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Abstract

Alarm systems are critical assets of modern industrial plants to assist op-

erators in managing plant upsets and hazardous situations. A good alarm

system must detect abnormalities and warn the operators promptly and yet

at the same time not mislead, overload or distract the operators. However,

in many actual cases, alarm systems often function poorly, and distract and

overload operators due to nuisance alarms and alarm floods. Consequently,

operators might be confounded by these problems, and be less alert to true

alarms. To ensure process safety and improve efficiency of alarm systems, this

thesis focuses on the development of advanced alarm management techniques,

specifically using alarm data.

Four problems have been solved. First, a new method is developed to

detect and quantify correlated alarms in the presence of occurrence delays,

which are identified as the main causes leading to erroneous conclusions from

existing methods. The effectiveness of the method is ensured by a statistical

test based on the distribution of occurrence delays and a signal conversion

mechanism of generating continuous-valued pseudo alarm sequences. Second,

in order to assist prediction of alarm floods and prevention of their negative

consequences, an accelerated local alignment method is proposed to find simi-

lar alarm flood sequences, which are very likely caused by the same root cause.

To improve the computational efficiency and accuracy, three novel strategies

are incorporated, including the priority-based similarity scoring strategy, the
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set-based pre-matching mechanism, and the modified seeding-extending step-

s. Third, to identify abnormality propagation paths and detect root causes,

a causality inference method based on binary-valued alarm data is developed

as an alternative in the absence of process data. A modified transfer entropy

(TE) and a direct transfer entropy (DTE) are formulated based on the two

characteristics of alarm signals, namely, the random occurrence delays and the

mutual independence of alarm occurrences. Lastly, a data-driven technique

is proposed to discover association rules of mode-dependent alarms from his-

torical Alarm & Event (A&E) logs. The proposed method can help process

engineers in discovering consequential nuisance alarms, and configuring state-

based alarming strategies.

The effectiveness and applicability of the proposed methods are validated

by case studies using real industrial alarm data. Using the proposed methods,

interesting patterns can be extracted from the alarm data, and used to improve

alarm monitoring by reducing nuisance alarms, addressing alarm floods, and

tracking the propagation of abnormalities.
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Chapter 1

Introduction

1.1 Background

Modern large-scale industrial facilities, e.g., oil refineries, pharmaceutical

factories, and power plants, usually consist of a large number of actuating el-

ements, metering devices, measuring transducers, and control modules, which

are tightly interconnected. Abnormalities in such integrated processes usually

propagate through plant devices, causing enormous losses, such as out-of-spec

product quality, process upsets, and even serious environmental releases or

human injuries. In view of this and to be in regulatory compliance with

respect to safe process operation, the management issues of abnormal situ-

ations via process monitoring, fault diagnosis, and alarm management have

been receiving increasing attentions from both academia and industrial com-

munities [24, 60, 61, 96]. To assist operators in perceiving near misses and

managing hazardous situations, alarm systems are commonly used to monitor

process measurement, equipment status, and safety conditions. To design,

implement, and maintain industrial alarm systems, standards and guidelines,

such as EEMUA-191 [28], ISA-18.2 [47], and IEC-62682 [46], have been devel-

oped and widely accepted by industrial practitioners. This section provides

the background of industrial alarm systems, and the current status of alarm

management.

1.1.1 Alarm Systems and Alarm Data

Alarm systems are critical assets of process industries to notify operators

of abnormal process conditions or equipment malfunctions. In the days of

hardwired controls and alarms, the installation of new alarms was expensive
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due to the high cost of hardware and limited space on the control wall [38, 85].

Over the past decades, with the progress of digital technologies, the Distribut-

ed Control Systems (DCS) and the Supervisory Control and Data Acquisition

(SCADA)systems have gradually predominated. As a result, the configuration

of control strategies and the installation of alarms have become effortless tasks.

Specifically for alarms, the computerized scrolling list has replaced the light-

boxes, and the installation of alarms can be easily conducted using softwares.

A typical modern alarm system consists of three major components, as shown

in Fig. 1.1 [47]: (1) The Basic Process Control System (BPCS) and the Safety

Instrumented System (SIS) generates alarms based on the measurements of

process conditions and certain logic; (2) the Human-Machine Interface (HMI),

such as a computer screen or an annunciator panel, delivers alarm informa-

tion to operators; (3) the alarm log formats and stores the alarm messages

and other related events. The advanced alarm applications, external systems,

and alarm historian are also important for an effective alarm system.

Figure 1.1: Alarm system dataflow [47].

In a typical alarm system, the alarm signals are generated as visible and/or

audible notifications to indicate equipment malfunctions, process deviations,

or abnormal conditions. For the sake of offline examination or analysis, alarm

signals are usually formatted as textural data and stored in an Alarm & Event

(A&E) log. Generally, the alarm data in an A&E log consists of two parts: the
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configuration attributes, e.g., the tag name, alarm type, priority and location,

and the realtime messages, e.g., alarm occurrences, return-to-normal instants,

and their time stamps [38, 49, 57]. In addition to the alarm messages, the

operator related events, such as the operator acknowledgements, adjustment

of controllers, and changes to alarms are also available in many A&E logs. An

example of a structured A&E log in an oil plant is shown in Table 1.1.

Table 1.1: An example of a structured A&E log.

Time stamp Type Tag Identifier State Priority Location Description
26/02/2016 08:17:23 Alarm F1A2 CFN ALM High Unit A The status of the valve for

feed gas supply
26/02/2016 08:17:41 Alarm P2C7 PVBAD ALM Low Unit A Exceeding the range of

measuring instrument
26/02/2016 08:18:05 Alarm P5C1 CFN ALM High Unit A The status of the calculat-

ed variable for product 1
26/02/2016 09:33:39 Alarm L2V2 PVHI ALM Critical Unit B The water level is above

its high alarm limit
26/02/2016 10:41:33 Alarm F1A2 CFN RTN High Unit A The status of the valve for

feed gas supply
26/02/2016 10:49:52 Change VALV2 OPEN Unit B Open a drainage valve at

the outlet of a tank
26/02/2016 10:55:17 Alarm L2V2 PVHI RTN Critical Unit B The water level is below

its high alarm limit
26/02/2016 11:34:05 Alarm P2C7 PVBAD RTN Low Unit A Within the range of mea-

suring instrument
26/02/2016 12:21:01 Alarm P5C1 CFN RTN High Unit A The status of the calculat-

ed variable for product 1
26/02/2016 14:30:12 Change PUMP1 STOP Unit C Stop a pump that supplies

lube oil
26/02/2016 14:31:33 Alarm PI01 PVLO ALM Low Unit C The discharge pressure is

below its low alarm limit
26/02/2016 14:32:15 Alarm FI01 PVLO ALM Low Unit C The discharge flow is be-

low its low alarm limit
26/02/2016 19:55:12 Change PUMP1 START Unit C Start a pump that sup-

plies lube oil
26/02/2016 19:55:50 Alarm FI01 PVLO RTN Low Unit C The discharge flow is

above its low alarm limit
26/02/2016 19:56:17 Alarm PI01 PVLO RTN Low Unit C The discharge pressure is

above its low alarm limit

The header of each column represents an attribute while each row records

the textual messages along with time. “Time stamp” indicates when an event

occurs. “Type” indicates whether the event is an alarm or an operator action.

“Tag” is a name allotted to label a specific device or process. “Identifier” rep-

resents the alarm type, e.g. CFN (changing from normal), PVLO (exceeding

the low alarm limit), and PVBAD (out of measuring range). In the “State”

column, we can know whether an alarm occurs (ALM) or returns to normal

(RTN) and what actions the operators have made. “Priority” represents the

relative importance assigned to an alarm, and “Area” denotes the physical

location. For instance, “F1A2” indicates the gas flow and “CFN” is an appli-

cable identifer of “F1A2”; they jointly make a unique alarm tag “F1A2.CFN”

that is located in Unit A and configured with a high priority. The alarm is

binary-valued with two states, namely, “ALM” and “RTN”. “F1A2.CFN” was

annunciated at 08:17:23 and returned to normal at 10:41:33 on 26/02/2015.

Moreover, the interactions between alarms and operator actions can be ob-
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served from the A&E log. For instance, the alarm “L2V2.PVHI” returned to

normal after the drainage valve “VALV2” was opened. In Unit C, it looks like

that the low pressure alarm “PI01.Low” and low flow rate alarm “FI01.Low”

were annunciated after pump labeled as “PUMP1” stopped, and returned to

normal subsequently after it restarted.

The A&E log is an important resource that enables the offline analysis.

Accordingly, interesting patterns can be discovered from historical data and

used for the online purpose, so as to help operators with alarm monitoring.

The work in this thesis is purely alarm data based.

1.1.2 Current Status of Alarm Management

A good alarm system must promptly detect abnormalities and warn the

operators promptly while does not mislead, overload or distract the opera-

tors [35, 78]. However, in many actual cases, alarm systems often poorly

function and suffer from common major problems, such as nuisance alarms,

standing alarms, and alarm floods [13, 38, 87]. Consequently, operators might

be confounded by these problems, and be less alert to true alarms, which

may compromise process safety and production efficiency. The standards and

guidelines [28, 46, 47] suggest that the acceptable average alarm rate and peak

alarm rate should be no more than 1 and 10 over a 10 min period for each

operator, respectively. However, the reality of alarm management in process

industries is far worse than these benchmarks as revealed in [78, 85]. The

number of alarms presented to operators is often much higher than that can

be effectively managed, and most of these alarms are of little value to opera-

tors [13, 35, 73]. For example, the average alarm rate per day in a European

refinery was as high as 14,250 [64]. A survey in [12] reported average alarm

rates ranged from 2 to 33 over a 10 min period in different plants. Conse-

quently, operators were distracted from critical alarms, and this was identified

as the leading cause of many accidents.

Nuisance alarms, such as chattering alarms, fleeting alarms, standing alarm-

s, and redundant alarms have been identified as the main problems contribut-

ing to the inefficiency of alarm systems. Chattering alarms are typical nui-

sance alarms caused by measurement noises and disturbances [28]. They make

fast transitions between alarm and non-alarm states in a short span of time

without operators’ response. An alarm that repeats three or more times per
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minute is regarded as the worst case [47]. A fleeting alarm is regarded as

a sub-category of nuisance alarms similar to chattering [38]; it appears and

clears too quickly for the operator to respond, but does not necessarily repeat.

ISA-18.2 [47] declares that at the rationalization stage, alarm justification and

prioritization should ensure that an alarm does not duplicate another alarm

that is designed for the same abnormality. However, massive interacting com-

ponents make redundancy almost inevitable. As a result, alarms could be

either redundant or highly overlapping in indicating the presence of the same

abnormality [78]. The monitoring burden of operators is increased due to

redundant alarm annunciators; these redundant alarms should be detected

and suppressed. Meanwhile, related alarms could be grouped and presented

to operators as symptoms to detect abnormalities [78]. Therefore, the de-

tection and quantification of correlated alarms are useful in improving alarm

management.

Another major culprit overloading operators is the alarm flood, which refer-

s to a situation during which the alarm rate is too high, exceeding the ability

of industrial plant operators to manage occurred alarms in a prompt man-

ner. The industrial standard ANSI/ISA-18.2 [47] says that an alarm flood

begins when 10 or more alarms occur within 10-minute time period until the

alarm rate drops below five alarm occurrences in 10 min. Alarm floods could

be caused by many factors, e.g., abnormal situations, improper alarm system

design, and operating state transitions [38]. In practice, alarm floods should

be limited to less than 1% of the total time period that an industrial alarm

system is in operation [28]. However, alarm floods are quite common in the

existing alarm systems [9]. In the presence of alarm floods, a large amount of

annunciated alarms may not be manageable by operators. As a result, criti-

cal alarms may be overlooked, and various negative consequences could arise

due to lack of responses to these critical alarms. The consequences include

making a dangerous process situation much worse, increasing the risk of pro-

cess upsets, and even deteriorating the system performance, and leading to

serious accidents. Moreover, when the alarm rate is too high, operators have

no choice but to ignore many of the annunciated alarms. In this case, the

designed functionality of alarm systems is partially or even completely lost.

Thus, the equation “floods = incidents = loss” is likely to be valid [9]. As

an example, 275 alarms had to be handled by two operators during the 10.7
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minutes before the explosion accident occurred in the Texaco Refinery at Mil-

ford Haven [40]; apparently, the operators failed in handling these alarms due

to such high alarm rate. Hollifield & Habibi [38] (page 75) reported that the

average number of alarm floods per day in 8 weeks was 14.6, and the percent-

age of time for alarm systems staying at an alarm flood situation was 50.3%.

In such situations, alarms burst out within a short period, making operators

distracted and confused; thereby, wrong actions were taken and critical alarms

were missed.

Motivated by above problems of industrial alarm management, the work

in this thesis targets at developing advanced techniques based on alarm data,

to reduce nuisance alarms, address alarm floods, track the propagation of

abnormalities, and eventually avoid alarm overloading and provide operators

with decision supports.

1.2 Literature Survey

This section presents a detailed literature survey on recent advances of

alarm management techniques for tackling nuisance alarms, analyzing alarm

floods, and detecting causal relations.

1.2.1 Methods to Minimize Nuisance Alarms

As revealed in [93], nuisance alarms are major culprits for alarm overload-

ing. To reduce nuisance alarms and mitigate alarm overloading, a variety

of alarm reduction techniques have been proposed, e.g., the combined use of

plant connectivity and alarm logs [79], the filtering of false alarms using a

dynamic fault tree [83], a proactive alarm reduction system [50], a distribut-

ed parallel alarm management strategy [64], and an alarm analytic tool [45].

To evaluate the performance of alarm systems, the false alarm rate (FAR),

missed alarm rate (MAR) and averaged alarm delay (AAD) are proposed in

[1, 95]. The first two metrics measure the accuracy in detecting normal and

abnormal conditions, and the AAD denotes the alarm latency or promptness.

To minimize FAR and MAR, filters, deadbands and delay-timers are most

commonly used tools [18, 38]. Good alarm configuration and efficient alarm

system design are the preferential steps in preventing nuisance alarms. To deal

with chattering alarms, redundant alarms, and consequential alarms, a vari-
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ety of more advanced techniques have been proposed. A quantitative measure

based on run length distributions was introduced by Naghoosi et al. [69] and

Kondaveeti et al. [58] to detect chattering alarms. The removal of chattering

alarms can be easily achieved using delay timers [58, 91]. To deal with chat-

tering alarms caused by oscillating processes, Wang & Chen [90] presented an

online detection and removal approach.

In addition, correlated alarms could be overlapping in indicating the same

abnormality [78]. To detect correlated alarms and quantify their similarities,

some alarm data based techniques have been developed. Yang et al. [98] ana-

lyzed the difference between the cross correlation of process signals and that

of alarm signals, and combined the results of cross correlation with process

connectivity information to design alarm limits. Noda et al. [74] proposed a

scheme called event correlation analysis to quantify the relationship between

alarms and operating actions, and to identify correlated alarms and unneces-

sary operating actions. Kondaveeti et al. [57] grouped similar alarms together

based on Jaccard similarity coefficients in an alarm similarity map. Yang et

al. [99] transformed binary alarm sequences to continuous-valued pseudo alar-

m sequences and clustered correlated alarms based on the cross correlation of

pseudo alarm sequences. Yang et al. [100] compared different similarity coef-

ficients for binary-valued alarm signals, and detected correlated alarms based

on the Sorgenfrei coefficient and the distribution of correlation delays. As a

result, redundant alarms can be eliminated and highly correlated alarms be

grouped.

In addition to the above techniques for reducing nuisance alarms, the logic

based alarming techniques, such as the dynamic suppression and state-based

alarming, are also effective in improving the performance of alarm systems

and prevalent in practice [28, 38, 47]. It is not uncommon to see that a pro-

cess or a piece of equipment has several operating states, as evident during

the startup and shutdown of a unit, the partial, full or closure of a device

(such as a pump or a compressor), and the synthesis of different products [38].

In such cases, the alarms can be minimized by dynamically modifying alarm

parameters or suppressing alarms based on certain conditions [51, 75, 102].

In such cases, state-based alarming is being used more and more frequently

in practice and could be a critical technique in control systems of the next

generation as indicated by Jerhotova et al. [51]. According to a test imple-

7



mented in a nuclear power plant simulator, a state-based alarm system showed

high usability in helping operators [71]. Bhaumik et al. [10] discussed how a

mode-based solution was deployed in an oil sand extraction plant for effective

alarm management, which kept unnecessary alarms out of annunciators under

some specific operating states. In addition to this, Hollifield & Habibi [38] and

Wang et al. [93] also reported successful applications of state-based alarming

in chemical plants and power units.

1.2.2 Techniques to Analyze and Inhibit Alarm Floods

In order to reduce the occurrence of alarm floods or alleviate the severity

of alarm floods, much of recent research work has been carried out on alarm

system rationalization. Plant connectivity and alarm logs were combined to

reduce the number of alarms by grouping alarm messages associated with a

common root cause [79]. Based on the dependencies between fault events

and the precedence of alarm messages, a dynamic fault tree was developed

to generate filtering rules for false alarms [83]. To remove alarm floods or to

mitigate their effects, two advanced alarm handling techniques were presented:

the state-based alarming reduces alarm messages by suppressing alarms for

different process states and the alarm load shedding strategy displays only the

most critical alarms during alarm floods [51]. To avoid alarm floods during

transition of operating states, an alarm management strategy was provided by

dynamically changing alarm limits based on a priori knowledge of transitions

[102].

Because an alarm flood is usually the result of a primary event and it-

s consequential events [87], an alarm flood is often composed of a series of

consequential alarms. Thus, the guideline EEMUA-191 [13, 28] recommended

to group consequential alarms to reduce the number of alarms during alarm

floods. To avoid alarm flooding and find out root alarms, Wang et al. [92]

proposed a method to identify consequential alarms with the combination of

alarm similarity analysis and process variable causality inference. Based on

the concept of frequent pattern mining, a criteria-based alarm flood pattern

recognition method was utilized to reduce alarm overloading during alarm

floods by identifying alarm sequences of causally dependent notifications and

displaying them as a single piece of information [88]. Most-frequent alarm

sequences and causal alarms consolidating the alarm sequences were identified
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to redesign alarm systems for reducing alarm floods [29, 30]. Based on the

pattern mining techniques, sequential alarms were found and used for alarm

rationalization to remove redundant alarms, identify bad actors, and establish

an effective alarm system [20, 59]. To help operators to concentrate on most

important alarms during alarm floods, an alarm prioritization system was p-

resented to prioritize alarms by calculating the severity of each alarm based

on fuzzy-logic rules [31]. Some new alarm presentation techniques were pro-

posed to help operators in understanding the alarm floods by showing alarms

in time series together with short alarm descriptions [62]. Towards improving

operator responses during alarm floods, Bullemer et al. [14] developed alter-

native alarm presentation techniques to enable operators to strategically view

subsets of alarms rather than the whole list.

Recently, the prediction and prevention of alarm floods have been drawing

more attentions. An abnormal event usually causes a series of alarms in a

chronological order, and the same type of abnormalities usually lead to similar

alarm flood sequences. Thus, by comparing an incoming alarm sequence with

potentially similar alarm floods in the historical database, it is possible to

achieve an early warning of abnormalities, predict the cause of the incoming

alarm flood, and take proactive operational actions to prevent the occurrence

of an alarm flood and its negative consequences. To the best of our knowledge,

the contemporary studies on the prediction and prevention of alarm floods

are limited to the very first step of finding similar alarm flood sequences,

which are different from above-mentioned extracting consequential alarms.

Ahmed et al. [3] exploited a dynamic time warping (DTW) algorithm to find

common sequences among alarm floods. Cheng et al. [17] developed a modified

Smith-Waterman (SW) algorithm for local sequence alignment of alarm floods

with incorporation of time stamp information. In addition, Charbonnier et

al. [15] proposed a pattern-matching approach based on alarm lists rather

than sequences. By incorporating the orders of alarms, Charbonnier et al.

[16] utilized the Needleman-Wunsch algorithm to compare alarm floods and

achieved fault isolation by extracting fault templates.
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1.2.3 Causality Inference for Complex Chemical Pro-
cesses

The detection of abnormality root causes is challenging unless the propa-

gation of plant-wide abnormalities through a complex web of interconnected

material and information flow paths is explicitly known. The cause-effect rea-

soning provides an effective way to investigate abnormality propagation paths

[24]. Various techniques for cause and effect analysis of industrial processes

have been studied [7, 8, 11, 19, 25, 26, 68, 86, 96, 97]. These techniques can be

categorized into graph-based methods and data-driven approaches, as depicted

in Fig. 1.2. Once an incident, disturbance, or oscillation occurs and propa-

gates through process units, the task of cause-effect reasoning is to discover a

causal map and find the root causes.

Figure 1.2: The cause and effect analysis for industrial processes via different
resources.

Graphical causality inference has different forms of graphic models, such

as structural graphs, qualitative graphs, and causal probabilistic graphs [11].

In [96], a qualitative fault detection and hazard analysis method was proposed

based on the Signed Directed Graph (SDG), which is a typical type of qualita-

tive graphical model describing process variables and their causal relations by

nodes and arcs, respectively. In [22], a Bayesian method was proposed for the

induction of probabilistic networks that provide insights into probabilistic de-

pendencies among multiple variables. To diagnose problems associated with

the power transmission lines, Mahadevan et al. [65] developed a Temporal

Causal Diagrams (TCD) and a refinement of the Timed Failure Propagation
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Graphs (TFPG) to represent faults and their propagation paths. For the mon-

itoring and fault isolation of complex dynamic systems, Mosterman et al. [67]

exploited parsimonious topological models to analyze the transient behavior in

response to faults in a qualitative framework. The graph-based methods share

some common advantages, e.g., they are easily implemented and interpreted.

However, the establishment of graphic models requires the availability of an

up-to-date Piping and Instrumentation Diagram (P&ID), process knowledge,

and engineering experience [97]. The collection of such information is time and

resource intensive, making the detection of root causes inefficient, especially

for large scale systems [25, 96].

In contrast, data driven methods are effective for many cases [77]. The ex-

isting data driven methods for causality inference are mainly based on various

metrics such as the Granger causality [34] and the transfer entropy (TE) [8] ob-

tained from historical data samples of process variables [7, 8, 19, 25, 26, 68, 86].

The modified Kullback-Leibner information distance and modified causal de-

pendency have been applied to identify fault propagation paths [19]. The

transfer entropy approach for continuous chemical processes was utilized to

construct causal maps [8]. A combination of P&ID information and adjacen-

cy matrices was used to identify the root cause of plant-wide oscillations in a

benchmark industrial case study [52]. The spectral envelope was used to iden-

tify the root cause of the abnormality on the same benchmark problem [53]. To

find direct dependencies between process variables, a direct transfer entropy

was proposed in [25]. To circumvent the strong assumption of a well-defined

probability distribution, a transfer 0-entropy approach was proposed in [26]

and [70]. In addition to this, the method based on lag-adjusted correlation

combined with the use of connectivity information and causal measurement

also showed promising results [7, 86]. The data-driven methods do not require

process knowledge or P&IDs, and thus could be broadly used in many cases.

However, they have some common limitations. Sufficiently large amount of

data sets, especially data sets representing abnormal behaviors and covering

multiple operating regions, are required. Such data sets sometimes may not

be available in practice. The high computational complexity is another limi-

tation that restricts the implementation of some data-driven approaches. For

example, the computational complexity of TE is exponentially increasing with

the number of cause and effect variables [8].
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It is noteworthy that the above approaches are mainly based on process

knowledge and continuous-valued process data, while the binary-valued alarm

data is rarely examined for cause-effect reasoning. Since alarms are indica-

tions of abnormalities, a natural question is: can one identify abnormality

propagation paths based on alarm data? Rather than capturing the direc-

tional connections, [100], [99] and [41] proposed systematic methods to detect

the correlation between alarm signals. It is not uncommon to have a single

root cause triggering a series of alarms that lead to alarm floods, and in this

vein the work in [30] attempted to find frequent and common sequential alarm

patterns from alarm logs. By combining the process topology and alarm logs,

the interrelation rules were obtained for reducing alerts [79]. However, none of

these methods have been able to satisfactorily identify propagation flow paths

of abnormalities based on binary-valued alarm data. To our best knowledge,

the work in [101] is the first attempt to capture the causal relations of in-

dustrial alarm signals using the transfer entropy approach. The work in this

thesis provides a more complete study than [101], and is based on a different

form of alarm signals.

1.3 Thesis Contributions

To ensure process safety and improve the efficiency of alarm systems, this

thesis develops a variety of advanced alarm management techniques based on

alarm data. The major contributions in this thesis that distinguish it from

other work are summarized as follows:

1. Proposed a new method to detect correlated alarms and quantify their

correlation levels. Specifically, the correlation between two alarm sig-

nals are determined by a statistical test based on the distribution of

real occurrence delays. The correlation level is then calculated based

on pseudo sequences obtained by super-imposing a Gaussian kernel to

binary alarm signals.

