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Abstract

Broadcast is a fundamental operation in wireless networks widely used to
disseminate a message to every node in the network. Energy accumulation is
an approach to reducing the power consumption of broadcast. In conventional
approaches, a node can decode the message if the received power from a single
transmission is above a threshold. In contrast, in the cooperative approach
based on energy accumulation, a node can decode the message if the sum of
the received powers from any set of transmissions exceeds the threshold. An
important question is how much energy can be saved in broadcast if energy
accumulation is employed. Since employing energy accumulation adds extra
design complexities, answering this question can help in deciding whether or
not it should be implemented. Previously, it was shown that this saving is
limited in linear wireless networks, irrespective of the network size, and the
location of the nodes in the network. In this work, however, we show that
this saving can increase with the network size in two-dimensional networks.
Also, despite the fact that both problems of cooperative and non-cooperative
broadcast with minimum energy are NP-hard, we establish a bound on the

maximum saving that can be obtained.
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“There is a powerful driving force inside every human being that,

once unleashed, can make any vision, dream, or desire a reality”

- - Anthony Robbins
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Chapter 1

Introduction

Today’s application of wireless ad hoc networks ranges from Smart Grid [1, 2]
and Internet of Things (IoT) [3, 4] to Machine-to-Machine (M2M) communi-
cations networks [5, 6] and smart environments [7, 8]. A fundamental com-
munication operation widely used in these applications is broadcast in which
a message is sent from a source node to all other nodes in the network. In a
wireless ad hoc network, some nodes may be out of the transmission range of
the source node. In this case, not only the source node but also a subset of
other nodes that receive the message need to transmit the message to deliver
the message to everyone.

Every time a message is broadcast, many transmissions occur in the net-
work. Since each of these transmissions consumes power, and wireless devices
(e.g., mobile devices) typically have limited energy supplies (they run on bat-
teries), reducing the total power consumption of broadcast is of great interest.

To reduce the power consumption of broadcast, different approaches have
been taken in the literature. These approaches are mainly based on transmis-
sion power control [9], and reduction in the number of redundant transmis-
sions [10, 11].

A third approach, studied in this work, is energy accumulation, which is one

of the main approaches in cooperative broadcast [12]. In cooperative broadcast



with energy accumulation, which is simply referred to as cooperative broadcast,
a node can decode the message if the sum of the received powers from any set
of transmissions of the message is above the decoding threshold [13]. This
generalizes the conventional non-cooperative broadcast algorithms in which a
node can decode the message only if the received power from a single trans-
mission of the message is above the decoding threshold. For example, suppose
the decoding threshold is one, and a node wu receives three transmitted signals
with powers 0.5, 0.4, and 0.3. With energy accumulation, node u is able to de-
code since the sum of the received powers is 1.2, which is above the threshold.
Without energy accumulation, however, decoding is not possible because, for

each transmission, the received power at wu is strictly less than one.

Energy accumulation can let transmitters reduce their transmission powers
while still assuring other nodes will receive the message. This, as shown in [12]
and [14] through numerical analysis, can reduce the power consumption of
broadcast, hence saving energy. Theoretical analysis of the amount of this
energy saving, which is the subject of this work, can shed more light on how

much gain/saving can be achieved using energy accumulation.

If the minimum energy consumption of cooperative broadcast and non-

cooperative broadcasts are P, and P,, respectively, then the cooperation gain

by

(i.e., the energy saving) is defined as 7~ To evaluate the cooperation gain,

therefore, we need to find values of P, and P..

A major challenge in analyzing the cooperation gain is that the minimum-
energy cooperative broadcast and the minimum energy non-cooperative broad-
cast are both NP-hard problems [15, 16]. To address this challenge, we first
introduce a novel conversion method that transforms any cooperative broad-
cast algorithm into a non-cooperative broadcast algorithm. Then, we prove
that the energy consumption of the converted non-cooperative algorithm is at
most a O(logn) factor higher than that of the cooperative algorithm, where n

denotes the total number of nodes in the network. In other words, we show that



if there is a cooperative broadcast algorithm with total power consumption of
P,., then there is a non-cooperative algorithm with total energy consumption
of P, = P..O(logn). This implies that the cooperation gain is O(logn).

In [17], it was proven that the cooperation gain is limited (constant) in linear
wireless networks, irrespective of the number of nodes, and their locations in
the network. In this work, we show that this limitation does not extend to
two-dimensional (2D) networks. The main contributions of this work are two

folds.

1. In 2D grid networks, we prove that the cooperation gain grows logarith-
mically with the number of nodes. Further, using numerical analysis,
we show the same logarithmic growth in random networks. This estab-
lishes a lower bound of (logn) on the cooperation gain achievable in 2D

networks.

2. Through a novel approach, we prove that the cooperation gain grows at
most logarithmically with the number of nodes in any 2D network. This
establishes an upper bound of O(logn) on the maximum cooperation gain
achievable in 2D networks. We remark that this upper bound is proven
despite the fact that computing the minimum power consumption of both

cooperative broadcast and non-cooperative broadcast is NP-hard [15, 16].

1.1 Related Work

Cooperative broadcast with energy accumulation can be performed at receivers
utilizing maximal ratio combining (MRC) of orthogonal signals in time, fre-
quency or code domain (see [18, 14, 13]). Existing cooperative broadcast algo-
rithms using energy accumulation fall into two groups. The first group includes
algorithms (e.g., [19, 18]) in which receiving nodes can combine signals from
all previous transmissions to benefit from transmission diversity. These algo-

rithms are called cooperative broadcast algorithms with memory. The other



group includes “memoryless” cooperative broadcast algorithms such as the one
proposed in [14]. In these algorithms, a node can only use transmissions in the
present time slot to accumulate energy; Signals received from transmissions
in previous time slots are discarded. The cooperative broadcast algorithms

studied in this thesis are with memory.

The problem of cooperative broadcast with minimum energy can be bro-
ken into two sub-problems i) transmission scheduling, which determines the set
of transmitters and the order of transmissions; ii) power allocation, in which
the transmission powers are set. It was proven that, given a transmission
scheduling, optimal power allocation can be computed in polynomial time, but
finding an optimal scheduling that leads to a minimum power consumption
is NP-hard [19, 12]. Minimizing the broadcast delay while keeping the power
consumption at minimum was proven not only NP-hard but also o(logn) inap-

proximable [14].

The problem of finding non-cooperative broadcast with minimum energy
was also proven to be NP-hard [16]. The best existing approximation algorithm
to the problem was proposed by Caragiannis et al.[20]. In 2D wireless networks,
their algorithm has a constant approximation ratio of 4.2 for Euclidean cost

graphs, and a logarithmic approximation for non-Fuclidean cost graphs.

