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Abstract 
 

In order to understand the complex biological functions of proteins, highly detailed, atomic 

resolution protein structures are needed. Experimental methods such as X-ray crystallography 

and NMR spectroscopy provide standard platforms for determining the atomic-resolution 

structures of proteins. However, a continuing bottleneck in conventional NOE-based NMR 

structure determination lies in the difficulty of measuring NOEs for medium-to-large proteins and 

the resulting time-costs and the corresponding reduction in structure accuracy and precision. This 

has led to an increased interest in using other easily identifiable NMR parameters, such as 

chemical shifts, to facilitate protein structure determination by NMR.   

Chemical shifts, often considered as mileposts of NMR, have long been used to decipher 

the structures of small molecules. However, chemical shifts are much less frequently utilized for 

structural interpretation of larger macromolecules such as peptides and proteins. Most existing 

macromolecular methods use chemical shifts and various heuristic, rule-based algorithms to 

identify and determine a small number of structural parameters (such as secondary structure). 

Other methods, such as CS-Rosetta and CS23D, which attempt to determine 3D structures from 

chemical shifts alone, are only modestly successful (~50% success). So while good progress has 

been made, I believe that there is still substantial room for improvement and that the “Shift-to-

Structure” problem has not yet been fully solved.  

My PhD project involves investigating innovative computational and machine- learning 

approaches to develop chemical-shift based prediction models to determine protein structures 

with high efficiency and high accuracy (>90%). More specifically, my thesis consists of three 

major components: a) shift-based local protein structure prediction; b) prediction of protein 

local/non-local interactions from sequence and chemical shifts; and c) tertiary fold recognition 



 

 

iii 

from chemical shifts. Towards that goal, I have developed several chemical-shift based prediction 

models that exploit advanced computational and machine-learning algorithms. In particular, I 

developed a) CSI 2.0 - a multi-class prediction method for protein local structure prediction from 

chemical shift data; b) CSI 3.0 – a computational model that identifies detailed local structure and 

structural motifs in proteins using chemical shift data; c) ShiftASA – a boosted tree regression 

model for predicting accessible surface area from chemical shifts; and d) E-Thrifty - a protein 

fold recognition method that performs chemical shift threading to identify and generate the most 

probable fold or 3D structure that a query protein may have. Validation of these proposed 

methods was performed using several independent test sets and the results indicate substantial 

improvements over other state-of-the-art methods. Given their superior performance, I believe 

that these methods will be useful contributions to the field of NMR-based protein structure 

determination and will be fundamental to the development 3D structure determination protocols 

that use only chemical shift data. 
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Chapter 1  

Introduction  

1.1 Proteins  

Every living cell contains three types of “information processing” macromolecules: DNA, RNA 

and proteins. Each DNA molecule carries genetic information that is transcribed into messenger 

RNA (mRNA) inside the nucleus. This mRNA is then translated (outside the nucleus) using 

specialized protein-RNA complexes called ribosomes that convert the genetic information 

contained in the mRNA into proteins. In all cases the gene sequence (in the DNA or its 

corresponding mRNA) determines the protein sequence.  This information translation process – 

from DNA to protein -- is known as the “fundamental paradigm” of biology (Crick 1970).     

Proteins serve as both the building blocks and the engines of life. Indeed they perform 

many vital tasks necessary for proper cell function. For instance, proteins, such as insulin, may 

regulate metabolism whereas other proteins, such as -keratin, serve as building blocks for 

tissues.  Proteins also transduce external stimuli from the environment (such as rhodopsin for 

light signal transduction in the eyes), catalyze important biochemical reactions (such as pepsin 

for digestion and DNA polymerase for DNA synthesis), or transport small molecules or ions 

(such as hemoglobin, which carries oxygen in the blood).  Proteins also regulate gene activities 

and play key roles in transferring signals between or within the cell. In other words, proteins are 

involved in executing nearly every important cellular function. The enormous repertoire of 

functions performed by proteins arises from the enormous number of different three-dimensional 

structures they can adopt. These structures are determined by their amino acid sequences. 

It is important to note that different proteins consist of different sequences derived from a 

standard set of 20 different, naturally occurring amino acids. As seen in Table 1.1, eleven amino 

acids are deemed as non-essential (i.e. our body can produce them on its own) and nine are 

considered to be essential (i.e. they must be obtained through the food we eat). Each protein is 

defined by its unique amino acid sequence, with the number of amino acids in any given protein 
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ranging from as few as 40 to as many as 36,000 (Opitz et al. 2003).  Table 1.1 lists the twenty 

naturally occurring amino acids, including their essentiality, their three letter codes and the single 

letter abbreviations used to represent them.  

 

Chemical Name Three-letter Code One-letter Code 

Alanine Ala A 

Cysteine Cys C 

Aspartic Acid Asp D 

Glutamic Acid  Glu E 

Phenylalanine (essential) Phe F 

Glycine Gly G 

Histidine (essential) His H 

Isoleucine (essential) Ile I 

Lysine (essential) Lys K 

Leucine (essential) Leu L 

Methionine (essential) Met M 

Asparagine Asn N 

Proline Pro P 

Glutamine Gln Q 

Arginine Arg R 

Serine Ser S 

Threonine (essential) Thr T 

Valine (essential) Val V 

Tryptophan (essential) Trp W 

Tyrosine Tyr Y 

Table 1.1: The twenty amino acids and their abbreviations 

 

Using this list of amino acids it is possible to define the polymeric structures of proteins 

as a simple sequential list of letters and abbreviations.  For an example, the amino acid sequence 

for the protein known as Ubiquitin can be described using the one-letter code.  

MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSD

YNIQKESTLHLVLRLRGG 
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When a protein has been assembled from its constituent amino acids (using the cell’s 

translational engine called the ribosome), it spontaneously folds into a particular three-

dimensional shape, called the tertiary structure. Typically each protein has a well-defined spatial 

arrangement into which it folds, and it will always fold into that arrangement (Anfinsen 1973, 

Lesk 2001). That three-dimensional spatial arrangement controls the protein’s overall shape, 

surface, electrostatic and chemical features, which in turn determines the protein’s function. 

1.2 Protein Structure  

Protein structure is commonly described using a four-level hierarchy. The first level is the 

primary structure, also referred to as the amino acid or protein sequence.  

 

 

Figure 1.1: A generalized amino acid with its constituent parts i.e. amide nitrogen (N), carbonyl carbon (CO) and 

side-chain (R) is shown in the upper image and a protein backbone with peptide bond formed between several 

adjacent amino acids is depicted below.  

 

Figure 1.1(a) depicts a generalized amino acid, with the colored spheres representing individual 

atoms and the letters within the circle identifying the type of atoms. The rectangle marked “R” 

symbolizes the “side chain” which gives an individual identity to each of twenty amino acids. 

Each amino acid consists of a nitrogen atom (or amino group    ) bonded to an “α-carbon” (the 

“CA” atom in the center of the Figure 1.1(a)), which in turn is bonded to another carbon atom, 

called the “carbonyl carbon” (or carboxylic acid (COOH) group). Proteins are formed by a 

complex enzymatic process that links these amino acid monomers together to form an amino acid 
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polymer by creating what is called a “peptide bond” between the carbonyl carbon of one amino 

acid and the backbone nitrogen atom of the next amino acid (see Figure 1.1(b)). Thus, the N-CA-

CO atoms of the individual amino acids are connected to form a continuous chain that constitutes 

the protein’s backbone. This linear assembly of amino acids is known as the protein’s primary 

structure.  

 

   

 

Figure 1.2: The secondary, tertiary and quaternary structure levels in the protein structure hierarchy are shown. 

Hydrogen bond formation in secondary structure elements such as α-helix and β-sheet is shown with yellow dashes. 

  

The second level in the protein structure hierarchy is called secondary structure.  

Secondary structure is primarily stabilized by non-covalent interactions such as hydrogen bonds. 

Proteins can adopt four different types of secondary structures: α-helices, β-sheets, β-turns and 

coils. These secondary structure elements will be discussed in detail in next section. The third 

level in the standard protein structure hierarchy is called the tertiary structure.  It is also called 

the three-dimensional (3D) structure and it refers to the global arrangement between secondary 
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structure elements, which defines the overall protein fold. The tertiary structure largely 

determines the function of a protein.  The final level in the standard protein structure hierarchy is 

called the quaternary structure. This refers to the organization of multiple folded proteins into a 

multi-subunit complex. Figure 1.2 illustrates the quaternary, tertiary and secondary levels in the 

protein structure hierarchy.    

In order to understand how proteins can fold into a specific shape, it is important to 

understand some of the basics about secondary structure elements, super-secondary structure or 

structural motifs, accessible surface area and the concept of protein folding.    

 

1.2.1 Secondary Structure  

Beyond the primary structure or amino acid level, proteins can be viewed as segmented 

collections of “secondary structure”. Unlike the strong covalent peptide bonds, which are 

responsible for maintaining the primary structure of proteins, the primary force that maintains the 

secondary and tertiary structure level integrity is the hydrogen bond, which is a weak non-

covalent bond (Rose et al. 1993). A hydrogen bond is generally formed when an electronegative 

heavy atom (typically an oxygen atom) applies a strong pull on a nearby, non-covalently attached 

electropositive atom (typically a hydrogen atom). As a result the electropositive atom actually 

shares its electron with the electronegative partner – as long as the typical distance between two 

atoms is less than about 2.5 Å (Pimentel et al. 1971, Ippolito et al. 1990). This hydrogen bonding 

helps stabilize the proteins by creating regions of structural regularity, such as different 

secondary structures. 

As stated earlier, protein secondary structure elements fall into four general classes: -

helices, β-sheets, β-turns and coils. The first three have a more regular or easily described shape 

due to their regular hydrogen bonding patterns while the fourth element (coil) lacks a well-

defined structure due to the general absence of hydrogen bonds. A short description of these four 

elements is given below.  

 

 -helices, in which the protein backbone takes a “coiled spring” shape, are formed 

through hydrogen bond interactions between the backbone carbonyl carbon atom of 

residue i and the nitrogen atom of residue i+4 (see Figure 1.3).  
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Figure 1.3: An α-helical structure is shown in a cartoon or “ribbon” representation (left) and the hydrogen 

bonds between backbone carbonyl carbon and nitrogen atoms (blue dashes) are shown in a ball and stick 

representation (right).  

 

 β-sheets, in which the protein backbone assumes an extended or ribbon-like shape, 

look like aligned arrays of short polypeptides. These elements are made up of several β-

strand that are stabilized by hydrogen bonds between the strands (see Figure 1.4). β-

sheets can be subdivided into parallel, anti-parallel or mixed depending on whether the 

strands within the sheet run in one direction (from N- to C-terminus) or in opposite 

direction or a combination of both.  
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Figure 1.4: A mixed β-sheet structure consisting of three β-strands is shown on the left and the hydrogen 

bonds between adjacent β-strands are shown on the right.  

 

 β-turns are very small structures consisting of 4-5 consecutive amino acids that 

form a staple-like conformation, leading to a reversal in the polypeptide chain. β-turns 

are formed by creating hydrogen bond between the carbonyl carbon of residue i and the 

nitrogen atom of residue i+3 (see Figure 1.5). Several types of β-turns such as type-I, 

type-I’, type-II, type-II’ and type-VIII can be formed, depending on the dihedral angles 

formed between residue i+1 and residue i+2 (Hutchinson et al. 1994). Turns play an 

important role by connecting β-strands together, β-strands to helices and helices to 

helices in protein structures. 

 

 

              Figure 1.5: A β-turn comprising of three residues is shown in the left image. The right image shows the 

hydrogen bonding between residue i and residue i+3 in the same β-turn.  

 

 “coil”,  this is a catch-all phrase to refer to structures that lack any regular α-

helical, β-turn or β-strand structure due to the absence of regular hydrogen bonding 

interactions.  
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 1.2.2 Super-secondary structure 

A super-secondary structure feature or a structural motif is formed when several adjacent 

secondary structures are packed together to form a well-defined or easily recognized compact 

shape. Examples of well-known structural motifs are β-hairpins, β-α-β units, Greek keys, β-

meanders, β-barrels etc. These structural motifs are the basic building blocks for a protein’s 

overall tertiary structure. The most abundant and simplest structural motif in globular proteins is 

the β-hairpin (shown in Figure 1.6).  A β-hairpin, which is also called β-ribbon or β-β unit, 

involves two β-strands that look like hairpin used to hold one’s hair in place. The structural motif 

consists of two β-strands that are adjacent in primary structure, having an anti-parallel direction 

(the N-terminus of one strand lies next to the C-terminus of the second strand) and connected by 

a small loop of two to five amino acids. β-hairpins can occur in isolation or as part of a sequence 

of hydrogen-bonded strands that together comprise a β-sheet. McCallister et al. (2000) has 

suggested that β-hairpin plays a critical role in the protein folding process. An NMR study by 

Blanco et al. (1994) demonstrated that short peptides can adopt stable β-hairpin conformations in 

aqueous solutions, suggesting that this structural motif can play an important role in the early 

stages of protein folding.  

 

Figure 1.6: A β-hairpin is shown on the left and the hydrogen bonded strands and turn region in the β-hairpin shown 

on the right.   

 

1.2.3 Accessible Surface Area 

In the early 1970s, Dr. Fredric M. Richards and co-workers (Lee et al. 1970, Richards 1974 & 

1977) first observed that certain parts of a folded protein seemed to be impermeable to water 

while other parts were highly accessible to water. This variance in exposure level seemed to be 
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driven by the hydrophobicity or hydrophilicity of individual amino acid side chains as well as the 

3D folded structure of the protein. Richards and colleagues also highlighted that the surface of a 

protein that was accessible to water was not equal to the van der Waals surface area but rather 

could be calculated by rolling a probe sphere of finite size (typically the size of an oxygen atom 

of 1.4 Å) over the entire van der Waals surface of a protein (Figure 1.7). The resulting swept-out 

“smoothed-surface” area is called the water accessible area or accessible surface area (ASA). 

ASA is a quantifiable property measured in square angstroms or Å
2
. It can be measured for an 

entire protein molecule, for individual residues or even for specific atoms. ASA can also be 

represented as fractional ASA (fASA) that reports the percentage of ASA relative to a fully 

extended chain of amino acid residues. In addition to ASA, there is another measure called 

relative solvent accessibility or RSA, in which residues can be categorized into buried (B), 

partially buried (P) or exposed (E) based on their fASA values. Typically buried residues have a 

fASA of <0.25, partially buried have a fASA between 0.25 and 0.50 and exposed residues have a 

fASA of >0.50.   

 

Figure 1.7: Accessible surface area and Van der Waals surface explained
1 

 

1.2.4 Protein Folding 

Protein folding is a physical process by which a linear polypeptide is twisted, condensed or bent 

into a stable three-dimensional structure. It is through this folding process that a protein 

ultimately assumes its final, functional shape from an initial, non-functional random coil state 

(when it is just released from the ribosome). Understanding how proteins fold has been the 

                                                        
1 Image Courtesy: http://www.ccp4.ac.uk/html/areaimol.html 
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subject of more than 50 years of intense research by tens of thousands of scientists. It is often 

referred to as the “protein folding problem” (Richards 1991, Chan et al. 1993). As yet, a complete 

answer to the protein folding problem has not been determined (i.e. we still cannot routinely 

predict the protein structure from a protein’s amino acid sequence), but we are getting closer. In 

very general terms, during the folding process a protein goes through several different forms of 

molecular interactions, which include short range residue interactions and orientation dependent 

hydrogen bonds (found in secondary structures), residue-dependent long-range interactions and 

hydrophobic interactions, which stabilize tertiary structures (Hausrath 2003, Kadokura et al. 

2006, Cieplak et al. 2009). 

  While short-range residue interactions and hydrogen bonding are largely responsible for 

forming secondary structures, long-range contacts due to hydrophobic interactions are generally 

responsible for forming and stabilizing a protein’s tertiary structure. These long-range 

interactions assist in maintaining the integrity of the tertiary structure even in an aqueous 

environment. Water-soluble proteins largely obtain their unique native conformation due to the 

non-covalent hydrophobic effect (Cieplak et al. 2009). The hydrophobic effect is an entropic 

“force” that leads to hydrophobic molecules attracting one another, while at the same time 

excluding the surrounding water. The hydrophobic effect is commonly seen when one mixes oil 

and vinegar to make salad dressing. Mixing these two solvents leads to the formation of round oil 

droplets, which eventually coalesce back to a layer of oil that lies on top of the vinegar.  In 

addition to non-covalent forces that drive the protein folding process, there are other types of 

covalent interactions that can stabilize tertiary structure. In particular, disulfide bonds are a type 

of covalent interaction that is known to help determine a protein’s tertiary structure. Disulfide 

bonds form when non-adjacent cysteine residues are covalently linked through a sulfur-sulfur 

chemical interaction resulting from an oxidation process.       

 

1.3 The Significance of Protein Structure 

The preceding sections were intended to provide some basic information about protein structure 

and a brief backgrounder on how proteins fold. However, these sections did little to convey the 

motivation for studying protein structure. The reasons for studying protein structures are 

manifold. The first reason is that structure defines function. In other words, the shape and 

chemical characteristics of a protein give rise to its functions. The importance of protein function 

is profound considering that many human diseases, such as Alzheimer’s disease, cystic fibrosis, 
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Parkinson’s disease and sickle cell anemia result from disorders in both protein structure and 

protein function (Dobson 1999, Chaudhuri et al. 2006). The second reason is that studying 

protein structure gives us insight into the process of evolution. Proteins evolve over time and 

often protein structure is more conserved than sequence. By studying protein structures from 

diverse organisms, it is possible to understand more about their evolution and their distant 

relationships than by studying protein sequences (Yang et al. 2009). The third reason is that 

studying protein structure will ultimately help solve the protein folding problem. In principle, by 

solving enough protein structures it should be possible to “learn” the rules governing protein 

folding. If the rules could be learned, then it would be possible to predict the 3D structure of 

proteins from their amino acid sequence alone.  This has been the motivation behind the 

multibillion-dollar Protein Structure Initiative (Smith et al. 2007). All three of these reasons 

provide a strong motivation for studying protein structure at an atomic level.  However, 

determining the structure of proteins is not a trivial task.          

1.4 Protein Structure Determination  

To date, most protein structures have been determined by either X-ray crystallography or Nuclear 

Magnetic Resonance (NMR) spectroscopy. Of these two, X-ray crystallography is the older and 

more precise method of protein structure determination (Lesk 2001, Heinemann et al. 2001). 

NMR and X-ray crystallography, together, have been used to determine the structure of more 

than 100,000 proteins and peptides, with X-ray crystallography being responsible for about 90% 

of these structures and NMR being responsible for the rest. In X-ray crystallography, an X-ray 

beam of a particular wavelength is passed through a pure protein crystal containing large 

numbers of the molecules in a regular, crystallized lattice. The X-rays interact with the electrons 

in the crystallized molecular lattice producing a complex diffraction pattern that may be detected 

by a photographic film or an electronic area detector. This diffraction pattern, which is a 

collection of thousands of spots, can then be analyzed using mathematical methods, such as 

Fourier analysis, to produce a three-dimensional contour map that corresponds to the molecule’s 

electron density. The electron density map can then be re-interpreted into the positions and 

coordinates for each of the atoms in the molecule through careful (computer-aided) visual 

analysis. A more detailed explanation of the principles of X-ray crystallography can be found in 

Drenth (1994).  
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More recently, NMR spectroscopy has emerged as an alternative and complementary 

approach to macromolecular (especially protein) structure determination. NMR allows one to 

determine the three-dimensional structure of molecules dissolved in solutions (i.e. the liquid 

state) as opposed to molecules in the solid or crystalline state (as is required for X-ray 

crystallography). Because the primary focus of my research is on using NMR spectroscopic data 

to determine protein structures, most of the remaining discussion in this section will be concerned 

with NMR spectroscopy.  

In NMR spectroscopy, a protein sample is typically dissolved in water and kept in a liquid 

state (as opposed to a crystalline state) and placed in a powerful magnetic field, supplied by a 

superconducting magnet. Radio-frequency electromagnetic (EM) radiation is pulsed into that 

sample and the absorption bands (resonances) corresponding to individual atoms in the protein 

are recorded, producing an NMR spectrum. An NMR spectrum of a molecule is typically 

characterized by a set of peaks, with the peak positions (or frequencies) corresponding to the 

chemical shifts (see section 1.5 for more details) of the individual atoms in that molecule. NMR 

spectra are also characterized by peak clusters (doublets, triplets, etc.) that correspond to scalar 

couplings between adjacent (geminal) or nearby (vicinal) atoms. The intensity of the peaks in an 

NMR spectrum correspond to the numbers of atoms found at a given resonance frequency or a 

given chemical shift. The intensity and shape of an NMR peak is also affected by the interactions 

between nearby atoms (via Nuclear Overhauser effects or NOEs) and the liquid lattice (relaxation 

effects). An example of a NMR spectrum for a simple molecule (diacetone alcohol) is shown in 

Figure 1.8, where the protons (or hydrogen atoms) from each of the functional groups of the 

molecule, (CH3)2, CH3, CH2, and OH  are responsible for the characteristic peaks in the spectrum. 
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Figure 1.8:  The proton chemical shift spectrum for diacetone alcohol (4-hydroxy-4-methyl-2-pentanone) [Adapted 

from Becker 1999]. The chemical shift peaks,   for functional groups are shown along the x-axis in ppm unit.    

 

Using specially designed combinations of radio frequency pulses with a defined length, 

strength, and orientation, it is possible to simultaneously record the NMR spectra of multiple 

types of atoms (hydrogen, carbon, nitrogen), coupled atoms or different NMR parameters such as 

NOEs, coupling constants, dipolar couplings, chemical shift anisotropy etc. Using two or three-

dimensional NMR experiments with whimsical names such as TOCSY (Bax 1989), NOESY 

(Kumar et al. 1980), HSQC (Bodenhausen et al. 1980) and HNCAB (Wittekind et al. 1993), it is 

possible to determine the chemical shifts, coupling constants, and spatial proximity of most NMR 

active atoms in a protein. Once the sequence specific resonances or chemical shifts have been 

assigned and the spatial proximity of most hydrogen atoms has been determined through NOE 

measurements, then it is possible to use computational techniques such as distance geometry 

(Wuthrich 1986) or simulated annealing (Brunger 1993) to determine the three-dimensional 

structure of the protein. A general workflow of NMR structure determination procedure is shown 

in Figure 1.9. A more complete description of NMR spectroscopy can be found in Kemmink et 

al. 1996, Castellani et al. 2002 and Wüthrich 1990. 
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Figure 1.9: A general workflow of NMR structure determination process  

 

 As described above, one of the key steps in NMR structure determination involves a 

process known as chemical shift or resonance assignment.  This involves assigning chemical shift 

values to each atom in the compound of interest (a small molecule or a protein).  This process 

involves measuring NMR peak positions and using information about atom connectivity and, in 

the case of proteins, sequence information to determine which peak in the NMR spectrum 

corresponds to which atom in the molecule of interest.  Chemical shift assignment is considered 

as an essential pre-requisite for Nuclear Overhauser Enhancement (NOE) peak assignment, 

which is a critical step in determining through-space connectivity between atoms in a given 

molecule or macromolecule. While NOE data can provide important structural constraints for 

structure generation, the difficulty and time required to collect and interpret NOE spectra have 

placed a serious limitation on the size and precision of protein structure determination via NMR. 

It is my hypothesis (and the motivation behind this thesis) that if chemical shifts could be more 

fully exploited in protein NMR, then many of these bottlenecks relating to protein size, analysis 

time and structural precision could be reduced and even eradicated. This is the primary 

motivation for developing chemical shift based structural parameter calculators described in 

Chapter 2, 3, 4 and 5 of this thesis.    



 

 

15 

In the following sections, I will provide some basic background about NMR chemical 

shifts and their use with regard to protein structure determination.   

1.5 NMR Chemical Shifts 

As stated earlier, when a chemical or protein sample is immersed into a powerful magnetic field 

and exposed to a pulse train of radio frequency electromagnetic (EM) signal, the atoms in the 

molecule will absorb certain frequencies from the impinging EM radiation.  Each NMR-

detectable nucleus (hydrogen or 
1
H, carbon or 

13
C and nitrogen or 

15
N) absorbs at a 

characteristics EM frequency, which is dependent on the type of the nucleus and the strength of 

the magnetic field in which the nucleus is immersed.  The fields “experienced” by atoms in 

molecules are modified by each atom’s local electromagnetic field which, in turn, is affected by 

the atomic bonds and atomic neighbors in the molecule. The motions of the electrons orbiting the 

nucleus produce a secondary, smaller magnetic, that acts to oppose the applied external field. 

This change in the effective magnetic field on the nuclear spin causes the NMR signal to shift. 

This shift is called the “Chemical Shift”, and it primarily depends on the type of nucleus being 

measured and the electron density in the nearby atoms and molecules. Chemical shifts are usually 

measured as the difference between the resonant frequency of a nucleus and that of a defined 

reference, relative to the reference’s resonant frequency. This quantity is expressed by   

(chemical shift) and is reported in parts per million (ppm). 

 

      
      

    
                                                                        (1.1) 

 

where  f  is the resonant frequency of the nucleus of interest and      is the resonant frequency of 

the reference material. In NMR spectroscopy, the reference material is often TMS 

(TetraMethylSilane – for organic solvents) or DSS (4,4-dimethyl-4-silapentane-1-sulfonic acid – 

for water), both of which are organo-silicon compounds that have a chemical shift defined as 0.00 

ppm. Additional information about chemical shifts for a simple molecule is illustrated in Figure 

1.8. 

1.6 Chemical Shifts to Protein Structure  

Chemical shifts are often called the “mileposts of NMR”. They serve as reference points to help 

NMR spectroscopists map out atomic positions, identify chemical groups and determine 
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molecular structures.  Over the last few decades, chemical shifts have been used by chemists to 

successfully determine or confirm the covalent structure of tens of thousands of organic 

molecules. Not only are the chemical shifts sensitive to the type and character of nearby atoms 

but chemical shifts are also remarkably consistent or “predictive” for different chemical groups or 

chemical environments. This sensitivity and behavioral consistency has allowed chemists to 

produce well-defined chemical shift “principles” that allow them to deduce the identity of key 

chemical groups and thereby determine the precise structures of many small molecules (Brügel 

1979, Biemann 1989, Steinbeck 2004). However, chemical shift assignments of large molecules, 

such as peptides or proteins, do not provide such precise or structurally obvious information.  

This is because the structure of large macromolecules, unlike small molecules, is primarily 

defined by non-covalent interactions, for which (until recently) very few chemical shift principles 

had been discovered or derived (Wishart 2011). 

 Nevertheless, the striking success of chemical shift-derived principles in characterizing 

small compounds actually led a number of biochemists and NMR spectroscopists (especially in 

the early 1960s) to try to develop similar principles or algorithms to interpret the relationship 

between chemical shifts and structure for larger molecules such as peptides and proteins. In the 

late 1960s and early 1970s, a number of theoretical models were developed that explained the 

influence of hydrogen bonds, dipole-dipole interactions and aromatic ring currents on protein 

proton shifts (Sternlicht et al. 1967, Tigelaar et al. 1972, Perkins et al. 1977).  These models were 

refined and validated on the first published partial chemical shift assignments of peptides and 

proteins (Proctor et al. 1950, Arnold et al. 1951). For a number of years the use of chemical shifts 

was considered by many to be the best route to solving protein structures.  Then in the early1980s 

NOE-based structure determination methods emerged (Jardetzky et al. 1981) and these new and 

powerful techniques largely supplanted the need for chemical shift interpretation. To date, NOE-

based methods have allowed the determination of 11,093 protein structures (Source: PDB) and 

the assignment of more than 10,000 (Source: BMRB) protein and peptide resonances. 

However, NOE-based methods are not completely without their problems nor are they 

necessarily routine or simple. NOE measurements, which are critical to the calculation of protein 

structures via conventional NMR methods, are responsible for a significant amount of overhead 

in the structure determination process.  This is because measuring proton NOEs is both a tedious 

and a time consuming task. Another constraint with NOE-based methods lies in the determination 

of structures of large proteins (>200 residues). As the size of the protein grows, NOEs become 
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gradually less useful and more difficult to measure and compute. Thus, the determination of large 

protein structures using NOE-based methods is still a difficult task (Wishart 2011).  

Consequently, NMR spectroscopists and computational biologists are still looking for potential 

improvements or possible transformative innovations to the NMR structure determination 

pipeline. 

Interestingly, the explosion of NOE-based protein structures and assignments over the 

past 30 years has actually proven to be a real boon for protein chemical shift analysis. In 

particular, it has helped revive the idea that chemical shifts could be used to determine protein 

structures – independent of size.  Indeed, the large quantity of available chemical shift 

assignments has allowed NMR spectroscopists to deduce a number of rules or algorithms 

concerning chemical shifts and their interpretation with regard to protein secondary structure, 

torsion angles, aromatic ring placement, oxidation states, solvent exposure and flexibility. In 

particular, chemical shifts have been successfully used to quantify protein secondary structure 

content (Mielke et al. 2009), to identify and assign secondary structure location (Wishart et al. 

1992 & 1994b, Eghbalnia et al. 2005, Labudde et al. 2003) and structure classes (Mielke 2003), 

to identify structural motifs (Gronenborn et al. 1994, Shen et al. 2012), to determine redox states 

of cysteine residues (Wang et al. 2006), to predict disulfide bond information (Sharma et al. 

2000), to measure surface accessibility (Vranken et al. 2009, Avbeli  et al. 2004), to determine 

the orientation of aromatic rings (Perkins et al. 1979), to estimate the backbone torsion angles 

(Shen et al. 2009b, Berjanskii et al. 2006), to determine side-chain torsion angles and rotamer 

populations (London et al. 2008, Hansen et al. 2009, Shen et al. 2013), and to assess protein 

flexibility parameters (Berjanskii et al. 2005 and 2013). These studies have helped guide the 

development of powerful predictive algorithms that quantitatively infer the relationship of 

chemical shifts to the non-covalent structure and dynamics in proteins (Wishart 2011).  Indeed, 

these advances led to the development of three programs in 2007 and 2008 including CSRosetta 

(Shen et al. 2008), CHESHIRE (Cavalli et al. 2007) and CS23D (Wishart et al. 2008)) that are 

able to predict or model the 3D structure of proteins using only chemical shift data as input. 

 While considerable excitement within the NMR community greeted these programs, they 

have not entirely lived up to expectations.  Indeed, the performance or success rate of these 

techniques generally hovers around 50% (compared to 95%+ for NOE-based methods). This 

relatively poor performance indicates that there is still room for improvement and that the “Shift-

to-Structure” problem has not yet been fully solved. Consequently, in the following sections we 
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will discuss some of the problems relating to protein structure prediction in which chemical shifts 

are exploited.    

 

1.6.1 Secondary Structure and Structural Motifs from Chemical Shifts 

As mentioned earlier, proteins can be described as segmented collections of “secondary 

structures”. Beyond the primary structure level, secondary structures are considered as essential 

to both describing and interpreting protein tertiary structures. As a result, protein chemists, and 

especially NMR spectroscopists, have shown a strong interest in identifying and characterizing 

secondary structure elements (Wuthrich 1986 & 1990). In the field of NMR, NOE based 

techniques are extensively used to identify and assign secondary structures in proteins (Wuthrich 

1986). However it was not generally appreciated until the early 1990’s that chemical shifts could 

also be used to identify secondary structures. Furthermore chemical shifts are very accurate and 

far easier to use than NOEs (Wishart et al. 1992 & 1994b). The “Chemical Shift Index” or the 

CSI was the first method that exploited the idea of using chemical shifts to identify protein 

secondary structures (Wishart et al. 1992). The CSI method was based on some simple 

observations regarding backbone chemical shift patterns in secondary structure locations in 

proteins. It uses a “numerical filter” to classify and cluster backbone 
1
H and 

13
C chemical shifts 

and thereby identify the type and location of protein secondary structure elements (α-helices, β-

strands, and coils).  Even though the CSI method is simple and easy to implement, it is 

surprisingly accurate.  In particular, the reported agreement between the experimental and CSI-

defined secondary structures is about 75-85% (Wishart et al. 1994b & 2002, Mielke et al. 2004 & 

2009). As a result of its simplicity and accuracy, the CSI method has become one of the most 

popular methods in NMR to identify secondary structures from chemical shifts.    

     The success of CSI (along with some of its shortcomings) has inspired a number of CSI-

like approaches to be developed over the past decade, including 1) a joint probabilistic model to 

secondary structure identification (PSSI) (Wang et al. 2002a); 2) an approach that combined CSI 

and a sequence-based secondary structure routine called PSIPRED (Jones 1999), which is called 

PsiCSI (Hung et al. 2003); 3) a method that uses pre-specified chemical shift patterns, PLATON 

(Labudde et al. 2003); 4) a prediction method that employs statistically derived chemical 

shift/structure potentials, PECAN (Eghbalnia et al. 2005); and 5) a two-dimensional cluster 

analysis method to analyze paired scattering diagrams of all six backbone chemical shifts, 2DCSi 
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(Wang et al. 2007). The above-mentioned methods typically incorporated advanced chemical 

shift model or additional statistical information as an extension to the original CSI algorithm.  

 More recently, chemical shift based secondary structure assignment approaches have 

emerged that exploit sophisticated machine learning techniques, torsion angle estimates, 

sequence homology information and extensive sequence-structure databases. These include: 1) a 

neural network method that predicts backbone and side-chain torsion angles, as well as secondary 

structure locations by matching chemical shift patterns over a five-residue window against a large 

database of previously assigned proteins with high-resolution structures (TALOS+ and TALOS-

N) (Shen et al. 2009b & 2013); 2) a Bayesian-inference method that employs a similar concept to 

TALOS+ (DANGLE)  (Cheung et al. 2010); and 3) a secondary structure identification method 

that identifies secondary structure population in both disordered and native-state proteins by 

analyzing the probability distribution of a large database of backbone chemical shifts (Delta2D) 

(Camilloni et al. 2012). The accuracies of these newer approaches range between 83% and 86%. 

In addition to these programs that identify regular secondary structures via chemical shifts, 

another recent program called, MICS identifies β turns and helix-capping motifs (Shen et al. 

2012). MICS uses backbone chemical shifts, together with the PDB extracted amino acid 

preference to identify the locations of five types of β-turns and N-terminal and C-terminal helix 

capping motifs in a protein sequence via machine-learning methods such as artificial neural 

network.  

 Over the past 25 years it is clear that the field of chemical shifts and secondary structure 

identification has matured. However, it is also evident that there is still some room for 

improvement as no method has yet been described that achieves a level of accuracy >90% and 

few, if any, are able to identify super-secondary structures or motifs via chemical shifts. In this 

thesis I will describe two methods that achieve this goal (Chapters 2 and 3). 

