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Abstract

This thesis investigates efficient and robust estimators for binomial regression models.

For this purpose, I have made use of two minimum distance estimation methods devel-

oped for discrete data, namely Minimum Hellinger Distance Estimation (MHDE) and

Symmetric Chi-squared Distance Estimation (SCDE) methods. These methods generally

known to produce efficient estimators when the chosen model is correct and, at the same

time, are robust against model misspecification and outliers. Asymptotic properties and

robustness features of the proposed estimators are discussed through theoretical demon-

strations and simulations. Furthermore, the performance of estimators is compared with

the traditional estimation approach of the maximum likelihood estimation.

Binomial regression models generally requires a specified “link function.” In this the-

sis, cumulative distribution functions of the logistic and standard normal distributions

are primarily used as the link functions. From theoretical results, it is concluded that

the proposed MHDE is asymptotically equivalent to the maximum likelihood estimator

when the model is correctly chosen. Some asymptotic properties of the proposed SCDE

estimator is studied. Monte Carlo simulations are carried out compare the estimators

for small to moderate sample sizes. It is observed that both MHDE and SCDE estima-

tors show some robustness against model contamination, and the MHDE and the SCDE

outperform the MLE in various conditions. Optimal conditions are discussed through

extensive simulations under different scenarios.
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CHAPTER 1

Introduction

1.1. Motivation and model assumptions

Maximum likelihood method is by far the most popular estimation technique employed

in statistics. Maximum likelihood based estimators have many nice properties, including

the consistency and asymptotic efficiency under the model. Yet, they can be highly

unstable if the model is not totally correct, and they are not robust if the data is slightly

contaminated. (Here the word ‘robust’ refers to the ability of a procedure to retain its

validity under a model misspecification and/or when outliers are present.) Further, their

efficiency may be significantly reduced for model mispecification; i.e., if the chosen model

is slightly different from the chosen model.

The need for robust procedures in statistical inference has been widely recognized now.

This is motivated by the common belief that statistical models are just approximations

to reality and that real data never come from the specified model exactly. Furthermore,

a common problem in applied statistics is the presence of outliers in the data. Many

different approaches have been proposed for finding robust statistics in the literature.

These methods have had varying degrees of success in dealing with “bad” data but they

all suffer from a loss of efficiency if the postulated/chosen model is the correct one. The

literature on robust estimation is too extensive to make a complete listing here, an inter-

ested reader is referred to the monographs of Huber (1964) and Maronna et al. (2006)

and the references therein for techniques and properties of well-known robust methods.
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The purpose of this thesis is to study efficient robust estimators for a binomial regres-

sion model, as efficient robust procedures are vital for effective data analysis. Specifically,

when the outcomes of a series of experiments are binary, the following model is used.

Let Yj ∼ Bernoulli (pj) for j = 1, ..., n. Furthermore, let zj = (1, zj,1, ..., zj,p)
T be the

values of control variables or clinical variables or other discriptive variables, known as

covariates for the ith-individual. Finally, let g(.) be a monotonic and differentiable func-

tion, known as the link function, which maps the interval probabilities (0, 1) to the real

numbers. Examples of such tranformations are the logit g(p) = ln(p/(1 − p)) and the

probit g(p) = Φ−1(p), the inverse of the standard distribution function. The regression

parameters θ = (θ0, θ1, ..., θp)
T enter into the model through g(pj) = zTj θ.

An excellent introduction to data analysis procedures based on the above binary re-

gression model is the monograph of McCullagh and Nelder (1983, Chapter 4). One’s

primary concern is the joint dependency between binary response and independent ex-

planatory variables. Here we consider a binomial regression model. That is, we consider

a situation where replication within a specific combination is readily accessible. We as-

sume that K independent binomial random variables are available for observation. Thus,

K groups with a total of N data points are collected, and there are nj subjects within

each group. So, N =
∑K

j=1 nj. A binary response is coded 1 if subject shows a response

to a given covariate zj = (1, zj,1, ..., zj,p)
T , and 0 if it shows no response. Equivalently,

we assume that there are K independent binomial random variables; i.e., Yj ∼ Bino-

mial (nj, pj) for j = 1, ..., K. We further assume that pj is related to covariate zj as

P (showing a response| zj) = pj = F (zTj θ), where F is some known distribution function
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and θ = (θ0, θ1, ..., θp)
T is the unknown regression parameter of interest. A natural estima-

tor of pj is the sample propotion of successes given by p̂j =
mj
nj

, where mj is the number of

responses out of nj trials, j = 1, ..., K. For a generalized linear model set up with binomial

regression, one generally assumes that g(µj) = zTj θ, where µj = E(Yj) = njpj, j = 1, ...,

K, and g is a link function (McCullagh and Nelder,1983, Chapter 4).Thus, our model is

slightly different from the usual generalized linear model set up, but the methodologies

used in this thesis can be easily modified to this model as well.

An example of the above set up is in “effective dose-level” estimation of dose-response

studies experiments; see, e.g. Stather (1981), Li and Wiens (2011), Karunamuni et al.

(2015), among others. Specifically, in pharmacology or toxicology studies, experimenters

are often interested in estimating the effective dose level EDp, where 0 < p < 1. The

EDP is the dose at which 100p% of the subjects show a response. Generally, K groups of

test subjects characterized by different dose levels xj (j = 1, ..., K) are collected, where

each subject in the corresponding group is collected independently. The number of test

subjects for groups would be nj (1 ≤ j ≤ K) and the number of test subjects showing

a response at the dose level xj (1 ≤ j ≤ K) would be mj. In the dose-response context,

it is generally assumed that x1 < x2 < .... < xK . That is, the outcome of interest is

usually measured at several increasing dose levels. For every subject, a binary response

is produced. If the subject shows a response, such subject is denoted as “1”, and a no

response is denoted as “0”. So, the model reduces to pj = F (zTj θ) with θ = (α, β)T and

zj = (1, zj)
T for some parameters α and β > 0.
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1.2. Maximum likelihood estimation

Maximum likelihood estimation is by far the well-known and frequently used method

of estimation for binary regression models. The likelihood function in the present set of

binomial regression models takes the form

L(θ,Z) =
K∏
j=1

(
nj
mj

)
p
mj
j (1− pj)nj−mj ,

where pj = F (zTj θ) and Z = (zT1 , ..., z
T
K). A typical method of finding a maximum likeli-

hood estimator (MLE) solution is by equating the first order derivative of the objective

function to zero and then solve for the unknown parameter. We assume that the param-

eter is compact and the true parameters away from boundary points. Alternatively, if a

solution is not available in an explicit form, then iteration method can be used to obtain

a numerical solution. Taking the logarithm of the above likelihood function we obtain

logL(θ,Z) =
K∑
j=1

{log

(
nj
mj

)
+ log(F

mj
j (1− Fj)nj−mj)}

=
K∑
j=1

{mj logFj + (nj −mj) log(1− Fj) + log

(
nj
mj

)
},

where Fj = F (zTj θ). Now differentiating logL(θ,Z) with respect to θ and setting it equal

to zero, we have

(1.1)
∂

∂θ
logL(θ,Z) =

K∑
j=1

zTj F
(1)
j {

mj

Fj
− nj −mj

1− Fj
} = 0.
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The above log-likelihood equation is nonlinear in θ and thus cannot be solved analytically.

An iterative approach such as Newton-Raphson is typically required to find the maximum

likelihood estimator for θ; see, e.g., Li and Wiens (2011).

1.3. Motivation of new estimation methods

It is well known that the estimates of regression coefficients for logistic and probit

models are not robust to outliers (Pregibon, 1982). The lack of robustness of the maxi-

mum likelihood estimator for θ has been extensively discussed in the statistical literature

for binary regression models. The preceding models are in fact an example of generalized

linear models (McCullagh and Nelder, 1983). Robust alternatives for ordinary and gen-

eralized linear models are treated in many papers; see, for instance, the work of Stefanski

et al. (1986), Kunsch et al (1989), Morgenthaler (1992), Marazzi and Ruffieux (1996)

and Cantoni and Ronchetti (2001). In particular, notable papers that discuss diagnostic

methods, resistant techniques and redescending M-estimates in binary regression models

include Pregibon (1981), Pregibon (1982), Copas (1988), Carroll and Pederson (1993),

Bianco and Yohai (1996), Markatou et al. (1997) and Croux and Haesbroeck (2003),

among others.