Unlike 2D networks, in linear networks, the minimum energy of both cooper-
ative and non-cooperative broadcast algorithms can be computed in polynomial
time. For linear networks, the ratio of the two minimum power consumptions
was proven to be constant with respect to the number of nodes in the net-
work [17]. Our work, extends that study to 2D networks, where we show that

the gain increases with the number of nodes.



1.2 Thesis Outline

This thesis is organized as follows. We provide the necessary background and
fundamental concepts in Chapter 2. The core of our work is presented in
Chapter 3 where we initially introduce the system model and definitions. Next,
we analyze cooperation gain in 2D wireless networks and provide an upper
bound for it. We take our analysis one step further and study the cooperation
gain achievable in 2D grid networks. In Chapter 4, we verify our analytical
results through numerical analysis. Finally, in Chapter 5, we conclude the

thesis and introduce directions where our work can be extended.



Chapter 2

Background

2.1 Wireless Channels

2.1.1 Additive White Gaussian Noise Channel

Additive White Gaussian Noise (AWGN) is a basic and generally accepted
model for thermal noise in communication channels. The main attributes of

AWGN are
e The noise is additive since the received signal is a combination of the
transmitted signal plus some noise where the noise is statistically inde-
pendent of the signal.
e The noise is white, meaning that it has a constant power spectral density.
Therefore, the autocorrelation of the noise, in the time domain, is zero
for any time offset 7 # 0.

e The distribution of the noise samples is Gaussian.

A channel is called AWGN if its noise can be modeled as above.



2.1.2 Fading Channels

In wireless networks, the the signal sent from the transmitter experiences sev-
eral paths with different path losses and phase shifts until received at the
receiver’s side. The transmission radios can be categorized into two general
groups of i) (Line-Of-Sight) LOS, and ii) (Non-Line-of-Sight) NLOS.

A transmission is called line-of-sight (LOS) when there is a direct path
between the transmitting node and the receiver, and the signal travels a free
space without being impacted by any physical obstacles. On the other hand, a
signal propagation is considered NLOS when the transmitted signal is partially
obstructed by physical objects between transmitter and receiver like buildings,
clouds, and etc. Signals traveling through a NLOS link experience phenomena
such as reflection, diffraction, scattering, absorption and refraction. Figure 2.1
is an example of different paths between the transmitter and receiver.

The path loss associated with LOS transmission, referred to as large-scale
fading, corresponds to attenuation of average received power. Let P, be the
transmit power. The power received under large-scale fading can be modeled

using Frits Free Space equation as:

A
Pr — PthGr(m)a, (21)

where G; and G, are the transmit and receive antenna gains, respectively.
A is wavelength, d is the distance between transmitter and receiver, and «, the
path loss exponent, usually has a value between 2 and 6. The path loss model

can be simplified as
P

Przﬁd_au

(2.2)

where distance d is greater than Fraunhofer Distance (see Section 2.1.3), and
parameter 5 depends on the frequency and other factors. We refer to this
model as the simplified path-loss model. In Figure 2.2, the dashed line shows

the average received power decreasing with distance.
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Figure 2.1: Common propagation mechanisms in wireless transmission

Signal transmission in an actual network is, however, not limited to LOS
propagation. In other words, the received signal is composed of NLOS versions
of the message (multi-path waves) as well as its LOS version. Traveling through
diverse paths, multi-path waves arrive at slightly different times, and they can
vary a lot in phase and amplitude. Therefore, their combination can result in
rapid fluctuations in power and amplitude over short period of time or short
travel distance. This characterization is called small-scale fading which is also
referred to as fading. Figure 2.2 shows the received power under both large-

scale and small-scale fading.

The randomness that is associated with fading requires employment of sta-

tistical models to study the behavior of the power and amplitude of the received
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Figure 2.2: Received signal under fast and slow fading

signal. Some of the important models in the literature are
e Rayleigh fading model
e Ricean fading model
e Frequency selective fading models

Rayleigh fading model is used to model flat fading channels where there is
no LOS between the transmitter and the receiver. Let r(¢) and s(t) be received
and transmitted signals, respectively. The discrete-time inputoutput, under

Rayleigh fading model, is

r(t) = as(t) + n(t), (2.3)

where path gain « is a complex zero-mean Gaussian random variable, and n;
the additive noise component which usually has Gaussian distribution.
Ricean fading model is another model used to analyze flat fading chan-

nels. This model is used when there exists dominant stationary component in



addition to random multiple paths. The relationship between the baseband
signals using this model is similar to 2.3. The main difference is that the path
gain « is a complex Gaussian random variable with imaginary and real parts
having non-zero mean.

Frequency Selective fading models. The inter-symbol interference of
Frequency Selective fading channels can be modeled by the sum of delta func-
tions that fade independently. Thereby, the discrete-time inputoutput relation-

ship of such channels is
r(t) = Z a?s(t — ) +n(t), (2.4)

where o/s are independent path gains with complex Gaussian distributions.

2.1.3 Fraunhofer Distance

The Fraunhofer distance, or far-field distance, is given by:
d=——o, (2.5)

where D is the length of largest dimension of antenna, and A is the wavelength
of the radio wave. Fraunhofer distance is the key the differentiate between far-
field and near-field in electromagnetic field. The simplified path-loss model is
only valid when the distance between the transmitter and the receiver is equal

or greater than the Fraunhofer distance.

2.2 Wireless Ad Hoc Networks

Contrary to infrastructure wireless networks where nodes collaborate using
access points, wireless ad hoc networks (WANET') do not rely on central devices

to manage network traffic. These networks are self-configuring meaning that
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the connections between nodes are made on the fly without going through the
complex process of infrastructure setup and administration. In WANET, two
nodes may be out of each other transmission ranges. Nevertheless, the two
nodes can communicate with each other by first establishing a path of nodes
between themselves, and then forwarding their messages through this path.
The task of establishing paths/routes is done using routing algorithms, which
rely on broadcast for route discovery.

Below are the two ad hoc categories that have been widely studied.

e Wireless Sensor Networks
Wireless Sensor Networks (WSN) are WANETSs where nodes are sensor-
based devices that are spatially distributed in the environment. These
networks are mostly employed for monitoring physical or environmen-
tal settings such as sound, pressure, climatic changes, and etc. Some
applications of these networks include greenhouse monitoring, forest fire
detection, traffic control, and data center monitoring. A commonly used
communication operation in WSNs is broadcast using which the sink node

sends its control messages to every sensor in the network.

The pattern used for broadcasting the message could vary based on the
application of the network. Figure 2.3 shows a wireless sensor network

where the source (black node) broadcasts its message (an alert) to others.

e Vehicular Ad hoc Network
WANETS can also be categorized with respect to the mobility of nodes.
Mobile Ad hoc Network (MANET) is a continuously self-configuring
WANET where nodes are able to move in the network. Nodes’ mobility
could lead some connections to break while new connections are formed as
nodes get to each others proximity. Vehicular Ad Hoc Network (VANET)

is a special class of MANETS, which can be used to improve road safety

11



Figure 2.4: Application of Vehicular ad hoc networks in preventing additional
damage

and provide travelers comfort. However, it differs from MANET in many
aspects including challenges, and applications. The main communication
architectures that are mostly employed in these networks are vehicle-to-
vehicle and vehicle-to-roadside. Figure 2.4 shows a sample application of

VANET in which an alert is locally broadcast in the network to inform
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nearby cars of an accident.