2. Proposed a new local alignment algorithm to find similar alarm flood

sequences, based on the basic local alignment search tool (BLAST) for-

mulated in [4, 5]. The computational efficiency and alignment accuracy

are improved owing to three novel elements, namely, the priority-based
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similarity scoring strategy, the set-based pre-matching mechanism, and

the modified seeding-extending steps.

3. Proposed a causality inference method based on binary-valued alarm

data to identify abnormality propagation paths and detect root causes,

in the absence of continuous-valued process data.

4. Defined and formulated a modified transfer entropy (TE) and a direct

transfer entropy (DTE) as the basic statistical metrics, driven by two

characteristics of alarm signals, namely, the random occurrence delays

and the mutual independence of alarm occurrences.

5. Proposed a data-driven method to discover association rules of mode-

dependent alarms from historical A&E logs, to help process engineers

with the configuration of state-based alarming strategy.

6. Formulated the determination of mode-dependent alarms as a hypoth-

esis testing problem and develop a modified a-priori algorithm to find

frequent patterns of operating modes. Using the proposed method, the

mode-dependent alarms for either a single operating mode or multiple

operating modes are discovered.

1.4 Thesis Organization

The remainder of the thesis is organized as follows.

In Chapter 2, a new method to detect correlated alarms is presented. Sec-

tion 2.1 gives an overview of the research work in this chapter. Section 2.2

defines the occurrence delay and presents the mechanism to obtain pseudo

alarm signals. Section 2.3 proposes an algorithm to estimate the correlation

delay and a novel statistical test to detect correlated alarms. Industrial case

studies are provided in Section 2.4 to validate the obtained results. Section 2.5

summarizes the results and presents some conclusions.

In Chapter 3, a new local alignment algorithm to find similar alarm flood

sequences is presented. Section 3.1 gives an overview of the research work in

this chapter. Section 3.2 defines a priority-based similarity scoring strategy.

The novel local alignment algorithm is proposed in Section 3.3. Section 3.4

presents industrial case studies to illustrate the effectiveness of the proposed al-
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gorithm and make a comparison with the modified SW algorithm. Section 3.5

summarizes the results and presents some conclusions.

In Chapter 4, a causality inference method based on binary-valued alarm

data is presented. Section 4.1 gives an overview of the research work in this

chapter. Section 4.2 defines the TE and DTE between alarm signals. In

Section 4.3, a significance test, minimum requirement of alarm occurrences,

and procedures of causality inference are presented. The effectiveness of the

proposed method is illustrated by numerical and industrial case studies in

Section 4.4, followed by a summary in Section 4.5.

In Chapter 5, a data-driven method to detect association rules of mode-

dependent alarms is presented. Section 5.1 gives an overview of the research

work in this chapter. Section 5.2 discusses the sate-based alarming in practice,

categories of operating states, and alarm state transitions. Section 5.3 formu-

lates the problem of the detection of mode dependent alarms. In Section 5.4,

systematic strategies to detect the association rules of mode-dependent alarms

are presented. The practicability and effectiveness of the proposed methods

are illustrated by application to an industrial case in Section 5.5, followed by

a summary in Section 5.6.

In Chapter 6, the concluding remarks and some promising directions of

future work are presented.
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Chapter 2

Detection and Quantification of
Correlated Alarms with
Occurrence Delays∗

2.1 Overview

In this chapter, a new method to detect and quantify correlated alarm

signals is studied. The development of this method is motivated by two draw-

backs revealed in our industrial experience in the application of the method

proposed in [100] to detect correlated alarms: (i) The estimated Sorgenfrei co-

efficients (as well as Jaccard coefficients in [57]) sometimes are quite small even

for two alarm signals that have been known to be physically related; (ii) the

distribution of correlation delays requires a large amount of data samples to

get a sufficient number of alarm activations, which sometimes is a demanding

requirement in practice. This study analyzes the causes of the two drawbacks

and proposes corresponding solutions. To be precise, the contributions of this

study is to propose a new method to detect correlated alarms and quantify

their correlation level. The proposed method is composed of three parts. First,

the so-called occurrence delay is defined and identified as the main cause of the

first drawback mentioned above; in order to tolerate the presence of occurrence

delays, a mechanism is proposed to generate pseudo alarm signals. Second, a

novel approach is given to estimate the correlation delay in order to formu-

late real occurrence delays (ROD), and is shown to perform better than the

∗A version of this chapter has been published as: Hu, W., Wang, J., & Chen, T. (2015). A
new method to detect and quantify correlated alarms with occurrence delays. Computers
& Chemical Engineering, 80, 189-198.
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counterparts based on maximizing Sorgenfrei and Jaccard coefficients. Third,

a statistical test based on the ROD is proposed to determine whether two

alarm signals are correlated or not; this test requires a much smaller number

of alarm activations so that the second drawback discussed earlier is resolved.

2.2 Occurrence Delays

This section first introduces alarm signals, and defines the occurrence de-

lays caused by random noises. Next, a mechanism to generate pseudo alarm

signals is presented to alleviate the effects of occurrence delays on the detection

of correlated alarms.

2.2.1 Alarm Signals

Alarm signals can be represented in two forms. One formulation is that an

alarm signal takes the value of 1 only at the time instant when its associated

process signal goes into the abnormal state from the normal state. To be

precise, if xp(t) is a discrete-time process signal, then the corresponding alarm

signal xa(t) is generated as

xa(t) =

{
1, if xp(t) /∈ T & xp(t− 1) ∈ T
0, otherwise

, (2.1)

where T is the normal range of xp(t). Taking the generation of high alarms as

an example, if a real-valued constant xtp is the high-alarm trip point, then T
stands for the normal range (−∞, xtp]. Another formulation of alarm signals

is that an alarm signal takes the value of 1 throughout the time duration when

the associated process signal is in the abnormal state, i.e.,

x̃a(t) =

{
1, if xp(t) /∈ T
0, otherwise

. (2.2)

Yang et al. [100] (Section II-B therein) investigated the two formulations for

the purpose of detecting correlated alarms, and recommended the usage of

xa(t) in (2.1), which is adopted in this study. Note that if the return to

normal time instants in x̃a(t) need to be considered, the proposed algorithm

is equally applicable after adding extra ‘1’s to xa(t) in (2.1) at these time

instants.

Chattering alarms are the most common nuisance alarms caused by mea-

surement noises and disturbances [28]. They make fast transitions between
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alarm and non-alarm states in a short span of time without operators’ re-

sponse. Removing chattering alarms is a prerequisite for alarm flood analysis

[17]. In the detection of correlated alarms, chattering alarms play a role as

‘noise’, while the alarms activated by actual abnormal conditions serve as ‘sig-

nal’. If chattering alarms are dominant, then the signal-to-noise level is too

low to detect correlated alarms. Therefore, it is necessary to remove chatter-

ing alarms before detecting correlated alarms. The detection and removal of

chattering alarms have been studied recently by Naghoosi et al. [69], Wang &

Chen [90], and Wang & Chen [91]. In particular, an m-sample delay timer is

an effective way to remove chattering alarms, and can be represented as

x′
a(t) =

⎧⎨
⎩

1, if x̃a(t−m+ 1 : t) = 1 and x′
a(t− 1) = 0

0, if x̃a(t−m+ 1 : t) = 0 and x′
a(t− 1) = 1

x′
a(t− 1), otherwise

, (2.3)

where x̃a(t−m+1 : t) is a short notation for the set {x̃a(t−m+ 1), · · · , x̃a(t)}.
In the sequel, we assume that chattering alarms have been effectively removed

by using the delay timer with the designed m as proposed by Wang & Chen

[91].

2.2.2 Definition of Occurrence Delays

This subsection defines the occurrence delays that have significant effects

on the detection of correlated alarms.

As revealed in (2.1), the occurrence of an alarm is associated with an event

that the corresponding process signal runs into the abnormal state. Thus, the

correlation between process signals is the essence leading to correlated alarms.

In general, the relation between two correlated process signals xp (t) and yp (t)

can be described as

yp (t) = f (xp (t− τ̃)) + ω (t) (2.4)

where the symbol f (·) stands for a functional linear/nonlinear relationship,

the constant τ̃ is the time delay, and the signal ω (t) is a disturbance additive

to yp (t).

Suppose that the occurrence of an abnormality in xp (t) causes an alarm

activation of xa(t), i.e., xa(t) changes from the non-alarm state 0 to the alarm

state 1 at a particular time instant k. Because xp(t) and yp(t) are connected

as that in (2.4), the abnormality in xp(t) may be propagated to yp (t), leading

to an alarm activation in ya(t). Then, three terms are defined as follows:
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Definition 1. If the disturbance ω(t) is absent, and an abnormality always

causes the alarm signals xa(t) and ya(t), associated with two correlated process

signals xp(t) and yp(t), changing from 0 to 1 at the time instants k and k + τ

respectively for a positive integer k, then the time difference τ is defined as

the correlation delay between xa (t) and ya (t). If ω(t) is present, then an

abnormality may cause xa (t) and ya (t) respectively changing their values

from 0 to 1 at the time instants k and k + λ (k), where λ (k) is a random

variable. Here λ (k) is referred to as the occurrence delay between xa (t) and

ya (t). The sequence

λr (k) := λ (k)− τ (2.5)

is defined as the real occurrence delay (ROD) between xa (t) and ya (t).

It is worthy noting that owing to the possible presence of nonlinearity in

f (·), the correlation delay τ does not have to be the same as τ̃ in (2.4).

Example 1. This example is used to illustrate the presence of occurrence

delays. The process signal xp(t) is generated as

xp(l̃m−1 + 1 : l̃m) =

{
N (μ1, σ1), if xs(m) = 0
N (μ2, σ2), if xs(m) = 1

. (2.6)

Here xp(t) is composed of M segments, and the length of the m-th segment for

m = 1, 2, · · · ,M is a uniform random variable lm in the range [L1, L2] for two

positive integers L1 and L2; thus, xp(l̃m−1 + 1 : l̃m) represents the samples of

xp(t) over a range t ∈ [l̃m−1+1 : l̃m] with l̃m−1 :=
∑m−1

i=1 li and l̃m = l̃m−1+ lm.

In the m-th segment, xp(t) is in the normal or abnormal state, determined

by a Bernoulli random variable xs(m) ∼ B(1, p), where p is the probability

of abnormal state. The symbol N (μ, σ) stands for the Gaussian distribution

with mean μ and standard deviation σ. The disturbance ω(t) ∼ N (0, σω) is

another Gaussian white noise being independent of xp(t). The process signal

yp(t) is obtained from (2.4), where the process function f(·) is a first-order

dynamic digital filter,

f(z) =
0.5

z − 0.5
, (2.7)

and the time lag between xp(t) and yp(t) is τ̃ = 60. In this example, the

parameters in (2.6) are selected as M = 100, L1 = 30, L2 = 90, μ1 = 5,

μ2 = 10, σ1 = 0.2, σ2 = 0.2, and p = 0.25. Assume that the alarms xa(t) and

ya(t) are generated from xp(t) and yp(t) as that in (2.1) by using high-alarm

trip points xtp = 7 and ytp = 7.
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If the noise ω(t) is absent, i.e., σω = 0, then xp(t) and yp(t) are respectively

presented in Figs. 2.1-(a) and (b), while the alarm signals xa(t) and ya(t) are

respectively given in Figs. 2.2-(a) and (b). The distribution of occurrence

delays is shown in Fig. 2.3-(a). All the 25 occurrence delays are the same,

namely, λ(k) = 61 for k = 1, 2, · · · , 25.
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Figure 2.1: Process signals in Example 1: (a) xp(t) (solid) with xtp (dash), (b)
yp(t) (solid) with ytp (dash) for the case that ω(t) is absent, (c) yp(t) (solid)
with ytp (dash) for the case that ω(t) is present.

If ω(t) is present with σω = 1, then yp(t) becomes the one in Fig. 2.1-

(c), while ya(t) is shown in Fig. 2.2-(c). There are many chattering alarms

in ya(t); using the m-sample delay timer in (2.3) with m = 5 can effectively

remove all the chattering alarms, as shown by the resulting alarm signal y′a(t)

in Fig. 2.2-(d). The resulting 25 occurrence delays are not equal, as shown by

the histogram of these occurrence delays in Fig. 2.3-(b). Note that the usage

of the delay timer introduces some extra time delay (about 5 samples) to the

occurrence delays. �
The presence of occurrence delays has significant effects on the existing

methods to detect correlated alarms, which are based on similarity measures

of binary sequences such as Jaccard and Sorgenfrei coefficients [57, 100]. The
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Figure 2.2: Alarm signals in Example 1: (a) xa(t), (b) ya(t) for the case that
ω(t) is absent, (c) ya(t) for the case that ω(t) is present, (d) y

′
a(t) for the case

that ω(t) is present
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Figure 2.3: The histograms of occurrence delays without (a) and with (b) the
presence of ω(t).

definitions of Jaccard and Sorgenfrei coefficients are

Sjacc =
C

Nx +Ny − C
, (2.8)

Ssorg =
C2

NxNy

. (2.9)
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Here C is the number of 1’s appeared simultaneously in xa(t) and ya(t), and

Nx and Ny are the total numbers of 1’s in xa(t) and ya(t), respectively. The

effectiveness of these coefficients requires an alignment of the time instants that

xa(t) and ya(t) are activated to take the value 1. However, if occurrence delays

are present, as illustrated in Example 1, then there is no way to achieve an

alignment without errors, so that the methods based on Jaccard and Sorgenfrei

coefficients may lead to erroneous conclusions. In particular, the calculated

Jaccard or Sorgenfrei coefficient could be very low even for the case that two

alarm sequences are indeed correlated. This issue had been noticed previously

and two solutions were proposed [57, 99]. One solution is to pad extra 1’s

at both sides of each 1 in xa(t) [57]. That is, if xa(t) = 1, then extra 1’s

are padded to xa(t) to have xa(t − δ : t + δ) = 1 for a positive integer δ.

This solution apparently introduces extra 1’s and leads to biased estimates

of Jaccard and Sorgenfrei coefficients; thus, it is not adopted here. Another

solution is to transform the alarm signal x̃a(t) in (2.2) into the so-called pseudo

alarm signals [99]. We will adopt the similar idea for xa(t) in (2.1), with the

details to be presented in the next subsection.

2.2.3 Mechanism to Generate Pseudo Alarm Signals

This subsection is on the mechanism to generate pseudo alarm signals in

order to tolerate the presence of occurrence delays.

First, the generation of pseudo alarm signals is to deal with the RODs

λr(k) in (2.5) so that it should be independent to the correlation delay τ .

Thus, xa(t) or ya(t) needs to be shifted by τ samples properly in order to set

the correlation delay after shifting to be zero. Without loss of generality, we

choose to shift ya(t), i.e.,

ya,s(t) := ya(t− τ). (2.10)

After the data shifting, the sequence of ya,s(t) needs to be padded with zeros

to have the same length with that of xa(t). Thus, two alarm sequences are

formulated Xa := {xa(t)}Nt=1 and Ya,s := {ya,s(t)}Nt=1, respectively.

Second, we obtain pseudo alarm signals for the alarm sequencesXa and Ya,s

as follows. A kernel density estimation method is used to convert the binary

alarm signal xa(t) to a real-valued pseudo alarm signal denoted as xa,p(t). If
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the Gaussian kernel function is used [82], then xa,p(t) is formulated as

xa,p(t) =
Nx∑
i=1

e−
(t−ti)

2

2h2 , (2.11)

where the alarm quantity Nx is the total number of 1’s in Xa, ti is the time

index that xa(t) takes the value 1, and h is the bandwidth of the Gaussian

kernel function. Note that the difference between xa,p(t) and the pseudo alarm

signals in Yang et al. [99] is that xa(t) in (2.1) is used, instead of x̃a(t) in (2.2).

As shown in [100] (Section II-B therein), xa(t) is more suitable for the detection

of correlated alarms than x̃a(t), so that generating pseudo alarm signals based

on xa(t) is a more reasonable choice, too. Analogously to xa,p(t) in (2.11), the

pseudo alarm signal for ya,s(t) in (2.10) is

ya,p(t) =

Ny∑
j=1

e−
(t−tj)

2

2h2 , (2.12)

where Ny is the total number of 1’s in Ya,s, and tj is the time index that ya,s(t)

takes the value 1.

The bandwidth h in (2.11) and (2.12) is a critical parameter that affects

the subsequent detection of correlated alarms. The selection of h should sat-

isfy two conditions: 1) h should be large enough to cover the nonzero RODs

between possibly correlated alarm signals; 2) h should not be too large so as

to avoid the possible overlapping in xa,p(t) or ya,p(t) between adjacent 1’s in

xa(t) or ya,s(t). Thus, h is subject to such a tradeoff. An empirical choice of

h is the sample mean of all nonzero RODs,

h =
1

L

L∑
l=1

λ̃r(l) (2.13)

where λ̃r(l)’s for l = 1, 2, · · · , L are the nonzero RODs of λr (k) in (2.5).

Now, it is ready to calculate Pearson’s correlation coefficient that is a

widely-used statistics to measure the correlation between two random variables

[54]. That is, Pearson’s correlation coefficient between pseudo alarm sequences

Xa,p := {xa,p(t)}Nt=1 and Ya,p := {ya,p(t)}Nt=1 is

rxy =
1

N − 1

N∑
t=1

(
xa,p(t)− x̄a,p

Sx

)(
ya,p(t)− ȳa,p

Sy

)
(2.14)
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where x̄a,p (ȳa,p) and Sx (Sy) are the sample mean and standard deviation

of xa,p(t) (ya,p(t)), respectively. The overlapped area between two pseudo se-

quences Xa,p and Ya,p is able to alleviate the effects of occurrence delays, and

thus to reflect the correlation between alarm signals more accurately than

the similarity measures for binary alarm signals such as Jaccard and Sorgen-

frei coefficients. Two numerical examples are presented here to support this

statement.
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Figure 2.4: Example 2a: (a) xa(t) and ya(t), (b) xg(t) and yg(t).

Example 2a. This is an illustrative example with only two occurrences of

alarms in xa(t) and ya(t) as shown in Fig. 2.4-(a). The first pair of alarms

occurs at the time instant t = 10 for both xa(t) and ya(t), while the second

pair of alarms occurs at t = 50 for xa(t) and t = 51 for ya(t), respective-

ly. If the one-sample time difference between the second pair of alarms is a

ROD, then xa(t) and ya(t) are regarded to be completely correlated with a

correlation measure about 1. However, Jaccard and Sorgenfrei coefficients are

respectively calculated from (2.8) and (2.9) as Sjacc = 1/(2+ 2− 1) = 0.3333

and Ssorg = 1/(2 · 2) = 0.25, which are far away from 1. If pseudo alarm sig-

nals are generated, as shown in Fig. 2.4-(b), Pearson’s correlation coefficient

rxy is equal to 0.8745. Thus, pseudo alarm signals can effectively alleviate the

negative effects of RODs on the detection of correlated alarms.

Example 2b. The configuration is the same as Example 1, except that the

original correlation delay τ = 61 (see Fig. 2.3-(a)) has been removed. 1000
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Table 2.1: Calculated correlation statistics for Example 2b.

Signal type Statistic Mean Std
Pseudo alarm signals Pearson’s correlation coefficient 0.8532 0.0290
Binary alarm signals Jaccard coefficient 0.4780 0.0569

Sorgenfrei coefficient 0.4271 0.0487

Monte Carlo simulations are implemented. In each simulation, the noise ω(t)

is randomly generated with the standard deviation σω = 1.4. To generate

pseudo signals, the bandwidth h is calculated using (2.13). The value of h

is changing with the mean 1.01 and standard deviation 0.04 as calculated

from the simulations. Table 2.1 compares the sample means and standard

deviations of Pearson’s correlation coefficient based on pseudo alarm signals,

and Jaccard and Sorgenfrei coefficients based on alarm signals. Considering

the linear relationship between xp(t) and yp(t), the alarm signals xa(t) and

ya(t) should be highly correlated to each other and the correlation statistics

should be close to 1. It is obvious that Pearson’s correlation coefficients are

much higher than Jaccard and Sorgenfrei coefficients, and are consistent with

the fact that xa(t) and ya(t) are indeed correlated. Hence, the utilization of

pseudo alarm signals is effective in avoiding false detection in the presence of

occurrence delays.

2.3 Detection of Correlated Alarms

This section presents a new approach to estimate the correlation delay,

and a statistical test to determine whether two alarm signals are correlated

or not. Next, the procedures of the proposed method to detect and quantify

correlated alarms are summarized.

2.3.1 Estimation of the Correlation Delay

In Section 2.2.3, the correlation delay τ is set to zero by shifting data

samples before generating pseudo alarm signals. This subsection provides a

new approach to estimate τ .

Based on the definition of the ROD λ̃(k) in (2.5), it is obvious that λ̃(k)

should be close to zero for correlated alarms. This leads us to estimate the
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correlation delay τ as

τ̂ = argmin
τ

λ̄r(τ), (2.15)

where

λ̄r(τ) =
1

K

K∑
k=1

|λ(k)− τ |. (2.16)

Here λ(k)’s for k = 1, 2, · · · , K are the occurrence delays between xa(t) and

ya(t). Based on (2.15), a so-called occurrence delay based estimation (ODE)

algorithm is proposed, with the computer pseudo codes listed as Algorithm 1.

The ODE algorithm provides an estimate of the correlation delay τ . If τ

is positive, it is said that ya(t) follows xa(t) by τ samples; otherwise, ya(t)

proceeds xa(t) by |τ | samples.

Algorithm 1 Occurrence delay based estimation (ODE) algorithm

Input Argument #1: Alarm sequences Xa := {xa (t)}Nt=1 and Ya :=
{ya (t)}Nt=1;
Input Argument #2: L the maximum value of the correlation delay;
for i = −L to L do

if i < 0 then
S1 = Ya(1 : N + i); S2 = Xa(1− i : N);

else
S1 = Xa(1 : N − i); S2 = Ya(1 + i : N);

end if
a1 = find (S1 == 1); a2 = find (S2 == 1);
q1 = length (a1); q2 = length (a2);
if q1 < q2 then

for k = 1 to q1 do
λr(k) = min (|a1(k)− a2|);

end for
else

for k = 1 to q2 do
λr(k) = min (|a2(k)− a1|);

end for
end if
λ̄r(i) = mean (λr);

end for
τ̂ = argi min λ̄r(i).

Estimating the correlation delay τ is also a necessary step in the exist-

ing methods of detecting correlated alarms based on Jaccard and Sorgenfrei
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coefficients [57, 100]. For instance, the estimation of τ based on Sorgenfrei

coefficient is [100],

τ̂ = argmax
τ

Ssorg(τ), (2.17)

where Ssorg(τ) takes the value of Sorgenfrei coefficient in (2.9) between xa(t)

and ya(t+ τ). Thus, τ̂ in (2.17) is based on the best alignment of 1’s in alarm

signals to have the largest value of Sorgenfrei coefficient, while τ̂ in (2.15) is

to make the mean of RODs close to zero. Therefore, the proposed approach

to estimate τ is very different from the existing approaches in [57] and [100].

Example 3. The configuration is the same as in Example 1. Parameters

M , L1, L2, μ1, μ2, σ1, σ2, xtp and ytp are the same as in Example 1, while

other parameters τ̃ , p, and σω, are randomly determined in each simulation,

in the ranges τ̃ ∈ [−80, 80], p ∈ [0.15, 0.5], and σω ∈ [2, 5]. 10000 Monte Carlo

simulations are implemented. The ODE algorithm and the approaches by

maximizing Sorgenfrei and Jaccard coefficients, e.g., that in (2.17), are applied

to estimate the correlation delay τ = 61 between xa(t) and ya(t). Table 2.2

presents the mean absolute errors (MAE) and mean absolute percentage errors

(MAPE) from the 10000 Monte Carlo simulations. It is obvious that the ODE

algorithm performs much better than the other two approaches. The difference

arises from a fact that the presence of occurrence delays introduces errors in

the alignment of alarm activations, and leads to the erroneous estimates of τ

in the approaches based on Jaccard and Sorgenfrei coefficients; in contrast,

such an alignment of alarm activations is not required in the ODE algorithm.

Table 2.2: Estimation of the correlation delay using different approaches for
Example 3.

Approaches MAE MAPE %
The ODE algorithm 0.5752 2.4981

Estimation based on Jaccard coefficients 1.2385 7.6430
Estimation based on Sorgenfrei coefficients 1.1811 7.5249

2.3.2 Statistical Test

This subsection provides a statistical test to tell whether two alarm signals

are correlated or not.

The Pearson’s correlation coefficient rxy in (2.14) based on pseudo alarm

signals xa,p(t) and ya,p(t) is able to quantify the level of correlation; however,
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rxy is not suitable for determining whether the alarm signals xa(t) and ya(t)

are correlated, because the distributions of xa,p(t) and ya,p(t) are unavailable

so that a threshold for testing rxy �= 0 is rather difficult to be determined.

