compliant 

test sections. Deionized water and a 0.1 wt.% aqueous solution of polyacrylamide were used for the 

Newtonian and non-Newtonian case, respectively. For the purposes of this investigation, polyacrylamide 

was the most reliable blood analog given the confidence in preparation procedure and the nature of the 

optical techniques used. The polyacrylamide solution was prepared with commercial anionic 

polyacrylamide powder (BASF SE, Germany) using the procedure outlined in [20]. The pulsatile flow was 

generated using a peristaltic pump (L/S® 07523-80, Masterflex®), which used rollers to deliver a fixed 

stroke volume at the rate set by the pump. The pump has four rollers, so the pulse rate of the flow was 

equal to four times the speed of the pump.  

The pressure data from the transducers (Edwards® Truwave Disposable Pressure Transducers, Edwards 

Lifesciences Corporation), labeled PT001 and PT002, along with the trigger signals of both cameras were 

collected using the same DAQ to facilitate coupling of pressure, velocity and tube response results. Once 

the pulse rate of the pump was set, acquisition of pressure data was started using in-house code on 

Computer 3 and the data was collected for 15 seconds at a sampling rate of 1000 Hz. Within that time 

period, Camera 1 was triggered as discussed in Section 2.2 and Camera 2 was triggered by turning on the 

output channel of Function Generator 2. Camera 1 collected 800 images of the tube at a frame rate of 

113 Hz and Camera 2 collected 300 images in the middle of the imaging section at a frame rate of 113 

Hz. This experimental procedure was repeated for nine pulse frequencies between 1.00 and 2.33 Hz 

(60 – 140 BPM). 
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Figure 2-5: Labelled schematic of peristaltic pump experimental setup 
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Figure 2-6:Labelled image of peristaltic pump experimental setup  

2.4.1 Camera 2 optical setup 

The velocity fields were captured using Camera 2 (SP-5000M-PMCL-CX; JAI Inc.) with a resolution of 

2000x1800 pixels that captured 300 images at a collection rate of 113 fps. The flow was seeded with 18 

m borosilicate glass microspheres (ASTM C169, Potters Industries Inc.) with bulk density of 0.49 gcm-3. 

A 90 mm SLR lens set at f#2.8 was used to image a 24.3 x 12.7 mm field of view in the middle of the 

imaging section with a resolution of 0.014 mm/pixel, an average particle size of approximately 1.3 pixels 

and a focal plane thickness of approximately 0.5 mm. A low f# was used to define the region of interest 

on the center plane of the imaging section. The custom made imaging section4 was filled with deionized 

water for improved refractive index matching. Images were collected in back-illumination/shadowgraph 

mode using a high current green 4”x4” side-fired LED backlight (BX0404-520nm, Advanced Illumination 

                                                           
4 Detailed drawings of the imaging section are provided in Appendices A-2.1 and A-2.2 
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Inc.). The camera was controlled by Function Generator 2 (TDS 2024B, Tektronix Inc.) and the trigger 

signal was fed to the DAQ system used to collect the pressure data.  

2.5 VAD experimental setup 

The focus of this experimental setup, shown in Figure 2-7 and Figure 2-8, was to investigate the impact 

of compliance on the peripheral flow and pump performance using a mock aorta in a physiological 

cardiovascular flow. The physiological flow was generated using a VAD, which produced a pulsatile cycle 

akin to that seen in vivo at a pulse rate that varied depending on the afterload conditions of the 

experiment5. The mock aorta was surrounded by a custom-made air pressure chamber that was used to 

control the magnitude of compliant response. This compliant response was imaged using the optical 

setup described in Section 2.2. The pressure data from the transducers PT001, PT002 and PT003, along 

with the 210 Hz and 1000 Hz trigger functions of Camera 1 and Camera 2, respectively, were collected 

using the same DAQ to facilitate coupling of pressure, velocity and tube response results. In addition, 

the trigger signal of Camera 2, which was controlled by output channel 2 of Function Generator 2, was 

collected by the DAQ. This set of experiments was performed with a rigid test section and with the 

compliant mock aorta discussed in Section 2.1. The two experimental conditions that were altered were 

the afterload pump speed (ωAl pump) and, for the compliant mock aorta case, the chamber pressure (Pch). 

The VAD was turned on first, following immediately by the afterload pump which was set to the desired 

speed for the given experiment. After giving the VAD a few seconds to adjust its pulse frequency 

accordingly, pressure data acquisition was initiated for 15 seconds at a sampling rate of 4000 Hz. Then, 

within the 15 seconds, Camera 2 acquisition was initiated by turning on output channel 2 of Function 

Generator 2 and Camera 1 acquisition was initiated by turning on the trigger function channel of 

Function Generator 1 and beginning image acquisition from the software on Computer 1. This process 

was repeated for two mock aorta chamber pressures, 103 and 155 mmHg, and 4-5 afterload pump 

speeds depending on how much tube distension the chamber could hold before the tube made contact 

with the wall. Varying ωAl pump altered the back pressure conditions of the system, which impacted 

systolic ejection time and pulse pressure, while varying Pch allowed control over the magnitude of 

compliant response. 

                                                           
5 The VAD was mounted to the optical rail using a custom-made mount. A detailed drawing of this mount is 
provided in Appendix A-2.10. 
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Figure 2-7: Schematic of VAD experimental setup 
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Figure 2-8: Labelled image of VAD experimental setup 

2.5.1 Ventricular assist device (VAD) 

A diagram [98] and an image of a VAD used to generate the simulated cardiac flow in this experiment is 

shown in Figure 2-9(a) and (b), respectively. A VAD is a prosthetic ventricle comprised of a polyurethane 

pumping sac, and two Bjork-Shirley tilting disc valves, one for inflow and one for outflow. Expansion and 

compression of the sac is controlled by a pneumatic drive console which alternatively applies positive 

and vacuum pressure to compress and expand the sac, respectively [99].  
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(a) (b) 
Figure 2-9: VAD (a) diagram [98] and (b) labelled image 

In vivo, the vacuum pressure and left atrial pressure drive flow through the inlet valve into the sac. 

Clinically, the vacuum pressure is set at -10 to -30 mmHg on the drive console and left atrial pressure is 

approximately 4-12 mmHg, resulting in a net filling pressure gradient of 14-42 mmHg. The Hall effect 

cord shown in Figure 2-9(a) sends a signal back to the controller when the sac is full, indicating that is it 

time for ejection. Under ideal conditions, systolic ejection is set to last 30% of the cycle, and filing is set 

to 70% of the cycle [98]. For this experiment, the VAD was operated in volume (full-to-empty) mode 

[99], wherein the full 65 mL stroke volume was ejected with every beat, resulting in a variable pulse rate 

depending on the afterload conditions. 

The filling and ejection times are dictated by the filling pressure gradient and exit pressure gradient, 

respectively, as shown in Figure 2-10, adapted from [98]. For this experiment, the preload reservoir was 

set approximately 360 mm above the inlet valve of the VAD, generating approximately 26 mmHg of 

filling pressure due to static pressure head. This coupled with the 10-15 mmHg of vacuum pressure 

being applied created a filling pressure gradient of approximately 40 mmHg and therefore a fixed filling 

time of 0.41 seconds for this set of experiments.  
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The ejection time of the VAD is determined by the difference between the maximum driveline pressure 

and the arterial pressure [98]. In the case of this experiment, since the driveline pressure was fixed, the 

ejection time depended on the amount of back pressure generated by the afterload pump, as dictated 

by its speed which was varied throughout this experiment. Due to the fixed nature of the driveline 

pressure and the configuration of the setup, the VAD produced hypertensive conditions in this 

experiment. While systolic pressures were elevated with respect to typical in vivo values, experiments 

were performed to study a range of pulse pressures, both high and within a physiological range. The 

investigation was focused on determining the impact of mock aortic compliance on the system 

performance, so the extreme conditions of the setup only made the differences between the rigid and 

compliant cases more discernible but should not have an impact the conclusions drawn from the results.  

 

Figure 2-10: VAD ejection and filling times as a function of inlet and outlet pressure gradients [98] 

2.5.2 Pressure chamber design & regulation 

To facilitate control over the magnitude of compliant response, the mock aorta was contained within an 

air pressure chamber, shown in Figure 2-11(a) & (b). The chamber was 3D printed (Form 2, Formlabs®) in 

two parts: the base bracket and the top piece6. The base piece included a bracket that was used to 

mount the chamber onto an optical rail, and a groove in which the top piece was press-fit, as shown in 

Figure 2-11(a). Printed into the top surface of the top piece was an o-ring groove, shown in Detail A of 

Figure 2-11(a). This was done to facilitate the use of a custom-made o-ring to prevent leaking between 

the pressure chamber and the imaging section. The top piece also included a groove into which an 1/8” 

                                                           
6 Detailed drawings of the pressure chamber base bracket and top piece are provided in Appendices A-2.8 and A-
2.9, respectively 
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acrylic window could be inserted to enable viewing of the mock aorta by Camera 1. The edges of this 

window and the interface between the base and top piece were sealed with off-the-shelf silicone 

sealant. At the top inner surface of the top piece and top surface of the base piece were barbed 

connectors that were used the attach the mock aorta. To ensure security of the connection, custom 

made clamps were attached to each end. In addition to the barbed connector on the top surface of the 

base bracket, there was another one on the bottom surface to facilitate connection to the VAD outlet 

tubing. Air was delivered to the chamber through the pressure supply port on the side of the top piece 

and the pressure transducers were attached to the bracket by means of a luer lock connector printed 

onto the side of the base bracket piece. 
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(a) 

 

(b) 
Figure 2-11: Pressure chamber (a) dimensioned section view and (b) labelled image 
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2.5.3 Camera 2 optical setup 

The velocity fields were captured using a camera (Phantom® v611, Vision Research, Inc.) with a 

resolution of 1280x800 pixels that captured 1054 images at a collection rate of 1000 fps. The flow was 

seeded with 30-50 m solid glass spheres (Spheriglass 3000, Potters Industries Inc.). PIV usually requires 

the use of neutrally buoyant particles but this larger sized particle was necessary for particle resolution 

and, given the high ejection velocities involved with this experiment, these particles were deemed 

acceptable. A 105 mm lens set at f#2.8 was used to image a 9.8x12.7 mm field of view in the middle of 

the imaging section with a resolution of 0.012 mm/pixel, an average particle size of approximately 3.3 

pixels and a focal plane thickness of approximately 0.45 mm. Images were collected in back-

illumination/shadowgraph mode using a high current green 4”x4” side-fired LED backlight (BX0404-

520nm, Advanced Illumination Inc.). The camera was controlled by a function generator (TDS 2024B, 

Tektronix Inc.); the trigger signal was fed to the DAQ system used to collect the pressure data so the 

exact time stamp of each image could be known with respect to the pressure waveform.  
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Chapter 3. Data Processing Methodology 

The experiments monitored three responses: pressure, tube distension and velocity fields. After 

acquisition, the pressure data was filtered to get rid of noise in the signal. The tube response was 

captured by Camera 1 and processed using in-house intensity peak detection code (Matlab, 

Mathworks,Inc.) to find the percent expansion of the tube with respect to time. Images of the 

downstream flow fields from Camera 2 were collected as AVI files and processed using commercial PIV 

software (DaVis Imaging Software, 8.1.4, LaVision GmbH). This chapter outlines the techniques used to 

collect and process the data obtained from both experiments. 

3.1 Processing of pressure data 
Producing the pressure waveforms was a three-step process that involved: collecting the voltage data 

from the DAQ using in-house code (LabWindows CVI, National Instruments), converting the output 

voltages to pressures using in-house calibration results, and then filtering the pressure signal using zero-

phase digital filtering. As discussed in Section 2.4, for the peristaltic pump experiment the voltage data 

from the transducers was collected for 15 seconds at a sampling rate of 1000 Hz. The trigger functions 

from the output channels of the function generators controlling the cameras’ frame rates were also 

captured by the DAQ. An example output voltage data set is shown in Figure 3-1(a). Close-up views of 

the 113 Hz square wave functions controlling the frame rates of each camera are shown Figure 3-1(b) 

and (c), respectively7.  

                                                           
7 The code used to generate Figure 3-1 is provided in Appendix A-3.2 
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(a) 

  

(b) (c) 
Figure 3-1: Plot of peristaltic pump experiment voltage data from DAQ (1.67 Hz compliant case) for (a) complete 

dataset, (b) 113 Hz Camera 1 trigger function and (c) 113 Hz Camera 2 trigger function 

The same methodology was applied to processing data from the VAD experiment, but the data was 

collected at a higher sampling rate of 4000 Hz because the frame rates of both cameras were higher 

than those used in the peristaltic pump experiment. As discussed in Section 2.5, for the VAD 

experiments the DAQ captured 15 seconds of voltage data from the transducers, the 210 Hz trigger 

function controlling the Camera 1 frame rate, the 1000 Hz signal controlling the Camera 2 frame rate 

and the trigger signal controlling the initiation of Camera 2 acquisition. The trigger signal was available in 

this experiment because in this case the Camera 2 trigger signal was directly controlled by the function 

generator rather than by the software, as was the case with Camera 2 used for the peristaltic pump 

experiment. An example voltage data set from the VAD experiment is presented in Figure 3-2(a). Close-
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up views of the 210 Hz Camera 1 trigger function and of the 1000 Hz Camera 2 trigger signal and trigger 

function are shown in Figure 3-2(b) and (c), respectively8.  

 

(a) 

  

(b) (c) 
Figure 3-2: Plot of VAD experiment raw voltage data from DAQ (ωAL pump = 1235 RPM, Pch = 103 mmHg mock 

aorta case) for (a) complete dataset, (b) 210 Hz Camera 1 trigger function and (c) 1000 Hz Camera 2 trigger 
function (green) and trigger signal (red) 

The second step in processing the pressure data from the transducers was to convert the voltages into 

pressures. For both experiments, this conversion was done using in-house calibration data collected 

prior to beginning the experiment. These calibration values were obtained by collecting voltage data 

from the transducers under five known pressures, as summarized in Table 3-1. Output voltage was 

plotted as a function of pressure to obtain the slope and intercept of the resulting linear relationship. 

This plot for both transducers used in the experiment is shown in Figure 3-3 along with derived linear 

                                                           
8 The code used to generate Figure 3-2 is provided in Appendix A-3.2 
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equations. The slopes and intercepts of these relationships were used to convert output voltage data 

from the experiments into pressure values. 

Table 3-1: Summary of Pressure Transducer Calibration Data 

Water Height 

[m] 
Pressure [mmHg] 

Mock Aorta Inlet 

Transducer Voltage [V] 

Imaging Section Outlet 

Transducer Voltage [V] 

0 0 0.065 0.019 

0.5 37 0.615 0.563 

1.0 73 1.156 1.104 

1.5 110 1.702 1.651 

2.0 147 2.252 2.198 

2.5 184 2.801 2.740 

3.0 220 3.348 3.291 
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(a) 

 

(b) 
Figure 3-3: Plot of pressure transducer calibration data for (a) mock aorta inlet transducer and (b) imaging 

section outlet transducer 

After converting the output voltages to pressure values, the pressure data was filtered to eliminate 

noise from the signal. This was done using a zero phase digital filtering technique (Matlab, Mathworks, 

Inc.)9. For the peristaltic pump experiment, 4 harmonics of the waveform were sufficient to provide an 

accurate representation of the pressure response. An example of a filtered waveform superimposed on 

the unfiltered data from the peristaltic pump experiment is shown in Figure 3-4(a) where it can be seen 

that the filtered waveform closely follows the unfiltered data. For the VAD experiment, 10 harmonics of 

the waveform were included in accordance with the literature discussed in Section 1.5.3. An example 

                                                           
9 The code that was used to perform this filtering is provided in Appendix A-3.1 
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comparing a filtered mock aorta inlet pressure waveform to the corresponding unfiltered data from the 

VAD experiment is shown in Figure 3-4 (b). The filtered pressure waveform closely follows the data 

along the anacrotic limb and accurately reflects the shapes of the incident and reflected waves. The 

filtered waveform excludes the noise generated during the valve closure event, which first occurs at 

approximately 0.42 seconds, but still clearly marks the dicrotic notch. For both experiments, the filtered 

pressure waveforms can be expressed as continuous lines due to the high sampling frequency at which 

the data was collected, and they will be expressed as such in the results presented in Chapters 4 and 5. 

 

(a) 

 

(b) 
Figure 3-4: Plot comparing raw data to filtered pressure waveforms over two normalized pump cycles for (a) the 

peristaltic pump experiment (compliant f = 1.67 Hz case) and (b) the VAD experiment (ωAL pump = 1235 RPM, 

Pch = 103 mmHg mock aorta case) 
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3.2 Processing of Camera 1 mock aorta images  

The second system behavior that was monitored is compliant tube expansion response. Collecting 

images of the tube throughout the pumping cycle at a frequency approximately one hundred times that 

of the pulse frequency allowed visualization of the tube response to pressure variations in the system. 

An annotated Camera 1 image obtained from the peristaltic pump experiment is presented in Figure 3-5. 

Camera 1 was focused on the side edges of tube; a black background was set behind the tube to 

enhance contrast and allow sharp visualization of the tube edges. During image processing, the tube 

width was calculated at a location in the middle of the image, shown as a blue line in Figure 3-5. 

 

Figure 3-5: Raw image of mock aorta obtained from camera 1 

All collected images were processed using an in-house peak intensity detection code (Matlab, 

Mathworks, Inc.) that ran through all of the Camera 1 images tracking the locations of peak intensity 

changes, dI, across the width of the images, x at the axial location denoted by a dashed blue line in 

Figure 3-5. An example plot of x vs. dI is provided in Figure 3-610. The black lines in the figure represent 

the locations of highest contrast in the image, which occur at the tube edges. The red line is the 

minimum intensity threshold which ensures that if there are additional peaks in the image due to noise, 

they are not picked up in the code. The red squares confirm that the correct peak has been detected. 

Once the correct tube edges were properly detected, the distance between the two locations was 

                                                           
10 The peak intensity detection code used to generate Figure 3-6 and calculate tube distension from Camera 1 
images is provided in Appendix A-3.13 
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calculated. The value was then expressed as a percent expansion, ∆D/D, by dividing the calculated value 

by the pixel width of the tube in its unloaded position, a value that was obtained prior to beginning the 

experiment. This processing methodology was the same for both experiments except for the difference 

in the Camera 1 frame rate at which the images were collected. 

 
Figure 3-6: Plot of maximum intensity peak tracking over width of Camera 1 image showing the locations of 

intensity peaks (black lines & red squares) and minimum intensity threshold (red) 

In order to prevent pixelation of the results, the code included a curve fitting algorithm that allowed 

detection of the sub-pixel x locations of each intensity peak. A plot comparing the pixelated results to 

the curve-fitted sub-pixel results is shown in Figure 3-7. This figure demonstrates that in cases where the 

distension values are small, without the sub-pixel curve fitting algorithm, the calculated values of tube 

distension would snap to whole pixel values rather than represent the actual shape of the tube 

distension waveform.  

 

Figure 3-7: Plot comparing pixelated (blue) and curve-fitted sub-pixel (red) tube distension results 
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3.3 Processing of flow field images 

The third response that was monitored during the experiment is the peripheral, or downstream, flow 

field. The AVI files that were generated from the collected Camera 2 images were processed using 

commercial PIV software (DaVis Imaging Software, 8.1.4, LaVision GmbH). First, the images were 

inverted and a geometric mask was applied to constrain the image to the desired field of view. 

Decreasing multi-pass time series cross-correlation was applied to generate the vector map. For the 

peristaltic pump experiment, the first two passes were 256x256 square windows with 50% overlap and 

the third and fourth passes were 16x16 square 4:1 ellipsoid windows with 50% overlap. For the VAD 

experiment, the first three passes were 256x256 square windows with 50% overlap and the last three 

passes were 32x32 4:1 ellipsoid windows with 75% overlap. In both experiments, the ellipsoid shape was 

used in the final passes to improve spatial resolution in the near-wall region. After applying the 

processing scheme, vector maps were obtained, as shown in Figure 3-8 (a), (b), (c) and (d)11. Figure 

3-8(a) & (b) are vector fields obtained from the peristaltic pump experiment during the acceleration and 

deceleration phase of the cycle, respectively. Figure 3-8(c) & (d) are vector fields obtained from the VAD 

experiment during systole and diastole, respectively. Note the different velocity scales in the VAD 

systole and diastole vector maps. All four vector maps are normalized by the width of the channels in 

both the radial and axial directions and are displayed from y/D = 0 − 0.5 in the axial direction. 

  
(a) (b) 

  
(c) (d) 

Figure 3-8: Vector field images with a background color map of velocity magnitude obtained from processing 
Camera 2 images from (a) the peristaltic pump experiment (systole), (b) peristaltic pump experiment (diastole), 

(c) VAD experiment (systole) and (d) VAD experiment (diastole) 

                                                           
11 The code used to generate Figure 3-8 is provided in Appendix A-3.4 
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In both experiments, the vector arrays produced by DaVis® were imported into Matlab to obtain 

centerline velocities and velocity profiles. Centerline velocities were averaged over a region that 

spanned the full axial length of the image and approximately 70 pixels on both radial sides of the image 

center. For the peristaltic pump results, averaging over a region rather than taking the value at one 

location did not make much of a difference to the obtained value of centerline velocity due to the 

uniform nature of the flow fields in the axial direction. However, for the VAD, there was often a 

significant presence of secondary flows and therefore non-uniformities in the axial direction during 

diastole. Therefore, averaging vector values over a region was important for obtaining reliable VAD 

centerline velocity results.  

Similarly, profiles of velocity were obtained from these vector field results by averaging the vectors at 

each x/D location over the full axial length of the image. Since the flow was uniform in the axial 

direction, obtaining the profiles of velocity in such a manner provided reliable and repeatable results. 

Due to the non-uniformity of VAD vector fields in the axial direction, velocity profiles were not used as a 

basis for comparing those results. 

3.4 Generation of theoretical profiles of velocity 
Theoretical velocity profiles and centerline velocity plots were generated based on equation ( 1-16 ) to 

compare against the PIV data results collected from this experiment12. The Newtonian equation was 

used for both the Newtonian and non-Newtonian profiles because all shear rates were low enough that 

polyacrylamide behaved as a Newtonian fluid. The axial pressure gradient input to the equation was the 

difference between measured pressures at the test section inlet and imaging section outlet minus the 

static pressure difference between the two transducer locations, expressed in units of pascal. An 

example of the axial pressure gradient used to calculate the velocity profile for the f = 1.67 Hz compliant 

case is shown in Figure 3-9. This periodic function was decomposed into its steady and unsteady 

components using a Fourier series expansion. The steady component was found to be extremely 

sensitive to the value of static head used in the equation. Within as little as 0.05 mmHg, P0 changed by a 

factor of 10, causing the steady component to either dominate the response or disappear. This is likely 

due to small errors in the transducer measurements which caused errors in the subsequent calculation 

of axial pressure gradient. Errors in the transducer measurements are likely because they were 

                                                           
12 The code used to calculate the theoretical centerline velocity and velocity profile results is provided in Appendix 
A-3.5 
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calibrated in mmHg but the velocity profile calculations were performed in Pa; any small error in mmHg 

corresponds to a large error in pascal.  

 

Figure 3-9: Plot of axial pressure gradient (dP/dz) from f = 1.67 Hz case of peristaltic pump experiment 

In spite of the sensitivity of the theoretical velocity profiles shapes to axial pressure gradient 

measurements, the resulting phase angle between pressure gradient and velocity remained consistent 

for each tested value of static pressure. The centerline velocity was found to lead the pressure gradient 

for all pulse frequencies tested in this experiment. However, the phase angle was slightly different for 

each pulse frequency. Due to the consistency in the phase angle result for each pulse frequency, this 

phase angle was used for syncing experimental pressure and velocity measurements in the peristaltic 

pump experimental results. 

3.5 Process of syncing system performance parameters 

To interpret the relationship between pressure, tube expansion and downstream velocity, the three 

responses were synced in time. For the peristaltic pump experiment, the minimum of the pressure 

waveform was used as a reference point. It was assumed that the pressure and tube diameter minimas 

would coincide, so these two locations were synced. For the velocity results, the pressure and velocity 

responses were synced based on the theoretically obtained phase angle between pressure and velocity, 

as mentioned in the previous section. For the VAD experiment, the dicrotic notch was visible on both 

the tube distension and pressure plots so these two locations were synced. The pressure and velocity 

plots were synced by finding the index location of Camera 2 trigger signal in the raw voltage data and 

the first pressure minimum occurring after the trigger signal. The time index of this pressure minimum 

was matched with the Camera 2 image corresponding to that time stamp13. 

                                                           
13 The codes used to perform this phase syncing function is provided in Appendix A-3.7 
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3.6 Summary 

This chapter outlined the methodologies used to process the pressure waveforms, compliant tube 

distension response and peripheral velocity fields collected during this experimental investigation. The 

pressure data was processed to produce filtered waveforms which allowed interpretation of pressure 

responses in each experiment. The images collected by Camera 1 were processed to obtain percent 

expansion values of the tube throughout multiple pumping cycles to determine the nature of its 

distension in response to fluctuating pressure gradients. Images obtained by Camera 2 downstream 

from the test section were processed to obtain vector fields. Theoretical velocity plots were generated 

to compare against experimentally obtained PIV results and to calculate the phase angle between 

pressure and velocity required to sync experimental responses in the peristaltic pump experiment. The 

next two chapters discuss the processed results obtained from the peristaltic and VAD experiment and 

explore the relationship between the three responses in each case. 
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Chapter 4. Impact of Compliant Tubing on EVHP Test Flow Loop Using 

Peristaltic Pump 

 

4.1 Introduction 

Peristaltic pumps are commonly used in the medical field for applications such as heart-lung machines 

to supply controlled pulsatile flow in a physiological environment. Due the well-controlled nature of the 

stroke volume delivery, peristaltic pumps are useful tools for studying the phenomena involved in high 

𝛼 pulsatile flow regimes with compliant response. In this study, a peristaltic pump was used to provide a 

foundational study into the effect of compliance in the EVHP analog test system using Newtonian and 

non-Newtonian fluids. This was done for a range of physiological pulse frequencies: 1.00 to 2.33 Hz (60 

to 140 BPM).  

This chapter summarizes the results obtained from the f = 1.67 Hz (100 BPM) case of the peristaltic 

pump experiment. The first three sections present the experimentally obtained results for the three 

behaviors of interest: pressure waveforms, compliant tube response and peripheral flow fields. The 

following section addresses the relationship between these three responses by viewing them together 

over one pumping cycle. Following that discussion, experimentally obtained velocity profiles are 

presented and comparisons are made between the rigid and compliant case for both fluids. Additionally, 

theoretical velocity profiles are presented and compared to the experimentally obtained profiles. 

Finally, an exploration of the effect of compliance on flow behavior and pump performance with respect 

to changing pulse frequency is presented. Results from this experiment are intended to illustrate the 

impact of compliant tubing both on the downstream flow fields and on the pump performance in a 

Newtonian and non-Newtonian regime. 

4.2 Pressure response 

The obtained pressure waveforms are the first basis for comparing the system response under rigid and 

compliant test section conditions. Figure 4-1(a) and (b) compare the rigid to compliant pressure 

waveforms at the inlet of the test section for the Newtonian and non-Newtonian case, respectively. The 

phase time (t) is normalized by the cycle time ()14. All cycles have been indexed to begin at the initiation 

of the pressure pulse. For both fluids, the rigid and compliant case demonstrate consistent signals across 

                                                           
14 The code used to generate Figure 4-1 is provided in Appendix A-3.2 
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multiple cycles. Also, for both fluids the compliant case waveforms are significantly smoother than their 

rigid counterparts, implying that the introduction of compliance into the system dampens the pressure 

response and minimizes acoustic effects. In addition, the compliant waveforms peak later in the cycle 

than do the rigid waveforms, indicating that the compliant test section delays pressure pulse 

transmission through the system. There are also notable differences between the Newtonian and non-

Newtonian pressure waves in both the rigid and compliant cases. For the Newtonian fluid, the mean 

pressure is approximately the same for the rigid and compliant cases but for the non-Newtonian fluid, 

the compliant mean pressure is higher than the rigid mean pressure but the amplitude is smaller. The 

rigid Newtonian waveform has more peaks in the waveform than the rigid non-Newtonian waveform, 

indicating that the increased viscosity of the non-Newtonian fluid reduces acoustic effects. 
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(a) 

 

(b) 
Figure 4-1: Plot comparing rigid and compliant case inlet pressure waveforms obtained from the f = 1.67 Hz case 
of the peristaltic pump experiment over multiple normalized pump cycles for (a) the Newtonian fluid and (b) the 

non-Newtonian fluid 

4.3 Compliant tube response  
As a pressure pulse is delivered by the pump, the compliant test section expands and stores some of the 

delivered stroke volume. How much the tube distends impacts the pressure waveforms and 

downstream flow fields. Figure 4-2 displays the compliant tube response as a percentage of relaxed 

diameter over two normalized pump cycles for the (a) Newtonian and (b) non-Newtonian case15. For 

both cases, results are consistent across multiple cycles. While the tube response is similar in shape for 

                                                           
15 The code used to generate Figure 4-2 is provided in Appendix A-3.13 
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both fluids, the magnitudes vary significantly. The amount of tube distension resulting from the static 

pressure is higher for the non-Newtonian case than for the Newtonian case but the pulse pressure 

distension is lower. For the Newtonian fluid, the distension due to the static loading of the fluid column 

is approximately 1.75%, while for the non-Newtonian fluid it is 4.3%. Once there is an increase in 

pressure in the system, the Newtonian case distends by approximately 2.05% while the non-Newtonian 

fluid only distends an additional 0.4%.  