2.3 Broadcast

One-to-one and one-to-many are two main network communication primitives.
In one-to-one communication, the transmitting node has only one target to
send the message to, whereas in one-to-many transmission, the message is
supposed to be received at multiple receivers. A well-studied class of one-to-
many transmission is broadcast. It is a mechanism in wireless and ad hoc
networks that is widely used to disseminate a message to every node in the
network. Broadcast is done in either single-hop or multi-hop fashion. In single-
hop broadcast, the transmitting node (source) adjusts its transmit power to
deliver the message to the furthest node. This approach does not work when
some nodes are out of the maximum transmission range of the source. When
some nodes are out of the transmission range of the source, the broadcast is
done in a multi-hop fashion. In multi-hop broadcast, in addition to the source,
some other nodes transmit the message to propagate the message through the
network. In this thesis, we study multi-hop broadcast, which we simply refer
to as broadcast.

A major challenge in designing broadcast algorithms is to decide which
nodes should transmit the message. A simple strategy is to have every node
transmit the message. The broadcast algorithm based on this strategy is called
flooding (see Figures 2.5-2.8). A major issue with flooding is that it can pose
many redundant transmissions, hence wasting energy. For example, in the
network shown in Figure 2.5, it can be simply verified that a broadcast can be
accomplished using only five transmissions by nodes Ny, Ny, Ny, Ng, and Ng.
In the same network, flooding uses nine transmissions, since in flooding every
node must transmit the message. Figures 2.5-2.8 show the first few steps of the

flooding algorithm.
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Figure 2.5: Step 1: The source node N; transmits the message. As the result,
its neighbours Ny and Ny receive the message.

| A\ \w,

Figure 2.6: Step 2: Nodes Ny and Ny transmit the message. Therefore, N3 and
Ng will receive the message.
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Figure 2.7: Step 3: Nodes Ng and N3 transmit the message. After this, every
node except N5 will have the message.

N

Figure 2.8: Step 4: Ng transmits the message, thus N5 will receive the message.
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2.4 Energy Efficient Broadcast

Considering that wireless devices (e.g., mobile devices) typically have limited
energy supplies (they run on batteries), reducing the energy consumption of
broadcast is of great interest. Different approaches have been taken in the
literature to reduce energy consumption of broadcast. These approaches are
mainly based on transmission power control and reducing the number of re-

dundant transmissions.

1. Transmission power control: Some wireless devices are able to reduce or
increase their wireless transmission power. Algorithms based on transmis-
sion power control use this capability of devices and adjust their powers
such that the sum of the powers is minimized while the network is still

connected. See [9] for a survey on these algorithms.

2. Reducing the number of transmissions: Another approach to reduce the
total power consumption of broadcast is to reduce the number of redun-
dant transmissions. In general networks, it is not possible to eliminate
all redundant transmissions due to the difficulty of the task (the problem
of finding the minimum number of transmissions required in broadcast
has been shown to be NP-hard [21]). Nevertheless, there are algorithms
in the literature that perform well in reducing the number of redundant

transmissions (e.g., [10, 11]).

2.4.1 Energy Accumulation

The two main accumulation mechanisms studied in communication systems
are i) energy accumulation [12, 22|, and ii) mutual-information accumulation
(23, 24].

Using energy accumulation, a node can decode the message if the sum of

the received powers from any set of transmissions of the message is above a

16



threshold [13]. As an example to better understand energy accumulation, sup-
pose that the decoding threshold is one, and three versions of the transmitted
signal arrive at node u with powers 0.5, 0.4, and 0.3. With energy accumula-
tion, node u is able to decode since the sum of the received powers is above
the threshold of one. Without energy accumulation, however, decoding is not
possible because, for each transmission, the received power at u is strictly less
than one.

In practice, the power threshold is set higher that the noise floor. This is
to enable out-of-range nodes to overhear the message. Using maximal-ration
combining, these unreliable versions of the message, coming from various links,
are combined together and the original message is recovered. MRC is often used
in MIMO systems where signals arriving from various channels are multiplied
by a weight factor that is proportional to the signal amplitude. The Key idea
in MRC is to use linear coherent combining of signals to maximize the output
SNR. Contrary to MIMO systems where multiple antennas are available to each
receiver, in ad hoc networks, nodes are normally equipped with one antenna.
This makes interference form concurrent transmissions an obstacle towards
efficient implementation of MRC. To avoid interference, a common solution is
to have the network operate in the wideband power limited regime with no

co-channel interference.

2.5 Asymptotic Notations

Asymptotic notations are mathematical tools used to analyze growth rate of a
function by identifying its behavior as the input size for the function increases.

The three main notations used to represent time complexity of algorithms are:

1. O(.) notation, also referred to as Big-O, denotes an upper bound for the

growth rate of a function. For the formal definition, let f(n) and g(n) be

17



two functions defined on some subset of the real numbers. We have

f(n)=0(g(n)) <= Yn=ne: [f(n)]<clg(n),

where ¢ and ng are positive real number. The example given in Figure 2.9
shows that f(n) = O(g(n)). This implies that f(n) does not grow faster
than g(n) as the input n increases. A very similar asymptotic notation is
o(.) (Small-o) which denotes the upper bound (that is not asymptotically
tight) on the growth rate of runtime of an algorithm. It is formally defined

as

f(n) =o0(g(n)) <= Yuzn, :  [f(n)| < clg(n)].

Figure 2.9: f(n) = O(g(n)) as there exist a real number ¢ such that for all
numbers larger than ny we have f(n) < cg(n).

2. Q(.) notation is opposite to Big-O notation, and provides a lower bound

18



for the growth rate of a function. Formally speaking

f(n) =Qg(n)) <= Yuzne: |f(n)] = clg(n)];

where f(n) and g(n) be two functions defined on some subset of the real
numbers, and ¢ and ny are positive real number. In Figure 2.9, we have
f(n) = Q(g(n)) meaning that g(n) grows faster than f(n) as the input n

increases.

3. ©(.) notation is used to provide the asymptotically tight bound on the
growth rate of an algorithm. Considering two functions g(n) and f(n),

we have

f(n) =0O(g(n)) = [f(n)=0(g(n)) & f(n)=Qg(n)).
This implies that f(n) grows as fast as g(n) as the input n increases.