 

1.6.2 Accessible Surface Area from Chemical Shifts 

Over the last two decades it has been observed that NMR chemical shifts correlate reasonably 

well with accessible surface area. The first evidence of such a phenomenon was first reported in 

1994 (Wishart et al. 1994a).  Almost a decade later Avbelj et al. (2004) studied the effect of 

secondary structure elements namely α-helices and β-sheet and solvent exposure on backbone 

chemical shifts.  They showed that proton secondary shifts of smaller peptides have a 

characteristic chemical shift distribution that correlated with solvent exposure. In a later study by 
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Vranken et al. (2009), the effect of secondary structure and solvent exposure on chemical shift 

assignments was re-examined on a large database of proteins for which both reported atomic 

coordinates and chemical shift values were available. Two major findings from this study were: 

1) Non-polar atoms have significantly larger chemical shift dispersion and a somewhat different 

chemical shift distribution compared to polar atoms; and 2) those atoms with greater atomic 

ASA, exhibited chemical shift values that tended towards random coil values.  The relationship 

between chemical shifts and ASA was in fact used as one of the features in developing a 

significantly improved structure-based chemical shift prediction algorithm, called ShiftX2 in 

2011 (Han et al. 2011).  Most recently, Berjanskii et al. (2013) proposed a simple formula to 

calculate per-residue fractional accessible surface area from backbone and side-chain chemical 

shifts and observed a correlation of about 74% with the observed fASA values over a subset of 15 

proteins. 

Based on these examples it is evident that the field of chemical shifts and accessible 

surface area prediction is still maturing. As a result, there is still considerable room for 

improvement as no method has yet been described that achieves a level of accuracy >80%. In this 

thesis I will describe a method that achieves this goal (Chapter 4). 

 

1.6.3 Protein Structure Determination by Chemical Shifts 

Fast, automated protein structure determination is one of the ultimate goals for computational 

biologists. This is because high-resolution structures, obtained by X-ray crystallography or NMR 

spectroscopy, require considerable resources and are available only for a small fraction of all 

known protein sequences (<0.05%). It is universally agreed that computational methods, in 

combination with rapid experimental data acquisition, will be required to help generate or model 

the structures for the remaining sequences. These computational methods for structure generation 

can be broadly categorized into two types: 1) Comparative modeling; 2) De novo approaches. 

Comparative modeling algorithms usually perform structure determination in two steps. It starts 

by identifying related templates from known structures with modest (>30%) sequence identity 

through an optimal alignment between the query and template sequence(s). In the second stage, a 

complete three-dimensional model of the query protein is generated using the information from 

the aligned templates.  On the other hand, de novo methods start with only amino acid sequence 

and no structural template. They use a combination of an effective conformation-searching 

algorithm and an energy function to generate structural models from the scratch. The key 
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problem with de novo approaches is their massive computational cost. De novo methods are 

mostly restricted to solving smaller proteins and peptides because of the computational 

bottlenecks associated with the conformational sampling of proteins with large number of 

residues.    

 Protein NMR chemical shifts contain important structural information and if integrated 

effectively into the structure modeling process, can greatly improve the speed and accuracy of 

both de novo and comparative modeling approaches to structure determination. This idea 

motivated the development of three powerful de novo protein structure prediction programs: 

CHESHIRE (Cavalli et al. 2007), CS-ROSETTA (Shen et al. 2008), CS23D (Wishart et al. 

2008), all of which exploit chemical shifts as the only input and generate high-quality all atom 

models for small to medium proteins with a diversity of folds.      

Most recently Shen et al. (2015) described a system called POMONA (Protein alignments 

Obtained by Matching of Nmr Assignments) that identifies suitable homologs for query proteins 

from the sequence-structure database (PDB) using chemical shifts and NOE distance restraints 

when available, which is followed by a modified comparative modeling procedure to generate 

all-atom structures for protein. POMONA searches the PDB for suitable homologs that are well 

matched with backbone chemical shift predicted residue specific Φ/Ψ probability maps and 

secondary structures. The resulting structural templates are then clustered into groups (typically 

ten) using the normalized Cα- root mean square deviation as a metric. Representative homologs 

from these clusters are then used to build a structural pool for a comparative modeling using a 

modified RosettaCM procedure. Assessments of this method on a set of 16 proteins indicate that 

in majority cases the best alignments reported by POMONA have decent structural similarities 

with the native structures. 

While good progress is being made in this area, it is evident that the field of chemical 

shifts and protein structure generation/prediction still has a long way to go. In this thesis I will 

describe a method, called E-Thrifty, that exhibits a significant improvement over existing 

methods (Chapter 5). 

 

1.7 Thesis Objectives  

I believe that further improvements are possible for the “Shift to Structure” problem and that 

these can be addressed using innovative computational and machine learning approaches.  In 

particular, my central hypothesis is that novel algorithms can be developed that will allow 
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chemical shifts to be used to determine and refine protein structures with high efficiency and high 

accuracy (>90%).  More specifically, I believe that: 1) significant improvements to shift-based 

secondary structure prediction and identification can be made; 2) it is possible to develop 

algorithms that identify internal/external β-strands; 3) significant improvements to predicting 

accessible surface areas via shifts can be made; and 4) significant improvements in structure 

recognition via chemical shifts can be made. Together, these improvements and innovations will 

all lead to the creation of a robust framework to solve protein structures via NMR-chemical 

shifts.  

My “chemical shift to structure” thesis project can be divided into three major 

components: a) the development of shift-based protein local structure prediction techniques; b) 

the development of prediction methods for protein local/non-local interactions from sequence 

data and chemical shifts; c) the development of a tertiary fold recognition technique from 

chemical shifts and sequence data. Many of these components or tools will be integrated into an 

updated 3D structure determination package, called “CS23D 3.0”. These three major components 

or phases can be further sub-divided into several sub-goals. The sub-goals under each of the 

major phases are described in Table 1.2. 

 

 

Table 1.2: Major phases of the current thesis and corresponding sub-goals 

Major Phase Sub-goals 

1. Local protein structure 

identification  

a) Chemical shift-based protein secondary structure 

determination  

2. Identification of local/non-

local protein interactions from 

protein sequence and chemical 

shift data 

a) Internal/external β-strand identification from 

chemical shifts 

b) Fractional accessible surface area prediction using 

sequence and chemical shifts  

 

3. Tertiary fold recognition 

from chemical shift and 

protein sequence data 

a) Accurate template recognition by chemical shift and 

sequence-structure threading 
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1.8: Organization of Thesis 

This document is organized as follows: Chapter 2 presents a novel method for chemical shift-

based secondary structure identification, which includes the description and evaluation of the 

method using an independent test set. In particular, Chapter 2 describes a multi-class SVM model 

specially optimized to classify protein secondary structures into three major classes namely α-

helices, β-sheets, and coils. This chapter also provides a detailed assessment of this program 

relative to other programs. Chapter 3 describes a web server that is designed to identify four 

major secondary structure elements; α-helices, β-sheets, β-turns and coils along with detailed 

classification of β-turns and β-sheets and other structural motif such as β-hairpins, a total of 11 

types of secondary structure and super-secondary structural motifs, using chemical shift data. In 

this algorithm, we exploited the previously described multi-class SVM classifier to identify three 

major secondary structure classes. In addition we developed a rule-based algorithm to identify 

five types of β-turns and a SVM classifier to classify β-strands into edge and internal strands. 

This chapter provides a detailed assessment of this program relative to other programs. Chapter 4 

describes a novel regression method for accurately estimating per-residue fractional accessible 

surface area using chemical shift and sequence data alone. Specifically, we developed a 

Stochastic Gradient Boosted Regression Tree method that has been optimized to estimate real-

value accessible surface area. As with previous chapters, this chapter provides a detailed 

assessment of this program relative to other programs. Chapter 5 outlines a protein fold 

recognition method called “E-Thrifty”, in which a parameterized sequence-structure threading 

method and a weighted chemical shift scoring function have been implemented. This chapter also 

provides a detailed assessment of the E-thrifty program relative to other programs. The document 

ends with Chapter 6 that summarizes the key results from the previous chapters and outlines 

some future research goals that can be commenced based on these results. 
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Chapter 2 

 

CSI 2.0 – A Significantly Improved Version of the Chemical 

Shift Index
1
  

 

Abstract 

Protein chemical shifts have long been used by NMR spectroscopists to assist with secondary 

structure assignment and to provide useful distance and torsion angle constraint data for structure 

determination.  One of the most widely used methods for secondary structure identification is 

called the Chemical Shift Index (CSI). The CSI method uses a simple digital chemical shift filter 

to locate secondary structures along the protein chain using backbone 
13

C and 
1
H chemical shifts. 

While the CSI method is simple to use and easy to implement, it is only about 75-80% accurate. 

Here we describe a significantly improved version of the Chemical Shift Index (CSI 2.0) that 

uses machine-learning techniques to combine all six backbone chemical shifts (
13

Cα, 
13

Cβ, 
13

C, 

15
N, 

1
HN, 

1
Hα) with sequence-derived features to perform far more accurate secondary structure 

identification. Our tests indicate that CSI 2.0 achieved an average identification accuracy (Q3) of 

90.56% for a training set of 181 proteins in a repeated 10-fold cross-validation and 89.35% for a 

test set of 59 proteins. This represents a significant improvement over other state-of-the-art 

chemical shift-based methods. In particular, the level of performance of CSI 2.0 is equal to that of 

standard methods, such as DSSP and STRIDE, used to identify secondary structures via 3D 

coordinate data. This suggests that CSI 2.0 could be used both in providing accurate NMR 

constraint data in the early stages of protein structure determination as well as in defining 

secondary structure locations in the final protein model(s). A CSI 2.0 web server 

(http://csi.wishartlab.com) is available for submitting the input queries for secondary structure 

identification. 

 

 

 

1. Portions of this chapter were published as: Hafsa NE, Wishart DS (2014) CSI 2.0: a significantly improved 

version of the Chemical Shift Index. J Biomol NMR 60:131-146. 
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2.1 Introduction 

Secondary structures are considered fundamental to both the description and the understanding of 

protein tertiary structures. Indeed, secondary structure maps and secondary structure ribbon 

diagrams are standardly used in almost all structural biology books, journals and databases 

(Wuthrich 1986, Berman et al. 2000). It is also notable that secondary structure assignments or 

predictions are still widely used as the basis to many protein fold recognition algorithms (Soding 

et al. 2005), protein threading methods (Jones et al. 1999), 3-D protein structure prediction 

algorithms (Wishart 2011, Soding et al. 2011) and intrinsically disordered protein (IDP) 

identification methods (He et al. 2009). Secondary structure is also key to many heuristic energy 

functions that are designed to assess, fold and/or refine protein structures (Wishart et al. 2008, 

Berjanskii et al. 2009, Adams et al. 2013). Furthermore, secondary structure provides not only 

approximate torsion angle and qualitative backbone flexibility data, it also provides hydrogen 

bonding information (for α-helices and β-strands), implied contact information (for β-strands) 

and important topological information (through β-turns). While increasing interest is turning to 

extracting or predicting more quantitative measures of protein structure (i.e. torsion angles, 

backbone order parameters, accessible surface area) it is important to note that the accuracy of 

these methods is not yet sufficient to permit their widespread use in 3D protein structure 

prediction or 3D structure calculation algorithms (Wishart 2011). Consequently the identification 

and delineation of secondary structure elements continues to be of interest to protein chemists, 

bioinformaticians, X-ray crystallographers and, of course, NMR spectroscopists (Wuthrich 1986 

& 1990, Wishart 2011).    

In the field of protein NMR, NOE-based methods are widely used to identify and assign 

secondary structures. Indeed, they continue to be the predominant method for identifying or 

delineating secondary structures in peptides and proteins (Wuthrich 1986).  Less well known is 

the fact that NMR chemical shifts can also be used to identify secondary structures and that they 

are remarkably accurate and far easier to use than NOEs (Wishart et al. 1992, 1994a & 1994b).  

The idea of using chemical shifts to identify secondary structures was first exploited with the 

development of the Chemical Shift Index or CSI (Wishart et al. 1992).  The CSI method applies a 

“digital filter” to backbone 
1
H and 

13
C chemical shifts to precisely identify the type and location 

of protein secondary structure elements (helices, -strands, coils) along a protein chain (Wishart 
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et al. 1994b). The CSI method is particularly popular because it is easy to implement and 

surprisingly accurate with the reported agreement between X-ray-defined secondary structures 

and CSI-identified secondary structure being about 75-85% (Wishart et al. 1994b & 2002, Mielke 

et al. 2004 & 2009).  

 However, the CSI method is not without some shortcomings.  For instance, it requires 

near complete backbone assignments, it is sensitive to the choice of random coil shifts used to 

calculate the secondary shifts, and it identifies -helices (>90% accuracy) more accurately than 

-strands (<75%).  Because of these limitations, a number of alternative CSI-like approaches 

have been developed over the past decade, including PSSI (Wang et al. 2002a), PsiCSI (Hung et 

al. 2003), PLATON (Labudde et al. 2003), PECAN (Eghbalnia et al. 2005), and 2DCSi (Wang et 

al. 2007). These methods typically extend the CSI concept by incorporating more advanced 

chemical shift models or additional statistical information. For instance, PSSI replaced CSI’s 

simplistic digital filter with a more sophisticated joint probability model to improve its secondary 

structure identification accuracy.  On the other hand, PsiCSI combined the basic CSI concept 

with a sequence-based secondary structure routine called PSIPRED (Jones 1999) to boost its 

performance. PLATON used a database consisting of reference chemical shift patterns from 

previously assigned proteins to improve its secondary structure calls, while PECAN employed a 

pseudo-energy model that combined sequence data with chemical shift data to more accurately 

identify secondary structure elements. Finally, 2DCSi used two-dimensional cluster analysis to 

analyze paired scattering diagrams of all six backbone chemical shifts to obtain improved 

secondary structure identification.  All of these methods appear to achieve three-state secondary 

structure (Q3) accuracies better than 80%. 

More recently, sophisticated chemical shift-based secondary structure assignment 

approaches that exploit machine-learning techniques, torsion angle estimates, sequence homology 

and far more extensive chemical shift-structure databases have appeared. These include TALOS+ 

(Shen et al. 2009), TALOS-N (Shen et al. 2013), DANGLE (Cheung et al. 2010) and Delta2D 

(Camilloni et al. 2012). Both TALOS+ and TALOS-N predict backbone torsion angles, as well as 

secondary structure locations by using neural networks to match chemical shift patterns over a 

five-residue window against a large database of previously assigned proteins with high-resolution 

structures. DANGLE exploits some of the same ideas as TALOS+ but employs Bayesian-

inference techniques instead of neural nets to perform its analyses. Delta2D identifies secondary 

structure elements and secondary structure populations in both disordered and native-state 
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proteins by analyzing the probability distribution of a very large database of backbone chemical 

shifts. In general, these newer approaches have average Q3 prediction accuracies between 83% 

and 86%.  

 With ongoing advances in machine learning and with continued improvements of our 

understanding of protein chemical shifts (Wishart 2011, Shen et al. 2012, Fesinmeyer et al. 

2005), we believe that further improvements in shift-based secondary structure identification 

accuracy are possible. In particular, by making use of chemical shift information, sequence 

information and predicted backbone flexibility and then integrating this information using a 

multi-class Support Vector Machine (SVM) model (Weston et al. 1998), we found that it was 

possible to make statistically significant improvements (3-8%) in the accuracy of shift-based 

secondary structure assignments.  Since this concept builds from our previous work on the 

Chemical Shift Index (CSI), we decided to call the new method CSI 2.0. The level of accuracy 

achieved by CSI 2.0 suggests that it could be used to assist with the initial stages of conventional 

NMR structure generation (i.e. fold identification via threading or providing useful torsion angle 

and distance restraints) as well as a robust alternative to standard coordinate-based methods for 

secondary structure identification.  

 

2.2 Methods and Materials 

2.2.1 Data set preparation 

Training and testing data set 

To construct the database needed to train and test our CSI 2.0 method, we chose a local, manually 

curated data set that we previously used to train and test the SHIFTX2 program (Han et al. 2011).  

An initial data set of ~300 X-ray protein structures with good quality NMR assignments was 

filtered based on following criteria: i) a resolution <2.1 Å, ii) largely monomeric, iii) free of 

bound DNA, RNA or large cofactors, iv) an average pairwise sequence identity < 33% to any 

other protein in the data set, v) nearly-complete (>90%) sequential assignment of 
1
H, 

13
C and/or 

15
N backbone chemical shifts, and vi) must be a BMRB (Ulrich et al. 2008) entry. Several 

measures were taken to eliminate chemical shift re-referencing problems, check chemical shift 

quality and detect chemical shift outliers. A more detailed accounting of the data preparation 

protocol is provided in the SHIFTX2 paper (Han et al. 2011). The above selection and filtering 

process reduced the data set to 240 proteins. This data set was then divided into a training set and 

an independent test set. The training dataset consisted of 181 proteins (25,205 residues) whereas 
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the test dataset contained 59 entries (8,078 residues). Among the training proteins, 146 proteins 

belonged to the α+β folding class, 15 proteins to the all-α, 18 proteins to the all-β and two 

proteins to the all-coil folding class. For the test proteins, 52 proteins had an α+β architecture, 

three were all-α and four were all-β. Note that there were no disordered proteins in the test set. 

The free parameters for the secondary structure assignment model were optimized on the training 

data set while the test set was used to perform an independent validation of the program’s 

performance.  

DSSP (Kabsch et al. 1983), STRIDE (Frishman et al. 1995) and VADAR (Willard et al. 

2003) served as the three programs used to assign reference secondary structures (“α-helix”, “β-

strand”, “coil”) in both the training and test set proteins.  These methods assign secondary 

structures based on the coordinates of the 3D structures as well as inferred H-bonds and torsion 

angles derived from those coordinates. The normal eight-state DSSP assignments were 

transformed into a three-state (helix, sheet, coil) assignment using the EVA convention (Eyrich et 

al. 2001). The same procedure was applied to the STRIDE output. No such transformation was 

required for the VADAR output.  According to DSSP, there were a total of 2,335 β-strand 

residues (29%), 2,186 residues in α-helices (27%) and 3,557 coil assignments (44%) in the test 

set. STRIDE determined 2,499 residues as β-strands (31%), 2,677 as α-helices (33%) and 2,902 

residues as coil structures (36%) in the test set. Finally, VADAR found 2,489 β-strands (31%), 

2,720 α-helices (34%), and 2,869 coil structures (35%). According to DSSP, the training set had a 

total of 6,837 β-strand residues (28%), 7,588 residues in α-helices (29%) and 10,780 coil 

assignments (43%). STRIDE identified 7,368 residues in β-strands (29%), 8,857 residues in α-

helices (35%), and 8,980 coil residues (36%). VADAR identified 7,196 β-strand residues (28%), 

8,910 α-helical residues (36%), and 9,099 coil residues (36%).  

 
Missing chemical shifts handling and neighbor residue correction 

The completeness of a given protein’s chemical shift assignments plays a crucial role in 

determining the performance of any chemical shift-based secondary structure assignment method 

(Shen et al. 2009). The current model is no exception. We assessed the performance of our CSI 

2.0 program using both complete and incomplete shift assignments. Incomplete shift assignments 

were found to negatively affect the accuracy of the secondary structure assignments by up to 3%.  

As mentioned in the previous section, because a small, but significant number (<10%) of 

chemical shift assignments were missing in some entries in our protein data set, we needed to 
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take appropriate measures to handle the assignment gaps. This was done by searching through a 

sequence-chemical shift triplet database to fill in any missing assignments in a manner similar to 

that described by Shen et al. (2009).  More specifically, each entry in our database was converted 

to an amino acid triplet and each had six backbone (
13

Cα, 
13

Cβ, 
13

C, 
15

N, 
1
HN, 

1
Hα) experimental 

chemical shifts associated with it (except for Gly and Pro).  To fill in the missing data, the query 

sequence triplet was compared with each triplet entry in the database and scored in terms of 

sequence and chemical shift similarity. The ten best scoring triplets were selected and the average 

of the ten central residue shifts was used as a proxy for the missing assignment.  This process was 

repeated for all missing assignments (except 
13

Cβ for Glycine, 
15

N and 
1
HN for Proline) 

Several studies have reported on the significant influence of the nearest neighbor residues 

on random coil chemical shifts (Wishart et al. 1998, Wang et al. 2002b, Wang et al. 2007). In 

particular, it has long been noted that the preceding amino acid type significantly affects the 
15

N 

and amide proton chemical shift, while the 
13

C and 
1
H proton chemical shifts are largely affected 

by the identity of the following amino acid. Proper accounting for these nearest-neighbor effects 

is critical to accurately determining protein secondary and tertiary structures from chemical shift 

data (Wishart 2011). Hence, the random coil chemical shifts for all 20 amino acids were 

corrected by neighboring residue correction factors provided in Schwarzinger et al. (2001). 

Finally the secondary chemical shifts for all six-backbone atoms were calculated by subtracting 

the sequence-corrected random coil shift from the observed shift.    

 

2.2.2 Feature Set 

In developing any kind of machine-learning algorithm, it is necessary to extract a set of input 

features from the training data that will be used to infer or calculate the desired output (in this 

case, the secondary structure).  Features can either be the raw data (e.g. sequence, chemical shifts, 

etc.) or derived data (e.g. estimated accessible surface area) that is calculated from the raw data. 

In developing CSI 2.0 we derived a set of eleven different features from our chemical shift and 

sequence data. These features included: 1) shift-derived β-strand propensity; 2) shift-derived 

helix propensity; 3) shift-derived coil propensity; 4) sequence-derived β-strand propensity; 5) 

sequence-derived helix propensity; 6) sequence-derived coil propensity; 7) random coil index 

(Berjanskii et al. 2005); 8) real-valued fractional accessible surface area; 9) two-state relative 

accessibility classification; 10) multi-sequence alignment-derived residue conservation score and 

11) PSIPRED (Jones 1999) predicted secondary structure. Furthermore, for each data point in the 
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protein sequence, a 5-residue window was evaluated, with the central residue being the residue of 

interest. This translates to a total of 55 features for each data point within the five-residue 

window, as each residue had 11 features.  Note that all of the input features were derived from 

only the sequence and the backbone chemical shifts. 

 
Secondary chemical shift-based probability of three-state secondary structure  

The shift-based secondary structure probability of a residue is derived from the secondary 

chemical shift value of its constituent atoms. The secondary chemical shift (Δδ) is defined as the 

difference between the absolute chemical shift (δabs) and the corresponding (neighbor-adjusted) 

random coil (δrc) shift (Wishart et al. 2011). 

 

                                                                           (2.1)  

 

The probability of a residue being in one of the three secondary structure classes “α-helix”, “β-

strand” or “coil”, is derived from its six backbone atom secondary chemical shifts, as described in 

Wang et al. (2002a). For each backbone atom, a Gaussian probability distribution is assumed, 

where the two parameters for the distribution ( and ) correspond to the average () chemical 

shift value (for each of the three different secondary structure states) and the standard deviation 

() of the chemical shift distribution respectively. These statistical parameters were derived from 

the “RefDB” database (Zhang et al. 2002).  Therefore, given  [Δδn] {n = 
13

Cα, 
13

Cβ, 
13

C, 
15

N, 

1
HN, 

1
Hα}, the six experimental backbone secondary chemical shifts for a given residue i, the 

joint probability of being in one of three secondary structure states can be calculated from the 

Gaussian distributions of secondary chemical shifts of the six backbone atom types of non-

Gly/Pro residues (five in case of Gly and four in case of Pro). The joint probability equation is 

formulated as: 

                                                                   
               

 
                                                        (2.2) 

  
        represents the probability or likelihood for an amino acid of type i being in the 

secondary structure type s (s = [“α-helix”, “β-strand”, “coil”]), given its secondary chemical 

shifts. Note that this probability or likelihood   can also be described by amino acid 

conformational preference and is calculated using the same method described in the next 

paragraph.    
  represents the Gaussian distribution (see Eq. 2.3) of secondary backbone chemical 
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shifts of a particular atom given amino acid type i and secondary structure type s. Note that for a 

given amino acid and secondary structure type, the six backbone secondary chemical shift 

distributions are independent and thus can be taken product over these distributions (Eq. 2.2).  

 

   
     

 

        
   

      
                   

   
   

      
   

                                      (2.3) 

where              
   
  corresponds to the average secondary chemical shift value (or ) and     

  

represents the standard deviation (or ) of secondary chemical shift distribution of a particular 

atom n, given amino acid type i and secondary structure type s. The joint probability    for each 

residue is normalized so that its sum of three secondary structure types is equal to 1.0. 

 
Sequence based probability of three-state secondary structure 

The conformational preference for an amino acid is taken into account using this feature.  Each 

amino acid has a predisposition to assume a specific secondary structure type, which is referred 

to as its conformational preference. We derived the secondary structure conformational 

preferences for all 20 amino acids using an in-house high-resolution sequence-structure database 

(the sequences and secondary structures in FASTA format are available on the CSI 2.0 website). 

This database contains 2100 X-ray structures that share no more than 33% sequence identity with 

each other, have an R-value ≤ 0.2 and a resolution ≤ 1.5 Å. These proteins were extracted using 

the PISCES server (Wang et al. 2003) via the PDB (Berman et al. 2000) and the secondary 

structures were assigned via DSSP (Kabsch et al. 1983). The conformational preference statistic 

was calculated as follows: given a residue i, and the available secondary structure conformation s 

(s = [“α-helix”, “β-strand”, “coil”]) that it can adopt, then the equation to calculate the 

conformational preference is given as (Levitt 1978): 

 

       
  

  
    

    
                                          (2.4) 

 

where   
   denotes the total number of residues i adopting conformation s, while Ti  is total 

number of residues of type i,    is the total number of times the conformation s observed in the 

database and T represents the total number of residues in the database. The conformational 
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preference of each residue for three secondary structure types is then normalized so that its sum is 

equal to 1.0. 

 

Random Coil Index (RCI) for backbone atoms 

The Random Coil Index (RCI) for protein backbone atoms is an easily calculated measure that 

corresponds to the flexibility of an amino acid on a residue-level as derived from backbone 

chemical shifts (Berjanskii et al. 2005).  The backbone RCI quantitatively traces the relative 

amount to which a protein backbone’s chemical shifts match with the random coil values. Those 

that are closer to random coil values are the most flexible, while those that are most different 

from random coil values are least flexible. This feature was calculated using the RCI equation 

provided in the original RCI paper. 

 
Relative accessible surface area 

The solvent accessibility of a residue is a measure of an amino acid’s (especially its side chain) 

solvent exposure. Generally unstructured coils or other highly hydrophilic regions are more 

accessible to water than hydrophobic helices or β-strands. This trend can be exploited to obtain 

useful information for identifying protein secondary structures. Recent publications suggest that 

including solvent accessibility along with sequence information can improve secondary structure 

prediction accuracy (Adamczak et al. 2005, Roknabadi et al. 2008). In an effort to include solvent 

accessibility in CSI 2.0, we developed a machine learning regression model that estimates real 

numerical value of each residue’s fractional accessible surface area (fASA). The fASA is equal to 

the accessible surface area measured for a given residue (X) in a protein divided by the ASA for 

that residue in a Gly-X-Gly tripeptide. The fASA varies between 0.0 (fully buried) to 1.0 (fully 

exposed). The regression model we developed uses two sequence derived features 

(hydrophobicity and sequence conservation score) and two chemical shift-derived features (3-

state structural probability using six backbone chemical shifts and the random coil index) to 

calculate the fASA. The model was trained on a dataset of 28 proteins with known 3D 

coordinates and near-complete 
1
H, 

13
C and 

15
N chemical shift assignments and validated on a test 

set of 66 proteins (with known 3D coordinates and near-complete chemical shift assignments). 

The fASA for all training and test proteins was calculated using VADAR (Willard et al. 2003).  

The correlation between the observed fASA and the predicted fASA was 0.76. This fASA value 

was then incorporated into the CSI 2.0 feature set in the same manner as all other features. 
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Additional details regarding this shift-based fASA prediction method, its performance and its 

potential applications will be described in a forthcoming manuscript. 

 
Two-state buried-exposed class 

The two-state buried-exposed classification assignment is simply a transformation of the 

fractional ASA (fASA) into two discrete classes obtained by applying a 25% fASA cutoff. In 

other words, if the fASA is greater than 0.25, the residue is assigned to an “exposed” state, 

otherwise the residue is said to be “buried”. This information was derived from the chemical 

shift-based fASA calculation described above. 

 

Residue conservation score 

Sequence conservation is a measure of how frequently a given residue is seen at an equivalent 

position, in an equivalent protein, across different species. Generally highly conserved residues 

are buried within the protein’s core, and less conserved residues are more exposed (albeit with 

some exceptions). The conservation score for each residue position can be calculated as described 

by Valder (2002). First, a three-iteration PSI-BLAST (Altschul et al. 1997) search is performed 

on the UniRef90 clustered database (UniProt Consortium 2010). From the identified hits a 

multiple sequence alignment is then performed using ClustalOmega (Sievers et al. 2011). The 

conservation score for each non-gap column in the alignment (i.e. each residue in the target 

sequence) is then calculated using Shannon’s entropy formula as described below, 

 

                                                                   
 
                                                (2.5) 

 

where     is the probability of observing the a-th amino acid and   is the scaling factor, which is 

defined as, 

 

                                                                                                                                        (2.6) 

 

where N = number of residues in the alignment, K = 20 (length of the amino acid alphabet). The 

probability of observing the a-th amino acid is the summed weight of sequences having the 

symbol a in the position x in the sequence which is defined as, 
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                                                                                           (2.7) 

 

where     is the weight of the n-th sequence with    being defined as, 

    

                                                           
 

 
   

 

    

 
                                                                    (2.8) 

     

where L = length of the alignment,    = the number of amino-acid types present at the x-th 

position,    = the number of times the a-th amino acid occurring in the n-th sequence at the x-th 

position. 

 
PSIPRED predicted secondary structure 

In an effort to boost the performance of CSI 2.0 we supplemented our method with another 

powerful secondary structure identification tool called PSIPRED (Jones 1999).  PSIPRED is a 

pure sequence-based secondary structure prediction method developed in the 1990s.  It has been 

refined and improved upon over the last decade and is generally considered one of the most 

accurate sequence-based prediction methods available, with a typical performance of >80% 

(Hung et al. 2002).  Previous authors have observed a slight boost to the performance of their 

shift-based secondary structure assignment routines by including this information in their 

algorithm (Hung et al. 2002).  Therefore, we also added a PSIPRED (sequence-based) prediction 

as one of the features to CSI 2.0. Therefore, PSIPRED (version 3.3) predicted secondary structure 

state for each residue is included in the CSI 2.0 feature vector for the training and test data points.  

 
2.2.3 Feature normalization 

A z-score normalization step was done to normalize the features in the training and the test data 

set. Assuming there are m (= R1, ..., Ri, ..., Rm) rows in the training set, with each row 

corresponding to a particular data point and containing n different features (columns), then the 

normalized value of   
 
 for row Ri  in the j-th column is calculated as: 

                 
 
   

  
 
       

        
                                                       (2.9) 
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where,  

         
 

 
   

  
     and 

           
 

     
    

 
       

 
     

All test data points were normalized using the mean and standard deviation derived from the 

training feature distribution. 

 
2.2.4 Multi-class SVM training 

With a five-residue window, there were total 25,205 data points in our training set. All data 

points were normalized prior to the training. Two different normalization methods, a “Statistical 

Z-score” and a “Max/Min” score were assessed, with the “Statistical Z-score”, as described in 

section 2.2.3, ultimately being selected.  A multi-class “kernelized” SVM classifier was used to 

train the model. For the classification of each data point, the multi-class SVM classifier fit three 

binary (two-class) sub-classifiers namely helix vs. strand, helix vs. random-coil and strand vs. 

random-coil classifiers and found the predicted class by a majority voting mechanism. For each 

binary classifier, a soft-margin classification approach was used. A soft-margin SVM classifier 

generally produces a wide decision- margin to separate the two classes by allowing some margin 

violations (i.e. permitting some noisy samples to be inside or the wrong side of the margin) in 

order to achieve a better generalization performance.  In our “kernelized” SVM model, a Radial 

Basis Function (RBF) kernel (also known as Gaussian kernel) was used to compute the 

similarities (by computing the dot product) between two feature vectors in a higher dimensional 

space without explicitly computing the vectors in that space. With a RBF kernelized soft-margin 

classification framework, the performance of the SVM depends on two parameters: 1) the 

regularization parameter “C” (also known as the “cost” factor) and 2) the Gaussian kernel width 

“ ”. The “C” parameter allows one to adjust the trade-off between maximizing the decision-

margin width vs. minimizing the number of misclassified samples in the training set. More 

specifically, large “C” values will cause a lower number of outliers, producing a narrower 

decision-margin hyperplane, whereas a small “C” will allow a large number of violations, 

resulting in a wider decision hyperplane. The “ ” parameter controls the width of Gaussian 

kernel and can be adjusted to achieve a smoother fit of the model. Both “C” and “ ” parameters 

were optimized using a repeated 10-fold cross validation (CV) on the training data. The goal of 

the parameter optimization was to find the optimal values that maximize the accuracy or Q3 score 
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of the three-class secondary structure classification.  The Multi-class SVM implementation in the 

R package “kernlab” was used to train the classifier. The optimization of “C” and “ ” through 

the “repeatedcv” method was performed using the train() function in the “caret” package in R. 