 

(a) 

 

(b) 
Figure 4-2: Plot of tube distension for the f = 1.67 Hz compliant case over multiple normalized pump cycles for 

(a) Newtonian case and (b) non-Newtonian case 

4.4 Downstream flow response 

The shapes of the pressure waveforms coupled with the compliant tube response affect the 

downstream flow behavior. Figure 4-3 compares the changes in downstream centerline velocity over 
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three normalized pump cycles for the rigid and compliant test section using (a) the Newtonian fluid and 

(b) the non-Newtonian fluid16. Velocity data is consistent across multiple cycles for both cases of both 

fluids and, similar to the pressure waveforms, the compliant cases demonstrate much smoother 

responses than do the rigid cases. There are several differences between the rigid and compliant 

responses of the Newtonian fluid. First, although they oscillate around approximately the same mean 

velocity, the amplitude of the compliant centerline velocity waveform is significantly larger than that of 

the rigid response. In addition, the rigid centerline velocity exhibits minimal reverse flow, but the 

compliant centerline velocity oscillates between a positive peak velocity of approximately 0.1 m/s and a 

negative peak centerline velocity of approximately -0.07 m/s. This perhaps implies that while the 

compliant tube delays pressure pulse transmission, smoothing out the pressure waveform, it also 

induces both forward and reverse flow when it recoils. There are similar comparisons to be made about 

the non-Newtonian centerline velocities. Both the rigid and compliant centerline velocities also appear 

to share a similar mean velocity, but unlike the Newtonian case, the rigid non-Newtonian response has a 

higher amplitude and larger negative and positive peak velocities than the compliant case. Comparisons 

can also be made between the Newtonian and non-Newtonian responses. For the rigid case, the shapes 

and magnitudes of the centerline velocity curves are approximately the same for both fluids. However, 

for the compliant case, the amplitude of the non-Newtonian response is nearly half that of the 

Newtonian response and there is significantly less reverse flow due to viscous effects.  

 

                                                           
16 The code used to process and plot experimental centerline velocity results is provided in Appendix A-3.6 
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(a) 

 

(b) 
Figure 4-3: Plot of downstream centerline velocities for the f = 1.67 Hz case using rigid (black) and compliant 

(blue) test sections over multiple pump cycles with respect to normalized time for (a) Newtonian fluid and (b) 
non-Newtonian fluid  

 

4.5 Comparison of system performance parameters over one pump cycle 

The three aforementioned responses affect each other and impact system performance, so it is useful to 

view the relationships between them. Figure 4-4 provides a detailed view of the relationship between 

inlet pressure, tube distension and downstream centerline velocity over one normalized pump cycle for 

(a) the rigid Newtonian case, (b) the compliant Newtonian case, (c) the rigid non-Newtonian case and (d) 
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the compliant non-Newtonian case17,18. Experimentally obtained centerline velocity results are 

represented by blue dots and theoretical centerline velocity responses are denoted by solid blue lines. In 

all four cases, the centerline velocity leads the pressure waveform. In both compliant cases, the shape of 

the tube distension response closely matches the pressure waveform shape as expected and the 

experimental centerline velocity curve agrees nicely with theoretical predictions. For both rigid cases, 

there are significant discrepancies between the theoretical and experimental centerline velocities. First, 

theory predicts a substantial decrease in centerline velocity immediately following peak velocity at 

approximately t/ = 0.1. This does not occur in the experimental plots; instead, centerline velocity 

remains positive until it reaches a secondary positive peak at approximately t/ = 0.6 and then 

decreases until it achieves its peak negative velocity at approximately t/ = 0.7 − 0.8 for both fluid 

cases. The shapes of the rigid theoretical centerline velocity curves closely mimic those of the pressure 

waveforms, which is not the case for the experimentally obtained results. Overall, the experimental 

centerline velocity results agree nicely with theory in the compliant cases but not in the rigid cases for 

both fluids. Due to the more complex nature of the rigid pressure waveforms and the presence of more 

acoustic effects, these discrepancies are likely due to sensitivity of the theoretical calculations to input 

axial pressure gradient. 

                                                           
17 Normalized one cycle plots for other tested 𝑓 values for the rigid and compliant cases are provided in 
Appendices A-1.1 and A-1.2, respectively 
18 The code used to plot Figure 4-4(a)&(c) is provided in Appendix A-3.7A-3.8 and the code used to plot Figure 
4-4(b)&(d) is provided in Appendix A-3.9 
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(a) 

 

(b) 
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(c) 

 

(d) 
Figure 4-4: Normalized one cycle plot of pressure (solid black), theoretical centerline velocity (solid blue), 

experimental centerline velocity (blue circles) and tube distension (red circles) for (a) rigid Newtonian case, (b) 
Newtonian compliant case, (c) rigid non-Newtonian case, (d) compliant non-Newtonian case 
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4.6 Profiles of velocity  

More detailed understanding of the downstream flow behavior under the four conditions of this study 

can be obtained by examining the profiles of velocity at various times throughout the cycle. This section 

presents non-dimensionalized velocity profiles obtained at ten time steps throughout the pumping cycle 

(t/ = 0.0 − 0.9) to compare the profiles resulting from the compliant test section to those obtained 

from the rigid test section. Four figures are presented for this comparison: a theoretical and 

experimental Newtonian plot, and a theoretical and experimental non-Newtonian plot. 

4.6.1 Newtonian case 

Figure 4-5 compares the non-dimensionalized experimental Newtonian velocity profiles obtained from 

the rigid (black) and compliant (blue) test section cases. The profiles are represented by solid lines due 

to the large number of data points defining the profile shape across the diameter of the tube. The first 

notable difference between the two cases is that there appear to be asymmetries in the compliant 

profiles that are not present in the rigid profiles. At the beginning of the cycle, the flow is accelerating 

and both profiles are developing. There is a phase difference between the two profiles attaining their 

maximum velocities. Due to the high α of the regime, unsteady effects are significant and neither profile 

has time to fully develop; the compliant profile develops into a much stronger top-hat profile than does 

the rigid profile. At the beginning of flow deceleration, which for the rigid case is t/ = 0.1 and for the 

compliant case is t/ = 0.3, both profiles begin to flatten, and at t/ = 0.7, they show reverse flow near 

the wall creating regions of high shear. This result is consistent with theoretical expectations from the 

literature for flows with α ≥ 10 [42] and with the theoretical expectations derived in this study, shown 

in Figure 4-6. The profiles in Figure 4-6 represent the theoretical profiles that were calculated based on 

the experimentally obtained axial pressure gradients. During the beginning of the cycle, from 

t/ =  0.0 − 0.4, the rigid and compliant experimental profile shapes are in excellent agreement with 

the theoretical expectations. During the deceleration phase, there are some discrepancies between the 

theoretical and experimental profile shapes, which are likely due to slight offsets in phase between the 

theoretical and experimental plots, as it is apparent that both the rigid and compliant profiles assume 

the predicted shapes during the cycle. Also, at t/ = 0.8, the theoretical profiles predict a laminar profile 

with no shear regions away from the wall, which implies that the theory predicts a stronger steady 

component than experimental findings would suggest for this flow regime. 
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Figure 4-5: Non-dimensionalized experimental Newtonian velocity profiles for rigid (black) and compliant (blue) 

cases obtained at 10 time steps during pump cycle (t/ = 0.1-0.9)  
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Figure 4-6: Non-dimensionalized theoretical Newtonian velocity profiles for rigid (black) and compliant (blue) 

cases obtained at 10 time steps during pump cycle (t/ = 0.1-0.9) 
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4.6.2 Non-Newtonian case 

Figure 4-7 compares the non-dimensionalized experimental non-Newtonian velocity profiles obtained 

from the rigid (black) and compliant (blue) test sections. As with the experimental Newtonian profiles, 

the profiles in Figure 4-7 are represented by solid lines due to the large number of data points defining 

the profile shapes across the diameter of the tube. For this case, both the rigid and compliant 

experimental profiles are symmetric about the center of the tube. Throughout the most of the cycle, the 

experimental rigid and compliant results overlap, indicating that compliance has little effect on the 

downstream flow behavior. Small differences in the experimental rigid and compliant profiles appear at 

t/ = 0.6 and t/ = 0.8, where the compliant case flow appears to be nearly stagnant and the rigid 

assumes a partially developed top-hat profile. In this case, it appears that the introduction of compliant 

tubing is preventing the reverse flow that is present at t/ = 0.8 in the rigid case. The shapes of these 

profiles are similar to those predicted by the theoretical non-Newtonian profiles presented in Figure 4-8, 

although the experimental profiles achieve a more parabolic-shaped profile than the theoretical results 

predict. The theoretical profiles assume a top-hat profile at maximum velocity and have regions of high 

shear away from the wall during deceleration that are less pronounced in the experimental profiles. This 

suggests that the steady component is stronger than the theory predicted according to the axial 

pressure gradient, or that the fluid is less viscous than the predicted viscosity. The slight differences in 

theoretical profile shapes from t/ = 0.5 − 0.7 are likely due to the small phase offsets in the results 

seen in Figure 4-4, but the shapes are similar for the theoretical rigid and compliant results during this 

phase of the cycle. 
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Figure 4-7: Non-dimensionalized experimental non-Newtonian velocity profiles for rigid (black) and compliant 

(blue) cases obtained at 10 time steps during the pump cycle (t/ = 0.1-0.9)  
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Figure 4-8: Non-dimensionalized theoretical non-Newtonian velocity profiles for rigid (black) and compliant 

(blue) cases obtained at 10 time steps during the pump (t/ = 0.1-0.9) 
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4.6.3 Comparison of Newtonian and non-Newtonian profiles of velocity 

A comparison of the rigid and compliant test section case has been presented for the Newtonian and 

non-Newtonian fluid19,20. Comparisons can also be made between the Newtonian and non-Newtonian 

profiles. The theoretical profiles predicted a similarly blunted top-hat profile for the Newtonian and non-

Newtonian rigid cases in their most developed forms. Experimental results were consistent with this 

prediction for the Newtonian case, but non-Newtonian experimental profiles were notably more 

parabolic in shape. In addition, the theoretical and experimental profiles demonstrated pronounced 

forward and backward top-hat profiles for the compliant Newtonian case but not for the non-Newtonian 

compliant case. The compliant non-Newtonian profiles instead had regions of reverse flow near the 

walls creating high shear regions, similar to those seen in the rigid profiles of both fluids.  

The experimental velocity profiles presented in this section are in good agreement with the theoretical 

profiles generated for this investigation, indicating that flow monitoring and modeling were reliable in 

this experiment. Examining the velocity profiles for this pulse frequency indicates that the presence of 

compliance alters the downstream flow fields far more significantly in a Newtonian regime than in a 

non-Newtonian regime. In the Newtonian case, the compliant test section introduced significant reverse 

flow into the system but this was not the case with the non-Newtonian fluid.  

                                                           
19 The code used to generate Figure 4-5 and Figure 4-7 is provided in Appendix A-3.10 
20 The code used to generate Figure 4-6 and Figure 4-8 is provided in Appendix A-3.11 
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4.7 Effect of pulse frequency on system performance 

The previous sections presented results for one pulse frequency case of the peristaltic pump 

experiment, and comparisons were made between the rigid and compliant case using both Newtonian 

and non-Newtonians fluids. Further understanding of system performance can be gleaned by looking at 

the effect of pulse frequency on system performance in terms of its impact on pressure waveform 

shape, tube distension, downstream centerline velocity and pump energy. 

The range of pulse frequencies explored in this experiment is 1.00 – 2.33 Hz (60 – 140 BPM). The 

corresponding Womersley numbers for each experimental condition are summarized in Table 4-1. The 

Newtonian α was calculated using equation ( 1-7 ) and the non-Newtonian α was calculated as the real 

part of the complex Womersley number defined in equation ( 1-20 ) using a characteristic relaxation 

time of 0.11 seconds. 

Table 4-1: Summary of Womersley numbers for peristaltic pump experiment 

Frequency, f 
[Hz] 

Newtonian Womersley number, 𝛼 
[--] 

Non-Newtonian Womersley number, ℜ(𝛼∗) 
[--] 

1.00 15.9 6.3 
1.17 17.2 7.3 
1.33 18.3 8.4 
1.50 19.4 9.5 
1.67 20.5 10.5 
1.83 21.5 11.6 
2.00 22.4 12.6 
2.17 23.4 13.7 
2.33 24.2 14.8 

4.7.1 Effect of pulse frequency on pressure waveform shape 

Figure 4-9 depicts the pressure waveforms obtained from the (a) rigid Newtonian case, (b) compliant 

Newtonian case, (c) rigid non-Newtonian case and (d) compliant non-Newtonian case at all tested pulse 

frequencies over one normalized pump cycle21. For the rigid Newtonian case, the pressure waveforms 

assume similar shapes at the lower frequencies, but after f = 1.83 Hz there is a shift in the location of the 

global maximum from t/τ ≅ 0.2-0.3 to t/τ ≅ 0.8. At the lower end of the tested range, increasing pulse 

frequency increases the amplitude of the first peak but after the peak reversal at f = 1.83 Hz, increasing 

pulse frequency causes an increase in height of the second peak. For the compliant Newtonian case, 

increasing pulse frequency smooths out the waveform shape. At f = 1.33 Hz, the waveform changes 

from having two peaks to only one; increasing pulse frequency increases the height and causes a 

                                                           
21 The code used to generate Figure 4-9 is provided in Appendix A-3.3 
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leftward phase shift of that peak. After f = 1.67 Hz, the wave amplitude begins to decrease with 

increasing pulse frequency and the wave continues to shift to the left. For the rigid non-Newtonian case, 

the amplitudes of both peaks increase with increasing pulse frequency and the valley between the two 

peaks becomes more distinct. Finally, for the compliant non-Newtonian case, increasing pulse frequency 

smooths out the waveform and causes both an increased wave amplitude and a consistent rightward 

phase shift of the peak.
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(a) 

 
(b) 
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(c) 

 
(d) 

Figure 4-9: Plot comparing the changes in pressure waveform shapes that occur with changing pulse frequency 
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4.7.2 Effect of pulse frequency on compliant tube distension 

Figure 4-10 establishes the relationship between pulse frequency and maximum tube distension 

achieved during the pulse cycle for the Newtonian and non-Newtonian case. The maximum tube 

distension demonstrates a positive relationship with pulse frequency for both fluids at the low 

frequencies. At 1.67 Hz (α = 20.5), the Newtonian case reaches its peak distension; at higher pulse 

frequencies maximum tube distension decreases with increasing pulse frequency. The non-Newtonian 

fluid demonstrates a different behavior and maintains a positive linear relationship throughout the 

range of tested pulse frequencies.  

 

Figure 4-10: Plot comparing the effect of pulse frequency (f) on maximum tube distension (∆D/D) in the 
compliant Newtonian and non-Newtonian cases 

4.7.3 Effect of pulse frequency on downstream flow  

To further understand the impact of compliance on system performance, the downstream centerline 

velocity was examined. Figure 4-11 depicts the relationship between pulse frequency and the maximum 

downstream centerline velocity achieved during the pump cycle for all four cases. While the rigid cases 

for both fluids display approximately the same linear relationship between pulse frequency and 

maximum centerline velocity, the compliant responses differ significantly. The maximum centerline 

velocity of the compliant Newtonian case increases with increasing pulse frequency in a non-linear 

fashion. It reaches its peak at 1.67 Hz then drops off non-linearly. The compliant non-Newtonian case 
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however, demonstrates a positive linear relationship between pulse frequency and maximum centerline 

velocity until 2.17 Hz, at which point the centerline velocity slowly begins to decrease with increasing 

pulse frequency. These results indicate that with a rigid test section, non-Newtonian effects have 

minimal impact on the peak downstream velocity achieved during the cycle. In contrast, with a 

compliant test section non-Newtonian effects significantly dampen the maximum downstream velocity 

achieved during the pump cycle. This suggests that the compliant tube stores more fluid during the 

pressure pulse than it transmits forward. Notably, the frequency at which the largest maximum 

centerline velocity is achieved for the Newtonian case corresponds to the frequency at which maximum 

tube distension is reached, suggesting that for the low viscosity Newtonian fluid, the tube distension 

augments downstream flow until the flow exceeds α = 20.5. At higher values of α, the tube does not 

have adequate time to expand and store as much volume and therefore downstream flow is not as 

significantly enhanced. 

 

Figure 4-11: Plot of comparing the effects of pulse frequency (f) on maximum centerline velocity (vCL,max) in the 

rigid and compliant cases with Newtonian and non-Newtonian fluids 

4.7.4 Effect of pulse frequency on pump energy 

The results presented in previous sections focused on the impact of compliance and non-Newtonian 

effects on specific flow conditions such as pressure and velocity. While these flow conditions provide 

information about certain aspects of system performance, combining them to understand pump 
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performance is the most powerful tool for analyzing the effect of compliance on overall system 

performance. Based on equations ( 1-9 ) and ( 1-10 ), the energy output by the pump was determined 

based on the total energy in the fluid in region 2, the region of velocity data collection, integrated over 

the cycle time22. This calculation incorporates the pressure pulse energy, the kinetic energy, the static 

energy and the local acceleration energy such that:  

 

( 4-1 ) 

where Epp is the energy output by the peristaltic pump per pulse cycle [J/cycle], m2̇ (t) is the mass flow 

rate through the region of velocity data collection [kg/s], as calculated by: 

m2̇ (t) = ρ [∬ v(r)rdrdθ
D

0
] =ρ [πr ∫ v(r)dr

D

0
], p2

(t) is the pressure waveform obtained at point 2 [Pa], tc is 

the cycle time [s], v̅2(t) is the average velocity in region 2 [m/s], ∆z is the height difference between the 

preload reservoir and point 2 [m], Leff is the height difference between point 2 and the preload reservoir 

[m], and (
dv

dt
)

2
 is the acceleration in region 2 [m/s2] calculated from v̅2(t). 

Figure 4-12 depicts the relationship between pulse frequency and pump energy for the Newtonian rigid 

and compliant cases. Each type of energy is plotted to highlight its relative contribution to total pump 

energy. In both fluids, the local acceleration and kinetic energy are negligible and the static energy 

contribution is slightly negative. For both cases, the energy resulting from the pressure pulse dominates. 

At the lowest frequencies, the compliant and rigid energy requirements are approximately the same, 

but the responses begin to diverge after f = 1.33 Hz. For the rigid case, the pressure and total energy 

curves remain relatively consistent throughout the range of pulse frequencies, implying that without the 

presence of compliance in the system, pulse frequency has minimal impact on the energy requirements 

of the pump. For the compliant case however, the pressure and total pump energy functions assume 

similar shapes to what was seen in Figure 4-10 and Figure 4-11, which means that the energy 

requirements of the pump increase in this system as the magnitude of compliant response increases.  

                                                           
22 The code used to perform the energy calculations is provided in Appendix A-3.12 
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Figure 4-12: Plot comparing the effect of pulse frequency (f) on pump energy (E) for the Newtonian rigid and 
compliant cases  

Figure 4-13 depicts the relationship between pulse frequency and pump energy for the non-Newtonian 

rigid and compliant cases. As in Figure 4-12, each type of energy is plotted to highlight its relative 

contribution to total pump energy and, like the Newtonian case, pressure pulse energy dominates. 

Unlike the Newtonian response, both the rigid and compliant non-Newtonian cases maintain fairly 

consistent total energy values across the range of tested frequencies, indicating that pulse frequency 

has minimal impact on pump energy requirements in a non-Newtonian regime whether compliant 

response is present or not. While both responses display similar shapes, the pump energy requirement 

of the compliant case is higher than that of the rigid case across the pulse frequency range. This finding 

is consistent with the Newtonian results that the introduction of compliance increases the pump energy 

requirements in this experimental setup. 
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Figure 4-13: Plot comparing the effect of pulse frequency (f) on pump energy (E) for the non-Newtonian rigid 
and compliant cases  

4.8 Conclusion 

This chapter presented results from the peristaltic experiment in terms of the pressure, tube response 

and velocity results of the 1.67 Hz case in order to provide a comparison between the rigid and 

compliant test section cases. Results for each case were presented using a Newtonian and a non-

Newtonian fluid and experimental velocity results were compared to theoretical results. Then, to gain 

broader understanding of the system behavior, results investigating the impact of pulse frequency on 

each of the tested system behaviours were presented, culminating in the examination of pump 

performance. 

Pressure results indicate that the introduction of a compliant test section smooths out the pressure 

waveform at the inlet of the test section for both fluids, indicating the presence of more acoustic effects 

in the rigid case. This is supported by the presence of peaks in the rigid downstream centerline velocity 

responses presented in Section 4.4 that are not present in the compliant results. Looking at the range of 

tested pulse frequencies, the smoothing effect of the compliant test section was consistently present in 

both fluids but the magnitudes of the tube response were different. The Newtonian case demonstrated 

a larger tube response to pulse pressure which translated to a centerline velocity response that peaked 

at 1.67 Hz, the case of maximum tube distension. For the non-Newtonian case, no such peak existed and 
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the relationship between pulse frequency, tube distension and downstream centerline velocity 

remained linear within the range of tested pulse frequencies. In terms of pump energy requirements, 

findings for both fluids indicated a higher pump energy requirement in the compliant test section 

conditions when compared to the rigid test section conditions. For the Newtonian fluid, the shape of 

this relationship mirrored that of tube distension with respect to pulse frequency, so the peak energy 

requirements occurred at 1.67 Hz. For the non-Newtonian fluid, pump energy requirements were fairly 

consistent across the tested values of pump frequency for the rigid and compliant case, indicating that 

pulse frequency has minimal impact on pump energy requirements in a non-Newtonian regime of this 

nature. However, consistent with the Newtonian findings, the pump energy requirements of the 

compliant case were consistently higher than those for the rigid cases.  
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Chapter 5. Impact of a Mock Aorta in an EVHP Test System 

5.1 Introduction 

In vivo, the Windkessel effect plays an important role in maintaining cardiac performance. This response 

is not present in the EVHP system and the potential consequences of its absence have yet to be 

addressed. The aim of this investigation was to study the impact of introducing a compliant mock aorta 

into a mechanical flow loop analogous to the left side of the EVHP system to determine the impact on 

system performance, particularly on the energy requirements of the pump. This was done through 

analysis and comparison of pressure waveforms, tube distension response and peripheral flow fields 

obtained from the rigid tubing case and the compliant mock aorta case using water as a Newtonian 

fluid. The first four sections of this chapter outline the pressure, tube distension and peripheral velocity 

results obtained from this experimental study under one set of conditions, where Pch = 103 mmHg and 

ωAl pump = 1235 RPM. This includes an analysis of the relationship between these three parameters over 

one pump cycle. The next three sections explore the relationship between ωAl pump and the pressure, 

tube distension and peripheral flow conditions, respectively, for the rigid and mock aorta case at both 

tested values of Pch. The final section discusses the energy requirements of the pump under each of the 

tested experimental conditions and the relationship between distensibility and pump energy. 

5.2 Pressure response 

Pressure waveforms were obtained at the mock aorta inlet and imaging section outlet. The waveform at 

the mock aorta inlet represents the central aortic waveform of the system, and is therefore the 

waveform that was used to assess pressure response. Figure 5-1 compares the pressure waveforms 

obtained from the rigid and the Pch = 103 mmHg mock aorta case with ωAl pump = 1235 RPM over three 

normalized pump cycles. Data is presented as solid lines rather than discrete points due to the high 

sampling frequency at which the data was collected.  

The waveform shape in Figure 5-1 is consistent across multiple cycles for both cases but the two 

waveforms have significantly different shapes and magnitudes. The mock aorta waveform is much 

smoother than the rigid waveform and resembles a Murgo’s Type C waveform, as presented in Section 

1.5.3, with cAIx = -0.037. However, the reflected wave arrives during systole, indicating that there is 

likely some systolic pressure augmentation. The incident and reflected waves are well-defined and the 

dicrotic notch is visible at approximately t/τ = 0.4. The diastolic, systolic and mean arterial pressures of 

the mock aorta case waveform are 91.7, 169 and 126 mmHg, respectively. The rigid waveform has more 
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peaks, indicating that there are multiple reflected waves involved in the system response in contrast to 

the sole visible reflected wave in the compliant case. The diastolic, systolic and mean arterial pressures 

of the rigid case are 68.1, 215 and 134 mmHg, respectively. The significantly higher systolic pressure 

suggests substantial augmentation of systolic pressure by the reflected waves during early systole. The 

large valley in the rigid pressure wave is most likely caused by forceful reflected waves impeding the 

VAD outlet valve’s closure.  

 

Figure 5-1: Plot of central aortic pressure waveforms for rigid (ωAL pump = 1235 RPM) compliant mock aorta 

(ωAL pump = 1235, Pch = 103 mmHg) cases over three normalized pump cycles 

In addition to there being differences between the rigid and compliant pressure values, the introduction 

of compliance into the system impacted the cycle time. The comparison between the pressure 

waveforms over one cycle shown in Figure 5-2 demonstrates this difference. The overall cycle time for 

the compliant case (0.89 s) is longer than for the rigid case (0.77 s), and therefore the pulse frequency is 

slower. Systolic duration for the compliant case is shorter (~0.38 secs) than for the rigid case (~0.48 secs) 

and diastole is longer. As discussed in Section 1.5, this combination of short systolic duration and long 

diastolic duration is positively associated cardiac performance. Conversely, the rigid waveform is shorter 

in duration and has a prolonged systolic ejection phase, which according to theory indicates higher 

cardiac workload and impaired cardiac function. These pressure waveform results indicate improved 
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system performance at the same back pressure conditions for the compliant mock aorta case compared 

to the rigid case. 

 
Figure 5-2: Plot of central aorta pressure waveforms of rigid (ωAL pump = 1235 RPM) and compliant mock aorta 

(ωAL pump = 1235 RPM, Pch = 103 mmHg) cases over one cycle 

5.3 Mock aorta compliant response with Pch = 103 mmHg 

The previous section presented results that indicate improved pressure response through the 

introduction of the mock aorta. This section discusses the compliant mock aorta’s expansive response to 

the previously discussed pressure waveform. Figure 5-3 displays this distension response over three 

normalized pump cycles23. Two contributions to the tube expansion are shown in Figure 5-3: the tube 

distension resulting from Pa alone (dotted line), and from Pp (circles). The profile and magnitude of the 

response are consistent across multiple cycles. During diastole, the afterload pump distends the tube to 

11.1% of its unloaded diameter. During systolic ejection, the tube expands quickly to approximately 

28%, at which point the expansion rate decreases. The tube diameter continues to increase at the 

slower rate until it reaches its peak expansion of 38.7%. This change in slope of the expansion response 

is likely a result of the pressure waveform augmentation discussed in the previous section causing 

additional tube expansion in late systole. After reaching its peak, the tube begins to relax. Shortly after 

the beginning of relaxation there is a sharp momentary increase in tube diameter that signals the VAD 

outlet valve closure. After valve closure, the tube continues to relax to its end diastolic diameter.  

                                                           
23 The code used to generate Figure 5-3 is provided in Appendix A-3.13 
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Figure 5-3: Plot of mock aorta pulse pressure (circles) and afterload (dotted line) tube distension over three 
normalized pump cycles 

5.4 Peripheral flow response 

The expansion-recoil response of the aorta in vivo significantly impacts the peripheral flow fields, as 

discussed in Section 1.5. This section compares the peripheral flow fields obtained from the compliant 

mock aorta to those obtained with a rigid test section. Figure 5-4 displays the peripheral centerline 

velocity fluctuations over one normalized pump cycle for the rigid and compliant cases24. Both response 

cycles are indexed to begin at the image corresponding to the first diastolic minimum after the Camera 2 

trigger signal, as discussed in Section 3.5. There are significant differences between the two response 

shapes. First, the centerline velocity of the rigid case is less smooth than the compliant response, which 

is a byproduct of the multiple reflected waves passing through the system. The rigid case also reaches 

both a higher positive and negative peak velocity during the cycle and reaches its positive peak velocity 

later in the cycle than does the compliant case. The increased reverse flow in the rigid case indicates a 

high unsteady component in the pressure gradient driving the flow which is supported by the pressure 

waveform results discussed in Section 5.2. In the compliant case however, there is minimal reverse flow 

at the beginning of the cycle, indicating steadier peripheral flow. 

                                                           
24 The code used to generate the centerline velocity results presented in Figure 5-4 is provided in Appendix A-3.16 
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Figure 5-4: Plot of centerline velocities (vCL) for rigid (ωAL pump = 1235 RPM) and compliant mock aorta 

(ωAL pump = 1235 RPM, Pch = 103 mmHg) cases over one normalized pump cycle  

5.5 Comparison of system performance parameters over one pump cycle  

To understand the interaction between the three parameters discussed in previous sections, it is useful 

to view the parameters together over one pump cycle. Figure 5-5 depicts the relationship between the 

normalized pressure waveform and peripheral centerline velocity over one normalized pump cycle 

obtained from the rigid case25,26,27. The pressure waveform shows the occurrence of multiple reflected 

waves, the results of which are visible on the centerline velocity plot. The centerline velocity reaches its 

positive peak at the time of arrival of the third pressure peak, t/τ = ~0.55. It reaches its negative peak, 

that is nearly half the magnitude of the positive peak, at t/τ = ~0.75 and the velocity is negative for 

approximately half of the cycle time. The significant amount of reverse flow supports the observation 

that the peripheral flow in the rigid case is substantially impacted by the unsteady effects of the 

pressure pulse from the VAD.  