To have a better understanding of how these notation are used in the analysis
of algorithms, consider the function f(n) = 3n® + 7n — 21. Towards finding a
tight upper bound for this function, we should look at its summands 3n?, 7n,
—21 with respect to their growth rate. Among summands of f(n), 3n® has the
fastest growing rate. Therefore, we have f(z) = O(n®) since there are ng = 2

and ¢ = 4 such that V,>, :  3n® +7n — 21 < 4nd.

2.6 Problem Complexity

The theory of complexity classifies problems into four categories based on how

complex they are to solve.

e P problem

A problem is in class P (Polynomial Time) if there is an algorithm that

19



can solve the problem in polynomial time (i.e. the running time of the

algorithm is a polynomial function of the input size).

e NP problem
There is another class of problem called NP (Non-deterministic Polyno-
mial Time). Finding the solution to NP problems cannot necessarily be
done in polynomial time. However, if a solution is found for them, it can

be verified to be correct in polynomial time.

e NP-hard problem
A problem is NP-hard if any NP problem can be reduced to it in poly-
nomial time. Informally, NP-hard problems are at least as hard as the

hardest problems in NP.

e NP-complete
A problem which is both NP and NP-hard is referred to as NP-complete

2.7 Binary Relation

Consider two sets A and B. A binary relation R between A and B is a collection
of ordered pairs (a,b) where a € A and b € B. In other words, it is a subset
G of Ax B. If A= B, it is called a “binary relation over A. The statement
(a,b) € G is read “a is R-related to b”, and is denoted by aRb.

Common binary relation categories are i) partially order, ii) total order,

and iii) strict order.

1. Partially Order

A binary relation R is a partial order over a set A if it has:

e Reflexivity, meaning that aRa for all a in A.
e Antisymmetry, meaning that if aRb and bRa we have a = b.

e Transitivity, which means that a/Rb and bRc implies aRc.
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2. Total Order
A binary relation R is a total order over a set A (i.e. R totally orders A)
if the following properties hold.
e Reflexivity.
e Antisymmetry.
e Transitivity.
e Comparability, meaning that for any a,b in A, either aRb or bRa.
3. Strict Order
A binary relation R is a strict order over a set A if it has:
e Irreflexivity, meaning that for any a € A, aRa doesn’t hold.
e Asymmetry, meaning that if aRb, we can have bRa.

e Transitivity.
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Chapter 3

Analysis of Cooperation Gain in

2D Wireless Networks

In this section, we first introduce the system model and definitions that we used
for the analysis of cooperation gain in 2D wireless networks. Then, we propose
our novel conversion method that converts any given cooperative broadcast
algorithm into a non-cooperative broadcast algorithm. Next, we leverage this
conversion method to establish upper bounds on cooperation gain, Gy,;. This

is very challenging as the bound must be proven for every 2D network.

We consider 2D networks with path loss exponent @ = 2, and derive an
upper bound on the cooperation gain by proving that Gy, = O(logn). In [17],
it is observed that the cooperation gain for o > 2 is less than that for v = 2.
Therefore, the upper bound G,y = O(logn) is applicable to all 2D networks

under different path loss exponents.

We take our analysis one step further and study the cooperation gain in 2D
grid networks. We derive a lower bound of Gy, = Q(logn) for such networks,
thereby showing that G, = O(logn) when o = 2. Without loss of generality,

we assume Py, = 1 in the remaining of this work.

22



3.1 System Model and Definitions

We consider a static 2D wireless network with a set of n nodes %, and a
single source node s € %, which is to broadcast a single message to every
other node in % in a multi-hop fashion. The channel between any pair of
nodes u; and u; in the network is assumed to be additive white Gaussian noise
(AWGN), and is described by a frequency non-selective link gain Ay, ,;. In
addition, the distance between any pair of nodes in the network is considered
to be larger than Fraunhofer distance. We adopt the simplified path-loss model
used in [12], [19] and [25]. This model is commonly used for system design as
it captures the essence of signal propagation without resorting to complicated
statistical models [26]. In the simplified path-loss model, the link gain A, ,; is
represented as hui,uj = d;,‘,’uj, where dul.,uj is the distance between nodes u; and
u; and « is the path loss exponent (o > 2). In this work, we set @ = 2, and

leave the case oo > 2 for future studies.

Note that multi-path fading and shadowing can affect the cooperation gain.
Using numerical analysis and the Rayleigh fading model, it was shown that such
effect is small in linear networks [17]. In our numerical analysis, we also observe
a small improvement in cooperation gain in 2D networks when Rayleigh fading

is used.

We divide time into slots, and assume that only one node transmits in a
single time-slot. Furthermore, we assume that each node transmits at most
once. These assumptions are not restrictive in studying the total energy con-
sumption, because any broadcast algorithm can be converted into the above
time-sloted model without affecting its total power consumption and delivery
coverage (this may impact latency, which is not the concern of this work). For
example, if a node u transmits, say twice at times ¢; and ty (1 < t3) with
powers P; and P, respectively, those transmissions can be merged into one

transmission at time t; with power P, + P.
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Based on the above model, a broadcast algorithm can be defined as follows:

Definition 1 (Broadcast Algorithm). We represent a broadcast algorithm by
a tuple (o, <,p), where the binary relation < is a strict total order on %,
and the transmit power function p : % — R is a function from set of nodes
to real numbers Rso which returns the transmission power of each node. The
set of C U represents the set of nodes that transmit (i.e. set of nodes u for
which p(u) # 0). The binary relation determines the order of transmission. In

particular, we have
o u; <ujif uj,u; € & and u; transmits before u;.
o uy <ujifu; € andu; € o = U\A .
o u; =u; if uj,uj € .

In the rest of this work, we represent a broadcast algorithm by (47, p) instead
of (&7, <, p), for convenience.

Assuming that the noise has unit power, we use maximal ratio combining
(MRC) technique to verify that the original message has successfully been re-
covered at a node. In non-cooperative broadcast, the message is received and
decoded if the received power at node u from a node v is above a decoding
threshold. In cooperative broadcast, multiple copies of the message arrived
from multiple transmitters are combined to decode the message. Therefore, in
this case, the message is decodable at u if the sum of received powers at u is
greater than the threshold.

Definition 1 of broadcast algorithm does not guarantee that the message
is delivered to all nodes, as it does not put any condition on the transmission
power p. In this work, we only study broadcast algorithms that guarantee
full delivery. To achieve full delivery, extra conditions need to be imposed on
transmit power function. The following two definitions enforce such conditions,

and describe two general classes of broadcast algorithms with full delivery.
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Definition 2 (Cooperative Broadcast Algorithm). A broadcast algorithm (<, p)
is called a cooperative broadcast algorithm, and is denoted by (<79, p'9 ), if and

only if

Vu; € U \{s} : Z P () sy ;> Pan, (3.1)

u;<u;
where Py, is the decoding threshold. The inequality implies that the sum of
received powers atl every node (except the source) is not less than the threshold,

hence every node receives the message.