  
2.2.5 A multi-residue Markov Model for post-assignment filtering 

While the SVM classifier (described above) generally performs very well, it is still prone to 

making confusing, meaningless or “scrambled” secondary structure assignments such as: 

CCBHH or BBHCC or HCHCH.  This is also a common problem for many other secondary 

structure prediction/assignment methods such as PSIPRED, TALOS-N or DANGLE. Most 

programs use heuristic “character smoothing” that employ “if-then-else” ladders or character 

averaging to correct or eliminate these problem assignments. However, these heuristic methods 

are not very robust nor are they very accurate. A more robust method to perform character 

smoothing or character correction is to use a Markov model (Durrett 2010).  Markov or hidden 

Markov models are widely used methods for text filtering, pattern extraction and natural 

language processing. This also makes them ideally suited to treating the “scrambled” text 

problem. After assessing character window widths of three, five, seven and nine residues, a 

seven-residue Markov model was found to be optimal to handle scrambled or discontinuous 

segments of secondary structure. This Markov filtering involved sliding a trained, seven-residue 

Markov filter along the protein chain that identified scrambled secondary structure assignments 

and then corrected them as necessary. According to this multi-residue Markov model, if there are 

n residues i.e.              in a single pattern along the protein chain, then the probability of 

observing i-th residue in that pattern depends on the observed probabilities of the preceding (i-1) 

residues. This can be expressed by the following equation,  

 

                                                 
 
                                 (2.10) 

 

The conditional probability of observing a residue in i-th location given the history of the 

preceding (i-1) residues is calculated from [                ] and [              ] pattern frequency 

counts. 
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To calculate the probability of a seven-residue pattern, the frequencies of smaller patterns 

consisting of one, two, three, etc. up to six residues are extracted from the training database of 

reference structures. An example formula to calculate the probability of a five-residue pattern 

HHBCC is as follows: 

 

                                                                  (2.12) 

 

and a probability value like           can be calculated by following equation, 

 

               
            

           
                             (2.13) 

          

If the denominator in Eq. 2.13 (i.e. the count for a specific pattern in the database), is found to be 

0, then it is set to minimum value of 1 to avoid the divide-by-zero error in calculating the 

probability on the left hand side. The probability cutoff to validate a pattern is chosen as 0 (i.e. if 

the probability of a multi-residue pattern, along with its two preceding and following patterns is 

found to be equal to the cut-off value, then the central pattern is considered to be “scrambled”). 

For a scrambled secondary structure pattern to be identified, the outlier must be either in the 

middle, or any of the two adjacent positions to the middle. The outlier is then corrected by 

looking at the secondary structure assignments of the four neighbor residues. 

 
2.2.6 Evaluation metrics 

Q3-accuracy 

Q3-accuracy is the most widely used metric to evaluate three-state secondary structure 

predictions or assignments. It is the ratio of correctly predicted or identified states divided by the 

total number of amino acids or residues in the dataset. Q3-accuracy is simply defined as: 

                                                                     
  

 
                                                                                         

 

where    is the total number of residues for which secondary structure state is predicted correctly 

by the model and   is the total number of residues in the example set. 
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Segment-Overlap (SOV) score  

The Segment-OVerlap score (SOV) is based on the average overlap between the observed and 

predicted segments. It is designed to evaluate the correctness of segment prediction with respect 

to a reference assignment (Rost et al. 1994, Zemla et al. 1999). The SOV score measures how 

much the predicted segments deviate from observed (experimental) segment length distributions. 

The definitions of the SOV score for single and multi-class secondary structure assignments are 

adapted from Zemla et al. 1999. Assuming,         represents a pair of overlapping segments of 

secondary structure in conformational state c, where             and where           are the 

observed and predicted secondary structure segments.    is the set of all overlapping pairs of 

segments         in state c and is defined as: 

    = {(     ):         ,    and    are both in conformational state c} 

The complement of    or     is the set of all segments    for which there is no overlapping 

segment    in state c and can be formulated as, 

            = {                ,    and    are both in conformational state c} 

 

                            
 

  
    

                          

            
            

  

                                       

with the normalization term    defined as, 

                                             

  

           

   

                                                                              

The sum in Eq. 2.15 is taken over all the segment pairs in state c, which overlap by at least one 

residue. In the same equation,         is the number of residues in the segment   , 

               is the length of actual overlap of    and                    is the length of the 

total extent for which either    or    segment has a residue in c-th state and          is defined 

as, 
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The SOV measure defined in Eq. 2.15 can be extended for multi-class secondary structure 

assignments (α-helix (H), β-strand (B) and Coil (C)). It is denoted as        and can be defined 

as, 

                
 

 
     

                         

            
  

         

       

                              

 

where the normalization term N is a sum of    over all three conformational states and can be 

calculated as, 

                                                                     
         

                                                                              

          

2.3 Results and Discussion 

As described earlier in the section 2.2.4, the “C” parameter (the “cost” value) in the SVM 

classifier and the kernel parameter, “ ” in the Gaussian RBF kernel, were optimized using 10-

fold Cross Validation (CV). After achieving an optimal value of 0.0157, “ ” was held constant 

while “C” was iteratively changed to optimize its value. To achieve an unbiased training result, 

the n-fold cross validation (n=10) process was repeated five times. For each repetition, the 

accuracy of the three-state assignment of the training classes was measured. The optimal “cost” 

and “ ” values that were found to maximize the Q3 accuracy using this repeated training were 

2.0 and 0.0157 respectively. The training accuracy was averaged over five repetitions of the 10-

fold CV process. A training accuracy of Q3=90.56% on 181 training proteins was observed with 

the aforementioned optimized parameter values. A test accuracy of Q3=89.35% was achieved on 

an independent test set of 59 proteins.  

The final set of weighting coefficients for the sequence and chemical shift-based features 

in our multi-class SVM model are listed in Table 2.1. The sum of all the weights (over the five 

residue positions) for chemical shift-derived features was 683 while the sum of all the weights for 

the sequence-derived features was 202 (a difference of 3.4X).  Among individual features, the 

PSIPRED predicted secondary structure for the central residue  (residue i) was found to have the 

largest single weight in the SVM formulation (|w|=58.0). The second largest weighted feature 

(|w|=54.0) was the β-strand propensity calculated from backbone chemical shifts at the central 

residue location. Chemical shift derived α-helix, β-strand and coil probability scores in the central 
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residue or immediate neighbor locations were found to be moderately relevant in terms of their 

weighting. Both protein flexibility (RCI) and solvent accessibility (fASA) at the (i-1) location 

had larger weights than the same feature values at other residue positions.  

 

 

 

Weight Coeff. Feature Weight Coeff. 

ProbBCS(i-2) 19.88598 ProbCAA(i+1) 14.47068 

ProbBCS(i-1) 47.83482 ProbCAA(i+2)  12.65604 

ProbBCS(i) 53.96416 RCI(i-2)  11.71170 

ProbBCS(i+1) 21.52516 RCI(i-1)  29.60009 

ProbBCS(i+2) 9.230448 RCI(i)  19.74642 

ProbHCS(i-2) 8.925556 RCI(i+1)  14.32193 

ProbHCS(i-1) 29.11158 RCI(i+2)  7.806794 

ProbHCS(i) 25.97708 RSA(i-2)  4.939002 

ProbHCS(i+1) 5.456130 RSA(i-1)  30.64792 

ProbHCS(i+2) 14.17828 RSA(i) 22.54183 

ProbCCS(i-2)  12.56523 RSA(i+1)  14.22241 

ProbCCS(i-1)  19.28457 RSA(i+2)  10.04285 

ProbCCS(i) 31.72981 BuriedExposed(i-2) 0.931595 

ProbCCS(i+1) 19.65260 BuriedExposed(i-1)  14.87281 

ProbCCS(i+2)  8.465084 BuriedExposed(i)  1.417325 

ProbBAA(i-2) 2.680083 BuriedExposed(i+1)  15.17127 

ProbBAA(i-1)  21.07358 BuriedExposed(i+2)  1.813477 

ProbBAA(i)  9.595489 Scon(i-2)  10.84571 

ProbBAA(i+1)  23.39969 Scon(i-1)  10.29277 

ProbBAA(i+2)  7.901136 Scon(i)  18.86649 

ProbHAA(i-2)  3.968213 Scon(i+1)  8.360907 

ProbHAA(i-1)  6.390549 Scon(i+2)  22.17609 

ProbHAA(i) 3.372710 PSIPRED(i-2)  17.87049 

ProbHAA(i+1) 8.024158 PSIPRED(i-1)  28.21943 

ProbHAA(i+2) 8.566371 PSIPRED(i)  57.99818 

ProbCAA(i-2) 5.022616 PSIPRED(i+1)  20.72087 

ProbCAA(i-1) 22.44050 PSIPRED(i+2)  6.860726 

ProbCAA(i) 5.881907   
 

Table 2.1: Weighting coefficients (|w|) of chemical-shift and sequence-derived features for CSI 2.0’s SVM model. 

The position of the feature over a five-residue window is given using standard indices in parentheses. The feature 

name abbreviations are as follows: ProbBCS = β-strand probability using chemical shift, ProbHCS = α-helix 

probability using chemical shift, ProbCCS = coil probability using chemical shift, ProbBAA = β-strand probability 

using amino acids, ProbHBAA = α-helix probability using amino acids,   ProbCAA =  coil probability using amino 

acids,  RCI = Random Coil Index (protein flexibility), RSA = fractional or real-valued solvent accessibility, 

BuriedExposed= 2-state (Buried/ Exposed) solvent accessibility, Scon = residue conservation score, and PSIPRED = 

PSIPRED predicted secondary structure. 
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Interestingly the RCI and fASA weightings also proved to be more important than the sequence 

conservation scores. Given the 3.4X greater weight attached to shift-derived features in CSI 2.0’s 

final SVM model,we believe it is fair to claim that CSI 2.0 is essentially a chemical shift based 

method that incorporates a small amount of sequence information.  This assertion is also borne 

out by the fact that the Q3-accuracy of CSI 2.0 (without the sequence-based prediction) was only 

2% worse than the version with sequence-based prediction (data not shown). 

 

CSI 2.0 comparative performance 

 In Table 2.2, we compare the performance of our CSI 2.0 method with seven hybrid (chemical 

shift and sequence-based) and one pure sequence-based secondary structure 

identification/prediction programs. The eight programs are: TALOS+ (Shen et al. 2009), 

TALOS-N (Shen et al. 2013), DANGLE (Cheung et al. 2010), CSI (Wishart et al. 1992), PSSI 

(Wang et al. 2002a), Delta2D (Camilloni et al. 2012), Psi-CSI (Hung et al. 2002) and PSIPRED 

(Jones 1999). The performance of all eight programs was evaluated on the basis of: (i) Q3- 

accuracy of predicted three different structure states; (ii) individual structural state (“α-helix”, “β-

strand”, “coil”) prediction accuracy; (iii) Segment-Overlap or SOV score; and (iv) coverage 

(proportion of residues in the test set that were predicted). For Table 2.2, the first column 

indicates the name of the prediction model, while the second, third, and fourth columns indicate 

the accuracy or precision for each category of secondary structure. The fifth column presents the 

overall Q3-accuracy, while the last four columns indicate the individual and overall SOV-scores. 

The last column shows the percent coverage (proportion of residues of test data that were 

identified) by each method. As seen in this table, CSI 2.0 achieves the best overall Q3 and SOV 

scores while Psi-CSI and TALOS-N are essentially tied for second in their overall performance.  

With regard to the performance for individual secondary structure state (helix, sheet, coil) 

identification, CSI 2.0 also shows superior accuracy for all three-structure states. In particular, for 

DSSP-referenced structures, CSI 2.0’s performance was an average of 10.87% better in case of β-

sheet identification, and 8.59% better for coil identification, than the eight other chemical shift 

and sequence-based methods (see Table 2.2).   
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Methods Helix Beta Coil 
Mean 

Q3-score 

Min/ 

Max 

Q3-score 

 

SOV 
(Helix) 

 

SOV 
(Beta) 

 

SOV 
(coil) 

 

SOV 
(all) 

% 

Cove-

rage 

TALOS+ 93.39 77.93 80.34 83.89±6.1 58.0/96.0 80.09 80.73 83.58 84.83 97.80 

TALOS-N 95.54 82.65 79.08 86.39±6.1 58.0/96.0 88.78 85.71 83.08 87.85 97.70 

DANGLE 95.88 80.0 76.44 83.00±5.1 68.0/95.0 80.61 80.58 81.46 83.66 98.60 

CSI 84.17 67.40 84.23 80.33±6.4 53.3/89.0 76.01 69.34 71.53 75.18 100 

PSSI 62.85 70.77 62.58 67.33±16.7 0.0/87.1 59.49 73.39 72.62 71.37 96.80 

δ2D 43.29 33.17 36.73 42.24±9.4 0.0/90.5 42.58 38.20 42.28 42.82 48.24 

Psi-CSI 92.88 80.0 85.53 86.20±5.2 73.0/96.0 89.02 81.43 83.06 86.94 100 

PSIPRED 85.95 79.17 88.11 85.36±6.0 70.0/98.0 72.08 63.74 63.00 79.00 100 

CSI 2.0  93.41 86.50 87.80 89.35±3.9 79.0/97.0 90.76 85.34 82.75 88.45 100 

 

Table 2.2: Performance of CSI 2.0 (shown in bold) and eight other chemical shift and sequence-based methods on 

an independent test set of 59 proteins (total 8,078 residues) when using “DSSP” (Kabsch et al. 1983) secondary 

structure assignments as the reference structure. The reported Q3-accuracies in the corresponding publications of the 

eight methods are following: TALOS+= 91.0% (Shen et al. 2009), TALOS-N= 88.6% (Shen et al. 2013), DANGLE= 

85.2% (Cheung et al. 2010), CSI= 92.0% (Wishart et al. 1992), PSSI= 88.0% (Wang et al. 2002a), δ2D= 86.4% 

(Camilloni et al. 2012), Psi-CSI= 89.0% (Hung et al. 2002), PSIPRED= 78.3% (Jones 1999) 

 

For helix identification, the CSI 2.0 shows a comparable performance with respect to other 

methods. In terms of the SOV measure, the same trend is observed. Although the Q3 accuracy of 

CSI 2.0’s residue-specific helix assignments was not much better than existing programs, its 

higher average SOV-score indicates a better agreement of predicted helix segments.  The same is 

true for overall SOV-score for all three-secondary structure types.  
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Figure 2.1: A bar graph comparing CSI 2.0’s Q3 accuracies with eight other chemical shift and sequence-based 

protocols over an independent test set of 59 proteins. The error bar (i.e. standard deviation in Q3- accuracy 

distribution of each method) appears on top of each bar plot. 

 

In the case of the SOV-score, the next best performance was seen for the most recent program, 

TALOS-N (Shen et al. 2013). CSI 2.0’s assignments, unlike most of other programs, covers the 

full fraction (  100%) of the test data points.   

 

Statistical significance of CSI 2.0’s improvement 

As indicated in Table 2.2 and Figure 2.1, the best-performing methods all achieve Q3 accuracies 

above 80% and the difference between CSI 2.0 and the other top performing programs is only 3-

4%. One may ask is this performance improvement statistically significant?  To address this 

question we performed a Student’s t-test to assess the p-value between CSI 2.0 and TALOS+, 

TALOS-N, DANGLE and Psi-CSI.  The results are shown in Table 2.3. 
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Table 2.3: The p-values or probabilities of Student’s two sample t-tests between CSI 2.0 and four other best 

performing methods are shown. Here the null hypothesis is that the difference between sample1 mean (mean 

accuracy of method1) and sample2 mean (mean accuracy of method2) is equal to zero.  Alternative hypothesis 

indicates that the sample1 mean is greater than the sample2 mean. 

 

These data confirm that the performance improvement seen in CSI 2.0 is, indeed, highly 

significant, with most p-values being << 0.001. 

 
CSI 2.0 performance using selected and partial shift assignments 

It is not particularly common for a protein to have all 
1
H, 

13
C and 

15
N backbone shifts fully 

assigned. Indeed, many shorter peptides and proteins will only have their 
1
H assignments 

completed, while larger proteins may only have their 
1
H and 

15
N shifts, 

15
N and 

13
C shifts or 

1
H 

and 
13

C shifts assigned.  Given that only certain nuclei may be measured we decided to evaluate 

CSI 2.0’s performance using only selected sets of chemical shifts or selected nuclei.  The results 

are listed in Table 2.4 for five individual backbone nuclei (
13

Cα, 
13

C, 
13

Cβ, 
1
Hα, 

15
N) along with 

other common assignment combinations (
13

Cα, 
13

C, 
13

Cβ, 
1
Hα and 

1
Hα, 

15
N).  As can be seen from 

this table, combinations of multiple nuclei give the best performance, but the performance for any 

single nucleus is surprisingly good (Q3 > 85%).  This is because CSI 2.0 also uses sequence 

information (i.e. PSIPRED predicted secondary structures) to supplement its chemical shift-

derived estimates. As was noted in the original CSI papers (Wishart et al. 1992 & 1994), certain 

nuclei carry more information about secondary structures than others. In particular, the ranking of 

nuclei for secondary structure information content, from most informative to least informative, is:  

13
Cα > 

13
C > 

13
Cβ  

1
Hα > 

15
N.  

 

 

 

Method1 vs. Method2 p-value 

CSI 2.0 vs. TALOS+ 6.575e-08 

CSI 2.0 vs. TALOS-N 0.0016 

CSI 2.0 vs. DANGLE 6.347e-08 

CSI 2.0 vs. Psi-CSI 0.00087 
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   Table 2.4: CSI 2.0 performance with selected chemical shift assignments and combinations of shift assignments 

 
 Because it is often difficult to obtain complete chemical shift assignments for a protein 

(due to signal broadening from intermediate exchange events, signal overlap, solvent 

suppression, etc.) we were also interested to see how well CSI 2.0 performed with partial or 

incomplete chemical shift assignments. To do so we evaluated the performance of CSI 2.0 

relative to the percentage of missing chemical shift assignments and compared its results to 

several other software packages. We analyzed a subset of 21 proteins (from our test set of 59 

proteins) with a fraction of missing experimental shift assignments >15%.  In particular, for this 

set, the percentage of incomplete or missing backbone 
1
H, 

13
C or 

15
N assignments ranged from 

16.7% to 37.0% (based on the total number of expected NMR signals from the protein’s amino 

acid sequence). The secondary structures of these proteins were then determined using five 

different methods (including CSI 2.0) and evaluated against the observed secondary structures as 

determined by DSSP. The results are shown in Table 2.5. As can be seen from this table, CSI 2.0 

does significantly better (~7-10%) in terms of Q3 accuracy than any of the other methods in 

terms of handling missing shift data.   

 

 

 

 

 

 

 

 

Shift Assignment Helix Beta Coil All 

13
Cα 84.38 93.36 87.90 88.72 

13
C 83.41 90.22 87.95 87.37 

13
Cβ 84.37 87.03 86.59 86.50 

1
Hα 83.59 87.22 87.21 86.83 

15
N 82.63 85.74 86.68 85.68 

13
Cα, 

13
C, 

13
Cβ, 

1
Hα 81.46 92.89 98.98 90.92 

1
Hα, 

15
N

 
81.47 92.45 98.99 90.77 
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PDB BMRB Percent 

Missing 

Shifts 

CSI 2.0 Psi-CSI TALOSN TALOS+ DANGLE 

1HQ2 4300 27.60 92.76 83.55 71.71 69.08 77.68 

1T8L 5358   21.88 96.36 83.64 83.64 83.64 80.00 

1JTG        6357 20.81 85.27 78.29 75.97 77.13 81.01 

1UDR        4083 18.23 95.04 86.78 90.08 90.91 81.82 

1ODV        6321 18.14 84.00 83.00 87.00 83.00 84.00 

1W80        6034 23.24 88.74 76.62 75.76 73.16 74.03 

1V9T        4037 16.68 86.50 82.82 81.60 79.75 76.07 

2AOJ      5967 34.65 85.26 71.58 85.26 82.11 82.11 

1CWC  2208 17.64 91.98 76.54 82.10 77.16 81.48 

1YKY  4831 35.14 92.97 82.81 81.25 68.75 80.47 

1KDB  6250 21.98 84.78 83.70 67.39 65.22 77.17 

2A38  5760 37.01 91.62 85.86 74.35 79.06 79.06 

256B  6560 17.68 93.07 92.08 94.06 95.05 93.07 

1BT5  6024 19.32 88.03 81.85 84.17 81.08 78.38 

1SGZ  6016 23.40 78.43 69.68 57.14 53.94 65.01 

1SYD  15232 22.17 91.38 82.76 82.76 81.90 78.45 

1JR2  7242 18.30 88.85 83.46 86.15 83.85 83.85 

1U7B  15501 20.12 90.73 83.47 84.27 80.24 79.44 

2A0N  15741 20.45 89.60 83.60 88.40 84.00 82.00 

2DYI  10139 24.69 86.84 73.03 78.29 72.37 68.42 

1B1H  10053 18.02 86.62 81.10 81.95 77.92 79.83 

Average 22.72±6.0 88.99±4.2 81.25±5.3 80.63±8.2 78.06±8.9 79.21±5.6 
 

Table 2.5: Comparison of the performance of CSI 2.0 (shown in bold) versus other four methods (Psi-CSI, 

TALOSN, TALOS+, DANGLE) relative to the percentage of missing backbone 
1
H, 

13
C or 

15
N chemical shift 

assignments. 

 

Furthermore, for all of the methods (except CSI 2.0) there is a general trend (r<0.5) showing a 

degradation in their performance with an increasing fraction of missing chemical shifts.  

Interestingly, CSI 2.0 seems to be largely immune to any detectable performance degradation 

with respect to missing chemical shifts (at least up to a level of ~35% missing shifts). This 

appears to be due to its robust handling of missing shift data (described earlier) as well as its use 

of sequence-based secondary structure prediction from PSIPRED. 

 

Different definitions of secondary structure 

Secondary structure is not an absolute quantity nor is it universally defined. In other words, there 

is no gold standard for secondary structure. Different definitions exist of helices, β-strands, β-
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turns and coils (Zhang et al. 2008).  As a result, no two individuals and no two coordinate-based 

secondary structure assignment programs will agree on the exact start and end locations of many 

secondary structure elements (Tyagi et al. 2009, Shen et al. 2009).  Likewise some programs (or 

some individuals) will invariably classify short helices and short β-strands as coil structures and 

vice versa. Given the variation in secondary structure “calling” from well-defined 3D structures 

and the fact that there are several different secondary structure identification algorithms that are 

widely used by structural biologists, we decided to investigate the performance of CSI 2.0 and the 

other eight programs against three of the most commonly used coordinate-based secondary 

structure assignment algorithms: DSSP (Kabsch et al. 1983), STRIDE (Frishman et al. 1995) and 

VADAR (Willard et al. 2003).  Table 2.6 lists the Q3-accuracies of the eight secondary structure 

prediction/identification programs when compared against the calls made by locally installed 

versions of DSSP, STRIDE and VADAR.  As can be seen in this table, CSI 2.0 agrees best with 

the DSSP secondary structure assignments while its performance drops slightly with the STRIDE 

or VADAR calls.  The same trend is seen with the other eight programs as well.  This is largely 

due to the fact that essentially all of these programs were trained using DSSP data, as opposed to 

STRIDE or VADAR data.  It is worth noting that PSIPRED (which is used by both Psi-CSI and 

CSI 2.0) was also trained exclusively on DSSP data. Attempts to train CSI 2.0 with STRIDE or 

VADAR secondary structure calls yielded no overall improvement in the performance. 
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Table 2.6: Percentage Q3-accuracies of the CSI 2.0 protocol (shown in bold) and eight other methods over an 

independent test set of 59 proteins using three different reference (DSSP (Kabsch et al. 1983), STRIDE (Frishman et 

al. 1995) and VADAR (Willard et al. 2003)) structures. 

 

 It is also interesting to note that the pairwise agreement between the three different 

secondary structure assignment methods (DSSP, STRIDE and VADAR) in our independent test 

dataset ranged from 85-90% with an average pairwise agreement of 87.63%.  Furthermore, the 

overall agreement between all three methods was only 82%. This suggests that secondary 

structure identification is inherently imprecise and that the best possible performance that a 

secondary structure identifier (or predictor) could attain is probably no better than 90%.  Given 

that all of the proteins we studied had both X-ray structures and NMR structures, we also 

investigated the level of agreement between the secondary structure assigned via more 

conventional NMR approaches (NOEs, J-couplings) or via author-assigned secondary structure 

assignments with those generated from the coordinate data (determined by DSSP, VADAR or 

STRIDE). Among the coordinate–based assignment methods, STRIDE showed the highest level 

of agreement (90.05%) with the author assignments, while DSSP and VADAR had slightly lower 

levels of agreement (88.54% and 84.54% respectively). Again, this level of agreement between 

secondary structure assignment methods (human vs. computer) suggests that CSI 2.0 is 

performing near the maximum level of accuracy achievable for secondary structure assignment.  

 

Assignment 

Method 
DSSP STRIDE VADAR 

TALOS+ 83.89 82.07 81.47 

TALOS-N 86.36 85.62 83.89 

DANGLE 83.0 81.40 81.0 

CSI 80.33 74.64 76.29 

PSSI 67.33 65.15 64.0 

δ2D 42.24 40.66 41.16 

Psi-CSI 86.20 83.53 82.17 

PSIPRED 85.36 79.81 78.0 

CSI 2.0 89.35 86.72 86.10 
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Local interaction effects 

Regular secondary structure is formed when the local environment induces nearby residues to 

interact and adopt a specific pattern such as an “α-helix” or a “β-strand”. Hence, local 

interactions and nearest neighbor data (such as nearby shifts and amino acids) can provide 

important information about the secondary structure propensity of a certain region. To capture 

these local interaction effects, we assessed CSI 2.0’s performance using several different residue 

window lengths (three, five and seven residues). Our data indicated that CSI 2.0 achieved its best 

performance, in terms of Q3-accuracy, when using a five-residue window (data not shown for 

other windows). No significant improvement was achieved by including more than four 

neighbors (two preceding and two following). This indicates that the features of immediately 

nearby residues provide the most useful secondary structure information. 

 

Mis-assigned secondary structures  

As accurate as CSI 2.0 appears to be, it still exhibits less-than-ideal performance with regard to 

distinguishing between β-strands and coil regions. In our test data set, there were a total of 2,335 

residues in β-strands, of which CSI 2.0 correctly identified 2,019 of them (see Table 2.7).  

However, it also mis-identified 316 residues as “coils”, or about 13.5% of the β-strand 

population. On the other hand, a somewhat smaller percentage of coil residues (7.9%) were also 

incorrectly identified as being in β-strands. The probable reason for this is the high degree of 

chemical shift and amino acid compositional similarity between these two structure types. 

Indeed, the chemical shifts in β-strands and coil regions tend to exhibit more similarity to each 

other than to helices.  Furthermore, as we discovered on further inspection, many of the mis-

identifications occurred at the borders or edges of β-strands and coil regions. 
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Secondary 

Structure  

Hpred Bpred Cpred Total 

Hobs 2,043 0 143 2,186 

Bobs 0 2,019 316 2,335 

Cobs 281 153 3,123 3,557 

 

Table 2.7: Confusion Matrix of secondary structure assignments generated by CSI 2.0 on the independent test set of 

59 proteins. 

 

While some ambiguity or mis-identification would be expected between the borders of secondary 

structure elements or short β-strands and extended coil regions, one would hope that there would 

be no ambiguity between β-strands and helical regions. Therefore it is worth noting that CSI 2.0 

did not confuse any β-strands with α-helices and vice versa. In a few cases (6.5%), CSI 2.0 failed 

to recognize α-helical residues and identified them as “coil”. Likewise, about 4% of coil residues 

were mis-identified as α-helices. Once again, many of the mis-identifications occurred at the 

borders or edges of α-helices and coil regions.  In all likelihood these misidentified helices were 

somewhat flexible or only partially helical under the solution conditions that were originally used 

to collect the NMR data. The fact that protein structures do sometimes differ between crystal 

forms (solved by X-ray methods) and in solution (solved by NMR) has been noted for many 

years. Indeed, there are many examples showing these discrepancies (Andrec et al. 2007, 

Ratnaparkhi et al. 1998).  It is also important to remember the agreement between the secondary 

structures determined by conventional NMR methods and those determined using X-ray data 

typically differ by 5-10%.  

 

Identification of 310 helices and β-bridges 

310-helices are short helical structures with an average length of three residues and a distorted 

hydrogen-bonding network, whereas β-bridges are single-residue β-strands. Only the DSSP 

program identifies these structures and consolidates them into α-helices and β-strands.  On the 

other hand, STRIDE and VADAR often characterize them simply as “coil”. In looking more 

closely at our results, we found that CSI 2.0, regardless of its training set, would identify isolated 

310 helices and β-bridges as simple “coil” structures.  This underscores one of the challenges with 

secondary structure identification, namely the fact that different programs (and different 



 

 

51 

structural biologists) have different opinions or different definitions of what secondary structures 

are.  Interestingly CSI 2.0 still performed best when it was working with DSSP assigned 

secondary structures (as opposed to VADAR or STRIDE assignments) – even with the presence 

of these “hard-to-identify” 310 helices and β-bridges. 

 

PSIPRED improves performance 

CSI 2.0 was originally intended to be a chemical shift-only method.  However, the exceptional 

performance of Psi-CSI (Hung et al. 2002) led us to reconsider the use of sequence information.  

Indeed, the inclusion of PSIPRED (Jones 1999) into the CSI 2.0 algorithm improved the Q3-

accuracy from 87.3% (chemical shift only) to 89.35%. This improvement is statistically 

significant (p<0.001). More specifically, the inclusion of PSIPRED was found to improve the “β-

strand” accuracy by 4% and the “coil” accuracy by 2.3%. On the other hand, the identification 

accuracy of α-helices was not improved in any substantial way. Given that chemical shift-based 

methods tend to confuse some β-strand residues with coil residues (and vice versa), it appears 

that PSIPRED helps to remove this chemical shift ambiguity. 
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Figure 2.2:  Secondary structure prediction/assignment for BMRB 16116  (PDB ID: 2KDL) and BMRB 16117 

(PDB ID: 2KDM) by CSI 2.0, TALOS-N and PSIPRED. 

 
CSI 2.0 accurately identifies secondary structure with “trick” proteins 

Proteins with high sequence identity but very different folds pose special challenges for 

sequence-based structure prediction methods (Shen et al. 2010). One example of note is the 

protein G pair known as GA (95) and GB (95) (Alexander et al. 2009).  Protein GA (95) is a 

specially designed, mostly helical protein, that shares a high degree of sequence identity (95%) 

with the native, β-rich protein GB. Here, we investigated how CSI 2.0 performed in 

distinguishing the local structures of these two proteins when compared to other methods 

(TALOS-N (Shen et al. 2013) and PSIPRED (Jones 1999)). As seen in Figure 2.2, and as 

expected, PSIPRED did quite well with its secondary structure prediction for GB but not so well 

with GA. On the other hand, CSI 2.0 and TALOS-N performed comparably well and were able to 

correctly identify the secondary structures in both proteins. The fact that CSI 2.0 uses PSIPRED 

in its determination of secondary structure, but its performance was not compromised in this “GA 

vs. GB test”, illustrates how CSI 2.0 is able to appropriately balance experimental chemical shift 

information with sequence/PSIPRED information. 
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 Figure 2.3: Secondary structure assignment/prediction for BMRB 4375 (Unfolded ubiquitin) as determined by the 

CSI 2.0, TALOS-N and PSIPRED programs. 

 

We also investigated the performance of CSI 2.0 for assigning the secondary structure for 

a completely unfolded protein (i.e. unfolded ubiquitin in 8 M urea - BMRB 4375).  As seen in 

Figure 2.3, CSI 2.0 was able to accurately identify the disordered structure of this protein, 

whereas PSIPRED and TALOS-N proved to be somewhat less accurate than CSI 2.0.  As 

PSIPRED predicts the secondary structure from sequence, it just reported the folded ubiquitin 

structure retrieved by a PSI-BLAST search. In case of TALOS-N, nine “coil” regions were 

incorrectly predicted as “β-strands”. In the case of PSIPRED most of the secondary structure that 

was predicted contain a high proportion of helices and β-strands.  However, because CSI 2.0 

weighs both the chemical shift information with PSIPRED predictions, its performance was not 

compromised. 

 

Potential improvements   

J-coupling constants and NOE data can obviously aid in inferring the existence or delineation of 

secondary structure.  This is why conventional NMR methods have traditionally depended so 

heavily on these NMR-derived parameters to identify secondary structures. Potentially some 

improvement in CSI 2.0’s performance could be achieved if these parameters were also included 

in the model, particularly in cases when chemical shift data is missing or ambiguous.  However, 
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our focus was primarily on developing a simple approach that requires only sequence data and 

backbone chemical shift information to accurately identify protein secondary structures.  The 

advantage of using chemical shifts is that these are the first pieces of experimental data that one 

obtains when studying proteins by NMR.  Chemical shifts are also far easier to measure and far 

more accurately measured than NOEs and J-coupling data.   

Instead of adding more experimental data, another approach that could potentially 

improve the performance of CSI 2.0 is to include sequence homology information from 

previously solved protein structures.  With more than 100,000 protein structures in the PDB, this 

represents a significant and largely untapped information resource on secondary structure.  The 

use of sequence homology from solved structures has been shown to substantially improve the 

performance of sequence-only secondary structure prediction methods (Montgomery et al. 2006, 

Cole et al. 2008).  However, it is not clear whether the same level of improvement could be 

achieved when working with data that already has some experimental information concerning the 

secondary structure (i.e. chemical shifts).  

 

The CSI 2.0 Webserver  

A web server (http://csi.wishartlab.com) has been developed that accepts a BMRB (NMR–Star 

2.1 or NMR-Star 3.1) or SHIFTY-formatted chemical shift file and generates secondary structure 

assignments along with a colorful CSI bar graph plot with secondary structure icons marked 

above the bar graph. The server supports a number of user-selectable options including the choice 

of running with or without PSIPRED. The web server is implemented using Python CGI-

scripting and is hosted on a system with 4GHz 2-Core processor and a CentOS operating system. 

With the available computing infrastructure, the web server takes <60 seconds (if PSIPRED is 

off) or >140 seconds (if PSIPRED is on) to calculate secondary structures for a single query 

protein.  A screen shot of the CSI 2.0 web server and its output is shown in Figure 2.4.  

 

 

http://csi.wishartlab.com/
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Figure 2.4: The CSI 2.0 (http://csi.wishartlab.com) web server image (a) homepage; (b) Result page. 

 

 

2.4 Conclusion 

CSI 2.0 represents a substantial improvement over the original CSI concept. In particular it uses 

an extended feature set derived from chemical shift and sequence data. It also replaces the simple 

digital filtering used in the original CSI algorithm with a more powerful “feature filter” that uses 

machine learning. Using the standard 3-state criteria (α-helix, β-strand and coil) and standard 

evaluation method such as Q3-accuracy, CSI 2.0 shows a significantly improved performance 

over the original CSI (89% vs. 79%) as well as significantly improved performance over other 

available state-of-the-art secondary structure identification methods (89% vs. ~86%).  This 

performance improvement was statistically significant not only for the most common secondary 
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structure assignment method (DSSP) but also for two other commonly used secondary structure 

assignment methods, VADAR and STRIDE. Based on data presented here concerning the level 

of agreement between different secondary structure identification methods (NMR vs. X-ray vs. 

different programs), we suspect that we are at or near the maximum performance that secondary 

structure assignment methods can achieve. In addition to the performance improvement seen with 

CSI 2.0, we also showed that CSI 2.0 successfully detected different secondary structures in 

structurally dissimilar proteins sharing high sequence identity – something that commonly fools 

other programs. We also showed that CSI 2.0 is able to identify the (lack of) secondary structure 

of unfolded proteins.  