                                                           
25 Normalized one cycle plots for other tested 𝜔𝐴𝐿 𝑝𝑢𝑚𝑝 values are provided in Appendix A-1.3 
26 The code used to generate one normalized cycle of the filtered pressure waveform in Figure 5-5 is provided in 
Appendix A-3.14 
27 The code used to plot Figure 5-5 is provided in Appendix A-3.17 
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Figure 5-5: Normalized plot of central aortic pressure waveform (P/Pmax) and peripheral centerline velocity 
(vCL/vCL,max) for the rigid case with ωAL pump = 1235 RPM 

Figure 5-6 depicts the relationship between normalized pressure waveform, normalized peripheral 

centerline velocity and tube distension for one normalized pump cycle obtained from the compliant 

mock aorta case28,29,30. The initial tube expansion occurs in phase with the systolic pressure pulse and 

then slows down, reaching its maximum around the moment of arrival of the reflected pressure wave, 

at t/τ = ~0.41. The pressure decrease coincides with a decrease in tube diameter, and the moment of 

valve closure is apparent on both waveforms, at t/τ = ~0.45. The peripheral centerline velocity response 

lags both the pressure and tube response, reaching its peak at t/τ = ~0.50. The centerline velocity is 

negative for approximately the first 10% of the cycle time, reaching a negative peak velocity that is 9% of 

the positive peak velocity at t/τ = 0.06. This minimal amount of reverse flow indicates that the full 

impact of the pressure pulse from the VAD is not being transmitted to the periphery. This is a substantial 

improvement over the significant amount of reverse flow in the rigid case operated at the same 

afterload pump speed. 

                                                           
28 Normalized one cycle plots for other tested 𝑃𝑐ℎ and 𝜔𝐴𝐿 𝑝𝑢𝑚𝑝 values are provided in Appendix A-1.4. 
29 The code used to generate one normalized cycle of the filtered pressure waveform in Figure 5-6 is provided in 
Appendix A-3.14 
30 The code used to plot Figure 5-6 is provided in Appendix A-3.18 
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Figure 5-6: Plot of normalized central aortic pressure waveform (P/Pmax), normalized peripheral centerline 
velocity (vCL/vCL,max) and tube distension (∆D/D) for mock aorta case with Pch = 103 mmHg and 

ωAL pump = 1235 RPM 

5.6 Effect of experimental conditions on system performance 

The previous sections of this chapter discussed the pressure, tube expansion and peripheral velocity 

results obtained at one set of experimental conditions. This section explores the impact of varying 

experimental conditions, ωAL pump and Pch, on system performance. First, the relationship between 

ωAL pump and central aortic pressure values is discussed. Next, the changes in tube distension in response 

to varying ωAL pump at the two tested values of Pch are discussed. This is followed by a discussion of 

changes in peripheral centerline velocity that occur in response to changes in ωAL pump and Pch, in 

particular on the amount of reverse flow. Finally, these results are interpreted in terms of how the 

energy requirements on the VAD change based on the presence of rigid or compliant mock aorta 

conditions.

5.6.1 Effect of afterload conditions on VAD pulse frequency 

The pulse rate of the VAD is dependent on the afterload conditions of the experiment, so as ωAL pump 

changed, the pulse frequency changed. The range of experimental conditions and corresponding values 

of pulse frequency are summarized in Table 5-131. Figure 5-7 depicts the resulting positive linear 

relationships between ωAL pump and pulse frequency of the VAD, f, at each of the different mock aorta 

                                                           
31 The code used to generate the values presented in Table 5-1 is provided in Appendix A-3.15 
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test section conditions investigated in this experiment. The figure illustrates that as �̅�a increases due to 

increased ωAL pump, the VAD pulse frequency increases linearly. The slope of this relationship is 

independent of the mock aorta conditions but the intercept, or the zero back pressure frequency of the 

VAD, varies based on the mock aorta conditions. This variation in pulse frequency based on afterload 

conditions mirrors in vivo cardiac response. In vivo, increased vascular resistance increases cardiac 

workload, inducing the heart to beat faster to sustain cardiac output. 

Table 5-1: Summary of VAD pulse frequencies under the range of tested experimental conditions 

Test Section Conditions 
Afterload pump speed, AL pump 

[RPM]  
Pulse Frequency, f [Hz] 

Rigid 

980 1.20 

1065 1.23 

1235 1.30 

1450 1.40 

1540 1.42 

Mock Aorta, Pch=103 mmHg 

980 1.07 

1065 1.09 

1235 1.12 

1450 1.17 

Mock Aorta, Pch=155 mmHg 

980 1.12 

1065 1.12 

1235 1.17 

1450 1.21 

1540 1.23 



86 
 

 
Figure 5-7: Plot comparing the effect of afterload pump speed (ωAL pump) on VAD pulse frequency (f) for three 

test section conditions: rigid (black), mock aorta with Pch = 155 mmHg (blue) and mock aorta with 
Pch = 103 mmHg (red) 

5.6.2 Effect of afterload conditions on mock aorta inlet pressure response 

Under the variable afterload conditions, the values of Pd, Ps and therefore Pp changed. The obtained 

pressure values at each of the tested experimental conditions are summarized in Table 5-2. Figure 5-8 

depicts the changes in each of these three pressure values in response to changing ωAL pump for the three 

test section conditions listed in Table 5-232. For all cases, values of Ps remained relatively consistent 

across experimental conditions but Pd displayed a positive linear relationship with ωAL pump. Therefore, 

Pp decreased with increasing ωAL pump for all test section conditions. The slope of the relationship for the 

rigid case is slightly steeper than those of the compliant cases, and all three cases have different 

intercepts. These results demonstrate that, for the same ωAL pump setting, increased mock aortic 

compliance reduces VAD pulse pressure. As discussed in Section 1.5.2, low pulse pressure is a positive 

indicator of cardiac performance. 

                                                           
32 The code used to generate the values presented in Table 5-2 is provided in Appendix A-3.15 
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Table 5-2: Summary of pressure values collected at each set of tested experimental conditions 

Test Section 
Conditions 

AL pump 
[RPM] 

Systolic Pressure, 
Ps [mmHg] 

Diastolic 
Pressure, Pd 

[mmHg] 

Pulse 
Pressure, Pp 

[mmHg] 

Mean arterial 
pressure, 𝑷𝒂

̅̅ ̅̅  
[mmHg] 

Rigid 

980 209.7 58.0 151.7 120.1 

1065 210.2 63.7 146.5 124.7 

1235 214.7 68.1 146.5 133.6 

1450 214.7 86.8 127.9 147.3 

1540 214.7 95.6 119.1 152.3 

1720 218.8 116.1 102.7 164.4 

2000 216.1 143.8 72.3 169.5 

2250 211.9 133.6 78.3 168.4 

Mock Aorta, 
Pch=103 mmHg 

980 168.5 63.7 109.4 104.8 

1065 168.9 73.7 114.7 95.2 

1235 169.4 91.6 125.8 77.7 

1450 169.7 121.5 141.8 48.2 

Mock Aorta, 
Pch=155 mmHg 

980 171.9 52.3 108.1 119.6 

1065 172.7 62.6 112.5 110.2 

1235 172.9 83.2 124.0 89.8 

1450 172.9 111.6 139.8 61.3 

1540 173.9 124.6 146.4 49.2 
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Figure 5-8: Plot comparing the effect of afterload pump speed (ωAL pump) on central aorta pressure 

measurements (Pd, Ps, Pp) for three test section conditions: rigid (black), mock aorta with Pch = 155 mmHg (blue) 

and mock aorta with Pch = 103 mmHg (red) 

5.6.3 Tube response 

In the compliant case, the mock aorta expands during systolic ejection. The values of distension, 

including the contribution of ωAL pump and Pp to the total distension, are summarized in Table 5-3 for 

both tested chamber pressure settings. These results are displayed in Figure 5-9 which shows the 

relationship between ωAL pump and tube distension response. The contributions of Pa and Pp to this 

distension, as well as the total distension are represented in the figure. As expected, the lower chamber 

pressure conditions yielded more distension due to reduced transmural pressure for all values of 

ωAL pump. The maximum distension of ~55% was achieved with the settings: ωAL pump = 1450 RPM and 

Pch = 103 mmHg. The afterload contribution to the overall tube response exhibits an exponential 

relationship with ωAL pump, which suggests that the tube might have non-linear properties. The pulse 

pressure contribution to the response exhibits a negative linear relationship with ωAL pump, likely due to 

the trend of reduced pulse pressure at higher ωAL pump values that was presented in the previous 

section. The total distension response appears to be exponential in nature. At the highest ωAL pump value, 
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the afterload contribution exceeds the pulse pressure contribution to the response. This suggests that 

the active afterload pump filling of the mock aorta during diastole plays an important role in the 

reduction of pulse pressure associated with increased compliance in the mock aorta test section.  

Table 5-3: Summarize of mock aorta tube distension results for both tested chamber pressure settings 

 Distension, D/D [%] 

Mock Aorta Chamber 

Pressure, Pch [mmHg] 

AL pump 

[RPM] 

AL pump 

Contribution 

Pp  

Contribution  
Total 

103 

980 3.93 31.43 35.36 

1065 5.83 30.71 36.55 

1235 11.07 27.62 38.69 

1450 30.12 25.95 56.07 

155 

980 1.19 28.93 30.12 

1065 2.50 27.86 30.36 

1235 5.60 25.48 31.07 

 

 
Figure 5-9: Plot comparing the effect of afterload pump speed (ωAL pump) on mock aorta distension (∆D/ D) for 

two pressure chamber conditions: Pch = 155 mmHg (black) and Pch = 103 mmHg (blue) 
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5.6.4 Peripheral flow 

The previous sections have addressed the impact of afterload pump speed on the pressure conditions of 

the system and the compliance of the mock aorta. This section addresses the impact of ωAL pump on 

peripheral flow conditions and compares these relationships in the rigid and compliant cases. Figure 

5-10 depicts the changes in maximum positive peak centerline velocity (circles) and negative peak 

centerline velocity (squares) that occur as a result in increasing ωAL pump for the rigid case. On the 

secondary axis is the ratio between peak reverse flow during the cycle to peak positive flow 

(vpk,(-)/vpk,(+)). This is an indicator of how significantly the unsteady effects of the pressure pulse are 

transmitted to the periphery. The positive peak centerline velocity is shown to decrease with increasing 

ωAL pump, while the negative peak centerline velocity remains fairly constant. As a result, the peak flow 

ratio increases with increasing ωAL pump. Therefore, for the rigid case, increasing the afterload pump 

speed increases the strength of reverse flow in the system, as expected. 

 
Figure 5-10: Plot representing the impact of ωAL pump on maximum positive peripheral centerline velocity (black 

circles), maximum negative centerline velocity (black squares) and peak velocity ratio (vpk,(-)/vpk,(+)) (blue 

asterisk) for rigid case with ωAL pump = 1235 RPM 

Results discussed in previous sections indicate that the compliant mock aorta case demonstrates less 

reverse flow than does the rigid case. Therefore, for the compliant case, instead of expressing the 

positive and negative peak flow velocities as functions of ωAL pump, a comparison between distensibility, 
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as defined by equation ( 2-1 ), and the positive and negative peak velocities is warranted. Figure 5-11 

and Figure 5-12 plots mock aorta distensibility versus peak positive (circles) and negative (squares) 

centerline velocities for the cases where Pch = 103 and 155 mmHg, respectively. As well, the peak 

velocity ratio defined in the previous section is plotted on the secondary y-axis. Both plots depict similar 

trends; as distensibility of the mock aorta increases, the magnitudes of the positive and negative peak 

peripheral velocities decrease. As a result, the peak velocity ratios decrease. This is an indication that 

the introduction of compliance into the system has a steadying effect on peripheral flow, as Windkessel 

theory suggests.  

 
 

Figure 5-11: Plot representing the impact of mock aorta distensibility (d) on maximum positive peripheral 
centerline velocity (black circles), maximum negative centerline velocity (black squares) and peak velocity ratio 

(vpk,(-)/vpk,(+)) (blue asterisk) for the case where Pch = 103 mmHg 
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Figure 5-12: Plot representing the impact of mock aorta distensibility (d) on maximum positive peripheral 

centerline velocity (black circles), maximum negative centerline velocity (black squares) and peak velocity ratio 
(vpk,(-)/vpk,(+)) (blue asterisk) for the case where Pch = 155 mmHg 

5.6.5 Impact of compliance on pump energy 

In order to understand how the parameters studied in this investigation impact pump performance, a 

form of the unsteady Bernoulli equation expressed in terms of energy was used to related the work 

done by the pump during systole to the energy in the blood in the region of velocity data collection 

during the systolic ejection period. Similar to the method used for performing energy analysis in the 

peristaltic pump experiment, the energy output of the VAD was determined using the total energy in 

region 2, the region of velocity data collection, in the system integrated over systolic ejection time33:  

 

( 5-1 ) 

where EVAD is the energy imparted by the pump to the fluid per systolic ejection [J/ejection], ṁ2(t) is the 

mass flow rate through region 2 [kg/s], calculated by integrating the mean velocity profile of each 

Camera 2 image to get volume flow rate and then multiplying by density to get mass flow rate, 

according to: ṁ2(t)=ρ [∬ v(r)rdrdθ
D

0
] =ρ [πr ∫ v(r)dr

D

0
], p2

(t) is the pressure waveform obtained in 

                                                           
33 The code used to perform the VAD energy calculations is provided in Appendix A-3.19 
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region 2 [Pa], v̅2(t) is the average velocity in region 2 [m/s]. z2 is the elevation of point 2 above the VAD 

outlet valve [m], Leff is the height of the column of fluid being accelerated, which in this case is the 

height difference between the VAD outlet valve and point 2, and ts is the systolic ejection time [s].  

Table 5-4 presents a detailed breakdown of the experimental conditions and resulting distensibility 

values, cycle times, systolic ejection times and per-minute pump energies. For a given ωAL pump, the 

shortest cycle times and therefore the highest pulse frequencies occur in the rigid case, suggesting that 

the pump is working harder in the rigid cases than in the compliant cases. This implication of increased 

pump workload is supported by the result that the rigid cases also corresponds to the highest VAD 

energy requirements.  

Table 5-4: Summary of VAD experiment per-ejection energy results 

ωAL pump 

[RPM] 

Chamber 

pressure, Pch 

[mmHg] 

Distensibility, d 

[mmHg-1 x 10-3] 

Cycle 

Time, tc 

[s] 

Systolic 

Ejection 

Time, ts  

[s] 

Energy per 

ejection 

[J/ejection] 

980 

 

Rigid 0 0.84 0.51 1.81 

155 2.42 0.90 0.59 1.33 

103 3.00 0.93 0.56 1.35 

1065 

 

Rigid 0 0.82 0.51 1.72 

155 2.53 0.88 0.56 1.22 

103 3.23 0.92 0.51 1.29 

1235 

 

Rigid 0 0.78 0.49 1.44 

155 2.84 0.85 0.49 1.09 

103 3.55 0.89 0.40 1.22 

1450 

 

Rigid 0 0.72 0.46 1.01 

155 3.77 0.83 0.40 0.88 

103 5.39 0.85 0.40 0.98 

1540 

 

Rigid 0 0.70 0.47 0.82 

155 4.54 0.81 0.40 0.79 

Figure 5-13 summarizes the impact of mock aorta distensibility on the energy output by the pump per 

minute for each of the tested ωAL pump settings34. The energy values are presented per minute rather 

than per ejection because, as discussed in Section 5.6, both systolic ejection time and total cycle time 

                                                           
34 The code used to generate Figure 5-13 is provided in Appendix A-3.20 
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vary based on ωAL pump and Pch. Therefore, looking at the per ejection energy alone provides only a 

partial picture of how the pump energy varies based on experimental conditions. In Figure 5-13, each 

ωAL pump setting displays the same trend. The rigid case (d=0) places the highest energy demands on the 

pump then there is a substantial decrease in energy with the introduction of compliance. At a certain 

point after that initial decline in energy, all ωAL pump cases demonstrate a small increase with the next 

increase in distensibility. This is most likely the point at which the flow supplied by the pump 2 ceases to 

be sufficient to fill the mock aorta, so the VAD requires more energy output to fill that extra volume. 

This idea is supported by the energy analysis results presented in Section 4.7.4 which showed a trend 

towards increasing pump energy with increasing tubing compliance in the absence of an active back 

pressure supply. In addition, the inflection point where energy begins to rise shifts left with decreasing 

ωAL pump setting, indicating that with less afterload supply, more energy is required by the pump at lower 

distensibility values.  

 

Figure 5-13: Plot representing the impact of mock aorta distensibility (d) on the energy expenditure of the VAD 
per minute (EVAD) for each tested setting of ωAL pump 

5.7 Conclusion 

This chapter presented the results obtained using a rigid and compliant mock aorta in the VAD 

experimental setup. The impact of compliance was studied for one set of experimental conditions based 

on the pressure waveforms at the inlet of the mock aorta, the tube distension response and the 
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peripheral flow response. After establishing the results from one case, a discussion of the effect of 

experimental conditions of the system responses under investigation was included. This culminated in 

an analysis of the pump energy requirements for the range of tested experimental conditions. 

Overall, the compliant mock aorta conditions promoted better system performance. The pressure 

waveforms obtained with the rigid case showed the presence of multiple reflected waves that 

augmented the systolic pressures. The compliant case for the same experimental conditions more 

closely resembled typical in vivo central aortic waveforms with one incident and reflected wave, with 

significantly less systolic pressure augmentation that the rigid case. The tube response results indicated 

that the afterload pump plays a key role in distending the mock aorta, which works to alleviate the pulse 

pressure required from the VAD. The compliant mock aorta was also shown to have a positive impact on 

peripheral flow; peak velocity ratios were reduced with increasing mock aorta distensibility, which 

indicates the compliant response of the aorta dampened some of the unsteady effects, preventing them 

from being transmitted to the periphery. Finally, the expression of system performance in terms of 

energy requirements of the VAD allowed the evaluation of system performance in terms of all measured 

parameters expressed as one inclusive value. Consistent with theoretical expectations, the energy 

requirements of the VAD were significantly higher in the rigid cases compared to the compliant cases.  
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Chapter 6. Conclusions and Future Work 

6.1 Conclusions 

The aim of this work was to compare the behavior of an EVHP test system under the current conditions 

of rigid tubing in place of the in vivo aorta to more physiologically realistic conditions that include a 

compliant mock aorta. This was done in the interest of understanding the fluid mechanics of the EVHP 

system and using that knowledge to optimize system performance. Due to the complex nature of 

cardiovascular flow, two variations of the experimental setup were required; one was performed to 

establish a fundamental case, and the other was performed to test a physiological case that closely 

mimicked the left side of the EVHP system.  

The first experimental setup utilized a peristaltic pump to establish the fundamental case. This set of 

experiments compared the pressure and downstream velocity responses resulting from rigid and 

compliant mock aorta sections, using both a Newtonian and non-Newtonian fluid. Tube response in the 

compliant case was monitored to compare the magnitude of the response under the various 

experimental conditions. Results from this experiment indicate that there are notable differences 

between the responses of the rigid and compliant tubing for both Newtonian and non-Newtonian fluids, 

but that compliance more significantly alters system performance in the Newtonian case. This is 

supported by the pump energy findings, which indicate that for both fluids, a higher pump energy is 

required in the compliant case, but these discrepancies in energy demands are higher in the Newtonian 

case. These findings are opposite to those that are expected in a physiological system, discussed in 

Section 1.5, most likely due to the low pressure pulses delivered by the peristaltic pump and the 

absence of significant back pressure in the system. In this experiment, because there is no significant 

source of back pressure, the work required to expand the compliant tube must be done by the pump. 

This results in higher pump energy requirements under more compliant conditions. This is not the case 

for a physiological flow with high pulse pressures and back pressures. 

The second experiment utilized a VAD to simulate a physiological flow. This experiment compared the 

central aortic pressure waveforms and peripheral flows for range of ωAL pump settings and, for the 

compliant mock aorta case, two Pch settings. Tube response monitoring was performed to quantify the 

magnitude of compliant response in each case and visualize the transmission of the pressure pulse 

through the system. Results from this experiment support theoretical explanations of aortic function in 

vivo. In all cases, the introduction of compliance smoothed out the central aortic pressure waveforms as 
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well as the peripheral flow. The peripheral velocities demonstrated a lower peak velocity ratio than the 

rigid cases, supporting the conclusion that the compliant mock aorta serves to dampen the pressure 

pulse transmission through the system and create quasi-steady flow in the periphery. Clinically, aortic 

compliance is associated with reduced cardiac workload, so this investigation used the total energy in 

the peripheral fluid to calculate the energy imparted by the pump for each experimental condition. It 

was found that the introduction of compliant response into the system improved all evaluated system 

performance parameters. The compliant mock aorta case demonstrated healthier pressure waveform 

profiles and less downstream reverse flow than the rigid cases. Most importantly, there was a significant 

decrease in energy output by the pump for each 𝜔𝐴𝐿 𝑝𝑢𝑚𝑝 setting when the compliant mock aorta was 

used. This result supports the clinical expectations discussed in Section 1.5 and suggests that the 

introduction of aortic response into the EVHP system is likely to have a positive impact on cardiac 

performance. 

Findings from this study provide important experimental verification of Windkessel theory and provide a 

basis for future improvements to the EVHP system design. The results suggest that introducing a 

compliant mock aorta into the EVHP system could yield significant improvements in cardiac 

performance and therefore shelf life of the organs.  

6.2 Future Work 

Recommendations for further research in this area include: 

 Develop a pulsatile flowmeter to enable flow measurements at pump inlet to facilitate system 

modeling 

 Perform shadowgraph PIV on the actual EVHP system 

 Test other mock aorta samples with different geometries and/or real aortic tissue 

 Apply 3D flow visualization techniques to the peripheral flow fields, such as stereo-PIV or 

tomographic PIV to get 3D resolved velocity fields to study wall shear stress 

 Test the VAD experiment with a non-Newtonian blood analog fluid 

 Substitute Bjork-Shirley valves for porcine valves in VAD 
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Appendix 

A-1. Additional Plots 

A-1.1 Peristaltic Pump Experiment – Rigid Case 

This appendix provides plots of normalized pressure, theoretical centerline velocity (solid blue lines) and 

experimental centerline velocity (blue circles) over one normalized pump cycle for additional cases of 

rigid peristaltic pump experiment. 

Newtonian Cases 

 
Figure A-1: Plot of normalized pressure and centerline velocity over one normalized pump cycle for rigid 

Newtonian f = 1.00 Hz (60 BPM) case 
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Figure A-2: Plot of normalized pressure and centerline velocity over one normalized pump cycle for rigid 

Newtonian f = 1.17 Hz (70 BPM) case 

 

 
Figure A-3: Plot of normalized pressure and centerline velocity over one normalized pump cycle for rigid 

Newtonian f = 1.33 Hz (80 BPM) case 
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Figure A-4: Plot of normalized pressure and centerline velocity over one normalized pump cycle for rigid 

Newtonian f = 1.50 Hz (90 BPM) case 

 

 
Figure A-5: Plot of normalized pressure and centerline velocity over one normalized pump cycle for rigid 

Newtonian f = 1.83 Hz (110 BPM) case 
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Figure A-6: Plot of normalized pressure and centerline velocity over one normalized pump cycle for rigid 

Newtonian f = 2.00 Hz (120 BPM) case 

 

 
Figure A-7: Plot of normalized pressure and centerline velocity over one normalized pump cycle for rigid 

Newtonian f = 2.17 Hz (130 BPM) case 
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Figure A-8: Plot of normalized pressure and centerline velocity over one normalized pump cycle for rigid 

Newtonian f = 2.33 Hz (140 BPM) case 

 

Non-Newtonian Cases 

 
Figure A-9: Plot of normalized pressure and centerline velocity over one normalized pump cycle for rigid non –

 Newtonian f = 1.00 Hz (60 BPM) case 
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Figure A-10: Plot of normalized pressure and centerline velocity over one normalized pump cycle for rigid non –

 Newtonian f = 1.17 Hz (70 BPM) case 

 

 
Figure A-11: Plot of normalized pressure and centerline velocity over one normalized pump cycle for rigid non –

 Newtonian f = 1.33 Hz (80 BPM) case 
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Figure A-12: Plot of normalized pressure and centerline velocity over one normalized pump cycle for rigid non –

 Newtonian f = 1.50 Hz (90 BPM) case 

 

 
Figure A-13: Plot of normalized pressure and centerline velocity over one normalized pump cycle for rigid non –

 Newtonian f = 1.83 Hz (110 BPM) case 
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Figure A-14: Plot of normalized pressure and centerline velocity over one normalized pump cycle for rigid non –

 Newtonian f = 2.00 Hz (120 BPM) case 

 

 
Figure A-15: Plot of normalized pressure and centerline velocity over one normalized pump cycle for rigid non –

 Newtonian f = 2.17 Hz (130 BPM) case 
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Figure A-16: Plot of normalized pressure and centerline velocity over one normalized pump cycle for rigid non –

 Newtonian f = 2.33 Hz (140 BPM) case 
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A-1.2 Peristaltic Pump Experiment – Compliant Case 

This appendix provides plots of normalized pressure, theoretical centerline velocity (solid blue lines), 

experimental centerline velocity (blue circles) and tube distension response over one normalized pump 

cycle for additional cases of compliant peristaltic pump experiment.  

Newtonian Cases 

 
 

Figure A-17: Plot of normalized pressure, normalized centerline velocity and tube distension response over one 
normalized pump cycle for compliant Newtonian f = 1.00 Hz (60 BPM) case 
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Figure A-18: Plot of normalized pressure, normalized centerline velocity and tube distension response over one 

normalized pump cycle for compliant Newtonian f = 1.17 Hz (70 BPM) case 

 

 
 

Figure A-19: Plot of normalized pressure, normalized centerline velocity and tube distension response over one 
normalized pump cycle for compliant Newtonian f = 1.33 Hz (80 BPM) case 
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Figure A-20: Plot of normalized pressure, normalized centerline velocity and tube distension response over one 

normalized pump cycle for compliant Newtonian f = 1.50 Hz (90 BPM) case 

 

 
Figure A-21: Plot of normalized pressure, normalized centerline velocity and tube distension response over one 

normalized pump cycle for compliant Newtonian f = 1.83 Hz (110 BPM) case 
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Figure A-22: Plot of normalized pressure, normalized centerline velocity and tube distension response over one 

normalized pump cycle for compliant Newtonian f = 2.00 Hz (120 BPM) case 

 

 
Figure A-23: Plot of normalized pressure, normalized centerline velocity and tube distension response over one 

normalized pump cycle for compliant Newtonian f = 2.17 Hz (130 BPM) case 
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Figure A-24: Plot of normalized pressure, normalized centerline velocity and tube distension response over one 

normalized pump cycle for compliant Newtonian f = 2.33 Hz (140 BPM) case 

 

Non-Newtonian Cases 

 
Figure A-25: Plot of normalized pressure, normalized centerline velocity and tube distension response over one 

normalized pump cycle for compliant non-Newtonian f = 1.00 Hz (60 BPM) case 
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Figure A-26: Plot of normalized pressure, normalized centerline velocity and tube distension response over one 

normalized pump cycle for compliant non-Newtonian f = 1.17 Hz (70 BPM) case 

 

 
Figure A-27: Plot of normalized pressure, normalized centerline velocity and tube distension response over one 

normalized pump cycle for compliant non-Newtonian f = 1.33 Hz (80 BPM) case 
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Figure A-28: Plot of normalized pressure, normalized centerline velocity and tube distension response over one 

normalized pump cycle for compliant non-Newtonian f = 1.50 Hz (90 BPM) case 

 

 
Figure A-29: Plot of normalized pressure, normalized centerline velocity and tube distension response over one 

normalized pump cycle for compliant non-Newtonian f = 1.83 Hz (110 BPM) case 
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Figure A-30: Plot of normalized pressure, normalized centerline velocity and tube distension response over one 

normalized pump cycle for compliant non-Newtonian f = 2.00 Hz (120 BPM) case 

 

 
Figure A-31: Plot of normalized pressure, normalized centerline velocity and tube distension response over one 

normalized pump cycle for compliant non-Newtonian f = 2.17 Hz (130 BPM) case 
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Figure A-32: Plot of normalized pressure, normalized centerline velocity and tube distension response over one 

normalized pump cycle for compliant non-Newtonian f = 2.33 Hz (140 BPM) case 
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A-1.3 VAD Experiment – Rigid Case 

This appendix provides plots of normalized pressure and centerline velocity over one normalized pump 

cycle for all rigid VAD results. 

 
 

Figure A-33: Plot of normalized central aortic pressure waveform (P/Pmax) and peripheral centerline velocity 
(vCL/vCL,max) for rigid case with ωAL pump= 980 RPM 
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Figure A-34: Plot of normalized central aortic pressure waveform (P/Pmax) and peripheral centerline velocity 

(vCL/vCL,max) for rigid case with ωAL pump = 1065 RPM 

 

 
Figure A-35: Plot of normalized central aortic pressure waveform (P/Pmax) and peripheral centerline velocity 

(vCL/vCL,max) for rigid case with ωAL pump = 1450 RPM 
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Figure A-36: Plot of normalized central aortic pressure waveform (P/Pmax) and peripheral centerline velocity 

(vCL/vCL,max) for rigid case with ωAL pump = 1540 RPM 
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A-1.4 VAD Experiment – Compliant Mock Aorta Case 

This appendix provides plots of normalized pressure, normalized centerline velocity and tube distension 

over one normalized pump cycle for all tested compliant mock aorta VAD experimental conditions. 