From (1.1) it is clear that the MLE is not robust and could be greatly affected by

many types of errors, among others they include

1. errors in the measurement or recording of the zj values,

2. errors in the pj values caused, for example, by subjects showing a response (e.g.,

dying) that is the result of other causes,

3. errors caused by choosing the wrong link function.
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The robust estimators proposed in the literature are based on modifications of the log-

likelihood and are inspired by the work of Huber (1964), Hampel (1971, 1974) and others

in robust linear regression. In this thesis, I proposed two estimators based on minimum

distance estimation techniques, namely minimum Hellinger distance estimation (Beran,

1977) and symmetric chi-squared distance estimation (Lindsay, 1994) methods. They

generally provide alternative estimators of θ that are efficient and more robust estimators

than the MLE, at least for some of the above errors. Various other distances such as

chi-squared distance, total variation distance, etc. have been used in the literature, see

Lindsay (1994) for more discussions on these distances and their applications.

1.4. Organization of Chapters

The thesis is organized as follows. In Chapter 2, I will derive the proposed minimum

Hellinger distance estimator (MHDE) of θ and its statistical properties. Some simulation

examples are also given there. The mathematical conditions such as continuity and differ-

entiality on the link function guarantees the existence of such estimators, and statistical

properties such as efficiency, consistency and asymptotic normality offer us more insights

into the behaviour of the proposed MHDE. In Chapter 3, mathematical and statistical

properties of the proposed symmetric chi-squared distance estimator (SCDE) will be dis-

cussed, followed by some simulation examples. The proposed MHDE and SCDE will be

compared with the corerrsponding MLE using simulations in both Chapters 2 and 3. In

Chapter 4, the proposed MHDE and SCDE will be compared with the MLE in simula-

tions. Optimal conditions under different scenarios will be selected based on the presence

of contamination, link functions and the sample size n. In Chapter 5, I will summarize
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my findings of the two proposed estimators and some suggestions will be provided for

further investigation of future work.
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CHAPTER 2

Minimum Hellinger Distance Estimation

2.1. Definition of Hellinger Distance

Given two probably measures F and G with densities f and g, respectively, with

respect to a dominating σ-finite measure µ, Hellinger Distance H(F,G) between F and

G is defined by

H(F,G) = h(f, g) =

{∫
[f

1
2 (x)− g

1
2 (x)]2dµ(x)

} 1
2

.

2.2. Properties of Hellinger Distance

1. h is a metric on the space of probability measures with 0 ≤ h ≤
√

2.

2. The value of h(F,G) is independent of the choice of the dominating measure µ.

3. h2(f, g) ≤
∫
|f(x) − g(x)|dµ(x) ≤ 2h(f, g). So, the topology induced on the space

of probability measures by the Hellinger metric is the same as that induced by the total

variation metric, since
∫
|f(x)− g(x)|dµ(x) = 2sup|F (A)−G(A)|, where the supremum

is taken over all measurable sets A.

4. If {fθ : θ ∈ Θ} is a parametric family of densities, then minimizing h(fθ, g) is equivalent

to maximizing
∫
f

1
2
θ g

1
2dµ(x).

Definition 2.1: (Shorack 2000, p. 66). Suppose both the signed measure φ and the

measure µ are σ-finite on a measure space (Ω, A, µ). Then φ � µ if and only if there

exists uniquely a.e. µ a finite-valued A-measurable function Z0 on Ω for which

(2.1) φ(A) =

∫
A

Z0dµ, ∀A ∈ A
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The function Z0 in above equation is often denoted by dφ
dµ

, so one can re-write above

equation to be

(2.2) φ(A) =

∫
A

dφ

dµ
dµ, ∀A ∈ A

Lemma 2.1: (Change of variable). Let µ � v with µ a σ finite measure on (Ω,A).

If
∫
X dµ is well-defined, then

(2.3)

∫
A

Xdµ =

∫
A

X
dµ

dv
dv, ∀A ∈ A

The definition of φ� µ means that

∀A ∈ A , µ(A) = 0⇒ φ(A) = 0.

Definition of Randon-Nikodym provides that for σ-finite measure µ dominating both

F and G, i.e., F � µ,G� µ, we can write

F (A) =

∫
A

dF

dµ
dµ; G(A) =

∫
A

dG

dµ
dµ.

Denote f = dF
dµ
, g = dG

dµ
as Randon-Nikodym derivatives and substituting in (2.1), we

obtain

H2(F,G) = h2(f, g) =

∫
[f

1
2 (x)− g

1
2 (x)]2dµ(x)

=

∫
dF

dµ
dµ+

∫
dG

dµ
dµ−

∫ √
dF

dµ

dG

dµ
dµ

=

∫
f dµ+

∫
g dµ− 2

∫ √
fg = 2− 2

∫ √
fg.
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This shows that our choice of σ-finite measure µ has no quantitative effect on h2(f, g).

To show the value of h2(f, g) is in between 0 and 1√
2
, take f = 1 and g = 0.

2.3. MHDE of discrete distributions

We consider two discrete probability distributions P = {fj : j ∈ S} and Q = {gj : j ∈

S}, where S is a discrete set,
∑
fj =

∑
gj = 1. For all j ∈ S, fj > 0, gj > 0. Then the

squared Hellinger Distance (HD) between two discrete distributions P and Q is defined

by H2(P,Q) =
∑
j∈S

(
√
fj −

√
gj)

2 =
∑
j∈S

(
fj−gj√
fj+
√
g
j

)2. The idea of MHDE is to minimize the

Hellinger distance to obtain an estimator of the unknown parameter.

For our model, we compute H2(P,Q) with the following two discrete probability dis-

tributions:

P = (r1 p̂1, .., rk p̂k, r1(1− p̂1), .., rk(1− p̂k))T

Q = (r1 p1, .., rk pk, r1(1− p1), .., rk(1− pk))T

where p̂j =
mj
nj
, pj = F (zTj θ), rj,N =

nj
N
, N =

∑k
j=1 nj. (Note that p̂j is an estimator

of pj, 1 ≤ j ≤ k.) Using a simple algebraic expansion, we obtain the squared Hellinger

Distance H2(P,Q) as

∑
j∈S

(
√
P −

√
Q)2 = r1,N(

√
p̂1 −

√
p1)2 + r2,N(

√
p̂2 −

√
p2)2 + ...+ rk,N(

√
p̂k −

√
pk)

2+

r1,N(
√

1− p̂1 −
√

1− p1)2 + r2,N(
√

1− p̂2 −
√

1− p2)2 + ...+ rk,N(
√

1− p̂k −
√

1− pk)2

=
∑
j∈S

{
rj,N(

√
p̂j −

√
pj)

2 + rj,N(
√

1− p̂j −
√

1− pj)2
}

=
k∑
j=1

rj,N

{(√
p̂j −

√
F (zTj θ)

)2

+
(√

1− p̂j −
√

1− F (zTj θ)
)2
}
.
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An MHDE is obtained by minimizing

(2.4)
K∑
j=1

rj,N

{(√
p̂j −

√
F (zTj θ)

)2

+
(√

1− p̂j −
√

1− F (zTj θ)
)2
}

w.r.t. θ for a given link function F . Equivalently, an MHDE is equal to

(2.5) max
θ∈ΘK

K∑
j=1

rj,N

{√
p̂jF (zTj θ) +

√
(1− p̂j)(1− F (zTj θ))

}
.

This can be shown from using simple algebra as follows:

K∑
j=1

rj,N

{
(
√
p̂j −

√
F (zTj θ))2 + (

√
1− p̂j −

√
1− F (zTj θ))2

}

=
K∑
j=1

rj,N

{(
p̂j + F (zTj θ)− 2

√
p̂jF (zTj θ)

)
+
(

1− p̂j + 1− F (zTj θ)− 2
√

(1− p̂j)(1− F (zTj θ))
)}

=
K∑
j=1

rj,N

{
2− 2

√
p̂jF (zTj θ)− 2

√
(1− p̂j)(1− F (zTj θ))

}

= 2− 2
K∑
j=1

rj,N

{√
p̂jF (zTj θ) +

√
(1− p̂j)(1− F (zTj θ))

}
.