To make this method publicly accessible, a CSI 2.0 web-server (http://csi.wishartlab.com) 

has been developed. It accepts chemical shift assignments in a variety of formats and generates 

colorful graphical output describing the identity and location of all secondary structure elements. 

We believe that CSI 2.0, with its superior performance will be a useful contribution to the field of 

biomolecular NMR.  It should be particularly useful in the initial stages of conventional NMR 

structure generation (i.e. providing useful torsion and distance restraints) as well as serving as a 

robust alternative to standard coordinate-based methods for secondary structure identification.  

CSI 2.0 is currently being used in the development of improved chemical shift-only 3D structure 

determination methods. 
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Chapter 3 

 

CSI 3.0: A Web Server for Identifying Secondary and Super-

secondary Structure in Proteins using NMR Chemical Shifts
1
 

 

Abstract  

CSI 3.0 (http://csi3.wishartlab.com) is a web server designed to accurately identify the location of 

secondary and super-secondary structures in protein chains using only Nuclear Magnetic 

Resonance (NMR) backbone chemical shifts and their corresponding protein sequence data. 

Unlike earlier versions of CSI (the Chemical Shift Index), which only identified three types of 

secondary structure (helix, β-strand and coil), CSI 3.0 now identifies total of 11 types of 

secondary and super-secondary structures, including helices, β-strands, coil regions, five common 

β-turns (type I, II, I', II' and VIII), β-hairpins as well as interior and edge β-strands.  CSI 3.0 

accepts experimental NMR chemical shift data in multiple formats (NMR Star 2.1, NMR Star 3.1 

and SHIFTY) and generates colourful CSI plots (bar graphs) and secondary/super-secondary 

structure assignments. The output can be readily used as constraints for structure determination 

and refinement or the images may be used for presentations and publications. CSI 3.0 uses a 

pipeline of several well-tested, previously published programs to identify the secondary and 

super-secondary structures in protein chains. Comparisons with secondary and super-secondary 

structure assignments made via standard coordinate analysis programs such as DSSP, STRIDE 

and VADAR on high resolution protein structures solved by X-ray and NMR show >90% 

agreement between those made with CSI 3.0.  

 

 

 

 

 

1. Portions of this chapter were published as: Hafsa NE, Arndt D, Wishart DS (2015) CSI 3.0: a web server for 

identifying secondary and super-secondary structure in protein using NMR chemical shifts. Nucleic Acids Res. 

42(W1):W370-377. 
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3.1 Introduction 

Secondary structures such as α-helices, β-strands and coils are commonly used to describe, 

understand and visualize protein tertiary structures (Richardson 1981). Because of their 

importance, the identification and delineation of secondary structure elements has long been an 

integral part of the protein structure determination process. This is particularly true for NMR-

based protein structure determination where secondary structure is used to help in structure 

generation and refinement (Wuthrich 1986 & 1990). In protein NMR, secondary structures are 

traditionally identified and assigned using NOE-based (Nuclear Overhauser Effect) methods. By 

manually analyzing the positions and patterns of weak, medium or strong NOEs it is possible 

identify helices, β-turns and β-strands with reasonably good accuracy. Even today NOE pattern 

measurements continue to be the most commonly used method for identifying secondary 

structures in peptides and proteins (Wuthrich 1986).  However, in addition to NOEs, NMR 

chemical shifts can also be used to identify secondary structures. The use of chemical shifts to 

identify protein secondary structures was first demonstrated in the early 1990s with the 

development of a technique called the Chemical Shift Index or CSI (Wishart et al. 1992).  The 

CSI method applies a three-part or ternary “digital filter” to backbone 
1
H and 

13
C chemical shifts 

as a way of simplifying the chemical shift information. By comparing the experimentally 

observed chemical shifts to a set of residue-specific “random coil” chemical shifts and converting 

significant downfield secondary shifts to “1’s”, significant upfield secondary shifts to “-1’s” and 

small secondary chemical shifts to “0’s”, a simple bar graph can be generated. By observing how 

the 1’s or -1’s or 0’s cluster together in the graph it is possible to accurately identify the type and 

location of protein secondary structure elements (helices, β-strands, coils) along the length of a 

protein chain (Wishart et al. 1992 & 1994). The CSI method is particularly popular because it is 

fast, easy to perform and surprisingly accurate -- exhibiting a ~80% agreement with secondary 

structures determined from PDB coordinate analysis.  

 However, the CSI method is far from perfect.  For instance, it requires nearly complete 

backbone assignments to obtain good results.  Furthermore, it is quite sensitive to the choice of 

random coil or reference chemical shifts used to calculate the secondary shifts and it tends to be 

less accurate for β-strand identification than helix.   Because of these limitations, a number of 

alternative CSI-like methods have been proposed. These include PSSI (Wang et al. 2002), PsiCSI 

(Hung et al. 2003), PLATON (Labudde et al. 2003), PECAN (Eghbalnia et al. 2005), and 2DCSi 

(Wang et al. 2007). Most of these newer methods extend the basic CSI protocol by including 
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more sophisticated chemical shift models or more elaborate statistical calculations. For instance, 

the developers of PSSI chose to discard CSI’s simplistic digital filter and replace it with a 

sophisticated joint probability model to enhance PSSI’s secondary structure identification 

accuracy.  On the other hand, the developers of PsiCSI kept the basic CSI protocol but combined 

it with a well-known sequence-based secondary structure prediction program called PSIPRED 

(Jones 1999) to enhance its performance. In contrast to PSSI and PsiCSI, PLATON uses a 

database of well-defined reference chemical shift patterns to help identify secondary structures. 

This pattern database appears to boost its secondary structure identification performance.  The 

program PECAN uses a chemical shift “energy function” that combines sequence information 

with chemical shift information to improve its secondary structure identification accuracy. 

Finally, 2DCSi uses cluster analysis to extract information for chemical shift scatter diagrams 

derived from all six backbone chemical shifts to improve its secondary structure identification 

performance. Most of these methods achieve a three-state secondary structure (Q3) accuracy 

better than 80%, with some reaching as high as 85%. 

Over the past 5 years, many chemical shift-based secondary structure assignment methods 

have begun to exploit machine-learning techniques, torsion angle estimates, sequence similarity 

assessments, chemical-shift derived flexibility and larger chemical shift-structure databases to 

improve their performance. These newer methods include TALOS+ (Shen et al. 2009), TALOS-

N (Shen et al. 2013), DANGLE (Cheung et al. 2010) and CSI 2.0 (Hafsa et al. 2014). The 

TALOS+ and TALOS-N packages use chemical shifts to calculate backbone torsion angles. This 

information is then used to identify secondary structure locations by exploiting the power of 

artificial neural networks (ANNs) to match chemical shift patterns against a large database of 

previously assigned proteins with high-resolution 3D structures. DANGLE employs some of the 

same concepts found in TALOS+ but instead of ANNs it uses Bayesian-inference techniques to 

help identify secondary structures. Like the TALOS and DANGLE programs, CSI 2.0 makes use 

of machine learning algorithms to integrate multiple pieces of information together but unlike 

TALOS it also combines more extensive sequence information with additional data regarding 

chemical-shift derived flexibility. The performance of these newer “shift-to-structure” programs 

is now quite impressive with most reporting Q3 accuracies above 85% and with CSI 2.0 

achieving a Q3 score of 88-90%.  This kind of performance generally exceeds the performance of 

NOE-only based methods for secondary structure assignment or identification (Hafsa et al. 2014).  

Furthermore, a Q3 score of 88-90% essentially matches the level of agreement that one achieves 
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by comparing the results of different coordinate-based secondary structure assignment programs 

such as DSSP (Kabsch et al. 1983), STRIDE (Frishman et al. 1995) or VADAR (Willard et al. 

2003) on the same PDB coordinate set (Hafsa et al. 2014). 

 While the performance of the most recent shift-based secondary structure assignment 

programs is very impressive, they are still missing a significant amount of information that can be 

easily derived from chemical shifts. This includes such useful information as flexibility, 

backbone torsion angles and accessible surface area (Shen et al. 2013, Berjanskii et al. 2005 & 

2013).  Furthermore, the traditional 3-state model of secondary structure assignments (helix, β-

strand and coil) is often considered rather “dated” and somewhat inadequate with regard to 

modern expectations of detailed protein topology diagrams or information-rich protein structure 

descriptions.  Three-state secondary structure assignments are also insufficiently precise for many 

3D structure generation or 3D structure refinement programs such as XPLOR (Schwieters et al. 

2003), CYANA (Guntert 2004), CHESHIRE (Cavalli et al. 2007), CS-Rosetta (Shen et al. 2008) 

and CS23D (Wishart et al. 2008). Ideally if NMR chemical shifts could be used to identify other 

kinds of secondary or super-secondary structure features such as β-turns, β-hairpins or more 

complex β-strand topologies, then they could be more fully exploited as additional constraints for 

NMR structure generation and refinement. This same information could also be used to create far 

more informative protein secondary structure and topology diagrams.   

Given the need for this kind of information and given the availability of high performing 

tools to calculate these features from NMR chemical shift data, we decided to create a new kind 

of “shift-to-structure” tool. In particular we combined a high-end secondary structure calculation 

algorithm (CSI 2.0) with a high-performing torsion angle calculator (TALOS-N), an accurate 

measurement method for backbone flexibility (RCI) and a robust method for calculating 

fractional accessible surface areas (Side-chain RCI) – all of which use NMR chemical shifts as 

input. By linking these four tools together into a single structure determination pipeline and 

intelligently processing their respective structure assignments we found that it was possible to 

create a program that accurately identifies 11 types of secondary and super-secondary structures 

using only backbone NMR chemical shift data. These shift-derived structures include helices, β-

strands, coil regions, five common β-turns (type I, II, I’, II’ and VIII), β-hairpins as well as 

interior and edge β-strands. Since this concept builds from our previous work on the Chemical 

Shift Index (CSI) and an earlier program called CSI 2.0, we decided to call the new method CSI 



 

 

61 

3.0. A detailed description of the CSI 3.0 web server along with a discussion of its capabilities 

and overall performance is given below.  

 

3.2 Algorithm and Workflow 

The CSI 3.0 system consists of four well-tested and previously published programs, namely CSI 

2.0 (Hafsa et al. 2014), TALOS-N (Shen et al. 2013), RCI (Berjanskii et al. 2005) and Side-chain 

RCI (Berjanskii et al. 2013). CSI 2.0 uses chemical shift and sequence data to accurately identify 

three types of secondary structures: helices, β-strands and coil regions. Extensive tests have 

shown that it has a Q3 accuracy (agreement between identified by shifts and those determined by 

coordinate analysis) of 88-90% depending on the dataset and coordinate assignment algorithm 

that is chosen (Hafsa et al. 2014).  TALOS-N uses chemical shift and sequence data to calculate 

backbone torsion angles. It can routinely determine backbone torsion angles for more than 90% 

of amino acid residues, with a root mean square difference between estimated and X-ray 

observed (ϕ, ψ) torsion angles of about 12º (Shen et al. 2013).  The RCI or random coil index 

technique uses backbone chemical shifts to calculate the flexibility or order parameters of a 

protein sequence. The RCI method is frequently used to identify ordered and disordered segments 

in proteins.  The agreement between RCI-calculated order parameters or RMSFs and observed 

order parameters or RMSFs ranges between 77-82% (Berjanskii et al. 2005). The side-chain RCI 

or the side-chain random coil index is a technique that can be used to calculate residue-specific 

fractional accessible surface area (fASA) using side-chain chemical shifts.  The original paper 

reported a correlation coefficient between the shift-calculated fractional ASA and the coordinate 

measured fASA of approximately 0.76 (Berjanskii et al. 2013).  Recent improvements to the 

algorithm (named as ShiftASA) now allow backbone (only) shifts to be used and the correlation 

between observed and shift-calculated fASAs is now 0.82 (Hafsa et al. 2015).   

The central concept behind the CSI 3.0 algorithm is to intelligently combine each of the 

four shift-based calculators into a more comprehensive or more fully integrated structure 

assignment program that is “greater than the sum of its parts”. Specifically, by starting with the 

most accurate method first (secondary structure assignment with CSI 2.0) and then filtering out 

protein sequence segments that were already assigned a clear secondary structure (helix or β-

strand) we found we could selectively apply the less accurate methods (torsion angle, flexibility 

and fASA calculations) to the remaining regions to identify other secondary or super-secondary 

structures. For instance, to identify a β-hairpin it is better to start with the precise location of the 
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two sequentially adjacent β-strands and to determine if the “coil” residues between the β-strands 

have the appropriate torsion angles and sequence characteristics to form a β-hairpin.  Similarly, 

the identification of edge or interior β-strands can only be determined once a β-strand is 

identified and only then should the fASA, flexibility or other characteristics of the entire β-strand 

be calculated. Similarly, the identification of β-turns and β-turn types should only be conducted 

in regions initially identified as “coil” regions (since β-turns are not found in helices or β-strands) 

and only in regions where the chain is well defined (i.e. a RCI-calculated order parameter >0.7).  

A flow chart describing the CSI 3.0 algorithm is shown in Figure 3.1.  As can be seen in 

this diagram the user first provides a file (NMRStar 2.1, NMRStar 3.1 or SHIFTY format) 

containing the protein sequence and the assigned chemical shifts.  Complete and properly 

referenced (Wishart et al. 2001) 
1
H, 

13
C and/or 

15
N chemical shifts are strongly preferred. 

However, 
15

N chemical shift data is not required and the lack of 
15

N shift data typically does not 

reduce the overall program performance. Once the chemical shift file is provided, CSI 2.0 is 

called to perform a per-residue, three-class secondary structure assignment.  Extensive studies 

have shown than CSI 2.0 is the most accurate method for identifying secondary structures using 

only chemical shift data (Hafsa et al. 2014). Additional details regarding the algorithm and its 

performance with regard to missing assignments or chemical shift completeness are fully 

described in the original publication (Hafsa et al. 2014) and in Chapter 2 of this thesis. Once the 

helices, β-strands and coil regions are identified, the RCI (random coil index) program is run. The 

RCI program calculates backbone flexibility from backbone chemical shifts. Additional details 

regarding its algorithm, its applications and overall performance are also described in the original 

publication (Berjanskii et al. 2005). The purpose of the RCI program is to identify CSI 2.0 

annotated coil regions that are too flexible to produce reliable torsion angles (for β-turn 

identification).  Residues that have a RCI-calculated order parameter (S
2
) ≤ 0.7 are excluded from 

further analysis. The choice of S
2 

≤ 0.7 is based on observations from many NMR protein 

structures that have intrinsically disordered or poorly defined regions and these are usually 

characterized by S
2
 values of less than 0.7. After the RCI filtering step is performed all remaining 

coil regions have their φ, ψ backbone torsion angles calculated by TALOS-N (Shen et al. 2013). 

TALOS-N is widely regarded as the most accurate, chemical shift-based backbone torsion angle 

calculator.  Details of the algorithm and its performance with regard to missing assignments or 

chemical shift completeness are fully described in the original publication (Shen et al. 2013). 

Finally the last program (ShiftASA) is used to calculate the fASA (fractional accessible surface 
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area) for all β-strand residues initially identified by CSI 2.0.   More details about this program are 

described in Chapter 4 of this thesis and in a subsequent publication (Hafsa et al. 2015) 

Once the initial per-residue assignment phase (helices, β-strands, coil, order parameters, 

φ, ψ angles, fASA) has been completed, the algorithm moves to the second phase, which involves 

identifying β-turn types (type I, II, I', II' and VIII), β-hairpins and edge/interior β-strands.  This 

“contextual assignment” phase employs the per-residue assignment data from the first phase 

along with the contextual data from the neighbouring residue assignments, local sequence 

(hydrophobicity) data and additional chemical shift pattern information. 

The first part of the contextual assignment phase involves the identification of β-turns.  β-

turns can be classified into five different types, i.e. type I, II, I', II' and VIII, based on the 

characteristic backbone torsion angles for the central two residue (i+1) and (i+2) locations 

(Hutchinson et al. 1994). A simple heuristic rule-based algorithm was designed to identify these 

five turn types along the protein chain. Coil regions were identified using CSI 2.0 (Hafsa et al. 

2014). Those coil regions with 2 or more consecutive coil assignments having RCI-estimated 

order parameters > 0.7 were then analysed further. In particular, the φ/ψ torsion angles and amino 

acid types in these coil residues were analysed to identify the presence of a β-turn and to assign 

the appropriate turn type to the residue locations. According to Hutchinson et al. (1994), the five 

common types of β-turns have propensities not only to adopt very specific backbone φ/ψ torsion 

angles but also to have very specific positional amino acid preferences. In particular, the torsion 

angles of the two central residues in a β-turn segment must fall within 30° of their characteristic 

backbone φ/ψ values and that certain preferred amino acids must be observed over a four-residue 

window, centered about the turn region.  Consequently we developed a simple equation that 

accommodates these criteria to identify and as well as to classify β-turns.  

 

                                                                                                                                      

 

This equation was applied over a sliding four-residue window over the sequence segment of 

interest. For this equation,          is a simple binary function that outputs a zero or one value 

based on the secondary structure class of two central positions over a four-residue segment. The 

term          is one if two central residues (     and    ) either have helix or β-strand 

assignments and zero otherwise. The term     is the preferred amino acid content in the four- 

residue segment. The range of     is [0.0-1.0].  If there is no favourable amino acids in any of the 
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four positions then     = 0 whereas if all four positions have preferred amino acids, the result is 

    = 1.0. The term     is a numerical value related to the five β-turn types (I, II, I', II' and VIII) 

and can adopt a discrete value, m = 2×n+1, where n   [0,4] represents five turn types in order, if 

three of the four torsion angles fall within 30° of their characteristic φ or ψ angles, with one φ/ψ 

angle deviating by up to 45°. According to the above formulation, a valid β-turn has a minimum 

       score of 1 and the required range of scores for the five turn types are: type I ≈ [1-2], type 

II ≈ [3-4], type I' ≈ [5-6], type II' ≈ [7-8] and type VIII ≈ [9-10].  

The second part of the contextual assignment phase involves identifying β-hairpins.  A β-

hairpin is formed when a β-turn connects and aligns two anti-parallel β-strands. CSI 3.0’s β-

hairpin algorithm simply searches for two sequential β-strands that are connected by 6 or fewer 

residues containing an appropriate reverse β-turn.  

The third part of the contextual assignment phase involves identifying edge (exterior) and 

interior β-strands. Those β-strands located on the “outside” edges of β-sheets with inter-strand 

hydrogen bonds only on one side are called edge strands.  Those β-strands that have inter-strand 

hydrogen bonds on both sides are called interior β-strands. Therefore β-sheets with just two β-

strands would have two edge strands, β-sheets with three β-strands would have one interior and 

two edge strands, and so on.  In general, edge β-strands and interior β-strands are distinguishable 

by their length (edge strands tend to be shorter), rigidity (interior strands have higher order 

parameters), repeating patterns of hydrophobic/hydrophilic residues, charged residue distribution, 

distinct hydrogen bonding patterns and their level of solvent exposure (Siepen et al. 2003) -- all 

of which can be identified via chemical shift data and sequence information. However, the 

complexity of the features and patterns led us to develop a machine learning algorithm to identify 

interior and edge -strands more accurately.  

To construct the database needed to train and test the -strand classification model in CSI 

3.0, we chose a local, manually curated data set that we previously used to train and test the 

SHIFTX2 (Han et al. 2011) and CSI 2.0 (Hafsa et al. 2014) programs.  Similar filtering criteria 

were used to eliminate chemical shift re-referencing problems, check chemical shift quality and 

detect chemical shift outliers from an initial data set of ~300 X-ray protein structures with good 

quality NMR assignments. A more detailed accounting of the data preparation protocol is 

provided in the SHIFTX2 and CSI 2.0 papers. The above selection and filtering process reduced 

the data set to 171 proteins. This data set was then divided into a training set and an independent 

test set. The training dataset consisted of 150 proteins (263 -strands) whereas the test dataset 



 

 

65 

contained 21 entries (38 -strands). PyMOL was used to visually inspect and assign the 

appropriate class (interior or edge) to each β-strand in the data set. β-strands that were located on 

the “outside” edges of β-sheets with inter-strand hydrogen bonds only on one side were assigned 

as edge strands and those β-strands that had inter-strand hydrogen bonds on both sides were 

classified as interior β-strands. In the training set, the class ratio was edge: interior = 131: 132 

and in the test set the ratio was 19:19, which represents a balanced class distribution in both 

training and testing set.  Among the training and testing proteins, 136 proteins belonged to the 

 folding class, 15 proteins to the all- class, 18 proteins to the all- class and two proteins to 

the all-coil folding class. The free parameters for the secondary structure assignment model were 

optimized on the training data set while the test set was used to perform an independent 

validation of the program’s performance. DSSP (Kabsch et al. 1983) was used to assign reference 

secondary structures (“-helix”, “-strand”, “coil”) in both the training and test set proteins.  

DSSP assigns secondary structures based on the coordinates of the 3D structures as well as 

inferred H-bonds and torsion angles derived from those coordinates. The normal eight-state 

DSSP assignments were transformed into a three-state (helix, sheet, coil) assignment using the 

EVA convention (Eyrich et al. 2001). 

We then extracted a set of input features from the training and testing data that were used 

to classify each β-strand into one of two classes – interior and edge. The features were based on 

observations and data provided in the literature regarding certain distinguishing characteristics of 

β-strands. For instance, the differing pattern of hydrogen bonding between edge strands and 

interior strands generates distinct 
1
H chemical shift patterns. In particular, the 

1
H protons of 

residues engaged in inter-strand hydrogen bonds tend to be deshielded, leading to downfield 

secondary chemical shifts. On the other hand, the 
1
H protons of residues that are only hydrogen 

bonded to water (i.e. edge) tend to be shielded, leading to slight upfield or far weaker downfield 

secondary chemical shifts.  Therefore an alternating pattern of upfield/downfield secondary 

chemical shifts is often seen in edge strands. This pattern was also noted by others as early as 

1994 (Ösapay et al. 1994). An interior β-strand, on the other hand, will not exhibit this pattern. In 

addition, to these distinct chemical shift patterns, residues in edge β-strands tend to have greater 

average accessible surface area (fASA) than interior β-strands, which are usually buried in the 

protein core.  Because the fASA of a residue can be reasonably well determined by its chemical 

shifts, we can use the shift-derived fASA to calculate the average exposure of each β-strand. 

Because interior strands tend to be more rigid, they often have comparatively higher S
2
 order 
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parameters than edge strands. Likewise edge β-strands are often characterized by a pattern of 

alternating hydrophilic and hydrophobic residues. Interestingly, edge strands are also 

characterized by a higher proportion and a more central positioning of charged residues along the 

strand (Siepen et al. 2003). For example, charged residues are often found at the middle of an 

edge strand, whereas they are almost never found in the middle of an interior strand. As observed 

by many others, the length of edge strands also tends to be much shorter than interior strands. 

Based on these data we derived a set of nine (9) different features that could be derived from 

backbone chemical shifts and/or sequence data. These features included: 1) proportion of exposed 

residues; 2) proportion of residues with high S2 order (> 0.7); 3) periodicity in hydrophilicity; 4) 

periodicity in polarity; 5) proportion of hydrophilic residues; 6) charge score; 7) 
1
H chemical 

shift periodicity; 8) 
1
HN chemical shift periodicity; and 9) β-strand strand length.  

Once the features were determined for all 263 training β-strands, a binary kernelized 

SVM classifier was used to train the edge/interior β-strand model. All data points were 

normalized using a “Statistical Z-score” method prior to training. For our binary-class SVM 

model, a soft-margin classification approach was used. Unlike a hard-margin SVM, a soft-margin 

SVM classifier generally produces a wide decision-margin to separate the two classes by 

allowing some noisy examples inside or on the wrong side of the margin in order to achieve a 

better test performance.  A Radial Basis Function (RBF) kernel (also known as Gaussian kernel) 

was used to map the feature vectors in a higher dimensional space. With a Gaussian kernelized 

soft-margin classification framework, the performance of the SVM depends on the following two 

parameters: 1) the regularization parameter “C” (also known as the “cost” factor) and 2) the 

Gaussian kernel width “ ”. The “C” parameter allows one to adjust the trade-off between 

maximizing the decision-margin width vs. minimizing the number of misclassified samples in the 

training set. Selecting a large “C” value will cause a smaller number of misclassified samples, 

leading to a smaller decision boundary, whereas choosing a very small “C” will allow a large 

number of training errors, resulting in a wider decision margin. The “ ” parameter controls the 

width of the Gaussian kernel and can be adjusted to achieve a smoother fit for the model. Both 

“C” and “ ” parameters were optimized using a repeated 10-fold cross validation (CV) on the 

training data.  The goal of this parameter optimization was to find the optimal values that 

maximize the accuracy or Q2 score of the two-class β-strand classification.  The binary-class 

SVM implementation in the R package “kernlab” was used to train the classifier. The 
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optimization of “C” and “ ” through the “repeatedcv” method was performed using the train() 

function in the R “caret” package. 

The “C” parameter (the “cost” value) in the SVM classifier and the kernel parameter, “ ” 

in the Gaussian RBF kernel were optimized using a repeated 10-fold Cross Validation (CV). 

After achieving an optimal value of 0.076, “ ” was held constant while “C” was iteratively 

changed to optimize its value. To achieve an unbiased training result, the whole process was 

repeated five times. For each repetition, the accuracy of the two-state assignment of the training 

classes was measured. The optimal “cost” and “ ” values that were found to maximize the Q2 

accuracy using this repeated training were 0.25 and 0.076 respectively. The training accuracy was 

averaged over five repetitions of the 10-fold CV process. An average training accuracy of 

Q2=77% with 263 data points (or β-strands) on 150 training proteins was observed with the 

aforementioned optimized parameter values. A test accuracy of Q2=79% was achieved on an 

independent test set of 21 proteins with 38 data points (or β-strands).  

 

Figure 3.1: Program flow chart for CSI 3.0 
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3.3 Results and Validation 

To demonstrate the utility of CSI 3.0 we evaluated its performance for both secondary and super-

secondary structure identification using a set of 13 proteins with known 3D structures. The 

proteins were chosen to span a broad range of sizes (50 – 200 residues), secondary structure 

content, turn types, super-secondary structure features and 3D folds. These proteins also had an 

average level of backbone chemical shift completeness of 95% (which is relatively high). For 

each of the corresponding 3D structures, the identification of the consensus secondary structures 

(type and location) was performed by carefully combining the DSSP, STRIDE, VADAR, and 

author assignments together (Kabsch et al. 1983, Frishman et al. 1995, Willard et al. 2003). For 

this particular evaluation, β-strands with 2 or fewer residues (more formally known as β-bridges) 

were classified as coil regions. The identification of β-hairpins as well as the identification of 

edge and interior β-strands was done through visual inspection of the 3D structures using 

PyMOL. The complete set of proteins along with their consensus 3D structural assignments (as 

well as with their CSI 3.0 identified structural elements) is available on the CSI 3.0 website.  For 

the entire set of 13 proteins there were 444 residues in helices, 349 residues in β-strands and 635 

residues in coil regions. Within the coil regions there were 160 residues in type I turns, 12 

residues in type I' turns, 36 residues in type II turns, 8 residues in type II' turns, and 4 residues in 

type VIII turns. Additionally there were a total of 14 β-hairpins, 31 edge β-strands and 28 interior 

β-strands. Note that only regions that are well defined (as identified by the RCI-derived order 

parameter score >0.7) and which had non-overlapping β-turns were used in the evaluation of the 

β-turn performance. The evaluation metric for the secondary structures (i.e. helices, β-strands, 

coils) was the standard Q3-score evaluated over all residues. The evaluation metric for β-turns 

(type I, I', II, II', VIII β-turns and non-turns) was a simple Q6 score evaluated over all residues. 

The evaluation metric for the β-hairpins (hairpins and non-hairpins) was a Q2 score while the 

evaluation metric for the edge, interior and non-edge/non-interior strands was a Q3 score. The 

“Qn” score is essentially a percent correct score similar to a multiple-choice exam where n is the 

number of possible answers for each question. The results are shown in Table 3.1.  

This table shows that, as expected, the agreement between the per-residue secondary 

structure assignments derived by chemical shifts matches very well to those determined by 

analysing the coordinate data.  The average Q3 score for the three main secondary structure types 

was 97%, which actually exceeds the performance of other state-of-the-art chemical shift-based 

methods. 
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Protein ID Number 

of 

residues 

Q3 score 

(H,B,C) 

Q6 score 

(I,I',II,II',VIII 

turns, 

non-turns) 

Q3 score 

(edge/interior β-

strand, 

non-strand) 

Q2 score 

(β-hairpins, 

non-hairpins) 

Ubiquitin 

(Human) 

PDB: 1UBQ; BMRB: 5387 

76 99 100 98 99 

GB1 domain  

(Streptococcus) 

PDB: 1GB1; BMRB: 7280 

58 96 100 91 96 

Parvalbumin 

(Human) 

PDB: 1RK9; BMRB: 6049 

110 97 100 100 95 

Dinitrogenase 

(T. Mortima) 

PDB: 1O13; BMRB: 6198 

124 97 100 85 97 

Cyclic nucleotide protein  

(M. loti) 

PDB:1VP6; BMRB:15249 

142 98 100 90 94 

Glutaredoxin  

(Poxvirus) 

PDB: 2HZE; BMRB: 4113 

108 100 100 96 100 

SH3 domain Myo3  

(Yeast) 

PDB: 1RUW; BMRB:6197 

70 100 97 80 100 

Acyltransferase  

(A. thaliana) 

PDB: 1XMT; BMRB: 6338 

103 96 100 93 98 

Cytosine Deaminase  

(Yeast) 

PDB: 1YSB; BMRB: 6223 

158 96 100 95 100 

Sortase A  

(Staphylococcus) 

PDB: 1T2W; BMRB:4879 

148 91 97 85 95 

Peptidyl-tRNA hydrolase  

(M. tuberculosis) 

PDB: 2Z2I; BMRB: 7055 

191 96 97 97 100 

Photoactive Yellow Protein 

(H. halophila) 

PDB: 1ODV; BMRB: 6321 

100 100 96 80 100 

Calmodulin 

(Bovine) 

PDB: 1A29; BMRB: 547 

148 96 100 98 100 

 

Table 3.1: Performance evaluation of CSI 3.0 on 13 selected proteins 

 

The average agreement between the observed structure and the CSI 3.0 identified structure was 

98% for helices, 96% for β-strands and 96% for coil regions (prior to β-turn ID). Likewise the 

average Q6 score for β-turns/non-turns was 99%, with a range spanning between 98% (type I) to 

100% (type II, I', II', VIII). In terms of the super- secondary structure identification (edge, interior 
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and β-hairpins), the average Q2 score for CSI 3.0 for hairpins/non-hairpins was 98%. For 

edge/interior β-strands/non-strands, the average Q3 score was 91%. CSI 3.0 achieved an edge β-

strand accuracy of 73%, an interior β-strand accuracy of 88% and a non-strand accuracy of 97%. 

Closer inspection of the results shows that the disagreements between 3D structure-generated 

assignments and those derived by CSI 3.0 were often ambiguous or “close calls”. This was 

particularly true with regard to the identification of edge strands. In many cases, edge and interior 

β-strands have a “dual” nature with some regions of any given β-strand being exposed and others 

being hydrogen bonded. In certain cases, it appears that CSI 3.0 struggled with identifying these 

hybrid β-strands. However, it is important to remember that this level of topological information 

is rarely obtained from preliminary NOE data or NOE pattern matching methods and is often not 

revealed until the final 3D structure is generated and thoroughly refined.  Overall, we believe CSI 

3.0’s level of performance greatly exceeds what is achievable from NOE pattern matching 

methods and it is certainly sufficient to provide a useful topologically rich picture of protein 

structures (for illustrative or publication purposes) and to provide useful constraint data that could 

be used to generate and refine 3D protein structures using additional NOE or chemical shift 

(only) data from any number of packages.  

 

3.4 Web Server Implementation 

In developing the CSI 3.0 server we endeavoured to create a simple graphical interface that 

allows users to submit experimental NMR chemical shift data (from a single contiguous 

polypeptide) by either uploading the files or pasting them into a text box. Multiple chemical shift 

assignment formats (NMRStar 2.1, NMRStar 3.1 or SHIFTY) are accepted and examples of these 

formats are provided on the website. After submitting the shift file, the server generates colourful 

CSI plots or bar graphs (generated by the R package, version 3.0.2) with annotated helices, 

strands and colour-coded indications of β-turns, β-hairpins or edge and interior β-strands. The 

images are available in a PNG (Portable Network Garphics) format. A text file with the 

secondary and super-secondary structure assignments is also generated.  The CSI 3.0 web server 

has been implemented as a Python CGI script (v. 1.1).  The component programs were written in 
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Python (CSI 2.0, Side-chain RCI, RCI) or in C++ (TALOS-N). The web application is platform 

 

Figure 3.2: A montage of the CSI 3.0 webserver and typical output screen shots. 
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independent and has been tested successfully under Linux, Windows and Mac operating systems. 

CSI 3.0 has also been tested and found to be compatible with most modern web browsers 

including: Google Chrome (v. 31 and above), Internet Explorer (v. 9 and above), Safari (v. 7 and 

above), and Firefox (v. 23 and above). The CSI 3.0 web server is hosted on a system with 4GHz 

2-Core processor and a CentOS operating system. With this computing infrastructure, the web 

server takes approximately 2-5 minutes to complete its calculations depending on the server load 

and the length of the protein query sequence. The server is freely available at 

http://csi3.wishartlab.com. A montage view of the CSI 3.0 web server along with screenshot 

examples of its output are shown in Figure 3.2. 