 
Figure A-37: Plot of normalized central aortic pressure waveform (P/Pmax), normalized peripheral centerline 

velocity (vCL/vCL,max) and tube distension (∆D/D) for mock aorta case with Pch = 103 mmHg and 

ωAL pump = 980 RPM 
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Figure A-38: Plot of normalized central aortic pressure waveform (P/Pmax), normalized peripheral centerline 

velocity (vCL/vCL,max) and tube distension (∆D/D) for mock aorta case with Pch = 103 mmHg and 

ωAL pump = 1065 RPM 

 

 
Figure A-39: Plot of normalized central aortic pressure waveform (P/Pmax), normalized peripheral centerline 

velocity (vCL/vCL,max) and tube distension (∆D/D) for mock aorta case with Pch = 103 mmHg and 

ωAL pump = 1450 RPM 
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Figure A-40: Plot of normalized central aortic pressure waveform (P/Pmax), normalized peripheral centerline 

velocity (vCL/vCL,max) and tube distension (∆D/D) for mock aorta case with Pch = 155 mmHg and 

ωAL pump = 980 RPM 

 

 
Figure A-41: Plot of normalized central aortic pressure waveform (P/Pmax), normalized peripheral centerline 

velocity (vCL/vCL,max) and tube distension (∆D/D) for mock aorta case with Pch = 155 mmHg and 

ωAL pump = 1065 RPM 
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Figure A-42: Plot of normalized central aortic pressure waveform (P/Pmax), normalized peripheral centerline 

velocity (vCL/vCL,max) and tube distension (∆D/D) for mock aorta case with Pch = 155 mmHg and 

ωAL pump = 1235 RPM 

 

 
Figure A-43: Plot of normalized central aortic pressure waveform (P/Pmax), normalized peripheral centerline 

velocity (vCL/vCL,max) and tube distension (∆D/D) for mock aorta case with Pch = 155 mmHg and 

ωAL pump = 1450 RPM 
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Figure A-44: Plot of normalized central aortic pressure waveform (P/Pmax), normalized peripheral centerline 

velocity (vCL/vCL,max) and tube distension (∆D/D) for mock aorta case with Pch = 155 mmHg and 

ωAL pump = 1540 RPM 
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A-2. Drawings 

A-2.1 Imaging Section Base 

 
 

Figure A-45: Detailed drawing of imaging section base 
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A-2.2 Imaging Section Lid 

 
Figure A-46: Detailed drawing of imaging section lid 
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A-2.3 Mock Aorta Mould Base 

 
Figure A-47: Detailed drawing of mould base 
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A-2.4 Mock Aorta Mould Side 

 
Figure A-48: Detailed drawing of mould side 
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A-2.5 Mock Aorta Mould Center Piece 

 
Figure A-49: Detailed drawing of mould center piece 
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A-2.6 Peristaltic Pump Experiment Mock Aorta Bracket Connector 

 
Figure A-50: Detailed drawing of peristaltic pump experiment mock aorta bracket connector 
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A-2.7 Peristaltic Pump Experiment Mock Aorta Connector Sleeve 

 
Figure A-51: Detailed drawing of peristaltic pump experiment mock aorta bracket connector sleeve 
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A-2.8 Mock Aorta Pressure Chamber Top 

 
Figure A-52: Detailed drawing of mock aorta pressure chamber top 
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A-2.9 Mock Aorta Pressure Chamber Base Bracket 

 
Figure A-53: Detailed drawing of mock aorta pressure chamber base bracket 
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A-2.10 VAD Mount 

 
Figure A-54: Detailed drawing of VAD optical rail mount 
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A-3. Matlab Code 

A-3.1 Matlab function used for zero-phase digital filtering of pressure 

waveforms 

function fPressure=LPButterworthFilt(sampleRate,cutoffFq,pressure) 

[B,A]=butter(4,cutoffFq/(sampleRate/2),'low'); 

fPressure=filtfilt(B,A,pressure); 

end 

 

A-3.2 Matlab code used to generate pressure data plots from Sections 3.1 and 

4.2 

close all 

clear 

 

fig1=figure; 

fig2=figure; set(fig2,'position',[300 100 1100 500]); 

fig3=figure;set(fig3,'position',[300 100 1100 500]) 

fig4=figure; set(fig4,'position',[100 200 300 175]) 

fig5=figure; set(fig5,'position',[100 200 300 175]) 

 

fileNameR='F:\UPDATED RESULTS (NOV)\Nov10\Nov10_PP_25RPM_Volt.log'; %pressure data 

fileNameC='F:\UPDATED RESULTS (NOV)\Nov14\Water Pressure Files\Nov14_PPC_25RPM_Volt.log'; 

%pressure data 

freq=1.667; 

harmonics=4; 

 

%transducer A 

A_slope=0.0149; 

A_int=0.0645; 

 

%Marcus transducer C 

C_slope=0.0149; %Marcus calibration 

C_int=0.0003; 

 

timeR=dlmread(fileNameR,'\t','A8..A15007'); %times 

timeC=dlmread(fileNameC,'\t','A8..A15007'); %times 

greenTriggerR=dlmread(fileNameR,'\t','C8..C15007'); 

greenTriggerC=dlmread(fileNameC,'\t','C8..C15007'); 

baslerTriggerR=dlmread(fileNameR,'\t','D8..D15007'); 

baslerTriggerC=dlmread(fileNameC,'\t','D8..D15007'); 

sampleRate=1000; %sampling frequency 

frameRate = 113; %green camera 

sampleNumber = length(timeR); 
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cycleTime=1/freq; 

cycleIndex = round(cycleTime*sampleRate); 

 

VoutImSectR=dlmread(fileNameR,'\t','F8..F15007'); %imaging section outlet 

VinAortaR=dlmread(fileNameR,'\t','I8..I15007'); %aorta inlet 

 

VoutImSectC=dlmread(fileNameC,'\t','F8..F15007'); %imaging section outlet 

VinAortaC=dlmread(fileNameC,'\t','I8..I15007'); %aorta inlet 

 

PoutImSectR=(VoutImSectR-C_int)/C_slope; 

PinAortaR=(VinAortaR-A_int)/A_slope; 

 

PoutImSectC=(VoutImSectC-C_int)/C_slope; 

PinAortaC=(VinAortaC-A_int)/A_slope; 

 

PoutImSect3=(VoutImSectC-C_int)/C_slope; 

PinAorta3=(VinAortaC-A_int)/A_slope; 

 

%filtered pressure wave 

fPoutImSectR=LPButterworthFilt(sampleRate,freq*harmonics,PoutImSectR); 

fPinAortaR=LPButterworthFilt(sampleRate,freq*harmonics,PinAortaR); 

 

fPoutImSectC=LPButterworthFilt(sampleRate,freq*harmonics,PoutImSectC); 

fPinAortaC=LPButterworthFilt(sampleRate,freq*harmonics,PinAortaC); 

 

%RIGID--------------------------------------------------------------------- 

for i = 1:length(timeR) 

    if greenTriggerR(i,1) > 9 

        triggerIndexR = i; 

        break 

    end 

end 

 

%find minimum to start cycle from beginning of pressure pulse 

firstTriggerCycleR=fPinAortaR(triggerIndexR:triggerIndexR+cycleIndex); 

[pksR,pklocsR] = findpeaks(-firstTriggerCycleR); 

pksR=-pksR; 

[~,minIdxR] = min(pksR); 

localMinIndexR=pklocsR(minIdxR); 

firstMinIndexR=localMinIndexR+triggerIndexR; 

 

%create new array for one cycle starting at first diastolic min 

multiCycleTimeR=timeR(firstMinIndexR:firstMinIndexR+5*cycleIndex); 

normMultiCycleTimeR=(multiCycleTimeR-min(multiCycleTimeR))*freq; 

multiCyclePressureR = fPinAortaR(firstMinIndexR:(firstMinIndexR+5*cycleIndex)); %inlet waveform 

using startframe of inlet wave 

 

%COMPLIANT---------------------------------------------------------------- 

for j = 1:length(timeC) 

    if greenTriggerC(j,1) > 9 

        triggerIndexC = j; 

        break 

    end 

end 
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%find minimum to start cycle from beginning of pressure pulse 

firstTriggerCycleC=fPinAortaC(triggerIndexC:triggerIndexC+cycleIndex); 

[pksC,pklocsC] = findpeaks(-firstTriggerCycleC); 

pksC=-pksC; 

[~,minIdxC] = min(pksC); 

localMinIndexC=pklocsC(minIdxC); 

firstMinIndexC=localMinIndexC+triggerIndexC; 

 

%2cycles 

noCycles=2; 

twoCycles=fPinAortaC(firstMinIndexC:firstMinIndexC+(noCycles*(1/freq)*sampleRate)); 

twoCyclesTime=timeC(firstMinIndexC:firstMinIndexC+(noCycles*(1/freq)*sampleRate)); 

twoCyclesOffsetTime=twoCyclesTime-min(twoCyclesTime); 

twoCyclesNormTime=noCycles*twoCyclesOffsetTime/max(twoCyclesOffsetTime); 

 

% %create new array for multiples cycles starting at first diastolic min 

noCycles2=5; 

multiCycleTimeC=timeC(firstMinIndexC:firstMinIndexC+noCycles2*cycleIndex); 

normMultiCycleTimeC=(multiCycleTimeC-min(multiCycleTimeC))*freq; 

multiCyclePressureC = fPinAortaC(firstMinIndexC:(firstMinIndexC+noCycles2*cycleIndex)); %inlet 

waveform using startframe of inlet wave 

 

%plot all collected data together 

figure(fig1) 

plot(timeC,greenTriggerC,'g-') 

hold on 

plot(timeC,baslerTriggerC,'r-') 

plot(timeC,VinAortaC,'k.-') 

plot(timeC,VoutImSectC,'b.-') 

 

xlim([0 15]); 

ylim([-1 5]); 

 

hold off 

ylabel('Voltage, {\itV} [V]'); 

xlabel('Time, {\itt} [s]'); 

set(fig1,'Position',[100 200 1100 500]); 

L=legend('Camera 2 Trigger Function','Camera 1 Trigger Function','Test Section Entrance Pressure 

Transducer','Imaging Section Exit Pressure Transducer') 

set(L,'Location','eastoutside') 

L.FontSize=12; 

ax=gca; 

ax.FontSize=14; 

ax.FontName='Calibri'; 

set(ax,'LooseInset',get(ax,'TightInset')); 

 

%compare unfiltered data to filtered waveform for compliant case 

figure(fig2) 

h1=plot(twoCyclesNormTime,PinAortaC(firstMinIndexC:firstMinIndexC+(noCycles*(1/freq)*sampleRate))

,'k.'); 

h1.MarkerSize=7; 

hold on 

h2=plot(twoCyclesNormTime, twoCycles,'b.-'); 
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h2.MarkerSize=5 

hold off 

xlim([0 2]); 

xlabel('Normalized Time, {\itt/\tau} [--]'); 

ylabel('Pressure, {\itP} [mmHg]') 

L2=legend('Unfiltered Data', 'Filtered Waveform'); 

set(L2,'Location','eastoutside'); 

L2.FontSize=12; 

ax=gca; 

ax.FontSize=14; 

ax.FontName='Calibri'; 

set(ax,'LooseInset',get(ax,'TightInset')); 

 

%multi cycle rigid compliant comparison 

figure(fig3) 

h3=plot(normMultiCycleTimeR,multiCyclePressureR,'k.-'); 

hold on 

h4=plot(normMultiCycleTimeC,multiCyclePressureC,'b.-'); 

h3.MarkerSize=5; 

h4.MarkerSize=5; 

xlim([0 3]); 

ylim([0 35]); 

xlabel('Normalized Time, {\itt/\tau} [--]'); 

ylabel('Pressure, {\itP} [mmHg]') 

L3=legend('Rigid Case', 'Compliant Case'); 

set(L3,'Location','southeast'); 

ax=gca; 

ax.FontSize=14; 

ax.FontName='Calibri'; 

set(ax,'LooseInset',get(ax,'TightInset')); 

 

%zoomed view of basler trigger function 

figure(fig4); 

plot(timeC,VinAortaC,'k.-') 

hold on 

plot(timeC,VoutImSectC,'b.-') 

% plot(timeC,greenTriggerC,'g-') 

plot(timeC,baslerTriggerC,'r-') 

xlim([8.24 8.32]); 

ylim([-0.1 10.2]); 

xlabel('Time,{\itt} [s]'); 

ylabel('Voltage,{\itV} [V]'); 

ax=gca; 

ax.FontSize=8; 

ax.FontName='Calibri'; 

set(ax,'LooseInset',get(ax,'TightInset')); 

 

%zoomed view of green camera trigger function 

figure(fig5); 

plot(timeC,VinAortaC,'k.-') 

hold on 

plot(timeC,VoutImSectC,'b.-') 

plot(timeC,greenTriggerC,'g-') 

xlim([3.4 3.46]); 
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ylim([-0.1 10.4]); 

xlabel('Time,{\itt} [s]'); 

ylabel('Voltage,{\itV} [V]'); 

ax=gca; 

ax.FontSize=8; 

ax.FontName='Calibri'; 

set(ax,'LooseInset',get(ax,'TightInset')); 
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A-3.3 Matlab code used to generate plot of frequency vs. pressure presented in 

Section 4.7.1 

close all 

clear 

 

fig1=figure; 

% fig2=figure; set(fig2,'position',[300 100 1100 500]); 

% fig3=figure;set(fig3,'position',[300 100 1100 500]) 

% fig4=figure; 

% fig5=figure; fig6=figure; 

 

path='F:\UPDATED RESULTS (NOV)\Nov15\Poly Pressure Files\'; 

fnames = dir(path); 

count=0; 

 

%transducer A 

A_slope=0.0149; 

A_int=0.0645; 

harmonics=4; 

sampleRate=1000; 

frameRate = 113; %green camera 

 

for i=3:length(fnames) 

    count=count+1; 

    ind(count)=strfind(fnames(i).name,'RPM'); 

    if ind(count)==17 

        freq(count)=str2num(fnames(i).name(ind(count)-2:ind(count)-1)); 

    elseif ind(count)==19 

        freq(count)=str2num(fnames(i).name(ind(count)-4:ind(count)-1)); 

    end 

    freq(count)=(4*freq(count))/60; 

    cycleTime(count)=1/freq(count); 

    cycleIndex(count)=round(cycleTime(count)*sampleRate); 

    %load pressure data 

    fileLoc=fnames(i).name; 

    fileName=strcat(path,fileLoc); 

 

            delimiter = '\t'; 

            startRow = 8; 

            formatSpec = 

'%f%*s%f%*s%*s%*s%*s%*s%f%*s%[^\n\r]';%f%*s%*s';%*s%*s%f%*s%*s%f%*s%*s%[^\n\r]'; 

            fileID = fopen(char(fileName)),'r'; 

            dataArray = textscan(fileID, formatSpec, 'Delimiter', delimiter, 'EmptyValue' 

,NaN,'HeaderLines' ,startRow-1, 'ReturnOnError', false); 

            fclose(fileID); 

            time(:,count)=dataArray{1,1}; 

            greenTrigger(:,count)=dataArray{1,2}; 

                for j = 1:length(time) 

                    if greenTrigger(j,count) > 9 

                    triggerIndex(count) = j; 

                    break 
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                    end 

                end 

            VinAorta(:,count)=dataArray{1,3}; 

            PinAorta(:,count)=(VinAorta(:,count)-A_int)/A_slope; 

            

fPinAorta(:,count)=LPButterworthFilt(sampleRate,freq(count)*harmonics,PinAorta(:,count)); 

            [pks,pklocs]=findpeaks(-fPinAorta(:,count)); 

            pks=-pks; 

            minIdx(count)=pklocs(pks==min(pks)); 

 

 

end 

 

oneCycle1=fPinAorta(minIdx(1):minIdx(1)+cycleIndex(1)-1,1); 

oneCycleTime1=time(minIdx(1):minIdx(1)+cycleIndex(1)-1,1); 

offsetCycleTime1=oneCycleTime1-min(oneCycleTime1); 

normCycleTime1=offsetCycleTime1/max(offsetCycleTime1); 

 

oneCycle2=fPinAorta(minIdx(2):minIdx(2)+cycleIndex(2)-1,2); 

oneCycleTime2=time(minIdx(2):minIdx(2)+cycleIndex(2)-1,2); 

offsetCycleTime2=oneCycleTime2-min(oneCycleTime2); 

normCycleTime2=offsetCycleTime2/max(offsetCycleTime2); 

 

oneCycle3=fPinAorta(minIdx(3):minIdx(3)+cycleIndex(3)-1,3); 

oneCycleTime3=time(minIdx(3):minIdx(3)+cycleIndex(3)-1,3); 

offsetCycleTime3=oneCycleTime3-min(oneCycleTime3); 

normCycleTime3=offsetCycleTime3/max(offsetCycleTime3); 

 

oneCycle4=fPinAorta(minIdx(4):minIdx(4)+cycleIndex(4)-1,4); 

oneCycleTime4=time(minIdx(4):minIdx(4)+cycleIndex(4)-1,4); 

offsetCycleTime4=oneCycleTime4-min(oneCycleTime4); 

normCycleTime4=offsetCycleTime4/max(offsetCycleTime4); 

 

oneCycle5=fPinAorta(minIdx(5)-cycleIndex(5):minIdx(5)-1,5); 

oneCycleTime5=time(minIdx(5)-cycleIndex(5):minIdx(5)-1,5); 

offsetCycleTime5=oneCycleTime5-min(oneCycleTime5); 

normCycleTime5=offsetCycleTime5/max(offsetCycleTime5); 

 

oneCycle6=fPinAorta(minIdx(6):minIdx(6)+cycleIndex(6)-1,6); 

oneCycleTime6=time(minIdx(6):minIdx(6)+cycleIndex(6)-1,6); 

offsetCycleTime6=oneCycleTime6-min(oneCycleTime6); 

normCycleTime6=offsetCycleTime6/max(offsetCycleTime6); 

 

oneCycle7=fPinAorta(minIdx(7):minIdx(7)+cycleIndex(7)-1,7); 

oneCycleTime7=time(minIdx(7):minIdx(7)+cycleIndex(7)-1,7); 

offsetCycleTime7=oneCycleTime7-min(oneCycleTime7); 

normCycleTime7=offsetCycleTime7/max(offsetCycleTime7); 

 

oneCycle8=fPinAorta(minIdx(8)-cycleIndex(8):minIdx(8)-1,8); 

oneCycleTime8=time(minIdx(8)-cycleIndex(8):minIdx(8)-1,8); 

offsetCycleTime8=oneCycleTime8-min(oneCycleTime8); 

normCycleTime8=offsetCycleTime8/max(offsetCycleTime8); 

 

oneCycle9=fPinAorta(minIdx(9)-cycleIndex(9):minIdx(9)-1,9); 
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oneCycleTime9=time(minIdx(9)-cycleIndex(9):minIdx(9)-1,9); 

offsetCycleTime9=oneCycleTime9-min(oneCycleTime9); 

normCycleTime9=offsetCycleTime9/max(offsetCycleTime9); 

 

 

figure(fig1) 

plot(normCycleTime1,oneCycle1,'k.-') 

hold on 

plot(normCycleTime2,oneCycle2,'b.-') 

plot(normCycleTime3,oneCycle3,'r.-') 

plot(normCycleTime4,oneCycle4,'g.-') 

plot(normCycleTime5,oneCycle5,'c.-') 

plot(normCycleTime6,oneCycle6,'m.-') 

p7=plot(normCycleTime7,oneCycle7,'.-') 

p7.Color=[0.4 0.4 0.4]; 

p8=plot(normCycleTime8,oneCycle8,'.-') 

p8.Color=[0.8 0.5 0]; 

p9=plot(normCycleTime9,oneCycle9,'.-') 

p9.Color=[0.5 0.6 0]; 

hold off 

ylabel('Pressure, {\itP} [mmHg]'); 

xlabel('Normalized Time, {\itt/\tau} [--]'); 

set(fig1,'Position',[100 200 1100 650]); 

L=legend('{\itf}=1.00 Hz','{\itf}=1.17 Hz','{\itf}=1.33 Hz','{\itf}=1.50 Hz','{\itf}=1.67 

Hz','{\itf}=1.83 Hz','{\itf}=2.00 Hz','{\itf}=2.17 Hz','{\itf}=2.33 Hz'); 

set(L,'Location','eastoutside') 

L.FontSize=12; 

ax=gca; 

ax.FontSize=14; 

ax.FontName='Calibri'; 

set(ax,'LooseInset',get(ax,'TightInset')); 
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A-3.4 Matlab code used to plot vectors fields from Section 3.3 

clear 

close all 

 

fig1=figure; set(fig1,'position',[100 200 800 400]); 

path = 'F:\PIV Results\VAD_Results_calibration_105mm\Oct6_2PSI_1235RPM_truncated (frames 1-

1064)\TR_PIV_MP(3x32x32_75%ov)_01\'; 

% Get files in folder 

fnames = dir([path '*.VC7']); 

frameRate=1000; 

pixel2mm=82; 

skip=1; 

startFrame=350; 

endFrame=startFrame; %set equal to startFrame to get one vector field 

count=0; 

 

for i = startFrame:skip:endFrame 

    count = count+1; 

    v_File = [path fnames(i).name]; 

    % Load the vector file 

    VEC = loadvec(v_File); 

    [x1find,~]=find(VEC.vy); 

    x1=min(x1find)-3; 

    x2=max(x1find)+1; 

 

    y1=1; 

    [s1 s2]=size(VEC.y); 

    y2=s2; 

 

    box = [x1 x1 x2 y2]; 

 

    CHW=(x2-x1)+1; 

    CHH=(y2-y1)+1; 

 

    VEC2 = extractf(VEC,box); % get the vectors 

    VEC2=rotatef(VEC2,pi); 

    VEC2.ysign='upward'; 

 

    VEC2xoffset=VEC2.x-min(VEC2.x); %offset channel width to begin at 0 

    VEC2.x=VEC2xoffset/max(VEC2xoffset); %normalize channel width 

    VEC2yoffset=VEC2.y-min(VEC2.y); 

    VEC2.y=(VEC2yoffset/(max(VEC2xoffset))); 

 

    VEC2.vx=((VEC2.vx*frameRate)/pixel2mm)*0.001; %convert to velocities 

    VEC2.vy=((VEC2.vy*frameRate)/pixel2mm)*0.001; 

 

figure(fig1) 

F=showf(VEC2,'norm','spacing',[4,8],'scalearrow',1,'cmap','jet') 

 

%ylabel('Vertical [px]'); 

xlabel('{\itx/D}','FontSize',14,'FontName','Calibri'); 
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ylabel('{\ity/D}',... 

       'FontSize', 14,'FontName',... 

       'Calibri') 

 

 

xlim([0 1]); 

ylim([0 0.66]); 

 

c=colorbar; 

ylabel(c,'|V|(m/s)'); 

colorbar('hide') 

c=colorbar('FontSize',12,'FontName','Calibri'); 

ylabel(c,'|{\itV}| [m/s]','FontSize',12); 

 

ax=gca; 

set(ax,'FontSize',12); 

 

end 
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A-3.5 Matlab code used to generate the theoretical velocity data discussed in 

Sections 3.4 

Code for obtaining centerline velocity: 

clear 

clc 

close all 

 

fig1=figure; 

 

nPts=140; 

dataType=0; 

fourierCheck = 1; 

 

[up,uc,freq,times,PinF] = readme_pulsatile(nPts,dataType,fourierCheck); 

 

sampleRate=1000; 

cycleIndex=(1/freq)*sampleRate; 

startIndex=500; %index of pressure start (from Pressure Data function) 

 

%one cycle of pressure wave 

PinF=PinF/133.32; %convert back to mmHg 

firstCycle=PinF(startIndex:(startIndex+cycleIndex)); 

firstCycleTime=times(startIndex:(startIndex+cycleIndex)); 

offsetPCycleTime=firstCycleTime-min(firstCycleTime); 

normPCycleTime=offsetPCycleTime/max(offsetPCycleTime); 

 

%convert vCL plot to time axis 

%one cycle of velocity 

for i=1:length(uc) 

ucTime(i,1)=(i/length(uc))*(2/freq); 

end 

 

[pks,pkLocs]=findpeaks(-firstCycle); 

pks=-pks; 

firstMinIdxLoc=pkLocs(pks==min(pks)); 

 

firstMinIndex = firstMinIdxLoc + startIndex; 

 

oneCyclePTime=times(firstMinIndex:firstMinIndex+cycleIndex)-

min(times(firstMinIndex:firstMinIndex+cycleIndex)); 

normOneCyclePTime=oneCyclePTime*freq; 

oneCyclePinF=PinF(firstMinIndex:firstMinIndex+cycleIndex); 

offsetOneCyclePinF=oneCyclePinF-min(oneCyclePinF); 

normOneCyclePinF=offsetOneCyclePinF/max(offsetOneCyclePinF); 

 

offsetTime=times(firstMinIndex)-times(startIndex); 

findoffsetTime=ucTime(ucTime<=offsetTime+0.0005); 

beginIdx=length(findoffsetTime); 

oneCycleUcTime=ucTime(beginIdx:beginIdx+(nPts/2)-1); 

oneCycleUc=uc(beginIdx:beginIdx+(nPts/2)-1); 
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offsetUcTime=oneCycleUcTime-min(oneCycleUcTime); 

normucTime=offsetUcTime/(max(offsetUcTime)); 

normuc=oneCycleUc/max(oneCycleUc); 

 

phsAng=normucTime(normuc==max(normuc))-

normOneCyclePTime(normOneCyclePinF==max(normOneCyclePinF)); 

 

save theoPP_35RPM_vCL.mat normucTime normuc 

save PP_35RPM_PhsAngle.mat phsAng 

 

figure 

[hAx, h1, h2]=plotyy(normOneCyclePTime,normOneCyclePinF,normucTime,normuc); 

h1.Marker='o'; 

h2.Marker='o'; 

hAx(1).YColor='k'; 

hAx(2).YColor='b'; 

h1.Color='black'; 

h2.Color='blue'; 

set(hAx(1),'XLim',[0 1]); 

set(hAx(2),'XLim',[0 1]); 

set(hAx(1),'YLim',[-1 1]); 

set(hAx(2),'YLim',[-1 1]); 

set(hAx(1),'YTick',-1:0.5:1); 

set(hAx(2),'YTick',-1:.5:1); 

set(get(hAx(1),'YLabel'),'String','Normalized Pressure, {\itP/P_{max}} [--]'); 

set(get(hAx(2),'YLabel'),'String','Normalized Centerline Velocity, {\itv_{CL}/v_{CL,max}} [--]'); 

set(get(hAx(1),'XLabel'),'String','Normalized Time, {\itt/\tau} [--]'); 

set(get(hAx(2),'XLabel'),'String','Normalized Time, {\itt/\tau} [--]'); 

set(hAx,'Fontsize',11); 

set(hAx,'Fontname','Calibri’); 

Code for obtaining velocity profiles: 

clear 

clc 

close all 

 

fig1=figure; 

 

nProfiles=80; 

dataType=0; 

fourierCheck = 1; 

r=0.00635; 

 

[up,uc,freq,times,PinF] = readme_pulsatile(nProfiles,dataType,fourierCheck); 

 

sampleRate=1000; 

cycleIndex=(1/freq)*sampleRate; 

startIndex=300; %index of pressure start (from Pressure Data code) 

 

%one cycle of pressure wave from first min 

PinF=PinF/133.32; %convert back to mmHg 
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firstCycle=PinF(startIndex:(startIndex+cycleIndex)); 

firstCycleTime=times(startIndex:(startIndex+cycleIndex)); 

[pks,pkLocs]=findpeaks(-firstCycle); 

pks=-pks; 

firstMinIdxLoc=pkLocs(pks==min(pks)); 

 

firstMinIndex = firstMinIdxLoc + startIndex; 

 

oneCyclePTime=times(firstMinIndex:firstMinIndex+cycleIndex)-

min(times(firstMinIndex:firstMinIndex+cycleIndex)); 

normOneCyclePTime=oneCyclePTime*freq; 

oneCyclePinF=PinF(firstMinIndex:firstMinIndex+cycleIndex); 

offsetOneCyclePinF=oneCyclePinF-min(oneCyclePinF); 

normOneCyclePinF=offsetOneCyclePinF/max(offsetOneCyclePinF); %normalized pressure 

 

%time between beginning of velocity calculation and first pressure min - so 

%offset can be calculated for velocity profiles start index 

offsetTime=(firstMinIndex-startIndex)/sampleRate; 

startPt=round(offsetTime*nProfiles)-2; 

velCycleIndex=nProfiles/2; 

endPt=startPt+velCycleIndex; 

 

if endPt>80 

    startPt=startPt-velCycleIndex; 

    endPt=startPt+velCycleIndex; 

end 

 

interval=(nProfiles/2)/10; 

 

count=0 

for h=startPt:interval:endPt-1 

    count=count+1; 

    profiles(count,:)=up(h,:); 

end 

 

%normalize velocity profiles 

 

for k=1:length(profiles) 

    upRad(k)=-r+((2*r)*(k-1)/(length(profiles)-1)); 

 

end 

 

%Normalize everything 

maxArray=max(up); 

normVal=max(maxArray); 

normUpRad=(upRad/(2*max(upRad)))+.5; 

normUpVel=up/normVal; 

 

save PP_poly_25RPM_theoVelProf.mat nProfiles normUpRad profiles 

Code for functions: 

function [up,uc,freq, times, PinF] = readme_pulsatile(frameNumber,dataType,fourierCheck) 
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% Toolkit for Pulsatile flow in arteries 

% 

% IMPORTANT > This toolkit is using some functions of Image processing 

% toolkit in matlab. Image processing toolkit is used to export dicom files 

% generated from the toolkit. If you need to export dicom files 

% this toolkit should also be installed. 