Definition 3 (Non-cooperative Broadcast Algorithm). A broadcast algorithm
(<, p) is called a non-cooperative broadcast algorithm, and is denoted by (<7 ™, p™ ),
if and only if:

Vu; € U \{s}, Ju; < u; : p(")(uj)huiyuj > Py (3.2)

Similar to (3.1), Inequality 3.2 ensures full delivery.
The cooperation gain Gy, is defined as follows:

Definition 4 (G,). Let (%(C),pic) ) and (szT(n),pgn) ) be, respectively, optimal
cooperative and non-cooperative broadcast algorithms with minimum power con-

sumption. We define the cooperation gain G as

(C)(ui)

Gtot - (33)

U EU p

3.2 Conversion Method

In this section, we propose a carefully crafted conversion method that con-
verts any cooperative broadcast algorithm (279, p(¢)) into a non-cooperative

broadcast algorithm (7™ p(™).
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Consider any 2D network with a set of n nodes %. Let («7(9), p(®)) be an
arbitrary cooperative broadcast algorithm with power consumption Pt(oct). To
better explain our conversion method, we will use the simple network shown in
Figure 3.1 as an example where the transmitting nodes .&7© = {uy, us, us, ug}
are depicted by the asterisks, and the transmission order is u; <(© wuy <©
us <9 ug with being the source node. Since the set of nodes are fixed,
the task of the conversion method is to 1) assign powers to the node, that is
to determine the function p™, and 2) determine the order of transmissions.
Before explaining the power assignment and the order of transmissions, we

need a few definitions.

u70

111*

u O

Figure 3.1: Sample network, asterisks are cooperative transmitting nodes

For any node u € Z\{s}, let R(u) be the closest node to u that transmits

before u in the cooperative algorithm (7(9), p(¢)). Formally

R:U\{s} — o9
(3.4)
R(u) € argmind, .
v< @y
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In our sample network, we have

R(ur) = us, R(us) =us, R(us) = us,
R(U4> = Uus, R(u:;) = Uy, R(UQ) = Ui.

Also, for any node v € % \{s} let

Dy ={(z.y)l(@ —2.)" + (¥ = 9)” < dy )} (3.5)

be the disk with radius r, = d, r(,) centred at node u, where d,, denotes the

distance between two nodes x and y. Let
D ={D,lue€ %\{s}}

In other words, D is the set of every disk centred at a node u € % \{s} with
the closest node that transmits before u being located on the boundary of the
disk. Figure 3.2 shows the disks D, € D for our sample network.

The power assignment is done in two steps:

1. Step 1: In this step, we find a subset Z of non-overlapping disks in D
through an iterative process. Initially, we set Z = {}. In each iteration,
we find the largest disk in D\Z that does not overlap with any disk in
Z, and add that to Z. We stop when every disk in D\Z overlaps with at
least one disk in Z. Disks with thick boundary in Figure 3.3 demonstrate

the set of non-overlapping disks Z for our sample network.

2. Step 2: Let
1= {DulvDuzv"wDu‘I‘}a

be the result of the first step. To every disk D,, € Z, we assign a node
Wy

w; = min(u) (3.6)

ueS;
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Figure 3.2: Disks D, € D in the sample network

where the minimization is with respect to <(©, and
Si = {R(v)|D, N Dy, # 0,1, <1y, D, € D}. (3.7)

This rather complex choice of node w; and the set S; are better understood
in the proof of Theorem 1. Black filled asterisks in Figure 3.3 represent
nodes w; for disks D,,, € Z in our sample network. Note that every node
in S; is a transmitting node because, by (3.4), R(v) € 27 for every
node v # s. Equation 3.6 simply implies that w; is the node in S; that

transmit before any other node in §;.

In our constructed non-cooperative broadcast algorithm (.27™, p(™) only

nodes w;, 1 < i < |Z|, are assigned non-zero transmission power accord-
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ingly to Algorithm 1.

Algorithm 1 Power Assignment
. Yu € U set p™(u) + 0
. for i+ 1, |Z| do
P (wi) += max{p™ (w;), (5r4,)"}
end for

Figure 3.3: Finding transmitting nodes of non-cooperative broadcast algorithm

In the sample network, the transmitting set of our constructed non-cooperative
algorithm is

" = {uy, us},
and the transmission powers are
P (w) = (5r7)%, " (ug) = (574)".
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Note that the constructed non-cooperative algorithm is not necessarily efficient
in terms of power consumption since it is designed to simplify the analysis of

cooperation gain for 2D wireless networks.

Remark 1. By the description of Algorithm 1, we get

Py < > (5ru)” (3.8)

Dy, €T

(n)

where P,,,” is the power consumption of non-cooperative algorithm.

Remark 2. It can be inferred from Algorithm 1 that </ () C of (C), since
V1<i<|Z|: w; €.

i.e, every node that transmits in the constructed non-cooperative algorithm,
also transmits in the given cooperative algorithm. With the power assign-
ment summarized in Algorithm 1, the only remaining task to fully define our
constructed non-cooperative broadcast algorithm is to establish a transmission
order among the transmitting nodes /™. To this end, in the constructed
cooperative algorithm, we simply follow the same transmission order as in the

non-cooperative algorithm, that is
Vu,v € ™ u <@y =0 <o, (3.9)

or equivalently

Vu € ™ oy <9 y=u <y, (3.10)

Theorem 1. The constructed broadcast algorithm (2™, p™) is a non-cooperative
broadcast algorithm. (i.e., the message is fully delivered to all the nodes in the

network. )

Proof. Towards showing a contradiction, we assume that there is at least one

node that does not receive the message. Among nodes that have not received
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the message, let f be the smallest node with respect to the ordering <™ (i.e.
every node u <™ f has successfully received the message). In the following,
we will prove that there is a node v, v < f, which has received the message
and transmitted with power p™ (v) > di - This implies that node f must have
received the message from node v, a contradiction. We consider two cases. In

the first case, we assume Dy € Z; in the second case we assume Dy ¢ 7.

1. Case 1: Dy € I:
Since Dy € Z, we assume that f = u;, for some ¢ € {1,2...,|Z|}. Figure
3.4 shows disk D, € Z (with thick boundary) as well as all disks in D
that are not bigger than D, and intersect with D,,. For every disk D,
shown in Figure 3.4, node R(u) is represented by an asterisk. Therefore,
the asterisks shown in Figure 3.4 are the set S; defined in (3.7). Note
that, w;, defined in (3.6), is one of those asterisks. We have the following

for w;:

(i) p™(w;) > (5r,,)*, where r,, is the radius of the disk D,, = D;:
It is because, in the ith iteration of the power assignment algorithm
(Algorithm 1), the power of node w; (i.e. p™ (w;)) is set to a number
at least equal to (5r,,)*. Also if w; = w; for some integer j > i,

p™ (w;) will not be reduced in iteration j.