If alarm signals xa(t) and ya(t) are correlated, then the estimated corre-

lation delays τ̂ ’s in (2.15) for different sampled sequences of xa(t) and ya(t)

should be concentrated to a small interval around the actual correlation delay

τ ; in contrast, if xa(t) and ya(t) are uncorrelated, then τ̂ ’s in (2.15) are dis-

tributed randomly. A similar observation has been presented in [100], where a

statistical test is proposed on whether the distribution of τ̂ in (2.17) is concen-

trated to a small interval. However, such a statistical test has a drawback for

practical applications, namely, multiple estimates of τ̂ have to be obtained. A

recommendation therein is to have at least 10 estimates of τ̂ , each of which re-

quires data samples of xa(t) and ya(t) having more than 30 alarm activations.

As a result, the statistical test in [100] requires the data samples containing

more than 300 alarm activations, which sometimes is hard to meet in prac-

tice. Hence, it is desirable to design a statistical test that has less demanding

requirements on the data samples of xa(t) and ya(t).

A significant test is presented in [7] to determine whether two process sig-

nals xp(t) and yp(t) are linearly correlated, solely based on one single estimate

of cross-correlation between xp(t) and yp(t). This significant test is certain-

ly applicable to pseudo alarm signals xa,p(t) and ya,p(t) here. That is, if rxy

in (2.14) satisfies the following inequality (2.18), then xa,p(t) and ya,p(t) are

claimed to be correlated,

rxy ≥ rth := μrxy + 3σrxy , (2.18)

where μrxy and σrxy are the sample mean and standard deviation of rxy, re-

spectively; an empirical estimate of the threshold rth is

rth = 1.85N−0.41 + 2.37N−0.53, (2.19)

where N is the data length of xa,p(t) and ya,p(t). It is obvious that rth only

relates to the data length N . However, the detected alarm correlation based

on xa,p(t) and ya,p(t) is highly associated with the distribution of alarm points

in xa(t) and ya(t). If the empirical estimate in (2.19) is directly applied, the

significance threshold is always the same no matter how the alarm rate and

alarm count of xa(t) and ya(t) change. Therefore, a more accurate estimate of
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the significance threshold should be specified by incorporating the distribution

information of alarm data.

We adopt the similar idea of the significant test in (2.18) to design a

statistical test for the ROD λ̃(k) in (2.5) between xa(t) and ya(t). A critical

observation is that for correlated alarms, the RODs λ̃(k) are close to zero,

while λ̃(k) could be very large for uncorrelated alarms. To be consistent with

the estimate τ̂ in (2.15), a lag factor is defined,

ϕ = min
τ

λ̄r(τ), (2.20)

where λ̄r(τ) is given in (2.16). Since ϕ is always positive and is close to

zero if xa(t) and ya(t) are correlated, a one-sided hypothesis test should be

applied. Analogously to (2.18), xa(t) and ya(t) are claimed to be correlated if

the following inequality holds,

ϕ < ϕth := μϕ − 3σϕ (2.21)

where μϕ and σϕ are respectively the mean and the standard deviation of ϕ.

Under the null hypothesis that xa(t) and ya(t) are uncorrelated, we find that

μϕ and σϕ can be modelled as functions of two factors, namely, the alarm

probability rate denoted as pr and the alarm quantity denoted as qr,

μϕ = aμp
bμ
r qcμr

σϕ = aσp
bσ
r qcσr

(2.22)

The two functions can be estimated empirically. For instance, Fig. 2.5

shows the histograms of ϕ in 1000 Monte Carlo simulations for uncorrelated

alarms with a pair of pr and qr. To identify the parameters aμ, bμ, cμ and

aσ, bσ, cσ, the values of pr and qr are changed in the ranges [0.0003, 0.02] and

[20, 1000] with certain step sizes, respectively. For each pair of pr and qr,

1000 Monte Carlo simulations are implemented to estimate μϕ and σϕ. The

estimated values of μϕ and σϕ are presented in Figs. 2.6 and 2.7, respectively.

By the standard least-squares based curve-fitting method, the functions in

(2.22) are estimated as

μϕ = 0.4390p−1.0010
r q0.0163r ,

σϕ = 0.7886p−0.9900
r q−0.4855

r .
(2.23)

As shown in Figs. 2.6 and 2.7, the estimated functions in (2.23) fit the samples

of (pr, qr, μϕ) and (pr, qr, σϕ) very well. Therefore, the threshold ϕth in (2.21)
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Figure 2.5: Histogram of ϕ in 1000 Monte Carlo simulations for uncorrelated
alarms with pr = 0.005 and qr = 360.

can be calculated for one set of xa(t) and ya(t) from (2.23); the values of pr

and qr can be obtained from xa(t) and ya(t) as

qr = min(Nx, Ny), pr =
qr
N
, (2.24)

where Nx and Ny are the alarm quantities in xa(t) and ya(t), respectively,

and N is the data length of xa(t) and ya(t). If (2.21) is satisfied, then the

RODs are claimed to be close to zero, and the alarm signals xa(t) and ya(t)

are believed to be correlated. Then, the level of correlation can be measured

by Pearson’s correlation coefficient rxy in (2.14) based on pseudo alarm signals

xa,p(t) and ya,p(t).

The numbers of alarm quantities Nx in xa(t) and Ny in ya(t) cannot be too

small, in order to make the statistical test in (2.21) reliable. The functions

in (2.23) can be used to determine the least number of alarm quantities. In

general, the threshold ϕth is positive; however, if the alarm quantity qr is too

small, ϕth could drop below zero. Based on (2.21) and (2.23), we can find the

relation between qr and pr to achieve ϕth = 0 as

qr = 28.6936 p0.0219r . (2.25)

The alarm probability rate pr is a real value in the range [0, 1]. In practice,

after removing chattering alarms, pr should be less than 0.05, namely, 3 alarm
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activations per minute, which is a well-accepted benchmark for chattering

alarms [47]. Eq. (2.25) yields qr = 26.8715 for pr = 0.05. Hence, we choose

qr = 27 as a threshold of trusty, i.e., both of xa(t) and ya(t) should contain

at least 27 alarm activations to ensure that the statistical test is reliable. In

contrast, as mentioned earlier in this subsection, the statistical test in [100]

requires at least 300 alarm activations. Therefore, the proposed statistical test

in (2.21) is much less demanding on the data samples of xa(t) and ya(t).
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Figure 2.6: μϕ as a function of pr and qr.

2.3.3 Detection Procedure

The complete procedure of the proposed method to detect and quantify

correlated alarms is composed of the following steps, and is depicted in Fig. 2.8.

1. Obtain two alarm sequences Xa := {xa(t)}Nt=1 and Ya := {ya (t)}Nt=1 with

at least 27 alarm activations in each sequence, and remove chattering
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Figure 2.7: σϕ as a function of pr and qr.

alarms by the delay timer in (2.3) if necessary;

2. Estimate the correlation delay τ between Xa and Ya using the ODE

algorithm in (2.15), and remove τ by shifting ya(t) to reach ya,s(t) in

(2.10) to formulate Ya,s := {ya,s (t)}Nt=1;

3. Perform the statistical test in (2.21) based on Xa and Ya,s to determine

whether xa(t) and ya(t) are correlated, where the threshold ϕth is cal-

culated using the empirical functions of μϕ and σϕ in (2.23) with the

parameters pr and qr in (2.24). If (2.21) holds, then xa (t) and ya (t) are

claimed to be correlated, and we proceed to Step 4 to quantify the corre-

lation level; otherwise, xa (t) and ya (t) are regarded to be uncorrelated

and the detection procedure is terminated;

4. Transform Xa and Ya,s respectively into the pseudo alarm sequences

Xa,p := {xa,p(t)}Nt=1 and Ya,p := {ya,p (t)}Nt=1 using the kernel bandwidth
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h in (2.13), and calculate Pearson’s correlation coefficient rxy in (2.14).

Figure 2.8: Flowchart for detecting correlated alarms.

2.4 Industrial Case Studies

This section provides two industrial case studies as the representative ex-

amples of many successful applications of the proposed method. The case

studies show that the proposed method performs well in detecting correlated

or uncorrelated alarms.

2.4.1 Case I: Correlated Alarms

Historical samples of two alarm signals xa(t) and ya(t) are obtained from

an oil plant in Canada, as shown in Fig. 2.9. The data length is N = 241556

with the sampling interval 1 sec (about 67 hours). Alarm quantities of xa(t)
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and ya(t) are Nx = 653 and Ny = 242, respectively. The m-sample delay

timer in (2.3) is exploited to remove chattering alarms in xa(t), where m = 20

is used as recommended in [90]; the alarm quantity in xa(t) is reduced to

Nx = 391. Using the ODE algorithm with the searching range τ ∈ [−100, 100]

seconds, the correlation delay τ is estimated to be τ̂ = 28. Fig. 2.10 shows

the sequence of the ROD λ̃r(k) and the estimated distribution of ROD in the

form of a histogram; in particular, the RODs are found to be mainly located

between -30 and 30.

Figure 2.9: Samples of xa(t) (top) and ya(t) (bottom) for Case I.

After shifting ya(t) backward by τ̂ = 28 samples, the lag factor is calcu-

lated to be ϕ = 14.591. Since ya(t) contains fewer alarm points, the threshold

ϕth = 329.121 is calculated by using μϕ and σϕ in (2.23) based on the alarm

quantity of ya(t), i.e., qr = Ny = 242 and pr = Ny/N = 0.001. Because

ϕ < ϕth, xa(t) and ya(t) are claimed to be correlated. Next, the pseudo alar-

m signals xa,p in (2.11) and ya,p(t) in (2.12) are generated, with the kernel

bandwidth h in (2.13) equal to 15.026. Finally, Pearson’s correlation coeffi-

cient is calculated to be rxy = 0.571. As a comparison, the correlated alarm

detection methods based on Jaccard coefficients Sjacc in (2.8) and Sorgenfrei

coefficients Ssorg in (2.9) [57, 100] are implemented based on xa(t) and ya(t).

For instance, Sorgenfrei coefficients Ssorg in (2.9) are calculated for different

values of τ for xa(t) and ya(t + τ), and the maximum value of the calculated

Sorgenfrei coefficients is taken as the final estimate. The calculated Sorgen-
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Figure 2.10: The sequence of ROD (top) and the histogram of ROD (bottom)
for Case I.
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Figure 2.11: The estimated Sorgenfrei coefficients (top) and Jaccard coeffi-
cients (bottom) for different values of τ for Case I.

frei and Jaccard coefficients are shown in Fig. 2.11. Their maximum values

are Ssorg = 0.000676 and Sjacc = 0.0128. The thresholds of Sorgenfrei and

Jaccard coefficients to separate independent and correlated alarm signals are

respectively equal to 1/16 and 1/7 [100] (Proposition 1 therein); thus, the

calculated Sorgenfrei and Jaccard coefficients are smaller than their thresh-

olds, respectively, so that xa(t) and ya(t) are claimed to be uncorrelated. This
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erroneous results are caused by the presence of the occurrence delays, which

introduce errors in the alignment of alarm activations causing such small val-

ues of Sorgenfrei and Jaccard coefficients. In contrast, the proposed method

gives a relatively higher correlation coefficient. In fact, the process signals

xp(t) and yp(t) associated with xa(t) and ya(t) are physically connected: yp(t)

is the flow rate of the fuel gas in a burner which has two supplies from cell A

and cell B; xp(t) is the flow rate of the feed fuel gas from cell B. Thus, xa(t)

and ya(t) are expected to be correlated.

2.4.2 Case II: Uncorrelated Alarms

Figure 2.12: Samples of xa(t) (top) and ya(t) (bottom) for Case II.

To validate the performance of the proposed method for uncorrelated

alarms, historical samples of two alarm signals xa(t) and ya(t) are obtained

from a refinery plant in Alberta, Canada, as shown in Fig. 2.12. The data

length is N = 400000 with the sampling interval 1 sec (about 111 hours).

Alarm quantities of xa(t) and ya(t) are Nx = 152 and Ny = 127, respectively.

No chattering alarms are detected. Using the ODE algorithm with the search-

ing range τ ∈ [−300, 300] seconds, the correlation delay τ is estimated to be

τ̂ = 227. Fig. 2.13 shows the sequence of the ROD λ̃r(k) and the estimated

distribution of ROD in the form of histogram; in particular, the RODs are

found to span a broad range from -12587 to 11599. Observing the RODs, we
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can see that even the correlation delay has been removed, most alarm points

in ya(t) cannot be well matched with the alarm points in xa(t).
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Figure 2.13: The sequence of ROD (top) and the histogram of ROD (bottom)
for Case II.
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Figure 2.14: The estimated Sorgenfrei coefficients (top) and Jaccard coeffi-
cients (bottom) for different values of τ for Case II.

After removing the correlation delay, the lag factor is calculated to be

ϕ = 3352.244. Since ya(t) contains fewer alarm points, the threshold ϕth =

853.474 is calculated from (2.23) based on the alarm quantity of ya(t), i.e., qr =
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Ny = 127 and pr = Ny/N = 3.177 × 10−4. Because ϕ > ϕth, xa(t) and ya(t)

are believed to be uncorrelated and the computation is thereby terminated.

As a comparison, the correlated alarm detection methods based on Jaccard

coefficient Sjacc in (2.8) and Sorgenfrei coefficient Ssorg in (2.9) are employed

based on xa(t) and ya(t). The calculated Sorgenfrei and Jaccard coefficients

are shown in Fig. 2.14. Their maximum values are Ssorg = 5.180× 10−5 and

Sjacc = 3.597 × 10−3; thus, xa(t) and ya(t) are claimed to be uncorrelated.

This is consistent with the conclusion obtained using the proposed method.

Considering the fact that the process signals associated with xa(t) and ya(t)

are located at different and disconnected units, the conclusion that xa(t) and

ya(t) are uncorrelated is reasonable.

2.5 Summary

The study in this chapter proposed a new method to detect correlated

alarms and quantify the correlation level. First, the occurrence delay was de-

fined in Definition 1 and was shown to be the main cause of erroneous small

values of Sorgenfrei and Jaccard coefficients that require the alignment of alar-

m activations. To tolerate the presence of occurrence delays, the binary alarm

signals were transformed to continuous-valued pseudo alarm signals via (2.11)

and (2.12), so that the Pearson’s correlation coefficient rxy in (2.14) can be

used to quantify the correlation level. Second, the ODE algorithm was provid-

ed to estimate the correlation delay τ in order to be removed from occurrence

delays to reach the RODs. The ODE algorithm was shown to perform better

than the existing methods based on Sorgenfrei and Jaccard coefficients. This

is also owing to the presence of occurrence delays causing errors in the align-

ment of alarm activations. Third, a statistical test based on the RODs was

proposed to detect correlated alarms. That is, if (2.21) is satisfied, then the

alarm signals xa(t) and ya(t) are claimed to be correlated. A rule of thumb is

to have at least 27 alarm activations to make the statistical test reliable, while

the counterparts in literature requires at least 300 alarm activations. Thus,

the proposed statistical test is much less demanding on sample lengths of xa(t)

and ya(t). Numerical examples were provided to support the obtained results,

and industrial case studies showed that the proposed method performed well

in detecting correlated alarms and uncorrelated ones.
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Chapter 3

Similarity Analysis of Industrial
Alarm Flood Sequences ∗

3.1 Overview

As the state-of-art of similarity analysis of industrial alarm floods, the ex-

isting methods suffer from the following limitations: (i) The DTW and SW

algorithms in [3, 17] align all alarms even if two alarm floods share almost no

common alarm tags; such a computation should be avoided. (ii) The com-

putation complexity of the SW algorithm is too high, which may prevent it

from online prediction of upcoming alarm floods. (iii) As important attributes

of alarm variables, alarm priorities have not been considered by the SW al-

gorithm yet, while it is an intuitively reasonable choice to weigh more on

alarms with higher priorities in the similar alarm sequence alignment. Moti-

vated by addressing the above limitations, this chapter proposes a new local

alignment algorithm to find similar alarm flood sequences, based on the basic

local alignment search tool (BLAST) formulated in [4, 5]. Comparing with the

modified SW algorithm, the proposed algorithm is much faster in computation

and provides a higher alignment accuracy for similar alarm sequences. These

improvements are owing to the following three novelties: (i) A set-based pre-

matching mechanism is introduced to exclude the comparison between alarm

floods with few common alarm tags, and to exclude irrelevant alarm tags in

∗A version of this chapter has been published as: Hu, W., Wang, J., & Chen, T. (2016). A
local alignment approach to similarity analysis of industrial alarm flood sequences. Control
Engineering Practice, 55, 13-25. A short version has been published as: Hu, W., Wang,
J., & Chen, T. (2015). Fast sequence alignment for comparing industrial alarm floods. In
Proceedings of 9th IFAC Symposium on Advanced Control of Chemical Processes, Whistler,
Canada, 647-652.
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order to avoid their distractions on the subsequent alarm sequence alignment.

(ii) The seeding and extending steps of the conventional BLAST are adapted

for alarm floods, where only regions of high similarities are preserved, so that

the searching space is reduced significantly. (iii) A priority-based similarity

scoring strategy is developed so that the proposed algorithm is more sensitive

to alarms having higher alarm priorities.

3.2 Similarity Scores for Alarm Floods

This section introduces the mathematical representations of alarm flood-

s, and defines a priority-based similarity scoring strategy for comparing two

alarm floods.

3.2.1 Representations of Alarm Floods

Alarm floods are composed of a series of chronologically sorted alarms,

each of which generally includes a variety of attributes, such as the tag name,

alarm identifier, time stamp, alarm priority, and process description [58]. The

tag name is the label of a process variable (including both analog and digital

variables) associated with an alarm; the alarm identifier describes the alarm

type, e.g. PVHI indicates an analog variable exceeding a high alarm limit. A

tag name and an identifier jointly compose a unique alarm tag. For instance,

if the alarm identifier PVHI is applicable to the tag name 1PT01, then 1P-

T01.PVHI is a unique alarm tag. The time stamp marks the time instant that

an alarm occurs or clears. The alarm priority indicates the importance of an

alarm. Hence, an alarm flood X can be described as

X =< x1, x2, ..., xM >, (3.1)

where the symbol < · > indicates a sequence, the lengthM is the total number

of occurred alarms in X, and the element xi indicates the i-th alarm occurred

in the chronological order. We represent xi by a tuple with three attributes,

xi = (ei, ti, pi). (3.2)

Here ei is the alarm tag of xi, and ti and pi are the corresponding time stamp

and alarm priority, respectively. For the ease of computation, the alarm tag ei
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is better in a numerical form so that we map all distinct alarm tags in words

to numerical symbols. Thus, a numerical alphabet can be constructed as

Σ = {1, 2, ..., V }, (3.3)

where V represents the size of the alphabet, equal to the total number of

distinct alarm tags.

Table 3.1 shows an industrial example of an alarm flood: the first column

lists the alarm tags in the chronological order, the second column gives the

numerical symbols of alarm tags, the third column indicates the time stamps,

and the last column presents the alarm priorities.

Table 3.1: An industrial example of an alarm flood sequence.

Alarm tag
Symbol Time stamp Priority
(ei) (ti) (pi)

T09.PVLO 9 10/5/2013 02:20:01 Low
T05.PVHI 5 10/5/2013 02:20:55 Low
T06.PVLO 6 10/5/2013 02:22:02 Low
T02.PVHI 2 10/5/2013 02:22:42 High
T01.LOLO 1 10/5/2013 02:23:35 High
T03.PVHI 3 10/5/2013 02:24:22 Low
T04.PVLO 4 10/5/2013 02:25:11 Low
T03.PVHI 3 10/5/2013 02:27:02 Low
T04.PVLO 4 10/5/2013 02:27:03 Low
T07.PVLO 7 10/5/2013 02:27:03 Emergency
T04.PVLO 4 10/5/2013 02:29:05 Low
T05.LOLO 5 10/5/2013 02:30:05 Low

In the analysis of alarm floods, a troublesome issue is the presence of chat-

tering alarms, which occur and clear frequently in a short time span without

operators’ response. The chattering alarms may lead to false detection of

alarm floods. Hence, a prerequisite step for alarm flood analysis is to re-

move chattering alarms. The detection and removal of chattering alarms have

received increasing attentions recently [58, 69, 90, 91]; in particular, the m-

sample delay timer with m equal to 20, as recommended by Rule 3a in [91],

is applied to remove chattering alarms in the sequel.
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3.2.2 Alarm Priority-Based Similarity Scoring Strategy

Alarm priorities indicate the relative importance of alarm tags, based

on the seriousness of consequences of ignoring alarms, and the allowable

response time to handle abnormalities associated with alarms [47]. Three

or four priorities are often adopted, possibly labeled by different names as

shown in Table 3.2. As a good practice guide, the numbers of alarm tags

assigned with three priorities from lower to higher are recommended to have

the 80%/15%/5% distribution [47]. Higher priorities are configured to a s-

maller number of alarm tags, and they are expected to occur rarely; however,

their occurrences indicate the presence of severe abnormalities. In contrast,

lower priorities are assigned to most alarms associated with less severe abnor-

malities. Thus, it is reasonable that the algorithm to be proposed for similar

alarm sequence alignment of alarm floods is more sensitive to the occurrences

of alarms with higher priorities.

Table 3.2: Alarm priorities in alarm systems.

Alarm priority List 1 List 2 List 3
Priority 1 (p1) Emergency Emergency Critical
Priority 2 (p2) High High Warning
Priority 3 (p3) Medium Low Advisory
Priority 4 (p4) Low

A basic similarity score s(xi, yj) measures the similarity of two alarms

xi = (exi , t
x
i , p

x
i ) and yj = (eyj , t

y
j , p

y
j ) in two alarm floods X and Y . Depending

on whether xi and yi have the same alarm tag, the calculation of s(xi, yj) is

formulated as

s(xi, yj) =

{
φ(pxi ) (or φ(p

y
j )) if exi = eyj

ζ if exi �= eyj
, (3.4)

Here the match score φ(·) takes positive value and is a function of alarm

priority while the mismatch score ζ is a negative value. For a priority list

{p1, p2, ..., pL} in a descending order of importance, the match score φ(pl)

should be monotonically deceasing with respect to l, e.g.,

φ(pl) = α + β(L− l), (3.5)

where α and β are two positive constants. For the gapped alignment [17, 84],

xi may be aligned with a gap “-” rather than a different alarm tag; in this
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case, the basic similarity score is equal to a constant gap penalty δ < 0, i.e.,

s(xi,−) = δ. (3.6)

In order to prefer a gapped alignment instead of the alignment of mismatched

alarm tags, the mismatch score and the gap penalty should satisfy the follow-

ing condition,

ζ < 2δ < 0. (3.7)

In this study, we use the linear match score function in (3.5) with parameters

α = 3 and β = 1.5, the mismatch score ζ = −2.5, and the gap penalty δ = −1,

as summarized in Table 3.3, for all illustrative examples and industrial case

studies to be presented later. The choices of the match score, mismatch score,

and gap penalty are not unique. The distance between φ(pl), l = 1, 2, ..., L is

based on the importance of alarm priorities. For instance, given three priorities

“Emergency”, “High”, and “Low”, the scores based on Table 3.3 are 6, 4.5,

and 3, which indicate that the importance of an “Emergency” alarm is equal

to that of two “Low” alarms, and the importance of two “High” alarm is equal

to that of three “Low” alarms. The distance between φ(pl), l = 1, 2, ..., L, can

be changed based on the experts’ experience on their assessment of relative

importance of different alarm priorities in alarm management. Generally, if

ζ < 2δ < 0 and φ(pl) > |ζ|, l = 1, 2, ..., L, are satisfied, the choices of φ(pl), ζ,

and σ have no significant effects on the final results.

Table 3.3: Basic similarity scores

Item Symbol Score
Match for pl φ(pl) 3 + 1.5(L− l)
Mismatch ζ -2.5

Gap penalty δ -1

3.3 Local Alignment of Alarm Floods

In this section, the main idea of the basic local alignment search tool

(BLAST) is firstly revisited. Next, a new local alignment algorithm is pro-

posed for similar alarm sequence alignment of alarm floods.
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3.3.1 Main Steps of the BLAST

The BLAST locates similar segments between a query sequence and object

sequences [4, 5]. The BLAST is composed of two main steps, namely, the

seeding and extending steps. In the seeding step, both the query and object

sequences are broken into short words having a fixed size. A lookup table is

built for all possible assemblies. By indexing short words in the lookup table,

similar segments of the query and object sequences are quickly located. The

pairs of words with similarity scores exceeding a threshold are kept as seeds

while others are discarded. Next, in the extending step, all seeds are extended

in two directions until the similarity score falls below a cutoff threshold. The

alignments with similarity scores larger than a certain threshold are called

the high scoring segment pairs (HSPs). The HSPs with the highest score are

treated as the most similar segments between the query and object sequences.

An example of alarm sequences is presented here to illustrate the BLAST.