% 

% This toolkit includes a list of functions to provide pulsatile flow images 

% acquired from Womersley solution in the rigid tube. The toolkit includes 

% functions for exact solution of the domain for flow characteristics such 

% as velocity, pressure, wall shear rate, volumetric flow and flow rate in 

% the computational domain. Also there is a function to generate PC-MR 

% images as numerical phantom for the domain. Fourier series for generation 

% of temporal wave form are supported when pressure is given as: 

% p(t)=p0+Sum[pn(n)*exp(i*(2*pi*freq*t*n-phi(n))))]. 

% 

% 

%******************** List of functions 

% 

% [u,p,dudr,q,dq,alpha]=PulsatileFlow(r,ru,mu,freq,p0,pn,phi,timestep,grid); 

% 

% [outputP] = PressureData(freq,Location,File_icon_text,duration,sampleRate); 

% 

%   Copyright 2007-2013 Ali Pashaei. 

 

 

%clf; clear all; clc; 

if nargin==0 

    fourierCheck=0; 

end 

sampleRate = 1000; 

Location = 'F:\UPDATED RESULTS (NOV)\Nov10\'; 

File_icon_text = 'Nov10_PP_35RPM_Volt.log'; 

ind=strfind(File_icon_text,'RPM'); 

RPM=str2num(File_icon_text(ind-2:ind-1)); 

r = 0.00635; grid = 64; timestep = round(frameNumber); 

ru =1000; freq = (RPM*4)/60; mu = 0.001005; 

harmonics = 4; 

 

fourierCoefficients = 20; 

 

lowerBound = 0; 

 

cycle = 1; 

 

cutoffFrequency = freq*harmonics; 

 

transducerLength = .26; 

 

A_slope=0.0149; 

A_int=0.0645; 

C_slope=0.0149; %Marcus calibration 

C_int=0.0003; 
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staticHead=25.15*133.32; 

 

 

[p times PinF] = 

PressureData(freq,Location,File_icon_text,sampleRate,fourierCheck,staticHead,lowerBound,cycle,cut

offFrequency,transducerLength); 

[p0,pn,phi] = FourierSeries(p,1/sampleRate,fourierCoefficients,(1/freq),fourierCheck); 

 

[u]=PulsatileFlow(r,ru,mu,freq,p0,pn,phi,timestep,grid); 

 

% get a velocity profile for all [frameNumber] time steps 

up = u(:,1:grid+1,grid/2+1); 

%centerline velocity 

uc = u(:,grid/2+1,grid/2+1); 

 

end 

function [outputP times PinF] = 

PressureData(frequency,Location,File_icon_text,sampleRate,fourierCheck,staticHead,lowerBound,cycl

e,fc,transducerLength) 

%   frequency      - Frequency of the measured pulse, in Hz 

%   Location       - Find file location by right clicking on file name from windows file 

explorer, selecting properties 

%                    and copying the "Location" address to this string 

%   File_icon_text - Find File_icon_text by right clicking on file name from windows file 

explorer, selecting properties 

%                    and copying the file name found in the text box to this string 

%   duration       - The amount of time that pressure data was collected for, 

%                    in seconds 

%   sampleRate     - The data aqusition rate for the pressure data, in Hz 

 

fileName = strcat(Location,'\',File_icon_text); 

%transducer A 

A_slope=0.0149; 

A_int=0.0645; 

 

%Marcus transducer C 

C_slope=0.0149; %Marcus calibration 

C_int=0.0003; 

 

 

times=dlmread(fileName,'\t','A8..A15007'); %times 

ai4=dlmread(fileName,'\t','F8..F15007'); %imaging section outlet 

ai7=dlmread(fileName,'\t','I8..I15007'); %aorta inlet 

Pc=((ai4-C_int)/C_slope)*133.32; 

PcF=LPButterworthFilt(sampleRate,fc,Pc); 

Pin=((ai7-A_int)/A_slope)*133.32; 

PinF=LPButterworthFilt(sampleRate,fc,Pin); 

 

outputP = (PinF - PcF- staticHead)/transducerLength; %[Pa] 

 

cycleTimes=times(((1/frequency)*sampleRate:2*(1/frequency)*sampleRate))-
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min(times(((1/frequency)*sampleRate:2*(1/frequency)*sampleRate))); 

cycle=outputP((1/frequency)*sampleRate:2*(1/frequency)*sampleRate); 

 

figure(1) 

set((1),'Position',[100 300 1100 500]); 

plot(times,outputP,'k') 

hold on 

% plot(times,staticHead*ones(length(times))); 

outputP=outputP(500:end-500); 

xlim([0 2]); 

xlabel('Time, {\itt} [s]'); 

ylabel('Axial Pressure Gradient, {\itdP/dz} [Pa/m]'); 

ax=gca; 

ax.FontSize=14; 

ax.FontName='Calibri'; 

set(ax,'LooseInset',get(ax,'TightInset')); 

% set(ax,'Position',[100 200 1100 500]); 

end 

function [p0,pn,phi] = FourierSeries(p,dt,N,T,fourierCheck) 

%FourierSeries FourierSeries function to generate coeficients of Fourier series for a given 

discrete data. 

%   [p0,pn,phi] = FourierSeries(p,dt,N,T) provides a constant p0 and two 

%   arrays pn and phi with length N within period of T. N is the number of 

%   coefficients for the Fourier serie. 

%   Input parameters for the functions are defined as below: 

% 

%       p           array of discrete amplitudes for the pulsatile wave. 

%       dt          time step size in which p data are presented. 

%       N           Number of coefficients required from the function. 

%       T           period of oscillation of the fluid. 

% 

% 

%   p is an array, dt is a double number, N is integer and N is double. 

% 

%   given array p, [p0,pn,phi] = FourierSeries(p,dt,N,T) provides the 

%   coefficients for function p(t)=p0+Sum[pn(n)*exp(i*(2*pi*t*n/T-phi(n))))] 

% 

%   Output parameters for the functions are defined as below: 

% 

%       p0          a value showing the steady-state component of peiodic wave. 

%       pn          an array of size N presenting the absolute values of Fourier serie. 

%       phi         an array of size N presenting the phase angle in Fourier serie. 

% 

%   Examples: 

% 

%       p=[-7.7183,-8.2383,-8.6444,-8.8797,-9.6337,-10.5957,-11.8705,-10.0942,-6.2839,-

1.1857,2.6043,4.4323,6.1785,7.8211,9.1311,9.9138,10.3447,10.4011,10.2807,9.8951,8.0597,5.6717,2.5

232,1.3301,1.4405,1.9094,1.8145,0.8738,0.7055,0.7343,0.7788,0.7495,0.6711,-0.4796,-1.6541,-

2.8643,-3.4902,-4.1714,-5.6581,-6.8024]; 

%       [p0,pn,phi] = FourierSeries(p,0.025,4,1) 

% 
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%       generates the Fourier coefficients for wave p, presenting data in intervals of 0.025 

within a period of 1 sec. 

%       parameters set in SI. 

% 

%       is possible to visualize the results given function below: 

% 

%           tt=0:dt:T; 

%           pt=p0; 

%           for n=1:N 

%               pt=pt+pn(n)*cos(2*pi*tt*n/T-phi(n)); 

%           end 

%           plot (tt,pt,'-k',0:dt:T-dt,p,'x') 

% 

% 

%   Reference: 

%   A. Pashaei and N Fatouraee, "An analytical phantom for the evaluation 

%   of medical flow imaging algorithms.", Phys Med Biol. 2009 Mar 21;54(6):1791-821. 

% 

%   Copyright 2007-2013 Ali Pashaei. 

 

T=2*T; 

[p0,pn,phi] = FourierCoefficients2(p,dt,N,T); 

tt=0:dt:T; 

pt=p0; 

for n=1:N 

  pt=pt+pn(n)*cos(2*pi*tt*n/T-phi(n)); 

end 

 

if fourierCheck == 1 

    figure(2); 

    plot (tt,pt,'-k',0:dt:T-dt,p(1:length(tt)-1),'x'); 

    xlabel('time (s)'); 

    ylabel('dP/dz (Pa/m)'); 

end 

 

end 

 

function [A0,AN,BN] = FourierCoefficients(p,dt,N,T) 

t=0:dt:(T-dt); 

A0=0; 

for n=1:length(t) 

    A0=A0+p(n)*dt/T; 

end 

AN=zeros(N,1); 

BN=zeros(N,1); 

for n=1:N; 

    for m=1:length(t) 

        AN(n)=AN(n)+2*p(m)*cos (2*pi*t(m)/T*n)*dt/T; 

        BN(n)=BN(n)+2*p(m)*sin (2*pi*t(m)/T*n)*dt/T; 

    end 

end 

end 

 

function [A0,MN,PHIN] = FourierCoefficients2(p,dt,N,T) 
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[A0,AN,BN] = FourierCoefficients(p,dt,N,T); 

MN=zeros(N,1); 

PHIN=zeros(N,1); 

for n=1:N 

    MN(n)=sqrt(AN(n)^2+BN(n)^2); 

    PHIN(n)=angle(AN(n)+1i*BN(n)); 

end 

end 
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A-3.6 Matlab code used to calculate and plot multiple cycle centerline velocity 

results from Section 4.4 

clear 

close all 

 

% Size and position figures 

figure(1), figure(2); figure(3); 

sz_x = 560; sz_y = 420; 

y_pos = 550; 

x_pos =75; 

set(1,'pos', [x_pos, y_pos, sz_x, sz_y]); 

set(2,'pos', [x_pos+15+sz_x, y_pos, sz_x, sz_y]); 

set(3,'pos', [x_pos, 10, sz_x*2, sz_y]); 

 

% Load data set 

pathR = 'F:\PIV Results\PP Results 

November_calibration_90mm\Nov10_PP_25RPM\TR_PIV_MP(2x16x16_50%ov)\'; 

pathC='F:\PIV Results\PP Results 

November_calibration_90mm\Nov14_PPC_25RPM\TR_PIV_MP(4x16x16_50%ov)_01\'; 

% Get files in folder 

fnamesR = dir([pathR '*.VC7']); 

fnamesC = dir([pathC '*.VC7']); 

% Set a counter 

countR=0; 

countC=0; 

% Define the num of images to SKIP (if needed) 

skip = 1; 

 

%so start frame is now 12 from the newly processed dataset 

frameRate=113; 

freq=1.667; %pulse frequency 

cycleFrames=round((1/freq)*frameRate); %cycle time multiplied by camera frame rate 

% endFrame=startFrame+cycleFrames; 

harmonics=4; 

 

%load pressure data to find start trigger 

fileNameR='F:\UPDATED RESULTS (NOV)\Nov10\Nov10_PP_25RPM_Volt.log'; 

fileNameC='F:\UPDATED RESULTS (NOV)\Nov14\Nov14_PPC_25RPM_Volt.log'; 

%transducer A 

A_slope=0.0149; 

A_int=0.0645; 

 

%Marcus transducer C 

C_slope=0.0149; %Marcus calibration 

C_int=0.0003; 

 

pixel2mm_water=74;%74 pixel=1 mm for water case 

pixel2mm_poly=77; 

 

timeR=dlmread(fileNameR,'\t','A8..A15007'); %times 

timeC=dlmread(fileNameC,'\t','A8..A15007'); %times 
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baslertriggerR=dlmread(fileNameR,'\t','D8..D15007'); 

baslertriggerC=dlmread(fileNameC,'\t','D8..D15007'); 

greenTriggerR=dlmread(fileNameR,'\t','C8..C15007'); 

greenTriggerC=dlmread(fileNameC,'\t','C8..C15007'); 

sampleRate=1000; %sampling frequency 

frameRate = 113; %green camera 

sampleNumber = length(timeR); 

 

VoutImSectR=dlmread(fileNameR,'\t','F8..F15007'); %imaging section outlet 

VinAortaR=dlmread(fileNameR,'\t','I8..I15007'); %aorta inlet 

VoutImSectC=dlmread(fileNameC,'\t','F8..F15007'); %imaging section outlet 

VinAortaC=dlmread(fileNameC,'\t','I8..I15007'); %aorta inlet 

 

PoutImSectR=(VoutImSectR-C_int)/C_slope; 

PinAortaR=(VinAortaR-A_int)/A_slope; 

fPinAortaR=LPButterworthFilt(sampleRate,freq*harmonics,PinAortaR); 

PoutImSectC=(VoutImSectC-C_int)/C_slope; 

PinAortaC=(VinAortaC-A_int)/A_slope; 

fPinAortaC=LPButterworthFilt(sampleRate,freq*harmonics,PinAortaC); 

 

noPlotCycles=3; %how many normalized cycles to plot 

 

%RIGID--------------------------------------------------------------------- 

 

% finding the start frame of the camera for rigid dataset 

for c = 1:sampleNumber 

    if greenTriggerR(c,1) > 5 

        triggerIndexR = c; 

        break 

    end 

end 

 

cycleIndexR = round((1/freq)*sampleRate); %frames per cycle 

firstTriggerCycleR=fPinAortaR(triggerIndexR:triggerIndexR+cycleIndexR); 

 

[pksR,pkLocsR]=findpeaks(firstTriggerCycleR); %positive peaks 

[npksR,npkLocsR]=findpeaks(-firstTriggerCycleR);%cycle minima 

npksR=-npksR; 

[~, firstMinIndexUR] = min(fPinAortaR(triggerIndexR:(triggerIndexR+cycleIndexR))); 

firstMinIndexR = firstMinIndexUR + triggerIndexR; 

 

%calculate startFrame of cycle using triggerIndex 

offsetTimeR = timeR(firstMinIndexR)- timeR(triggerIndexR); 

startFrameR = round(frameRate*offsetTimeR); 

endFrameR=round(startFrameR+noPlotCycles*(1/freq)*frameRate); 

oneCycleTimeR=timeR(firstMinIndexR:firstMinIndexR+cycleIndexR); 

oneCyclePressureR=fPinAortaR(firstMinIndexR:firstMinIndexR+cycleIndexR); 

 

for c = startFrameR:skip:endFrameR 

    countR = countR+1; 

    v_FileR = [pathR fnamesR(c).name]; 

    % Load the vector file 

    VECR = loadvec(v_FileR); 

    [x1findR,~]=find(VECR.vy); 
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    x1R=min(x1findR)-1; 

    x2R=max(x1findR)+1; 

 

    y1R=1; 

    [s1R s2R]=size(VECR.y); 

    y2R=s2R; 

 

    boxR = [x1R x1R x2R y2R]; 

 

    VECR2 = extractf(VECR,boxR); % get the vectors 

 

mVelR(countR)=mean2(VECR2.vy); 

mVelR(countR)=((mVelR(countR)*frameRate)/pixel2mm_water)*0.001; 

 

figure(3) 

 

    plot(mVelR,'r.'); 

 drawnow 

end 

 

for x=1:length(mVelR); 

    velTimeR(x)= (startFrameR+(x*skip))*(1/frameRate)-(startFrameR*(1/frameRate)); %calculating 

the time steps associated with each image 

end 

normVelTimeR=noPlotCycles*(velTimeR-min(velTimeR))/max(velTimeR); 

 

%COMPLIANT----------------------------------------------------------------- 

%start frame for compliant dataset 

for j = 1:sampleNumber 

    if greenTriggerC(j,1) > 5 

        triggerIndexC = j; 

        break 

    end 

end 

 

cycleIndexC = round((1/freq)*sampleRate); %frames per cycle 

firstTriggerCycleC=fPinAortaC(triggerIndexC:triggerIndexC+cycleIndexC); 

 

[pksC,pkLocsC]=findpeaks(firstTriggerCycleC); %positive peaks 

[npksC,npkLocsC]=findpeaks(-firstTriggerCycleC);%cycle minima 

npksC=-npksC; 

[~, firstMinIndexUC] = min(fPinAortaC(triggerIndexC:(triggerIndexC+cycleIndexC))); 

firstMinIndexC = firstMinIndexUC + triggerIndexC; 

 

%calculate startFrame of cycle using triggerIndex 

offsetTimeC = timeC(firstMinIndexC)- timeC(triggerIndexC); 

startFrameC = round(frameRate*offsetTimeC); 

endFrameC=round(startFrameC+noPlotCycles*(1/freq)*frameRate); 

oneCycleTimeC=timeC(firstMinIndexC:firstMinIndexC+cycleIndexC); 

oneCyclePressureC=fPinAortaC(firstMinIndexC:firstMinIndexC+cycleIndexC); 

 

for c = startFrameC:skip:endFrameC 

    countC = countC+1; 

    v_FileC = [pathC fnamesC(c).name]; 
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    % Load the vector file 

    VECC = loadvec(v_FileC); 

    [x1findC,~]=find(VECC.vy); 

    x1C=min(x1findC)-1; 

    x2C=max(x1findC)+1; 

 

    y1C=1; 

    [s1C s2C]=size(VECC.y); 

    y2C=s2C; 

 

    boxC = [x1C x1C x2C y2C]; 

 

    VECC2 = extractf(VECC,boxC); % get the vectors 

 

mVelC(countC)=mean2(VECC2.vy); 

mVelC(countC)=((mVelC(countC)*frameRate)/pixel2mm_water)*0.001; 

 

figure(3) 

    plot(mVelC,'r.'); 

 drawnow 

end 

 

for y=1:length(mVelC); 

    velTimeC(y)= (startFrameC+(y*skip))*(1/frameRate)-(startFrameC*(1/frameRate)); %calculating 

the time steps associated with each image 

end 

normVelTimeC=noPlotCycles*(velTimeC-min(velTimeC))/max(velTimeC); 

%-------------------------------------------------------------------------- 

 

figure(2) 

plot(normVelTimeR,mVelR,'ko-'); 

hold on 

plot(normVelTimeC,mVelC,'b*-'); 

hold off 

xlim([0 3]); 

ylim([-0.02 0.06]); 

xlabel('Normalized Time, {\itt/\tau} [--]'); 

ylabel('Centerline Velocity, {\itv_{CL}} [m/s]') 

set(figure(2),'position',[300 100 1100 500]); 

L4=legend('Rigid Case', 'Compliant Case'); 

set(L4,'Location','eastoutside'); 

ax=gca; 

ax.FontSize=14; 

ax.FontName='Calibri'; 

set(ax,'LooseInset',get(ax,'TightInset')); 

 

save ('meanVelocity_multicycle_PP_25RPM.mat', 'mVelR', 'skip','velTimeR'); 

save meanVelocity_multicycle_PPC_25RPM.mat mVelC skip velTimeC 

 

% 
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A-3.7 Matlab code used to calculate one cycle of centerline velocities synced 

with theoretical phase angle from Section 4.5 

clear 

close all 

 

% Size and position figures 

fig1=figure; 

fig2=figure; 

fig3=figure; 

 

% figure(1), figure(2); figure(3); 

sz_x = 560; sz_y = 420; 

y_pos = 550; 

x_pos =75; 

set(fig1,'pos', [x_pos, y_pos, sz_x+300, sz_y-70]); 

set(fig2,'pos', [x_pos+15+sz_x, y_pos, sz_x+300, sz_y-70]); 

set(fig3,'pos', [x_pos, 10, sz_x*2, sz_y]); 

 

% Load data set 

path = 'F:\PIV Results\PP Results 

November_calibration_90mm\Nov10_PP_35RPM\TR_PIV_MP(3x24x24_50%ov)_01\'; 

fnames = dir([path '*.VC7']); 

count=0; 

% Define the num of images to SKIP (if needed) 

skip = 1; 

frameRate=113; 

freq=2.33; %pulse frequency 

cycleFrames=round((1/freq)*frameRate); %cycle time multiplied by camera frame rate 

harmonics=4; 

 

%load pressure data to find start trigger 

fileName='F:\UPDATED RESULTS (NOV)\Nov10\Nov10_PP_35RPM_Volt.log'; 

 

%transducer A 

A_slope=0.0149; 

A_int=0.0645; 

 

%Marcus transducer C 

C_slope=0.0149; %Marcus calibration 

C_int=0.0003; 

 

pixel2mm_water=74;%74 pixel=1 mm for water case 

pixel2mm_poly=77; 

 

time=dlmread(fileName,'\t','A8..A15007'); %times 

baslertriggerR=dlmread(fileName,'\t','D8..D15007'); 

greenTrigger=dlmread(fileName,'\t','C8..C15007'); 

sampleRate=1000; %sampling frequency 

frameRate = 113; %green camera 

sampleNumber = length(time); 
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VoutImSectR=dlmread(fileName,'\t','F8..F15007'); %imaging section outlet 

VinAortaR=dlmread(fileName,'\t','I8..I15007'); %aorta inlet 

 

PoutImSect=(VoutImSectR-C_int)/C_slope; 

PinAorta=(VinAortaR-A_int)/A_slope; 

fPinAorta=LPButterworthFilt(sampleRate,freq*harmonics,PinAorta); 

 

% finding the start frame of the camera 

for i = 1:sampleNumber 

    if greenTrigger(i,1) > 5 

        triggerIndex = i; 

        break 

    end 

end 

 

cycleIndex = round((1/freq)*sampleRate); %frames per cycle 

firstTriggerCycle=fPinAorta(triggerIndex:triggerIndex+cycleIndex); 

 

[pks,pkLocs]=findpeaks(firstTriggerCycle); %positive peaks 

[npks,npkLocs]=findpeaks(-firstTriggerCycle);%cycle minima 

npks=-npks; 

 

[~, firstMinIndexU] = min(fPinAorta(triggerIndex:(triggerIndex+cycleIndex))); 

firstMinIndex = firstMinIndexU + triggerIndex; 

 

 

offsetTime=time(firstMinIndex)-time(triggerIndex); 

startFrame = 1; 

noCycles=2; 

endFrame=startFrame+round((noCycles*(1/freq)*frameRate)); 

oneCyclePTime=time(firstMinIndex:firstMinIndex+cycleIndex); 

offsetOneCyclePTime=oneCyclePTime-min(oneCyclePTime); 

normOneCyclePTime=offsetOneCyclePTime/max(offsetOneCyclePTime); 

oneCyclePressure=fPinAorta(firstMinIndex:firstMinIndex+cycleIndex); 

 

for i = startFrame:skip:endFrame 

    count = count+1; 

    v_File = [path fnames(i).name]; 

    % Load the vector file 

    VEC = loadvec(v_File); 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Plot the sub region Vector Field 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

figure(1) % Set Figure 1 active 

% Define the sub region 

    box = [90 1 101 225]; %to extract centerline velocity - check VEC.x for the pixel range 

(~1080-1200) 135 1 153 225 

%for entire region, use [77 1 192 225] 

    VEC2 = extractf(VEC,box); % get the vectors 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% figure(2) % Set Figure 2 active 
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mVel(count)=mean2(VEC2.vy); 

mVel(count)=((mVel(count)*frameRate)/pixel2mm_water)*0.001; 

 

figure(fig1) 

 

plot(mVel,'r.'); 

drawnow 

end 

 

for x=1:length(mVel); 

    velTime(x)= (startFrame+(x*skip))*(1/frameRate)-(startFrame*(1/frameRate)); %calculating the 

time steps associated with each image 

end 

 

load PP_35RPM_PhsAngle.mat 

 

%find first min of velocity waveform to offset over one cycle 

[negPks,negPkLocs]=findpeaks(-mVel); 

negPks=-negPks; 

minFrameOneCycle=negPkLocs(1); %first velocity min 

endFrameOneCycle=minFrameOneCycle+cycleFrames-3; 

oneVelCycle=mVel(minFrameOneCycle:endFrameOneCycle); 

oneVelT=velTime(minFrameOneCycle:endFrameOneCycle); 

 

%normalize time 

offsetVelT=oneVelT-min(oneVelT); 

normVelT=offsetVelT/max(offsetVelT); 

 

%find max pk location wrt normalized time 

[pk,pkLoc]=findpeaks(oneVelCycle); %searching within the first cycle from first min for peaks 

velPk=pkLoc(pk==max(pk)); %index location of max pk wrt to first cycle 

velT=normVelT(velPk); 

 

% plot(normVelT,oneVelCycle); 

 

%find normalized location of pressure pk 

[ppks,ppkLocs]=findpeaks(oneCyclePressure); 

ppkLoc=ppkLocs(ppks==max(ppks)); 

pLoc=ppkLoc/cycleIndex; 

 

%move two peaks to same position 

currentShift=round((velT-pLoc)*frameRate); 

phsShift=round(phsAng*(1/freq)*frameRate); 

 

% startFrameOneCycle=startFrameOneCycle+currentShift+phsShift; %how many frames to shift 

velocity wave by 

startFrameOneCycle=minFrameOneCycle+currentShift+phsShift;%how many frames to shift velocity 

wave 

startFrameOneCycle=startFrameOneCycle+cycleFrames; 

save PP_35RPM_cycleStartFrame.mat startFrameOneCycle; 

 

oneCycleTime=velTime(startFrameOneCycle:startFrameOneCycle+cycleFrames); 

oneCycleVel=mVel(startFrameOneCycle:startFrameOneCycle+cycleFrames); 
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figure(fig2) 

plot(oneCycleTime,oneCycleVel,'ko-') 

 

save meanVelocity_oneCycle_PP_35RPM.mat oneCycleTime oneCycleVel 

save pressure_PP_35RPM.mat oneCyclePTime oneCyclePressure 
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A-3.8 Matlab code used to plot normalized one cycle results from Section 4.5 

(rigid case) 

close all 

clear 

 

freq=1.667; 

% fig2=figure; 

 

% % set(fig1,'pos',[100,500,700,400]); 

% set(fig2,'pos',[300,300,1100,600]); 

 

load pressure_PP_35RPM.mat; % 

load meanVelocity_oneCycle_PP_35RPM.mat 

load theoPP_35RPM_vCL.mat 

 

%normalized velocity time 

maxVT=max(oneCycleTime); 

minVT=min(oneCycleTime); 

offsetVT=oneCycleTime-minVT; 

normVT=offsetVT/max(offsetVT); 

 

%normalized pressure time 

minPT=min(oneCyclePTime); 

offsetPT=oneCyclePTime-minPT; 

maxPT=max(offsetPT); 

normPT=offsetPT/maxPT; 

 

%normalized pressure 

 

minP=min(oneCyclePressure); 

offsetP=oneCyclePressure-minP; 

maxP=max(offsetP); 

normP=offsetP/maxP; 

[~,pLoc]=(max(normP)); 

pLoc=(pLoc/1000)*(1/freq); 

 

% normalized centerline velocity 

maxV = max(oneCycleVel); 

[a b] = size(oneCycleVel); 

normV = oneCycleVel/maxV; 

vCLPlotTime = [1:b]./b; 

[~,vLoc]=(max(normV)); 

vLoc=(vLoc/1000)*(1/freq); 

 

 

[hAx, h1, h2]=plotyy(normPT,normP,normVT,normV);%,'scatter','scatter'); 

hold on 

p1=plot(normucTime,normuc,'b-'); 

p1.LineWidth=2; 

 

h1.Marker='.'; 
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h2.Marker='o'; 

hAx(1).YColor='k'; 

hAx(2).YColor='b'; 

h1.Color='black'; 

h2.Color='blue'; 

set(hAx(1),'XLim',[0 1]); 

set(hAx(2),'XLim',[0 1]); 

set(hAx(1),'YLim',[-1 1]); 

set(hAx(2),'YLim',[-1 1]); 

set(hAx(1),'YTick',-1:0.5:1); 

set(hAx(2),'YTick',-1:.5:1); 

set(get(hAx(1),'YLabel'),'String','Normalized Pressure, {\itP/P_{max}} [--]'); 

set(get(hAx(2),'YLabel'),'String','Normalized Centerline Velocity, {\itv_{CL}/v_{CL,max}} [--

]'); 

set(get(hAx(1),'XLabel'),'String','Normalized Time, {\itt/\tau} [--]'); 

set(get(hAx(2),'XLabel'),'String','Normalized Time, {\itt/\tau} [--]'); 

set(hAx,'Fontsize',14); 

set(hAx,'Fontname','Calibri'); 

ax=gca; 

ax.FontSize=14; 

ax.FontName='Calibri'; 
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A-3.9 Matlab code used to plot normalized one cycle results from Section 4.5 

(compliant case) 

close all 

clear 

 

load pressure_PPC_poly_15RPM.mat; 

load meanVelocity_oneCycle_PPC_poly_15RPM.mat 

load tubeResponse_oneCycle_PPC_poly_15RPM.mat 

load theoPPC_poly_15RPM_vCL.mat 

 

%normalized velocity time 

minVT=min(oneCycleTime); 

maxVT=max(oneCycleTime); 

offsetVT=oneCycleTime-minVT; 

normVT=offsetVT/max(offsetVT); 

 

%normalized pressure time 

minPT=min(oneCyclePTime); 

offsetPT=oneCyclePTime-minPT; 

maxPT=max(offsetPT); 

normPT=offsetPT/maxPT; 

 

%normalized pressure 

 

minP=min(oneCyclePressure); 

offsetP=oneCyclePressure-minP; 

maxP=max(offsetP); 

normP=offsetP/maxP; 

 

% normalized centerline velocity 

maxV = max(oneCycleVel); 

[a b] = size(oneCycleVel); 

normV = oneCycleVel/maxV; 

vCLPlotTime = [1:b]./b; 

 

 

%normalized tube response time 

minDT=min(oneCycleCTime); 

offsetDT=oneCycleCTime-minDT; 

maxDT=max(offsetDT); 

normDT=offsetDT/maxDT; 

 %don't need to normalize tube response (%) 

 

x1=normPT; y1=normP; 

x2=normVT; y2=normV; 

x3=normDT; y3=oneCycleCompl; 

ylabels{1}='Normalized Pressure, {\itP/P_{max}} [--]'; 

ylabels{2}='Normalized Centerline Velocity, {\itv_{CL}/v_{CL,max}} [--]'; 

ylabels{3}='Tube Expansion, {\it\DeltaD/D}, [%]'; 

xlabel='Normalized Time, {\itt/\tau} [--]'; 

 



173 
 

fig1=figure; 

x=20; 

y=40; 

width=200; 

height=500; 