Hence, to minimize the previous is to maximize the latter. Now, let us differentiate

with respect to θ, in order to examine if a solution can be obtained by mathematical

derivation:

∂

∂θ

K∑
j=1

rj,N

{√
p̂jF (zTj θ) +

√
(1− p̂j)(1− F (zTj θ))

}

=
K∑
j=1

rj,N
∂

∂θ

{√
p̂jF (zTj θ) +

√
(1− p̂j)(1− F (zTj θ))

}
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=
K∑
j=1

rj,N

{
zTj
2
f(zTj θ)

}{√
p̂jF

− 1
2 (zTj θ)−

√
1− p̂j[1− F (zTj θ)]−

1
2

}
,

which is a non-linear function in θ. Thus, as in the maximum likelihood estimation in

this context, an itaration method must be used to obtain an MHDE for θ.

2.3.1. Some notation

We now introduce some notation to state a few theorems on the proposed MHDE

defined at (2.5). Let us denote IK = [0, 1]K , as the product space, namely [0,1] with

K copies. Let πN and rN denote vectors of length K with πN = (πj,N)Kj=1 = (
mj
nj

)Kj=1

and rN = (
nj
N

)Kj=1. Define E = {r : r ∈ IK ,
∑K

j=1 rj = 1, rj > 0, 1 ≤ j ≤ K} and

GK = IK × E. Then, πN × rN ∈ IK × E.

Let Θ be the parameter space for θ, and we assume that Θ is a compact subset of

Rp. A Hellinger distance functional for estimating true unknown parameter value θ0 is a

functional T : GK → Θ such that T (π, r) is a value of θ given by

(2.6) max
θ∈Θ

K∑
j=1

{rj}
{√

πjF (zTj θ) +
√

(1− πj)(1− F (zTj θ))
}
,

where, π = (π1, π2, ..., πK)T ∈ IK and r = (r1, r2, ..., rK)T ∈ E. Then the proposed

MHDE defined by (2.5) of θ is equal to T (πN , rN).
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2.4. Properties MHDE

2.4.1. Existence of MHDE

Theorem 2.1: (i) If Θ is compact and F is continuous, then T (π, r) exists for all

(π, r) ∈ GK ; (ii) If F is continuous and strictly increasing on R and πj = F (zTj θ0), with

not all zj’s equal, then T (π, r) = θ0 uniquely, for every r ∈ E.

Proof : Observe that

1. F (zTj θ) is a continuous function of θ ; therefore
√
πjF (zTj θ),

√
(1− πj)(1− F (zTj θ))

are continuous.

2. g(θ) =
∑K

j=1{rj}{
√
πjF (zTj θ) +

√
(1− πj)(1− F (zTj θ))} is continuous of θ.

3. g(θ) is bounded (when K is fixed), because |rj| ≤ 1, 0 ≤ πj ≤ 1, 0 ≤ F (zTj θ) ≤ 1.

Part (i) now follows from the above facts since the maximum of function

K∑
j=1

{rj}{
√
πjF (zTj θ) +

√
(1− πj)(1− F (zTj θ))}

exists, that is T (π, r) exists.

For Part (ii), we use the Cauchy-Schwarz inequality as follows: for π = (π1, .., πj, .., πN),F =

(F1, .., Fj, .., FN), it follows that maximum of π · F is obtained when π = kF . As-

sume πj = F (zTj θ) can be obtained and T (π, r) = θ0 is a solution of θ. Then with

πj = F (zTj θ0) and F strictly increasing (one-to-one correspondence), we have for every j,

F (zTj θ) = F (zTj θ0) implies zTj θ = zTj θ0, which further implies θ = θ0, when zj are not

all equal.
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Notice that if zj’s are identical copies for j = 1, 2, ..., K, then T (π, r) is not unique,

as θ is not a unique solution. Therefore, the condition that not all zj’s equal guarantees

the parameterization is identifiable.

2.4.2. Continuity

Theorem 2.2: Suppose Θ is compact, F is continuous and strictly increasing on

R, and (π, r) is such that T (π, r) is unique with 0 < πj < 1, 1 ≤ j ≤ K. Then T is

continuous at (π, r).

Proof : Let πn = (π1,n, π2,n, ..., πK,n)T and rn = (r1,n, r2,n, ..., rK,n)T . Assume πn×rn ∈

GK and (πn, rn) → (π, r) as n → ∞. Denote θ = T (π, r) and θn = T (πn, rn). We will

show T (πn, rn)→ T (π, r) as n→∞. Then T is continuous at (π, r).

Define

gj,n(θ) = log{
√
πj,nF (zTj θ) +

√
(1− πj,n)(1− F (zTj θ))}

gn(θ) =
K∑
j=1

{rj,n} {gj,n(θ)}

gj(θ) = log{
√
πjF (zTj θ) +

√
(1− πj)(1− F (zTj θ))}

g(θ) =
K∑
j=1

rjgj(θ).

We will prove that g(θn) −→ g(θ). Then from the facts that g is a continuous function

of θ , uniqueness of T (π, r) and the comapctness of Θ, it follows that θn → θ as n→∞.

By the triangular inequality,

|g(θn)− g(θ)| ≤ |g(θn)− gn(θn)|+ sup
θ∈Θ
|gn(θn)− g(θ)|
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Once g(θn) → g(θ), max g(θn) → max g(θ) because if a sequence is convergent, then all

the subsequences are convergent as well, and Θ is compact so maximum exists. Then

arg max g(θn)→ arg max g(θ).

It is our objective to show that supθ∈Θ |gn(θ)− g(θ)| → 0, Then the rest of the proof

is as follows:

sup
θ∈Θ
|gn(θ)− g(θ)| ≥ | sup

θ∈Θ
gn(θ)− sup

θ∈Θ
g(θ)| = |max

θ∈Θ
gn(θ)−max

θ∈Θ
g(θ)| → 0

for every θ ∈ Θ, and therefore maxθ∈Θ gn(θ)
n→∞−−−→ maxθ∈Θ g(θ) i.e., gn(θn) → g(θ). On

the other hand, supθ∈Θ |gn(θ)−g(θ)| → 0 implies |gn(θn)− g(θ)| → 0. This is clear since

|gn(θn)− g(θn)| ≤ supθ∈Θ |gn(θ)− g(θ)|.

We now show that

(2.7) sup
θ∈Θ
|gn(θ)− g(θ)| → 0.

We first show the pointwise convergence for every j, i.e., gj,n(θ)
n→∞−−−→ gj(θ), then use the

uniform continuity of gj,n for every j. Pointwise convergence and uniform continuity im-

plies |gn(θ)− g(θ)| → 0, ∀θ ∈ Θ. Since Θ is compact, it follows that supθ∈Θ |gn(θ)− g(θ)| →

0, i.e., gn is uniformly convergent.

Using some algebraic manipulation, we have

|gn(θ)− g(θ)| =

∣∣∣∣∣
K∑
j=1

{rj,ngj,n(θ)− rjgj(θ)}

∣∣∣∣∣
=

∣∣∣∣∣
K∑
j=1

{rj,ngj,n(θ) + rj,ngj(θ)− rj,ngj(θ)− rjgj(θ)}

∣∣∣∣∣
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=

∣∣∣∣∣
K∑
j=1

{rj,n [gj,n(θ)− gj(θ)] + (rj,n − rj)gj(θ)}

∣∣∣∣∣
≤

K∑
j=1

|rj,n||gj,n(θ)− gj(θ)|+
K∑
j=1

|rj,n − rj||gj(θ)|,

by applying the triangular inequality. Since gj(θ) is bounded and rj,n
n→∞−−−→ rj, the second

term converges to zero. For the first term, first we replace F (zTj θ) with Fj. Then,

gj,n(θ)− gj(θ)

= log

{√
πj,nFj +

√
(1− πj,n)(1− Fj)

}
− log

{√
πjFj +

√
(1− πj)(1− Fj)

}

= log

{√
πj,nFj +

√
(1− πj,n)(1− Fj)√

πjFj +
√

(1− πj)(1− Fj)

}

= log

{√
πj,nFj +

√
(1− πj,n)(1− Fj)−

√
πjFj −

√
(1− πj)(1− Fj)√

πjFj +
√

(1− πj)(1− Fj)
+ 1

}
.

It is then sufficient to show that

{√
πj,nFj +

√
(1− πj,n)(1− Fj)

}
−
{√

πjFj +
√

(1− πj)(1− Fj)
}
→ 0,

which is again, after simple algebraic rearrangement, equivalent to show that

√
Fj
(√

πj,n −
√
πj
)

+
√

1− Fj(
√

1− πj,n −
√

1− πj)→ 0.
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Let δj,n =
√
Fj
(√

πj,n −
√
πj
)
+
√

1− Fj(
√

1− πj,n−
√

1− πj), then using some algebraic

manipulation, we have

|δj,n| = (πj,n − πj)

{ √
Fj

√
πj,n +

√
πj
−

√
1− Fj√

1− πj,n −
√

1− πj

}

≤ |πj,n − πj|

{∣∣∣∣∣
√
Fj

√
πj,n +

√
πj

∣∣∣∣∣+

∣∣∣∣∣
√

1− Fj√
1− πj,n +

√
1− πj

∣∣∣∣∣
}

= εj,n.