 

3.5 Conclusion 

CSI 3.0 is an accurate, automated, easy-to-use web service for calculating structural information 

from chemical shift data. In particular, CSI 3.0 accurately determines 8 types of local secondary 

structures (helices, β-strands, coils and 5 types of β-turns) as well as 3 types of super-secondary 

structures or topological features (β-hairpins, edge strands and interior strands). This represents 

nearly a fourfold increase in the number of secondary structure types identified by any other 

shift-analysis tool that we are aware of – including its predecessor, CSI 2.0. We believe that the 

additional secondary structure data, along with the useful topological information and colourful 

graphical output generated by CSI 3.0 will not only improve the quality of preliminary protein 

structure descriptions (often obtained shortly after chemical shift assignments are completed) but 

also facilitate the protein structure determination by NMR. In particular, with the recent trends 

towards protein structure determination and refinement using chemical shifts (only), chemical 

shift threading or minimal numbers of NOEs, this added information could prove to be 

particularly useful to a growing number of NMR spectroscopists. 
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Chapter 4 

Accessible Surface Area from NMR Chemical Shifts
1
  

 

Abstract 

Accessible Surface Area (ASA) is the surface area of an atom, amino acid or biomolecule that is 

exposed to solvent.  The calculation of a molecule’s ASA requires three-dimensional coordinate 

data and the use of a “rolling ball” algorithm to both define and calculate the accessible surface 

area. For polymers such as proteins, the ASA for individual amino acids is closely related to the 

hydrophobicity of the amino acid as well as its local secondary and tertiary structure. For 

proteins, ASA is a structural descriptor that can often be as informative as secondary structure.  

Consequently there has been considerable effort over the past two decades to try to predict ASA 

from protein sequence data and to use ASA information (derived from chemical modification 

studies) as a structure constraint. Recently it has become evident that protein chemical shifts are 

also sensitive to ASA. Given the potential utility of ASA estimates as structural constraints for 

NMR, we decided to explore this relationship further. Using machine learning techniques 

(specifically a boosted tree regression model) we developed an algorithm called “ShiftASA” that 

combines chemical-shift and sequence derived features to accurately estimate per-residue 

fractional ASA (fASA) values of water-soluble proteins. This method showed a correlation 

coefficient between predicted and experimental values of 0.79 when evaluated on a set of 65 

independent test proteins, which was an 8.2% improvement over the next best performing 

(sequence-only) method. On a separate test set of 92 proteins, ShiftASA reported a mean 

correlation coefficient of 0.82, which was 12.3% better than the next best performing method. 

ShiftASA is available as a web server (http://shiftasa.wishartlab.com) for submitting input 

queries for fractional ASA calculation.    

 

 

 

 

 

1. Portions of this chapter were published as: Hafsa NE, Arndt D, Wishart DS (2015) Accessible surface area from 

NMR chemical shifts. J Biomol NMR 62:387-401. 
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4.1 Introduction 

Accessible surface area is a concept first introduced and popularized by Dr. Frederic M. Richards 

and co-workers in the early 1970s (Lee et al. 1971, Richards 1974 & 1977).  It grew from the 

observation that certain parts of a folded protein seemed to be impenetrable to water while other 

parts were highly exposed.  This differential exposure seemed to be driven by the hydrophobicity 

or hydrophilicity of individual amino acid side chains, the 3D structure of the protein and the 

influence that the hydrophobic effect had on the overall protein folding process.  Richards and 

colleagues also pointed out that water molecules are not infinitely small point particles and that 

the surface of a protein that was water accessible was not equal to the van der Waals surface area 

but rather could be calculated by rolling a ball of finite size (roughly the size of an oxygen atom 

of 1.4 Å) over the entire van der Waals surface of a protein. The resulting, “smoothed-surface” 

defined the water accessible area or the accessible surface area (ASA).  ASA is a quantifiable 

property measured in square Angstroms (Å
2
).  It can be determined for entire proteins or for 

individual residues or even atoms.  ASA can also be re-cast as a fractional accessible surface area 

(fASA) that reports the percentage of ASA relative to a fully exposed protein (or residue).  This 

concept can be carried further to a relative accessibility, or RSA, which is a more qualitative 

measure of surface accessibility.  With the RSA concept, residues are considered buried (B), 

partially buried (P) or exposed (E) based on their fASA. Typically buried residues have a fASA 

of <0.25, partially buried have a fASA between 0.25 and 0.5 and exposed residues have a fASA 

of >0.50.  

Since its first description, the concept of ASA has proven to be extremely useful for 

assessing the quality of protein folds and for scoring protein structure predictions (Benkert et al. 

2008), for assessing conformational changes upon protein or ligand binding, for calculating 

protein folding energies, for determining protein-ligand binding constants and for calculating 

protein enthalpy and entropy changes (Lavigne et al. 2000).  More recently, indirect 

measurements of residue-specific ASAs through targeted chemical modification or partial 

proteolysis have been used to provide constraints for low-resolution protein structure 

determination efforts by mass spectrometry (Serpa et al. 2014). Indeed since its first description 

some 40 years ago, the concept of ASA has probably been proven to be among the most useful 

concepts for understanding, comparing and evaluating protein folds and protein functions. 

 Quantitative ASA measurements can only be determined from protein coordinate data 

(i.e. solved structures).  However, given the utility of ASA measurements as structural constraints 
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or for evaluating structural/thermodynamic properties of proteins, there has been a growing 

interest in finding ways of predicting ASA, fASA or RSA from sequence data alone. As a result 

there have been a number of published studies that describe methods for predicting accessible 

surface area and relative surface accessibility from sequence (Ahmad et al. 2002 & 2003, Wagner 

et al. 2005, Petersen et al. 2009, Nguyen et al. 2005, Li et al. 2001, Pollastri et al. 2002, Chen et 

al. 2005, Naderi-Manesh et al. 2001, Thompson et al. 1996, Rost et al. 1994, Garg et al. 2005, 

Yuan et al. 2004, Holbrook et al. 1990, Adamczak et al. 2004). The majority of these prediction 

systems rely on using multiple sequence alignments, pairwise residue assessments and the 

predictive power of machine-learning algorithms. The best performance reported by these 

sequence-only methods using a two-state (Buried, Exposed) and a three-state RSA measure 

(Buried, Partially Buried, Exposed) yielded Q2 and Q3 scores of 88% and 63% respectively 

(Ahmad et al. 2002).  For real-value ASA predictions, the best performance so far reported used 

PSSM matrices from PSI-BLAST (Altschul et al. 1997) profiles in a two-stage support-vector 

regressor to achieve a correlation coefficient between observed and calculated fASA of 0.68 

(Nguyen et al. 2005).  

While these sequence-only results are promising, Rost et al. (1994) pointed out that 

surface accessibility is less conserved in structural homologs than secondary structure and 

therefore ASA would be predicted less accurately from homology modeling. The Rost et al. study 

also showed that the correlation coefficient of relative solvent accessibility between 3D 

homologues (by structural alignment) is only 0.77, whereas prediction of accessibility by 

homology modeling (sequence alignment) resulted in a correlation coefficient of about 0.68. This 

suggests that the upper limit of ASA prediction that could be achieved by sequence-only methods 

would yield a correlation of 0.70-0.75. 

Over the last two decades, it has been observed that a number of experimentally 

measurable properties in proteins correlate reasonably well with accessible surface areas.  For 

instance, folding and unfolding free energies as measured through calorimetry appear to correlate 

quite well with ASA or fASA (Myers et al. 1995).  Protease cleavage sites or protease 

susceptibility along with chemical modification susceptibility also appears to map with solvent 

accessibility (RSA or ASA) (Croy et al. 2004).  Hydrogen exchange, as measured by MS (Mass-

Spectrometry) or NMR also allows the identification of buried and exposed residues in proteins 

(Huyghues-Despointes et al. 1999). NMR chemical shifts also appear to be influenced by ASA 

effects.  The first evidence of such a phenomenon was reported in 1994 (Wishart et al. 1994a).  
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Nearly a decade later Avbeli et al. (2004) studied the effect of secondary structure and solvent 

exposure on backbone chemical shifts. They demonstrated that proton secondary shifts have a 

different chemical shift distribution for solvent exposed residues, particularly in smaller peptides. 

In a later study by Vranken et al. (2009), the effect of secondary structure and solvent exposure 

on chemical shift assignments was re-examined on a large database of proteins for which both 

reported atomic coordinates and chemical shift values were available. There were two major 

findings from this study. First, they found that non-polar atoms have significantly larger chemical 

shift dispersion and a somewhat different chemical shift distribution compared to polar atoms. 

Secondly those atoms with greater atomic ASA, exhibited chemical shift values that tended 

towards random coil values.  The relationship between chemical shifts and ASA was actually 

used to develop a significantly improved structure-based chemical shift prediction algorithm, 

called ShiftX2 in 2011 (Han et al. 2011).  Most recently, Berjanskii et al. (2013) proposed a 

simple formula to calculate per-residue fractional accessible surface area from side-chain 

chemical shifts and observed a correlation of more than 70% with the observed fASA values over 

a subset of 15 proteins. 

 These studies demonstrate that both sequence and chemical shift information can be used 

individually to estimate the ASA values with reasonable accuracy. Now the question is: Can one 

develop more accurate fASA estimation by more intelligently combining sequence AND 

chemical shift information? Here we report the development of a machine-learning based method 

that can be used to accurately estimate per-residue fractional ASA of water-soluble proteins using 

sequence and chemical shifts. After training on a set of 30 fully assigned proteins, the 

performance of the resulting model, called ShiftASA, was compared with other sequence-based 

and chemical-shift based methods over a test set of 65 proteins. For this test set ShiftASA 

achieved a mean correlation coefficient of 0.79 compared to correlation coefficients of 0.73 and 

0.59 found for sequence-only and chemical shift-only methods respectively. On a separate test set 

of 92 proteins, ShiftASA attained a correlation coefficient of 0.82. A number of other statistical 

measures were also used to prove that this method shows a consistently better performance than 

any existing method. 
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4.2 Materials and Methods  

4.2.1 Dataset 

A set of 30 proteins with complete experimental NMR chemical shift assignments and available 

high-resolution X-ray structures was chosen for training purposes. The list of proteins along with 

their PDB and BMRB identifiers is provided on the ShiftASA website. Note that the number of 

training proteins was varied to examine any enhancement in training and test performance. 

However no (or very little) improvement was observed with an increased number of proteins. 

Two separate sets of 65 and 92 proteins with available experimental chemical shifts and high-

resolution X-ray structures were used as independent test sets. Henceforth we shall refer to the 

training data set and two test data sets as TRAIN, TEST1 and TEST2, respectively. The list of the 

TEST1 and TEST2 proteins along with their PDB and BMRB identifiers is provided on the 

ShiftASA website. No two proteins shared more than 40% sequence identity in the TRAIN set. 

Similarly, no two proteins shared more than 40% sequence identity in the TEST1 and TEST2 

sets. The TRAIN proteins had ~92% and ~83% of their backbone and side-chain chemical shifts 

assigned, respectively. The TEST1 proteins had on average ~90% (max = 100%, min = 49%) and 

~60% (max = 91%, min = 0%) of their backbone and side-chain chemical shifts assigned while 

those in TEST2 had an average of ~97.50% (max = 100%, min = 85%) and ~83.5% (max = 89%, 

min = 53%) of their backbone and side-chain chemical shifts assigned. Note that no attempt was 

made to handle missing assignments in either the training or the test data sets. The TRAIN 

proteins had ~49% of their residues in regular secondary structure while the TEST1 and TEST2 

proteins had ~63% and ~44% (respectively) of their residues in regular secondary structure as 

assessed by STRIDE (Frishman et al. 1995). 

4.2.2 Computation of Observed Fractional ASA 

Most predictive studies associated with ASA prediction have focused on generating RSA or 

binary/ternary class predictions.  However, in the majority of cases, real-valued or fractional 

ASA is more informative than the binary/ternary classification of residues into buried or exposed 

states. This is because the threshold for classifying residues in a protein into two or three 

exposure classes is subjective and often depends on the mean ASA over all the residues in a 

particular protein (Ahmad et al. 2003). In the absence of a universal threshold for categorical 

prediction of buried and exposed states, fractional ASA (fASA) is considered to be more reliable 



 

 

78 

or useful estimation of residue-specific solvation status. Therefore for this study we focused on 

developing a predictor for fASA.  The fractional ASA of a residue is defined as the ratio between 

absolute ASA (aASA) calculated within a three-dimensional structure and that is observed for a 

central residue location in an extended tri-peptide (Ala-X-Ala) conformation, denoted as mASA: 

 

                                                                        
     
     

                                                                            

 

Hence, fASA values range between 0.0 and 1.0, with 0.0 corresponding to a fully buried and 1.0 

to a fully exposed residue, respectively. Absolute ASA values were calculated using the 

Dictionary of Secondary Structure Prediction (DSSP) (Kabsch et al. 1983) program. The values 

of the extended state ASAs for all 20 residues were extracted from Eisenhaber et al. (1993).  

4.2.3 Mapping Fractional ASA Prediction as a Regression Task 

Given a protein with a length of n amino acids, the task is to estimate the fractional accessible 

surface area at each residue. We initially mapped the estimation problem as a regression task and 

then employed a Stochastic Gradient Boosting Tree model to solve the regression problem as 

outlined by Ridgeway (2007) and Trevor et al. (2001).  To map the problem as a regression task, 

we defined an error function as the square of the difference between the observed per-residue 

fASA values and the predicted per-residue fASA values over the length of the training set 

sequences. The predicted per-residue fASA was calculated from a set of features (see below) and 

expressed as function        of amino acid position or sequence length. In stochastic gradient 

boosting, the method approximates the function        in an iterative fashion through fitting the 

solution tree in each step that maximally reduces the expectation of the error function. The 

gradient step in each iteration m (m= 1…T, where T= total number of iterations), updates the 

model according to a learning rate or a shrinkage parameter that controls the rate at which the 

boosting algorithm descends upon the error surface. For each iteration, only a fraction p of the N 

training observations is randomly sampled (without replacement) and the next solution tree is 

grown with that subsample. The solution tree that is generated for each boosting iteration is a K-

terminal node regression tree.  

After mapping the fractional ASA prediction problem into a Stochastic Gradient Boosted 

Tree Model (SGBM), the model was optimized on the protein data in the training set. The 
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“GBM” package (Ridgeway 2007), written in R (Team R.D.C. 2008) was used for optimizing the 

training model. 

4.2.4 Feature Set 

To use or develop machine-learning algorithms it is necessary to extract a set of input features 

from the training data that will be used to infer or calculate the desired output (i.e. the fractional 

ASA).  Features can either be the raw data (i.e. sequence, NMR chemical shifts, etc.) or derived 

data (i.e. estimated hydrophobicity) that is calculated from the raw data. We derived a set of five 

different feature types from our chemical shift and sequence data. The features included: (1) 

residue specific hydrophobicity, (2) chemical shift-derived three-state secondary structure 

probability, (3) random coil index values relating to flexibility using backbone and side-chain 

chemical shifts  (Berjanskii et al. 2005, Berjanskii et al. 2013), (4) multiple sequence alignment 

derived residue conservation score (Valdar 2002, Mayrose et al. 2004), and (5) SABLE predicted 

ASA (Adamczak et al. 2004). These features are explained in more detail below. 

Residue specific hydrophobicity  

Hydrophobicity is a widely used physico-chemical characteristic of amino acids that is used to 

measure their relative water aversion. Hydrophobicity scales are numeric scales that define the 

relative hydrophobicity of amino acid residues. In general terms, the more positive the number, 

the more hydrophobic the amino acid, and consequently the more buried it is likely to be. Over 

the past few decades, a number of different hydrophobicity scales have been developed. We 

investigated six different hydrophobicity scales to see which was the most useful on a validation 

set when combined with other features. The scales we examined included Janin’s scale (Janin 

1979), Kyte and Doolittles’s scale (Kyte et al. 1982), Eisenberg’s scale (Eisenberg et al. 1984), 

Engelman’s scale (Engelman et al. 1986), Hopp and Woods scale (Hopp et al. 1981) and 

Manavalan’s scale (Manavalan et al. 1978). The best correlation was achieved using Janin’s 

hydrophobicity values (data not shown). Interestingly Janin’s scale was developed by analyzing 

the relative surface accessibility of all 20 amino acid residues from solved protein structures.  In 

this regard Janin’s scale is more a solvent accessibility scale than a hydrophobicity scale.  

Two different approaches were examined regarding how to use hydrophobicity as a 

feature: i) single-residue hydrophobicity and ii) a running average of hydrophobicity over a 3-

residue window. The first approach exhibited a comparatively better correlation than the second 

one (data not shown) and so this was incorporated in our feature set.  
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Chemical-shift derived secondary structure probability 

The secondary structure probability of a residue is derived from the secondary chemical shift 

value of its constituent atoms. The secondary chemical shift (  ) is defined as the difference 

between the absolute chemical shift (δabs) and the corresponding random coil (δrc) shift (Wishart 

et al. 2011). 

                                                                                                                                                          

The probability of a residue being in one of the three states “α-helix”, “β-strand” or “coil” 

is derived from its six backbone atom secondary chemical shifts, as described in Wang et al. 

(2002a). For each backbone atom, a Gaussian probability distribution was assumed, where the 

two parameters of the distribution corresponded to 1) the average secondary chemical shift value 

for each of three different secondary structure states and 2) the standard deviation of the 

distribution. These statistical parameters were derived from the “RefDB” database (Zhang et al. 

2002).  A more detailed description of the secondary structure probability method is given by 

Wang et al. (2002).  

Random Coil Index 

The Random Coil Index (RCI) is a technique that can be used to determine the flexibility of an 

amino acid residue in a polypeptide chain from its backbone and side-chain chemical shifts 

(Berjanskii et al. 2005 and 2013).  Both the backbone and side-chain RCI quantitatively trace the 

relative amount to which a protein backbone and side-chain’s chemical shifts match with the 

random coil values. These features were calculated using the RCI equations provided in the 

original RCI papers. 

Residue conservation score 

Residue conservation is a measure of how often a given residue is seen at an equivalent position, 

in an equivalent protein, across different species. Generally highly conserved residues are buried 

within the protein core, while less conserved residues are generally exposed or found in loops 

(albeit with some exceptions). The conservation score for each residue position is calculated as 

described by Valdar (2002). First, a PSI-BLAST (Altschul et al. 1997) search with three 

iterations for query sequence is done on UniREf90 clustered database (UniProt Consortium. 

2010). Then a multiple sequence alignment is performed using ClustalOmega (Sievers et al. 

2011). The conservation score for each non-gap column in the alignment (i.e. each residue in the 

target sequence) is then calculated using Shannon’s entropy formula as described below, 
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where     is the probability of observing the a-th amino acid and   is the scaling factor and 

defined as, 

                                                                                                                                                   

 

where N = number of residues in the alignment, K = 20 (length of amino acid alphabet). The 

probability of observing a-th amino acid is the summed weight of sequences having the symbol a 

in the position x in the sequence which is defined as, 

 

                                                                                                 

 

where,     is the weight of the i-th sequence.    is defined as,  

 

         
 

 
   

 

    

 
                                                                             

 

where, L = length of the alignment,    = the number of amino-acid types present at the x-th 

position,    = the number of times the a-th amino acid occurring in the i-th sequence at the x-th 

position. 

 

SABLE-predicted ASA 

To further improve the performance of ShiftASA we supplemented our method with another 

sequence-only ASA prediction tool called SABLE (Adamczak et al. 2004). SABLE is a pure 

sequence-based method for predicting real-valued relative solvent accessibilities of amino acid 

residues in proteins. It was initially developed using neural network based regression models and 

later refined using other linear regression models (Wagner et al. 2005).  It has a reported 

correlation coefficient between predicted and experimental values of 0.64-0.67 on various test 

sets. Because SABLE’s correlation coefficient was comparable to the reported correlation of 

shift-based ASA estimations, it was expected that including sequence estimated ASA would 

enhance the performance of ShifASA. Therefore the SABLE predicted real valued ASA for each 

residue was included in the ShiftASA feature vector for the training and test data points. 
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Local residue interactions 

To take into account the local-residue interaction in the protein structure, a 3-residue window 

feature set was used throughout this study. Accounting for nearby residue-interactions provides 

important information about local geometry and the local environment that is accessible/non-

accessible to solvent.  

  

4.2.5 Training the Prediction Model 

The prediction model parameters were optimized so as to obtain an estimator that minimized the 

(absolute) difference between actual output and predicted ASA values.  The model was also 

optimized to achieve a better correlation between the observed and response (i.e. predicted) 

variables. With those two objectives in mind, a repeated 10-fold cross-validation (CV) was 

performed to estimate the optimal number of iterations (T) and interaction depth of each 

regression tree (K) for our SGBM. This was done after the model had been initially fit on the set 

of 30 sample observations.  

Optimization using 10-fold repeated cross-validation (CV) suggested that the optimal 

number of iterations should be 180.  That is, the final regression model best approximates the 

response value after 180 gradient steps.  The second parameter estimated by the cross-validated 

optimization process was the optimal depth of interaction among the predictor variables in each 

regression tree. The optimal depth of interaction was found to be eight (8).  Specifically, the loss 

function was minimized when eight predictor variables were split in each regression tree during 

the optimization steps. 

 

Analysis of feature influence 

During the optimization of ShiftASA, an analysis of the feature influence was performed as a part 

of the boosting process. The top ten features are shown in Figure 1. The influence of the predictor 

variable (~X) indicates the relative importance or contribution of that variable in predicting the 

response (~Y) and can be estimated by the weighting coefficient associated with that variable in 

the method formulation. This analysis helped to identify those variables that had the most 

significant influence on the response. The weighting coefficients of all features are described in 

Table 4.1. 
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4.2.6 Evaluation 

The performance of ShiftASA was evaluated using several different metrics. This was done to 

more completely ascertain its performance against other methods as well as to better assess the 

effects brought on by using different weighting protocols.  Specifically the following metrics 

were used:  

1) Root Mean Square Error (RMSE) - RMSE is a statistical measure that calculates the difference 

between the values predicted by an estimator model and the actual observed values. RMSE is the 

square root of the average squared deviation between predicted and actual values, and thus gives 

larger deviations more weight. A smaller value indicates a better model performance,  

2) R
2
 or the coefficient of determination - R

2
 is a statistical measure that indicates how well a set 

of data points fit to a regression line or curve;  

3) Spearman’s rank correlation coefficient (SRCC) - SRCC is a non-parametric measure of the 

monotonic relationship between two variables, irrespective of whether their relationship is linear;  

4) Mean absolute error (MAE) - MAE is the average of the absolute errors in a prediction i.e. the 

absolute difference between predicted and true values in a set of outcomes. Unlike other 

measures, larger deviations are not given additional weight;  

5) Mean squared error (MSE)- MSE measures the average of the square of the “error” or 

deviation of the estimator from the quantity being estimated. MSE tends to heavily weight 

outliers.  

 

4.3 Results and Discussion 

4.3.1 Training Performance and Feature Importance  

During the optimization process, a 10-fold repeated cross validation protocol yielded the lowest 

RMSE (0.18) and the best R-squared values (0.65) for the training data. The weighting 

coefficients of all features are described in Table 4.1. These data indicate that the SABLE 

(Adamczak et al. 2004) estimated ASA at the central (i)-th residue is the most informative ASA 

predictor. The side-chain random coil index, backbone random coil index and hydrophobicity, 

were found to be next three most influential variables in our fASA estimation. The next most 

important feature was the random coil index value of the (i-1)-th residue followed by helix 

propensity of the (i)-th and β-strand propensity of the (i)-th residue. The helix and β-strand 

propensities of the central residue have comparatively higher importance, they often indicate that 
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-helices and β-sheets 

in proteins and have a tendency to interact with the residues in the core region. Our analysis 

shows that central residue features carry the most information content (occupying six of the top 

seven positions), with exceptions of the flexibility information of neighboring residues (the RCI 

value of the (i-1)-th residue). 

Feature Weighting coefficient, |w| 

ProbBCS(i-1) 1.114 

ProbBCS(i) 2.465 

ProbBCS(i+1) 0.849 

ProbHCS(i-1) 0.860 

ProbHCS(i) 2.541 

ProbHCS(i+1) 1.692 

ProbCCS(i-1) 1.089 

ProbCCS(i) 1.577 

ProbCCS(i+1) 2.294 

hydro(i-1) 0.651 

hydro(i) 3.557 

hydro(i+1) 0.579 

scon(i-1) 1.063 

scon(i) 1.355 

scon(i+1) 1.316 

BackBoneRCI(i-1) 3.164 

BackBoneRCI(i) 5.381 

BackBoneRCI(i+1) 1.947 

SideChainRCI(i-1) 1.124 

SideChainRCI(i) 27.482 

SideChainRCI(i+1) 0.839 

sable(i-1) 0.560 

sable(i) 35.991 

sable(i+1) 0.505 

 

Table 4.1: Normalized weighting coefficients (|w|) of chemical-shift and sequence-derived features are listed. (i-1) 

and (i+1) in parentheses represents the neighbor residue locations, whereas (i) indicates the central residue. The 

feature name abbreviations are as follows: ProbBCS = β-strand probability using chemical shift, ProbHCS = α-helix 

probability using chemical shift, ProbCCS = coil probability using chemical shift, hydro = residue-specific 

hydrophobicity, scon = residue conservation score, BackBoneRCI = Random Coil Index (protein flexibility) from 

backbone chemical shifts, SideChainRCI = Random Coil Index from side-chain chemical shifts, and sable = SABLE 

predicted real-value solvent accessibility. 
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Although the SABLE estimation is found to be the most relevant feature, the chemical shift 

features also provide significant contribution, roughly equal to the SABLE feature at central 

residue position. Residue hydrophobicity also carries useful information to estimate the fASA. 

 

Figure 4.1: Top ten relevant features in the SGBM method. The importance of these predictor variables or features 

is normalized to a scale of 1-100.  The predictor variable names are shown on the vertical axis. 

 

Other than the SABLE ASA estimation and hydrophobicity, eight of the top ten features are 

chemical-shift features, and have collectively larger weights in the final formulation. It is notable 

that residue conservation scores are not present among ten most relevant features, which indicates 

their somewhat smaller contribution to the feature set.    

  

4.3.2 Test Performance 

The final parametric regression tree model generated by repeated cross-validated optimization of 

the TRAIN set was used to predict the fractional ASA values for proteins in the TEST1 and 

TEST2 data sets. The Spearman correlation coefficient was calculated between the actual fASA 

and the predicted fASA using both our ShiftASA method and five other models. The results are 
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shown in Table 4.2 and Table 4.3 (Table 4.4 lists the individual performance of all TEST1 

proteins).   As seen in Table 4.2, the mean correlation coefficient for the predicted fASA values 

for ShiftASA of 0.79.  This corresponds to an 8.2% improvement over the best sequence-only 

and a 22% improvement over chemical shift-only prediction methods. The prediction accuracy of 

the different methods was also evaluated using other statistical metrics and is shown in the same 

table.  

 

 

Figure 4.2: Mean Spearman correlation coefficient and the standard deviation of correlations of all five fASA 

prediction models (including ShiftASA) are shown. The performance is measured over the TEST1 data set. The 

mean correlation associated with each method is shown at the top of each bar diagram. 

 

Table 4.2 also shows that ShiftASA reports the highest mean prediction accuracy among 

all five methods that were evaluated. The mean absolute error was decreased from 0.20 (the best 

MAE among other methods) to 0.14 Å
2 

with ShiftASA, which is a 26% improvement over the 

best sequence-only method. The mean squared error also decreased to 0.03 from 0.07 Å
2 

as 

measured over all TEST1 proteins. Moreover, ShiftASA shows the lowest deviation in 

Spearman’s rank correlations. These data indicate that ShiftASA is not only the most accurate, 
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but also the most consistent among the five methods. Bar plots exhibiting the mean Spearman’s 

rank correlations and the corresponding standard deviations reported by the five methods are 

shown in Figure 4.2.   

 

Evaluation 

Metric 

ShiftASA 

(w 

SABLE) 

ShiftASA 

(w/o 

SABLE) 

SABLE 

(Seq.) 

RVPNet 

(Seq.) 

SARpred 

(Seq.) 

Side-chain 

RCI 

(Chem. 

Shift) 

MAE 0.14 0.16 0.19 0.20 0.24 0.20 

MSE 0.03 0.04 0.07 0.07 0.09 0.07 

RMSE 0.19 0.20 0.26 0.26 0.31 0.26 

Minimum 

Spearman 

Correlation 

0.72 0.70 0.54 0.47 0.21 0.22 

Mean 

Spearman 

Correlation 

0.79 0.76 0.73 0.60 0.38 0.59 

Maximum 

Spearman 

Correlation 

0.86 0.83 0.82 0.70 0.67 0.77 

Standard 

deviation 

(Spearman 

Correlation) 

0.04 0.03 0.07 0.05 0.15 0.12 

 

Table 4.2: The MAE (Mean Absolute Error), MSE (Mean Squared Error), RMSE (Root Mean Squared Error), Mean 

Spearman’s Correlation, and the standard deviation of Spearman’s correlation for all six fASA prediction methods 

(including ShiftASA, with and without SABLE) evaluated over the TEST1 set (65 test proteins) [64 proteins for 

side-chain RCI] 
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Table 4.3: The MAE (Mean Absolute Error), MSE (Mean Squared Error), RMSE (Root Mean Squared Error), Mean 

Spearman Correlation coefficient, and the standard deviation of Spearman correlation coefficient for ShiftASA (with 

and without SABLE), SABLE (Adamczak et al. 2004) and Side-chain RCI (Berjanskii et al. 2013) evaluated over 

the TEST2 set. 

 

The Spearman correlation coefficients for the TEST2 proteins as well as other statistical 

measures from predictions derived by ShiftASA, SABLE (Adamczak et al. 2004) and Side-chain 

RCI (Berjanskii et al. 2013) are shown in Table 4.3. As seen in this table, ShiftASA estimation 

has a correlation of 0.82, whereas SABLE’s and Side-chain RCI’s correlations are 0.67 and 0.73 

respectively. The mean absolute error is also significantly decreased (0.14 compared to 0.31 and 

0.14 compared to 0.23).   

 

Evaluation Metric ShiftASA (w 

SABLE) 

 

ShiftASA (w/o 

SABLE) 

 

SABLE 

(Seq.) 

Side-chain 

RCI 

(Chem. 

Shift) 

MAE 0.14 0.15 0.31 0.23 

MSE 0.03 0.04 0.16 0.09 

RMSE 0.17 0.20 0.41 0.30 

Minimum Spearman 

Correlation 

0.67 

 

0.76 0.20 0.27 

Mean Spearman 

Correlation 

0.82 0.79 0.67 0.73 

Maximum Spearman 

Correlation 

0.89 0.88 0.85 0.84 

Standard deviation 

(Spearman Correlation) 

0.04 0.03 0.12 0.07 
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Figure 4.3: Agreement between predicted and observed residue-specific fASA values by SABLE, RVPNet, Side-

chain RCI and ShiftASA for the putative dinitrogenase iron-molybdenum cofactor from Thermotoga martima  (PDB 

ID: 1O13, chain A). The corresponding BMRB ID is 6198. The Spearman correlation coefficient is shown in the 

centre of each graph. 

 

Examples of the per-residue correlation for the predicted fASA values of two protein 

chains, the double-sided ubiquitin binding of Hrs-UIM (PDB ID: 2D3G(B)) and a putative 

dinitrogenase iron-molybdenum cofactor from Thermotoga martima (PDB ID: 1O13(A)) are 

displayed in Figure 4.3 and Figure 4.4 respectively. The first example shows a stronger 

correlation (0.82) between SHIFTASA and the observed fASA, compared to SABLE, RVP-Net 

and Side-chain RCI reported values (0.71, 0.63 and 0.73 respectively).  
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Figure 4.4: Agreement between the predicted and observed residue-specific fASA values for SABLE, RVPNet, 

Side-chain RCI and ShiftASA for ubiquitin bound to Hrs-UIM (PDB ID: 2D3G, chain B). The corresponding BMRB 

ID is 6457. The Spearman correlation coefficient is shown on the right of each graph. 

 

For the second example, a stronger correlation (0.86) is also evident, compared to the 

correlations (0.72, 0.62 and 0.67) reported by three other methods, namely SABLE (Adamczak et 

al. 2004), RVPNet (Ahmad et al. 2003), and Side-chain RCI (Berjanskii et al. 2013). As seen in 

Figures 4.3 and 4.4, ShiftASA yields better agreement in matching the observed ASA amplitude, 

which certainly contributes to its higher correlation coefficients. 
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BMRB ID ShiftASA 

w SABLE 

(Seq. + 

Chem. 

Shift) 

ShiftASA 

w/o SABLE 

(Seq. + 

Chem. 

Shift) 

SABLE 

(Seq.) 

RVPNet 

(Seq.) 

SARpred 

(Seq.) 

Side-chain 

RCI (Chem. 

Shift) 

6338 0.855 0.755 0.823 0.575 0.540 0.555 

6457 0.865 0.823 0.724 0.621 0.597 0.675 

6198 0.823 0.751 0.706 0.634 0.341 0.730 

7322 0.818 0.728 0.789 0.599 0.350 0.660 

15517 0.841 0.729 0.787 0.613 0.346 0.585 

15249 0.803 0.725 0.798 0.666 0.318 0.593 

16007 0.809 0.728 0.805 0.627 0.214 0.679 

4113 0.795 0.777 0.761 0.669 0.359 0.571 

6197 0.785 0.792 0.768 0.563 0.641 0.617 

6032 0.820 0.779 0.738 0.551 0.393 0.704 

4083 0.782 0.744 0.754 0.574 0.421 0.587 

7242 0.791 0.734 0.768 0.610 0.398 0.643 

15501 0.807 0.78 0.803 0.662 0.387 0.404 

15741 0.745 0.721 0.743 0.650 0.249 0.354 

4091 0.813 0.785 0.666 0.606 0.440 0.722 

4077 0.783 0.747 0.550 0.595 0.334 0.650 

4562 0.760 0.744 0.755 0.570 0.358 0.534 

4371 0.835 0.73 0.726 0.472 0.320 0.770 

4031 0.800 0.762 0.786 0.631 0.514 0.580 

4082 0.786 0.748 0.681 0.546 0.253 0.685 

4091 0.813 0.742 0.660 0.624 0.430 0.710 

4421 0.817 0.803 0.696 0.632 0.396 0.645 

5571 0.825 0.772 0.743 0.699 0.274 0.628 

5623 0.833 0.809 0.823 0.649 0.229 0.702 

5756 0.813 0.77 0.723 0.572 0.433 0.631 

5799 0.744 0.742 0.757 0.670 0.243 0.426 

5921 0.793 0.738 0.780 0.614 0.494 NA 

6075 0.764 0.757 0.703 0.619 0.272 0.647 

6122 0.774 0.715 0.656 0.556 0.451 0.701 

6375 0.721 0.756 0.694 0.466 0.293 0.475 

6494 0.815 0.722 0.786 0.695 0.377 0.620 

6503 0.797 0.771 0.747 0.636 0.533 0.675 

4031 0.806 0.761 0.787 0.618 0.500 0.560 

4566 0.832 0.763 0.793 0.613 0.441 0.754 

4296 0.813 0.708 0.718 0.600 0.591 0.702 

4094 0.740 0.715 0.653 0.508 0.329 0.594 

4019 0.778 0.746 0.653 0.639 0.315 0.551 

5211 0.811 0.776 0.775 0.548 0.489 0.514 

1062 0.805 0.746 0.757 0.581 0.524 0.684 

6776 0.815 0.773 0.755 0.560 0.471 0.589 

6575 0.851 0.789 0.781 0.544 0.430 0.657 

7086 0.833 0.758 0.802 0.644 -0.464 0.663 
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BMRB ID 

 

ShiftASA 

w SABLE 

(Seq. + 

Chem. 