 

figure(fig1); 

[ax,hlines]=plotyyy(x1,y1,x2,y2,x3,y3,ylabels); 

hold on 

h1=plot(normucTime,normuc,'b-'); 

h1.LineWidth=2; 

 

set(ax(1),'YLim',[-1 1]); 

set(ax(2),'YLim',[-1 1]); 

set(ax(3),'XLim',[0 1.17]); 

set(ax(1),'YTick',-1:.5:1); 

set(ax(2),'YTick',-1:.5:1); 

set(ax(1),'YColor',[0 0 0]); 

set(ax(2),'YColor',[0 0 1]); 

set(ax(3),'YLim',[4 4.5]); 

set(get(ax(1),'xlabel'),'string',xlabel); 

 

ax(1).FontSize=14; ax(2).FontSize=14; ax(3).FontSize=14; 

ax(1).FontName='Calibri',ax(2).FontName='Calibri',ax(3).FontName='Calibri' 
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A-3.10 Matlab code used to plot the experimental velocity profiles presented in 

Section 4.6 

close all 

clear 

 

fig1=figure; 

 

%specify pressure file location and PIV data location 

fileName='F:\UPDATED RESULTS (NOV)\Nov10\Nov10_PP_25RPM_Volt.log'; %pressure data 

fileName2='F:\UPDATED RESULTS (NOV)\Nov14\Nov14_PPC_25RPM_Volt.log'; %pressure data 

%PIV files 

path = 'F:\PIV Results\PP Results 

November_calibration_90mm\Nov10_PP_25RPM\TR_PIV_MP(2x16x16_50%ov)\'; %load PIV data 

path2='F:\PIV Results\PP Results 

November_calibration_90mm\Nov14_PPC_25RPM\TR_PIV_MP(4x16x16_50%ov)_01\'; 

 

%pulse frequency 

freq=1.667; 

cycleTime=1/freq; 

 

%------------------------------------------------------------------------- 

%Fill in 

DaVisImgStart=1; % first image processed in DaVis 

% Define the num of images to SKIP for velocity plot (if needed) 

skip =1; 

 

% Get files in folder 

fnames = dir([path '*.VC7']); 

fnames2=dir([path2 '*VC7']); 

% Set a counter 

count=0; 

count2c2=0; 

%-------------------------------------------------------------------------- 

%harmonics for filter 

harmonics=4; %number of harmonics to include in filtered wave 

 

r=0.0127; %tube radius[m] 

 

%conversion factors 

pixel2mm=74; 

pixel2mm_poly=77; 

 

%transducer A 

A_slope=0.0149; 

A_int=0.0645; 

 

%Marcus transducer C 

C_slope=0.0149; %Marcus calibration 

C_int=0.0003; 

 

time=dlmread(fileName,'\t','A8..A15007'); %times 
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time2=dlmread(fileName2,'\t','A8..A15007'); %times 

greenTrigger=dlmread(fileName,'\t','C8..C15007'); 

greenTrigger2=dlmread(fileName2,'\t','C8..C15007'); 

sampleRate=1000; %sampling frequency 

frameRate = 113; %green camera 

sampleNumber = length(time); 

 

VinAorta=dlmread(fileName,'\t','I8..I15007'); %aorta inlet 

VinAorta2=dlmread(fileName2,'\t','I8..I15007'); %aorta inlet 

 

PinAorta=(VinAorta-A_int)/A_slope; 

PinAorta2=(VinAorta2-A_int)/A_slope; 

 

%filtered pressure wave 

fPinAorta=LPButterworthFilt(sampleRate,freq*harmonics,PinAorta); 

fPinAorta2=LPButterworthFilt(sampleRate,freq*harmonics,PinAorta2); 

 

cycleIndex = round(cycleTime*sampleRate); 

cycleFrames=round((1/freq)*frameRate); %cycle time multiplied by camera frame rate 

 

 

% %WATER--------------------------------------------------------------------- 

for i = 1:length(time) 

    if greenTrigger(i,1) > 9 

        triggerIndex = i; 

        break 

    end 

end 

% 

% %POLY---------------------------------------------------------------------- 

for d = 1:length(time2) 

    if greenTrigger2(d,1) > 9 

        triggerIndex2 = d; 

        break 

    end 

end 

 

%-------------------------------------------------------------------------- 

 

%WATER--------------------------------------------------------------------- 

%find minimum to start cycle from beginning of pressure pulse 

firstTriggerCycle=fPinAorta(triggerIndex:triggerIndex+cycleIndex); 

[pks,pklocs] = findpeaks(-firstTriggerCycle); 

pks=-pks; 

[~,minIdx] = min(pks); 

localMinIndex=pklocs(minIdx); 

firstMinIndex=localMinIndex+triggerIndex; 

 

%create new array for one cycle starting at first min 

oneCycleTime=time(firstMinIndex:firstMinIndex+cycleIndex); 

oneCyclePressure = fPinAorta(firstMinIndex:(firstMinIndex+cycleIndex)); %inlet waveform using 

startframe of inlet wave 

offsetCycleTime=oneCycleTime-min(oneCycleTime); 

normOneCycleTime=offsetCycleTime/max(offsetCycleTime); 
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% cutPressureOut = fPoutImSect_Pa(firstMinIndex:(firstMinIndex+cycleIndex)); %peripheral waveform 

using startframe of inlet waveform (marks beginning of systole) 

 

%find normalized location of pressure pk 

[ppks,ppkLocs]=findpeaks(oneCyclePressure); 

ppkLoc=ppkLocs(ppks==max(ppks)); 

pLoc=ppkLoc/cycleIndex; 

 

%determine start and end frame for velocity profile 

load PP_25RPM_cycleStartFrame.mat 

startFrame=startFrameOneCycle; 

endFrame=startFrame+round((cycleTime*frameRate))-1; 

 

% %compliant---------------------------------------------------------------------- 

%find minimum to start cycle from beginning of pressure pulse 

firstTriggerCycle2=fPinAorta2(triggerIndex2:triggerIndex2+cycleIndex); 

[pks2,pklocs2] = findpeaks(-firstTriggerCycle2); 

pks2=-pks2; 

[~,minIdx2] = min(pks2); 

localMinIndex2=pklocs2(minIdx2); 

firstMinIndex2=localMinIndex2+triggerIndex2; 

 

%create new array for one cycle starting at first min 

oneCycleTime2=time(firstMinIndex2:firstMinIndex2+cycleIndex); 

oneCyclePressure2 = fPinAorta2(firstMinIndex2:(firstMinIndex2+cycleIndex)); %inlet waveform using 

startframe of inlet wave 

offsetCycleTime2=oneCycleTime2-min(oneCycleTime2); 

normOneCycleTime2=offsetCycleTime2/max(offsetCycleTime2); 

% cutPressureOut = fPoutImSect_Pa(firstMinIndex:(firstMinIndex+cycleIndex)); %peripheral waveform 

using startframe of inlet waveform (marks beginning of systole) 

 

%find normalized location of pressure pk 

[ppks2,ppkLocs2]=findpeaks(oneCyclePressure2); 

ppkLoc2=ppkLocs2(ppks2==max(ppks2)); 

pLoc2=ppkLoc2/cycleIndex; 

 

%determine start and end frame for velocity profile 

load PPC_25RPM_cycleStartFrame.mat 

startFrame2=startFrameOneCycle; 

endFrame2=startFrame2+round((cycleTime*frameRate))-1; 

 

%WATER--------------------------------------------------------------------- 

 

for i =startFrame:skip:endFrame 

%     i = startFrame:skip:endFrame 

    count = count+1; %image number 

    v_File = [path fnames(i).name]; 

    % Load the vector file 

    VEC = loadvec(v_File); 

 

    if i==startFrame 

    [x1find,~]=find(VEC.vy); 

    x1=min(x1find)-1; 

    x2=max(x1find)+1; 
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    y1=1; 

    [s1 s2]=size(VEC.y); 

    y2=s2; 

 

    box = [x1 y1 x2 y2]; 

    end 

 

    % Define the sub region 

     VEC2 = extractf(VEC,box); % get the vectors 

 

        count2=0; %count2 represents the y location at which we're averaging (how many locations 

in the y direction are we using to find the average velocity profile) 

        %calculate velocity profiles across length of FOV 

        c1=1; 

        c2=length(VEC2.x); 

        rdsmax=c2-c1+1; 

 

        for j=c1:1:c2;%cycle through columns of VEC2.vy matrix 

        count2=count2+1; %column number 

        profilePixel(count,count2)=mean2(VEC2.vy(j,:)); %average value per column 

        velProfile(count,count2)=((profilePixel(count,count2)*frameRate)/pixel2mm)*0.001; 

 

        rds=j-c1; 

 

        radVal(count,count2)=(rds/rdsmax)*r; %r position in tube [mm] 

        end 

 

    normRad(count,:)=radVal(count,:)/max(radVal(count,:)); 

    totImgNum(count)=startFrame+count-1; 

end 

 

%plot velocity profiles according to location on pressure plot 

imgTime=(totImgNum-startFrame)/frameRate; 

normImgTime=imgTime/max(imgTime); 

incr=0.1; 

counter=0; 

 

%PROFILES 

for x=0:incr:1 

    counter=counter+1; 

    if counter*x==0 

        profLoc(counter)=1; 

    elseif counter*x>0 

    newIdx=(x-0.001<=normImgTime<=x+0.001).'; 

    profLoc(counter) = find(newIdx, 1, 'last'); 

 

    end 

     x=x+incr; 

end 

 

%COMPLIANT---------------------------------------------------------------------- 

 

for f =startFrame2:skip:endFrame2 

%     i = startFrame:skip:endFrame 
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    count2c2 = count2c2+1; %image number 

    v_File2 = [path2 fnames2(f).name]; 

    % Load the vector file 

    VECc2 = loadvec(v_File2); 

 

if f==startFrame2 

    [x1find2,~]=find(VECc2.vy); 

    x1c2=min(x1find2)-1; 

    x2c2=max(x1find2)+1; 

 

    y1c2=1; 

    [s1c2 s2c2]=size(VECc2.y); 

    y2c2=s2c2; 

 

    box2 = [x1c2 x1c2 x2c2 y2c2]; 

end 

 

    VEC2c2 = extractf(VECc2,box2); % get the vectors 

 

        count2c2_2=0; %count2 represents the y location at which we're averaging (how many 

locations in the y direction are we using to find the average velocity profile) 

        %calculate velocity profiles across length of FOV 

 

        c1c2=1; 

        c2c2=length(VEC2c2.x); 

        rdsmaxc2=c2c2-c1c2+1; 

 

        for g=c1c2:1:c2c2;%cycle through columns of VEC2.vy matrix 

        count2c2_2=count2c2_2+1; %column number 

        profilePixelc2(count2c2,count2c2_2)=mean2(VEC2c2.vy(g,:)); %average value per column 

        

velProfilec2(count2c2,count2c2_2)=((profilePixelc2(count2c2,count2c2_2)*frameRate)/pixel2mm_poly)

*0.001; 

 

        rdsc2=g-c1c2; 

 

        radValc2(count2c2,count2c2_2)=(rdsc2/rdsmaxc2)*r; %r position in tube [mm] 

 

        end 

 

        normRadc2(count2c2,:)=radValc2(count2c2,:)/max(radValc2(count2c2,:)); 

 

        totImgNumc2(count2c2)=startFrame2+count2c2-1; 

end 

 

 

%plot velocity profiles according to location on pressure plot 

imgTimec2=(totImgNumc2-startFrame2)/frameRate; 

normImgTimec2=imgTimec2/max(imgTimec2); 

counter3c2=0; 

 

 

for z=0:incr:1 

    counter3c2=counter3c2+1; 



179 
 

    if counter3c2*z==0 

        profLocc2(counter3c2)=1; 

    elseif counter3c2*z>0 

    newIdxc2=(z-0.001<=normImgTimec2<=z+0.001).'; 

    profLocc2(counter3c2) = find(newIdxc2, 1, 'last'); 

 

    end 

     z=z+incr; 

end 

 

%normalize wrt to maximum overall velocity (both poly and water) 

minArray=[min(velProfile) min(velProfilec2)]; 

maxArray=[max(velProfile) max(velProfilec2)]; 

 

minVal=min(minArray); 

maxVal=max(maxArray); 

 

    if abs(minVal)>abs(maxVal) 

        normVal=minVal; 

    else 

        normVal=maxVal; 

    end 

 

normProfile=velProfile/normVal; 

normProfilec2=velProfilec2/normVal; 

 

%SUBPLOT------------------------------------------------------------------- 

h=figure(fig1) 

figPx=600; 

figPy=0; 

figW=600; 

figH=1000; 

h.Position=[figPx figPy figW figH]; 

 

ncols = 2; 

nrows = 5; 

 

axisw = (1 / ncols) * 0.6; %.95 

axish = (1 / nrows) * 0.6; %how much of the row is it taking up 

frame=0; 

 

for frame=1:length(profLoc)-1 

 

    % calculate the row and column of the subplot 

    row(frame) = nrows-floor( (frame-0.5)/ncols ) + 1; 

    col(frame) = mod( frame-1, ncols ) + 1; 

 

    if frame>1 && col(frame)==col(frame-1) 

        col(frame)=col(frame)-1; 

    end 

 

    % calculate the left, bottom coordinate of this subplot 

 

    if col(frame)==1 
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    axisl = (axisw+0.02) * (col(frame)-.7)+0.05; 

    else 

     axisl = (axisw+0.02) * (col(frame)-.3)+0.05; 

    end 

 

    initialoffset=.2; %1 

    offsetVal=.34; %.32 

 

    if row(frame)==6 

        axisb = (axish+0.02) * (row(frame)-initialoffset)+0.035; 

    elseif row(frame)==5 

            axisb = (axish+0.02) * (row(frame)-(initialoffset+offsetVal))+0.035; 

        elseif row(frame)==4 

            axisb = (axish+0.02) * (row(frame)-(initialoffset+(2*offsetVal)))+0.035; 

    elseif row(frame)==3 

        axisb = (axish+0.02) * (row(frame)-(initialoffset+(3*offsetVal)))+0.035; 

    elseif row(frame)==2 

        axisb = (axish+0.02) * (row(frame)-(initialoffset+(4*offsetVal)))+0.035; 

        else 

        axisb = (axish+0.02) * (row(frame)-(initialoffset+(5*offsetVal)))+0.035; 

    end 

 

    fplot= subplot('position', [axisl, axisb, axisw, axish] ); 

    pR=plot(normRad(profLoc(frame),:),normProfile(profLoc(frame),:),'k.'); 

    hold on 

    pC=plot(normRadc2(profLocc2(frame),:),normProfilec2(profLocc2(frame),:),'b.'); 

    hold off 

    ttl=title(['{\itt/\tau} = 0.' int2str(frame-1)]); 

    ttl.FontSize=12; 

    ttl.FontWeight='normal'; 

    ttl.FontName='Calibri'; 

 

    xlim([0 1]); 

    set(gca,'XTick',0:.25:1,'FontSize',10); 

    ylim([-1.1 1.1]); 

    set(gca,'YTick',-1:.5:1,'FontSize',10) 

    ylabel('{\itU/U_{max}}','FontSize',10); 

    xlabel('{\itr/D}','FontSize',10); 

 

end 
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A-3.11 Matlab code used to plot the theoretical velocity profiles presented in 

Section 4.6 

close all 

clear 

 

load PP_poly_25RPM_theoVelProf.mat 

maxArrayR=max(profiles); 

minArrayR=min(profiles); 

upR=profiles; 

load PP_poly_25RPM_PhsAngle.mat 

phsAngR=phsAng; 

load PPC_poly_25RPM_theoVelProf.mat 

maxArrayC=max(profiles); 

minArrayC=min(profiles); 

upC=profiles; 

load PPC_poly_25RPM_PhsAngle.mat 

phsAngC=phsAng; 

 

minArray=[min(minArrayR) min(minArrayC)]; 

maxArray=[max(maxArrayR) max(maxArrayC)]; 

minVal=min(minArray); 

maxVal=max(maxArray); 

 

    if abs(minVal)>abs(maxVal) 

        normVal=minVal; 

    else 

        normVal=maxVal; 

    end 

 

normUpR=upR/normVal; 

normUpC=upC/normVal; 

 

fig1=figure; 

h=figure(fig1) 

figPx=600; 

figPy=0; 

figW=600; 

figH=1000; 

h.Position=[figPx figPy figW figH]; 

 

ncols = 2; 

nrows = 5; 

 

axisw = (1 / ncols) * 0.6; %.95 

axish = (1 / nrows) * 0.6; %how much of the row is it taking up 

frame=0; 

 

for frame=1:1:nProfiles/2 

     if frame>10 

         break 

     end 



182 
 

    % calculate the row and column of the subplot 

    row(frame) = nrows-floor( (frame-0.5)/ncols ) + 1; 

    col(frame) = mod( frame-1, ncols ) + 1; 

 

    if frame>1 && col(frame)==col(frame-1) 

        col(frame)=col(frame)-1; 

    end 

 

    % calculate the left, bottom coordinate of this subplot 

 

    if col(frame)==1 

    axisl = (axisw+0.02) * (col(frame)-.7)+0.05; 

    else 

     axisl = (axisw+0.02) * (col(frame)-.3)+0.05; 

    end 

 

    initialoffset=.2; %1 

    offsetVal=.34; %.32 

 

    if row(frame)==6 

        axisb = (axish+0.02) * (row(frame)-initialoffset)+0.035; 

    elseif row(frame)==5 

            axisb = (axish+0.02) * (row(frame)-(initialoffset+offsetVal))+0.035; 

        elseif row(frame)==4 

            axisb = (axish+0.02) * (row(frame)-(initialoffset+(2*offsetVal)))+0.035; 

    elseif row(frame)==3 

        axisb = (axish+0.02) * (row(frame)-(initialoffset+(3*offsetVal)))+0.035; 

    elseif row(frame)==2 

        axisb = (axish+0.02) * (row(frame)-(initialoffset+(4*offsetVal)))+0.035; 

        else 

        axisb = (axish+0.02) * (row(frame)-(initialoffset+(5*offsetVal)))+0.035; 

    end 

 

    fplot= subplot('position', [axisl, axisb, axisw, axish] ); 

    pR=plot(normUpRad,normUpR(frame,:),'k-'); 

    pR.LineWidth=1.5; 

    hold on 

    pC=plot(normUpRad(1,:),normUpC(frame,:),'b-'); 

    pC.LineWidth=1.5; 

    hold off 

    ttl=title(['{\itt/\tau} = 0.' int2str(frame-1)]); 

    ttl.FontSize=12; 

    ttl.FontName='Calibri'; 

    ttl.FontWeight='normal'; 

    xlim([0 1]); 

    set(gca,'XTick',0:.25:1,'FontSize',10); 

    ylim([-1.1 1.1]); 

    set(gca,'YTick',-1:.5:1,'FontSize',10) 

    ylabel('{\itU/U_{max}}','FontSize',10); 

    xlabel('{\itr/D}','FontSize',10); 

 

end 
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A-3.12 Matlab code used to perform peristaltic pump energy calculations 

presented in Section 4.7.4 

close all 

clear 

 

fig1=figure; 

fig2=figure; 

fig3=figure; 

fig4=figure; 

fig5=figure; 

fig6=figure; 

fig7=figure; 

 

%CONSTANTS & TUBE PROPERTIES ---------------------------------------------- 

%conversion factors 

mmHg_Pa_Conv=133.322; %1 mmHg=133.322 Pa 

pixel2mmWater=74; %pixel/mm 

pixel2mmPoly=77; 

rhoWater=1000; %kg/m3 

rhoPoly=998.2; 

g=9.81; %m/s2 

 

r=0.0127; 

zPump=.22; %from PP to transducer A 

zA_C=.26; %from A to C 

zImSect=0.095; %imaging section height 

 

zPLRes=.45+.11; %height to outlet spout + approximate height of fluid in res 

zPt=zPump+(zA_C+(zImSect/2)); %z to where images are being taken 

Leff=zPt-zPLRes; 

 

%Files-------------------------------------------------------------------- 

fileName='C:\Users\kgcamero\Desktop\Nov15PP\Nov15_PP_poly_15RPM_Volt.log'; %pressure data 

path = 'D:\MyProjects\PP_poly Results calibration_90 

mm\Nov15_PP_poly_15RPM\TR_PIV_MP(3x16x16_50%ov)\'; %load PIV data 

 

skip =1; 

 

%pulse frequency 

freq=1.0; 

cycleTime=1/freq; 

 

%harmonics for filter 

harmonics=4; %number of harmonics to include in filtered wave 

 

% LOAD PRESSURE DATA------------------------------------------------------- 

 

%transducer A 

A_slope=0.0149; 

A_int=0.0645; 
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%transducer C 

C_slope=0.0148; 

C_int=0.0172; 

 

time=dlmread(fileName,'\t','A8..A15007'); %times 

greenTrigger=dlmread(fileName,'\t','C8..C15007'); 

sampleRate=1000; %sampling frequency 

frameRate = 113; %green camera 

sampleNumber = length(time); 

 

VoutImSect=dlmread(fileName,'\t','G8..G15007'); %imaging section outlet 

VinAorta=dlmread(fileName,'\t','I8..I15007'); %aorta inlet 

 

PoutImSect=(VoutImSect-C_int)/C_slope; 

PinAorta=(VinAorta-A_int)/A_slope; 

 

%filtered pressure wave 

 

fPoutImSect=LPButterworthFilt(sampleRate,freq*harmonics,PoutImSect); 

fPinAorta=LPButterworthFilt(sampleRate,freq*harmonics,PinAorta); 

 

%convert to Pa 

fPinAorta_Pa=fPinAorta*mmHg_Pa_Conv; 

fPoutImSect_Pa=fPoutImSect*mmHg_Pa_Conv; 

 

% finding the start frame of the camera 

cycleIndex = round(cycleTime*sampleRate); %frames per cycle 

 

for i = 1:length(time) 

    if greenTrigger(i,1) < 1 

        triggerIndex = i; 

        break 

    end 

end 

 

% LOAD MEAN VELOCITY DATA------------------------------------------------- 

 

% Get files in folder 

fnames = dir([path '*.VC7']); 

% Set a counter 

count=0; 

 

cycleFrames=round((1/freq)*frameRate); %cycle time multiplied by camera frame rate 

firstTriggerCycle=fPinAorta(triggerIndex:triggerIndex+cycleIndex); 

[pks,pklocs] = findpeaks(-firstTriggerCycle); 

pks=-pks; 

[~,minIdx] = min(pks); 

localMinIndex=pklocs(minIdx); 

firstMinIndex=localMinIndex+triggerIndex; 

 

%create new array for one cycle starting at first diastolic min 

oneCycleTime=time(firstMinIndex:firstMinIndex+cycleIndex); 

oneCyclePressure = fPinAorta_Pa(firstMinIndex:(firstMinIndex+cycleIndex)); 

offsetOneCycleTime=(oneCycleTime-min(oneCycleTime)); 
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%determine start and end frame for velocity profile 

offsetTime = time(firstMinIndex)- time(triggerIndex); 

startFrame = round(frameRate*offsetTime); 

endFrame=startFrame+round((cycleTime*frameRate))-1; 

 

%LOAD PIV IMAGES, CALCULATE VELOCITY--------------------------------------- 

 

for i = startFrame:skip:endFrame 

    count = count+1; 

    v_File = [path fnames(i).name]; 

    % Load the vector file 

    VEC = loadvec(v_File); 

 

    if i==startFrame 

    [x1find,~]=find(VEC.vy); 

    x1=min(x1find)-1; 

    x2=max(x1find)+1; 

    y1=1; 

    [s1 s2]=size(VEC.y); 

    y2=s2; 

 

    box = [x1 y1 x2 y2]; 

    end 

 

    VEC2 = extractf(VEC,box); % get the vectors 

 

    count2=0; %count2 represents the y location at which we're averaging (how many locations in 

the y direction are we using to find the average velocity profile) 

        %calculate velocity profiles across length of FOV 

        c1=1; 

        c2=length(VEC2.x); 

        rdsmax=c2-c1+1; 

 

    for j=c1:1:c2 %j is the x location under consideration 

        count2=count2+1; 

        profilePixel(count,count2)=mean2(VEC2.vy(j,:)); %average value per column 

        velProfile(count,count2)=((profilePixel(count,count2)*frameRate)/pixel2mmPoly)*0.001; 

 

        rds=j-c1; 

 

        radVal(count,count2)=(rds/rdsmax)*r; %r position in tube [mm] 

 

    end 

 

      fit1{count}=fit(radVal(count,:).',velProfile(count,:).','smoothingspline'); %smoothing 

spline for velocity profiles 

 

    velProfileArea(count)=trapz(radVal(count,:).',velProfile(count,:).'); %area under averaged 

velocity profile for each image (count) 

    volFlowRate(count)=pi*r*velProfileArea(count); %m3/s %integrate velocity profile around 180 

degrees to get volume flow rate 

    massFlowRate(count)=volFlowRate(count)*rhoPoly; %kg/s %multiply flow rate times density to 

get mass flow erate 
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    if massFlowRate(count)<0 

        massFlowRate(count)=0; 

    end 

 

    avgVel(count)=mean2(velProfile(count,:)); 

 

    end 

 

 

for x=1:length(velProfileArea); 

    velTime(x)= (startFrame+(x*skip))*(1/frameRate)-(startFrame*(1/frameRate)); %calculating the 

time steps associated with each image 

end 

 

 

%DYNAMIC ENERGY --------------------------------------------------------- 

 

%calculating terms for integration 

vSqrd=avgVel.^2; 

VIntFunct=vSqrd.*massFlowRate; 

 

VInt=trapz(velTime.',VIntFunct.'); 

VNRG=VInt*(1/2) 

 

figure(fig1) 

plot(velTime,avgVel,'k.-'); 

xlabel('Time, {\itt} [s]'); 

ylabel('Velocity, {\itv} [m/s]'); 

 

figure(fig2) 

plot(velTime, VIntFunct,'b.-'); 

xlabel('Time, {\itt} [s]') 

ylabel('Squared Velocity * mdot [m2/s2(kg/s)]'); 

 

figure(fig3) 

plot(velTime,massFlowRate,'r.-'); 

xlabel('Time, {\itt} [s]') 

ylabel('Mass Flow Rate [\itkg/s]'); 

ylim([-0.05 .3]); 

 

% PRESSURE ENERGY -------------------------------------------------------- 

 

pCurveFit=fit(offsetOneCycleTime,oneCyclePressure,'sin4'); 

 

%CHECK FIT QUALITY 

plot(offsetOneCycleTime,oneCyclePressure) 

hold on 

plot(pCurveFit); 

hold off 

 

 

for pts=1:length(massFlowRate) %fit pressure curve to the same data points as the velocity data 

so it can be multiplied by mass flow rate 



187 
 

    pressTimeAdjusted(pts)=velTime(pts); 

    pressAdjusted(pts)=pCurveFit(pressTimeAdjusted(pts)); 

    pts=pts+1; 

end 

 

PIntFunct=pressAdjusted.*massFlowRate; 

PInt=trapz(velTime.',PIntFunct.'); 

PNRG=PInt/rhoWater 

 

figure(fig4) 

plot(offsetOneCycleTime,oneCyclePressure,'b'); 

hold on 

% plot(offsetOneCycleTime,oneCyclePressure,'r-'); 

xlabel('Time, {\itt} [s]'); 

ylabel('P(t) [Pa]') 

hold off 

 

figure(fig5) 

plot(velTime,PIntFunct,'k-'); 

xlabel('Time, {\itt} [s]'); 

ylabel('P(t)*mdot') 

 

% STATIC ENERGY ---------------------------------------------------------- 

 

SInt=trapz(velTime.',massFlowRate.'); 

SNRG=(zPt-zPLRes)*g*SInt 

 

%LOCAL ACCELERATION ------------------------------------------------------ 

 

dv_dt=diff(avgVel)./diff(velTime); 

accelTime=velTime(1:length(dv_dt)); 

 

tick=0; 

interval=2; %how many data points to skip over for acceleration plot (on top of skip already 

applied to avg velocity plot) 

for t=1:interval:length(dv_dt) 

    tick=tick+1; 

    accelFunct(tick)=abs(dv_dt(t)); 

    accelTimeFunct(tick)=accelTime(t); 

    massFlowRateAdjusted(tick)=massFlowRate(t); 

    end 

 

accelIntFunct=accelFunct.*massFlowRateAdjusted; 

accelInt=trapz(accelTimeFunct.',accelIntFunct.'); 

 

figure(fig6) 

plot(accelTimeFunct,accelFunct,'k.-'); 

xlabel('Time, {\itt} [s]'); 

ylabel('dv/dt [m/s2]') 

 

figure(fig7) 

plot(accelTimeFunct,accelIntFunct,'k.-'); 

xlabel('Time, {\itt} [s]'); 

ylabel('(dv/dt)*mdot'); 
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ANRG=Leff*accelInt 

 

%TOTAL ENERGY ------------------------------------------------------------ 

 

totNRG=PNRG+VNRG+SNRG+ANRG 

 

excelfileName='C:\Users\kgcamero\Dropbox\Graduate Research & Designs\Thesis\Peristaltic 

Pump\Energy Values.xlsx'; 

sheet=1; 

excelData1=[VNRG PNRG SNRG ANRG totNRG]; 

 

xlRange1='I16'; 

xlswrite(excelfileName,excelData1,sheet,xlRange1); 
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A-3.13 Matlab code used to calculate and plot tube distension, as discussed in 

Sections 3.2, 4.3 and 5.3 

close all 

clear 

 