Now, log

{
|δj,n|√

πjFj+
√

(1−πj)(1−Fj)
+ 1

}
≤ log

{
|εj,n|√

πjFj+
√

(1−πj)(1−Fj)
+ 1

}
, and the latter is

bounded by

max
θ∈Θ

{
εj,n√

πjFj +
√

(1− πj)(1− Fj)
+ 1,−log

{
1− εj,n√

πjFj +
√

(1− πj)(1− Fj)

}}

Since πj,n → πj, we have |πj,n − πj |
n→∞−−−→ 0, which implies εj,n → 0. We know gj,n is

uniformly continuous for all j, so |gj,n(θ) − gj(θ) | → 0 for every θ. Then from the

compactness of Θ, we have supθ∈Θ |gj,n(θ)− gj(θ) | → 0. This completes the proof.

Theorem 2.3: Suppose Θ is compact and F is strictly increasing and continuous

on R. Define length K vectors rN = (rj,N)Kj=1 = (
nj
N

)Kj=1, πN = (πj,N)Kj=1 = (
mj
nj

)Kj=1, r =

(rj)
K
j=1 and π = (πj)

K
j=1 = (F (zTj θ))Kj=1, where 0 < rj < 1, 1 ≤ j ≤ K. Assume that

rj,N → rj > 0 as N → ∞, 1 ≤ j ≤ K. Then MHDE is consistent, i.e., T (πN , rN)
p−→

T (π, r).

Proof : The proof follows from the continuity of T (., .) and (πN , rN)
p−→ (π, r) as

N →∞.
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2.4.3. Asymptotics

Theorem 2.4: Suppose Θ is compact and let C = {zTj θ : θ ∈ Θ, 1 ≤ j ≤ K}.

Suppose F is thrice differentiable with derivatives f, f
(1)
, f (2) bounded on C, F is strictly

increasing and F (C) ⊆ [δ, 1 − δ] for some δ > 0. Let (π, r) ∈ GK be such that T (π, r)

is unique, and {(πn, rn)} = {(πj,n)Kj=1, (rj,n)K1 } be a sequence in GK such that (πn, rn)→

(π, r). Let Wn be a (p+ 1)× (p+ 1) matrix whose components converge to zero as n→

∞. Let Σ =
∑K

j=1 rjzjz
T
j G

(1)
j (zTj θ) and λ(π, r,θ) =

∑K
j=1 rjzjGj(z

T
j θ) with Gj(y) =

∂
∂y

log
{√

πjF (y) +
√

(1− πj)(1− F (y))
}
. If Σ is non-singular, then

(2.8) T (πn, rn)− T (π, r) = −λ(πn, rn,θ)(Σ−1 +Wn)

as n→∞, where λ(πn, rn,θ) is obtained from λ(π, r,θ) by replacing (π, r) with (πn, rn).

Proof : Let T (πn, rn) = θn and T (π, r) = θ. Then θn satisfies the following equation:

0 =
∂

∂θ

K∑
j=1

rj,nlog{
√
πj,nF (zTj θ) +

√
(1− πj,n)(1− F (zTj θ))}

=
K∑
j=1

rj,nzj
1

2
fj

√
πj,n
Fj
−
√

1−πj,n
1−Fj√

πj,nFj +
√

(1− πj,n)(1− Fj)
.

Let Aj,n(y) =
√
πj,nF (y) +

√
(1− πj,n)(1− F (y)), A

(1)
j,n(y) = 1

2
f(y){

√
πj,n
F (y)
−
√

1−πj,n
1−F (y)

}

Gj,n(y) =
∂

∂y
log

{√
πj,nF (y) +

√
(1− πj,n)(1− F (y))

}
=
A

(1)
j,n(y)

Aj,n(y)
.



19

Gj(y) is defined similarly as

Gj(y) =
∂

∂y
log

{√
πjF (y) +

√
(1− πj)(1− F (y))

}
=
A

(1)
j (y)

Aj(y)
.

The first derivative of Gj,n(y) is

G
(1)
j,n(y) =

f (1)(y)

f(y)

A
(1)
j,n(y)

Aj,n(y)
− f(y)2

4Aj,n(y)

(√
πj

F (y)3
+

√
1− πj

(1− F (y))3

)
−

(
A

(1)
j,n(y)

Aj,n(y)

)2

.

and λ(θn,πn, rn) =
∑K

j=1 rj,nzjGj,n(zTj θn).

Since F is thrice differentiable, Gj,n and G
(1)
j,n are continuous. Together with the

boundedness condition in the theorem, Gj,n and G
(1)
j,n are continuous and bounded, G

(2)
j,n

is bounded provided in the condition that ”... F (C) ⊆ [δ, 1 − δ] for some δ > 0”, F is

thrice differentiable with f, f (1) and f (2) are bounded on C ”...”. Note that G
(2)
j,N is not

necessarily continuous; F has bounded derivatives; and F does not take values 0 and 1,

for δ > 0. Then, by a Taylor expansion,

(2.9) Gj,n(zTj θn) = Gj,n(zTj θ) +G
(1)
j,n(zTj θ) zTj (θn − θ) +

1

2
G

(2)
j,n(zjθ

∗
n) [zTj (θn − θ)]2,

where θ∗n is a value between θn and θ.

If an → a and f is continuous on a compact set D, then f(an)
n→∞−−−→ f(a). Also

πj,n → πj means G
(1)
j,n(y)→ G

(1)
j (y) uniformly with respect to y. Now, since Theorem 5.2

implies θn − θ → 0, plugging expression (2.9) into 0 =
∑K

j=1 rj,nzjGj,n(zTj θn) gives

0 =
K∑
j=1

rj,nzj[Gj,n(zTj θ) + zTj G
(1)
j,n(zTj θ) (θn − θ) +

1

2
zTj G

(2)
j,n(zTj θ

∗
n) (θn − θ)2]
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=
K∑
j=1

rj,nzjGj,n(zTj θ) +

{
K∑
j=1

rj,nzjz
T
j

[
G

(1)
j,n(zTj θ) +

1

2
G

(2)
j,n(zTj θ

∗
n) zTj (θn − θ)

]}
(θn − θ)

Now, since rj,n → rj,
∑K

j=1 rj,nzjz
T
j G

(1)
j (zTj θ) →

∑K
j=1 rjzjz

T
j G

(1)
j (zTj θ) = Σ and the

elements of Σ1 =
∑K

j=1 rjzjz
T
j

1
2
G

(2)
j,n(zTj θ

∗
n)zTj (θn − θ) goes to zero.

Through algebraic manipulation, we then have 0 = λ(πn, rn,θ) + (Σ + Σ1)(θn − θ).

When Σ1 goes to zero as n → ∞, we have θn − θ = −λ(πn, rn,θ)(Σ−1 + Wn), where

elements of matrix Wn goes to zero, i.e., Wn ∝ Σ−1
1 → 0 as n → ∞. This completes the

proof of Theorem 2.4.

A special case thatGj(y) = 0 takes place when πj = F (y), andG
(1)
j (y) = −1

4
f2(y)

F (y)[1−F (y)]
.

Consequently, Σ =
∑K

j=1 rjzjz
T
j G

(1)
j (zTj θ) =

∑K
j=1 rjzjz

T
j

(
−1

4

) f2(zTj θ)

F (zTj θ)(1−F (zTj θ))
. Let

Σ∗ =
∑K

j=1 rjzjz
T
j

f2(zTj θ)

F (zTj θ)[1−F (zTj θ)]
. Now Σ∗ has a less complicated form and can be readily

expressed. Replacing Σ−1 by (−4)Σ∗
−1

gives

T (πn, rn)− T (π, r) = 4λ(θn,πn, rn)(Σ∗
−1

+Wn).

A note here is that Σ∗ is singular only when F (zTj θ) = 0 for some j values and zj = z

for all other j values. This means zj are not linearly independent from each other and

hence rank less than the dimension. Thus Σ∗ is non-singular except in trivial cases.