Example 1. With four unique alarms Σ = {1, 2, 3, 4}, a lookup table is built

for all k = 3 short words so that the table has 43 = 64 assemblies. Two alarm

sequences <3, 2, 1, 4, 3, 2, 2> and <3, 4, 2, 1, 4, 2> are used for comparison.

The first alarm sequence can be broken into <3, 2, 1>, <2, 1, 4>, <1, 4, 3>,

<4, 3, 2>, and <3, 2, 2>. The second alarm sequence can also be broken

into 4 short words in the same manner. By indexing the lookup table and

determining which words from the two sequences have the same index, the

matched pairs can be quickly found. As a result, <2, 1, 4> is a completely

matched pair and is treated as a seed. In the extending step, the seed <2,

1, 4> is extended in two directions using a gapped extension scheme. By

allowing one gap alignment, the best alignment for the two alarm sequences

is achieved as
3 − 2 1 4 3 2 2
| | | | |
3 4 2 1 4 − 2 −

(3.8)

where ‘−’ denotes a gap insertion, and ‘|’ indicates a matched pair. �

Comparing with the Smith-Waterman algorithm [84], the BLAST does not

align all elements in sequences. Its main merit is to achieve fast sequence align-

ments by locating regions having high similarities and pruning most search

space. Such a merit is important, especially for the pairwise alignment of a

long sequence with the other sequences in a large query database.
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To make the BLAST more suitable for alarm floods, some significant mod-

ifications are made as follows to achieve high computational efficiency and

better alignment results. First, considering a large variety of alarm tags, a

set based matching mechanism is designed as a pre-step to exclude irrelevan-

t alarm floods and alarm tags. Second, the conventional BLAST requires a

predefined look up table comprised of all possible short words of a fixed size.

The construction and query of such a lookup table become infeasible if there

are too many unique components. To solve this problem, the seeding stage is

modified to search all matched pairs of different sizes. Third, specialized for

alarm floods, a priority based scoring scheme is used to make the algorithm

more sensitive to alarms of higher priorities. Finally, the conventional BLAST

does not take the time information into account while the alarms are time s-

tamped. Thus, in the extending stage, a time ambiguity tolerance strategy is

proposed to make the algorithm less sensitive to orders of alarms occurring

almost simultaneously. The details of these modifications are described in the

following subsections.

3.3.2 Set-Based Pre-Matching Mechanism

A set-based pre-matching mechanism is proposed here, in order to exclude

irrelevant alarm floods and alarm tags. First, to find common alarm tags be-

tween alarm flood sequences X =< x1, x2, ..., xM > and Y =< y1, y2, ..., yN >,

two binary-valued indexing vectors are formulated as{
AX = [ax1 ax2 · · · axM ]
AY = [ay1 ay2 · · · ayN ]

, (3.9)

where

axi =

{
1 if ∃j ∈ {1, 2, ..., N} s.t. eyj = exi
0 otherwise

, (3.10)

ayi =

{
1 if ∃j ∈ {1, 2, ...,M} s.t. exj = eyi
0 otherwise

, (3.11)

where exi and eyj are the alarm tags of xi in X and yj in Y , respectively. Based

on the indexing vectors AX and AY , a set-based similarity index is formulated

as

Sset(X, Y ) =

∑M
i=1(a

x
i × φ(pxi ))

∑N
i=1(a

y
i × φ(pyi ))∑M

i=1(φ(p
x
i ))

∑N
i=1(φ(p

y
i ))

. (3.12)
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The set-based similarity index 0 ≤ Sset(X, Y ) ≤ 1 is used to measure whether

two alarm flood sequences are alike without considering the chronological or-

ders. In other words, Sset(X, Y ) = 1 indicates alarm floods X and Y have

the same alarm set, while Sset(X, Y ) = 0 means that X and Y share no com-

mon alarm. If more alarm tags are shared by two alarm floods, the set-based

similarity index is closer to 1.

The calculation of Sset(X, Y ) is based on alarm sets rather than alarm

sequences, and is a quick preliminary step to select suitable alarm floods for

subsequent similarity analysis. That is, the set-based similarity index between

X and Y is said to be too low, if

Sset(X, Y ) ≤ γ, (3.13)

where γ is a user-selected threshold. In this case, there is no need to proceed

to the next step of sequence alignment for alarm floods. The simplest choice

is γ = 0, indicating that the computation will not proceed if two alarm floods

share no common alarms. The value of γ can be set to be larger than 0 if

there are a large number of alarm floods, so as to avoid time consumptions in

comparing alarm floods with few common alarm tags.

Second, even if two alarm floods X and Y have a set-based similarity index

Sset(X, Y ) larger than γ, they may still contain many uncommon alarm tags.

It is meaningless to align these uncommon alarm tags, and is even distractive

to have them in the subsequent sequence alignment. Hence, all irrelevant

alarms are removed from the original alarm flood sequencesX and Y , and only

the common alarm tags are preserved. Based on the indexing vectors AX and

AY in eqn. (3.9), the alarms xi with axi = 1 and yj with ayj = 1 are extracted

from X and Y to construct two shorter sequences X̃ =< x̃1, x̃2, ..., x̃M̃ > and

Ỹ =< ỹ1, ỹ2, ..., ỹÑ >. Here M̃ =
∑M

i=1 a
x
i and Ñ =

∑N
i=1 a

y
i are the numbers

of common alarm tags in X and Y , respectively. Clearly, Sset(X̃, Ỹ ) = 1, i.e.,

all alarm tags in X̃ can also be found in Ỹ , and vice versa.

Example 2. Two alarm sequences X and Y of different lengths (M = 12

and N = 14) are given in Table 3.4. By comparing the alarm symbols, two

indexing vectors AX and AY are calculated as{
AX = [1 1 1 1 1 1 1 1 1 1 1 1]
AY = [1 1 1 1 1 1 1 1 1 0 1 0 1 0]

. (3.14)

The indexing vector AX is an all-one vector, indicating that all alarm tags in

X can be found in Y . The 10th, 12th, and 14th elements in AY are zeros,
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Table 3.4: Alarm floods X and Y with time and priority information.

Sequence X Sequence Y
Symbol Time stamp Priority Symbol Time stamp Priority

9 00:00:01 Low 9 11:00:01 Low
5 00:00:55 Low 5 11:01:11 Low
6 00:02:02 Low 2 11:01:59 High
2 00:02:42 High 1 11:02:18 High
1 00:03:35 High 3 11:03:11 Low
3 00:04:22 Low 4 11:04:01 Low
4 00:05:11 Low 7 11:06:32 Emergency
3 00:07:02 Low 3 11:06:33 Low
4 00:07:03 Low 4 11:06:33 Low
7 00:07:03 Emergency 8 11:07:16 Low
4 00:09:05 Low 9 11:08:45 Low
5 00:10:05 Low 8 11:09:22 Low

6 11:09:56 Low
8 11:09:57 Low

owing to the alarm tag with symbol 8 that is not present in X. There are three

(L = 3) alarm priorities in Table 3.4, namely, “Emergency” (p1), “High” (p2),

and “Low” (p3). Based on the priority-based similarity score in Table 3.3, the

scores assigned to alarms of the three priorities are φ(p1) = 3+1.5× (3−1) =

6, φ(p2) = 3 + 1.5 × (3 − 2) = 4.5, and φ(p1) = 3 + 1.5 × (3 − 3) = 3,

respectively. Using eqn. (3.12), the set-based similarity index is calculated as

Sset(X, Y ) = 42×39
42×48

= 0.8125. Thus, the set-based pre-matching mechanism

says that X and Y are very similar alarm sequences. Next, two subsequences

X̃ and Ỹ are obtained as X̃ =< 9, 5, 6, 2, 1, 3, 4, 3, 4, 7, 4, 5 > and Ỹ =<

9, 5, 2, 1, 3, 4, 7, 3, 4, 9, 6 > by removing the alarm tag 8 from Y . The two

subsequences will be used in the similar alarm sequence alignment in the

following subsections. �

3.3.3 The Seeding Step

The seeding step in the conventional BLAST establishes a lookup table

for all possible assemblies of words having a fixed size. Such a lookup table

is feasible for biological sequences and text strings, because the numbers of

basic components are limited as shown in Table 3.5. However, for industrial

alarm systems, the number of distinct alarm tags is quite large, usually larger
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than 1000. For instance, the number of alarm tags in one industrial plant was

reported about 14000 [73]. Thus, it is infeasible to build a lookup table for

alarm sequences. For example, if a 3-word table is built for 1000 alarm tags,

then the table size would be 10003 = 109 that is too large for computation.

Hence, the seeding step of the conventional BLAST is not directly applicable

to alarm sequences.

Table 3.5: Basic components of different sequences.

Genome Protein Text string Alarm flood
Component Nucleotide Amino acid Alphabet Alarm tag

Number of types 5 23 26 > 1000

To solve this problem, the seeding step needs to be modified. The main

idea is to find all matched pairs rather than short words of a fixed size. A

matched pair Z(i), i = 1, 2, · · · , Kb, is indexed by its positions in two alarm

sequences X̃ and Ỹ as

zi = (zi,1, zi,2, zi,3), (3.15)

where zi,1 and zi,2 are the start positions of the matched pair Z(i) in X̃ and Ỹ ,

respectively; zi,3 represents the length of Z(i); Kb indicates the total number of

matched pairs. The matched pair Z(i) satisfies two properties as follows. First,

all alarm tags of Z(i) in two alarm sequences X̃ and Ỹ should be identical, i.e.

exzi,1+k = eyzi,2+k for k = 0, 1, ..., zi,3 − 1, where exzi,1+k and eyzi,2+k are the alarm

tags of the (zi,1+k)th and (zi,2+k)th alarms in X̃ and Ỹ , respectively. Second,

any matched pair should not be overlapping with other matched pairs. Given

one matched pair Z(i), two conditions zi,1 ∈ [zj,1, zj,1+zj,3−1] and zi,2 ∈ [zj,2,

zj,2 + zj,3 − 1] cannot be true simultaneously for any Z(j), j �= i.

To select seeds from the matched pairs, the seeding score, namely, the

similarity score of each matched pair Z(i) is calculated as

h(Z(i)) =

zi,3−1∑
k=0

s(x̃zi,1+k, ỹzi,2+k), (3.16)

where s(x̃zi,1+k, ỹzi,2+k) is obtained from (3.4). The matched pairs having large

seeding scores are preserved as seeds, while other pairs are discarded. The

seeds and their seeding scores are denoted as Z̃(k) and h(Z̃(k)) for k = 1, ..., K,

respectively, where K is the number of seeds selected as the matched pairs of
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Table 3.6: The matched alarm pairs.

Matched pair zi,1 zi,2 zi,3 h(Z(i)) Sequences
Z(1) 1 1 2 6 < 9, 5 >
Z(2) 1 10 1 3 < 9 >
Z(3) 3 11 1 3 < 6 >
Z(4) 4 3 4 15 < 2, 1, 3, 4 >
Z(5) 6 8 2 6 < 3, 4 >
Z(6) 8 5 3 12 < 3, 4, 7 >
Z(7) 8 8 2 6 < 3, 4 >
Z(8) 11 6 1 3 < 4 >
Z(9) 11 9 1 3 < 4 >
Z(10) 12 2 1 3 < 5 >

top K seeding scores. An example is presented here to illustrate the modified

seeding step.

Example 3. Based on the two shorter sequences X̃ =< 9, 5, 6, 2, 1, 3, 4, 3, 4,

7, 4, 5 > and Ỹ =< 9, 5, 2, 1, 3, 4, 7, 3, 4, 9, 6 > obtained in Example 2, the

matched pairs shown in Table 3.6 are found in the modified seeding step.

Taking z4 = (4, 3, 4) as an example, the matched pair is Z(4) =< 2, 1, 3, 4 >

with 4 alarms, and it starts at the 4th position of X̃ and the 3rd position of

Ỹ . Using the priority-based similarity score in Table 3.3, the similarity scores

of all matched pairs are calculated as shown in the fifth column of Table 3.6.

The seeding score of Z(4) is h(Z(4)) = 4.5 + 4.5 + 3 + 3 = 15. By choosing

K = 1, the matched pairs with the largest seeding scores is preserved as the

seed, namely, Z̃(1) =< 2, 1, 3, 4 > with h(Z̃(1)) = 15.

3.3.4 The Extending and Backtracking Steps

Once seeds are obtained, the conventional BLAST extends the seeds in

two directions to find the HSPs, as stated in Section 3.3.1. In this subsection,

the extending step is adapted to alarm sequences based on the priority-based

similarity score in Section 3.2.2. There are two types of extensions, namely,

the ungapped extension and the gapped one [4, 5, 56]. In order to have more

flexibility in aligning alarm sequences, the gapped extension, which aligns

irrelevant components with gaps, is used in this context.

Denote the subsequences of X̃ and Ỹ based on the k-th seed Z̃(k) for

extension in one direction as Xs of length m and Ys of length n. An extending
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score matrix H is calculated in three ways as shown in Fig. 3.1. Initially, the

first element of H is defined as

H1,1 = h(Z̃(k)) + U, (3.17)

where h(Z̃(k)) is the seeding score of the seed Z̃(k) and U is the cutoff thresh-

old used to stop the extension. In principle, the extension grows until the ex-

tending scoreHi,j falls more than a threshold below the maximum extending s-

core, namely, Hi,j < Hmax−U , whereHmax denotes the highest extending score

achieved before the extension proceeds to Hi,j. Initially, Hmax = H1,1. Thus,

the incorporation of U in H1,1 avoids the degenerated case that H1,1 < U .

Figure 3.1: The calculation of the extending score matrix H in the gapped
extension. The circled numbers 1, 2, and 3 indicate the first, second, and third
ways to calculate the element Hi,j associated with eqns. (3.18), (3.19), and
(3.20).

For all i = 2, 3, ...,m+1 and j = 2, 3, ..., n+1, the element Hi,j on the i-th

row and j-th column of the matrix H is obtained as the first way in Fig. 3.1

and is calculated as

Hi,j = max{Hi−1,j−1 + s(xi, yj), Hi,j−1 + δ,Hi−1,j + δ, 0}, (3.18)

where s(xi, yj) is the basic similarity score (defined in Section 3.2.2) between

xi and yj with xi ∈ Xs and yj ∈ Ys. For all i = 2, 3, ...,m+ 1 and j = 1, Hi,1

is calculated as the second way in Fig. 3.1, i.e.,

Hi,1 = max{Hi−1,1 + δ, 0}. (3.19)
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For all i = 1 and j = 2, 3, ..., n + 1, H1,j is calculated as the third way in

Fig. 3.1, i.e.,

H1,j = max{H1,j−1 + δ, 0}. (3.20)

Algorithm 2 Gapped extension

H = 0m+1,n+1; Q = 0m+1,n+1; H1,1 = h(Z̃(k)) + U ; Hmax = H1,1;
for i = 2 to m+ 1 do

if Hi−1,1 ≥ Hmax − U then
Hi,1 = max{Hi−1,1 + δ, 0}; Qi,1 = 3;

end if
end for
for j = 2 to n+ 1 do

if H1,j−1 ≥ Hmax − U then
H1,j = max{H1,j−1 + δ, 0}; Q1,j = 2;

end if
for i = 2 to m+ 1 do

if max{Hi−1,j−1, Hi,j−1, Hi−1,j} ≥ Hmax − U then
Hi,j = max{Hi−1,j−1 + s(xi, yj), Hi,j−1 + δ,Hi−1,j + δ, 0};
if Hi,j = Hi−1,j−1 + s(xi, yj) then Qi,j = 1;
else if Hi,j = Hi,j−1 + δ then Qi,j = 2;
else if Hi,j = Hi−1,j + δ then Qi,j = 3;
end if
if Hi,j > Hmax then Hmax = Hi,j;
end if

end if
end for
if max

1≤i≤m+1
Hi,j < Hmax − U then break;

end if
end for

According to Fig. 3.1, there are three stop conditions respectively corre-

sponding to the calculations of Hi,j in (3.18), (3.19), and (3.20). First, for all

i = 2, 3, ...,m+ 1 and j = 2, 3, ..., n+ 1, the extension to Hi,j stops at Hi,j if

max{Hi−1,j−1, Hi,j−1, Hi−1,j} < Hmax − U, (3.21)

Second, for all i = 2, 3, ...,m+1 and j = 1, the extension to Hi,1 stops at Hi,1

if

Hi−1,1 < Hmax − U. (3.22)

Third, for all i = 1 and j = 2, 3, ..., n+1, the extension to H1,j stops at H1,j if

H1,j−1 < Hmax − U. (3.23)
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The gapped extension in one direction can be described via the pseudo codes

in Algorithm 2. The inputs of Algorithm 2 are the subsequences Xs, Ys and

the seeding score h(Z̃(k)), while the output is the extending score matrix

H. Once the extension is stopped, the best alignment can be obtained by

a backtracking step, which is based on the indicator matrix Q obtained in

Algorithm 2. It starts at the element having the maximum score. If Qi,j is

equal to 1, 2 or 3, the backtracking proceeds to Qi−1,j−1, Qi,j−1, or Qi−1,j,

respectively.

Denote the maximum extending scores in the backward and forward ex-

tensions as Hb and Hf , respectively. The final similarity score of the best

alignment based on the seed Z̃(k) is calculated as

S(Z̃(k)) = Hb +Hf − h(Z̃(k))− 2U. (3.24)

When several seeds are found, the best alignments for these seeds may be

different. The subsequences with the highest score is treated as the best

alignment. The corresponding score is regarded as the final best score between

X̃ and Ỹ , denoted by S(X̃, Ỹ ).

Example 4. To illustrate the gapped extension, the seed Z̃(1) =< 2, 1, 3, 4 >

with h(Z̃(1)) = 15 is investigated in details here. The basic similarity score

in Table 3.3 is used. The extension threshold is set to U = 2|δ| = 2, i.e., two

gaps in the alignment are allowed. Thus, H1,1 = h(Z̃(1)) + U = 15 + 2 = 17.

The seed Z̃(1) =< 2, 1, 3, 4 > is firstly extended to the forward direction

subsequences Xf =< 3, 4, 7, 4, 5 > and Yf =< 7, 3, 4, 9, 6 >. The extending

score matrix H for Xf and Yf is generated as Table 3.7. The backtracking in

the forward extension yields the best alignment, as shown by the alarm tags

with scores marked by underlines in Table 3.7. The seed Z̃(1) =< 2, 1, 3, 4 >

is secondly extended to the backward direction subsequences Xb =< 6, 5, 9 >

and Yb =< 5, 9 >. The extending score matrix H for Xb and Yb is obtained

as Table 3.8. Fig. 3.2 presents the extensions in two directions based on the

seed Z̃(1). The green squares indicate the matched alarm pairs and the grey

squares represent the entries where the extension proceeds. It is obvious that

most search space marked by the white squares is pruned in the extensions,

so that the computation cost is greatly reduced.

Combining the extension in the two directions, the best alignment is finally
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Table 3.7: Extending score matrix H in the forward extension based on the
seed Z̃(1) =< 2, 1, 3, 4 >.

7 3 4 9 6
17 16 0 0 0 0

3 16 15 0 0 0 0
4 15 14 0 0 0 0
7 14 21 20 19 0 0
4 0 20 19 23 22 21
5 0 19 18 22 21 20

Table 3.8: Extending score matrix H in the backward extension based on the
seed Z̃(1) =< 2, 1, 3, 4 >.

5 9
17 16 0

6 16 15 0
5 15 19 18
9 14 18 22

Figure 3.2: Graphic illustration of the gapped extension.

achieved as
X̃ : 9 5 6 2 1 3 4 3 4 7 − 4

| | | | | | | |
Ỹ : 9 5 − 2 1 3 4 − − 7 3 4

(3.25)

In particular, the alarm tag 7 having a higher alarm priority rather than

the alarm tag 3 is found as the matched alarm tag. The priority-based basic
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similarity score in Section 3.2.2 makes the Algorithm 2 more sensitive to alarms

with higher priorities. Based on Z̃(1), the maximum scores of the backward

and forward extensions are Hb = 22 and Hf = 23, respectively. Then, the

final score is S(Z̃(1)) = 22 + 23− 15− 2× 2 = 26.

3.3.5 Time Ambiguity Tolerance

Physically connected alarm tags often arise almost simultaneously, but

they may have different chronological orders in different alarm floods. Thus, a

strategy of incorporating time information of alarms was proposed to tolerate

certain time ambiguity of these alarms occurring almost simultaneously [17].

This strategy is adopted here in the proposed algorithm as follows. To redefine

the basic similarity score s(xi, yj) in (3.18), two vectors are defined, namely,

the time distance vector di and the time weight vector wi. The distance vector

di for the ith alarm xi in X̃ is formulated as

di = [di1 di2 · · · diV ]
T , (3.26)

where

div = min
1≤k≤m

{|ti − tk| : exk = v} . (3.27)

Here exk is the alarm tag of the k-th alarm xk in X̃, and v is the numerical

symbol in the alarm tag alphabet Σ of size V defined in (3.3). Each entry

div represents the time gap between the ith alarm and the nearest alarm with

alarm tag v. The time weighting vector wi for xi in X̃ is

wi = [wi1 wi2 · · · wiV ]
T , (3.28)

where wiv = f(div). The weighting function f(·) for X̃ can be chosen as the

scaled Gaussian function [17],

f(div) = e−
d2iv
2σ2 , (3.29)

while the counterpart for Ỹ is determined as

f(div) =

{
1 if div = 0
0 if div �= 0

. (3.30)

Here the standard deviation σ in (3.29) is a user selected parameter. The

value of σ decides how much the time difference can be tolerated. In general,
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the time difference between simultaneously occurred alarms is in the level of

a few seconds. If a large value of σ is used, then the orders of two alarms with

a large time difference are regarded as being not important. Eventually, the

basic similarity score s(xi, yj) in eqn. (3.4) is reformulated as

s(xi, yj) = ζ + (φ(pyj )− ζ) max
1≤v≤V

wx
ivw

y
jv, (3.31)

where wx
iv and wy

jv are the time weights for the ith alarm xi in X̃ and and jth

alarm yj in Ỹ , respectively. The gap penalty is preserved the same as eqn.

(3.6).

Table 3.9: Extending score matrix H of Z̃(1) in the forward extension with
time stamp information.

7 3 4 9 6
17 16 0 0 0 0

3 16 19.3537 19 0 0 0
4 15 18.3537 22.3537 22 0 0
7 14 21 23.3549 27.3549 26.3549 25.3549
4 0 20 24 26.3549 25.3549 24.3549
5 0 19 23 25.3549 24.3549 23.3549

Example 5. From Table 3.4, it is obvious that the alarm tags at the 8th,

9th and 10th positions in X have very close time stamps. The same case can

be found at the 7th, 8th, and 9th positions in Y ; the chronological orders

for these alarms should be not important in the sequence alignment. Thus,

the time ambiguity tolerance strategy is adopted. The standard deviation of

the Gaussian function is set as σ = 2. By using the reformulated similari-

ty score s(xi, yj) in (3.31), the score matrix H for the gapped extension of

Z̃(1) =< 2, 1, 3, 4 > in the forward direction sequences Xf and Yf is obtained

in Table 3.9. In the backward extension, the best alignment is the same as

that in Table 3.8. Combining the extensions in two directions, the final best

alignment is obtained as

X̃ : 9 5 6 2 1 3 4 3 4 7
| | | | | | | | |

Ỹ : 9 5 − 2 1 3 4 7 3 4

(3.32)

Here the alarm tags marked with underlines are not exactly matched, but are

treated as matched pairs owing to their close time stamps. For the gapped
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extension based on Z̃(1), the maximum scores for the backward and forward

extensions are Hb = 22 and Hf = 27.3549, respectively, so that the best score

is S(Z̃(1)) = 22 + 27.3549− 15− 2× 2 = 30.3549.

3.3.6 The Steps of the Local Alignment Algorithm

The proposed local alignment algorithm is composed of the following steps,

which are also depicted as the flowchart in Fig. 3.3.

1. Two alarm floodsX and Y are prepared with chattering alarms removed.

2. The set-based pre-matching mechanism is exploited for X and Y , where

Sset(X, Y ) in (3.12) is calculated. If Sset(X, Y ) > γ, then the subse-

quences X̃ and Ỹ are obtained from X and Y by preserving common

alarm tags in both X and Y ; otherwise, the computation is terminated.

3. In the seeding step, the matched segments between X̃ and Ỹ are in-

dexed by Z = (z1, z2, z3). Their seeding scores h(Z) in (3.16) are calcu-

lated. The segments having larger seeding scores are preserved as seeds

Z̃(k), k = 1, ...K, while others are discarded. The seeding score of each

seed is denoted as h(Z̃(k)).

4. The gapped extension is implemented to each seed Z̃(k), k = 1, ...K us-

ing Algorithm 2. In each iteration, s(xi, yj) is computed based on (3.26)-

(3.31), Hi,j is calculated based on (3.18)-(3.20), andQi,j is recorded. The

extension is terminated if the stop conditions (3.21)-(3.23) are satisfied.

The extending score for the best alignment of Z̃(k) is calculated using

(3.24).