(il) dupyu; < 31y
Let P be a point on the circumference of any disk shown in Fig-
ure 3.4. The distance between P and f = wu; is at most 3r,, because
the radius of every disk is at most equal to 7,,.

(iii) w; <™ w;:
From (3.4), we get R(u;) <'© u;, and by (3.6) we get w; <9 R(u;).

Therefore, from (3.10), we have w; <™ w;, since w; € 7™,

(iv) w; has received the message:

This is simply by the assumption that every node v <™ f has
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received the message and because w; <™ f.

Figure 3.4: Disk D,,, = Dy (with bold border), and the disks in D that are not
bigger than D,, and intersect with D,.. Asterisks represent the nodes in §;.

To sum up, there is a node w; <™ f that has received the message, and
transmits with a power at least equal to (5r,,)%, and is at most 3r,, away

from f. Consequently f must have received the message from w;.

2. Case 2: Dy ¢ 1:
Since Dy ¢ Z, there must be at least a disk in 7 that intersects with Dy,
Among such disks, let D,,, be the largest one. The disk D,, must be at
least as large as Dy as otherwise, Dy would have entered the set Z instead
of D,,. In Figure 3.5, the disk D,, is shown with thick boundary. The
Figure also shows all the disks in D that intersect with D,,, and are at
most as large as D,,. Similar to Case 1, every node in S, is represented

by an asterisk, and w; is one of the asterisks. Similar to Case 1, we have

(1) P (ws) = (5r4,)"
(i) o0, < 5ru:

This is because the radius of all disks is at most r,,. As illustrated
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in Figure 3.5, any point on the circumference of any disk is at most
or,, away from node f.

(iil) w; <™ f:
From (3.4), we get R(f) <© f, and (3.6) implies that w; <© R(f).
Hence, by (3.10), we get that w; <™ f.

(iv) w; has received the message:
Again, this is by the assumption that every node v <™ f has re-

ceived the message, and because w; <™ f.

R(ui)/x/\ Z

Figure 3.5: The shaded disk D,, is the biggest disk in Z that intersects with
Dy (the disk with bold border).

To sum up, node w; has received the message, w; <™ f. It transmits
with a power at least equal to (5r,,)%, and is at most 5r,, away from f.

Consequently, as in Case 1, f must have received the message from w;.

O

So far, we have shown how to construct a non-cooperative broadcast al-
gorithm from any cooperative broadcast algorithm. Next, we analyze the to-
tal power consumption of the cooperative algorithm and its constructed non-

cooperative algorithm to derive the upper bound for Gy;.
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3.3 Upper Bound Analysis

In this section, we establish an upper bound on the cooperation gain. Note
that signal power drops faster for larger path loss exponents, which results in
a smaller cooperation gain. Therefore, to establish an upper bound, we set the
path loss exponent to oo = 2.

In this section, we show that the total power consumption of the constructed
non-cooperative algorithm is at most O(logn) times that of the cooperative
algorithm used for the conversion. This implies that the cooperation gain,
Giot, is in O(logn) because any given cooperative algorithm can be converted
to a non-cooperative algorithm with at most a factor of O(logn) increase in
the total transmission power. We start by some definitions and lemmas.

Let (279, p(9) be a cooperative broadcast algorithm, and (@™, p() be

the non-cooperative broadcast algorithm constructed from it.

Definition 5. For every node u € <79, we define

fu:R* = (0,1]

1 d%p < A\ /p(c) (u) (311)

fu(p) = (e)
Lt dup > /0O ()

where p is a point in the network, and d, , is the distance between p and node .
The function f,(p) is simply the received power from node u at point p capped

at one. Function F, accordingly, is defined as

F:RESR
Fp) = fulp)-
uEY

Lemma 2. Let |%| = n. We have

(e) P(C)
Z P ((1;) In : tot < 1n<n>
P Pt (u)

u€.a (©)
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Proof. Let

We have

Therefore, the sequence «, can be seen as a probability distribution whose

entropy is

S auln(—) < (/@) < In(|%]) = In(n)

e (© v

Lemma 3. For any real number R, R > +/p'9)(u), we have

27 R RQ
/0 /0 fu(r,0)rdrdd = 7p (u) + 7p° (u) In (W) ,

where the function f,(r,8) is the function defined in (3.11) transferred into the

polar coordinate system with the pole at node w.

Proof.

2 rR 21 A/ p((u)
/ / fu(r,0)rdrdo :/ / fu(r,@)rdrdd +
o Jo o Jo

21 prR
/ / fu(r,@)rdrdo
J0O J A/ p(c) (u)
21 v/ ple) (u)
= / / rdrdf +
0 0

2r  rR (c)
/ / ) g ag
0 JypO@ T

=1p" (u) + 7p'9 (u) In (p(f)%(u)) :

Let Uz = |J D, and Az be the area of Uz.

DeZ
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Lemma 4. We have

Az
7l (u)

/ fulr,O)rdrdd < 7p' (u) + 7p' (u) In( )
Uz

Proof. Let Dz be a disk with radius R = 4/ % centered at u. Let U, = UzND7z,
and U,,; = Uz\ Dz, be the parts of Uz that respectively fall inside and outside
of the disk Dz. Let g be a point on the circumference of disk Dz. For any

point p;, € Dz we have

fu<pm> > fU<Q>7

since dy p,, < d.4, and the function f,(p) is non-increasing in terms of d,, .

Similarly, we have

fu(pout) S fu(Q)a

for any point po,: ¢ Dr. Therefore, we have
J[ 5000 dra0 < a0 % @) Do, % fula)
Uout

< // fulr,0)rdrdo,
DI\Uin

where Ay, ., and Ap,\y,, are areas of Uy, and Dz\Uj,, respectively. Note that

(3.12)

Av,. = Appu,,- Consequently,
/ fu(r,@)rdrdd =
Uz

// ful(r,@)rdrdo —I—/ fu(r,@)rdrdd <
Uin Uout

fu(r,0)rdrdo + / / fu(r,0)rdrdf =
Uin UI\Uin

Az

< (c) (c) _ =t
/DI fu(r,@)rdrdd < 7p'“(u) + 7p' (u) hl(wp(c) @

)

where the last inequality is by Lemma 5.
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Lemma 5. For any point p € Uz, we have

F(p) >

-

Proof. Let p be an arbitrary point in Uz. Then, p must be inside one disk in
Z. Let that disk be D, € Z. Since in (27(9), p(©)) node v receives the message,

we must have

> fulw)>1. (3.13)

u<(©y

Note that for any node u <(© v, we have
duw 2 To,
where 7, is the radius of disk D,. Therefore, for any node u <(© v, we have

dyp < 2y (3.14)

Hence, by (3.13) and (3.14), we get

The following corollary directly follows from Lemma 5.