 

fig1 = figure; fig2 = figure; 

fig3 = figure; fig4 = figure; fig5 = figure; fig6=figure; 

set(fig1,'pos',[75, 825,560,200]); 

set(fig2,'pos',[650,825,560,200]); 

set(fig3,'pos',[75, 530,560,200]); 

set(fig4,'pos',[650,530,560,200]); 

set(fig5,'pos',[75,300,1000,140]); 

set(fig6,'pos',[75,5,1100,650]); 

 

%Pressure transducer calibration 

%transducer A 

A_slope=0.0149; 

A_int=0.0645; 

%transducer C 

C_slope=0.0148; 

C_int=0.0172; 

 

%------------------------------------------------------------------------- 

%load tube images 

%------------------------------------------------------------------------- 

path='F:\VAD Data\2PSI\Oct6_2PSI_1235RPM'; 

 

fnam = '\Oct6_2PSI'; 

ext = '.tif'; 

text = [path '\Oct6*.tif']; 

filelist = dir(text); 

 

row_num = 250; 

relaxedDiam=210; %relaxed diameter calculated from raw image of calibration 

count=0; 

skip=1; 

 

%------------------------------------------------------------------------- 

%load voltage data 

%-------------------------------------------------------------------------- 

fileName='F:\VAD Data\2PSI\Oct6_2PSI_1235RPM_Volt.log'; 

time=dlmread(fileName,'\t','A8..A60007'); %times 

baslerTrigger=dlmread(fileName,'\t','D8..D60007'); 

%set frame rate, frequency, etc. 

baslerFrameRate=210; 

freq=1.12; 

harmonics=10; 

sampleRate=4000; 

sampleNumber=length(time); 
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%load aorta inlet pressure 

VinAorta=dlmread(fileName,'\t','I8..I60007'); %aorta inlet 

%convert to pressure 

PinAorta=(VinAorta-A_int)/A_slope; 

%filter pressure waveform 

fPinAorta=LPButterworthFilt(sampleRate,freq*harmonics,PinAorta); 

 

noPlotCycles=3; %number of cycles to plot 

 

% finding the first trigger of basler camera 

for j = 1:sampleNumber 

    if baslerTrigger(j,1) > 9 

        triggerIndex = j; 

        break 

    end 

end 

 

%find first pressure minimum within first trigger cycle 

cycleIndex = round((1/freq)*sampleRate); %frames per cycle 

firstTriggerCycle=fPinAorta(triggerIndex:triggerIndex+cycleIndex); 

[npks,npkLocs]=findpeaks(-firstTriggerCycle);%cycle minima 

npks=-npks; 

[~, firstMinIndexU] = min(fPinAorta(triggerIndex:(triggerIndex+cycleIndex))); 

firstMinIndex = firstMinIndexU + triggerIndex; %first pressure minimum index 

 

%time between first basler trigger and first pressure minimum 

offsetTime = time(firstMinIndex)- time(triggerIndex); 

startFrame = round(baslerFrameRate*offsetTime); 

baslerCycleIndex=round((1/freq)*baslerFrameRate); 

endFrame=round(startFrame+(noPlotCycles*baslerCycleIndex)); 

 

 

%-------------------------------------------------------------------------- 

%calculate tube distension vs. time 

%-------------------------------------------------------------------------- 

for i = startFrame:skip:endFrame 

   count=count+1; 

 

   tube_time(count)=(i./baslerFrameRate)-(startFrame/baslerFrameRate); 

   file = [path '\' filelist(i).name]; 

 

   f0 = imread(file); 

% 

%    figure(fig1); 

 

   imagesc(f0); 

   colormap('gray'); 

 

      trim = 97; % trim off the right hand side of the image 

   f2a=imcrop(f0,[1 size(f0,1)/2 size(f0,2)-trim 20]); 

 

   level = graythresh(f2a); 

   f2 = im2bw(f2a,level); 
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   f1 = edge(f2,'sobel',0.05); 

 

   figure(fig1); 

   imagesc(f2); 

   colormap('gray'); 

 

   figure(fig2); 

   imagesc(f1); 

   colormap('gray'); 

 

   % Plot the peak detection 

   figure(fig5) 

   % generate plot of dI vs h at selected row and frame 

    L1 = sum(f1); 

    plot(L1); 

 

    minHeight = 7; 

   [pks,locs] = findpeaks(L1,'MinPeakHeight',minHeight); 

   [aa bb]=size(locs); 

 

   % Picking the TWO peaks to use 

   pleft = min(locs); 

   pright= max(locs); 

 

   hold on 

   plot(pleft, 0,'rs'); 

   plot(pright,0,'rs'); 

   plot([0 500],[minHeight minHeight],'r'); 

   hold off 

 

    width2=pright-pleft; 

    all_pixWidth(count) = width2; 

 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    % Do the sub pixel find 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    numpix = 15;%25 

    L2 = sum(f2a); 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% FIGURE 3 Rising (Left) edge to sub pixel 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

figure(3) 

clf 

posL = pleft; 

% get a short array of numpix pixels either side 

left = L2(1,posL-numpix:posL+numpix)/10; 

left = left - min(left); % set close to zero 

left = left./max(left);  % scale the maximum 0-1 

 x = 1:size(left,2); 

 x = x + posL-numpix; 

 y = left*100; % Scale this so that the seed number work 

 % Do the curve Fit 

  %fL = fit(x', y', 'a+b*atan((x0-x)/w)'); 

  fL = fit(x', y', 'a+b*atan((x0-x)/w)', 'Startpoint', [50 -30 1 150]); 
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% %Display on the figure 

        hold on 

        plot(x, y,'b.'); 

        plot(fL); 

        hold off 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% FIGURE 4 falling (RIGHT) edge to sub pixel 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  figure(4) 

 clf 

 %posL = locs_La+39; 

 posL = pright; 

 % get a short arry 50 pixels either side 

left = L2(1,posL-numpix:posL+numpix)/10; 

left = left - min(left); % set close to zero 

left = left./max(left);  % scale the maximum 0-1 

 x = 1:size(left,2); 

 x = x + posL-numpix; 

 y = left*100; % Scale this so that the seed number work 

 % Do the curve Fit 

    fR = fit(x', y', 'a+b*atan((x0-x)/w)', 'Startpoint', [50 30 1 350]); 

% Display on the figure 

        hold on 

        plot(x, y,'b.'); 

        plot(fR); 

        hold off 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% AND the answer is: 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

subpixWidth(count) = fR.x0 - fL.x0; 

 

    figure(fig6) 

 

    hold on 

    plot(all_pixWidth,'b.-'); 

    plot(subpixWidth,'r.-'); 

    hold off 

 

    drawnow 

 

end 

 

normwidth=(subpixWidth-relaxedDiam)/relaxedDiam; 

percentwidth=(normwidth)*100; 

ALContribution=min(percentwidth); 

normTubeTime=noPlotCycles*(tube_time-min(tube_time))/max(tube_time); 

 

figure(fig5); 

    plot(tube_time,percentwidth,'ko-',tube_time,ones(size(tube_time))*ALContribution,'k--'); 

    xlabel('Time, t [s]'); 
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    ylabel('Tube Expansion, \DeltaD/D [%]'); 

 

 

figure(fig6); 

plot(normTubeTime,percentwidth,'ko-',normTubeTime,ones(size(normTubeTime))*ALContribution,'k--

'); 

    xlabel('Normalized Time, {\itt/\tau} [--]'); 

    ylabel('Tube Expansion, {\it\DeltaD/D} [%]'); 

    xlim([0 3]); 

    ylim([0 40]); 

    ax=gca; 

    ax.FontName='Calibri'; 

    ax.FontSize=14; 

    set(ax,'LooseInset',get(ax,'TightInset')); 

 

%save as .mat file 

save compliantresponse_multicycle_Oct6_2PSI_1235RPM.mat tube_time percentwidth 
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A-3.14 Matlab code used to generate the normalized cycle of a filtered VAD 

pressure waveform from Section 5.5 

close all 

clear 

 

fig1=figure; 

fig2=figure; 

 

pm = 1; 

sampleRate = 4000; 

transducerIntercept = 0.0172; 

transducerSlope = 0.0148; 

freq=1.12; 

harmonics=10; 

cycleTime = 1/freq; %1/frequency of pulse 

frameRate = 1000; %phantom camera 

foldCount = 1; 

 

% Loading data from .log file 

fileName='F:\VAD Data\2PSI\Oct6_2PSI_1235RPM_Volt.log'; 

times(:,1)=dlmread(fileName,'\t','A8..A60007'); 

phantomTrigger(:,1)=dlmread(fileName,'\t','C8..C60007'); 

daslerTrigger(:,1)=dlmread(fileName,'\t','D8..D60007'); 

phantomSquareWave(:,1)=dlmread(fileName,'\t','E8..E60007'); 

voltageC(:,1)=dlmread(fileName,'\t','G8..G60007'); 

voltageB(:,1)=dlmread(fileName,'\t','H8..H60007'); 

voltageA=dlmread(fileName,'\t','I8..I60007'); 

 

sampleNumber = length(voltageA(:,1)); 

pressureA = (voltageA - transducerIntercept)/transducerSlope; 

pressureAMean(:,1) = pressureA(:,1) - mean(pressureA(:,1)); 

 

% finding the start frame of the camera 

for i = 1:length(times(:,1)) 

    if phantomTrigger(i,1) < 1 

        triggerIndex = i; 

        break 

    end 

end 

 

%filtered pressure function 

fPinAorta=LPButterworthFilt(sampleRate,freq*harmonics,pressureA); 

 

cycleIndex = round((1/freq)*sampleRate); %frames per cycle 

firstTriggerCycle=fPinAorta(triggerIndex:triggerIndex+cycleIndex); 

[npks,npkLocs]=findpeaks(-firstTriggerCycle);%cycle minima 

npks=-npks; 

[~, firstMinIndexU] = min(fPinAorta(triggerIndex:(triggerIndex+cycleIndex))); 

firstMinIndexU=npkLocs(2); 

firstMinIndex = firstMinIndexU + triggerIndex; %first pressure minimum index 
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for ii = 1:1000 

    if phantomTrigger(firstMinIndex+ii,pm) < 1 

        break; 

    elseif phantomTrigger(firstMinIndex+ii,pm) > 1 

        firstMinIndex = firstMinIndex + 1; 

    end 

    if ii == 1000 

        disp('maximum number of iterations exceeded to try and find first camera trigger, line 

~2649'); 

    end 

end 

 

offsetTime = times(firstMinIndex)- times(triggerIndex); 

startFrame = round(frameRate*offsetTime) 

 

% Normalizing 

shortTimes=(times(firstMinIndex:firstMinIndex+cycleIndex)-times(firstMinIndex)); 

normShortTime_Pressure=shortTimes/max(shortTimes); 

shortDataLength = length(firstMinIndex:(firstMinIndex+cycleIndex)); 

 

shortTrigger = phantomTrigger(firstMinIndex:(firstMinIndex+cycleIndex)); 

cutPressureA = fPinAorta(firstMinIndex:(firstMinIndex+cycleIndex)); 

 

triggerMax = max(shortTrigger); 

normTrigger = shortTrigger./triggerMax; 

 

offsetPressure = cutPressureA - min(cutPressureA); 

normPressure = offsetPressure./max(offsetPressure); 

 

% plot pressure and camera triggers over first cycle 

 

for pm = 1:foldCount 

FigHandle=figure('Position', [50 50 1000 450]); 

set(gca,'XTickLabel','') 

ylabel('{\it P / P_{max} }'); 

 

set(subplot(2,1,2),'Position',[0.1 0.15 0.85 0.1]); 

 

plot(normShortTime_Pressure(1:shortDataLength),normTrigger(1:shortDataLength),'k-'); 

axis([0 1 0 1.8]); 

%                             hold on; 

set(subplot(2,1,1),'Position',[0.1 0.4 0.85 0.55]); 

plot(normShortTime_Pressure(1:shortDataLength),normPressure(1:shortDataLength),'o','MarkerEdgeCol

or','k','MarkerSize',2); %'MarkerFaceColor',char(color{pm,1}), 

axis([0 1 0 1.2]); 

title('Pressure Waveform: One Cycle'); 

hold on 

 

end 

 

save pressure_2PSI_1235RPM.mat normShortTime_Pressure normPressure fPinAorta firstMinIndex 
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A-3.15 Matlab code used to calculate the VAD pulse frequency and pressure 

values presented in Sections 5.6.1 and 5.6.2 

close all 

clear 

%import test 

 

%transducer A 

A_slope=0.0149; 

A_int=0.0645; 

 

%transducer B 

B_slope=0.0149; 

B_int=0.0074; 

 

%transducer C 

 

C_slope=0.0148; 

C_int=0.0172; 

 

fig1=figure; 

fig2=figure; 

fig3=figure; 

 

fileName='F:\VAD Data\2PSI\Oct6_2PSI_1235RPM_Volt.log'; 

 

time(:,1)=dlmread(fileName,'\t','A8..A60007'); %times 

 

Fs=4000; %sampling frequency 

 

VinAorta(:,1)=dlmread(fileName,'\t','I8..I60007'); %aorta inlet 

VoutAorta(:,1)=dlmread(fileName,'\t','H8..H60007'); %aorta outlet 

VoutImSect(:,1)=dlmread(fileName,'\t','G8..G60007'); %imaging section outlet 

 

%file2 

time2(:,1)=dlmread('X:\01_Current_Students\Katie Cameron\LVAD\Compliant 

experiments\Data\3PSI\Oct6_3PSI_1450RPM_Volt.log','\t','A8..A60007'); %times 

VinAorta2(:,1)=dlmread('X:\01_Current_Students\Katie Cameron\LVAD\Compliant 

experiments\Data\3PSI\Oct6_3PSI_1450RPM_Volt.log','\t','I8..I60007'); %aorta inlet 

PinAorta2(:,1)=(VinAorta2-A_int)/A_slope; 

fPinAorta2=Katie_LPF(PinAorta2); 

shiftedTimefile2=(time2(3916:7224)-time2(3916)); 

normTimefile2=shiftedTimefile2/max(shiftedTimefile2); 

shiftedPressurefile2=fPinAorta2(3916:7224)-fPinAorta2(3916); 

normPressurefile2=shiftedPressurefile2/max(shiftedPressurefile2); 

 

%file3 

time3(:,1)=dlmread('X:\01_Current_Students\Katie Cameron\LVAD\Compliant 

experiments\Data\3PSI\Oct6_3PSI_1625RPM_Volt.log','\t','A8..A60007'); %times 

VinAorta3(:,1)=dlmread('X:\01_Current_Students\Katie Cameron\LVAD\Compliant 

experiments\Data\3PSI\Oct6_3PSI_1625RPM_Volt.log','\t','I8..I60007'); %aorta inlet 

PinAorta3(:,1)=(VinAorta3-A_int)/A_slope; 
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fPinAorta3=Katie_LPF(PinAorta3); 

shiftedTimefile3=(time3(1752:3450)-time3(1752)); 

normTimefile3=shiftedTimefile3/max(shiftedTimefile3); 

shiftedPressurefile3=fPinAorta3(1752:3450)-fPinAorta3(1752); 

normPressurefile3=shiftedPressurefile3/max(shiftedPressurefile3); 

 

  % convert to pressures 

PinAorta(:,1)=(VinAorta-A_int)/A_slope; 

PoutAorta(:,1)=(VoutAorta-B_int)/B_slope; 

PoutImSect(:,1)=(VoutImSect-C_int)/C_slope; 

 

sampleNumber = length(time); 

 

%filtered pressure waves 

fPinAorta=Katie_LPF(PinAorta); 

fPoutAorta=Katie_LPF(PoutAorta); 

fPoutImSect=Katie_LPF(PoutImSect); 

 

 

figure(fig1) %pressure wave comparison 

plot(time,fPinAorta,'k.',time,fPoutAorta,'b.',time,fPoutImSect,'r.'); 

xlabel('Time, {\itt} [s]'); 

ylabel('Pressure, {\itp} [mmHg]'); 

xlim([0 15]); 

ylim([-60 182]) 

set(gca,'xtick',0:1:15) 

set(gca,'ytick',0:20:180) 

 

 

%HR (freq) calculation 

[xpts,ypts]=getpts(fig1); 

 

shift1=length(time(time<xpts(1))); 

shift2=length(time(time<xpts(3))); 

 

[min1,idx]=min(fPinAorta(time>xpts(1)&time<xpts(2))); %first minimum 

[min2,idx2]=min(fPinAorta(time>xpts(3)&time<xpts(4))); %second minimum 

 

[max3,idx3]=max(fPinAorta(time>xpts(1)&time<xpts(2))); %first max 

[max4,idx4]=max(fPinAorta(time>xpts(3)&time<xpts(4))); %first min 

 

%calculate phase averaged SBP,DBP,PP 

firstMinIndex=idx+shift1; 

secondMinIndex=idx2+shift2; 

j=1; 

 

firstMaxIndex=idx3+shift1; 

secondMaxIndex=idx4+shift2; 

% m=1; 

 

while all(xpts<15) 

    pulseTime(j)=time(secondMinIndex)-time(firstMinIndex); 

    HR(j)=1/pulseTime(j); 
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    DBP(j)=fPinAorta(firstMinIndex); 

    DBP2(j)=fPoutAorta(firstMinIndex); 

    DBP3(j)=fPoutImSect(firstMinIndex); 

 

    SBP(j)=fPinAorta(firstMaxIndex); 

    SBP2(j)=fPoutAorta(firstMaxIndex); 

    SBP3(j)=fPoutImSect(firstMaxIndex); 

 

    PP(j)=SBP(j)-DBP(j); 

 

    

MAPIn_Area(j)=trapz(time(firstMinIndex:secondMinIndex),fPinAorta(firstMinIndex:secondMinIndex)); 

    MAPIn_Calc(j)=(1/3)*SBP(j)+(2/3)*DBP(j); 

 

    xpts(1)=xpts(1)+pulseTime(j); 

    xpts(2)=xpts(2)+pulseTime(j); 

    xpts(3)=xpts(3)+pulseTime(j); 

    xpts(4)=xpts(4)+pulseTime(j); 

 

    shiftA=length(time(time<xpts(1))); 

    shiftB=length(time(time<xpts(2))); 

 

    [min5,idx5]=min(fPinAorta(time>xpts(1)&time<xpts(2))); 

    [min6,idx6]=min(fPinAorta(time>xpts(3)&time<xpts(4))); 

 

    firstMinIndex=idx5+shiftA; 

    secondMinIndex=idx6+shiftB; 

 

    [max7,idx7]=max(fPinAorta(time>xpts(1)&time<xpts(2))); 

    [max8,idx8]=max(fPinAorta(time>xpts(3)&time<xpts(4))); 

 

    firstMaxIndex=idx7+shiftA; 

    secondMaxIndex=idx8+shiftB; 

    j=j+1; 

end 

 

HR_PhsAvg=mean(HR); 

HR_StdDev=std2(HR); 

 

DBP_PhsAvg=mean(DBP); 

DBP_StdDev=std2(DBP); 

DBP2_PhsAvg=mean(DBP2); 

DBP2_StdDev=std2(DBP2); 

DBP3_PhsAvg=mean(DBP3); 

DBP3_StdDev=std2(DBP3); 

 

SBP_PhsAvg=mean(SBP); 

SBP_StdDev=std2(SBP); 

SBP2_PhsAvg=mean(SBP2); 

SBP2_StdDev=std2(SBP2); 

SBP3_PhsAvg=mean(SBP3); 

SBP3_StdDev=std2(SBP3); 

 

PP_PhsAvg=mean(PP); 
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PP_StdDev=std2(PP); 

 

MAPIn_Area_PhaseAvg=mean(MAPIn_Area); 

MAPIn_Area_StdDev=std2(MAPIn_Area); 

MAPIn_Calc_PhaseAvg=mean(MAPIn_Calc); 

MAPIn_Calc_StdDev=std2(MAPIn_Calc); 

 

 

% CLINICAL WAVEFORMS - TYPES A, B, C CENTRAL AORTIC AND PERIPHERAL 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% naming scheme for physl waveforms: 

    % physl"Type""Location"...ex: physlBCA = Type B central aortic, 

    % physlAP=Type A peripheral 

 

%physl Type B central aortic waveform from Weber et al. 2006 

physlBCAArray=csvread('X:\01_Current_Students\Katie Cameron\LVAD\Compliant experiments\Physl 

Waveforms\Weber et al. Type B Central Aortic Waveform.csv');%,'\t','A1..A54'); 

physlBCANormTime=physlBCAArray(:,1)/max(physlBCAArray(:,1)); 

physlBCAPressure=physlBCAArray(:,2); 

physlBCAShiftedPressure=physlBCAPressure-min(physlBCAPressure); 

physlBCANormPressure=(physlBCAPressure-min(physlBCAPressure))/max(physlBCAShiftedPressure); 

 

%physl DD waveform central aortic waveform from Weber et al. 2006 

physlDDCAArray=csvread('X:\01_Current_Students\Katie Cameron\LVAD\Compliant experiments\Physl 

Waveforms\Weber et al. DD Central Aortic Waveform.csv');%,'\t','A1..A54'); 

physlDDCANormTime=physlDDCAArray(:,1)/max(physlDDCAArray(:,1)); 

physlDDCAPressure=physlDDCAArray(:,2); 

physlDDCAShiftedPressure=physlDDCAPressure-min(physlDDCAPressure); 

physlDDCANormPressure=(physlDDCAPressure-min(physlDDCAPressure))/max(physlDDCAShiftedPressure); 

 

%physl Type B peripheral waveform from Weber et al. 2006 

physlBPArray=csvread('X:\01_Current_Students\Katie Cameron\LVAD\Compliant experiments\Physl 

Waveforms\Weber et al. Type B Peripheral Waveform.csv');%,'\t','A1..A54'); 

physlBPNormTime=physlBPArray(:,1)/max(physlBPArray(:,1)); 

physlBPPressure=physlBPArray(:,2); 

physlBPShiftedPressure=physlBPPressure-min(physlBPPressure); 

physlBPNormPressure=(physlBPPressure-min(physlBPPressure))/max(physlBPShiftedPressure); 

 

%physl DD waveform peripheral waveform from Weber et al. 2006 

physlDDPArray=csvread('X:\01_Current_Students\Katie Cameron\LVAD\Compliant experiments\Physl 

Waveforms\Weber et al. DD Peripheral Waveform.csv');%,'\t','A1..A54'); 

physlDDPNormTime=physlDDPArray(:,1)/max(physlDDPArray(:,1)); 

physlDDPPressure=physlDDPArray(:,2); 

physlDDPShiftedPressure=physlDDPPressure-min(physlDDPPressure); 

physlDDPNormPressure=(physlDDPPressure-min(physlDDPPressure))/max(physlDDPShiftedPressure); 

 

%physl hypertensive central aortic waveform from Nichols, 2005 

physlHTCAArray=csvread('X:\01_Current_Students\Katie Cameron\LVAD\Compliant experiments\Physl 

Waveforms\Nichols Hypertensive Central Aortic Waveform.csv');%,'\t','A1..A54'); 

physlHTCANormTime=physlHTCAArray(:,1)/max(physlHTCAArray(:,1)); 

physlHTCAPressure=physlHTCAArray(:,2); 

physlHTCAShiftedPressure=physlHTCAPressure-min(physlHTCAPressure); 

physlHTCANormPressure=(physlHTCAPressure-min(physlHTCAPressure))/max(physlHTCAShiftedPressure); 
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%physl hypertensive peripheral  waveform from Nichols, 2005 

physlHTPArray=csvread('X:\01_Current_Students\Katie Cameron\LVAD\Compliant experiments\Physl 

Waveforms\Nichols Hypertensive Peripheral Waveform.csv');%,'\t','A1..A54'); 

physlHTPNormTime=physlHTPArray(:,1)/max(physlHTPArray(:,1)); 

physlHTPPressure=physlHTPArray(:,2); 

physlHTPShiftedPressure=physlHTPPressure-min(physlHTPPressure); 

physlHTPNormPressure=(physlHTPPressure-min(physlHTPPressure))/max(physlHTPShiftedPressure); 

 

%theoretical Type C central aortic waveform 

physlCCAArray=csvread('X:\01_Current_Students\Katie Cameron\LVAD\Compliant experiments\Physl 

Waveforms\Nichols Type C Central Aortic Waveform.csv');%,'\t','A1..A54'); 

physlCCANormTime=physlCCAArray(:,1)/max(physlCCAArray(:,1)); 

physlCCAPressure=physlCCAArray(:,2); 

physlCCAShiftedPressure=physlCCAPressure-min(physlCCAPressure); 

physlCCANormPressure=(physlCCAPressure-min(physlCCAPressure))/max(physlCCAShiftedPressure); 

 

% %theoretical Type C peripheral waveform 

physlCPArray=csvread('X:\01_Current_Students\Katie Cameron\LVAD\Compliant experiments\Physl 

Waveforms\Nichols Type C Peripheral Waveform.csv');%,'\t','A1..A54'); 

physlCPNormTime=physlCPArray(:,1)/max(physlCPArray(:,1)); 

physlCPPressure=physlCPArray(:,2); 

physlCPRadShiftedPressure=physlCPPressure-min(physlCPPressure); 

physlCPRadNormPressure=(physlCPPressure-min(physlCPPressure))/max(physlCPRadShiftedPressure); 

 

% %theoretical Type A peripheral waveform 

physlAPArray=csvread('X:\01_Current_Students\Katie Cameron\LVAD\Compliant experiments\Physl 

Waveforms\Nichols Type A Peripheral Waveform.csv');%,'\t','A1..A54');; 

physlAPNormTime=physlAPArray(:,1)/max(physlAPArray(:,1)); 

physlAPRadPressure=physlAPArray(:,2); 

physlAPRadShiftedPressure=physlAPRadPressure-min(physlAPRadPressure); 

physlAPRadNormPressure=(physlAPRadPressure-

min(physlAPRadPressure))/max(physlAPRadShiftedPressure); 

 

%theoretical Type A central aortic waveform 

physlACAArray=csvread('X:\01_Current_Students\Katie Cameron\LVAD\Compliant experiments\Physl 

Waveforms\Nichols Type A Central Aortic Waveform.csv');%,'\t','A1..A54'); 

physlACANormTime=physlACAArray(:,1)/max(physlACAArray(:,1)); 

physlACAPressure=physlACAArray(:,2); 

physlACAShiftedPressure=physlACAPressure-min(physlACAPressure); 

physlACANormPressure=(physlACAPressure-min(physlACAPressure))/max(physlACAShiftedPressure); 

 

% EXPERIMENTAL WAVEFORMS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%normalized one cycle central aortic experimental waveform 1230rpm 

shiftedTime=(time(idx+shift1:idx2+shift2)-time(idx+shift1)); 

normTime=shiftedTime/max(shiftedTime); 

shiftedPressure=fPinAorta(idx+shift1:idx2+shift2)-fPinAorta(idx+shift1); 

normPressure=shiftedPressure/max(shiftedPressure); 

 

shiftedPressure2=fPoutAorta(idx+shift1+61:idx2+shift2+61)-fPoutAorta(idx+shift1+61); 

normPressure2=shiftedPressure2/max(shiftedPressure2); 

 

% PLOTTING OF EXPERIMENTAL AND CLINICAL WAVEFORMS %%%%%%%%%%%%%%%% 

figure(fig2) 
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plot(physlACANormTime, physlACANormPressure,'r-',physlBCANormTime,physlBCANormPressure,'b-

',physlCCANormTime,physlCCANormPressure,'k-',physlDDCANormTime,physlDDCANormPressure,'b-', 

physlHTCANormTime,physlHTCANormPressure,'g-

',normTime,normPressure,'kx',normTimefile2,normPressurefile2,'rx',normTimefile3,normPressurefile3

,'bx'); 

legend('Type A Central Aortic Waveform (Nichols,2005)','Type B Central Aortic Waveform (Weber et 

al.,2006)','Type C Central Aortic Waveform (Nichols,2005)','Diastolic Dysfunction Central Aortic 

Waveform (Weber et al., 2006)','Hypertensive Central Aortic Waveform (Nichols, 

2005)','Experimental Central Aortic Waveform 1','Experimental Central Aortic Waveform 

2','Experimental Central Aortic Waveform 3'); 

% plot(normTime,normPressure,'kx')%,normTimefile2,normPressurefile2,'bx') 

xlabel('Normalized Time, {\itt/\tau} [--]'); 

ylabel('Normalized Pressure, {\itp/p_{max}} [--]'); 

xlim([0 1]); 

ylim([-0.05 1.1]) 

set(gca,'xtick',0:.1:1) 

set(gca,'ytick',0:.1:1) 

 

figure(fig3) 

plot(physlAPNormTime,physlAPRadNormPressure,'r-',physlBPNormTime,physlBPNormPressure,'b-

',physlCPNormTime,physlCPRadNormPressure,'k-',physlDDPNormTime,physlDDPNormPressure,'b-

',physlHTPNormTime,physlHTPNormPressure,'g-',normTime,normPressure,'kx') 

legend('Type A Peripheral Waveform (Nichols, 2005)','Type B Peripheral Waveform (Weber et 

al.,2006)','Type C Peripheral Waveform (Nichols, 2005)','Diastolic Dysfunction Peripheral 

Waveform (Weber et al., 2006)','Hypertensive Peripheral Waveform (Nichols, 2005)','Experimental 

Peripheral Waveform'); 

xlabel('Normalized Time, {\itt/\tau} [--]'); 

ylabel('Normalized Pressure, {\itp/p_{max}} [--]'); 

xlim([0 1]); 

ylim([-0.05 1.1]) 

set(gca,'xtick',0:.1:1) 

set(gca,'ytick',0:.1:1) 

 

% WRITE PHASE AVERAGED VALUES TO EXCEL FILE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

% fileName='C:\Users\KatieG\Dropbox\Graduate Research & Designs\Thesis\CODE\DataCollection.xlsx'; 

% sheet=1; 

% excelData1=[HR_PhsAvg HR_StdDev SBP_PhsAvg SBP_StdDev DBP_PhsAvg DBP_StdDev MAPIn_Calc_PhaseAvg 

MAPIn_Calc_StdDev MAPIn_Area_PhaseAvg MAPIn_Area_StdDev PP_PhsAvg]; 

% excelData2=[SBP2_PhsAvg SBP2_StdDev DBP2_PhsAvg DBP2_StdDev SBP3_PhsAvg SBP3_StdDev DBP3_PhsAvg 

DBP3_StdDev]; 

% xlRange1='C26'; 

% xlRange2='O26'; 

% 

% xlswrite(fileName,excelData1,sheet,xlRange1); 

% xlswrite(fileName,excelData2,sheet,xlRange2); 
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A-3.16 Matlab code used to generate VAD centerline velocity results presented in 

Section 5.4 

clear 

close all 

 

% Size and position figures 

figure(1), figure(2); figure(3); 

sz_x = 560; sz_y = 420; 

y_pos = 550; 

x_pos =75; 

set(1,'pos', [x_pos, y_pos, sz_x, sz_y]); 

set(2,'pos', [x_pos+15+sz_x, y_pos, sz_x, sz_y]); 

set(3,'pos', [x_pos, 10, sz_x*2, sz_y]); 

 

% Load data set 

path = 'F:\PIV Results\VAD_Results_calibration_105mm\Oct6_2PSI_1235RPM_truncated (frames 1-

1064)\TR_PIV_MP(3x32x32_75%ov)_01\'; 

% Get files in folder 

fnames = dir([path '*.VC7']); 

% Set a counter 

count=0; 

% Define the num of images to SKIP 

skip = 2; 

startFrame=145; 

frameRate=1000; 

pixel2mm=82; 

frequency=1.12; %pulse frequency 

cycleFrames=(1/frequency)*frameRate; %cycle time multiplied by camera frame rate 

endFrame=startFrame+cycleFrames-1; 

 

for i = startFrame:skip:endFrame 

    count = count+1; 

    v_File = [path fnames(i).name]; 

    % Load the vector file 

    VEC = loadvec(v_File); 

 

figure(1) % Set Figure 1 active 

% Define the sub region 

    box = [65 30 85 70]; 

 

    VEC2 = extractf(VEC,box); % get the vectors 

    VEC2vy_invert=-1*VEC2.vy; % vy vectors are being taken in wrong direction (downward) so need 

to multiply the array by -1 

 

figure(2) % Set Figure 2 active 

mVel(count)=mean2(VEC2vy_invert); 

mVel(count)=((mVel(count)*frameRate)/pixel2mm)*0.001; 

xlabel('Horizontal [px]','FontSize', 12,'FontName', ‘Calibri’); 

ylabel('Vertical  ({\ity}/{\itR})',... 