5. Find the aligned subsequence having the highest score as the final best

sequence alignment ofX and Y . To measure the computational accuracy

and efficiency for comparing X and Y , two quantities are defined as:

the number of matched pairs between X and Y , denoted as C(X, Y ), is

counted to measure the alignment accuracy, and the computation time

T is recorded for applying the proposed algorithm to X and Y .

The proposed algorithm has a much lower computational cost than the

modified SW algorithm. Given two alarm floodsX and Y containingM andN

alarms respectively, the implementation of the modified SW algorithm consists
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Figure 3.3: Flowchart of the proposed local alignment algorithm.

of two steps: (a) the dynamic programming step calculates a score matrix H

for all M × N elements; (b) the backtracking step finds the best alignment

based on an indicator matrix associated with H. Thus, the computational

complexity of the modified SW algorithm is O(2MN).

In the proposed algorithm, the set-based pre-matching mechanism decreas-

es the number of computations by excluding irrelevant alarm floods and alarm

tags. The computation of this step is a constant time operation O(1). If the

set-based similarity index is lower than the threshold γ, the computation is
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terminated. If the set-based similarity index is larger than the threshold,

two shorter alarm sequences X̃ and Ỹ are obtained (denote the length dif-

ference between X and X̃ as Δ1, and the counterpart between Y and Ỹ as

Δ2.). The computation proceeds to the sequence alignment, which consists

of a seeding step and an extending step: (a) The seeding step includes the

indexing of all matched pairs Z(i), i = 1, 2, · · · , Kb, and the calculation of

each similarity score h(Z(i)). The indexing of all matched pairs is a constan-

t time operation O(1). Since the matched pairs can be found from either

X̃ or Ỹ , the maximum computational complexity should be O(M − Δ1) or

O(N − Δ2). Thus the total computational complexity of the seeding step is

O(1 + M − Δ1) or O(1 + N − Δ2). (b) In the extending step, the compu-

tational complexity for the dynamic programming and the backtracking with

stopping strategy is O(2(M − Δ1)(N − Δ2)η). Here η ∈ (0, 1] indicates the

ratio of cells to be calculated, and the value of η depends on the number of

seeds K and the extension threshold U . Thus, the total computational com-

plexity of the proposed method is O(2 +M −Δ1 + 2(M −Δ1)(N −Δ2)η) or

O(2 +N −Δ2 + 2(M −Δ1)(N −Δ2)η).

3.3.7 Parameter Determination

The seeding step of the proposed local alignment algorithm finds all the

matched alarm segments, among which the segments having the K largest

seeding scores are preserved as seeds while others are discarded. In the ex-

tending step, the gapped extension stops till the extending score falls more

than the threshold U below the maximum score. Thus, K and U are two

important parameters influencing the computational cost and the alignment

accuracy. To investigate the effects of K and U on the proposed algorithm,

Monte Carlo simulations are implemented in the following example.

Example 6. 1000 Monte Carlo simulations are implemented. In each simu-

lation, a pair of symbolic sequences Xl and Yl, l = 1, 2, ..., 1000 are randomly

generated. The symbolic tags come from a numeric alphabet Σ = {1, 2, ..., V },
where three priorities {p1, p2, p3} with a distribution 5%/15%/80% are as-

signed to V symbolic tags in Σ. The basic similarity scores in Table 3.3 are

used. The sequence lengths Lx and Ly are uniform random integers in the

range [L1, L2]. The time stamps txi , i = 1, 2, ..., Lx and tyj , j = 1, 2, ..., Ly of

symbolic tags in X and Y are Gaussian random variables in the range [1, tmax],
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where tmax is a uniform variable in [tmax,1, tmax,2]. The parameters are set as

V = 100, L1 = 50, L2 = 500, tmax,1 = 4320 sec (0.05 day), tmax,2 = 86300 sec

(1 day). The algorithm is carried out at a personal computer with 3.3GHz

CPU, 4G RAM and 64bit operating system. The number C(X, Y ) of matched

pairs between X and Y is counted to measure the alignment accuracy, and

the computation time T in applying the proposed algorithm to X and Y is

recorded. Fig. 3.4 presents the average numbers of matched pairs for 1000

pairs of Xl and Yl, i.e., C̄(Xl, Yl) :=
1

1000

∑1000
l=1 C(Xl, Yl), for different values

of K and U . Fig. 3.5 is the counterpart of Fig. 3.4 for the average computation

time T̄ := 1
1000

∑1000
l=1 Tl.

0
5

10
15

20

0
5

10
15

20
2

2.5

3

3.5

4

4.5

KU

C̄
(X

,
Y
)

Figure 3.4: Average number of matched pairs C̄(X, Y ) versus K and U .

The following observations can be obtained from Figs. 3.4 and 3.5. Given

a fixed number Kof seeds C̄(X, Y ) drastically increases with the increment

of U for U ≤ 10, and does not significantly improve with the increment of

U for U > 10. Given a fixed cutoff threshold U , similar observation can be

drawn with K ≤ 7 and K > 7. It is obvious that the increment of the two

parameters increases the computation time. To achieve an accurate alignment

result within a short time period, U and K are recommended as U = 10 and

K = 7.
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Figure 3.5: Average computation time T̄ versus K and U .

3.4 Industrial Case Studies

This section provides industrial case studies to validate the performance of

the proposed method. In Case I, multiple alarm floods are studied for multiple

queries to a historical sequence database. In Case II, a detailed analysis for

the query of one particular alarm flood is carried out.

3.4.1 Case I

The industrial process for case studies is an oil conversion plant, which is

quite common in the petrochemical industry. It transforms the crude oil into

valuable petroleum products, such as naphtha, gasoline, and diesel fuel [6].

The oil conversion plant is comprised of a number of interconnected pipelines,

heaters, reactors, separators and vessels, as shown in Fig. 3.6 [23]. The crude

oil and the hydrogen gas are heated to certain temperatures in the feed heater

and hydrogen heater, and are contacted with a catalyst bed in the two reactors.

The gas and liquid effluent overflows from the reactors to a common outlet

line directed to the separators, where the vapor, liquid hydrocarbon, and

water phases are separated. The liquid hydrocarbon streams are carried to the
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atmospheric tower and fractionated into desired products, which are stripped

by gas oil strippers. The refining processes are operated by a distributed

control system. To ensure the safe operation of the oil conversion plant, a

large number of alarm variables are configured in different sections.

Figure 3.6: Simplified schematic diagram of the oil conversion plant.

Some historical alarm data with 1547 unique alarms and 3 alarm prior-

ity levels was collected from the oil conversion plant over the time period

from May 12th, 2013 to November 12th, 2014. 389 alarm floods excluding

chattering alarms were detected and saved as an database of alarm floods

B = {Yl : l = 1, 2, ..., 389}. The longest alarm flood contains 1840 alarm-

s while the shortest alarm flood includes 10 alarms. The average length of

alarm floods is 69.2.

To illustrate the efficiency of the proposed local alignment algorithm, 10

alarm floods Xi for i = 1, ..., 10 occurred at different time periods are stud-

ied for the queries to the database B. The number of alarms in Xi is given

in the second column of Table 3.10. First, using the set-based pre-matching

mechanisms with γ = 0, irrelevant object alarm floods are excluded from the

database B, while others are preserved for sequence alignment. The number of

relevant object alarm floods for each query alarm flood Xi is listed in the third

column of Table 3.10. Second, both the proposed algorithm and the modified

SW algorithm [17] are applied to the query of Xi from the preserved object

alarm floods. The same parameters U = 10 and K = 7 as those in Example 6

are used to implement the proposed algorithm. The alignment accuracy mea-
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sured by the average number of matched pairs C̄(X, Y ) := 1
389

∑389
l=1 C(Xi, Yl)

and the total computation time T for querying Xi are presented in the last

four columns of Table 3.10. Since alarm priorities are not considered in the

modified SW algorithm, a unified match score rather than the priority based

scoring strategy is utilized. That is, the match score 4.5, the average value of

the match scores in Table 3.3, is used for all matched alarm tags.

Table 3.10: The alignment accuracy measured by the average number of the
matched pairs C̄(X, Y ) and the total computation time T in querying B for Xi

(i = 1, ..., 10). L(Xi) indicates the number of alarms contained in Xi. N(Y )
denotes the number of relevant alarm floods Y found in B.

Index L(Xi) N(Y )
Proposed algorithm Modified SW algorithm

C̄(X, Y ) T (sec) C̄(X, Y ) T (sec)
1 1010 130 6.65 8.32 3.48 924.62
2 848 341 7.07 11.52 4.73 644.69
3 661 382 8.21 10.02 4.60 419.06
4 420 291 6.91 5.53 3.73 239.02
5 347 327 7.65 7.63 3.76 203.51
6 290 305 5.91 4.83 3.29 162.16
7 249 320 5.71 5.66 3.20 176.37
8 196 223 6.75 3.53 4.77 123.86
9 186 276 6.19 4.42 3.42 99.12
10 114 125 5.49 1.86 3.14 50.37

Comparing the average numbers of the matched pairs in the 4th and 6th

columns of Table 3.10, it is obvious that the proposed algorithm achieves more

accurate alarm sequence alignments than the modified SW algorithm. That

is, more matched pairs are found using the proposed algorithm. This improve-

ment is owing to the utilization of the set-based pre-matching mechanism that

removes irrelevant alarm tags. Another comparison of the computation times

in the 5th and 7th columns of Table 3.10 clearly says that the proposed algo-

rithm is much more efficient in computation. In this case study, the proposed

algorithm is about 20 ∼ 111 times faster than the modified SW algorithm.

3.4.2 Case II

A detailed analysis of the sequence alignment for the 10th query alarm

flood in Case I is presented here. As shown in Table 3.10, this alarm flood

X contains 114 alarms. 125 object alarm floods from B are found containing
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common alarms in X. For the proposed algorithm and the modified SW

algorithm, the number of matched pairs C(X, Yi) and computation time Ti

for X and Yi, i = 1, 2, .., 125 are shown as the dotted lines in Fig. 3.7. In

particular, for the queries to the 3rd, 4th, 36th, 38th, and 55th object alarm

floods, the computation times of the proposed algorithm are much smaller

than the modified SW algorithm; in addition, the alignment accuracies of the

proposed algorithm are higher.
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Figure 3.7: Performance statistics of the proposed local alignment algorithm
(dot) and the modified SW algorithm (circle-dash) for the query of X to 125
object alarm floods: (a) the number of matched pairs; (b) the computation
time.

As detected by the proposed algorithm, the 117th object alarm flood Y as

shown in Fig. 3.7 was found to be the most similar to X. The best alignmen-

t between X and Y was determined by the backtracking step in Algorithm

1. Excluding irrelevant alarms, the alignment of matched alarms is shown in

Fig 3.9. The alarms in the two alarm floods X and Y were chronologically

sorted while the occurrence dates of X and Y were different. Among the 40

matches, 30 pairs of alarms were perfectly matched with the same chrono-

logical order while other 10 pairs were matched in disorder. Observing the

time stamps of these disordered matches, it can be found that these alarms

occurred almost simultaneously. Thus, their orders in the alignment should

be not important.

62



Figure 3.8: Simplified schematic diagram of the hydrogen heater (the dashed
lines indicate data links).

The alarm flood Y appeared due to an inadequate feed of the purified

recycle gas for one of the two hydrogen supplies in Fig. 3.6. For a clearer

illustration, the simplified schematic diagram of the hydrogen heater is pre-

sented in Fig 3.8. The inadequate feed of supply led to the overheat of the

convection skin of outlets. To maintain the outlet temperatures within their

designed ranges, a series of automatical regulations and protective strategies

were activated. Based on the knowledge about the cause of Y from the alarm

flood database B, one might predict that the alarm flood X was caused by

the inadequate feed of hydrogen supply. By checking the historical records, it

was found that the supply of the makeup hydrogen (one of the two hydrogen

supplies) was decreased, which supported the similarity between X and Y .
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Figure 3.9: The best sequence alignment between the query alarm flood X
and the 117th Y from B.

3.5 Summary

Some alarm sequence alignment algorithms have been developed recently

to discover useful patterns from alarm floods. However, the low computa-

tion efficiency prevents them from large-scale practical applications or online
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computation with demanding requirements on computation speeds. In view

of this, a new local alignment algorithm was proposed. Compared with the

Smith-Waterman algorithms, the proposed algorithm is much faster in compu-

tation and achieves higher alignment accuracy. These advantages are owing to

three novelties in the proposed algorithm, namely, the priority-based similari-

ty scoring strategy, the set-based pre-matching mechanism, and the modified

seeding-extending steps. The performance of the proposed algorithm was val-

idated by industrial case studies. With the proposed algorithm, it is ready

for further pursuing the predication and prevention of alarm floods based on

similar alarm sequences in historical alarm floods.
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Chapter 4

Cause and Effect Analysis of
Industrial Alarm Signals Using
Modified Transfer Entropies∗

4.1 Overview

In general, a large-scale industrial plant contains thousands of process

variables, but not all of them are configured with analog sensors. Alarms are

configured over the entire plant to ensure safe process operation and regulato-

ry compliance. Some of them are related to analog measurements while many

others are digital by nature, such as instrumental malfunctions, input-output

failures, communication errors, and violation of safety conditions [28]. Thus,

alarm data should be an important resource to track the propagation paths

of abnormalities. Motivated by the above discussion, this chapter proposes

a causality inference method based on binary-valued alarm data to identi-

fy abnormality propagation paths and detect root causes, in the absence of

continuous-valued process data. The main novelties of the proposed methods

are: 1) a modified transfer entropy (TE) and a direct transfer entropy (DTE)

are defined and formulated as the basic statistical metrics for the proposed

method, driven by two characteristics of alarm signals, namely, the random

occurrence delays and the mutual independence of alarm occurrences; 2) a

statistical test based on surrogate alarm signals is used to determine the sig-

nificance thresholds for the normalized values of TE and DTE that represent

∗A version of this chapter has been submitted for publication as: Hu, W., Wang, J., Chen,
T., & Shah, S. L. (2016). Cause and effect analysis of industrial alarm signals using modified
transfer entropies. Control Engineering Practice.
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the causal strength between alarm signals. The proposed method provides an

offline cause and effect analysis, which is valuable in assisting plant operators

in the online diagnosis of root causes of abnormalities. A detected relation

among cause and effect variables implies statistical regularities in historical

data sets. These statistical regularities can be exploited to infer the current

relationships between the alarms of interests. By doing so, industrial plant

operators are able to make a more reliable judgement on how the current ab-

normality propagates from one variable to another and relate it to experiences

from similar abnormal events in the past. The causality relations constructed

may also reveal fault propagation pathways, and can be used to determine

root causes in alarm floods, which is an important step for the prediction and

prevention of alarm floods as stated in [42, 43].

4.2 Transfer Entropy of Alarm Data

This section defines the modified transfer entropy (TE) and direct transfer

entropy (DTE), as well as their normalized counterparts NTE and NDTE.

4.2.1 Transfer Entropy of Alarm Signals

The transfer entropy (TE) is a nonparametric method proposed in [80]

to measure temporal asymmetric information transfer between variables and

thus identify cause and effect signals. In recent years, it has become a popular

method for measuring causal influences in multivariate time series [37, 55].

Compared with the structural methods, such as the Ganger causality, the

TE is capable of detecting causality for either linear or nonlinear processes,

whereas the Ganger causality may only work for linear processes. If the Ganger

causality is considered, we would need to formulate a linear model for binary-

valued alarm data, which is an unsolved open problem. In addition, the

process related to alarms may be nonlinear. Thus, the TE approach is adopted.

Given two continuous-valued signals X̃ and Ỹ , let them be sampled at

time instants t and denoted by x̃t ∈ X̃ and ỹt ∈ Ỹ with t = 1, 2, · · · , N , where
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N denotes the number of samples. The TE from X̃ to Ỹ is calculated as

TX̃→Ỹ =

∫
f(ỹt+1, ỹ

(k)
t , x̃

(l)
t )

· log2
f(ỹt+1|ỹ(k)

t , x̃
(l)
t )

f(ỹt+h|ỹ(k)
t )

dw, (4.1)

where f(·) indicates the probability density function. Integers k and l indicate

the orders of ỹt and x̃t, respectively. Symbols ỹ
(k)
t := [ỹt, ỹt−1, · · · , ỹt−k+1)] and

x̃
(l)
t := [x̃t, x̃t−1, · · · , x̃t−l+1] denote the embedding vectors of past states of Ỹ

and X̃, respectively. The integral variable is w = [ỹt+1, ỹ
(k)
t , x̃

(l)
t ]. Integers

k and l indicate the orders of ỹt and x̃t, respectively. To calculate the TE

between process variables, a critical step is to estimate the probability density

functions [8, 25], which are computationally burdensome. The computational

complexity of process data based TE is O((n + 2σ)k+l+1), where n is the

number of amplitude bins for estimating the probability density function, and

σ is an estimated integer of the discrete kernel width.

In contrast to this, alarm signals are binary-valued variables, taking the

values of 0 or 1. Entropy approaches to binary data have been exploited in the

communication and neuroscience areas. To solve multi-user communication

problems, Wyner & Ziv [94] proposed theorems on the convexity and boundary

of entropies of binary random variables. In the neuroscience areas, Gourévitch

& Eggermont [33] and Ito et al. [48] exploited TE to evaluate information

transfer between auditory cortex neurons, which involve signals with a spiking

trains or a consecutive bursts of binary data. However, the application of

TE to alarm data has rarely been studied. Owing to physical connectivities,

abnormalities often propagate from one alarm signal to another. If the causal

relations of these alarm signals can be quantified, they would be helpful in

revealing the propagation of abnormalities.

As discussed in Section 2.2.1, alarm signals usually have two forms: The

first form only takes the alarm occurrences into account, i.e., an alarm signal

takes the value 1 only at the time instants when the normal specification of its

monitored variable is violated; The second form is that an alarm signal takes

the value 1 throughout the time period when the monitored process signal

stays in the abnormal state. For the causality inference based on alarm data,

the overlapping of ‘1’s between two alarm signals in the second form (2.2) is

not related to the mutual interactions between alarm signals, and thus may
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Figure 4.1: A numerical example for predicting Y based on the history of X
under the influence of random occurrence delays.

lead to erroneous conclusions. Thus, the alarm occurrence signal in (2.1) is

used for the purpose of causality inference. In the sequel, the alarm signal is

referred to as the alarm occurrence signal if not otherwise stated.

There are two characteristics of alarm signals to be considered in the usage

of discrete transfer entropies to detect causality between alarm signals. First,

the random occurrence delays between alarm signals make the calculation

of TE complicated. Given two correlated alarm signals X and Y , the time

interval that an alarm occurrence in Y follows its counterpart in X may be

changing due to disturbances. Such a time interval is referred to as the random

occurrence delay [41]. A numerical example of random occurrence delays

between X and Y is shown in Fig. 4.1. There are four alarm occurrences in

X. For each occurrence in X, there is a corresponding alarm occurrence in Y

with some occurrence delay λ. Four random occurrence delays are λ(1) = 4,

λ(2) = 3, λ(3) = 2, and λ(4) = 5. If the alarm occurrences in X are defined

as 1’s in the dashed windows in Fig. 4.1, they are helpful in the prediction

of alarm occurrences in Y , i.e. [0, 1, 0, 0] → 1, [0, 0, 1, 0] → 1, [0, 0, 0, 1] → 1,

[1, 0, 0, 0] → 1. The causality from X to Y is obvious because whenever X

occurs, Y is found to occur after X. Thus, the random occurrence delays

lead us to only care about the alarm occurrence in X within a historical

window, instead of at each time instant. The second characteristic is that

alarm occurrences in Y are mutually independent, so that there is no need to

consider the effect of the past states of Y . In view of these two characteristics,

a modified TE is proposed as

TX→Y =
∑

p(yt+1,
◦
y
(k1)

t ,
◦
x
(l1)

t−d1
)

· log2
p(yt+1|

◦
y
(k1)

t ,
◦
x
(l1)

t−d1
)

p(yt+1|
◦
y
(k1)

t )
. (4.2)
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where k1 and l1 indicate the orders of the effect variable and cause variable

respectively, and d1 denotes the time lag between X and Y . The summation

symbol
∑

denotes all possible combinations of 3 dimensional states of yt+1,
◦
y
(k1)

t , and
◦
x
(l1)

t−d1
, among which

◦
x
(l1)

t−d1
and

◦
y
(k1)

t are calculated as

◦
x
(l1)

t−d1
=

{ ⋃
x(t−d1):(t−d1−l1+1), if yt+1 = 1,

xt−d1 , otherwise,
(4.3)

◦
y
(k1)

t =

{ ⋃
yt:(t−k1+1), if yt+1 = 1,

yt, otherwise.
(4.4)

Here xt and yt take values from {0, 1}, and
⋃
xt1:t2 = xt1 ∨ xt1−1 ∨ · · · ∨

xt2 , t1 > t2, and the symbol ∨ stands for the “or” operation of Boolean algebra.

Accordingly, the higher-order TE in (4.1) is turned to be a first-order TE in

(4.2). The computational complexity is decreased to O(23), which is much

lower than that of the higher-order TE in (4.1).

Remark 1: The definition of TE in (4.2) is different from the existing meth-

ods in [33], [48] and [101] in two aspects. i) The modified TE is specific for

alarm occurrence signals in (2.1) so as to tolerate random occurrence delays,

whereas the influence of random occurrence delays was not considered in [101]

that exploited the alarm signals in (2.2). ii) The historical states within a

time window are used, while the conventional discrete transfer entropy in [33],

[48] and [101] requires the calculation based on the historical state at every

time instant. Compared with the conventional TE, the modified TE in (4.2)

is more suitable for alarm occurrence signals with the consideration of the

above-mentioned two characteristics of alarm signals.

Essentially, the TE from X to Y is the amount of uncertainty in predicting

the future of Y reduced by given the history of X. Thus, analogously to the

TE in [33] and [55], the TE from X to Y in (4.2) can be expressed in another

form as

TX→Y = H(yt+1|
◦
y
(k1)

t )−H(yt+1|
◦
y
(k1)

t ,
◦
x
(l1)

t−d1
), (4.5)

where H(yt+1|
◦
y
(k1)

t ) and H(yt+1|
◦
y
(k1)

t ,
◦
x
(l1)

t−d1
) are conditional entropies formu-

lated as

H(yt+1|
◦
y
(k1)

t ) = −
∑

p(yt+1,
◦
y
(k1)

t ) · log2 p(yt+1|
◦
y
(k1)

t ),

H(yt+1|
◦
y
(k1)

t ,
◦
x
(l1)

t−d1
) = −

∑
p(yt+1,

◦
y
(k1)

t ,
◦
x
(l1)

t−d1
) · log2 p(yt+1|

◦
y
(k1)

t ,
◦
x
(l1)

t−d1
).
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The above conditional entropies are positive and hold the relationship as

H(yt+1|
◦
y
(k1)

t ) ≤ H(yt+1|
◦
y
(k1)

t ,
◦
x
(l1)

t−d1
). Accordingly, a normalized transfer en-

tropy (NTE) is formulated as

NTX→Y =
TX→Y

H(yt+1|
◦
y
(k1)

t )

=
H(yt+1|

◦
y
(k1)

t )−H(yt+1|
◦
y
(k1)

t ,
◦
x
(l1)

t−d1
)

H(yt+1|
◦
y
(k1)

t )

= 1−
H(yt+1|

◦
y
(k1)

t ,
◦
x
(l1)

t−d1
)

H(yt+1|
◦
y
(k1)

t )
. (4.6)

The NTE NTX→Y is in the range of [0, 1]. The NTE closer to 1 indicates

stronger causality, while a NTE closer to 0 denotes weaker causality.

Remark 2: The definition of the NTE in (4.6) is different from the existing

methods in [25, 33] in two aspects. i) The NTE in (4.6) works for discrete

transfer entropies, whereas the counterpart in [25] only works for continuous

transfer entropies. ii) The calculation of NTE in (4.6) is based on conditional

entropies while the counterpart in [33] gave a biased estimate of NTE by in-

corporating the mean value of TEs from surrogates.

In (4.6), there are three parameters, namely, d1, k1 and l1, which are non-

negative integers. The time lag d1 can be determined as the one associated

with the maximum value of NTX→Y (d1)’s for all nonnegative values of d1 ≤ D,

where D is a user-defined maximum value of time lags; see the step 3 in

Section 4.3.3 and Figs. 4.10 and 4.13 in Section 4.4 for the trends of NTEs

versus time lags as illustration. Since the alarm occurrences, namely, ‘1’s of xt

in (2.1), are almost mutually independent, the order of the effect variable can

be set as k1 = 0. The parameter l1 indicates the number of historical states

of X to be included for the prediction of Y . To determine l1, the principle is

to make l1 tolerate the majority of random occurrence delays λ. Assume the

time stamps of all alarm occurrences in X (or Y ) as Sx = [sx1 , · · · , sxMx
]T (or

Sy = [sy1, · · · , s
y
My

]T ), where Mx (or My) indicates the total number of alarm

occurrences in X (Y ). Then, the time intervals between the alarm occurrences

in Y and the counterparts in X are

Γ = [γ]My×Mx = Sy · I1×Mx − IMy×1 · (Sx)T , (4.7)
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where I is an all-one vector. The minimum positive element in each row is

found as

λi = min {γi,j : γi,j > 0, j = 1, 2, · · · ,Mx} . (4.8)

where i = 1, 2, · · · ,My. The majority of random occurrence delays can be

found from 1.5×IQR (interquartile range) while the values beyond the range

are outliers [66]. So as to tolerate random occurrence delays, the order of the

cause variable can be set as l1 = 1.5×IQRλ, where IQRλ indicates the differ-

ence between the third quartile and the first quartile of λi, i = 1, 2, · · · ,My.