The next theorem gives the asymptotic distribution of the proposed MHDE. First we

state a lemma.

Lemma 1 : If πj,n → πj as n→∞, then, for any value of y with 0 < F (y) < 1,

Gj,n(y)−Gj(y) =
1

4
f(y)(πj,n − πj) [πj(1− πj)F (y)(1− F (y))]−

1
2
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Theorem 2.5 : Suppose that the MHDE is consistent and the expansion (2.8) holds

for T (πN , rN). Suppose that the probability of a response at zj is πj, 1 ≤ j ≤ K, and

that T (π, r) is uniquely defined. Let WN be a (p+ 1)× (p+ 1) matrix whose components

converge to zero in probability as N →∞. Let θ = T (π, r). Then, as N →∞, we have

(2.10)
√
N [T (πN , rN)− T (π, r)]

D−→ N(0,
1

16
Σ−1Σ∗Σ−1)

where Σ∗ is defined by
∑K

j=1 rjzjz
T
j

f (2)(zTj θ)

F (zTj θ)[1−F (zTj θ)]
and Σ is as defined in Theorem 2.4.

Proof : From (2.8), we have

T (πN , rN)− T (π, r) = −λ(πN , rN ,θ)(Σ−1 +WN),

and so

T (πN , rN)− T (π, r) = −

{
K∑
j=1

rjzj
[
Gj,N(zTj θ)−Gj(z

T
j θ)
]}{

Σ−1 +WN

}
.

Theorem 2.4 also have the condition that πj,n converges to πj in probability. From the

lemma above, we have Gj,N(y)−Gj(y) = 1
4
f(y)(πj,N−πj) [πj(1− πj)F (y)(1− F (y))]−

1
2 .

Using this expression, we obtain

T (πN , rN)− T (π, r) = −1

4

{
Σ−1 +WN

} K∑
j=1

rj
f(zTj θ)(πj,N − πj)zj{1 + oP (1)}[
πj(1− πj)F (zTj θ)

(
1− F (zTj θ)

)] 1
2

since WN = oP (1) by assumptions. For 1 ≤ j ≤ K, we have
√
nj(πj,N−πj)

D−→ N(0, πj(1−

πj)). Also
√
Nrj =

√
nj, and thus we complete the proof.

Theorem 2.6 : Suppose the consistency condition and the expansion (2.8) hold for

T (πN , rN). Let WN be a (p+ 1)× (p+ 1) matrix whose components converge to zero in
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probability as N →∞. Then, as N →∞, we have

T (πN , rN)− T (π, r) =
{

Σ∗
−1

+WN

} K∑
j=1

[
rjf(zTj θ)zj(πj,N − πj)[1 + op(1)]

F (zTj θ)[1− F (zTj θ)]

]

and
√
N [T (πN , rN)− T (π, r)]

D−→ N(0,Σ∗
−1

).

Theorem 2.6 states that when the model is chosen correctly, MHDE and the MLE are

asymptotically equivalent. Therefore, the MHDE is asymptotically efficient.

2.5. Simulation Study

2.5.1. Logistic CDF

An experiment testing 20 subjects at each of 10 levels was carried out. For each level,

I generated 20 data points based on a binomial distribution with n = 20 and probability

of success as F (zTj θ), j = 1, ..., 10. Take θ = (θ0, θ1) to be the true parameter vector and

zj = (1, xj)
T where xj = j, ∀j = 1, ..., 10. For Models I-IV studied below, the cumulative

distribution function (CDF) of Logistic (1.2, 1.21) distribution is chosen as for the CDF

F and the true parameter is taken as θ = (θ0, θ1) = (−1, 0.4). Then I varied the true

parameter vector θ to be (θ0 = −3, θ1 = 0.75) to see the effect of the proposed MHDE

for the value of the true parameter. For model V, VI, VII studied below, I used the

same CDF with θ = (θ0 = −1, θ1 = 0.4), and then varied the true parameter vector θ to

be (θ0, θ1) = (−3, 0.75) with the Logistic(1.125, 2.27) distribution. R-function optim(.)

(Nelder and Mead method) is used to search for numerical solutions of the MLE and

MHDE defined by (1.1) and (2.5), respectively. Then the MLE and MHDE are obtained
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by averaging 1000 replications. To compare the performance between the MLE and the

MHDE, I computed the bias and mean squared errors (MSEs) of the estimators based on

1000 replications as follows:

Bias(θ̂m,i) =

∑1000
i=1 (θ̂m,i − θm)

1000
, MSE(θ̂m,i) =

∑1000
i=1 (θ̂m,i − θm)2

1000
, m = 0, 1.

The performance of MLE and MHDE was compared under each of the following four

models:

Model I: F (y) = 1
1+e−(y−µy)/σy = L(y)

Model II: F (y) = 0.9L(y) + 0.1L(0.5 y)

Model III: F (y) = 0.9L(y) + 0.1L(2 y)

Model IV: F (y) = 0.9L(y) + 0.1

Model I is the clean model (i.e., there is no contamination); Model II and Model III

are classical Huber contamination models with 10% elongated tails and 10% shortened

tails, respectively. In doing so, I flatten out or steepen up true distribution to examine

the robustness of MHDE with respect to contamination of the clean model. Model IV

represents the overall increase of response for 10% of the observation.

Simulation results are given Tables 2.1 and 2.2. The values in Tables 2.1 and 2.2

show that if we only consider the bias of these estimators for comparison, then the MLE

has less bias under Models I and III. On the other hand, if we only consider the MSE of

these estimators, then the MHDE has mean squared errors slightly greater or equals to the

MLE, except in Model IV. Overall, if the true distribution has a longer tail, then the MLE

loses its advantage (for example in the cases of Models II and IV), and we recommend

the MHDE as our estimator of choice. An example of this could be that the actual
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Table 2.1. Biases and MSEs of MHDE & MLE under a Logistic CDF with
θ0 = −1, θ1 = 0.4, Model I-IV

Method Model Bias(θ0) Bias(θ1) MSE(θ0) MSE(θ1)
I -0.1573 0.0261 0.2681 0.0071

MHDE II 0.0301 -0.0063 0.2118 0.0058
III -0.2764 0.0510 0.3034 0.0086
IV 0.4297 -0.0238 0.3793 0.0062
I -0.080 0.0125 0.2118 0.0056

MLE II 0.0920 -0.0175 0.1946 0.0054
III -0.1961 0.0364 0.2327 0.0063
IV 0.4789 -0.0347 0.4080 0.0062

Table 2.2. Biases and MSEs of MHDE & MLE under a Logistic CDF with
θ0 = −3, θ1 = 0.75, Model I-IV

Method Model Bias(θ0) Bias(θ1) MSE(θ0) MSE(θ1)
I -0.1580 0.0269 0.8361 0.0224

MHDE II 0.0716 -0.0112 0.6922 0.0189
III -0.5146 0.0944 1.1528 0.0320
IV 0.8268 -0.0476 1.4035 0.0225
I -0.0260 0.0029 0.7008 0.0186

MLE II 0.1892 -0.0326 0.6477 0.0175
III -0.3645 0.0671 0.892 0.024
IV 0.9248 -0.0689 1.5058 0.0224

distribution function F is logistic CDF, but the CDF of a normal distribution is used

instead. On the other hand, if true distribution is with shortened tails, the MHDE does

not offer significant protection against contamination. Furthermore, the MHDE offers

protection against overall increase of response showing. An overall increase of response

showing might occur, say, when increase of response is due to some other variables outside

of this simulation study. In such cases, the MHDE has both smaller biases and smaller

mean squared errors.
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To further study the behaviour of proposed MHDE and to compare it with the MLE,

I increased the contamination rate to 20% from 10%. That is, I considered following three

models:

Model V: F (y) = 0.8L(y) + 0.2L(0.5 y)

Model VI: F (y) = 0.8L(y) + 0.2L(2 y)

Model VII: F (y) = 0.8L(y) + 0.2

Model V is with 20% contamination rate with elongated tails; Model VI is with 20%

contamination rate with shortened tails; and Model VII is the strictly increasing response.

Simulations were carried out based on these models and the results are presented in Tables

2.3 and 2.4.