Shift) 

ShiftASA 

w/o SABLE 

(Seq. + 

Chem. 

Shift) 

SABLE 

(Seq.) 

RVPNet 

(Seq.) 

SARpred 

(Seq.) 

Side-chain 

RCI (Chem. 

Shift) 

4077 0.779 0.743 0.704 0.602 0.317 0.652 
10096 0.742 0.754 0.763 0.574 0.214 0.246 
4717 0.745 0.69 0.682 0.584 0.223 0.602 
7086 0.832 0.746 0.821 0.648 0.323 0.649 
6122 0.772 0.75 0.634 0.505 0.450 0.694 
4717 0.786 0.735 0.753 0.568 0.284 0.643 
5540 0.802 0.803 0.707 0.676 0.263 0.654 
5571 0.797 0.786 0.707 0.676 0.263 0.613 
5529 0.703 0.747 0.575 0.561 0.362 0.522 
4039 0.772 0.747 0.708 0.523 0.350 0.605 
4041 0.781 0.76 0.708 0.523 0.350 0.595 
4554 0.781 0.769 0.822 0.654 0.371 0.318 
5740 0.808 0.777 0.832 0.657 0.372 0.516 
15084 0.822 0.774 0.667 0.643 0.352 0.607 
15854 0.789 0.76 0.667 0.598 0.352 0.570 
5387 0.734 0.734 0.548 0.507 0.642 0.523 
6779 0.746 0.746 0.558 0.630 0.380 0.555 
5226 0.764 0.777 0.678 0.660 0.561 0.633 
6019 0.836 0.826 0.788 0.663 0.533 0.701 
5286 0.741 0.784 0.737 0.657 0.519 0.248 
6541 0.75 0.752 0.737 0.657 0.519 0.580 
15650 0.731 0.743 0.756 0.624 0.464 0.223 
15852 0.722 0.754 0.740 0.615 0.455 0.287 
Average 0.79±0.04 0.76±0.03 0.73±0.07 0.60±0.05 0.38±0.15 0.59±0.12 

Table 4.4: Spearman correlation coefficient between the actual fASA and the fASA values as predicted by ShiftASA 

(with and without SABLE), SABLE (Adamczak et al. 2004), RVPNet (Ahmad et al. 2003), SARpred (Garg et al. 

2005) and side-chain RCI (Berjanskii et al. 2013) using TEST1 proteins. The “NA” value in any column indicates 

that no result is available for that particular protein using that specific method. 

4.3.3 Buried-Exposed and Buried-Intermediate-Exposed Classification 

Categorical ASA measures are still commonly used in the field of ASA prediction and 

evaluation. However, no universal threshold for categorical prediction of buried and exposed 

states exists and so fractional ASA (fASA) is generally considered to be a more reliable 

estimation of residue-specific solvation status. Nevertheless, we performed a detailed evaluation 

of ShiftASA’s performance for categorical ASA prediction. Two-state and three- state 

classification of residue fractional ASA values for different threshold systems were calculated 

based on the real-value fASA predictions by ShiftASA, SABLE (Adamczak et al. 2004) and 

RVPNet (Ahmad et al. 2003). The number of residues in each (Exposed, Intermediate or Buried) 
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class using different threshold cutoffs including the accuracy and precision of classification 

results are described in Table 4.5. 

 

 

Table 4.5: Two-state and three-state mean classification accuracy and precision of fASA for the TEST1 set reported 

by ShiftASA, SABLE and RVPNet for different threshold systems.  The number of buried (#B), intermediate (#I) 

and exposed (#E) residues for each threshold system are shown in the first column 

 

 The performance of ShiftASA for two-state and three-state classification of real-value 

solvent accessibility using different threshold values was found to be comparable or higher (in 

most cases) than that of RVPNet (Table 4.5). ShiftASA also showed consistently high accuracy 

( 80%) for all threshold values in the two-state classification. Three-state classifications (buried-

intermediate-exposed) were challenging for the current method (although ShiftASA reports better 

accuracies than RVPNet). The probable reason might be the lower estimation accuracies 

associated with more exposed residues (fASA range   0.6-1.0 -- see Discussion for more details).        

Threshold System ShiftASA SABLE RVPNet 

 Accuracy Precision Accuracy  Precision Accuracy Precision 

0% (2-state) 

#B=823, #E=6711 

0.90 0.89 0.80 0.80 0.89 0.90 

5% (2-state) 

#B=1672, #E=5862 

0.81 0.80 0.84 0.82 0.79 0.80 

10% (2-state) 

#B=2202,#E=5332 

0.82 0.78 0.76 0.75 0.77 0.77 

15% (2-state) 

#B=2603,#E=4931 

0.82 0.80 0.78 0.78 0.76 0.76 

25% (2-state) 

#B=3420, #E=4114 

0.81 0.78 0.76 0.73 0.74 0.74 

50% (2-state) 

#B=5246, #E=2288 

0.81 0.80 0.70 0.66 0.72 0.73 

10%-20% (3-state) 

#B=2202,#I=808,#E=4524 

0.71 0.68 0.72    0.62 0.67 0.67 

15%-25% (3-state) 

#B=2603,#I=817,#E=4114 

0.72 0.69 0.66 0.67 0.65 0.65 

25%-50% (3-state) 

#B=3420,#I=1826,#E=228

8 

0.66 0.62 0.58 0.50 0.54 0.55 
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4.3.4 Discussion 

The performance of ShiftASA is clearly superior to other methods for fASA prediction.  

Obviously the inclusion of experimental information (i.e. NMR chemical shifts) means that 

additional information, beyond sequence data, is being exploited in the prediction process.  

However, unlike most other sequence-based fASA predictors, ShiftASA also makes use of 

residue-specific hydrophobicity to help with its prediction. This is based on the fact that there is a 

strong relationship between residue-specific hydrophobicity and solvent exposure (Manavalan et 

al. 1978).  Indeed, several hydrophobicity scales have been derived by calculating the solvent 

accessible surface area for residues in solved proteins or by employing empirical solvation 

parameters derived from calculated surface areas (Chothia 1976 and Biswas et al. 2003). Because 

ShiftASA employs both chemical shifts and residue-specific hydrophobicity, it would be of 

interest to analyze the predictive ability of sequence alone and chemical shift alone to estimate 

fractional ASA values. In addition it would also be useful to explore how ShiftASA’s prediction 

accuracy varies as the fraction of complete shift assignment changes. In the following 

subsections, we investigated these two issues along with other issues based on the performance of 

the TEST1 proteins. 

  

Sequence and chemical-shift based prediction -- combined vs. alone 

To address the issue of predictive accuracy for sequence-only vs. shift-only vs. combined, 

another two stochastic gradient boosting regression tree models were developed and trained using 

sequence-only and chemical shift-only training features for each residue in a 3-residue window. 

Parameter optimization indicated the optimal “number of trees” as 150 and 225 and the optimal 

“interaction depth” as six (6) and eight (8) respectively for the final regression trees of these 

sequence-only and chemical shift-only models. The optimized models were then evaluated on 

TEST1 proteins. Figure 4.5 shows the correlation between the actual and predicted fASA values 

using the sequence-only and chemical shift-only prediction models. For comparative purposes, 

the correlations of ShiftASA’s predictions are also shown. The graph clearly shows a significant 

performance difference. Note that, the mean correlation for our sequence-only prediction is 0.60 

(for the 65 protein test set). The green line in the graph shows the correlation between chemical 

shift derived parameters and fASA values, which is 0.46. These results show that the 
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performance improvement seen for ShiftASA was not just achieved through the use of sequence-

derived parameters, but also by the sensible use of chemical shift data.  

 

Figure 4.5: Spearman correlation between observed and predicted ASA for TEST1 proteins using both sequence and 

chemical shift features [Hydrophobicity, RCI, secondary structure probability and conservation score and SABLE] 

(blue diamonds), sequence only [Hydrophobicity, conservation score and SABLE predicted ASA] (red rectangles) 

and chemical shift only [RCI (backbone and side-chain) and secondary structure probability] (green circles). The 

average correlation between observed and predicted ASA using combined features is 0.79 over all TEST1 proteins, 

whereas the average correlation using sequence-only features is 0.60 and 0.46 when using chemical-shift-only 

features. As seen in Figure 4.6, the low correlation when using only chemical shifts is attributable to incomplete 

chemical shift assignments. 

 

 It is also interesting to compare this sequence-only method with the three sequence-only 

fASA prediction systems we evaluated in this study, namely, SABLE (Adamczak et al. 2004), 

RVPNet (Ahmad et al. 2003) and SARpred (Garg et al. 2005). SABLE, RVPNet and SARpred all 

are neural network-based prediction systems. SABLE uses feed-forward neural networks that 

estimate real value RSA’s based on information derived from the PSI-BLAST (Altschul et al. 

1997) position specific scoring matrix (PSSM), hydrophobicity, volume, entropy and secondary 
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structure propensity of amino acids in a running window of 11 residues. The second method 

(RVPNet) uses only sequence data with adjacent neighbor information encoded in a binary (0/1) 

sequence, and the last method (SARpred) method feeds multiple sequence alignments into a two 

stage neural network to predict fASA. For the TEST1 proteins, SABLE achieved a mean 

correlation of 0.73 and RVPNet achieved a correlation of 0.60, whereas the correlation of 

SARpred was found to be 0.38.  With the exception of SABLE, the other two methods (RVPNet 

and SARpred) appear to be either comparable or significantly worse than our sequence-only 

approach. 

 

Prediction error vs. complete shift assignments 

Recent studies (Marsh 2013, Berjanskii et al. 2013) have demonstrated a correlation between 

fractional accessible surface area and local flexibility as well as global flexibility. Marsh (2013) 

found a mean correlation of 0.61 between RCI-predicted local flexibility and residue-specific 

fractional ASA over a set of monomeric proteins.  Likewise, Berjanskii et al. (2013) found a 

correlation of 0.74 between the side chain RCI (a chemical shift-derived parameter) and residue 

specific fASA over a set of 15 proteins.  However, one of the limitations of these RCI-based 

methods is that a complete or near-complete chemical shift assignment is required to achieve 

relatively moderate prediction accuracy. In the present study, we found the mean Spearman 

correlation of the side-chain RCI method over proteins in TEST1 to be 0.59, which was 

somewhat less than what was originally reported (albeit using a different set of proteins). It was 

also found that the side-chain RCI method was particularly sensitive to missing or incomplete 

assignments. This is reflected in the spread of up to 12% in the Spearman correlation coefficient 

distributed over the TEST1 set. Fortunately, one of the strengths of ShiftASA is the fact that it is 

not solely dependent on side-chain chemical shifts but also on the relatively more easily 

measured backbone chemical shifts. Furthermore, when all of the described sequence and 

chemical-shift derived features (see section 4.2.4) are combined, ShiftASA’s accuracy does not 

vary significantly in the absence of complete shift assignments. 
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Figure 4.6: Percent complete chemical shift assignments, scaled in 0-100 (green circles) vs. Spearman’s rank 

correlation coefficients (red rectangles and blue diamonds) for the TEST1 set. This graph indicates that the chemical 

shift and sequence-based estimation error is relatively insensitive to complete shift assignments, whereas only 

chemical shift-based correlation shows a relatively high sensitivity (Pearson correlation coefficient of 0.75) to the 

shift assignment completeness.  

 

This invariance is shown using the line connected by blue diamonds in Figure 4.6.  We believe 

the robustness that ShiftASA exhibits to missing chemical shifts is due to the redundancy in 

information that is available from both sequence and neighboring residue chemical shift data. On 

the other hand, chemical shift-only estimation performance varies with the amount of complete 

shift assignments and shows a Pearson correlation coefficient of 0.75 (depicted by a line 

connected by red rectangles in Figure 4.6) 
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Prediction error vs. residue specific variance in test set ASA distribution 

Figure 4.7 illustrates the relationship between the standard deviation of the fASA value for each 

of the 20 different amino acids in the test set and the corresponding fASA prediction error. The 

variance in the fASA values shows a relatively good agreement with the prediction error (MAE), 

yielding a Spearman correlation coefficient of 0.92. In general, the prediction error in fASA 

values for exposed residues is higher than for buried residues. Frequently buried and partially 

buried residues such as CYS, ILE, VAL, PHE, TYR, TRP and LEU have comparatively lower 

variability in the observed fASA values, leading to the lower associated prediction errors.  

 

Figure 4.7: Standard deviation of ASA values in the test set for 20 different amino acids (blue circles) and prediction 

error (MAE) (red rectangles) are shown. A strong correlation (Pearson correlation coefficient =0.92) is observed 

between the variance of observed ASA in the test data and the associated ASA prediction error for different amino 

acids. 
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Among these residues, CYS, ILE and VAL have less than a 10% mean prediction error, while 

others are within a 10-13% error range. This might be because buried residues generally have a 

more conserved fASA distribution, as can be seen in Figure 4.7. In contrast, exposed and partially 

exposed residues such as ASP, GLU, PRO and GLY have a much higher ( 17%) mean 

estimation error. ASN, GLN, SER, HIS and ALA fall into the medium range of prediction errors 

(15-16%). These increased prediction errors might be a consequence of the high fASA variability 

seen in exposed residues (see Figure 4.7). The most difficult residue to predict is ASP, which 

produces the highest mean prediction error of 19.3%. All aromatic residues (PHE   11%, TRP 

  12%, TYR   13%) are within a 13% error limit, which again confirms their relatively buried 

nature or their affinity to associate with residues in buried regions. Overall our data show that 

buried and partially buried residues are predicted with relatively higher accuracy than exposed, 

partially exposed or charged residues. More exposed residues tend to have fewer assignments due 

to their higher mobility, higher overlap, and lower importance to researchers.     

  

ASA range vs. prediction error vs. training point fractions 

The error distribution with the fASA value range and the corresponding sample training size 

revealed some interesting and unexpected trends. These are shown in Figure 4.8. The training 

fraction curve reveals that there is a relative abundance of chemical shift (and ASA) data for 

buried and partially buried regions of proteins, which facilitates higher prediction accuracies in 

those regions. As training fractions slowly decrease for higher fASA ranges (partially exposed 

and fully exposed residues), so does the prediction accuracy for those residues. 
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Figure 4.8: The relationship between fASA range vs. prediction error (MAE) (blue triangles) and ASA range vs. 

sample training size (red circles) is depicted. The prediction error increases (red line), as the number of observations 

(blue line) decreases in the training data. 

 

This trend partially explains why ShiftASA performs somewhat differently in estimating the 

accessible surface area of buried, partially buried, partially exposed and fully exposed residues in 

proteins. 

 

SABLE improves prediction performance 

In ShiftASA, we tried to incorporate as much information as available both from sequence and 

chemical shifts in order to achieve optimal performance. Because of the excellent performance of 

the sequence-only method SABLE (Adamczak et al. 2004) we decided to include its sequence-

based prediction into the ShiftASA algorithm. Indeed, this addition led to an increase of mean 

correlation coefficients between predicted and experimental values from 0.76 to 0.79 (TEST1) 

and 0.79 to 0.82 (TEST2). This improvement is statistically significant (p<0.001). Evidently 
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SABLE’s sequence-driven structural homology and evolutionary profile based prediction 

provides additional information that helps to accurately estimate the buried/exposed states of 

residues.    

 

ShiftASA accurately estimates fractional ASA of “unfolded” proteins 

We also investigated the performance of ShiftASA for estimating fractional ASA values for a 

completely unfolded protein (i.e. unfolded ubiquitin in 8 M urea - BMRB 4375).  

 

 

Figure 4.9: Per-residue fASA values for unfolded ubiquitin (BMRB ID: 4357). The red, magenta and blue lines 

indicate the estimated fASA by ShiftASA, the average fASA from 10,000 simulated unfolded structures of ubiquitin 

and the estimated fASA by SABLE respectively. 

 

As a substitute for observed fASA values, an average per-residue fASA value is calculated from 

10,000 unfolded structures of ubiquitin generated using the computer program Flexible Meccano 

(Ozenne et al. 2012). As seen in Figure 4.9, ShiftASA was able to estimate the exposed state of 

this protein with a moderate accuracy. In contrast to the sequence-only method, SABLE 
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(Adamczak et al. 2004) most of the protein was estimated to contain a high proportion of buried 

regions.  Because SABLE predicts the fractional ASA from sequence, it simply reported the ASA 

states of the folded ubiquitin structure retrieved by a PSI-BLAST (Altschul et al. 1997) search.  

However, because ShiftASA weighs both the experimental chemical shift information with 

sequence-derived features, its performance was not compromised.  

 

4.3.5 The ShiftASA Web Server 

A web server (http://shiftasa.wishartlab.com) has been developed that accepts a BMRB (NMR–

Star 2.1 or NMR-Star 3.1) or SHIFTY-formatted chemical shift file and generates per-residue 

fractional ASA (in both horizontal and vertical formats) along with a fractional ASA plot. The 

server supports a number of user-selectable options including the choice of using sequence 

homology for the SABLE (Adamczak et al. 2004) prediction. The web server has been 

implemented as a Python CGI-script and is hosted on a system with 4GHz 2-Core processor and 

a CentOS operating system. With the available computing infrastructure, the web server takes 

<60 seconds (if homology is off) or >140 seconds (if homology is on) to calculate the fASA for a 

single query protein. A screen shot of the ShiftASA web server and its output is shown in Figure 

4.10. 
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Figure 4.10: A montage of the ShiftASA webserver showing the home page (left) and the screenshot of an example 

output page (right). 

4.4. Conclusion 

We have developed a method that accurately predicts the per-residue fractional accessible surface 

area (fASA) of water-soluble proteins using a combination of both sequence and chemical shift 

data. Our prediction method, called ShiftASA, demonstrates superior performance relative to 

sequence-only or chemical shift-only methods in two independent test sets of 65 and 92 proteins 

(TEST1 and TEST2, respectively). In particular, with the TEST1 data set, ShiftASA showed a 

mean Spearman’s rank correlation coefficient between predicted and experimental values of 0.79, 

which is a 8.2% improvement over the best performing method. The mean absolute error was 

found to drop from 0.19 to 0.14 Å
2
 and the root mean squared error fell from 0.26 to 0.19 Å

2 
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compared to its sequence-only and chemical shift-only counterparts. On the TEST2 set, 

ShiftASA attained a mean correlation coefficient of 0.82, a clear improvement over correlation 

coefficients of 0.67 and 0.73 reported by the best performing sequence-only and chemical-shift-

only methods, respectively.  In addition, the real-value fASA prediction by ShiftASA allows 

flexible, categorical prediction of binary or ternary ASA states. Overall, we believe that 

ShiftASA, with its improved prediction of ASA parameters, will not only facilitate protein fold 

recognition and de novo protein structure prediction methods, but as we will show in upcoming 

papers, contribute to the generation and refinement of protein structures by NMR and the 

calculation of useful thermodynamic parameters from chemical shift data.   
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Chapter 5 

 

E-Thrifty - Chemical Shift Threading for Accurate Protein 

Fold Recognition  

 

Abstract 

Protein structure determination using Nuclear Magnetic Resonance (NMR) spectroscopy can be 

both time-consuming and labor intensive. One approach that may reduce this time and cost 

burden is a relatively old bioinformatics technique called “threading”. Threading uses a 

combination of sequence information and predicted secondary structure to generate 3D protein 

structures from both closely related and remote structural homologs. While sequence information 

is the primary input for most threading methods, using other experimentally measurable 

parameters, such as circular dichroism (CD) data, small angle X-ray scattering (SAXS) data or 

NMR chemical shifts, could potentially improve threading performance. The key motivations 

behind using NMR chemical shifts lie in the fact that they are easy to measure, they are available 

prior to 3D structure determination and they contain vital structural information. Here we 

describe a novel, chemical shift-based threading method called “Enhanced-Thrifty” or “E-

Thrifty” that not only uses sequence and chemical shift similarity but also chemical shift-derived 

secondary structure, super-secondary structure and accessible surface area to identify and 

determine the most likely 3D structure that a query protein may have. E-Thrifty was optimized on 

a training set of >1700 alignments and subsequently evaluated on 25 “difficult” test cases 

including a number of recent “Critical Assessment of Structure Determination by NMR” (CASD-

NMR-2013) targets. E-Thrifty was found to significantly outperform other shift-based or 

threading-based structure determination methods with an average TM-score performance of 0.66. 

Tests indicate that E-Thrifty’s performance is actually comparable to using coordinate data (i.e. 

knowing the answer ahead of time) to identify structurally similar proteins via 3D superposition. 

Coupled with recent developments in chemical shift refinement, these results suggest that protein 

structure determination, using only NMR chemical shifts, is becoming increasingly practical and 

reliable.  E-Thrifty is available both as a standalone program and as a web server at 

http://ethrifty.ca. 
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5.1 Introduction 

One of the long-term goals in protein NMR is to be able to generate accurate, atomic-resolution 

protein structures using only chemical shift data.  Protein chemical shifts can provide accurate 

information about secondary structure (Wishart et al. 1992; 1994a; 1994b, Shen et al. 2009; 2013, 

Hafsa et al. 2014; 2015a), torsion angles (Berjanskii et al. 2006, Shen et al. 2013), hydrogen 

bonds (Wishart et al. 1998; 2001), dynamics (Berjanskii et al. 2005; 2013), disulfide bonds 

(Sharma et al. 2000), charge states (Osapay et al. 1991), accessible surface area (Vranken et al. 

2009, Berjanskii et al. 2013, Hafsa et al. 2015b), ligand interactions (Medek et al. 2000) and 

aromatic ring proximity (Osapay et al. 1994, Kuszewski et al. 1995). The fact that protein 

chemical shifts have been shown to provide such a rich diversity of structural information has 

inspired the development of several chemical shift based protein structure prediction methods 

such as CS-Rosetta (Shen et al. 2008), Cheshire (Cavalli et al. 2007) and CS23D (Wishart et al. 

2008). The CS-Rosetta and Cheshire methods generally follow an ab initio approach and attempt 

to model protein structures by generating large numbers of possible structures from the observed 

chemical shift data and then ranking the structures based on a knowledge-based potential.  

CS23D differs from CS-Rosetta and Cheshire in that it also attempts to use comparative (i.e. 

homology) modeling along with chemical shift “threading” to identify potential known protein 

folds that may be similar to that of the query protein whose structure is being determined.  

Sequence “threading” is relatively old comparative modeling technique that can be used 

to detect very remote structural homologs or to predict protein fold similarities (Rost et al. 1995; 

1997, Karplus et al. 1998, Peng et al. 2010). However, threading by sequence similarity, alone, is 

often not sufficient to routinely identify remote structural homologues. As a result, other 

information must be used. In particular, secondary structure information (predicted or calculated) 

and fractional accessible surface area (predicted or calculated) can substantially improve 

threading performance (Bowie et al. 1991, Jones et al. 1992, Rost et al. 1997). Indeed, studies by 

Jones et al. (1992) and Rost et al. (1997) suggested that the environment of an individual residue 

described by its (sequence-predicted) secondary structure, (sequence-predicted) torsion angles 

and (sequence-predicted) solvent accessibility are particularly useful.   

The accuracy for sequence-based prediction of secondary structure is now exceeding 

80% (Montgomerie et al. 2008) while sequence-based fractional accessible surface area 

prediction and sequence-based torsion angle prediction is typically hovering at 60-75% 
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(Heffernan et al. 2015, Singh et al. 2014). As impressive as these results are, they are not yet 

sufficiently accurate to make threading as useful as hoped. However, if sequence information can 

be supplemented with other experimental observations (circular dichroism data, FTIR data, 

SAXS data, NMR data) to make these “predictions” more accurate, it is possible to make 

threading quite effective (Shen et al. 2015). In particular, protein chemical shifts have been 

shown to provide very accurate readouts of protein secondary structure (Wishart et al. 1992; 

1994, Shen et al. 2009; 2013, Hafsa et al. 2014; 2015a), torsion angles (Berjanskii et al. 2006, 

Shen et al. 2009; 2013) and fractional accessible surface area (Vranken et al. 2009, Berjanskii et 

al. 2013, Hafsa et al. 2015b). Because protein chemical shifts are often determined far before 

NOE measurements can be completed, the use of chemical-shift threading could potentially be 

used to guide or even completely solve protein structures by NMR. This concept was the basis to 

CS23D.  Originally described in 2008 (Wishart et al. 2008), CS23D used a chemical shift 

threading program called THRIFTY (THReading with shIFTY) to help generate 3D protein 

structures from chemical shfits. THRIFTY essentially uses torsion angles predicted via chemical 

shifts and chemical-shift predicted secondary structures to identify related distant homologous 

templates or potential structural homologs that already exist in the PDB.  THRIFTY has been 

used extensively in several other shift-based structure programs including GeNMR (Berjanskii et 

al. 2009).  

 The concept of chemical shift threading is not new. The first description of this technique 

was made more than 15 years ago (Wishart et al. 2001). Five years later, another chemical shift 

threading program called SimShift appeared (Ginzinger et al. 2006), which was followed by 

CS23D (Wishart et al. 2008). Most recently Shen et al. (2015) described a threading-like system 

called POMONA (Protein alignments Obtained by Matching Of NMR Assignments) that 

identifies suitable PDB homologs for query proteins using chemical shift data (and NOE distance 

restraints when available), which is followed by a modified comparative modeling procedure to 

generate all-atom structures for proteins. In particular, POMONA searches the PDB for suitable 

homologs that are well matched with backbone chemical shift-predicted, residue-specific Φ/Ψ 

probability maps and chemical-shift derived secondary structures. The resulting structural 

templates are then clustered into groups (typically ten) using a normalized Cα–rmsd as a distance 

metric. Representative homologs from these clusters are then used to build a structural pool for 

comparative modeling using a modified RosettaCM procedure (Song et al. 2013).  POMONA 

was evaluated on a set of 16 proteins and in most cases the best alignments found by POMONA 
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have good (an average MaxSub score (Siew et al. 2000) of 0.49) structural similarity with the 

native structures even when there is no detectable sequence similarity (≤20% sequence identity).  

Published results from SimShift (Ginzinger et al. 2006), THRIFTY/CS23D (Wishart et 

al. 2008) and POMONA (Shen et al. 2015) -- all strongly suggest that the structural information 

encoded by chemical shifts can help to identify structurally similar template(s) even in the 

absence of detectable sequence similarity. Inspired by these studies, we have developed a method 

called “E-Thrifty” (Enhanced-Thrifty) that employs a more advanced version of chemical shift 

threading to more accurately identify the most likely fold and to generate a 3D structure that a 

given query protein may have. In particular, E-Thrifty uses significantly enhanced secondary 

structure identification (Hafsa et al. 2014) as well as recently developed shift-based super-

secondary and structural motif identification (Hafsa et al. 2015a) to improve its performance. It 

also uses a newly developed shift-based accessible surface area prediction method (Hafsa et al. 

2015b) as well as shift-based torsion angle predictions (Shen et al. 2013) and very accurate 

secondary chemical shift calculations (Han et al. 2012). These are combined to perform a 

modified threading protocol using a specially constructed, non-redundant database of known 

protein structures (a modified version of the PDB). When compared to the state-of-the-art 

threading programs or chemical shift-based structure generation programs such as POMONA 

(Shen et al. 2015), HHpred (Söding 2005), CS-Rosetta (Shen et al. 2008), and CS23D (Wishart et 

al. 2008) on two different test data sets, E-Thrifty exhibits a 10-20% improvement in overall 

performance. Details describing the E-Thrifty algorithm, its performance and its implementation 

as both a web server and a standalone program are given in the following pages.  

 

5.2 Materials and Methods 

5.2.1 Measuring Local and Non-local Structure Similarity 

While amino acid substitution scores are normally used to guide the local alignment between two 

protein sequences, sequence alignment alone does not necessarily guarantee optimal structural or 

topological alignment between two proteins. This is particularly true when the sequence identity 

between two proteins drops below 35%. To perform sequence alignments or sequence threading 

for distantly related proteins, additional information such as (predicted or calculated) backbone 

Φ/Ψ angles, secondary structure, structural motifs, secondary chemical shifts and accessible 

surface area (ASA) are often needed to guide the alignment process. This is because these 

structural states tend to be more conserved than sequence among remote structural homologues 
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(Rost et al. 1997). Therefore, to perform a threading calculation it is necessary to have three 

things: 1) a database of solved structures where all of the threading parameters (sequence, torsion 

angles, secondary structure, structure motifs, ASA and secondary shifts) are pre-calculated; 2) a 

series of programs where the same parameters (torsion angles, ASA, etc.) are predicted and/or 

calculated for the query protein and 3) an alignment algorithm that scores, aligns and matches the 

query protein by taking into account all of the calculated and/or predicted parameters. If the 

structural parameters used for threading can be converted to letters or character strings (similar to 

the sequence), the sequence-structure alignment process can employ the Smith-Waterman 

alignment algorithm (Rost et al. 1997). The sequence-structure alignment concept used in the E-

Thrifty method is depicted in Figure 5.1. The E-Thrifty algorithm, the scoring scheme and the 

parameter mapping are explained in more detail below. 

 

 

Figure 5.1: The sequence-structure alignment concept used in E-Thrifty method. Here AA, SS, SM, ASA and TOR 

represent the amino acid, secondary structure, structure motif, accessible surface area and backbone torsion angle 

sequences respectively. nrPDB stands for non-redundant protein data bank.    
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Substitution matrices for structural descriptors 

Structural parameters such as secondary structure, structural motifs, torsion angles and fASA 

classes that describe the structural environments around each residue in the query and the 

database proteins are represented by simple one-letter codes. During the alignment of the query 

and the database sequences, these letters are compared in a way to maximally match the local and 

non-local structural similarity. The one-letter codes of the query and the database sequences are 

either matched or substituted by another letter. Matched structural states are given a high score 

whereas a unmatched states are given a low score (a small positive or a negative value). For 

example, a negative score is assigned to a helical secondary structure class (represented by “H”) 

being substituted/replaced by a β-strand class (represented by “E” or “I”), whereas a β-turn 

replacement by a coil assignment is given a small positive value (i.e., a lower penalty). A 

substitution matrix can be used to compactly represent this scoring scheme. A 3×3 substitution 

matrix for the three-state secondary structure states describes the substitution/matching scores of 

the three secondary structure classes. Similarly, a 5×5 substitution matrix is used for the five 

structural motif states, a 3×3 substitution matrix is used for the three fASA categorical states, and 

a 9×9 substitution matrix is used for the nine torsion angle states. Substitution matrix values were 

initially chosen from the BLOSUM62 matrix (Henikoff et al. 1992) and then optimized through 

trial-and-error grid search methods on the training alignments. 

 

Scoring local and non-local structural similarity 

After defining substitution matrices for different structural descriptors, the structural similarity 

between the query residue i and the database residue j is calculated using the following equation. 

                                                                                                  

                                                 

 

where         is the amino acid similarity score,              is the torsion letter similarity 

score,         is the secondary structure similarity score,         is the structural motif similarity 

score,           is the ASA state similarity score and the    terms represent the corresponding 

weighting coefficients. The structural similarity scores of the central residue position takes into 

account the structural letter substitution scores in the preceding and the following neighbor 

locations.  Each        entry in the calculated scoring matrix is rescaled to a range (-2.0, 3.0) so as 
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to obtain a uniform distribution of alignment scores. The rescaling is performed using the 

following equation. 

 

      
                           

               

              
                                 (5.2) 

 

The scoring components described in Eq. 5.1 are briefly explained in the following paragraphs. 

 

Amino acid similarity 

The aligned amino acids are scored using the BLOSUM62 (Henikoff et al. 1992) substitution 

matrix. In this 20 20 matrix, every possible amino acid substitution is assigned a score based on 

its observed frequencies derived from careful alignment of evolutionarily related proteins (with 

no more than 62% sequence identity). A positive score is given to more probable substitutions 

while a negative score is given to less probable substitutions. The amino acid similarity score 

(AAscore) is given as: 

 

                                                                                    (5.3)            

 

where      is the query residue in i-th position and      is the database residue in j-th position.  

 

Secondary structure similarity  

Secondary structures for the query protein are calculated using the CSI 2.0 program (Hafsa et al. 

2014). CSI 2.0 is a multi-class, machine-learning algorithm that determines the extent and 

location of α-helices, β-strands and coil regions based on 
13

Cα, 
13

Cβ, 
13

C, 
1
HN, 

1
Hα, 

15
N backbone 

chemical shifts and sequence. For the E-Thrifty threading algorithm, the secondary structure 

similarity between secondary structure of the query residue i and the database residue j is 

calculated over a 3-residue window using the following formula. 
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where          is a     substitution matrix for secondary structure states (H, B and C), which 

describes the substitution scores for the replacement of one secondary structure state with 

another. 

 

Structural motif similarity  

The classification of β-strands and β-turns in the query sequence is performed by CSI 3.0, a 

chemical shift based super-secondary structure identification program, described by Hafsa et al. 

(2015a). The CSI 3.0 output is mapped to 5 letters H, E, I, C and T which stands for helix, edge 

β-strand, interior β-strand, coil and β-turn respectively. For the E-Thrifty threading algorithm the 

structural motif similarity between the query residue i and the database residue j is calculated 

over a 3-residue window using the formula.     

 

                                               

          

           
                                               

                                     

where          is a     substitution matrix for five structure motif states (H, E, I, C, T), which 

describes the substitution scores for the replacement of one of the five structural motif letters with 

another. 

 

Fractional accessible surface area (fASA) similarity 

The fractional ASA (fASA) is an ASA descriptor that describes the percentage of accessible 

surface area for a given residue relative to a fully exposed residue. Residue-specific fASAs for 

the query protein are calculated using the ShiftASA program (Hafsa et al. 2015b). Residues are 

assigned three letters such as B (Buried) (fASA<=0.25), P (Partially buried) (0.50=>fASA>0.25), 

and E (Exposed) (fASA>0.50) based on the predicted/calculated fASA range. For the E-Thrifty 

threading algorithm the similarity between fASA categorical states of the query residue i and the 

database residue j is calculated as below. 