Further, l1 should not be set too large so as to avoid the all-one vector of
◦
x
(l1)

t

in (4.3). An upper bound of l1 is given as 20, which is the maximum time

interval of non-chattering alarms according to ISA standard [47]. As a result,

the parameter l1 is finally determined as

l1 = min{1.5× IQRλ, 20}. (4.9)

4.2.2 Detection of Direct Causality

To detect whether the causality between two continuous-valued signals is

along a direct pathway or through some intermediate variables, the concept of

direct transfer entropy (DTE) was proposed in [25]. More specifically, given

three continuous-valued process signals X, Y , Z with the transfer entropies

TX→Y , TX→Z , and TZ→Y significantly large, we need to know whether the

causality from X to Y is direct or through Z. By calculating the DTE from

X to Y based on Z, the direct information flow paths can be inferred.

Analogous to the DTE of process signals in [25], the DTE of alarm signals

is defined as follows. Based on (4.6) and given the third alarm signal Z, the

NTE from X to Z is calculated as

NTX→Z = 1−
H(zt+1|

◦
z
(m1)

t ,
◦
x
(l2)

t−d2
)

H(zt+1|
◦
z
(m1)

t )
(4.10)

where
◦
z
(m1)

t = zt ∨ zt−1 ∨ ... ∨ zt−m1+1, and d2 indicates the time lag between

X and Z. The NTE from Z to Y is

NTZ→Y = 1−
H(yt+1|

◦
y
(k2)

t ,
◦
z
(m2)

t−d3
)

H(yt+1|
◦
y
(k2)

t )
(4.11)
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where d3 indicates the time lag between Z and Y . As a result, the DTE from

X to Y based on Z is formulated as

DX→Y |Z =
∑

p(yt+1,
◦
y
(k′)
t ,

◦
z
(m2)

t−d3
,
◦
x
(l1)

t−d1
) · log2

p(yt+1|
◦
y
(k′)
t ,

◦
z
(m2)

t−d3
,
◦
x
(l1)

t−d1
)

p(yt+1|
◦
y
(k′)
t ,

◦
z
(m2)

t−d3
)

,

where k′ = k1 = k2. Analogous to (4.6), the normalized direct transfer entropy

(NDTE) from X to Z based on Y in (4.12) is formulated as

NDX→Y |Z =
DX→Y |Z

H(yt+1|
◦
y
(k′)
t ,

◦
z
(m2)

t−d3
)

= 1−
H(yt+1|

◦
y
(k′)
t ,

◦
z
(m2)

t−d3
,
◦
x
(l1)

t−d1
)

H(yt+1|
◦
y
(k′)
t ,

◦
z
(m2)

t−d3
)

, (4.12)

where

H(yt+1|
◦
y
(k′)
t ,

◦
z
(m2)

t−d3
) = −

∑
p(yt+1,

◦
y
(k′)
t ,

◦
z
(m2)

t−d3
) · log2 p(yt+1|

◦
y
(k′)
t ,

◦
z
(m2)

t−d3
),

H(yt+1|
◦
y
(k′)
t ,

◦
z
(m2)

t−d3
,
◦
x
(l1)

t−d1
) = −

∑
p(yt+1,

◦
y
(k′)
t ,

◦
z
(m2)

t−d3
,
◦
x
(l1)

t−d1
) · log2 p(yt+1|

◦
y
(k′)
t ,

◦
z
(m2)

t−d3
,
◦
x
(l1)

t−d1
), (4.13)

The range of NDX→Y |Z is [0, 1]. An NDTE closer to 1 indicates a stronger

direct causality, while an NDTE closer to 0 denotes a weaker direct causality.

4.3 Causality Inference

This section proposes a statistical test to determine the significance levels

for NTE and NDTE, investigates the minimum requirement of alarm occur-

rences, and presents the steps of the proposed causality inference method.

4.3.1 Significance Test

To determine whether the causality and direct causality between alarm sig-

nals are significant, a significance test is a necessary step. In [8], a significance

threshold for the transfer entropy of continuous-valued variables was estab-

lished using Monte Carlo simulations with surrogate data. The main idea is

as follows. To detect the causality TX̃→Ỹ from process variable X̃ and Ỹ , the
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null hypothesis is that TX̃→Ỹ is not significant, implying there is no causality

from X̃ to Ỹ . By implementing N -trial Monte Carlo simulations, the transfer

entropies of surrogate data are calculated as TX̃s→Ỹ s(i), i = 1, 2, · · · , N . The

mean value and standard deviation of TX̃s→Ỹ s(i) are μs
T and σs

T , respectively.

A six-sigma threshold is determined as

γT = μs
T + 6σs

T . (4.14)

If the observed TE TX̃→Ỹ > γT , the null hypothesis is rejected and X̃ is

determined to be the cause variable of Ỹ ; otherwise, there is no causality from

X̃ to Ỹ .
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Figure 4.2: Distribution of NTEs calculated from 10,000 pairs of surrogate
alarm signals Xs and Y s: (a) the histogram is skewed right and multimodal;
(b) the normal probability plot deviates from the red straight line.

As indicated in [8], this significance test method requires that the TEs cal-

culated from the surrogate data follow the Gaussian distribution. However,

the TEs or DTEs of surrogate alarm data are not necessarily Gaussian dis-

tributed. Thus, the significance method in [8] is not appropriate to determine

significance thresholds for alarm signals, which is illustrated numerically as

follows. Given original alarm signals X, Y , and Z, the surrogate alarm signal-

s Xs, Y s, and Zs should have the same length and contain the same number
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of 1’s as the original data. For instance, assuming the sequence length of X

as L and the number of 1’s as M , Xs is generated with Bernoulli distribution

B(1, M
L
).

By implementing N -trial Monte Carlo simulations, the NTEs and NDTEs

for all surrogate alarm data are calculated as NTXs→Y s(i) and NDXs→Y s|Zs(i),

where i = 1, 2, · · · , N . Fig. 4.2 shows an example of 10,000 pairs of uncorre-

lated random signals Xs and Y s with sequence length 43, 200 and 345 alarm

occurrences. It is obvious that NTEs calculated from the 10,000 pairs of alar-

m signals do not follow the Gaussian distribution. Thus, the method in [8]

cannot be applied to determine a reliable significance threshold.

With the unknown distribution of NTEs from surrogate alarm data, the

significance test based on a Monte Carlo p-value presented in [81], [32], [39]

and [76] is more appropriate. The Monte Carlo p-value is formulated as [39, 76]

p =
b+ 1

N + 1
, (4.15)

where b indicates the number of NTEs (or NDTEs) from the surrogates larger

than the NTE (or NDTE) from the observed data. If p < α, the null hypothesis

is rejected at the α significance level. Assuming p = α, the number of trials

of Monte Carlo simulations needed for the significance test is [32, 81]

N =
b+ 1

α
− 1. (4.16)

Here we choose b = 1, i.e., only one sample with NT s
Xs→Y s(i) ≥ NTX→Y (or

NDs
Xs→Y s|Zs(i) ≥ NDX→Y |Z) is allowed for the rejection of null hypothesis.

Given α = 0.01, the number of Monte Carlo simulations is N = 199. Thus, the

significance threshold γT (or γD) for TE (or DTE) is found as the 2nd max-

imum value NT s
Xs→Y s(i) (or NDs

Xs→Y s|Zs(i)). To make the significance test

more robust, the above procedures are repeated for K times. The significance

thresholds γT and γD for NTE and NDTE are calculated as

γT =
1

K
ΣK

k=1γT (k), (4.17)

γD =
1

K
ΣK

k=1γD(k), (4.18)

where γT (k) (or γD(k)) is the 2nd maximum value in the k-th Monte Carlo

test. Here, K = 15 is chosen as a rule of thumb, determined via Monte

Carlo simulations with different values of L (the sequence length) and M (the
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number of alarm occurrences ). An example of the significance thresholds of

NTEs versus K is given as Fig. 4.3. Uncorrelated alarm signals Xs and Ys are

generated with L = 10, 000 and the alarm occurrence following B(1, 0.015).
Fig. 4.3-(a) presents the significance thresholds of 1000 trials of simulations

while Fig. 4.3-(b) gives the trend of variance of γT versus K. It can be found

that γT changes drastically around the mean value for K < 15 while the

variation is not significant for K ≥ 15.
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Figure 4.3: Significance thresholds γT of NTEs versus K in 1000 Monte Carlo
simulations.

Based on (4.17), the null hypothesis is rejected if NTX→Y > γT . Other-

wise, there is no causality from X to Y . Similarly, based on (4.18), the null

hypothesis is rejected if NDX→Y |Z > γD, so that the direct causality from X

to Y based on Z can be determined. To test the effectiveness of the proposed

method, a numerical example is given next.

Example 1. Two alarm signals X and Y are created as two independent

random binary sequences that follow the Bernoulli distribution B(1, p), where
p is the probability of alarm occurrence. As a result, X and Y have no

causal relationship. Then, Monte Carlo simulations are implemented. The

sequence length is set as L = 10000 while p differs in every simulation and

p ∼ U(0.005, 0.05), where U is a uniform distribution. The NTE NTX→Y

is calculated based on (4.6). The corresponding significance threshold γT is

obtained using the proposed significance test method in (4.17). 1000 pairs
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of NTX→Y and γT are obtained as shown in Fig. 4.4-(a). Comparing 1000

pairs of NTX→Y and γT , only four pairs are found with NTX→Y > γT as

indicated in Fig. 4.4-(b). The detection accuracy is 99.6%. Similar results are

also observed for NDTEs (omitted here due to space limitation). Thus, it can

be concluded that the proposed method is quite effective in determining the

significance threshold.
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Figure 4.4: Results of 1000 Monte Carlo simulations for the case without
causal relation: (a) NTEs (blue line) and corresponding significance thresholds
(red line); (b) correctness of results (“True” for correct estimate while “False”
for incorrect estimate).

4.3.2 Number of Alarm Occurrences

In the estimation of transfer entropies, a natural question is: What is the

minimum number of alarm occurrences required to achieve reliable detection?

Hu et al. [41] investigated a similar question for the detection of correlated

alarms, where a rule of thumb recommended is that there should be as least

27 alarm occurrences. Analogous to [41], this study investigates the minimum

requirement of alarm occurrences for the detection of causality between alarm

signals, based on Monte Carlo simulations.

Example 2. A pair of alarm signals X and Y with causal relation from X to

Y are created as follows: Given the sequence length L and the probability of

alarm occurrences p, a binary sequence that follows the Bernoulli distribution
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B(1, p) is generated and denoted as X. The alarm occurrences in Y are as-

sumed to follow their counterparts in X with some occurrence delays. Assume

the time stamp of the ith alarm occurrence in X as sxi , then the time stamp

of the consequential alarm occurrence in Y is

syi = sxi + λi (4.19)

where the integer λi is the ith occurrence delay and λi ∼ N (vm, vs), vm ∈
N

+, vs ∈ R≥0. Fig. 4.5 shows an example of correlated alarm signals with

L = 20, 000, p = 0.005, vm = 10, and vs = 1. The binary sequences of X

and Y are shown in Fig. 4.5-(a) and (c), respectively. It can be found from

Fig. 4.5-(b) and (d) that the occurrence delay between the alarm occurrences

in two sequences is changing around the mean value 10.
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Figure 4.5: An example of correlated alarms and the distribution of random
occurrence delays: a) the alarm signal X, c) the alarm signal Y , b) the occur-
rence delays, and d) the histogram of occurrence delays.

Setting the parameters as L = 2, 000, 000, vm = 10, vs = 0.5, and p ∈
{p : p = 0.005j, j = 1, 2, ..., 10}, alarm signals X and Y containing Mw alarm

occurrences are created. Then, subsequences Xs and Ys containing N alarm
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occurrences are constructed based on X and Y . The segmentation is done as

follows: Ys starts from the ith alarm occurrence and ends at the (i+N − 1)th

alarm occurrence of Y , i = 1, 2, ...,Mw − N + 1,Mw � N . Xs is extracted

from X over the same time duration as Ys in Y . As a result, Mw−N +1 pairs

of subsequences Xs and Ys are constructed. The number of alarm occurrences

N is set as N ∈ {N : N = 5 + 5j, j = 1, 2, ..., 39}. Mw − N + 1 trials of

simulations are performed to calculate the NTEs NT
(i)
Xs→Ys

. The mean value

of NTEs is computed as NTXs→Ys = ΣMw−N+1
i=1 NT

(i)
Xs→Ys

. For p ∈ {p : p =

0.005j, j = 1, 2, ..., 10}, the trends of NTXs→Ys versus N are shown in Fig.

4.6-(a). The differences ΔNT (N) = NTXs→Ys(N)−NTXs→Ys(N − 5) versus

N = 15, 20, ..., 200 are shown in Fig. 4.6-(b). It can be found that NTXs→Ys

rises strikingly with the increase of N for N ≤ 50. For N > 50, the change

of NTXs→Ys is not significant. Accordingly, the minimum number of alarm

occurrences N = 50 is chosen as a rule of thumb.
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Figure 4.6: Average NTEs v.s. numbers of alarm occurrences for different p.

4.3.3 Causality Inference Based on NTEs

To implement the proposed method, the following conditions are assumed:

1) alarm occurrences of each alarm tag are mutually independent; 2) at least

50 alarm occurrences should be present in each alarm sequence; 3) the orders

k1 and l1 in (4.2) and (4.3) should be predetermined. The first condition is

generally satisfied for the following reason. Each occurred alarm should be
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associated with an abnormality, so that industrial plant operators have to pay

attention or to take action in a prompt manner; otherwise, abnormal situa-

tions associated with occurred alarms would have negative effects on operation

safety and/or efficiency. Since the occurrence of abnormality is generally in-

dependent from its previous or next occurrence, we can reasonably assume

the alarm occurrences to be mutually independent. The second condition is

for a reliable detection of causality, as observed in Section 3.2. For the third

condition, the recommended values of k1 and l1 have been given at the end of

Section 2.2.

The sequence of steps for the causality inference based on NTEs consists

of the following steps, also depicted as a flowchart in Fig. 4.7:

Figure 4.7: Flowchart for the causality inference based on NTEs.

1. A group of alarm signalsXk, k = 1, 2, ..,M , are prepared for the causality

inference.
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2. The iterative computation of TEs for pairwise alarm signals Xi and Xj

starts from i = 1 and j = 1.

3. NTXi→Xj
(d), i �= j is calculated based on (4.6) for ∀d ≤ D, d ∈ N. The

NTE from Xi to Xj is calculated as NTXi→Xj
= maxd NTXi→Xj

(d) and

the corresponding time lag is found as dij = arg maxdNTXi→Xj
(d).

4. The significance threshold γT in (4.17) is calculated using the modified

Monte Carlo test in Section III-A.

5. Compare NTXi→Xj
with γT . If NTXi→Xj

> γT , Cij = 1; otherwise,

Cij = 0.

6. Check if NTEs for all pairwise alarm signals have been calculated or not.

If it is, the causality inference proceeds to the next step; otherwise, it

goes back to Step 3 for another pair of alarm signals by increasing i or

j.

7. Plot a causal map indicating information flow paths based on the matrix

C. If Cij = 1, an arrowed line is drawn to denote causality from Xi to

Xj; otherwise, there is no connection between Xi and Xj.

4.3.4 Detection of Direct Causality Based on NDTEs

Based on the causal map in Section 4.3.3, the computation proceeds to de-

tect the direct causality. The complete detection procedure based on NDTEs

is composed of the following steps, also depicted as a flowchart in Fig. 4.8:

1. A group of alarm signals Xk, k = 1, 2, ..,M , are prepared as described

in Section 4.3.3.

2. The iterative computation of NDTEs from Xi to Xj based on Xl starts

from i = 1 and j = 1.

3. If Cij = 1, the computation proceeds to the next step; otherwise, it

proceeds to Step 9.

4. The computation starts from the intermediate variable Xl with l = 1.

5. If Cil = 1 & Clj = 1, the computation proceeds to the next step; other-

wise, it proceeds to Step 8.
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Figure 4.8: Flowchart for the detection of direct causalities based on the
NDTEs.

6. NDXi→Xj |Xl
is calculated based on (4.12). The time delays dij and dlj

are the ones corresponding to the maximum value of NTXi→Xj
(d) and

NTXl→Xj
(d) in Section 4.3.3. The significance threshold γD in (4.18) is

calculated using the method in Section III-A.

7. Check if NDTEs from Xi to Xj through all intermediate variables are

calculated or not. If it is, the computation proceeds to the next step;

82



otherwise, it goes back to Step 5 for another intermediate alarm signal

by increasing l.

8. Determine the maximum NDTE NDmax from Xi to Xj based on all

intermediate alarm signals. Compare NDmax with its corresponding γD.

If NDmax > γD, we say that the causality from Xi to Xj is direct;

otherwise, it is indirect.

9. Check if NDTEs for all pairwise alarm signals have been calculated or

not. If yes, the computation proceeds to the next step; otherwise, go

back to Step 3 for another pair of alarm signals by increasing i or j.

10. The information flow path from Xi to Xj that are determined to be

indirect should be excluded from the causal map in Section 4.3.3.

11. Plot a causal map indicating the direct information flow paths.

The proposed method is unsupervised; no labelled training data sets are

required in the above steps. This is also shown by the flowcharts in Figs. 4.7

and 4.8.

4.4 Case Studies

This section demonstrates the effectiveness of the proposed causality infer-

ence methods for alarm signals using both the simulated and industrial case

studies.

4.4.1 Case I: Numerical Case Study

This subsection illustrates the effectiveness of the proposed method in

causality inference by simulating a group of correlated alarm signals. The

method in Example 2 is used to create three alarm signals with causal relations

as X1 → X2 → X3. First, X1 is produced as a binary sequence that follows

B(1, p). Assume the time stamp of the ith alarm occurrence in X1 as s
1
i , then

the time stamps of the consequential alarm occurrences in X2 and X3 are{
s2i = s1i + λ

(1)
i

s3i = s2i + λ
(2)
i

. (4.20)
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Here λ
(1)
i and λ

(2)
i are independent Gaussian random variables, each of which

takes the mean value 20 and standard deviation 1. Setting the parameters as

L = 20, 000 and p = 0.01, the simulated alarm occurrence signals X1, X2, and

X3 are generated as shown in Fig. 4.9. The number of alarm occurrences in

each sequence is 102. According to Section 4.3.2, the alarm occurrences are

sufficient for the causality inference.
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Figure 4.9: Alarm occurrence signals: (a) the alarm signal X1; (b) the alarm
signal X2; (c) the alarm signal X3.

The proposed method is applied to alarm occurrence signals in Fig. 4.9.

First, the causal relations are detected by following the proposed procedures

in Section 4.3.3. The calculated NTEs versus time lags for each pair of alarm

signals are shown in Fig. 4.10. The normalized transfer entropies and their cor-

responding significance thresholds (in the brackets) are calculated as shown in

Table 4.1. As a result, the causalities among the three variables are concluded

via a causal map in Fig. 4.11-(a).

Table 4.1: Normalized transfer entropies (From row to column).

TXi→Xj
X1 X2 X3

X1 0.73(0.022) 0.62(0.023)
X2 0.109(0.112) 0.78(0.025)
X3 0.110(0.111) 0.110(0.111)
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Figure 4.11: Causal maps: (a) the causal map of all information flow paths;
(b) the causal map of direct information flow paths

Furthermore, to detect whether the causality from X1 to X3 is direc-

t or through the intermediate variable X2, the NDTE is calculated to be

NDX1→X3|X2 = 0.0037. The threshold from Monte Carlo test is obtained to

be γD = 0.025. Since NDX1→X3|X2 < γD, the causality from X1 to X3 is

indirect. Then, the information flow path from X1 to X3 should be excluded

and a new causal map of direct causality is drawn as Fig. 4.11-(b). According

to the detection results, X1 is the cause of X2, X2 is the cause of X3, and X1

is the cause of X3, among which the causality from X1 to X3 is indirect. The

conclusion is consistent with the given relationship.
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4.4.2 Case II: Industrial Case Study

To validate the effectiveness of the proposed method, an industrial example

is provided. The facility is an oil plant. Totally, more than five thousand

alarms are configured to monitor process variable variations, operation and

safety conditions. In a time period of 3.5 days, there were 288 alarm tags

being annunciated. The proposed causality inference method was applied to

all of these alarm tags. Owing to space limitation, we select six alarm tags as

representatives to demonstrate the effectiveness of the proposed method. The

first five alarm tags from an oil plant are located in the same interconnected

unit, while the 6th alarm tag is located in a disconnected unit. The first five

alarm tags have the following physical connections: Tag 2 represents the total

gas flow in a burner which has two supplies from cell A and cell B. Tag 1

indicates the gas flow from the feed cell B. Tags 3, 4, and 5 are associated

with 3 products as the outputs from the burner. Once Tag 1 turns abnormal,

Tag 2 will become abnormal, too, followed by subsequent abnormalities in

Tags 3, 4 and 5. Based on this, the information flow paths follow the order

as: Tag 1 → Tag 2 → Tag 3 → Tag 4 → Tag 5. The 6th alarm tag is located

in a disconnected unit.
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Figure 4.12: Alarm occurrence signals over 3.5 days time period.
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The historical data samples of the six alarm tags are shown in Fig. 4.12.

Over the 3.5-day time period, the number of alarm occurrences of the six

alarm signals were 653, 242, 242, 242, 219, and 106, respectively. Calculating

the chattering indices as proposed in [90] and [58], Tag 1 was found to be

chattering. Using a 30-second off-delay timer, the number of alarm occurrences

is reduced to 282. According to Section 4.3.2, the number of alarm occurrences

in this case is sufficient to reach a reliable detection of causality.

Figure 4.13: Trends of transfer entropies versus time lags.

Then, the proposed method is applied to calculate the NTEs among alar-

m signals in Fig. 4.12. The NTEs under different time delays are calculated

as shown in Fig. 4.13. The maximum values of NTEs are selected. Mean-

while, significance thresholds are calculated from the Monte Carlo test in

Section 4.3.1. Taking the causality inference from Tag 1 to Tag 2 as an ex-

ample, the maximum value of NTE is NT (Tag1 → Tag2) = 0.2577 and the

significance threshold is γT = 0.0155. Since NT (Tag1 → Tag2) > γT , we say

that there is causality from Tag1 to Tag2. As a result, a causal map describing

the information flow paths is drawn in Fig. 4.14.

The NTEs are presented in Table 4.2. It is found that the causalities from

Tag 2 to Tag 3, from Tag 2 to Tag 4, and from Tag 3 to Tag 4 are very strong

while the causalities from Tag 1 to other alarm tags are relatively small. The
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Figure 4.14: Causal map of information flow paths.

result is reasonable because Tag 1 is associated with one of the two supplies

for the process related to Tag 2, making the causality is not as strong as those

among Tags 3, 4, and 5.

Table 4.2: Normalized transfer entropies (From row to column).

Tag1 Tag2 Tag3 Tag4 Tag5 Tag6

Tag1
0.2577 0.2577 0.2577 0.1293 0.0115
(0.0155) (0.0153) (0.0155) (0.0151) (0.0215)

Tag2
0.0003 1 1 0.4336 0.0082
(0.0127) (0.0011) (0.0013) (0.0142) (0.0188)

Tag3
0.0011 0.0001 1 0.4336 0.0082
(0.0134) (0.0135) (0.0011) (0.0144) (0.0183)

Tag4
0.0011 0.0001 0.0001 0.4336 0.0082
(0.0130) (0.0139) (0.0140) (0.0135) (0.0204)

Tag5
0.0004 0.0004 0.0005 0.0005 0.0085
(0.0122) (0.0131) (0.0131) (0.0133) (0.0167)

Tag6
0.0065 0.0058 0.0058 0.0058 0.0045
(0.0090) (0.0089) (0.0087) (0.0089) (0.0102)

Furthermore, the NDTE is calculated for each pair of alarm tags with

NTEs larger than their corresponding thresholds. Taking Tag 1 and Tag 5

as an example, the possible intermediate variables include Tags 2, 3, and

4. Thereby, the NDTEs from Tag 1 to Tag 5 based on Tags 2, 3, and 4

are calculated in Table 4.3. It can be seen that no direct causality is found

between the cause variables and effect variables in Table 4.3. By excluding the

indirect causalities from the causal map in Fig. 4.14, a causal map describing

all direct information flow paths is drawn in Fig. 4.15. Tag 1 is identified

as the root cause of this group of alarm signals. The conclusion is consistent
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with the physical connections given at the beginning of this subsection and

was validated by the operating engineers.