Table 2.3. Biases and MSEs of MHDE & MLE under a Logistic CDF with
θ0 = −1, θ1 = 0.4, Model V-VII

Method Model Bias(θ0) Bias(θ1) MSE(θ0) MSE(θ1)
V 0.1587 -0.0295 0.2210 0.0058

MHDE VI -0.4755 0.0851 0.4956 0.0146
VII 0.9462 -0.0666 1.0760 0.0101
V 0.2151 -0.0397 0.222 0.006

MLE VI -0.3777 0.0673 0.3634 0.0105
VII 0.9843 -0.0773 1.1336 0.0109

Table 2.4. Biases and MSEs of MHDE & MLE under a Logistic CDF with
θ0 = −3, θ1 = 0.75, Model V-VII

Method Model Bias(θ0) Bias(θ1) MSE(θ0) MSE(θ1)
V 0.2405 -0.0444 0.7795 0.0221

MHDE VI -0.8827 0.1623 1.6992 0.0517
VII 1.7458 -0.1155 3.6462 0.0322
V 0.3506 -0.0644 0.7678 0.0220

MLE VI -0.7010 0.1294 1.2395 0.0372
VII 1.8151 -0.1351 3.8444 0.0347
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The comparison of estimators MLE and MHDE based on a larger contamination rate

(20%) shows the following observations. If we are to compare based on the bias, then

with true parameter vector (θ0 = −1, θ1 = 0.4), the MHDE has smaller biases than

those of the MLE under Models V and VII, and the MLE has a smaller bias than that

of the MHDE under Model VI. If we are to compare estimators based on the MSE only,

then the MHDE has smaller MSEs under Models V and VII comapred to the MLE. This

suggests that the MHDE offers consistent protection when the long-tailed contamination

gets larger, as well as the strictly increasing contamination. Under the true parameter

vector (θ0 = −3, θ1 = 0.4), we observed the same findings compared to the first four

models (i.e., models I to IV) considered above. If we are to compare mean squared errors

only, then under the true parameter vector (θ0 = −1, θ1 = 0.4), the MHDE has slightly

smaller MSE than that of the MLE for Model VII. We reach the same conclusion when

θ is changed to (θ0 = −3, θ1 = 0.75). This suggests my findings obtained earlier that the

MHDE outperforms the MLE in terms of MSE when contamination has strict increase in

response, as demonstrated in Models IV and VII, and further it outperforms the MLE in

terms of MSE when contamination gets larger (≥ 20%). On the other hand, the MHDE

does not perform well under short-tailed contamination, at least compared to the MLE.

Note that the MHDE outperforms the MLE consistently in terms of bias when exposed

under long-tailed or strictly increasing contaminations. As for the performance between

two sets of true parameter vectors, it can be seen that the first set has a moderately

smaller output in terms of the absolute value, compared to the second set. This suggests

that the location and scale parameters of the logistic CDF may have an effect on the

performance of both MHDE and MLE.
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2.5.2. Normal CDF

In this section, the CDF of a normal distribution is used as the CDF for F. In partic-

ular, the CDFs of N (1.2, 1.21) and N (1.125, 2.27) are employed as the CDF for F . The

idea is to build a better relationship between F−1(πj) and zTj θ, so that the scattering is

linearly scattered, rather than clustered together (creating boundary problems, for exam-

ple). This can be solved by adjusting the location and scale of zTj θ. In a way, it is under

the “true” distribution. If we use the CDF of N(0, 1) distibution for F , then it produces

a less ideal fit and therefore not a true CDF.

Again, 20 subjects at each of 10 levels were simulated, by generating 20 data points

within each level with binomial (n = 20, F (zTj θ)) distribution. Also, θ = (θ0 = −1, θ1 =

0.4) is again used as the true parameter, and I continued to use zj = (1, xj)
T , where

xj = j, j = 1, ..., 10.Then I varied true parameter to be θ = (θ0, θ1) = (−3, 0.75) and

N (1.125, 2.27) , as in the case of the logistic CDF. The performance of MHDE and MLE

were compared for the following four models:

Model I: F (y) = Φ(y)

Model II: F (y) = 0.9 Φ(y) + 0.1 Φ(0.5 y)

Model III: F (y) = 0.9 Φ(y) + 0.1 Φ(2 y)

Model IV: F (y) = 0.9 Φ(y) + 0.1

Model I is the clean model with normal CDF; Model II is a contaminated model with

elongate tails; Model III is with shortened tails; Model IV represents the overall increase

of response. The MLE and MHDE were again estimated by averaging 1000 replications.

Biases and mean squared errors were obtained and the simulation analysis are given in

Tables 2.5 and 2.6
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Table 2.5. Biases and MSEs of MHDE & MLE under a Normal CDF with
θ0 = −1, θ1 = 0.4, Model I-IV

Method Model Bias(θ0) Bias(θ1) MSE(θ0) MSE(θ1)
I -0.1650 0.0312 0.1697 0.0051

MHDE II 0.0139 -0.0314 0.1221 0.0042
III -0.1941 0.0475 0.1683 0.0062
IV 0.422 -0.036 0.2772 0.0043
I -0.0262 0.0062 0.1000 0.0029

MLE II 0.1187 -0.0484 0.1046 0.0047
III -0.0497 0.0206 0.0951 0.0031
IV 0.5025 -0.0535 0.3319 0.0051

Table 2.6. Biases and MSEs of MHDE & MLE under a Normal CDF with
θ0 = −3, θ1 = 0.75, Model I-IV

Method Model Bias(θ0) Bias(θ1) MSE(θ0) MSE(θ1)
I -0.3367 0.0597 0.5997 0.0174

MHDE II 0.1526 -0.0538 0.4173 0.0136
III -0.4657 0.0972 0.7002 0.0234
IV 0.7696 -0.0618 0.9304 0.0145
I -0.0796 0.0132 0.3463 0.0097

MLE II 0.3298 -0.0844 0.4079 0.0152
III -0.1980 0.0475 0.3771 0.0118
IV 0.9239 -0.0953 1.1314 0.0174

Simulation results in Tables 2.5 and 2.6 based on the normal CDF show that if we

are to compare the two estimators based on the bias only, then the MLE has the best

performance under Models I and III. Otherwise, the MHDE has the best performance. If

we are to compare the MLE and MHDE based on the mean squared error, then the MLE

has a smaller MSE, except for Model IV, in which case the MHDE has a smaller MSE.

This matches up with the obsevation on the bias above. This suggests that it might be

best to use the MLE under clean model and for short tailed contaminations, whereas it

might be best to use the MHDE when the true distribution has longer tails. If there is
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a strict-increase in response, then the MHDE dominates MLE in terms of both the bias

and MSE.

To further study the behaviour of the MHDE, I examined three more models with

contamination rate of 20%:

Model V: F (y) = 0.8 Φ(y) + 0.2 Φ(0.5 y)

Model VI: F (y) = 0.8 Φ(y) + 0.2 Φ(2 y)

Model VII: F (y) = 0.8 Φ(y) + 0.2

Model V is of long-tailed contamination; Model VI is of short-tailed contamination;

and Model VII is of strict-increase contamination. Simulation results for these three

models are presented in Tables 2.7 and 2.8. They are somewhat similar to the simulation

results for Models I, II, III and IV with the normal CDF case.

Table 2.7. Biases and MSEs of MHDE & MLE under a Normal CDF and
θ0 = −1, θ1 = 0.4, Model V-VII

Method Model Bias(θ0) Bias(θ1) MSE(θ0) MSE(θ1)
V 0.0236 -0.0317 0.1179 0.0040

MHDE VI -0.1944 0.0623 0.169 0.008
VII 0.8386 -0.0748 0.7831 0.0083
V 0.1253 -0.0484 0.1039 0.0046

MLE VI -0.0474 0.0335 0.0924 0.0038
VII 0.9033 -0.0916 0.8847 0.0105
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Table 2.8. Biases and MSEs of MHDE & MLE under a Normal CDF with
θ0 = −3, θ1 = 0.75, Model V-VII

Method Model Bias(θ0) Bias(θ1) MSE(θ0) MSE(θ1)
V 0.1554 -0.0550 0.4147 0.0142

MHDE VI -0.7252 0.1558 1.0826 0.0408
VII 1.5648 -0.1410 2.7482 0.0299
V 0.3308 -0.0850 0.4045 0.0156

MLE VI -0.4043 0.0957 0.5555 0.0205
VII 1.6884 -0.1727 3.1070 0.0376
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CHAPTER 3

Symmetric Chi-squared Distance Estimation

3.1. Introduction

Let P andQ be two discrete distributions with equal length, that is P = {fj : j ∈ S} and

Q = {gj : j ∈ S}. The squared Symmetric Chi-squared Distance between P and Q is then

defined as

(3.1) S2(P,Q) =
∑
j∈S

(
fj − gj
fj + gj

)2

.