Corollary 6. we have

1
/ F(p) > ZAZ-
Uz
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Let r,, denote the radius of disk D,, € Z, 1 < i < |Z|. We have

|zl

_ 2
AI =T E ’l"ui.
i=1

In Algorithm 1, each disk D, , 1 < i < |Z], contributes a power of 252 at

most once. Therefore,
IZ|

Py <253 r2,

i=1
Hence,

Az > %Pt(o? (3.15)

Theorem 7. Let (279, p©)) be a cooperative broadcast algorithm, and (=™, p™)

be the non-cooperative broadcast algorithm constructed from it. We have

Gtot -
> wsea PO (i)

€ O(logn).

Proof. By Corollary 6, we have

/%f@z—

To prove the theorem, we compute an upper bound on the same integration,

and then compare the two bounds.

[L7w=]], Z o

INIAC)
=§:/ fu(p) (3.16)
ca(e” VI
A
< (c) (c) z
> w9+ 3w ()
uegs/ () ucgy/ ()



The second summation can be written as

. Az
Z 7rp( ﬂp(c)( )) =

NFAC)

(©) rY A
P ™o z

TPy Z (c)tt X |~
tot mpl) (u) TP,

NI AC)

mzp( <t0t>+zﬂ'0 <AZ
tot 7Py

NTAC) NTAD)

) P ) p
< ‘Pt(ot Z p (c < (C;Ot ) + 7-‘-Pt(ot) In ( tOt(c) '
Ptot P <u> 25Ptot

NFAC)

where the last inequality is by (3.15). Furthermore, by Lemma 2 we get

P(C) . P(n)
tot Z p (C ( (c)wt >+7TPt(ot) In <—t0t(c) <
uef/(c) PtOt P <u> 25Ptot

p(m)

(c) (c) tot
wP., In(n) + 7P,/ In :
! ! (25]%2?)

Using (3.17) in (3.16), we have

J[ 70 < X mm+ ¥ i)

ed(c) e mple)(u)
(n)

(& (& PO
<P t) + 7TPt ln( )+ 7rPt(Ot) In (25;:%2) :

By corollary 6 and (3.15), we get

1 T
F(p) > -Ar> — P,
/ Uy 4 100 "

From (3.18) and (3.19), we get

Py} +wPi) In(n) + 7P 1 Pud \ 5 T po
0 ™ n e n
tot tot 25Pt(t — 100 tot
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(3.18)

(3.19)
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Dividing both sides by 7P\ yields

Gtot

) > GtOt
25

1+ In(n) + In( > 700

(3.21)

Finally, assuming n > 2, it can be verified that (3.21) holds only when Gy <
1271In(n), which completes the proof. O

3.4 Cooperation (GGain in Grid Networks

In the previous section, we proved that the cooperation gain grows at most
logarithmically with the number of nodes n in 2-D networks. An interesting
question is whether there is any 2-D network in which the cooperation gain
increases exactly logarithmically with n. In this section, we prove that that
this is the case for 2-D grid networks. Later, using numerical analysis, we show
that this also holds for random networks.

Figure 3.6 shows the topology of a grid network with minimum node dis-
tance d, and n = m? nodes. The algorithm (%, p™ (u) = d?) is a simple
non-cooperative broadcast algorithm in which all nodes in % transmit with
power d?. The total power consumption of this algorithm is clearly Pt(o? = nd>.
There are non-cooperative broadcast algorithms with total power consumption
less than nd*. For example, if only nodes in every third row® (i.e., setting

L = 3 in Figure 3.6) transmit, every node will receive the message and we get

Pt(orz) ~ m§d2 = an2. The next proposition, however, shows that the total power
consumption of any non-cooperative algorithm for the given grid network is

Q(nd?). This implies that (%, p™ (u) = d?) is asymptotically optimum.

Proposition 8. For any non-cooperative broadcast algorithm over the 2D grid

!To guarantee that every node receives the message, nodes in the top and bottom rows
may need to transmit too.
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I 2 r-1 r r+l m-1 m

Figure 3.6: Node placement and broadcast strategy in a grid network.

network (Figure 3.6) with power consumption Pt(o? we have

P e Q(nd?).

Proof. Let (a/™, p™) be an arbitrary non-cooperative broadcast algorithm.

If there is a node u € &™) with p™(u) < d?, we can safely set p™ (u) = 0

(hence removing u from .27™), since the transmission by u will not reach any

other node in the grid network. For any node u € &7, let N, denote the set
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of nodes within the transmission range of u, that is

Nu - {U|du,v S V p(U)},

where d,, denotes the distance between nodes u,v € %. Note that all nodes
in N, are within the square with side length of 21/p(u) entered at u, because
they are all inside the circle with radius /p(u) centered at u. The number of

nodes within a square with sides length of 24/p(u) is bounded by
2
Nl < (2 {—V ’;(“)J + 1)

Therefore

IVu| <9 (p(u>> : (3.22)

) ) = (25
oW\ ()
< (3 7 ) =9 (7) ;

where the last inequality holds since p(u) > d? (i.e. —”fl(“) > 1). Every node in

because

the network, including the source, is within the transmission range of at least

one transmitting node in &/ . Thus, we must have

Z INu| > n.

Yu€a/ (1)

Hence by (3.22) we get

> ()=

Yu€gf ()
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thus,
n . nd?
Pt(ot) = Z P! )(U) > 9
Vuego/ (1)

Next, we propose a simple cooperative broadcast algorithm (.o7(©), p(9) with
total power consumption Pt(;t) eO (%). Figure 3.6 illustrates this cooperative
algorithm in which the transmission proceeds horizontally, from the source,
in both directions. Reaching the left-most column, the broadcast continues
vertically, in both directions. As depicted in Figure 3.6, nodes in every Lth
row transmit the message, where L is an adjustable parameter of the algorithm.
Every such row is called a transmitting row. The transmission power of each
node u € &™ is set to d?. The following proposition shows that the algorithm
illustrated in Figure 3.6 is a cooperative broadcast algorithm (i.e. every node

will successfully decode the message) even when L is as large as 0.151n(n).

nd? )

This implies that total power consumption R(Oct) can be as low as O(logn

Theorem 9. The broadcast algorithm (/(©), p©) illustrated in Figure 8.6 is a
cooperative broadcast algorithm (i.e the message is delivered to all nodes) for

any L < 0.151n(n).