 

                                                                                                        (5.6) 

             

where            is a     substitution matrix for three fASA categorical states {B, P, E} that 

describes the substitution scores for the replacement of one fASA-state letter with another.  
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Torsion letter similarity 

Backbone Φ/Ψ torsion angles from experimental 
13

Cα, 
13

Cβ, 
13

C, 
1
HN, 

1
Hα, 

15
N chemical shifts are 

predicted by TALOS-N (Shen et al. 2013) and converted into a 9-letter torsion angle alphabet. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 5.2: Backbone Φ/Ψ torsion angles mapping into 9 overlapped regions in Ramachandran map with a letter 

assigned to each region. Letters I, L, F and V represent the preferred conformational spaces for β-sheet and β-turns; 

S, E and Q indicate the favorable regions for right-hand α-helical conformation; P indicates the preferred left-hand 

helical conformation and lastly G represents all other flexible conformations that a protein can adopt.     

 

This so-called torsion angle alphabet, which is very similar to the THRIFTY alphabet used in 

CS23D (Wishart et al. 2008), splits the Ramachandran map into 9 non-overlapped regions based 

on the Φ/Ψ propensity of common secondary structural classes, with a letter is assigned to each 

region (Figure 5.2). For the E-Thrifty threading algorithm the torsion letter similarity between the 

query residue i and the database residue j is calculated over a 3-residue window using the 

following formula.  

                                                                                                    (5.7) 

 

where               is a     matrix that describes the substitution scores for the replacement 

of one torsion angle letter with another.  
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Structural annotation of the database proteins 

A non-redundant (nr) version of the PDB (Berman et al. 2000) was generated using the Pisces 

server (Wang et al. 2003). As of February 1
st
 2016, there were a total of 71,100 sequences and 

coordinate files in this nrPDB data set. This database of known (or previously solved) structures 

was then annotated using a series of programs so that every residue was assigned a secondary 

structure, specific secondary structure motifs, a set of backbone torsion angles and a fractional 

accessible surface area. The secondary structures, torsion angles and accessible surface areas 

were generated from the DSSP (Kabsch et al. 1983) program. Other secondary structure elements 

such as β-turns and edge/internal strand information are obtained using methods described in 

Hafsa et al. (2015a). Fractional accessible surface areas or fASA values for each residue were 

derived from the DSSP output using a method described in Hafsa et al. (2015b). After calculating 

these data, we generated four “pseudo-sequences” associated with each entry in our nrPDB data 

set. These pseudo-sequences correspond to: 1) a secondary structure sequence; 2) a structure 

motif sequence; 3) a torsion angle sequence and 4) a fASA sequence. These, along with the 

amino acid sequence of each protein describe its local and non-local structural states.  

 

5.2.2 Gap Penalty Function in Sequence-structure Alignment 

In order to perform a proper sequence or even a sequence-structure alignment of two protein 

sequences, it is important to develop a scoring function to properly handle the insertion or 

deletion of gaps in either sequence. Gaps are usually counted as a penalty in the total alignment 

score. Typically an affine gap penalty or AGP function of the form,          is used in most 

sequence-only alignment algorithms. This kind of function depends on the gap initiation ( ) and 

gap extension ( ) parameters, and the length of the gap in the alignment ( ). However, previous 

studies suggest that including a conformation specific gap penalty in sequence-structure 

alignment increases the accuracy of the correctly aligned residues (Madhusudhan et al. 2006). 

Hence in our work, we adopted a conformation specific gap penalty function called a variable 

gap penalty or VGP (Madhusudhan et al. 2006, Shen et al. 2015), in which the gaps that are 

introduced in regular secondary structure regions (contiguous helices and -strands) and between 

two spatially distant residues are penalized. Details of the algorithm are outlined below.  
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Figure 5.3: Definition of a gap,  ,   ,   and    residue positions in sequence and structure block respectively. A single 

gap can include deletions or insertions in either the sequence or the structure and is defined by all four indices,  ,  , 

   and      

  

In VGP, to initiate a gap that extends from the   to    positions in the query sequence (referred to 

as the sequence block) and from the   to    positions in the database sequence (with known 

structure -- referred to as the structure block), as illustrated in Figure 5.3, a gap penalty function 

of the following form is used. 

 

                
                                                                     

                                            
                                      

             

             

                                                      

 

where   and    are the gap lengths in the query sequence and the database structure blocks,   is the 

gap opening parameter and   is the gap extension parameter. R is a modulating function that 

controls the gap-opening penalty depending on the structural environment at the position of 

insertion. The value of R is at least 1 and can be larger to make the opening of gaps more difficult 

in certain circumstances. In particular, these penalties are larger within regular secondary 

structure regions such as α-helices and β-strands, and between two spatially distant residues. 

Also,      and     are the corresponding weights of different terms in R. The term           

takes a binary value of 1 or 0 depending on whether the segment in the structure block spanning 

from residue   to    adopts a helical or a β-strand conformation or not.           is the same 

function applied to the sequence block, however it is based on the CSI 2.0 (Hafsa et al. 2014) 

predicted secondary structure for query residues   to   . The term         is a function that 

depends on the spatial proximity of the two database residues spanning the gap and is defined as 

below.  
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                                                           (5.9) 

 

where  (j,    ) is the distance between   –       at residue positions   and    in the structure 

block,     is an empirical distance cutoff and γ is an empirical constant. For two database residues 

having the distance below   , there is no increase in the gap-opening penalty.  

 

5.2.3 Protein Local Alignment  

In E-Thrifty, the protein sequences with experimentally measured chemical shifts (i.e. the query 

sequence) are aligned against the known structures in our annotated nrPDB (i.e. the database 

sequences) using a modified version of the Smith-Waterman local alignment algorithm (Smith et 

al. 1981). A similarity matrix S of M N dimensions is constructed, where M is the length of the 

query protein and N is the length of the database protein. Each element in the scoring matrix  

       indicates the substitution score for the query residue i with the database residue j. Once the 

scoring matrix is constructed, the optimal alignment between query and subject sequence is found 

by calculating an alignment matrix (H) using a dynamic programming, traceback procedure. This 

traceback protocol involves finding the maximum element in the alignment matrix and tracing 

back through the matrix from the maximum element to zero. Each element H(i,j) in the H matrix 

is calculated with the following recursive dynamic programming equation. 

 

                                                  

 
 

 
                 

                       

                       

  
 

 
                                            

The initial conditions for the recursive algorithm are,  

 

     
               
                

   

 

In Eq. 5.10,        is the substitution score for the query residue i with the database residue j. 

VGP is the gap penalty function applied when there is a gap opening or extension between the i 

and    positions in the sequence block or the   and    positions in the structure block. For the 

assignment of each element        in the H matrix, the diagonal i.e. upper-left (          ), 

upper (        ) and left (        ) neighbor elements are compared and the maximum 
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value among these three elements (if the maximum value is non-positive, then a 0.0 value) is 

assigned to the current element as score       . After calculating all the elements of the H matrix 

as described in Eq. 5.10, the largest element in the H matrix (    ) represents the optimal 

alignment score. The residue equivalence assignments can then be obtained by tracing back 

through the maximum element,      to the zero value in the H matrix, which is also the optimal 

sub-alignment between query and the subject sequences. Example local alignments between 

sequences of the query protein 2LCI and subject protein 2L82 (chain A) are shown in Figure 5.4. 

 

 

Figure 5.4: Example sequence-structure alignments between query 2LCI and subject 2L82 (chain A) sequences are 

shown. Here SEQ, SST, SSS, ASA and TOR represent the sequence, secondary structure, structural motif, fractional 

ASA and torsion angle sequences respectively.      

 

5.2.4 Chemical Shift Scoring and the Alignment Ranking 

To further improve the alignment scoring, we implemented a backbone secondary chemical shift 

fitness score similar to SimShift (Ginzinger et al. 2006). Specifically, a secondary chemical shift 

fitness score is calculated for equivalent residue assignments in the alignment. Secondary 

chemical shifts can be defined as the difference between the observed experimental chemical 

shift (    ) and the corresponding random coil shift (   ) value for a specific atom (Wishart et al. 

2011). 
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Secondary chemical shifts contain important structural and dynamic information about proteins 

(Wishart et al. 2001, Mielke et al. 2009). The backbone chemical shifts for the database structures 

are calculated using ShiftX2 (Han et al. 2012) and the secondary shift values are obtained using 

the formula mentioned above using the neighbor adjusted random coil values extracted from 

Schwarzinger et al. 2001. The secondary shift fitness score is then calculated as.   

 

                                                            
      

                                                       (5.12) 

 

where   
    

 represents the backbone chemical shift predicted by ShiftX2 (Han et al. 2012) for a 

specific atom a (a = 
13

Cα, 
13

Cβ, 
13

C, 
1
HN, 

1
Hα, 

15
N) for a set of database residues that are aligned 

with the query residues with experimental chemical shift referred to as   
     The   ’s are the 

corresponding weighting coefficients for six backbone atoms. The function        
      

      

measures the correlation between the observed (query) and the predicted (subject) secondary 

chemical shifts over all the aligned residues for a specific backbone atom a. Therefore chemical 

shift fitness score is a weighted combination of chemical shift correlations of six backbone atoms 

over all the aligned residues.    

  The secondary chemical shift fitness score is then combined with the optimal sub-

alignment score Hmax with a scaling factor       to produce the total score for each alignment.  

 

                                                                                                                              (5.13) 

  

The final ranking of the alignments is performed according to this total score,       . 

 

5.2.5 Optimization of E-Thrifty Parameters 

To optimize the parameters described in Eq. 5.1, 5.8, 5.9, 5.12 and 5.13, a set of 30 proteins with 

complete experimental chemical shift information and available high-resolution X-ray structures 

were chosen. The training proteins had ~90% of their complete (
1
H, 

13
C and 

15
N) backbone 

chemical shifts assigned. A set of homologs for the training proteins spanning a sequence identity 

range 20-40% was retrieved using a PSI-BLAST search. Once the training set was obtained, a 

sequence-structure alignment between the queries and the corresponding homolog proteins was 
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performed, which produced a total of 1,777 alignment pairs. There were a total of 18 parameters 

to optimize (train) and the parameter set could be divided into three different groups in terms of 

their behavior during optimization; the scoring matrix weighting parameters, the gap spanning 

parameters, and the chemical shift weighting parameters. 

The scoring matrix parameters (                     ) were optimized by a grid search 

using the training alignments. We trained one parameter at a time and kept the other parameters 

constant at their initial values or the previously optimized values. Parameter optimization was 

terminated on the convergence of the average alignment score observed against the Cα rmsd (the 

higher the alignment score, the lower the Cα rmsd) for the training set of alignments. For the gap 

spanning parameters (u, v, d0, γ,        ) in the VGP function, the initial values were chosen 

from a previous study by Shen et al. (2015). We then attempted to further optimize the parameter 

values through a grid search. However no significant improvement was observed (data not 

shown). Hence, we used the Shen et al. values. The chemical shift weighting parameters defined 

in Eq. 5.12 were optimized (trained) using a linear regression analysis. The training data for 

linear regression comprises of chemical shift correlation coefficients between the six backbone 

atoms of the query and the database equivalent residues (~X) and the Cα-rmsd (~Y) of the 

aligned region of the training proteins. A linear regression model was then fit to the training data. 

A similar regression analysis was performed to search an optimal value for       described in Eq. 

5.13.   

 The optimized parameter values determined from this study are:      = 4.25,     = 1.0, 

     5.11,            3.97,      = 4.35, u = 3.0, v = 0.3, d0 = 6.5, γ = 2.0,      = 1.0,    = 2.0, 

   = 3.75,    = 4.5,    = 4.75,   = 2.5,    = 4.25,    = 4.5,       = 2.0. 

  

5.2.6 Statistical Significance of E-Thrifty Alignments  

In any database alignment protocol, it is important to properly assess the significance of an 

alignment that results from the comparison of a protein of a certain length to a database 

containing many different proteins of variable length. Hence, E-Thrifty alignments were 

evaluated using a BLAST-like e-value or expect-value (Altschul et al. 1996). We were 

particularly interested in seeing how high an alignment score can be expected to occur by chance 

by calculating an e-value associated with each optimal alignment. The e-value of an alignment 

having the score S can be calculated using the function described in Altschul et al. (1996). 
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                                                                                       (5.14) 

 

Here   and   are statistical parameters,       is the effective search space size and   is the 

alignment score of an optimal sub-alignment. The effective search space      is calculated using 

the equation below: 

                                                                                                                                       

 

where   is the number of residues in query protein,   is the total number of residues in the 

protein database,   is the total number of database proteins and   is the edge correction factor, 

which is used to calculate an “effective length” for a sequence. It eliminates the “edge effect” 

problem ensuring that a high-scoring alignment has a non-zero length and does not begin near to 

the end of either of two sequences being compared.   and   values are taken from Altschul et al. 

(1996). The   value depends on the length of the database protein being compared with and is 

chosen from a set of empirical values depending on the         values described in the same 

study by Altschul et al. (1996). 

 

5.2.7 Generation of 3D Structures via MODELLER 

As part of the E-Thrifty pipeline, a 3D structure of the query protein is generated via the 

MODELLER (Sali et al. 2003) software package. The sequence-structure alignment generated by 

E-Thrifty is converted into the required PIR format and used as input for the comparative 

modeling function in MODELLER. MODELLER then generates the 3D coordinates of a number 

of possible models. The generated models are further assessed using MODELLERS’s core 

evaluation functions (GA341 and DOPE). The 3D structure that has the lowest energy after the 

assessment is chosen as the final 3D model.  MODELLER was chosen for structure generation 

purposes as it proved to be the most suitable program for spatial-restraint based modeling. E-

Thrifty has two structure generation output options. The default option generates a comparative 

model (with 3D coordinate data) of the query protein using the E-Thrifty sequence-structure 

alignment of the top template only. The other option offered by E-Thrifty employs Clustal 

Omega (Sievers et al. 2011) program to perform a multiple alignment between the query and 

several template sequences. This multiple alignment is then used to build the 3D structure of the 

query protein. 
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5.2.8 Assessment of E-Thrifty Generated Structures 

To assess the quality of the templates/structures generated using E-Thrifty, as well as other 

threading programs, we used DALI (Holm et al. 2010), which is a web server designed for 

performing 3D coordinate comparisons. It is particularly useful for identifying proteins with 3D 

structure similarities that may not have any obvious sequence similarity. As a result DALI often 

serves as a “gold standard” for identifying remote structural homologs. For this component of the 

study we assessed the structural accuracy and fold similarity achieved by structures generated by 

E-Thrifty, POMONA and HHpred (with DALI as a control) using two different scoring 

functions: 1) the Cα rmsd and 2) the Template Modeling or TM-score (Zhang et al. 2004). The 

assessment process involved building a full-length model of the query protein based on the 

template structure and using scoring functions to evaluate the quality of the models. The rmsd at 

the Cα–atom level measures the distances between the 3D-coordinates of main chain α-carbon 

atoms. In this study the C-rmsd is used to evaluate the aligned residues between the query and 

the template (i.e. the quality of the alignment). Generally the higher the C-rmsd, the more 

dissimilar two structures are. On the other hand, a near-zero C-rmsd corresponds to two 

structurally similar or structurally identical structures. However, in our study Cα-rmsd was not 

used to assess the quality of full-length models generated using MODELLER. Indeed, as many 

other authors (Siew et al. 2000, Ortiz et al. 2002, Betancourt et al. 2001) have noted, Cα-rmsd is 

not a perfect measure of model quality as it fails to identify well-predicted sub-structures in the 

presence of large prediction errors (i.e. disordered loops) in other parts of the model. Instead we 

used the TM-score to measure model quality. Unlike other popular scoring functions such as the 

MaxSub score (Siew et al. 2000), the TM-score uses a size-dependent scale to eliminate the 

protein length dependence. It also considers all alignments or modeling residue pairs in its 

assessment rather than arbitrarily setting specific distance cutoffs and calculating only the 

fraction of residues with errors below a certain cutoff distance (Zhang et al. 2004). A TM-score 

typically falls in the range from 0 to 1.0, with a TM-score of 1.0 indicating a perfect match 

between two structures and a TM-score below 0.17 generally indicating a randomly chosen 

unrelated fold. A quantitative study by Xu et al. (2010) showed that proteins with a TM-score 

equal to 0.5 have a probability of 37% of being in the same CATH (Greene et al. 2007) topology 

family and a probability of 13% of being in the same SCOP (Murzin et al. 1995) fold family.  
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5.2.9 Clustering and Selection of E-Thrifty Templates 

Among the candidate templates identified by E-Thrifty, many were found to score very similarly 

or very closely to one another for any given query protein. This is because multiple templates 

may share a similar fold, a similar sub-structure or a similar 3D structure. In some cases, multiple 

templates for a single query protein may increase the coverage when building a full-length model. 

Moreover, these templates can be used as a structural pool for comparative modeling purposes. 

Hence, it is useful to group the templates into a number of distinct clusters so that similar 

structures can be gathered together. In E-Thrifty, a hierarchical clustering algorithm that 

employed Cα-rmsd as a distance metric was used to group the set of candidate templates. The 

Cα-rmsd between two template proteins was calculated over a common set of residues that were 

aligned with the same set of query residues. Specifically the “complete linkage method” for 

hierarchical clustering was used to group the templates. At each stage, the cluster is formed when 

all the links (i.e. the Cα-rmsd) between pairs of objects in the cluster are less than a particular 

level.  

 E-Thrifty will generate up to 50 template hits, all of which are ranked according to their 

alignment scores and are given a cluster membership. To generate a 3D structure via 

MODELLER, a user can select either the top template from this list (the default single-template 

modeling option) or a variable number (default is 2) of top representative templates from the first 

five resultant clusters (the multiple-template modeling option). 

   

 5.2.10 CS-GAMDy Refinement of E-Thrifty Models 

CS-GAMDy (Berjanskii et al. 2015) is a newly developed NMR chemical shift-based protein 

structure refinement method. It uses a knowledge-based scoring function and structural 

information derived from chemical shift information through a combination of molecular 

dynamics and a multi-criterion genetic algorithm to perform structure refinement. The software is 

able to effectively refine and improve a wide range of approximate or even erroneous models. In 

our study, we used CS-GAMDy to refine the full-length models generated by MODELLER using 

the E-Thrifty identified templates. Examples of full-length models refined by CS-GAMDy for 

eight query proteins extracted from TEST1 and TEST2 are shown in Figure 5.5 with the 

corresponding Cα-rmsd and TM-scores. Note that the reported Cα-rmsd is calculated only over 
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the defined secondary structure regions, whereas the TM-score is calculated over all aligned 

residue pairs of the superposed proteins (query and template). 

 

5.2.11 The E-Thrifty Web server and Stand-alone Program 

E-Thrifty has been implemented as both a web server and a standalone program, both of which 

can be accessed at http://ethrifty.ca. E-Thrifty’s modified nrPDB database is divided into ten 

equal subsets and searches against each database subset can be run independently of each other. 

A multicore system with a minimum memory of 4GB in each core is recommended to install and 

run the E-Thrifty program. In this multi-core environment, the average parallel run time for E-

Thrifty on medium sized proteins (<200 residues) is ~90-120 minutes, whereas it generally takes 

~120-180 minutes for larger proteins (>200 residues). The E-Thrifty method was written using 

several programming and scientific languages including Python, Perl and R.   E-Thrifty accepts 

BMRB (NMR–Star 2.1 or NMR-Star 3.1) or SHIFTY-formatted chemical shift files and 

produces multiple output files. These output files include: 1) an alignment file showing the 

sequence – structure alignments for the top 50 hits; 2) a summary file containing alignment 

scores, chemical shift scores, total scores, e-value and the cluster membership associated with 

each hit and 3) a 3D structure (PDB coordinates) of the query protein using the top scoring 

template (or multiple templates from the clusters) generated via MODELLER. The E-Thrifty 

server supports a number of user-selectable options related to comparative modeling which 

includes the sequence identity threshold for template selection, the model building mode (either 

“single” or “multiple”) and exclusion of flexible terminal regions in the modeling process.   

 

5.3 Results  

The performance of E-Thrifty was evaluated on two independent test sets. The first test set 

(TEST1) consisted of 15 proteins extracted from “CS-Rosetta structure generation on existing 

entries” page located at the BMRB (Ulrich et al. 2008) web server (“CS-ROSETTA test cases”, 

2016).  The second data set (TEST2) consisted of nine blind targets from the recent Critical 

Assessment of Automated Structure Determination of Proteins by NMR (CASD-NMR-2013) 

(Rosato et al. 2015). The structure alignment server DALI (Holm et al. 2010) was used to identify 

the “correct” homologs for test proteins in each data set. For the TEST1 and TEST2 proteins, the 

best templates found by E-Thrifty are listed in Tables 5.1-5.3. The performance of E-Thrifty was 

compared against several well-regarded threading, ab initio structure generation and chemical 
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shift threading methods, including HHpred (Söding et al. 2005), POMONA (Shen et al. 2015), 

CS23D (Wishart et al. 2008) and CS-Rosetta (Shen et al. 2008). More specifically, POMONA 

(Shen et al. 2015) is a threading/homology search program that uses only chemical shift 

generated structural information to obtain highly probable alignments for query proteins. HHpred 

(Söding et al. 2005) detects homologs by using Hidden Markov Model (HMM) profile 

alignments and predicted secondary structures. CS23D (Wishart et al. 2008) detects structural 

homologs via chemical shift threading (torsion angle matching and secondary structure matching) 

as well as via sequence comparison. CS-Rosetta (Shen et al. 2008) predicts the protein structures 

via chemical shift-based fragment matching, in conjunction with ab-initio protein modeling 

algorithms.  

The performance of E-Thrifty and the other methods was evaluated for the TEST1 

proteins with two sequence identity cutoffs (≤30% and ≤95%.) whereas for the TEST2 proteins, 

only a ≤30% sequence identity cutoff was used (as most TEST2 proteins exhibit very low 

sequence identity to known structures). For evaluation consistency, the same protein structure 

modeling software, MODELLER (Sali et al. 1993) was used to build full-length models using the 

templates identified by the different threading methods assessed in this study. The quality of the 

template models was then evaluated using the TM-score (Zhang et al. 2004), a widely used 

metric to assess the folding similarity between two proteins.  

The results of the TM-score evaluation on TEST1 and TEST2 proteins are shown in 

Tables 5.1-5.3. These tables also describe the performance of HHpred (Söding et al. 2005), 

CS23D (Wishart et al. 2008), CS-Rosetta (Shen et al. 2008), DALI (Holm et al. 2010) and 

POMONA (Shen et al. 2015). DALI (Holm et al. 2010) was used to calculate the “gold standard” 

corresponding to the “true” or best structural homologs identified through 3D coordinate-based 

structural superposition against all PDB structures. All of the programs chosen here for 

comparison were run though the corresponding web service or the corresponding program on the 

same test proteins. The POMONA and the HHpred templates with the highest alignment scores 

(within two sequence identity cutoffs) were identified as the optimal threading results. The lowest 

energy structure produced by CS-Rosetta was considered as the best template. As the TEST2 

proteins are blind targets from the CASD-NMR-2013 competition (Rosato et al. 2015), we 

decided that in order to make the comparison fair and unbiased, all database templates that were 

solved or deposited into the PDB after 2013 would be excluded. The last column in each table 

includes the results from the DALI server (Holm et al. 2010), which essentially indicates the 
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“true” answer or the “gold standard”. This result was included to help assess each program’s 

performance. The inclusion of the DALI data also helps to define the upper limit regarding how 

well a given threading program can practically perform. The database proteins for which DALI 

produces the highest Z-scores (within two sequence identity cutoffs) were selected as the DALI 

outputs. Note that in selecting the templates from the different programs we relied on the reported 

sequence identity as measured by the respective alignments. Note that if one of the programs had 

no answer for any particular test case, we report the TM-score as 0.0.   
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Table 5.1: Template recognition performances of four threading programs on TEST1 proteins using sequence 

identity cutoff as ≤ 30%.  The E-Thrifty column shows the top template identified by E-Thrifty, whereas the next two
 

columns show the top templates identified by HHpred and POMONA. The DALI answers for TEST1 proteins are 

displayed in the last column. Template information includes the PDB ID of the template and the TM-score of full-

length model generated using the corresponding template. 

 

 

 

Query 

 

E-Thrifty 

 

POMONA 

 

HHpred 

 

DALI 

Protein 

Name 

PDB/ 

BMRB 

Length/ 

Fold 

PDB   TM-score PDB   

 

TM-score PDB  

 

TM-score TM-score 

KaiA 1M2F/ 

5031 

135/ (α/β) 1YS7A 0.67 2WRZA 0.34 2PL1A 0.69 0.72 

NEDTH 1F3Y/ 

4448 

165/ (α/β) 2O1CA 0.66 3A6UA 0.62 4ICKA 0.67 0.66 

NCS-1 2LCP/ 

4378 

190/ (α) 2L4HA 0.60 2TN4A 0.37 2L4HA 0.60 0.61 

Sortage 1IJA/ 

4879 

148/ (β) 2XWGA 0.70 3FN5A 0.68 4O8TA 0.57 0.70 

PyJ 1FAF/ 

4403 

79/ (α) 1BMTA 0.51 3QPPA 0.38 2DN9A 0.56 0.60 

ERp18 2K8V/ 

15964 

157/ (α/β) 2LNSA 0.55 3VWWB 0.51 3GNJA 0.45 0.58 

ApolPBP1A 2JPO/ 

15256 

142/ (α) 2WC5A 0.63 3TNWD 0.29 1OOHA 0.57 0.63 

Pru Av 1 1E09/ 

4671 

159/ (α/β) 4Q0KA 0.84 3US7A 0.83 2I9YA 0.61 0.83 

Ets-1 2JV3/ 

4205 

110/ (α) 2DKXA 0.61 2Y1IA 0.28 2DKXA 0.61 0.61 

cg2496 2KPT/ 

16569 

148/ (α/β) 2KW7A 0.63 3PVHA 0.64 3PVHA 0.64 0.64 

NCAM 1EPFA/ 

4162 

191/ (β) 2YD1A 0.79 3QP3C 0.79 2KKQA 0.66 0.78 

PG 2HZE/ 

4113 

108/ (α/β) 3L4NA 0.76 4I2UA 0.78 4I2UA 0.78 0.81 

AT5g22580 1RJJ/ 

6011 

111/ (α/β) 1TR0A 0.72 1TR0C 0.72 1TR0A 0.72 0.70 

N-WASP 1MKE/ 

5554 

144/ (α/β) 3SYXA  0.57 2XQNM 0.62 1XODA 0.56 0.61 

Grx2 1G7O/ 

4318 

215/ (α) 1EEMA 0.63 2WRTG 0.63 1PN9A 0.65 0.72 

Average 

TM-score 

0.66 0.57 0.62 0.68 
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Query E-Thrifty  POMONA HHpred CS23D CS-

ROSETTA 

DALI 

Protein 

Name 

PDB/ 

BMRB 

Length

/ Fold 

PDB 

ID 

TM-

score 

PDB 

ID 

TM-

score 

PDB 

ID 

TM-

score 

TM-

score 

TM-score TM-

score 

KaiA 1M2F/ 

5031 

135/ 

(α/β) 

1R8JA 0.85 1R8JA 0.85 2PL1A 0.69 0.50 0.55 0.85 

NEDTH 1F3Y/ 

4448 

165/ 

(α/β) 

2KDW

A 

0.74 2KDV

A 

0.75 4S2XA 0.75 0.72 0.34 0.75 

NCS-1 2LCP/ 

4378 

190/  

(α) 

1FPW

A 

0.73 1S1EA 0.71 1FPWA 0.73 0.0 0.63 0.71 

Sortage 1IJA/ 

4879 

148/  

(β) 

1T2OA 0.87 1T2O

A 

0.87 4O8TA 0.57 0.0 0.45 0.87 

PyJ 1FAF/ 

4403 

79/ 

(α) 

1BMT

A 

0.51 1QDB

B 

0.38 2PF4E 0.60 0.30 0.77 0.64 

ERp18 2K8V/ 

15964 

157/ 

(α/β) 

3PH9A 0.63 3PH9B 0.63 3PH9A 0.63 0.53 0.33 0.63 

ApolPBP

1A 

2JPO/ 

15256 

142/  

(α) 

1DQE

A 

0.66 2FJYB 0.86 4INWA 0.67 0.83 0.40 0.87 

Pru Av 1 1E09/ 

4671 

159/ 

(α/β) 

4BK6A 0.88 4C9C

A 

0.86 4BK7A 0.89 0.89 0.86 0.91 

Ets-1 2JV3/ 

4205 

110/  

(α) 

4MHV

A 

0.83 4MHV

B 

0.83 4MHVA 0.83 0.75 0.71 0.79 

cg2496 2KPT/ 

16569 

148/ 

(α/β) 

2KW7

A 

0.63 3PVH

A 

0.64 3PVHA 0.64 0.36 0.77 0.64 

NCAM 1EPFA/ 

4162 

191/  

(β) 

2VAJA 0.86 2XY2

A 

0.86 2XY2A 0.86 0.76 0.42 0.88 

PG 2HZE/ 

4113 

108/ 

(α/β) 

1JHBA 0.83 1KTE

A 

0.85 4RQRA 0.88 0.91 0.88 0.89 

AT5g22

580 

1RJJ/ 

6011 

111/ 

(α/β) 

1TR0A 0.72 1TR0C 0.72 1Q4RA 0.67 0.66 0.41 0.68 

N-

WASP 

1MKE/ 

5554 

144/ 

(α/β) 

2IFSA 0.74 2XQN

M 

0.62 2IFSA 0.74 0.41 0.62 0.74 

Grx2 1G7O/ 

4318 

215/  

(α) 

3IR4A 0.95 3IR4A 0.95 3IR4A 0.95 0.92 0.28 0.95 

Average TM-score 0.76 0.75 0.74 0.66 0.56 0.79 

 

Table 5.2: Template recognition performances of four threading and two protein structure prediction programs on 

TEST1 proteins using sequence identity cutoff as ≤ 95%.  The result includes E-Thrifty, POMONA, DALI identified 

template information and structure prediction by CS23D and CS-Rosetta. Template information includes the PDB ID 

of the template and the TM-score of full-length model generated using the corresponding template. A TM-score 

evaluation of predicted structures by CS23D and CS-Rosetta is also presented. 
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Table 5.3: Template recognition performances of E-Thrifty, POMONA, HHpred, CS23D and CS-Rosetta protocols 

on TEST2 (nine blind targets from the CASD-NMR-2013 competition) proteins are shown. Note that CS23D and 

CS-Rosetta were run without any homology threshold on these proteins.  The final column describes the highest 

possible alignment quality within the specified sequence identity threshold (≤30%) for these nine proteins. Each 

threading program column includes the PDB ID of the identified template and the TM-score of full-length model 

 

 

 

 

 

CASD-NMR 

Targets  

 

E-Thrifty  

 

 

POMONA 

 

 

HHpred 

 

CS23D 

 

CS-

ROSETT

A 

 

DALI 

Protein 

Name 

PDB 

/BMRB 

Length

/ Fold 

PDB  

ID 

TM-

score 

PDB  

ID 

TM-

score 

PDB  

ID 

TM-

score 

TM- 

score 

TM-score TM-

score 

NTPAS

E 

2LCI/ 

17613 

134/ 

(α/β) 

2L82A 0.79 2L69A 0.76 2MR6A 0.79 0.91 0.78 0.79 

BUB1 2LAH/ 

17524 

160/  

(α) 

3ESLA 0.80 3ESLB 0.80 3ESLA 0.80 0.85 0.63 0.80 

FUS 2LA6/ 

17508 

99/ 

(α/β) 

1A9NB 0.71 1RK8A 0.72 2CQCA 0.68 0.67 0.66 0.71 

NFU1 2M5O/ 

19068 

97/ 

(α/β) 

3W63A 0.57 3R5GA 0.34 1TH5A 0.61 0.63 0.73 0.61 

DNAJC2 2M2E/ 

18909 

73/  

(α) 

4UUSA 0.55 3ZNVA 0.53 2DIMA 0.56 0.59 0.69 0.62 

NKX 3.1 2L9R/ 

17484 

69/ 

(α) 

1YRNA 0.71 2R5YB 0.66 2DA2A 0.71 0.71 0.52 0.68 

NFU1 2LTM/ 

18489 

107/ 

(α/β) 

2M8W

A 

0.66 2M8W

A 

0.66 1PQXA 0.59 0.48 0.53 0.66 

TSTM 2LOJ/ 

18214 

63/  

(β) 

2JRAA 0.37 NA 0.0 2JRAA 0.37 0.36 0.40 0.37 

IF3-like 

fold 

2LN3/ 

18145 

83/ 

(α/β) 

3P04A 0.66 3PP7A 0.43 4PWW

A 

0.48 0.61 0.27 0.68 

Average TM- score 0.65 0.50 0.62 0.62 0.58 0.65 
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Figure 5.5: E-Thrifty template models after the CS-GAMDy refinement for eight query proteins are shown. Query 

proteins (red) are shown superposed with the template models (blue) using PyMOL. The TM-score and the Cα rmsd 

of the secondary structure regions between query and template models are displayed below each model 

 

5.4 Discussion 

E-Thrifty’s performance 

E-Thrifty’s performance on the TEST1 and TEST2 data set is described in detail in Tables 5.1-

5.3.  In terms of TM-score evaluation of the full-length template (or database) models, E-Thrifty 

consistently gave a better or comparable performance when evaluating against other prediction 

programs for both test sets. In particular, E-Thrifty achieved an average TM-score of 0.66 for 

proteins with ≤ 30% sequence identity in the TEST1 data set, as opposed to 0.57 achieved by 

POMONA (Shen et al. 2015) and 0.62 achieved by HHpred (Söding et al. 2005) respectively 

(Table 5.1). In Table 5.2, we can see that all three programs perform almost equally well in terms 

of their average TM-score (E-thrifty=0.76, POMONA=0.75, HHpred=0.74). This was expected 

given that a ≤95% sequence identify cutoff allows near identical homologs to be used in 

modeling. We also tested the performance of CS23D (Wishart et al. 2008) and CS-Rosetta (Shen 
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et al. 2008) on these 15 proteins listed in Table 5.2. Both of these programs perform fairly well 

for these test cases. In particular, CS23D has an average TM-score of 0.66 whereas CS-Rosetta 

has an average TM-score of 0.56. The purpose of this evaluation is to show that the threading 

algorithms are applicable to a wide range of applications and to assure users that chemical shift 

threading methods can attain similar performances as sequence-only threading or comparative 

modeling methods. 

As a second test for E-Thrifty, we selected a number of recent CASD-NMR-2013 

(Rosato et al. 2015) targets which we called TEST2. The TEST2 proteins consist of nine targets 

for which the majority of these proteins are structurally dissimilar to most (or even all) proteins in 

the PDB. For this “difficult” data set, E-Thrifty achieved an average TM-score of 0.65 with 

≤30% sequence identity (Table 5.3). This performance is identical to the average TM-score 

achieved by the “gold standard” structure superposition program DALI (Holm et al. 2010). 