We consider the following two distributions for P and Q :

P = (r1p̂1, r2p̂2, .., rkp̂k, r1(1− p̂1), r2(1− p̂2), .., rk(1− p̂k))T

Q = (r1p1, r2p2, .., rkpk, r1(1− p1), r2(1− p2), .., rk(1− pk))T .

Then S2(P,Q) reduces to

S2(P,Q) = (
p̂1 − p1

p̂1 + q1

)2 + ..+ (
p̂k − pk
p̂k + pk

)2 + (
p̂1 − p1

2− p̂1 − p1

)2 + ..+ (
p̂k − pk

2− p̂k − pk
)2.

For the binomial regression model defined in Chapter 2, S2(P,Q) becomes

(3.2) S2(P,Q) =
K∑
j=1

{(
p̂j − pj
p̂j + pj

)2

+

(
p̂j − pj

2− p̂j − pj

)2
}
,

where p̂j =
mj
nj

, pj = F (zTj θ), rj,N =
nj
N

and N =
∑K

j=1 nj. Again, note that p̂j is an

estimator of pj, 1 ≤ j ≤ K. Then a symmetric chi-squared distance estimator (SCDE) of

θ obtained by minimizing S2(P,Q) w.r.t. θ.
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To find a SCDE, we set the gradient of S2(P,Q) equal to zero to find a possible solution

from a mathematical derivation. The derivarive of S2(P,Q) defined by (3.2) with respect

to θ gives

∂

∂θ

K∑
j=1

{(
p̂j − pj
p̂j + pj

)2

+

(
p̂j − pj

2− p̂j − pj

)2
}

=
∂

∂θ

K∑
j=1

{
(p̂j − pj)2

[
(p̂j + pj)

−2 + (2− p̂j − pj)−2
]}
.

(3.3)

If we let the bracket term {.} to zero, then we have

(p̂j − pj)
[
(2− p̂j − pj)−3 − (p̂j + pj)

−3
]

=
p̂j − pj

(2− p̂j − pj)3
− p̂j − pj

(p̂j + pj)3
,

and this implies that

1

(p̂j + pj)2
+

1

(2− p̂j − pj)2
=

2(p̂j − 1)

(2− p̂j − pj)3
.

The preceding expression cannot be solved explicitely for θ. Thus, one needs to use a

numerical metheod to find a solution for SCDE. We will attempt to minimize the objective

function (3.2) numerically later in the simulation section.

3.2. Properties of SCDE

Some notation is needed to state a few theorems on the proposed SCDE. For 1 ≤ j ≤

K, let πN = (πj,N)Kj=1 =
(
mj
nj

)K
j=1

and rN =
(nj
N

)K
j=1

. Define E = {r : r ∈ IK ,
∑K

j=1 rj =

1, rj > 0, 1 ≤ j ≤ K} and GK = IK ×E. Denote IK = [0, 1]K . Then πN × rN ∈ IK ×E.

Let Θ be the parameter space for θ, and Θ is assumed to be a compact subset of Rp. A
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symmetric chi-squared distance functional for estimating an unknown true parameter θ0

is a functional T : GK → Θ such that T (π, r) is a value of θ given by

(3.4) min
θ∈Θ

K∑
j=1


(
πj − F (zTj θ)

πj + F (zTj θ)

)2

+

(
πj − F (zTj θ)

2− πj − F (zTj θ)

)2
 ,

where π = (π1, π2, ..., πK)T ∈ IK and r = (r1, r2, ..., rK)T ∈ E. The proposed SCDE

defined by (3.3) is then equal to T (πN , rN).

3.2.1. Existence of SCDE

Theorem 3.1 : (i) If Θ is compact and F is continuous, then if πj 6= 1 for all j,

T (π, r) exists for all (π, r) ∈ GK . (ii) If F is continuous and strictly increasing on R and

πj = F (zTj θ0), 1 ≤ j ≤ K, with not all zj equal, then T (π, r) = θ0 uniquely.

Proof : Let ∆(θ) =
∑K

j=1 ∆j(θ), where

∆j(θ) =

(
πj − F (zTj θ)

πj + F (zTj θ)

)2

+

(
(1− πj)− (1− F (zTj θ))

(1− πj) + (1− F (zTj θ))

)2

.

Let θn → θ. Since F (zTj θ) is a continuous function with respect to θ, ∆(θn) → ∆(θ)

when θn → θ. Therefore, ∆ is continuous w.r.t. θ on a compact set, which means a

minimum can be obtained. As for (ii), again we note the condition that not all zj’s are

equal. Let us denote θt as another solution different from θ0. Since F is one-to-one and

continuous, this implies F (zTj θt) 6= F (zTj θ0). Thus, T (π, r) is uniquely defined.
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3.2.2. Continuity of SCDE

Theorem 3.2 : Suppose Θ is compact, F is continuous and strictly increasing on

R, and (π, r) is such that T (π, r) is unique with 0 < πj < 1, 1 ≤ j ≤ K. Then T is

continuous at (π, r).

Proof : Let (πn, rn)→ (π, r). Denote ∆(θ) =
∑K

j=1 ∆j(θ) and ∆n(θ) =
∑K

j=1 ∆j,n(θ),

where

∆j(θ) =

(
πj − F (zTj θ))

πj + F (zTj θ)

)2

+

(
(1− πj)− (1− F (zTj θ))

(1− πj) + (1− F (zTj θ))

)2

,

∆j,n(θ) =

(
πj,n − F (zTj θ)

πj,n + F (zTj θ)

)2

+

(
πj,n − F (zTj θ)

2− πj,n − F (zTj θ)

)2

.

It is sufficient to show, as n→∞,

(3.5) sup
θ∈Θ
|∆n(θ)−∆(θ)| → 0

The rest of the proof follows: from uniform continuity ∆n → ∆ for all θ we get

|∆(θn)−∆n(θn)| → 0, and it also implies that

∣∣∣∣max
θ∈Θ

∆n(θ)−max
θ∈Θ

∆(θ)

∣∣∣∣ = |∆n(θn)−∆(θ)| → 0.

By squeeze theorem,

|∆(θn)−∆(θ)| = |∆(θn)−∆N(θn) + ∆n(θn)−∆(θ)|

≤ |∆(θn)−∆n(θn)|+ sup
θ∈Θ
|∆n(θn)−∆(θ)| → 0,

and thus we conclude that ∆(·) is continuous.
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To show that

(3.6) sup
θ∈Θ
|∆n(θ)−∆(θ)| → 0

write

∆n(θ)−∆(θ) =

K∑
j=1

{
(
πj,n − Fj
πj,n + Fj

)2 + (
πj,n − Fj

2− πj,n − Fj
)2

}
−

K∑
j=1

{
(
πj − Fj
πj + Fj

)2 + (
πj − Fj

2− πj − Fj
)2

}
.

By triangular inequality,

|∆n(θ)−∆(θ)|

≤
K∑
j=1

∣∣∣∣(πj,n − Fjπj,n + Fj
)2 − (

πj − Fj
πj + Fj

)2

∣∣∣∣+
K∑
j=1

∣∣∣∣( πj,n − Fj
2− πj,n − Fj

)2 − (
πj − Fj

2− πj − Fj
)2

∣∣∣∣ .(3.7)

The RHS of (3.7) can be simplified by algebraic expansion as

=

∣∣∣∣ 4Fj(πj,nπj)

(πj,n + Fj)2(πj + Fj)2

∣∣∣∣ |(πj,n − πj)|
+

∣∣∣∣4(1− Fj) [(1− Fj)2 − (1− πj)(1− πj,n)]

(2− πj,n − Fj)2(2− πj − Fj)2

∣∣∣∣ |(πj,n − πj)|
= |An| · |(πj,n − πj)| ,

whereAn =
∣∣∣ 4Fj(πj,nπj)

(πj,n+Fj)2(πj+Fj)2

∣∣∣+∣∣∣∣4(1−Fj)[(1−Fj)2−(1−πj)(1−πj,n)]
(2−πj,n−Fj)2(2−πj−Fj)2

∣∣∣∣. We note thatAn is bounded

since Fj, 0 < πj < 1, 0 < πj,n < 1 are all probabilities. Then |An| · |(πj,n − πj)| → 0 since

πj,n → πj → 0.This shows supθ∈Θ |∆n(θ) − ∆(θ)| → 0. By uniqueness of T (π, r) and

the compactness of Θ we then obtain that T (πn, rn) → T (π, r) as n → ∞; i.e., T (.) is

continuous at (π, r). This completes the proof.
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3.2.3. Consistency of SCDE

Theorem 3.3 : Suppose Θ is compact and F is strictly increasing and continuous

on R. Define length K vectors rN = (rj,N)Kj=1 =
(nj
N

)K
j=1

, πN = (πj,N)Kj=1 =
(
mj
nj

)K
j=1

,

r = (rj)
K
j=1 and π = (πj)

K
j=1 =

(
F (zTj θ)

)K
j=1

, where 0 < rj < 1, 1 ≤ j ≤ K. Assume

that rj,N → rj > 0 as N → ∞. Then SCDE is consistent, i.e., T (πN , rN)
p−→ T (π, r) as

N →∞.