m

7)1 transmitting

Proof. For any given node u € «7(©), there are at least Kl
rows either below or above that node. Without loss of generality, we suppose
that node u has at least [$[%]] transmitting rows atop. Let P,(u) be the sum
of powers received at u € 7(© from all nodes in all transmitting rows. Among
nodes in a non-transmitting row, the one on the rightmost column has the least
value of P,(u). Hence, we assume that node w is in rightmost column. Let [

denote the Euclidian distance between u and the closest upper transmitting

row. The total power received at u from nodes in 7th upper transmitting row,
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denoted as P;(u), is

m—1 d2
P = L T = DD+ Ga?
N m-] | & | (3.23)
£ (iLd)? + (jd)?
SN N
-G e

Since the number of upper transmitting rows is at least ¢ = ]_% [%H, we get

Pr(u) > Pi(u)
! (3.24)

c m—1 1
= ;; (iL)% + 52

where the second inequality is by (3.23). We have m > iL, 1 <i < ¢. Thus,

c m—1 c iL—1 c
1

1 1
ZZW—HQZEZ@L)H]'? ZZE

=1

(3.25)

Thus, P,(u) > 1 (hence, u can decode the message) if

1 m 1

57 ln((i - 5)) > 1. (3.26)

Finally, it can be verified that (3.26) holds for any L < 0.31n(m) = 0.151n(n)

and n = m? > 4, which completes the proof. O
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Considering the grid network (Figure 3.6), there are 7 transmitting rows

2
M),

within each m nodes broadcast with power d?. Therefore, we have Pt(,ft) € O(logn

hence, Gy € Q(logn).
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Chapter 4

Numerical Analysis

In this section, using numerical analysis, we verify our analytical results by
showing that, in grid networks, the cooperation gain increases logarithmically
with n, the number of nodes in the network. Then, we implement the best
existing cooperative and non-cooperative broadcast algorithms in the literature
and compare their total power consumptions. We show that, in networks with
nodes at random positions, the ratio of their total power consumption increases
logarithmically with n both under small-sale and large-scale fading.

For grid networks, we simulate a slightly-modified version of the coopera-
tive broadcast algorithm discussed in Section 3.4. In the modified version, not
only the nodes in every Lth row, but also the nodes in the top and bottom
rows transmit. For a given size of the grid network and a given position of
the source node, we first search for the largest value of L that guarantees full
delivery. Then, we use the maximum value of L in the cooperative algorithm,
and calculate the total power consumption. As for the non-cooperative algo-
rithm, we use the simple algorithm in which all the nodes transmit with power
d?, where d denotes the minimum distance between nodes in the grid. This
simple non-cooperative algorithm was proven to be asymptotically optimal.
In numerical analysis, we go up to a grid size of 50 x 50, with n = 50 x 50 nodes.

For a given grid size, we run the numerical analysis 100 times. In each run, the
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Figure 4.1: Gy, versus number of nodes for 2D grid network.

1 1 1 1 1 1 1 1 1 1 1 1

25 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
In(Number of Nodes)

Figure 4.2: Gy, versus In(n) for 2D grid networks.
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source is selected uniformly at random from the nodes in the gird. Figure 4.2
shows the ratio of the total power consumption of the non-cooperative algo-
rithm over that of the cooperative algorithm. Figure 4.1 shows the cooperation
as the number of nodes n in the network increases. To show the logarithmic
growth of the cooperation gain, in Figure 4.2, we plotted the gain versus Inn.

To calculate the cooperation gain, we used the best existing algorithms in
the literature. For non-cooperative broadcast, we implemented the proposed
algorithm by Caragiannis et al. in [20]. This algorithm has the best approxima-
tion factor to the broadcast power consumption minimization problem, among
the existing non-cooperative broadcast algorithms. As for the cooperative al-
gorithm, we implemented the greedy filling algorithm proposed in [12]. In
numerical analysis, a set of n nodes are placed uniformly at random in a disk.
For each given number of nodes n, we execute the above two algorithms on 50
different node placements, Figure 4.3 and 4.4 show the results under both sim-
plified path-loss model and Rayleigh fading, respectively, for different values of
a.

We considered two other nodes distribution and performed CA and greedy
filling algorithms. In one setting, the nodes had a Gaussian distribution with
standard deviation of 0.5 around the center the disk. Figure 4.5 and 4.6 show
the results under both simplified path-loss model and Rayleigh fading, respec-
tively, for this nodes distribution.

Then, we considered a clustered structure for nodes distribution consisting
of 5 cluster centers. Other nodes are located equally around these centers with
a Gaussian distribution (o = 0.5). Figure 4.7 and 4.8 show the results under
both simplified path-loss model and Rayleigh fading, respectively, for this nodes

distribution.
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Figure 4.3: Gy, versus n under simplified path-loss model, nodes are uniformly
distributed in the network
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Figure 4.4: Gy, versus n under Rayleigh fading model, nodes are uniformly

distributed in the network
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Figure 4.5: G versus n under simplified path-loss model, nodes have Gaussian
distribution around center
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Figure 4.6: Gy, versus n under Rayleigh fading model, nodes have Gaussian
distribution around center

52



3_5 T T T T T T T T T
—O— =2

—A— a=3

2.5

R e

20 40 60 80 100 120 140 160 180 200
Number of Nodes

Figure 4.7: Gy, versus n under simplified path-loss model, nodes in a clustered
structure
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Figure 4.8: Gy, versus n under Rayleigh fading model, nodes in a clustered
structure
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Next, we evaluate our construction method explained in Section 3.3. This
method converts any given cooperative broadcast algorithm with total power
consumption of R(Oct) to a non-cooperative broadcast algorithm with total power
consumption Pt(o? < 127In(n) To verify this result, we considered networks
with size up to n = 400 x 400. We placed nodes uniformly at random in the
network, and used the greedy filling algorithm proposed in [12] as the input
to our construction method. For each value of n, we performed 1000 runs of
numerical analysis. In every run, we verified that the constructed algorithm
achieves full delivery. Figures 4.9 and 4.10 show the construction radio versus
n and In(n), respectively, where the construction ratio is defined as the ratio
of the total power consumption of the constructed algorithm to that of the
construction method input (in this case, the greedy filling algorithm). The
maximum slope of the curve in Figure 4.10 is about five, much lower than the
slope of 127 in the proven bound of 127In(n) on the construction ratio (See

proof of Theorem 7).

40 T T T T T T T T T
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Figure 4.9: Construction ratio when the greedy algorithm is used as the input
of the construction method.
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Figure 4.10: Construction ratio when the greedy algorithm is used as the input
of the construction method.
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Chapter 5

Conclusion & Future Works

The cooperation gain is a measure of how much energy can be saved when
energy accumulation is used in wireless broadcast. In this work, we showed
that, in 2D grid networks and random networks, the cooperation gain increases
logarithmically with the number of nodes. This is in contrast to linear networks,
where the gain was proven to be constant with respect to the number of nodes.
Further, we proved that the gain is O(logn) in any 2D networks with n nodes,
that is, the cooperation gain grows at best logarithmically with n.

The above results can be extended in at least two ways. First is to ac-
count for the circuit power consumed in wireless transmissions. This is im-
portant in short-range transmissions, where the circuit power consumption is

non-negligible. Second is to analyze the gain for larger path loss exponents.
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