       'FontSize', 12,'FontName',... 

       ‘Calibri’) 
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colormap('hot'); 

c=colorbar; 

ylabel(c,'|V|(m/s)') 

 

figure(3) 

plot(mVel,'r.'); 

end 

 

save ('meanVelocity_Oct6_2PSI_1235RPM.mat', 'mVel', 'skip'); 
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A-3.17 Matlab code used to plot the VAD normalized pressure and centerline 

velocity (rigid case) results presented in Section 5.5 

close all 

clear 

 

fig1=figure; 

fig2=figure; 

 

set(fig1,'pos',[100,500,1100,600]); 

 

daslerFrameRate=210; 

sampleRate_Voltage=4000; 

frequency=1.44; 

cycleTime = 1/frequency; 

fileName='F:\VAD Data\Rigid\Oct14_Rigid_1540RPM_Volt.log'; 

times(:,1)=dlmread(fileName,'\t','A8..A60007'); %times 

daslerTrigger(:,1)=dlmread(fileName,'\t','D8..D60007'); 

sampleNumber=length(daslerTrigger(:,1)); 

 

load pressure_Rigid_1540RPM.mat; 

load meanVelocity_Oct14_Rigid_1540RPM.mat 

 

startIndex=firstMinIndex; %from pressureworld code 

 

% centerline velocity plot 

maxV = max(mVel); 

[a b] = size(mVel); 

normV = mVel/maxV; 

vCLPlotTime = [1:b]./b; 

 

figure(fig1) 

[hAx, h1, 

h2]=plotyy(normShortTime_Pressure,normPressure,vCLPlotTime,normV);%,'scatter','scatter'); 

hold on 

h1.Marker='.'; 

h2.Marker='o'; 

hAx(1).YColor='k'; 

hAx(2).YColor='b'; 

h1.Color='black'; 

h2.Color='blue'; 

set(hAx(1),'XLim',[0 1]); 

set(hAx(2),'XLim',[0 1]); 

set(hAx(1),'YLim',[-1.0 1]); 

set(hAx(2),'YLim',[-1.0 1]); 

set(hAx(1),'YTick',-1:0.5:1); 

set(hAx(2),'YTick',-1:.5:1); 

set(get(hAx(1),'YLabel'),'String','Normalized Pressure, {\itP/P_{max}} [--]'); 

set(get(hAx(2),'YLabel'),'String','Normalized Centerline Velocity, {\itv_{CL}/v_{CL,max}} [--

]'); 

set(get(hAx(1),'XLabel'),'String','Normalized Time, {\itt/\tau} [--]'); 

set(get(hAx(2),'XLabel'),'String','Normalized Time, {\itt/\tau} [--]'); 
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set(hAx,'Fontsize',14); 

set(hAx,'Fontname','Calibri'); 

ax=gca; 

ax.FontSize=14; 

ax.FontName='Calibri'; 

set(ax,'LooseInset',get(ax,'TightInset')); 



207 
 

A-3.18 Matlab code used to plot VAD normalized pressure, centerline velocity 

and tube distension (compliant case) 

close all 

clear 

 

valveCloseTime=0.4048; %from StartFrame excel sheet 

valveCloseFrame=74; %from ValveCloseFrame excel sheet 

baslerFrameRate=210; 

sampleRate=4000; 

freq=1.12; 

cycleTime = 1/freq; 

tubeCycleIndex=round(cycleTime*baslerFrameRate); 

 

fileName='F:\VAD Data\2PSI\Oct6_2PSI_1235RPM_Volt.log'; 

times(:,1)=dlmread(fileName,'\t','A8..A60007'); %times 

baslerTrigger(:,1)=dlmread(fileName,'\t','D8..D60007'); 

sampleNumber=length(baslerTrigger(:,1)); 

 

load pressure_2PSI_1235RPM.mat; 

load compliantresponse_multicycle_Oct6_2PSI_1235RPM.mat; 

load meanVelocity_Oct6_2PSI_1235RPM.mat 

 

%syncing tube response with first pressure minimum after beginning of 

%dasler camera trigger 

 

% finding the start frame of the camera 

for j = 1:sampleNumber 

    if baslerTrigger(j,1) > 9 

        triggerIndex = j; 

        break 

    end 

end 

 

%find number of pressure data points for one cycle 

%then find minimum between the start index and the end of the cycle 

%get index of first pressure minimum 

cycleIndex_Pressure = round(cycleTime*sampleRate); %frames per cycle 

firstTriggerCycle=fPinAorta(triggerIndex:(triggerIndex+cycleIndex_Pressure)); 

[~, firstMinIndexU] = min(firstTriggerCycle); %local index of first pressure min after camera 

trigger 

firstPressureMinIndex = firstMinIndexU + triggerIndex; % index of first pressure min after 

trigger 

firstCycle=fPinAorta(firstPressureMinIndex:firstPressureMinIndex+cycleIndex_Pressure); 

 

%TUBE 

twoCyclesTime=tube_time(1:2*tubeCycleIndex+1); 

twoCyclesExpansion=percentwidth(1:2*tubeCycleIndex+1); 

[pks,pklocs]=findpeaks(-twoCyclesExpansion); 

pks=-pks; 

startPkLocal=pklocs(pks==min(pks)); 

oneCycleTime=tube_time(startPkLocal:startPkLocal+tubeCycleIndex); 
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offsetOneCycleTime=oneCycleTime-min(oneCycleTime); 

normOneCycleTime=offsetOneCycleTime/max(offsetOneCycleTime); 

oneCycleExpansion=percentwidth(startPkLocal:startPkLocal+tubeCycleIndex); 

 

%find current valve close index and shift to match pressure valve close 

%index 

currentValveCloseIdx=pklocs(4)-pklocs(2); 

reqdValveCloseIdx=round(valveCloseTime*baslerFrameRate); 

 

phsShift=reqdValveCloseIdx-currentValveCloseIdx; 

 

tubeStartFrame=startPkLocal-phsShift; 

 

tubePlotTime=tube_time(tubeStartFrame:tubeStartFrame+tubeCycleIndex); 

tubePlot=percentwidth(tubeStartFrame:tubeStartFrame+tubeCycleIndex); 

offsetTubePlotTime=tubePlotTime-min(tubePlotTime); 

normTubePlotTime=offsetTubePlotTime/max(offsetTubePlotTime); 

 

 

% centerline velocity plot 

maxV = max(mVel); 

[a b] = size(mVel); 

normV = mVel/maxV; 

vCLPlotTime = [1:b]./b; 

 

x1=normShortTime_Pressure; y1=normPressure; 

x2=vCLPlotTime; y2=normV; 

x3=normTubePlotTime; 

y3=tubePlot;%percentwidth(tubeStartFrame:tubeStartFrame+tubeCycleIndex);normTubeShortTime 

ylabels{1}='Normalized Pressure, {\itP/P_{max}} [--]'; 

ylabels{2}='Normalized Centerline Velocity, {\itv_{CL}/v_{CL,max}} [--]'; 

ylabels{3}='Tube Response, {\it\DeltaD/D}, [%]'; 

xlabel='Normalized Time, {\itt/\tau} [--]'; 

 

[ax,hlines]=plotyyy(x1,y1,x2,y2,x3,y3,ylabels); 

 

set(ax(1),'YLim',[-.3 1]); 

set(ax(2),'YLim',[-.3 1]); 

set(ax(3),'XLim',[0 1.12]); 

set(ax(1),'YTick',-0.25:0.25:1); 

set(ax(2),'YTick',-.25:0.25:1); 

set(ax(1),'YColor',[0 0 0]); 

set(ax(2),'YColor',[0 0 1]); 

set(ax(3),'YLim',[2 38]); 

set(ax(3),'YTick',0:2:54); 

set(get(ax(1),'xlabel'),'string',xlabel); 

 

ax(1).FontSize=14; ax(2).FontSize=14; ax(3).FontSize=14; 

ax(1).FontName='Calibri',ax(2).FontName='Calibri',ax(3).FontName='Calibri' 
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A-3.19 Matlab code used to perform the VAD pump energy calculations 

presented in Section 5.6.5 

clear  

close all 

  

fig1=figure; 

fig2=figure; 

fig3=figure; 

fig4=figure; 

fig5=figure; 

fig6=figure; 

fig7=figure; 

figmin=figure; 

getptsfig=figure; 

  

% INPUTS ------------------------------------------------------------------ 

%ENTER CASE TYPE (1- RIGID OR 2-COMPLIANT) 

type=2; 

  

fileName='F:\VAD Data\2PSI\Oct6_2PSI_1235RPM_Volt.log'; %pressure data 

path = 'F:\PIV Results\VAD_Results_calibration_105mm\Oct6_2PSI_1235RPM_truncated (frames 1-

1064)\TR_PIV_MP(3x32x32_75%ov)_01\'; %load PIV data 

  

%Fill in 

DaVisImgStart=1; % first image processed in DaVis minus one (to include first image) 

% Define the num of images to SKIP for velocity plot 

skip =1; 

  

%don't touch 

DaVisOffset=DaVisImgStart-1; 

  

%pulse frequency (from excel) 

freq=1.12;  

cycleTime=1/freq; 

  

%harmonics for filter 

harmonics=10; %number of harmonics to include in filtered wave 

highHarm=15; 

  

%CONSTANTS & TUBE PROPERTIES ---------------------------------------------- 

  

%constants & tube/flow properies 

rho=1000; %kg/m3 

g=9.81; %[m/s2] 

r=0.0127; %[m] 

Atube=pi*(r^2); 

  

%conversion factors 

mmHg_Pa_Conv=133.322; %1 mmHg=133.322 Pa 

pixel2mm=82; %pixel/mm 
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%heights 

z1=0.225; %from outlet valve to transducer B (outlet mock aorta) [m] 

z2=0.095; %from transducer B to C [m] 

z=z1+(z2/2); %from valve outlet to halfway up imaging section (where flow fields taken) 

zC_ALRes=.6; %height from transducer C to AL reservoir 

zALRes=z1+z2+zC_ALRes; %height from outlet valve to bottom of AL reservoir 

  

  

% LOAD PRESSURE DATA------------------------------------------------------- 

  

%transducer A 

A_slope=0.0149; 

A_int=0.0645; 

  

%transducer C 

C_slope=0.0148; 

C_int=0.0172; 

  

time=dlmread(fileName,'\t','A8..A60007'); %times 

phantomTrigger=dlmread(fileName,'\t','C8..C60007');  

sampleRate=4000; %sampling frequency 

frameRate = 1000; %phantom camera 

sampleNumber = length(time); 

  

VoutImSect=dlmread(fileName,'\t','G8..G60007'); %imaging section outlet 

VinAorta=dlmread(fileName,'\t','I8..I60007'); %aorta inlet 

  

PoutImSect=(VoutImSect-C_int)/C_slope; 

PinAorta=(VinAorta-A_int)/A_slope; 

  

%filtered pressure waveform 

fPoutImSect=LPButterworthFilt(sampleRate,freq*harmonics,PoutImSect); 

fPinAorta=LPButterworthFilt(sampleRate,freq*harmonics,PinAorta); 

  

%higher harmonics filtered wave to find valve closure time 

fPinAorta2=LPButterworthFilt(sampleRate,freq*highHarm,PinAorta); 

  

%convert to Pa 

fPinAorta_Pa=fPinAorta*mmHg_Pa_Conv; 

fPoutImSect_Pa=fPoutImSect*mmHg_Pa_Conv; 

fPinAorta2_Pa=fPinAorta2*mmHg_Pa_Conv; 

deltaP=fPinAorta_Pa-fPoutImSect_Pa; 

  

% finding the start frame of the camera 

cycleIndex = round(cycleTime*sampleRate); %frames per cycle 

for i = 1:length(time) 

    if phantomTrigger(i,1) < 1 

        triggerIndex = i; 

        break 

    end 

end 

  

% LOAD MEAN VELOCITY DATA------------------------------------------------- 
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% Get files in folder 

fnames = dir([path '*.VC7']); 

% Set a counter 

count=0; 

  

cycleFrames=round((1/freq)*frameRate); %cycle time multiplied by camera frame rate 

  

%RIGID CASE --------------------------------------------------------------- 

if type==1 

  

%find diastolic minimum to start cycle from beginning of ejection     

firstTriggerCycle=fPinAorta_Pa(triggerIndex:triggerIndex+cycleIndex); 

[pks,pklocs] = findpeaks(-firstTriggerCycle); 

pks=-pks; 

[~,rigidDiastolicMinIdx] = min(pks); 

rigidDiastolicMinIdx=rigidDiastolicMinIdx+1; %enter this if diastolic minimum is not the second 

% minimum - for 980 RPM, subtract 4 

localMinIndex=pklocs(rigidDiastolicMinIdx); 

firstMinIndex=localMinIndex+triggerIndex; 

  

%create new array for one cycle starting at first diastolic min 

shortTime=(time(firstMinIndex:firstMinIndex+cycleIndex)-time(firstMinIndex));%for non-normalized 

plot (zero to cycle time) 

cutPressureIn = fPinAorta_Pa(firstMinIndex:(firstMinIndex+cycleIndex)); %inlet waveform using 

startframe of inlet wave 

cutPressureOut = fPoutImSect_Pa(firstMinIndex:(firstMinIndex+cycleIndex)); %peripheral waveform 

using startframe of inlet waveform (marks beginning of systole) 

  

%finding absolute min of inlet pressure wave in order to determine valve 

%closure time 

[abspks,abspklocs]=findpeaks(-cutPressureIn); 

abspks=-abspks; 

[~,absMinIdx]=min(abspks); 

localAbsMinIndex=abspklocs(absMinIdx); 

AbsMinIndex=localAbsMinIndex+firstMinIndex; 

  

%bounds of integration for specifying time of systole 

cycleStartTime=0; 

cycleStartIndex = 1; %define lower bound of integration 

valveCloseTime=time(AbsMinIndex)-time(firstMinIndex) %valve closure time 

valveCloseIndex=AbsMinIndex-firstMinIndex+1; 

  

%new arrays for period of systole 

shortTimeSystole=time(firstMinIndex:AbsMinIndex)-time(firstMinIndex); 

cutPressureInSystole=cutPressureIn(1:valveCloseIndex); 

cutPressureOutSystole=cutPressureOut(1:valveCloseIndex); 

  

offsetTime = time(firstMinIndex)- time(triggerIndex); 

startFrame = round(frameRate*offsetTime); 

startFrame= startFrame-DaVisOffset 

endFrame=startFrame+round((valveCloseTime*frameRate)); %end of systole (as defined by absolute 

min on inlet pressure wave) 

  

% UNCOMMENT THIS TO CHECK WHERE MIN IS BEING FOUND ------------------------ 
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figure(figmin); 

plot(shortTimeSystole,cutPressureInSystole.','r') 

  

% COMPLIANT CASE----------------------------------------------------------- 

  

elseif type==2 

%finding first minimum where image was taken (from inlet pressure wave) 

firstTriggerCycle=fPinAorta(triggerIndex:(triggerIndex+cycleIndex)); 

  

[triggerpks,triggerpklocs]=findpeaks(-firstTriggerCycle); 

triggerpks=-triggerpks; 

newtriggerpks=triggerpks(triggerpks>min(triggerpks)); 

[~,compliantDiastolicMinIdx]=min(triggerpks); 

newtriggerpklocs=triggerpklocs(triggerpks>min(triggerpks)); 

localDiastMinIdx=triggerpklocs(compliantDiastolicMinIdx); 

firstMinIndex = localDiastMinIdx + triggerIndex; 

  

%create new array for one cycle starting at first diastolic min 

shortTime=(time(firstMinIndex:firstMinIndex+cycleIndex)-time(firstMinIndex));%for non-normalized 

plot (zero to cycle time) 

cutPressureIn = fPinAorta_Pa(firstMinIndex:(firstMinIndex+cycleIndex)); %inlet waveform using 

startframe of inlet wave 

cutPressureOut = fPoutImSect_Pa(firstMinIndex:(firstMinIndex+cycleIndex)); %peripheral waveform 

using startframe of inlet waveform (marks beginning of systole) 

  

cutPressureIn2 = fPinAorta2_Pa(firstMinIndex:(firstMinIndex+cycleIndex)); 

% cutDeltaP=deltaP(firstMinIndex:(firstMinIndex+cycleIndex)); 

  

low=0.3; 

up=.42; 

  

%find valve closure index from higher harmonic waveform 

[vcPks,vcPkLocs]=findpeaks(-cutPressureIn2(shortTime<up & shortTime>low)); 

vcPks=-vcPks; 

[~,vcMinIdx]=min(vcPks); 

localVcIdx=vcPkLocs(vcMinIdx); 

  

shift1=firstMinIndex+(low*sampleRate); 

  

vcIndex=localVcIdx+shift1; %index wrt beginning of cycle 

  

%systole indices 

valveCloseIndex=vcIndex-firstMinIndex+1; 

%valve close time 

valveCloseTime=time(valveCloseIndex) 

  

%new arrays for period of systole 

shortTimeSystole=time(firstMinIndex:firstMinIndex+valveCloseIndex-1)-time(firstMinIndex); 

cutPressureInSystole=cutPressureIn(1:valveCloseIndex); 

cutPressureOutSystole=cutPressureOut(1:valveCloseIndex); 

  

% UNCOMMENT THIS TO CHECK WHERE MIN IS BEING FOUND ------------------------ 

figure(figmin); 

plot(shortTime, cutPressureIn2,'k') 
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hold on 

plot(shortTime,cutPressureIn2(valveCloseIndex)*ones(length(shortTime)),'b'); 

plot(shortTimeSystole,cutPressureInSystole.','r') 

hold off 

  

offsetTime = time(firstMinIndex)- time(triggerIndex); 

startFrame = round(frameRate*offsetTime); 

if startFrame==0 

    startFrame=1 

else 

    startFrame= startFrame-DaVisOffset 

end 

  

endFrame=startFrame+round((valveCloseTime*frameRate)); 

  

end 

  

%LOAD PIV IMAGES, CALCULATE VELOCITY--------------------------------------- 

  

for i = startFrame:skip:endFrame 

    count = count+1; 

    v_File = [path fnames(i).name]; 

    % Load the vector file 

    VEC = loadvec(v_File); 

    VEC=rotatef(VEC,pi); 

  

    % Define the sub region  

     

    if i==startFrame 

    [x1find,~]=find(VEC.vy); 

    x1=min(x1find)-1; 

    x2=max(x1find)+1; 

    y1=1; 

    [s1 s2]=size(VEC.y); 

    y2=s2; 

     

    box = [x1 y1 x2 y2]; 

    end 

     

    VEC2 = extractf(VEC,box); % get the vectors 

        count2=0; %count2 represents the y location at which we're averaging (how many locations 

in the y direction are we using to find the average velocity profile)  

        %calculate velocity profiles across length of FOV 

        %calculate velocity profiles across length of FOV 

        c1=1; 

        c2=length(VEC2.x); 

        rdsmax=c2-c1+1; 

    for j=c1:1:c2 %j is the x locations under consideration 

        count2=count2+1; 

        profilePixel(count,count2)=mean2(VEC2.vy(j,:)); %average value per column 

        velProfile(count,count2)=((profilePixel(count,count2)*frameRate)/pixel2mm)*0.001; 

         

        rds=j-c1; 
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        radVal(count,count2)=(rds/rdsmax)*r; %r position in tube [mm]   

         

    end     

           

    fit1{count}=fit(radVal(count,:).',velProfile(count,:).','smoothingspline'); %smoothing 

spline for velocity profiles 

     

    velProfileArea(count)=trapz(radVal(count,:).',velProfile(count,:).'); %area under averaged 

velocity profile for each image (count) 

    volFlowRate(count)=pi*r*velProfileArea(count); %m3/s %integrate velocity profile around 180 

degrees to get volume flow rate 

    massFlowRate(count)=volFlowRate(count)*rho; %kg/s %multiply flow rate times density to get 

mass flow erate 

     

      

    avgVel(count)=mean2(velProfile(count,:)); 

     

end 

  

%disregard negative mass flow rate values 

for q=1:length(massFlowRate) 

  

    if massFlowRate(q)<0 

        massFlowRate(q)=0; 

    end 

       q=q+1; 

end 

  

for x=1:length(velProfileArea); 

    velTime(x)= (startFrame+(x*skip))*(1/frameRate)-(startFrame*(1/frameRate)); %calculating the 

time steps associated with each image 

end 

  

%DYNAMIC ENERGY --------------------------------------------------------- 

  

%calculating terms for integration 

vSqrd=avgVel.^2; 

VIntFunct=vSqrd.*massFlowRate; 

  

VInt=trapz(velTime.',VIntFunct.'); 

VNRG=VInt*(1/2) 

  

figure(fig1) 

plot(velTime,avgVel,'k.-'); 

xlabel('Time, {\itt} [s]'); 

ylabel('Velocity, {\itv} [m/s]'); 

  

figure(fig2) 

plot(velTime, VIntFunct,'b.-'); 

xlabel('Time, {\itt} [s]') 

ylabel('Squared Velocity * mdot [m2/s2(kg/s)]'); 

  

figure(fig3) 

plot(velTime,massFlowRate,'r.-'); 
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xlabel('Time, {\itt} [s]') 

ylabel('Mass Flow Rate [\itkg/s]'); 

ylim([-0.05 .3]); 

  

% PRESSURE ENERGY -------------------------------------------------------- 

  

PCurveFitOutSystole=fit(shortTimeSystole,cutPressureOutSystole,'smoothingspline'); 

  

for pts=1:length(massFlowRate) %fit pressure curve to the same data points as the velocity data 

so it can be multiplied by mass flow rate 

    PressTimeAdjusted(pts)=velTime(pts); 

    PressAdjusted(pts)=PCurveFitOutSystole(PressTimeAdjusted(pts)); 

    pts=pts+1; 

end 

  

PIntFunct=PressAdjusted.*massFlowRate; 

PInt=trapz(velTime.',PIntFunct.'); 

PNRG=PInt/rho 

  

figure(fig4) 

plot(shortTimeSystole,cutPressureInSystole,'b'); 

hold on 

plot(shortTimeSystole,cutPressureOutSystole,'r-'); 

xlabel('Time, {\itt} [s]'); 

ylabel('P(t) [Pa]') 

hold off 

  

figure(fig5) 

plot(velTime,PIntFunct,'k-'); 

xlabel('Time, {\itt} [s]'); 

ylabel('P(t)*mdot') 

  

% STATIC ENERGY ---------------------------------------------------------- 

  

SInt=trapz(velTime.',massFlowRate.'); 

SNRG=z*g*SInt 

  

%LOCAL ACCELERATION ------------------------------------------------------ 

  

dv_dt=diff(avgVel)./diff(velTime); 

accelTime=velTime(1:length(dv_dt)); 

  

tick=0; 

interval=1; %how many data points to skip over for acceleration plot (on top of skip already 

applied to avg velocity plot) 

for t=1:interval:length(dv_dt) 

    tick=tick+1; 

    accelFunct(tick)=dv_dt(t); 

    accelTimeFunct(tick)=accelTime(t); 

    massFlowRateAdjusted(tick)=massFlowRate(t); 

    end 

  

accelIntFunct=accelFunct.*massFlowRateAdjusted; 

accelInt=trapz(accelTimeFunct.',accelIntFunct.'); 
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figure(fig6) 

plot(accelTimeFunct,accelFunct,'k.-'); 

xlabel('Time, {\itt} [s]'); 

ylabel('dv/dt [m/s2]') 

  

figure(fig7) 

plot(accelTimeFunct,accelIntFunct,'k.-'); 

xlabel('Time, {\itt} [s]'); 

ylabel('(dv/dt)*mdot'); 

  

ANRG=z*accelInt 

  

%TOTAL ENERGY ------------------------------------------------------------ 

  

totNRG=PNRG+VNRG+SNRG+ANRG 

  

% excelfileName='C:\Users\kgcamero\Dropbox\Graduate Research & Designs\Thesis\Start 

Frames.xlsx'; 

% sheet=2; 

% excelData1=[VNRG PNRG SNRG ANRG totNRG]; 

%  

% xlRange1='K10';  

% xlswrite(excelfileName,excelData1,sheet,xlRange1); 
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A-3.20 Matlab code used to generate pump energy plots from Sections 5.6.5 

clear 

close all 

fig1=figure; set(fig1,'position',[100 200 1100 650]); 

 

excelfileName='C:\Users\KatieG\Dropbox\Graduate Research & Designs\Thesis\Start Frames.xlsx'; 

sheet=3; 

 

xlRange_RPM='B3:B7'; RPM=xlsread(excelfileName,2,xlRange_RPM); 

xlRange_980Dist='B3:B5'; Dist980=xlsread(excelfileName,sheet,xlRange_980Dist); 

xlRange_980NRG='C3:C5'; NRG980=xlsread(excelfileName,sheet,xlRange_980NRG); 

 

xlRange_1065Dist='D3:D5'; Dist1065=xlsread(excelfileName,sheet,xlRange_1065Dist); 

xlRange_1065NRG='E3:E5'; NRG1065=xlsread(excelfileName,sheet,xlRange_1065NRG); 

 

xlRange_1235Dist='F3:F5'; Dist1235=xlsread(excelfileName,sheet,xlRange_1235Dist); 

xlRange_1235NRG='G3:G5'; NRG1235=xlsread(excelfileName,sheet,xlRange_1235NRG); 

 

xlRange_1450Dist='H3:H5'; Dist1450=xlsread(excelfileName,sheet,xlRange_1450Dist); 

xlRange_1450NRG='I3:I5'; NRG1450=xlsread(excelfileName,sheet,xlRange_1450NRG); 

 

xlRange_1540Dist='J3:J4'; Dist1540=xlsread(excelfileName,sheet,xlRange_1540Dist); 

xlRange_1540NRG='K3:K4'; NRG1540=xlsread(excelfileName,sheet,xlRange_1540NRG); 

 

figure(fig1) 

p1=plot(Dist980,NRG980,'ko-'); 

hold on 

p2=plot(Dist1065,NRG1065,'bo-'); 

p3=plot(Dist1235,NRG1235,'ro-'); 

p4=plot(Dist1450,NRG1450,'mo-'); 

p5=plot(Dist1540,NRG1540,'go-'); 

ylim([0 135]); 

xlabel('Distensibility, {\itd} [mmHg^{-1}]'); 

ylabel('Pump Energy, {\itE_{VAD}} [J/min]'); 

LF1=legend('{\it\omega_{AL pump}}= 980 RPM','{\it\omega_{AL pump}}= 1065 RPM','{\it\omega_{AL 

pump}}= 1235 RPM','{\it\omega_{AL pump}}= 1450 RPM','{\it\omega_{AL pump}}= 1540 RPM'); 

set(LF1,'location','eastoutside'); 

set(gca,'XTick',0:0.0005:0.006); 

set(gca,'YTick',0:10:130); 

ax=gca; 

ax.FontName='Calibri'; 

ax.FontSize=14; 

set(ax,'LooseInset',get(ax,'TightInset')); 

 