Table 4.3: Detection of direct causalities based on NDTEs.

Cause Effect Intermediate
NDTE Threshold

variable variable variables
Tag1 Tag3 Tag2 0 0.0129
Tag1 Tag4 Tag2, Tag3 0 0.0122
Tag1 Tag5 Tag2, Tag3, Tag4 0.00014 0.0118
Tag2 Tag4 Tag3 0 0.0005
Tag2 Tag5 Tag3, Tag4 0 0.0149
Tag3 Tag5 Tag4 0 0.0152

Figure 4.15: Causal map of direct information flow paths.

4.5 Summary

To detect causes and effects of a group of alarm signals, find a possible

root cause, and track the propagation of an abnormality, a causality inference

method based on the modified transfer entropies is proposed. The modified

TE and the modified DTE, as well as their normalized counterparts NTE and

NDTE, are defined for binary-valued alarm signals, considering their char-

acteristics in terms of the random occurrence delays and the mutual inde-

pendence of alarm occurrences. Considering that NTEs or NDTEs calculated

from surrogate alarm signals do not follow Gaussian distributions, a statistical

test is proposed to determine the significant thresholds for NTEs and NDTEs.

By following the sequence of steps of the proposed causality inference method

outlined in Sections III-C and III-D, information flow paths can be found. The
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effectiveness of the proposed method is illustrated via numerical and industrial

case studies to detect causal interactions from alarm signals.
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Chapter 5

Discovering Association Rules
of Mode-Dependent Alarms
from Alarm and Event Logs∗

5.1 Overview

State-based or condition-based alarming has emerged as a prevalent method

to reduce nuisance alarms and inhibit alarm floods in the alarm management

of process industries. Such a strategy minimizes the number of active alarms

by modifying the alarm attributes or suppression status based on certain con-

ditions. However, the configuration of state-based alarms in practice relies on

process knowledge, making it time and resource intensive. In order to iden-

tify associations between alarms and states in an automated way, this paper

proposes a data-driven method to detect mode-dependent alarms from Alar-

m & Event (A&E) logs, where the messages of alarms and operating modes

are stored. To the best knowledge of the authors, this is the first reported ex-

ploratory study to detect mode-dependent alarms using a data driven method.

The major contributions of the proposed methodologies are as follows: 1) the

determination of association rules of mode-dependent alarms is formulated as

a hypothesis testing problem; 2) a modified a-priori algorithm is developed

to find frequent patterns of operating modes; and 3) the proposed procedure

is evaluated on an industrial A&E data set. Using the proposed method,

mode-dependent alarms for either single operating mode or multiple operat-

∗A version of this chapter has been submitted for publication as: Hu, W., Chen, T., & Shah,
S. L. (2016). Discovering association rules of mode-dependent alarms from alarm and event
logs. IEEE Trans. Control Systems Technology.
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ing modes are discovered. The results can be used to help users in identifying

the root causes of some nuisance alarms or configuring state-based alarming

modules.

5.2 Preliminaries on Mode Dependent Alarm-

s

This section introduces state-based alarming in practice, and then illus-

trates the switching of operating modes and the triggering of consequential

alarms.

5.2.1 State-Based Alarming in Practice

According to ISA-18.2 [47], state-based alarming is an important logic-

based technique that modifies alarm attributes or suppresses alarms based

on the state changes of equipment or processes. In process industries, most

alarms work normally only for one single-state [38]. Once the operating state

changes, some alarms may no longer indicate true abnormalities and often

are triggered and therefore become nuisance alarms. By using a state-based

alarming strategy, these alarms will not be presented to operators under cer-

tain conditions. As a result, the operators are less overloaded and have more

capability to process critical alarms. An industrial case of a simple lube oil

pump, where the state-based alarm should be configured, is presented in Ex-

ample 1.

Figure 5.1: Sketch of a lube oil pump (PI is an indicator and the pump is
controlled by an operator via a DCS (Distributed Control System)).

Example 1. A lube oil pump is used to supply lube oil for large rotary and
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alternating machinery. It is opened or stopped by operators with commands

from the control room. An indicator is configured to monitor the discharge

pressure as shown in Figure 5.1. Whenever the discharge pressure drops below

the low alarm limit, a low pressure alarm x(e1) will be annunciated. When the

pump was manually stopped by an operator, the discharge pressure decreased

and triggered an alarm. But this alarm was a consequence of stopping the

pump and it did not indicate any abnormality. Hence, no action was required

and the alarm became useless. Figure 5.3 shows the trends of state transitions

of x(e1) and mode changes of the pump. It can be seen that the occurrence

(ALM) of x(e1) always followed after the pump was stopped and the return-

to-normal instant (RTN) of x(e1) always appeared after the start of the pump.

In this case, the state-based alarming solution is effective in removing the

consequential nuisance alarm, i.e., x(e1) should be suppressed immediately

when the operator stops the pump and enabled when the pump is started.
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Figure 5.2: Switching between “Running” and “Closure” modes of a lube oil
pump (blue line) and the transition of alarm states (dashed red line). Two
boxed plots show zoomed details when the pump started or stopped, and the
corresponding alarm states.

5.2.2 Operating Modes and Consequential Alarms

The stated-based alarming strategies are usually configured based on pre-

defined states, e.g., the running or closure of equipment, the startup or shut-

down of a plant, the feed of different fuel or raw material, the variation of
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operating rates, and the change for making different products [38, 51]. How-

ever, not all such state changes are explicit. Some states, such as the last three,

are often difficult to identify and require algorithms to detect them from pro-

cess data [63]. As for the startup or shutdown of a plant, the annunciator is

often full of nuisance alarms. Thus, good process knowledge is required for

the configuration of state-based alarms for such cases. This study only focuses

on the states of equipment rather than a large section of processes or the w-

hole plant. These states are also known as operating modes of equipment [10]

and usually determined by operators. The changes of such operating modes

are explicitly known and easily recorded by data acquisition systems. So no

additional algorithms or process knowledge is required to identify the modes.

Table 5.1: Operating modes of some commonly used equipment.

Equipment Operating modes
Pump Start / Stop / Standby
Valve Open / Close
Motor Start / Stop / Standby / Forward

/ Reverse
Controller Auto / Manual / Cascade

Some commonly used equipment or modules, such as pumps, valves, mo-

tors, controllers, and their operating modes, are listed in Table 5.1. Depending

on processes and manipulation guidelines, the equipment could be operated

either at on-off modes, such as the start and stop of a pump, or at multiple

modes, such as the use of an additional “standby” mode for a pump. Generally,

the alarm may work normally at one specific mode and become a consequen-

tial nuisance alarm when the operating mode switches. Thus, the state-based

alarming should be used to suppress nuisance alarms in such cases. To config-

ure state-based alarms for a specific operating mode, it should be known which

alarms are the consequential alarms. In practice, this mainly relies on process

knowledge of engineers or operating experience of field operators. However,

such procedure analysis work is usually time and resource intensive, and the

configurations could be incomplete. Alternatively, a data driven method sug-

gested in this study can automate the detection of mode-dependent alarms,

and thus significantly reduce the work in associating the alarms and operating

modes. Generally, the consequential alarms are found to be annunciated by
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following the switching to a specific mode and not necessarily returned to nor-

mal after another mode, due to the influence of multiple operating states or

the change of normal specifications. To detect association rules of mode-based

alarms, only the alarm occurrences are included in the computation while the

return-to-normal instants may lead to erroneous detection results.

5.3 Problem Formulation

This section formulates the problem of the detection of mode dependent

alarms. Some preliminary definitions used throughout this chapter are pre-

sented first.

5.3.1 Mathematical Definitions

Given an A&E log containing the events of alarms and operating modes,

some preliminary concepts are defined as follows.

Some basic mathematical notations are: Given a set V = {vi : i =

1, 2, · · · , |V |}, |V | denotes the cardinality of V ; V ∪ v′ indicates that an ad-

ditional element v′ is added to V , and V \v′ indicates that an element v′ is

excluded from V ; given a column vector v = [v1, v2, · · · , v|v|]T , |v| denotes the
length of v.

Definition 2. An operating mode variable, denoted as xi, is a binary-valued

variable indicating the change of operating modes. X = {xi : i = 1, 2, · · · , |X |}
is denoted as a set of distinct mode variables.

Definition 3. An alarm occurrence variable, denoted as yj, is a binary-valued

variable indicating the occurrence of an alarm. Y = {yj : j = 1, 2, · · · , |Y|} is

denoted as a set of distinct alarm variables.

Fig. 5.3 gives an example of an operating mode variable (a) and an alarm

occurrence variable (b). By taking xi as the open of a valve (and yj as the

occurrence of a low flow alarm), xi(t) = 1 (yj(t) = 1) indicates that the

valve was opened (the low alarm was annunciated) at time instant t. It can

seen from Fig. 5.3 that the valve was opened five times and the low alarm

was annunciated five times too. For simplicity, in the rest of the paper, the

“operating mode variable” and “alarm occurrence variable” are notated as

“mode” and “alarm”, respectively.
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Figure 5.3: An example of an operating mode variable (a) and an alarm
occurrence variable (b).

Definition 4. An event (v, tk) indicates the occurrence of v at a specific

time instant tk. A log is a collection of events for all v ∈ V , denoted as

{(v, tk) : v ∈ V , k ∈ N
+}, where N

+ indicates natural numbers. Thus, the

A&E log is denoted as D = {(v, tk) : v ∈ X ∪ Y , k ∈ N
+}. The sub-databases

D(X ) = {(xi, tk) : xi ∈ X , k ∈ N
+} and D(Y) = {(yj, tk) : yj ∈ Y , k ∈ N

+}
denote databases of all mode events and all alarm events, respectively. It is

obvious that D = D(X ) ∪ D(Y).

Definition 5. Given all events {(v, tk) : k ∈ N
+} for a specific v, a time

vector of v is formulated as t(v) = [t
(v)
1 , t

(v)
2 , · · · , t(v)|t(v)|]

T , where t
(v)
k1

< t
(v)
k2

if

k1 < k2. Then, t
(xi) and t(yj) denote the time vectors for xi ∈ X and yj ∈ Y ,

respectively.

Definition 6. The k1-th occurrence of xi ∈ X is said to be followed by the

k2-th occurrence of yj ∈ Y , if Δt = t
(yj)
k2

− t
(xi)
k1

∈ [0,Wth], where Wth is a

user-defined time window.

Definition 7. The frequency ξ(v) indicates how many times an alarm or a

mode v ∈ X ∪Y occurs in a given database D. It is obvious that ξ(v) = |t(v)|.
The frequency ξ(xi → yj) indicates how many times xi ∈ X is followed by

yj ∈ Y in D.
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5.3.2 Problem Formulation

The objective of the study is to discover all association rules ψ : X → Y of

mode-dependent alarms from a given A&E log D on X and Y . The feasibility is

based on the principle that the switching to a specific operating mode is always

followed by the occurrence of an alarm. Accordingly, the mode-dependent

alarm is defined as follows:

Definition 8. The alarm yj ∈ Y is dependent on the operating mode xi ∈ X ,

if

(i) ξ(xi → yj) ≥ Fth, and

(ii) p(yj|xi) = 1.

Then, yj is said to be a mode-dependent alarm of xi, denoted using an associ-

ation rule as xi ⇒ yj. Otherwise, yj is not a mode-dependent alarm of xi and

this is denoted as xi �⇒ yj.

The first condition makes sure that the association rule of the mode-

dependent alarm is determined from a non-sparse data set. The second con-

dition guarantees the cause-effect relation between xi and yj, which relies on

the conditional probability p(yj|xi), an estimation of which is given by

p̂(yj|xi) =
ξ(xi → yj)

ξ(xi)
. (5.1)

Note that the minimum frequency Fth in condition (i) is a user-defined thresh-

old to ensure that the association rules are determined from a commensurate

data set. In general, we may have xi ⇒ yj even when there is a relatively

small specification on Fth. However, this will lead to a likely large and many

false association rules. Thus, the setting of Fth helps to prune a large amount

of infrequent association rules.

A graphical example is shown in Fig. 5.4. The vertical color bars de-

note the occurrences of events for the operating mode “PUMP01:STOP”

(x1), and three alarms “PI01.LOW:ALM” (y1), “FI01.LOW:ALM” (y2), and

“FI05.FAIL:ALM” (y3). It can be found that p̂(y1|x1) = 1, p̂(y2|x1) = 0.8,

p̂(y3|x1) = 0, which are calculated based on a time window Wth in Defini-

tion 6. However, these estimated probabilities do not necessary imply that

p(yj|xi) = 1 in Definition 8. To conclude which alarm is a mode-dependent

alarm of x1, we first need to compare their frequencies with the user-defined
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Figure 5.4: Example of the mode-dependent alarm on a time axis.

threshold Fth. Furthermore, a hypothesis is required to check the popula-

tion parameter, namely, p(yj|xi). For each pair of xi ∈ X and yj ∈ Y , the

association is determined via a hypothesis test as{
H0 : p(yj|xi) = 1,
HA : p(yj|xi) �= 1.

(5.2)

If the null hypothesis H0 is rejected, we accept the alternative hypothesis and

conclude that xi �⇒ yj; otherwise, we have xi ⇒ yj. Eventually, the problem

of detecting association rules ψ : X → Y from an A&E log D can be resolved

by implementing the hypothesis test for each pair of xi ∈ X and yj ∈ Y .

Figure 5.5: Example of mode-dependent alarms of multiple modes on a time
axis.

In addition to the mode-dependent alarm for a single operating mode

in Fig. 5.4, it is not uncommon to see that one alarm may occur after the

co-occurrence of multiple operating modes. A graphical example with two

modes “PUMP01:STOP” (x1) and “PUMP02:STOP” (x2), and one alarm
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“FI01.LOW:ALM” (y1) is shown in Fig. 5.5. It can be seen that whenever

both pumps stopped running, the low flow rate alarm y1 was annunciated after

a short time period. In the case of multiple operating modes, a critical step is

the detection of co-occurrences of these modes. If one mode occurs in a short

period after the occurrence of another mode, we may regard them related;

otherwise, their occurrences are not related. Accordingly, the co-occurrence

of multiple operating modes are defined as follows:

Definition 9. The n modes X(n) = {xi ∈ X : i = 1, 2, · · · , n} are said to co-

occur within a time window Wth, if ∃S = {t(xi)
l : i = 1, 2, · · · , n; l ∈ N

+} such

that ΔS = maxS −minS ≤ Wth. The frequencies ξ(X(n)) and ξ(X(n) → yj)

indicate the number of co-occurrences of x1, x2, · · · , xn and the number of

times that their co-occurrences are followed by yj ∈ Y in D, respectively.

Analogous to Definition 8, the alarm yj ∈ Y is said to be a mode-dependent

alarm of X(n) = {xi ∈ X : i = 1, 2, · · · , n}, notated as X(n) ⇒ yj, if (i)

ξ(X(n) → yj) ≥ Fth, and (ii) p(yj|X(n)) = 1; otherwise, X(n) �⇒ yj. The

hypothesis test is the same as that in eqn. (5.2) by checking the population

parameter p(yj|X(n)). As a result, the set of detected association rules does

not just include mode-dependent alarms of a single operating mode, but also

contains those of multiple operating modes.

5.4 Methodology

This section discusses how to identify mode-dependent alarms from his-

torical A&E Logs. Algorithms to detect the frequent patterns of operating

modes and the association rules of mode-dependent alarms are proposed.

5.4.1 Frequent Patterns of Operating Modes

According to the previous section, the determination of association rules

involves two cases, namely, the mode-dependent alarms for a single mode and

multiple modes. Thus, prior to detecting ψ : X → Y , it is required to find the

frequent patterns of operating modes, which is defined as follows.

Definition 10. A frequent n-pattern X̃(n) of operating modes is an itemset

of n modes X(n) = {xi ∈ X : i = 1, 2, · · · , n}, the co-occurrence frequency of
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which satisfies ξ(X(n)) ≥ Fth. The collection of all n-patterns X̃(n) is notated

as Ln. The collection of all frequent patterns is notated as L =
⋃N

n=1 Ln.

Given a sub-database D(X ), the objective is to detect L that contains all

frequent mode patterns. A prevalent method for frequent pattern mining is

the a-priori algorithm developed by Agrawal & Srikant [2]. It detects frequent

itemsets from transactional database in a join-and-prune manner. In the join-

ing step, all possible candidate itemsets of k items are generated as Ck. In

the pruning step, all infrequent itemsets are excluded from Ck by examining

their frequencies in the database. In this study, a modified a-priori method

is proposed for the detection of frequent mode patterns. The framework of

the algorithm remains the same as that of the a-priori algorithm. The dif-

ference is the calculation of frequencies, which serves as a critical step for the

determination of frequent patterns.

Algorithm 3 Discovery of frequent patterns of operating modes.

Input Arguments: D(X ),X ,Wth, Fth.
Output Argument: L.
Extract all t(xi), ∀xi ∈ X
C1 = X ;
L1 = {x ∈ C1 : ξ(x) ≥ Fth};
k = 2;
while Lk−1 �= ∅ do

Ck = Fun-candidate(Lk−1);
for each candidate c ∈ Ck do

T = {t(xi) : ∀xi ∈ c}
ξ(c) = Fun-frequency(T,Wth);

end for
Lk = {c ∈ Ck|ξ(c) ≥ Fth};
k = k + 1;

end while
L = L1 ∪ L2 ∪ · · · ∪ Lk−1.

Algorithm 1 is the main algorithm for the detection of frequent pattern-

s of operating modes. Initially, the collection of 1-item candidates is taken

as the set of all distinct modes, namely, C1 = X . Then, the frequent 1-

patterns are found as L1 = {X(1) ∈ C1 : ξ(X(1)) ≥ Fth}. Iteratively, the

frequent k-patterns Lk are found from k-mode candidates Ck. In each it-

eration, the candidates Ck are generated based on Lk−1 using Algorithm 2.
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For any two k − 1 frequent patterns l1 = {x1, · · · , xk−2, xk−1} ∈ Lk−1, l2 =

{x1, · · · , xk−2, x̃k−1} ∈ Lk−1, xk−1 �= x̃k−1, a k-item candidate is generated as

c = X(k) = {x1, · · · , xk−2, xk−1, x̃k−1}. However, if there is any k − 1 subset

s = X(k−1) ⊂ c not frequent, namely, s /∈ Lk−1, c will not be included in Ck.

To determine whether the k-item candidate is frequent or not, the frequency

of c is calculated using Algorithm 3.

Algorithm 4 Fun-candidate (Lk−1): Generate candidates.

Input Argument: Lk−1.
Output Argument: Ck.
for ∀l1 = {x1, · · · , xk−2, xk−1} ∈ Lk−1, ∀l2 = {x1, · · · , xk−2, x̃k−1} ∈
Lk−1, xk−1 �= x̃k−1 do

c = {x1, · · · , xk−2, xk−1, x̃k−1};
Ck = Ck ∪ c;
for ∀ ((k − 1)-subset s ⊂ c) do

if s /∈ Lk−1 then
Ck = Ck\c;

end if
end for

end for

According to Definition 9, the frequency of a k-item candidate c is count-

ed as the number of times all the operating modes X(k) = {xi ∈ c : i =

1, 2, · · · , k} co-occur in the database D(X ). This requires the time vector t(xi)

of each mode xi ∈ c and the time window Wth. Firstly, all the time vectors

are stacked into one vector as

t̃ = [t̃1, t̃2, . . . , t̃|̃t|], t̃l ∈
k⋃

i=1

t(xi), (5.3)

where the elements are sorted in an ascending order, namely, t̃l < t̃l+1; and,

|̃t| =
∑k

i=1 |t(xi)|. Then, an index vector indicating that t̃l belongs to the set

t(xi) for xi ∈ c is created as

h = [h1, h2, . . . , h|h|], (5.4)

where |h| = |̃t|; the l-th element hl is assigned to be i, if the corresponding t̃l

in t̃ comes from the i-th time vector t(xi). Afterwards, we use a time window

of size Wth to scan from the first element t̃1 to the last one t̃|̃t| of t̃. The

frequency of c is initialized as ξ(c) = 0. If the events for all operating modes
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Algorithm 5 Fun-frequency (T,Wth): Calculate the frequency of a pattern
with multiple modes.

Input Argument: t(x1), t(x2), · · · , t(xk),Wth.
Output Argument: ξ.
t̃ = [t̃1, t̃2, . . . , t̃|̃t|] = t(x1) ∪ t(x2) ∪ · · · ∪ t(xk);

h = [h1, h2, . . . , h|̃t|], where hl = i, if t̃l ∈ t(xi), i = 1, 2, · · · , k;
[̃t, la] = sort(̃t,’ascend’);
h = h(la);
d = 1;
ξ = 0;
for i = 1 to |̃t| with step d do

lb = (̃t ≥ t̃l) ∧ (̃t < t̃l +Wth);
b = unique(h(lb))
if length(b)== N then

ξ = ξ + 1;
d = sum(lb);

else
d = 1;

end if
end for

xi ∈ c, i = 1, 2, · · · , k, are found within the same time window, the frequency

will be added 1, namely, ξ(c) = ξ(c) + 1, as shown in Algorithm 5. Then, the

calculation will move to the next time window starting from the mode event

next to the previous time window. Finally, the frequency ξ(c) of c is obtained

when the scan ends at the last event. The collection of all frequent k-patterns

is found as Lk = {c ∈ Ck|ξ(c) ≥ Fth}.

Remark 1. The method in Agrawal & Srikant [2] cannot be directly applied to

the problem in this section, owing to the difference in database structures. It

requires transactional database which is a database consisting of many trans-

actions. Each transaction is a sequence of records. Thus, the frequencies of

items can be easily counted as their occurrences in the transactions. In con-

trast, the database D(X ) of operating modes is essentially a whole sequence

of records. Thus, to adapt the a-priori algorithm to such database, the ma-

jor problem is the calculation of frequencies of items, which is solved using

Algorithm 5.
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5.4.2 Mode-Dependent Alarms for Single Operating Mod-
e

This subsection elaborates how to detect mode-dependent alarms for a

single operating mode from the A&E log D on X ∪ Y . The detection is

implemented for each pair of xi ∈ L1 and yj ∈ Y . An association rule of mode-

dependent alarm must satisfy two conditions in Definition 8. Accordingly,

the detection includes two steps: First, the frequency ξ(xi → yj) should be

calculated and compared with Fth; second, the hypothesis test in eqn. (5.2)

should be implemented by examining the population parameter p(yj|xi).

The calculation of ξ(xi → yj) is based on their time vectors t(xi) and t(yj).

The frequency is counted as the number of times xi and yj occur simultane-

ously within a time window of size Wth. By comparing t(xi) and t(yj), a matrix

of time differences is formulated as

�T = [�t]|t(yj)|×|t(xi)| = t(yj) · I1×|t(xi)| − I|t(yj)|×1
·
(
t(xi)

)T
, (5.5)

where I1×|t(xi)| and I|t(yj)|×1
are all one vectors. By truncating the matrix �T

with a widow [0,Wth], we have

�T = [�t]|t(yj)|×|t(xi)|, (5.6)

where

�tij =

{
�tij if � tij ∈ [0,Wth],
0 otherwise .

(5.7)

The transition from �T to �T filters out the time differences for the pairs of

occurrences not satisfying Definition 6. Then, the ξ(xi → yj) is estimated as

ξ(xi → yj) = rank (�T ). (5.8)

If ξ(xi → yj) ≥ Fth, the computation proceeds to the next step of hypothesis

test to examine the second condition of Definition 8. Otherwise, the compu-

tation terminates and we conclude that xi �⇒ yj.

To implement the hypothesis test, we need to check whether the population

parameter p(yj|xi) is equal to 1 or not. Based on p(yj|xi) =
p(yj ,xi)

p(xi)
, the

hypothesis in eqn. (5.2) is converted to{
H0 : p(yj, xi) = p(xi),
HA : p(yj, xi) �= p(xi).