Moreover, most of the top 50 hits obtained by E-Thrifty for the nine targets were also identified 

by DALI through 3D structural superposition, which confirms that E-Thrifty generally finds the 

correct answer for most (if not all) cases. The average TM-scores for POMONA (Shen et al. 

2015) and HHpred (Söding et al. 2005) were 0.50 and 0.62. CS-Rosetta and CS23D are also run 

on the same set of proteins yielding average TM-scores of 0.58 and 0.62 respectively. 

 

E-Thrifty’s sensitivity to missing chemical shifts  

It is notable that E-Thrifty failed to find a high quality, structurally similar homolog in the first 

100 alignments for one of the CASD-NMR-2013 (Rosato et al. 2015) targets, “YR313A” 

(2LTL). The best templates for “YR313A” as identified by DALI (Holm et al. 2010) had 

comparatively low E-Thrifty alignment scores with very modest chemical shift correlations. 

Further investigation revealed that “YR313A” actually had no 
13

CO backbone chemical shift 

assignments. This adversely affected the chemical shift-based structural parameter prediction and 

consequently led to poorer alignments with the nrPDB database proteins. It is also notable that 

POMONA (Shen et al. 2015) also failed to detect a good quality template (a template with a TM-

score≥0.5) for “YR313A” for the same reason. The missing chemical shift issue led us to exclude 

this particular query protein from the comparison study.  The stand-alone version of the E-Thrifty 

program now performs a check of the level of completeness of the query protein chemical shift 

assignments and provides a warning if a significant number of chemical shifts are missing.  
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TM-score distribution of E-Thrifty versus other templates  

The quality (TM-score) of E-Thrifty identified structure templates was also compared with the 

actual structural homologs found by DALI (Holm et al. 2010) as well as the top alignment hits 

generated by POMONA (Shen et al. 2015) and HHpred (Söding et al. 2005). For this comparison, 

DALI homologs with a Z-score ≥ 2, HHpred homologs with a probability ≥ 10 and the top 500 

alignments from POMONA and E-Thrifty were chosen. The TM-score distribution of the 

templates identified by the three threading programs (HHpred, POMONA and E-Thrifty) and 

DALI (a structure matching program) for two proteins, the P-LOOP NTPase fold (PDB: 2LCI, 

BMRB: 17613) and the Homeobox domain of the Nkx 3.1 protein (PDB: 2L9R, BMRB: 17484) 

derived from the TEST2 set is shown in Figure 5.6. Note that 974 DALI alignments, 196 HHpred 

alignments, 1000 POMONA and 1000 E-Thrifty alignments were used in this comparison. 

Relative to other programs, E-Thrifty shows somewhat better performance in TM-score≥0.5 sub-

region, except for the (0.60-0.70) bin. However, it is notable that E-Thrifty was able to retrieve a 

higher number of similar folds (representative TM-score ≥0.50) compared to its chemical shift-

only counterpart POMONA (265 vs. 218 in 1000 alignments). These high-quality templates 

consist of more than 25% of the total templates identified by E-Thrifty.  In the case of random 

and unrelated fold rejection (TM-score≤0.3), E-Thrifty showed the second best performance 

(only 8% of total alignments) after HHpred (which had just 6% of total alignments).  
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Figure 5.6: TM-score distribution of full-length models using input templates identified by DALI, E-

Thrifty, HHpred and POMONA for P-LOOP NTPase fold (PDB: 2LCI, BMRB: 17613) and Homeobox 

domain of Nkx 3.1 protein (PDB: 2L9R, BMRB: 17484). 

 

Correlation between template quality and E-Thrifty alignment scores  

We also examined the correlation between E-Thrifty alignment scores and the overall 

alignment quality. The alignment scores versus the Cα-rmsd of equivalent residues 

between the P-LOOP NTPase fold (PDB: 2LCI, BMRB: 17613) and the top 400 database 

alignments are shown in Figure 5.7. The red and blue dots in the figure indicate the 

alignments spanning the ≥30% and the ≤30% sequence identity ranges. 
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Figure 5.7: Alignment score vs. Cα – rmsd between equivalent residues of the P-loop NTPase protein 

(PDB: 2LCI, BMRB: 17613) and template proteins is shown. The red dots represent the templates with 

≤95% (or >30%) sequence identity and blue dots indicate the templates with ≤ 30% sequence identity. 

 

 

As can be seen in Figure 5.7, the Cα-rmsd of the E-Thrifty alignments weakly correlate 

(Pearson’s correlation coefficient = -0.40) with the corresponding alignment scores. In 

particular, we found that the top 25% of hits found by E-Thrifty had a high TM-score 

range (~0.5-0.9) for the P-loop NTpase protein. However, the distribution of Cα-rmsd 

values appears to be quite sparse. This is probably due to the fact that Cα-rmsd measures 

are fairly sensitive to small structural defects in the aligned regions. On the other hand, 

the TM-score measured for the full-length template models shows a better correlation 

(Pearson’s correlation coefficient = 0.54) with the alignment scores for the same set of 

templates (Figure 5.8). In this figure, the green dots represent the positive templates 
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identified by both DALI (Holm et al. 2010) and E-Thrifty. These positive templates 

accounted for almost 20% of the total number of templates. 

 

Figure 5.8: E-Thrifty alignment score vs. TM-score is shown for top 500 templates identified by E-Thrifty 

for the P-loop NTPase protein (PDB: 2LCI, BMRB: 17613). The green dots indicate the positive templates 

identified by both E-Thrifty and DALI, which is approximately 20% of the template population. 

 

Detecting remote homologs 

All nine targets of CASD-NMR-2013 (the TEST2 data set) are proteins with very low 

sequence identity to any known structure. Two proteins, 2LOJ (BMRB: 18214) and 

2LN3 (BMRB: 18145), proved to be particularly challenging for almost all of the 

programs we tested. Both of these proteins have low sequence identity homologs in the 

PDB. E-Thrifty was able to correctly identify the most likely template for 2LN3 (3P04A, 

TM-score=0.66) according to DALI (Holm et al. 2010). For 2LOJ, E-Thrifty as well as 
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HHpred (Söding et al. 2005) identified 2JRAA as the best template with a relatively 

modest TM-score of 0.37. DALI also failed to find a template with a better TM-score (i.e. 

TM-score>0.37) within its threshold Z-score≥2. Further searches through the PDB to 

identify other structural homologs for 2LOJ revealed only one other homolog 4YNX 

(with >50% sequence identity), which was solved in 2015 (after our exclusion date). 

Therefore at the time of its deposition in 2013, 2LOJ appears to be one of those truly 

novel protein folds that now comes along only very rarely. 

 

Query Seq only Seq+ Sec. Struct. Seq+Sec. Struct. 

+Torsion angles PDB BMRB 

2M5O 19068 0.31 0.20 0.31 

2LTM 18489 0.25 0.30 0.53 

2M2E 18909 0.40 0.30 0.37 

2LCI 17613 0.46 0.79 0.79 

1E09 4671 0.80 0.76 0.84 

2JV3 4205 0.30 0.30 0.34 

2JPO 15256 0.30 0.30 0.30 

1IJA 4879 0.20 0.68 0.69 

2K8V 15964 0.20 0.30 0.30 

Average TM-score 0.36 0.44 0.50 

 

Table 5.4: E-Thrifty performances for nine proteins randomly chosen from TEST1 and TEST2 sets using 

sequence only; sequence and shift-derived secondary structures (HHpred features) and sequence, shift-

derived secondary structures and torsion angles (POMONA features) with a sequence identity threshold of 

≤30% are shown.  

 

E-Thrifty performance using different combinations of sequence/structure features 

We also analyzed E-Thrifty’s performance using different sequence/structure feature 

combinations with a sequence identity threshold of ≤30%. This was done to assess which 

properties (sequence, secondary structure, chemical shifts, torsion angles, etc.) were most 

important to E-Thrifty’s overall performance.  For this assessment, we randomly chose 
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nine proteins from both the TEST1 and TEST2 sets. As can be seen in Table 5.4 using 

sequence as the only input, E-Thrifty produces an average TM-score of 0.36 (compared 

to a TM-score of 0.65 for the full E-Thrifty package). Using sequence data alone, only 

1/9 of these proteins generated high quality (TM-score>0.50) matches or found the 

correct “gold standard” structural homolog. This reduced level of performance was 

certainly expected. Indeed, this highlights the fact that sequence data alone is not often 

sufficient to identify high quality structural homologs with low sequence identity.  

Using the combination of sequence and shift-derived secondary structure, E-

Thrifty showed a modestly improved average TM score of 0.44 (compared to 0.65 for the 

full package). Using these two features, a total of 3/9 of these proteins generated high 

quality (TM-score>0.50) matches or found the correct “gold standard” structural 

homolog. Interestingly, HHpred (Söding et al. 2005), which also uses just these two 

features, was able to achieve an impressive TM-score of 0.59. Obviously for this test, E-

Thrifty was not optimized to work with just two input features (i.e. sequence and 

predicted secondary structure) and certainly if we had optimized its training it may have 

performed somewhat better. It is also important to note that HHpred is a web server that 

uses PSIPRED (Jones 1999) for its secondary structure prediction. PSIPRED uses a fully 

up-to-date PDB-derived database of assigned secondary structures to assist with its 

secondary structure prediction routine. So in this case, HHpred likely identified exact 

matches to all nine query proteins in its PDB database, thereby giving it a significant 

advantage over E-Thrifty, which had all of the query proteins removed from its database. 

In other words, HHpred may have had all the answers in hand already.  

Using the combination of sequence, shift-derived secondary structures and shift-

derived torsion angles, E-Thrifty shows an average TM-score of 0.50 (compared to 0.65 

for the full package). Using these three features, 4/9 of these proteins generated high 

quality (TM-score>0.50) matches or found the correct “gold standard” structural 

homolog. Interestingly, POMONA (Shen et al. 2015), which also uses these three 

features, was able to achieve a TM-score of 0.54. As noted previously, E-Thrifty was not 

optimized or re-parameterized to work only with these three features and certainly if 

some optimization was done, E-Thrifty might have performed much better. Overall, the 

primary intent of these experiments was to illustrate the role that: 1) sequence alone; 2) 
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sequence + secondary structure and 3) sequence + secondary structure + torsion angles 

had in the performance of E-Thrifty. These data clearly show that more information is 

better. The secondary objective was to highlight how important parameter optimization 

can be in getting a threading program to work optimally. Clearly parameter optimization 

is important. The third objective was to illustrate why the inclusion of additional features 

(ASA, chemical shift matching, super-secondary structure) were needed to boost the 

overall threading performance of E-Thrifty.  

 

Limitations and potential improvements of E-Thrifty 

One of the limitations of E-Thrifty is that it relies on categorical, somewhat imprecise 

character-based representations to describe both the query structures and the 

corresponding database structures. For example, real-valued φ/ψ angles are converted 

into a discretized 9-letter torsion alphabet; while real valued fractional ASA (fASA) 

values are classified into an even simpler 3-letter alphabet. Approaches that use numeric 

torsion angles and numeric fASA values might be expected to further improve E-

Thrifty’s performance. This is because numeric values would be far more precise and 

would capture far more subtle information about these torsion angle and fASA features.  

While E-Thrifty makes use of a number of high quality dynamic programming alignment 

routines, a further improvement in its sensitivity for detecting remote homologs could 

potentially be achieved by including more powerful Hidden Markov Model profile 

alignments. These alignment methods have consistently proven to be very effective in 

detecting distant homologs (Krogh et al. 1994, Eddy 1998, Karplus et al. 1998) and 

appear to play a key role in the high level of performance achieved with HHpred (Söding 

et al. 2005).  While improved alignment methods could be particularly beneficial, 

improved scoring functions may prove to be equally useful. Indeed, we suspect further 

improvements could be achieved by designing a suitable Z-score value for a more 

effective assessment of E-Thrifty sequence-structure alignment quality.  

 

Next steps for E-Thrifty 

As a chemical shift threading method E-Thrifty is particularly good at automatically 

generating “approximate” or initial 3D protein models. However, to obtain truly high-
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quality, atomic resolution structures it will be necessary to couple E-Thrifty to other 

kinds of programs that can perform true structural refinement.  As highlighted in Figure 

5.6, E-Thrifty can be easily coupled to CS-GAMDy (Berjanskii et al. 2015) to perform 

chemical shift refinement. These refinements certainly improved the quality and accuracy 

of the starting structures. While these refinement calculations can take several hours, it is 

not unreasonable to imagine having E-Thrifty tightly coupled to CS-GAMDy (either as a 

stand-alone program or as a web server) in the near future.  Further enhancements to E-

Thrifty will likely include the addition of other structure “massaging” or refinement 

options such as XPLOR-NIH (Schwieters et al. 2003), AMBER (Pearlman et al. 2005) or 

DYANA (Güntert et al. 1997). Adding these tools to the pipeline would also allow E-

Thrifty to incorporate other experimental measures such as NOEs, J-couplings and 

residual dipolar couplings into its structure generation and refinement protocols. Finally, 

in the rare situations where no structural homolog can be found, it may be possible to 

consider blending CS23D (Wishart et al. 2008), Cheshire (Cavalli et al. 2007), CS-

Rosetta (Shen et al. 2008) or other ab initio structure predictors with E-Thrifty. This 

would lead to the creation of a much more fail-safe and far more comprehensive chemical 

shift-based structure generation pipeline. Indeed, our long-term plan is for E-Thrifty to 

become fully integrated into the next release of CS23D. 

 

5.5 Conclusion 

In this study, we have described a new and particularly powerful protein fold recognition 

method called E-Thrifty that uses chemical shift threading to generate high quality 

coordinate models for proteins having little or no sequence identity to any protein in the 

PDB. We believe this represents a significant step towards “solving” protein structures 

using only chemical shift information.  As outlined above, E-Thrifty uses chemical shift 

derived secondary structures, chemical shift derived fASA values and chemical shift 

derived torsion angles to perform a comprehensive alignment between the query 

sequence (with experimentally determined chemical shift assignments) and a large 

database of proteins with known structures and predicted chemical shifts. E-Thrifty 

exploits a number of recently developed chemical shift analysis tools (CSI 2.0 (Hafsa et 

al. 2014), CSI 3.0 (Hafsa et al. 2015a), ShiftASA (Hafsa et al. 2015b), TALOS-N (Shen 
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et al. 2013), ShiftX2 (Han et al. 2011)) to generate chemical shifts or chemical-shift 

derived information for both the query and the database proteins. A Smith-Waterman 

local alignment algorithm with a variable gap penalty function was found to be the best 

tool for performing the sequence-structure alignment. The weighting coefficients and 

fitness scores used to evaluate the alignments were optimized through both a parameter 

grid search and a linear regression analysis. E-Thrifty includes a chemical shift fitness 

score and an e-value scoring system to fully evaluate the alignments between the query 

and the database proteins. In addition, E-Thrifty performs a cluster analysis step for all 

identified folding templates to group them according to their structural similarity. The 

templates identified by E-Thrifty can be subsequently used for chemical shift-based 

structure refinement.  

In terms of performance, E-Thrifty achieved an average TM-score of 0.66 for 

query sequences having ≤30% sequence identity (as measured on an independent test set 

of 15 proteins). E-Thrifty’s performance was found to be comparable to the “gold 

standard” DALI (Holm et al. 2010) which had an average TM-score of 0.68. In contrast 

to E-Thrifty or other structure prediction routines, DALI uses experimentally derived 

coordinate data to identify structural homologs of proteins by structural superposition 

(i.e. DALI knows the answer, whereas E-Thrifty predicts the answer). E-Thrifty was also 

evaluated on a number of recent CASD-NMR-2013 targets and achieved an average TM-

score performance of 0.65 on nine test proteins with ≤30% sequence identity. The 

performance of E-Thrifty clearly demonstrates its ability to “predict” a 3D fold by using 

only chemical shift information. With its exceptional performance, we believe that E-

Thrifty could be a very useful contribution towards the goal of rapid and automated 

protein structure generation and refinement by NMR chemical shifts.    
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Chapter 6 

 

Contributions and Future Prospects 
 

6.1 Introduction  

 
In this chapter, I will summarize the main contributions of this thesis and suggest a 

number of possible areas for further exploration as well as some ideas for future research 

directions. In discussing my major research contributions, I believe it is important to 

emphasize that this is an applied computing thesis. It is not a traditional “pure computing 

science” thesis that is focused on developing a novel computing technique or devising 

breakthrough machine-learning algorithms. Instead, I focused on applying state-of-the-art 

computing science knowledge to solve a number of “real world” and extremely difficult 

problems in structural biology. Working on challenging inter-disciplinary problems such 

as computational protein folding or NMR chemical shift analysis requires in-depth 

knowledge of several very different domains, including computing science, NMR 

spectroscopy, structural biology and biochemistry. Solving inter-disciplinary problems 

requires not only a good knowledge of the individual disciplines themselves, but an 

ability to identify which problems are solvable with which techniques.  

My long-term career goal is to help solve one of the most vexing and 

computationally challenging problems in biology – the protein folding problem.  Simply 

stated, the protein folding problem attempts to answer the question:  How does a protein 

sequence determine a protein’s three-dimensional shape? From a machine learning 

perspective, one of the best ways of solving this problem is to gather a large body of data 

on protein structures and protein sequences and to “learn” the rules for protein folding. In 

fact, this was the original motivation behind the Protein Structure Initiative (PSI) (Smith 

et al. 2007) and for the establishment of the Protein Data Bank (PDB). Indeed, since 1959 

a total of 115,000 protein structures have been solved and deposited into the PDB. While 

this may seem like a large number, it is still insufficient to cover all of protein folding 

space and for computers (or humans) to “learn” the rules of protein folding. Adding more 

structures would seem to be a trivial solution to this problem, but determining protein 

structures is non-trivial and expensive. If we assume that each protein structure costs 
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$50,000-$75,000 to complete and each structure takes 3-4 person years of work, one can 

calculate that the total amount of money and time spent on experimentally solving all the 

structures now in the PDB is somewhere between $6-8 billion and nearly 500,000 person 

years. Given these huge costs and the vast amount of time already spent on solving the 

existing set of structures, there is considerable interest (and pressure from funding 

bodies) to find much more efficient and automated computational approaches to solve 

protein structures. 

This “automation” challenge is what motivated my research for this thesis.  Over 

the next few pages, I will highlight the contributions of this thesis towards facilitating 

automated or near-automated protein structure determination via NMR spectroscopy.   

 

6.2 Contributions of this thesis 

As mentioned in the introductory chapter, this thesis is sub-divided into four sub projects. 

I will summarize the key findings in these chapters and briefly describe the methods used 

in each sub-project in the following paragraphs. 

 In chapter 2, I described a significantly improved secondary structure 

identification method called CSI 2.0 (Hafsa et al. 2014) that can be used to accurately 

determine the secondary structure of proteins using NMR chemical shifts, alone. CSI 2.0 

was designed to be a successor to the much older and somewhat simplistic Chemical 

Shift Index or CSI algorithm (Wishart et al. 1992 & 1994). In particular, CSI 2.0 replaces 

the simple digital chemical shift filter used in the original CSI with a much more 

powerful “feature filter” that uses machine learning techniques to locate secondary 

structures along the protein chain.  CSI 2.0 exploits all six backbone chemical shifts 

(
13

Cα, 
13

Cβ, 
13

C, 
15

N, 
1
HN, 

1
Hα) with sequence-derived features instead of using only 

backbone 
13

C and 
1
H chemical shifts like its predecessor. With an extended feature set 

and sophisticated machine-learning algorithms, CSI 2.0 is able to obtain a much more 

accurate 3-state secondary structure (α-helix, β-strand and coil) assignment. More 

specifically, a multi-class “kernelized” SVM classifier is used to train the prediction 

model in which a RBF kernel performs feature dimension reduction. The training model 

parameters (the “regularization” or “cost” parameter in the SVM classifier and “kernel 

width parameter” in the Gaussian RBF kernel) were optimized using a repeated 10-fold 
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cross-validation. A multi-residue Markov Model was designed for post-assignment 

filtering to remove any “confusing” or “scrambled” assignments in contiguous stretches 

of helices, strands or coil structures along the protein chain (e.g. CCBHH or BBHCC or 

HCHCH). Our tests indicate that CSI 2.0 achieves an average Q3 accuracy (a standard 

evaluation metric for 3-state secondary structure identification) of 90.56% for a training 

set of 181 proteins in a repeated 10-fold cross-validation and 89.35% for a test set of 59 

proteins. The average Segment Overlap or SOV score (another common evaluation 

metric) for the test proteins was found to be 88.45. This performance represents a 

substantial improvement over the original CSI (Q3 of 89% vs. 79%) as well as over the 

other state-of-the-art chemical shift-based methods for secondary structure identification 

(Q3 of 89% vs. ~86%). This performance improvement was statistically significant when 

using three of the most widely used secondary structure assignment protocols, DSSP 

(Kabsch et al. 1983), STRIDE (Frishman et al. 1995) and VADAR (Willard et al. 2003). 

Interestingly, the standard 3D coordinate based secondary structure identification 

methods, such as DSSP and STRIDE appear to perform no better than CSI 2.0, which 

uses no coordinate data. Based on data presented in chapter 2 and the level of agreement 

measured between different secondary structure identification methods (NMR vs. X-ray 

vs. different programs), it appears that CSI 2.0 reaches the maximum performance that 

secondary structure assignment methods can achieve.  

CSI 2.0 not only shows an improved performance for identifying secondary 

structure locations, but it also successfully detects different secondary structures in 

structurally dissimilar proteins sharing high sequence identity - something that misleads 

other programs. CSI 2.0 was also able to identify the absence of secondary structures in 

proteins that had been unfolded in urea or other denaturants. This is something that would 

fool programs that place too much emphasis on sequence data and too little emphasis on 

chemical shift data. CSI 2.0 is currently implemented as a web server 

(http://csi.wishartlab.com). The server accepts protein NMR chemical shift assignments 

in most standard formats and generates a comprehensive, colorful report describing the 

protein’s secondary structure assignments. I believe that CSI 2.0, with its superior 

performance, will be a useful contribution to the field of biomolecular NMR. In 

particular, it could be used in providing accurate NMR constraint data (such as torsion 
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and distance restraints) in the early stages of protein structure determination as well as in 

defining secondary structure locations in the final protein model(s).  CSI 2.0 could also 

serve as a robust alternative to standard coordinate-based methods for secondary structure 

identification.   

 In chapter 3, I described a successor to CSI 2.0 and named it CSI 3.0 (Hafsa et al. 

2015a). CSI 3.0 greatly extends the concept of chemical shift assignment of secondary 

structure over what was described in CSI (Wishart et al. 1992 & 1994) and CSI 2.0 

(Hafsa et al. 2014). In particular, it uses a pipeline of several well-tested, previously 

published programs, including its predecessor CSI 2.0 to identify the locations of 

secondary and super-secondary structures. More specifically, CSI 3.0 accurately 

identifies a total of 11 types of secondary and super-secondary structures, including 8 

types of local secondary structures (helices, β-strands, coils) and 5 common β-turns (type 

I, II, I', II' and VIII)) as well as 3 types of super-secondary structures or topological 

features (β-hairpins, edge beta-strands and interior beta-strands). The increased number 

of secondary and supersecondary structures identified by CSI 3.0 makes it both distinct 

and superior to any other chemical shift-analysis tool.  

CSI 3.0 uses a combination of heuristic and machine-learning algorithms to locate 

the secondary and super-secondary structure locations along the protein chain. A binary 

SVM classifier with an RBF kernel is used for interior and edge β-strand classification, 

whereas a simple rule-based algorithm was developed to classify different β-turn types. 

CSI 3.0 was tested on a set of 13 high-resolution protein structures that were solved by 

X-ray and NMR and spanning a broad range of secondary structure content and folds.  It 

exhibited >90% average agreement over all 11 types of secondary and super-secondary 

assignments when compared to those made via standard coordinate analysis programs 

such as DSSP, STRIDE and VADAR.  CSI 3.0 has been converted to a web server 

(http://csi3.wishartlab.com) and accepts most standard formats of chemical shift 

assignment input. It outputs colourful CSI plots (bar graphs and secondary structure 

icons) along with secondary/super-secondary structure textual assignments, which can be 

readily used as constraints for structure determination and refinement. The images 

generated by CSI 3.0 may be used for presentations and publications. I believe that the 

additional secondary/supersecondary structure data, along with the useful topological 
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information and colourful graphical output generated by CSI 3.0 will not only improve 

the quality of preliminary protein structure descriptions (often obtained shortly after 

chemical shift assignments are completed) but also facilitate protein structure 

determination by NMR. In particular, with the recent trends towards protein structure 

determination and refinement using chemical shifts (only), chemical shift threading or 

minimal numbers of NOEs, this added information could prove to be particularly useful 

to a growing number of NMR spectroscopists. 

 Chapter 4 describes an improved fractional Accessible Surface Area (fASA) 

estimation method named as ShiftASA (Hafsa et al. 2015b). The method is based on 

machine learning techniques (specifically a boosted tree regression model) that combines 

chemical-shift and sequence derived features to accurately estimate per-residue fractional 

ASA (fASA) values of amino acid residues in water-soluble proteins.  ShiftASA exploits 

the well-known chemical shift sensitivity to ASA as well as the “pseudo-ASA” 

information content in sequence data. The fASA real value estimation problem was 

mapped as a Stochastic Gradient Boosting Regression Tree model and model parameters 

were optimized using a repeated 10-fold cross validation on a training set of 344 data 

points. Each data point in the training set consisted of 15 chemical shift and sequence-

derived features spanning a three amino acid residue window. This approach showed a 

correlation coefficient between predicted and experimental fASA values of 0.79 when 

evaluated on a set of 65 independent test proteins. This represents an 8.2% improvement 

over the next best performing (sequence-only) method. On a separate test set of 92 

proteins, ShiftASA reported a mean correlation coefficient of 0.82, which was 12.3% 

better than the next best performing method. The mean absolute error in ASA values was 

found to drop from 0.19 to 0.14 Å
2
 and the root mean squared error fell from 0.26 to 0.19 

Å
2 

compared to its sequence-only and chemical shift-only counterparts. On the second 

test set (TEST2), ShiftASA attained a mean correlation coefficient of 0.82, a clear 

improvement over correlation coefficients of 0.67 and 0.73 reported by the best 

performing sequence-only and chemical-shift-only methods, respectively. ShiftASA is 

also available as a web server (http://shiftasa.wishartlab.com). It accepts most standard 

chemical shift assignment formats as input and outputs real-value fASA predictions. 

ShiftASA also allows flexible, categorical prediction of binary or ternary ASA states. 
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Overall, I believe that ShiftASA, with its significantly improved prediction of ASA 

parameters, will not only facilitate protein fold recognition and de novo protein structure 

prediction by providing useful structural constraints, but it will contribute to the 

generation and refinement of protein structures by NMR chemical shifts (only). In 

addition, an accurate estimation of fASA values can be used to calculate useful 

thermodynamic parameters from chemical shift data. 

 In chapter 5, I described a new and particularly effective protein fold recognition 

method called E-Thrifty that uses chemical shift threading to generate high quality 3D 

coordinate models for proteins having little or no sequence identity to any protein in the 

PDB. E-Thrifty uses chemical shift derived secondary structures, chemical shift derived 

fASA values and chemical shift derived torsion angles to perform a comprehensive 

alignment between the query sequence (with experimentally determined chemical shift 

assignments) and a database of proteins with known structures and predicted chemical 

shifts. E-Thrifty exploits a number of existing tools (CSI 2.0 (Hafsa et al. 2014), CSI 3.0 

(Hafsa et al. 2015a), ShiftASA (Hafsa et al. 2015b), TALOS-N (Shen et al. 2013), and 

ShiftX2 (Han et al. 2011)) to generate chemical shifts or chemical-shift predicted data for 

both the query and the database proteins. E-Thrifty includes a chemical shift fitness score 

and an e-value scoring system to evaluate the alignments between the query and the 

database proteins. In addition, E-Thrifty performs a cluster analysis of identified folding 

templates to group them according to structural similarity. The templates identified by E-

Thrifty can be subsequently used for structure modeling and chemical shift based 

structure refinement. A Smith-Waterman local alignment algorithm with a variable gap 

penalty function was implemented to achieve optimal sequence-structure alignment. The 

weighting coefficients and fitness scores used to evaluate the alignments were optimized 

through either a grid search or by fitting via linear regression. E-Thrifty achieves an 

average TM-score of 0.66 for query sequences having ≤30% sequence identity (as 

measured on an independent test set of 15 proteins). E-Thrifty’s performance was found 

to be comparable to the “gold standard” DALI (Holm et al. 2010) which had an average 

TM-score of 0.68. Unlike E-Thrifty or other structure prediction routines, DALI uses 

experimentally derived coordinate data to identify structural homologs of proteins by 

structural superposition (i.e. DALI knows the answer, whereas E-thrifty is predicting the 
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answer). E-Thrifty was also evaluated on a number of recent CASD-NMR-2013 (Critical 

Assessment of Automated Structure Determination by NMR) (Rosato et al. 2015) targets 

and an average TM-score performance of 0.65 was achieved on nine test proteins with 

≤30% sequence identity. The performance of E-Thrifty clearly demonstrates its ability to 

“predict” 3D structure by using only chemical shift information in the presence of 

suitable templates in the structure database. Given its exceptional performance, I believe 

that E-Thrifty will be a very useful contribution towards the goal of rapid and automated 

structure generation and refinement by NMR chemical shifts. 

  

6.3 Future prospects  

In this section, I will suggest a number of possible areas for further development along 

with several ideas for future research directions. As mentioned in the previous section, 

most my thesis work focused on structural parameter calculators and chemical shift 

threading methods that could be used to automate or facilitate initial protein structure 

determination or structure characterization. The next obvious step in the process is to 

integrate these methods into structure refinement methods.    

 

CS23D 2.0, ShiftRefiner and NMRrefiner 

Many of the tools I have developed will be integrated into three different programs and/or 

web servers that are being developed in Dr. Wishart’s laboratory for NMR-based protein 

structure determination and refinement. These include CS23D 2.0, ShiftRefiner and 

NMRrefiner. CS23D 2.0 is a successor of CS23D (Wishart et al. 2008), a web-based 

protein structure determination pipeline that uses NMR chemical shifts to determine and 

refine 3D protein structures. CS23D 2.0 is currently in the developmental stage. Some of 

the existing weaknesses in CS23D, namely its poor performance in threading and 

chemical shift refinement, will be corrected in the new version. In particular, CS23D 2.0 

will incorporate my improved chemical shift threading method, E-thrifty, to more 

accurately identify structural similar templates. It will also use a more advanced 

homology modeling program called MODELLER (Sali et al. 1993, Webb et al. 2014) and 

a recent chemical shift refinement protocol called CS-GAMDy (Berjanskii et al. 2015) to 

significantly improve its overall performance and accuracy. 
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ShiftRefiner is a web service program, currently being developed that greatly 

extends the capabilities of CS-GAMDy. ShiftRefiner will use predicted secondary 

structures and fASA estimations from CSI 2.0 (Hafsa et al. 2014) and ShiftASA (Hafsa et 

al. 2015b). These predictions will serve as target functions for CS-GAMDy’s biased 

molecular dynamics (MD) and genetic algorithm steps. In particular, CSI 2.0’s predicted 

secondary structure will be used as a part of a chemical shift fitness score while 

ShiftASA’s fASA predictions will be used as the second scoring function to bias the MD 

protocol during GAMDy refinement.  Shift-predicted secondary structure “scores” and 

fASA “scores” will be among four structural fitness scores randomly selected to assess 

the quality of the protein models during different stages of refinement in ShiftRefiner. 

Upon completion, ShiftRefiner will have two different functions. The first will be a “fast” 

2-3 hour computational protocol that allows good quality NMR structures to be refined so 

that they improve their structural and chemical shift quality/agreement by at least 50% 

over the starting state. The second will be a “slow” protocol that is capable of refining 

starting NMR structures that are as much as 5 Angstroms RMSD away from the correct 

structure to a near correct structure (<2 Angstroms RMSD) within 24 CPU hours. 

Ultimately ShiftRefiner will be incorporated into an improved protein folding suite 

(tentatively called CS23D 3.0) to assist with protein structure generation from raw NMR 

chemical shift data.   

Another web service program called NMR-Refiner for chemical shift and NOE 

based structure refinement is also under development. It will include options to add NOE 

and residual dipolar coupling (RDC) restraints during the biased MD and genetic 

algorithm refinement steps. NMR-Refiner will also incorporate other functionalities to 

optimize protein-protein and protein-ligand complexes. 

 

Ab-initio and Sparse Data Protein Structure Prediction  

Predicting protein structures from sequence and very limited experimental information is 

referred to as ab-initio structure prediction. This problem is considered extremely 

difficult because it requires extensive conformation searches through a vast and complex 

multidimensional hyperspace. CS-ROSETTA (Shen et al. 2008) is currently the best 

state-of-the art ab-intio or sparse-data protein structure prediction tool available. It uses a 
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coarse-grained chemical shift fragment-based search through conformational space using 

a knowledge-based scoring function that favors protein-like features. The peptide 

fragments (defined by chemical shift similarity) used by CS-ROSETTA are simply three 

and nine residue fragments that exhibit maximal chemical shift similarity.  This kind of 

fragment selection procedure uses little or no local structural or topological information. 

As a result, CS- ROSETTA frequently fails to generate structures for non-homologous or 

“hard-to-predict” protein structures. The methods proposed in this thesis could be used to 

generate much more useful structural and topological restraints and much more precise 

peptide fragments that could greatly improve ab-initio methods such as CS- ROSETTA. 

In particular using my improved protocols for identifying secondary structures (CSI 2.0), 

calculating accessible surface area (ShiftASA), identifying interior and edge β-strands, 

and β-turns (CSI 3.0) or selecting better chemical shift threaded templates (E-thrifty) 

could be bundled into an improved fragment selection protocol. An ab-inito structure 

generation functionality with these proposed fragment selection features is now being 

planned for a new version of CS23D (CS23D 3.0) over the next year or two.    

 

Concluding Remarks 

Overall, I believe my work has advanced the field of NMR-based protein structure 

determination and refinement. It has also laid a solid foundation for future work in my 

supervisor’s laboratory that should make protein structure determination by NMR 

spectroscopy much faster, much more accurate and much more robust. I also believe that 

this work nicely illustrates how the application of advanced computing science 

techniques can lead to significant and useful advances in scientific disciplines that have 

not previously exploited these ideas or methods.   
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