(5.9)
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In this vein, the frequency ξ(xi) of xi can be treated as a random variable K

following the binomial distribution [36]. The probability function is

p(K = k) =

(
N

k

)
pk(1− p)(N−k), (5.10)

where N is the number of samples and p = p(xi). Analogously, the frequency

ξ(xi → yj) of the co-occurrence of xi and yj also follows the binomial distri-

bution in eqn. (5.19) with p = p(yj, xi). Denote the population parameters

as p1 = p(xi) and p2 = p(yj, xi), and the observation values as k1 = ξ(xi),

k2 = ξ(xi → yj), p̂1 = k1
N1

, p̂2 = k2
N2

, and p̂ = k1+k2
N1+N2

. According to [27], the

alternative likelihood function is

H(p̂1, p̂2; k1, N1, k2, N2) =

(
N1

k1

)
pk11 (1− p1)

(N1−k1) ·
(
N2

k2

)
pk22 (1− p2)

(N2−k2). (5.11)

The null likelihood function H(p̂, p̂; k1, N1, k2, N2) has the same form of e-

qn. (5.11) by substituting p̂1 and p̂2 for p̂. Then, the logarithmic likelihood

statistic is

Λ = −2 log
H(p̂, p̂; k1, N1, k2, N2)

H(p̂1, p̂2; k1, N1, k2, N2)
. (5.12)

By substituting the observation values into eqn. (5.12), the logarithmic likeli-

hood statistic is calculated as

Λ =− 2

[
k1 log

k1 + k2
2k1

+ (N1 − k1) log
N1 − k1+k2

2

N1 − k1

+k2 log
k1 + k2
2k2

+ (N2 − k2) log
N2 − k1+k2

2

N2 − k2

]
.

(5.13)

The parameters N1 and N2 are referred to as the time length of the

database D. Thus, N1 = N2, N1 � k1, N2 � k2, N1 � k1+k2
2

, andN1 � k1+k2
2

.

Then, we have

lim
N1→+∞

(N1 − k1) log
N1 − k1+k2

2

N1 − k1
=

k1 − k2
2

, (5.14)

lim
N2→+∞

(N2 − k2) log
N2 − k1+k2

2

N2 − k2
=

k2 − k1
2

. (5.15)

Subsequently, Λ is approximated as

Λ ≈ −2

[
k1 log

k1 + k2
2k1

+ k2 log
k1 + k2
2k2

]
. (5.16)
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According to the work in [27], Λ is asymptotically χ2 distributed with one

degree of freedom. The Chi-squared value at the significance level of 0.05

is about 3.84. If Λ > 3.84, we say that the null hypothesis H0 is rejected

at the significance level of 0.05. Accordingly, p(yj, xi) �= p(xi), or equally,

p(yj|xi) �= 1, is accepted. Then, we conclude xi �⇒ yj. Otherwise, xi ⇒ yj,

if Λ ≤ 3.84. The smaller value Λ implies more significant association rule of

xi ⇒ yj. Eventually, the association rules detected for ∀xi ∈ X and ∀yj ∈ Y
can be ranked based on the ascending order of Λ.

5.4.3 Mode-Dependent Alarms for Multiple Operating
Modes

The detection of mode-dependent alarms for multiple operating modes

differs from that for a single operating mode by the calculation of frequencies.

The frequent patterns X̃(k) ∈ Lk, k ≥ 2, of multiple operating modes are found

in subsection 5.4.1. The frequency ξ(X̃(k)) of each pattern is calculated using

Algorithm 5. To determine the association rule of mode-dependent alarms,

the first condition in Definition 8 must be checked first. The problem is how

to calculate the frequency ξ(X̃(k) → yj) for each pair of X̃(k) ∈ Lk, k ≥ 2, and

yj ∈ Y . In general, if one alarm yj is dependent on a multi-mode pattern X̃(k),

yj should always occur after the last mode variable xi ∈ X̃(k) occurs. Based

on this fact, the frequency ξ(X̃(k) → yj) can be calculated in the following

way.

At first, we need to determine the time vector t(X̃
(k)) with each element

indicating the occurrence of the last event for all xi ∈ X̃(k). According to

Definition 9, a sub-vector S can be extracted from the incrementally sorted

time vector t̃ in eqn. (5.3), using a sliding time window of size Wth. The

sub-vector S is formulated as

S = [t̃l+1, t̃l+2, · · · , t̃l+|S|] (5.17)

such that

1. ΔS = t̃l+|S| − t̃l+1 ≤ Wth;

2. S([hl+1, hl+2, · · · , hl+|S|]) = {1, 2, · · · , k}.

where [hl+1, hl+2, · · · , hl+|S|] in h is the index vector corresponding to S in t̃;

S(v) indicates the set of unique elements in v. The first condition makes
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sure all events are captured within a time window Wth. The second condition

guarantees the occurrence of ∀xi ∈ X̃(k) can be found within the time win-

dow. Then, tl+|S| is selected as an element of t(X̃
(k)). Finally, the frequency

of co-occurrences of ∀xi ∈ X̃(k) is achieved as ξ(X̃(k)) = |t(X̃(k))|. A graphical

example is shown in Fig. 5.6 to demonstrate how the time vector t(X̃
(2)) is de-

termined for two mode variables. For example, we find the first occurrences of

x1 and x2 with ΔS = t
(x2)
1 −t

(x1)
1 < Wth and x2 happens after x1, then t

(x2)
1 is se-

lected as the first element of t(X̃
(2)). Eventually, t(X̃

(2)) = [t
(x2)
1 , t

(x1)
2 , t

(x1)
4 , t

(x2)
5 ].

Figure 5.6: Graphical example for producing the time vector of the multi-mode
variable X̃(2) = {x1, x2} based on t(x1) and t(x2).

Subsequently, for each pair of X̃(k) ∈ Lk, k ≥ 2, and yj ∈ Y , a matrix of

time differences analogous to eqn. (5.5) is calculated as

�T = [�t]|t(yj)|×|t(X̃(k))| = t(yj) · I
1×|t(X̃(k))| − I|t(yj)|×1

·
(
t(X̃

(k))
)T

(5.18)

The calculation of ξ(X̃(k) → yj) can be done using eqns. (5.6-5.8). If ξ(X̃(k) →
yj) ≥ Fth, the computation proceeds to hypothesis test; otherwise, the com-

putation terminates and we conclude that X̃(k) �⇒ yj.

To implement the hypothesis test, the method is similar to that for a

single operating mode in subsection 5.4.2. The hypothesis to determine the

association rule X̃(k) ⇒ yj is formulated as{
H0 : p(yj, X̃

(k)) = p(X̃(k)),

HA : p(yj, X̃
(k)) �= p(X̃(k)).

(5.19)

The frequency ξ(X̃(k)) of the co-occurrence of multiple variables X̃(k) can

be treated as a random variable following the binomial distribution with the
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probability function as shown in eqn. (5.10). So it is with the frequency

ξ(X̃(k) → yj). Denote the population parameters as p1 = p(X̃(k)) and p2 =

p(yj, X̃
(k)), and the observation values as k1 = ξ(X̃(k)), k2 = ξ(X̃(k) → yj),

p̂1 =
k1
N1

, p̂2 =
k2
N2

, and p̂ = k1+k2
N1+N2

. The rest of the hypothesis test is the same

as eqns. (5.11-5.16). The null hypothesis H0 is rejected at the significance level

of 0.05 if Λ > 3.84. Then, we conclude X̃(k) �⇒ yj. Otherwise, X̃(k) ⇒ yj, if

Λ ≤ 3.84.

5.4.4 Detection Procedures

Given an A&E log D on X ∪Y , the detection procedure of association rules

ψ : X → Y is composed of the following steps (and depicted as a flowchart in

Fig. 5.7):

1. The A&E log D on X and Y is taken as the input. Two parameters Wth

and Fth are predefined.

2. Extract the sub-database of operating modes D(X ) from D and detect

the frequent k-patterns of operating modes X̃(k) using Algorithm 3. The

frequency of X̃(k) is calculated as ξ(X̃(k)) > Fth. All frequent k patterns

X̃(k) of operating modes are stored in Lk. The collection of all frequent

patterns is L = L1 ∪ L2 ∪ · · · ∪ LK , where K is the maximum size of

frequent patterns.

3. The iterative detection of mode-dependent alarms starts from the collec-

tion of frequent 1-pattern L1, and runs till completion of the detection

for all frequent K-patterns in LK .

4. For each collection Lk of frequent k-patterns, the detection is iteratively

implemented for each pair of X̃
(k)
i ∈ Lk and yj ∈ Y , from i = 1, j = 1

to i = |Lk|, j = |Y|, where |Lk| indicates the number of all frequent

k-patterns.

5. To determine the association rule for X̃
(k)
i ∈ Lk and yj ∈ Y , the fre-

quency ξ(X̃
(k)
i → yj) is calculated. If k = 1, X̃

(k)
i is essentially xi ∈ X .

Then, ξ(X̃
(1)
i → yj) is calculated using eqns. (5.5-5.8). If k ≥ 2, the

time vector t(X̃
(k)
i ) should be determined via eqn. (5.17). Eventually,

ξ(X̃
(k)
i → yj), k ≥ 2, is calculated using eqns. (5.18,5.6-5.8).
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6. Compare ξ(X̃
(k)
i → yj) with Fth. If ξ(X̃

(k) → yj) ≥ Fth, the computation

proceeds to the next step of hypothesis test; otherwise, the computation

for the current pair of X̃
(k)
i and yj terminates and we conclude that

X̃(k) �⇒ yj.

7. Substitute k1 = ξ(X̃
(k)
i ) and k2 = ξ(X̃

(k)
i → yj) into eqn. (5.16). Then,

Λ is calculated and compared with the Chi-squared value 3.84 at the

significance level of 0.05. The null hypothesis H0 is rejected if Λ > 3.84.

Then, we conclude X̃(k) �⇒ yj; otherwise, X̃
(k) ⇒ yj, if Λ ≤ 3.84.

8. All association rules of mode-dependent alarms X̃(k) ⇒ yj are discovered

and sorted based on the ascending order of Λ and output as the final

result ψ : X → Y .

The number of detected association rules is eventually decided by the two

parameters Wth and Fth. To set Wth and Fth, the following principles could

be considered. (1) The time window Wth is used to determine whether the

occurrence of one event is related to another based on Definition 6. If Wth is

set relatively large, then the unrelated occurrences will be falsely regarded as

related. If Wth is set relatively small, then some related events will be missed.

The best way to set Wth should be based on the process. For instance, a small

Wth is needed for fast processes, while a large Wth can be applied to slow

processes. (2) The frequency threshold Fth is used to make sure the detected

association rules are common enough. A small Fth may lead to the burst of

association rules while an extremely large Fth may provide less association

rules than expected. As a rule of thumb, Fth can be set to be at the median,

1-quantile, or 3-quantiles of ξ(xi), ∀xi ∈ X , depending on how common the

consequential nuisance alarms are in the alarm system.

5.5 Industrial Case Studies

This section provides two industrial case studies to demonstrate the practi-

cability and effectiveness of the proposed method in detecting mode-dependant

alarms from historical A&E logs.
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Figure 5.7: Flow chart for the procedures to determine association rules of
mode-dependent alarms.

5.5.1 Case Study I

The industrial process for this case study is an oil sands extraction plant,

which refines bitumen from oil sands and upgrades it into crude oil products.

Thousands of unique alarms are configured to monitor the processes of the
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entire plant. Actions, such as the changes of operating modes are made by

operators through the human-machine interface (HMI) and recorded via da-

ta acquisition systems. The alarm and event data collected for case studies

covered three consecutive months. The total number of alarm occurrences is

about 50 thousand and the alarm rate for the entire plant is 3.7 alarms/10

min. Moreover, about 14 thousand events of operating modes were recorded

in the A&E log. The sets X and Y , contains 1061 distinct alarm variables

and 1231 distinct mode variables, respectively. This subsection presents the

overall results for the implementation of the proposed method.

At first, the time window Wth is determined in a practical manner: (1) The

time difference Δti for each event of operating mode and the nearest followed

alarm occurrence is calculated and shown in Fig. 5.8. (2) As a conservative

choice, the time window is set to Wth = 109 sec, which is the median of time

differences in Fig. 5.8. Accordingly, about half of the time differences will

be used in the calculation of frequencies ξ(xi → yj). If the mode-dependent

alarms are very common in an alarm system, the 3-quantiles could be used

as Wth, so as to tolerate more mode-alarm pairs. In contrast, the 1-quantile

might be a choice if the mode-dependent alarms are expected to be rare. In

the rest of the case study, Wth = 109 sec is used.
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Figure 5.8: The time difference for each event of operating mode and the
nearest alarm occurrence following it.

Tests were conducted based on different threshold values for Fth: [5, 10, 15,

20, 25, 30]. Prior to the detection of association rules, the frequent patterns

of operating modes are extracted first. Then, the association rules of mode-

dependent alarms are detected for each mode pattern. It can be found from

Tables 5.2 and 5.3 that the number of frequent k-patterns of operating modes

110



and the number of association rules of mode-dependent alarms grow with the

decreasing values of Fth. For example, for the case with Fth = 5, there are 1023

mode patterns and 273 association rules. A small Fth does not just increase

the computational burden, but also causes the difficulty for the users to select

association rules of interests. To determine a proper frequency threshold Fth,

the mean of the Chi-squared values are calculated and compared in Fig. 5.9.

A smaller Chi-squared value Λ indicates a more significant association rule.

Based on this principle, the frequency threshold can be determined as Fth = 10

corresponding to the minimum mean value of Λ. This threshold can be used

as a recommendation for the same alarm system.

Table 5.2: Number of frequent mode patterns based on different Fth.

Frequency Num. of mode patterns in Lk

threshold L1 L2 L3 L4 L5 L6

Fth = 5 714 426 151 41 8 1
Fth = 10 396 127 18 2 0 0
Fth = 15 232 48 3 0 0 0
Fth = 20 173 24 1 0 0 0
Fth = 25 126 12 1 0 0 0
Fth = 30 91 8 1 0 0 0

Table 5.3: Number of association rules based on different Fth.

Frequency Num. of association rules

threshold X̃
(1)
i → yj X̃

(2)
i → yj X̃

(3)
i → yj

Fth = 5 129 121 23
Fth = 10 70 39 10
Fth = 15 48 18 2
Fth = 20 25 12 2
Fth = 25 16 4 1
Fth = 30 8 3 1

5.5.2 Case Study II

To show how the mode-dependent alarms are determined, two specific

examples are selected from Case I. The first example gives the mode-dependent

alarms for a single operating mode tagged as “Mode #68”, which indicates

the stopping of the tailing pump. Over the time period of three months,
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Figure 5.9: The mean of Chi-squared values for all association rules based on
different Fth.

this pump was stopped 38 times. Using the proposed method, the frequency

ξ(xi → yj) and the Chi-squared value Λ are calculated for each alarm and

“Mode #68”. The metrics for the top four hundred alarms are shown in

Fig. 5.10. The association rules of mode-dependent alarms are eventually

found as those with ξ(xi → yj) ≥ Fth = 10 and Λ ≤ 3.84.
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Figure 5.10: The frequencies ξ(xi → yj) and Chi-squared values Λ for the top
four hundred alarms and “Mode #68”. (The dashed lines in the upper plot
and lower plot indicate the frequency threshold Fth = 10 and the Chi-square
threshold 3.84, respectively.)

Four association rules are shown in top rows of Table 5.4 while the last

row is presented for comparison. The occurrences of “Mode #68” and the five
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alarms are shown as the vertical lines on the time axis in Fig. 5.11. It can be

seen that “Alarm #159”, “Alarm #136”, “Alarm #100”, and “Alarm #191”

were very likely annunciated simultaneously with the occurrences of “Mode

#68”. In contrast, the occurrences of “Alarm #96” had a very different

distribution on the time axis.

Table 5.4: Association rules detected for Mode #68.

Association rules ξ(xi → yj) p̂(yj|xi) Λ
Mode#68⇒Alarm#159 38 1 0
Mode#68⇒Alarm#136 38 1 0
Mode#68⇒Alarm#100 34 0.89 0.22
Mode#68⇒Alarm#191 29 0.76 1.21
Mode#68 �⇒Alarm#96 2 0.05 39.57
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x 106
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Alarm #159
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Figure 5.11: Occurrences of “Mode #68” and the five alarms on the time
axis. (The vertical lines indicate the time instants when the mode or alarm
occurred.)

Table 5.4 gives quantitative indicators for the detected association rules.

For instance, “Alarm #159” was found to occur 38 times following the shut-

down of the tailing pump. The probability for “Alarm #159” following “Mode

#68” is 1. The Chi-squared value Λ = 0 indicates the association rule “Mode

#68 ⇒ Alarm #159” is very significant. The time differences between the oc-

currence of “Mode #68” and that of “Alarm #159” are shown in Fig. 5.12-(a).

It can be seen that “Alarm #159” always occurred within five seconds after
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the occurrence of “Mode #68”. Comparing the Chi-squared values, “Mode

#68 ⇒ Alarm #136” was found as significant as the first rule; while “Mode

#68 ⇒ Alarm #100” and “Mode #68 ⇒ Alarm #191” are less significant but

nevertheless indicating mode-dependent alarms. In contrast, the association

rule for “Alarm #96” has a Chi-squared value of 39.57 which is much larger

than the threshold of 3.84. Thus, “Mode #68 �⇒ Alarm #96” is concluded.
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Figure 5.12: Time differences between the occurrences of each mode-alarm
pair.

The second example presents mode-dependent alarms for multiple operat-

ing modes. The operating modes “Mode #161”, “Mode #179”, and “Mode

#188”, represent the shut-down of a booster seal water pump, the shut-down

of a lube oil pump, and the shut-down of a lube oil cooling fan, respective-

ly. These operating modes are related to the same lube oil supply system.

Over the time period of three months, the three facilities were stopped 21, 19,

and 18 times, respectively. Using Algorithm 3, “Mode #161”, “Mode #179”,

and “Mode #188” were found to co-occur 14 times, larger than the threshold

Fth = 10. Thus, {Mode #161, Mode #179, Mode #188} is determined to

be a frequent 3-pattern. By calculating the Λ for each alarm and the mode

pattern, and comparing them with the threshold of 3.84, eventually one as-

sociation rule is determined as “{Mode #161, Mode #179, Mode #188} ⇒
Alarm #293” with ξ(xi → yj) = 14, p̂(yj|xi) = 1, and Λ = 0. The alarm

“Alarm #293” is the “LOLO” alarm of the discharge lube oil flow. Fig. 5.13
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displays the occurrences of the three operating modes and “Alarm #293” on

the same time axis. Obviously, “Alarm #293” was annunciated almost si-

multaneously with the co-occurrences of the three operating modes. Fig. 5.14

shows the time differences, indicating that “Alarm #293” usually occurred

within 14 seconds after the co-occurrence of “Modes #161”, “Modes #179”,

and “Modes #188”.
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Figure 5.13: Occurrences of “Mode #161”, “Mode #179”, “Mode #188”, and
“Alarm #293” on the time axis.
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Figure 5.14: Time differences between the occurrence of “Alarm #293” and
the co-occurrence of “Modes #161”, “Modes #179”, and “Modes #188”.
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5.6 Summary

State-based alarming is an effective strategy to reduce nuisance alarms,

and thus should become a routine part of alarm rationalization strategies in

process industries. To help with the configuration of state-based alarming in

practice, this chapter proposed a data-driven method to detect association

rules of mode-dependent alarms from A&E logs. The feasibility is based on

the principle that the switching to a specific operating mode is always followed

by the occurrence of an alarm. Accordingly, the definitions of mode-dependent

alarms and related preliminary concepts are presented. Algorithms to detect

frequent patterns of operating modes and association rules of mode-dependent

alarms are proposed. The effectiveness of the proposed method is demonstrat-

ed by industrial case studies based on real historical A&E data sets from an

oil sands plant.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis proposes a variety of advanced techniques for the analysis of

alarm data, targeting at improving the efficiency of industrial alarm systems

and assisting process operators in managing hazardous situations. The out-

comes of the studies in this thesis are summarized as follows:

1. A new method is developed to detect and quantify correlated alarms in

the presence of occurrence delays, which are identified as the main causes

leading to erroneous conclusions from existing methods. The correlated

alarms are determined using a statistical test for random occurrence

delays and the correlation level is calculated based on continuous-valued

pseudo alarm sequences. The method can help process engineers to

detect and remove duplicated alarms, or discover improper alarm system

designs.

2. An accelerated local alignment method is proposed to find similar alarm

flood sequences, based on the motivation that similar alarm floods are

very likely caused by the same root cause. To improve the computation-

al efficiency and accuracy, three novel strategies are incorporated, in-

cluding the priority-based similarity scoring strategy, the set-based pre-

matching mechanism, and the modified seeding-extending steps. With

the proposed method, it is ready for further pursuing the predication and

prevention of alarm floods based on similar alarm sequences in historical

alarm floods.
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3. A causality inference method based on binary-valued alarm data is devel-

oped to identify abnormality propagation paths and detect root causes,

in the absence of continuous-valued process data. A modified transfer

entropy (TE) and a direct transfer entropy (DTE) are formulated based

on the two characteristics of alarm signals, namely, the random occur-

rence delays and the mutual independence of alarm occurrences. The

proposed method provides an offline cause and effect analysis, which is

valuable in assisting plant operators in the online diagnosis of root caus-

es of abnormalities. The causality relations constructed may also reveal

fault propagation pathways, and can be used to determine root causes

in alarm floods.

4. A data-driven approach is proposed to discover association rules of mode-

dependent alarms from historical A&E logs. The method consists of two

major steps: the frequent patterns of operating modes are firstly de-

tected by a modified a-priori algorithm, and then the mode-dependent

alarms are determined by a hypothesis test for either a single operat-

ing mode or multiple operating modes. The proposed method can help

process engineers in discovering consequential nuisance alarms and con-

figuring state-based alarming strategies.

The effectiveness and applicability of the proposed methods are validated

by case studies of real industrial alarm data.

6.2 Future Work

The results achieved so far in this thesis are of great value for the improve-

ment of alarm monitoring in large-scale process industries. Nonetheless, there

remain many opportunities for further exploration, so as to further improve

alarm systems and make them compliance with the benchmark requirements

in ISA-18.2 [47] and EEMUA-191 [28]. The following promising directions

deserve efforts for future work.

• Prediction and Prevention of Alarm Floods for Online Application

For the prediction and prevention of alarm floods, the very first step is to

analyze and classify the historical alarm floods in some manner in order to see
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if alarm floods are predictable. The method proposed in Chapter 3 is able to

find similar alarm floods in a quick and accurate way. The unsolved problems

are: what are the abnormalities leading to similar alarm floods? Would two

different abnormalities result in similar alarm floods? The answers to the

questions are closely related to process knowledge that may be hard to obtain

and express in a mathematical form. Next, the prediction of alarm floods is

meaningful only for online applications. That is, more alarms are coming,

similar alarm floods in the historical database are found, and the prediction is

made. Thus, the prediction has to be done in an online and recursive manner.

Could the proposed algorithm in Chapter 3 be adapted to a recursive form

in order to further reduce the computation cost? These questions should

be studied in order to achieve the online prediction and prevention of alarm

floods.

• Process Discovery of Operator Actions in Response to Alarms

The existing research on alarm management only focused on alarms where-

as the human factors during abnormal situations are vital but rarely studied.

Improper operational procedures can cause further abnormalities and faults,

which can potentially result in alarm chattering and floods, accidents, and

economical loss. It has been reported that about 80% of the catastrophes are

linked to human errors according to studies in [72]. The worker fatigue costs

U.S. companies $77 - $150 billion per year in increased health care costs, lost

production and damage sustained during accidents [21, 89]. In view of these

facts, it is of significant importance to study the relations between alarms

and operator actions. Specifying proper operational procedures provides the

means for decision support capabilities which can potentially result in further

enhancement in the efficiency and productivity of the processes as well as

in reducing fatigue of operators. There are a variety of questions to be ex-

plored: How can the historized information be used to discover the sequences

of alarms and the corresponding operator actions? How can the models of

proper operational procedures be developed from the discovered sequences?

Finally, what potential findings can be specified from the developed models

for use as training and enhancement benchmarks? We have made an attempt

in this research direction and have a piece of preliminary work published as

[44]. This study focuses on a simple case of univariate alarms, whereas the
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more complicated case of multiple alarms remains unsolved. To make further

exploration, the following technical problems should be thought thoroughly:

How can A&E logs be decomposed based on the state transitions of multiple

alarms? How can the uncertainty of orders of multiple alarms be dealt with in

process discovery? Can the time information be extracted and incorporated

into the representation models of captured operational procedures?

• Root Cause Detection with A Combination of Multiple Resources

As explained in Chapter 1, there are different ways to find causal relation-

s for complex industrial processes depending on the resources. The graph-

based and process history based methods have been commonly studied in

the past years. Chapter 4 provides an alternative means for causality infer-

ence using another type of resource, namely, alarm data. However, no single

method can provide satisfactory results for all cases. Each method has its

own merits and limitations. Thus, one question to explore is: Can we make

effective use of multiple resources for the identification of abnormality propa-

gation paths and detection of root causes? Thambirajah et al. [86] conducted

cause-and-effect analysis in chemical processes by combining basic and readily

available information about the connectivity of the process with the results

from causal measurement-based analysis. Schleburg et al. [79] utilized two re-

sources, namely, the plant connectivity and alarm logs, to analyze the causal

relations of alarms and group alarms associated with a common root cause.

Furthermore, there are three types of resources, namely, process connectivity

information, historical process data, and alarm data. How could we combine

them to reduce spurious conclusions and deliver more reliable causality infer-

ence? How can the results be used to assist operator in perceiving the true

abnormalities and making prompt and correct responses, especially during

alarm floods?
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