Proof : The proof follows from the continuity of T (., .) and (πN , rN) →P (π, r) as

N →∞.

3.2.4. Asymptotic results

Theorem 3.4 : Suppose Θ is compact and let C =
{
zTj θ : θ ∈ Θ, 1 ≤ j ≤ K

}
. Sup-

pose F is thrice differentiable with derivatives f, f (1), f (2) bounded on C, F is strictly

increasing and F (C) ⊆ [δ, 1− δ] for some δ > 0. Let (πn, rn) =
{

(πj,n)Kj=1 , (rj,n)Kj=1

}
be

a sequence in GK such that (πn, rn) → (π, r) as n → ∞. Let Wn be a (p + 1) × (p + 1)

matrix whose components converge to zero as n→∞. Let Σ =
∑K

j=1 zjz
T
j G

(1)
j (zTj θ) and

λ(π, r,θ) =
∑K

j=1 zjGj(z
T
j θ) with Gj(y) = ∂

∂y

∑K
j=1{(

πj−F (y)

πj+F (y)
)2 + (

πj−F (y)

2−πj−F (y)
)2}. If Σ is

non-singular, then

(3.8) T (πn, rn)− T (π, r) = −λ(πn, rn,θ)(Σ−1 +Wn)

as n→∞, where λ(πn, rn,θ) is obtained from λ(π, r,θ) by replacing (π, r) with (πn, rn).

Proof : Let θn = T (πn, rn), θ = T (π, r). Define

Gj,n(y) =
∂

∂y
{(
πj,n − F (zTj θ)

πj,n + F (zTj θ)
)2 + (

πj,n − F (zTj θ)

2− πj,n − F (zTj θ)
)2}
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similarly to Gj(y) with πj replaced by πj,n. Note that θn is a solution to the equation

0 =
∂

∂θ

K∑
j=1


(
πj,n − F (zTj θ)

πj,n + F (zTj θ)

)2

+

(
πj,n − F (zTj θ)

2− πj,n − F (zTj θ)

)2


= 4
[
F (zTj θ)− πj,n

]
f(zTj θ)zTj

[
πj,n

(F (zTj θ) + πj,n)3
− 1− πj,n

(F (zTj θ) + πj,n − 2)3

]
.

Since differentiability implies continuity, Gj,n, G
(1)
j,n are continuous and bounded, G

(2)
j,n

is bounded but not necessarily continuous, because of the condition that “...F is thrice

differentiable and bounded on C....” Then by a Taylor expansion, we have

Gj,n(zTj θn) = Gj,n(zTj θ) +G
(1)
j,n(zTj θ)(θn − θ) +

1

2
G

(2)
j,n(zTj θ

∗)[zTj (θn − θ)]2,

where zTj θ
∗ lies between zTj θn and zTj θ. Note that Gj,n(.) → Gj uniformly in y, since

πn → π. We replace G
(1)
j,n with G

(1)
j and rewrite Gj,n(zTj θn) as

(3.9) Gj,n(zTj θn) = Gj,n(zTj θ) +G
(1)
j (zTj θ) zj(θn − θ) +

1

2
G

(2)
j,n(zTj θ

∗) [zTj (θn − θ)]2.

Then substituting the rhs of (3.9) in the equation 0 =
∑K

j=1 zjGj,n(zTj θn) gives

0 =
K∑
j=1

zjGj(z
T
j θ) +

K∑
j=1

zjz
T
j

[
G

(1)
j (zTj θ) +

1

2
G

(2)
j,n(zTj θ

∗) zTj (θn − θ)

]
(θn − θ)

= λ(πn, rn,θ) +

{
K∑
j=1

zjz
T
j

[
G

(1)
j (zTj θ) +

1

2
G

(2)
j,n(zTj θ

∗) zTj (θn − θ)

]}
(θn − θ)

and

Σ1,n =
K∑
j=1

zjz
T
j

1

2
G

(2)
j,n(zTj θ

∗)zTj (θn − θ),
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a matrix whose elements go to zero as n→∞. Therefore 0 = λ(πn, rn,θ)+(Σ+Σ1,n)(θn−

θ). Then we obtain (θn − θ) = T (πn, rn) − T (π, r) = −λ(πn, rn,θ)(Σ−1 + Wn), where

Wn ∝ Σ1,n → 0. This completes the proof.

Theorem 3.5 : Suppose SCDE is consistent and the expansion (3.8) holds for

T (πN , rN). Suppose the probability of a response at zj is πj, 1 ≤ j ≤ K, and that

T (π, r) is uniquely defined. Let WN be a (p + 1) × (p + 1) matrix whose components

converge to zero in probability as N →∞. Let θ = T (π, r). Then, as N →∞, we have

(3.10)
√
N [T (πN , rN)− T (π, r)]

D−→ N(0,Σ−1ΣΣ−1),

where Σ = 1
4

∑K
j=1 f(zTj θ)(1− F (zTj θ))

(
1

(F (zTj θ))2
+ 1

(1−F (zTj θ))2

)2

zjz
T
j .

3.3. Simulation study

I have kept the true parameters and distribution functions to be the same throughout

the simulations in Chapters 2 and 3, so a fair comparison can be carried out in Chapter 4.

An experiment testing 30 subjects at 10 levels was carried out. For each level, 30 random

binomial realizations were generated based on Binomial (n = 30 , p = F (zTj θ)) distribtion

j = 1, .., 10. Again θ = (θ0, θ1) denotes the true parameter and zj = (1, xj)
T . I used the

true parameter as (θ0 = −1, θ1 = 0.4) for all models, and then varied the true parameter

to be (θ0 = −3, θ1 = 0.75) for all models. In order to obtain the proposed SCDE given

circa (3.2) numerically, R-function optim(.) (Nelder and Mead method) was used to find

the minimum of the objective function (3.2). Estimates of SCDE and MLE were then

obtained based averaging 1000 replications. To compare the performance between the

SCDE and MLE estimators, I obtained biases and mean squared errors as measures of



39

comparison defined as follows:

Bias(θ̂m,i) =

∑1000
i=1 (θ̂m,i − θm)

1000
, MSE(θ̂m,i) =

∑1000
i=1 (θ̂m,i − θm)2

1000
, m = 0, 1,

where i represents the sequential order of replication and m the number the parameters.

For example, θ̂0,1 represents the value of parameter estimator θ0 at its first replication.

3.3.1. Logistic CDF

In this section, the CDFs of logistic density functions Logistic(1.2, 1.21) and Logistic(1.12,

2.27) are used as the cumulative distribution function for F . Simulation results were com-

pared for Huber’s contamination models. In particular, the four models were selected to

compare the biases and mean squared errors (MSEs) of SCDE and MLE:

Model I: F (y) = 1
1+e−(y−µy)/σy = L(y)

Model II: F (y) = 0.9L(y) + 0.1L(0.5 y)

Model III: F (y) = 0.9L(y) + 0.1L(2 y)

Model IV: F (y) = 0.9L(y) + 0.1

Model I is the clean model (i.e., there is no contamination); Models II and III repre-

sent classical Huber contamination models with 10% elongated tails 10% shortened tails,

respectively. Model IV represents a model with an overall increase of response for 10%

of the observation. Simulated results of biases and MSEs of SCDE and MLE for true

parameters (θ0 = −1, θ1 = 0.4) are presented in Tables 3.1 and 3.2.

The simulation results based on the Logistic(1 .2 , 1 .21 ) distribution with true pa-

rameters (θ0 = −1, θ1 = 0.4) demonstrate that if we only compare biases between the

two estimators SCDE and MLE, then the SCDE has a smaller bias under Models II &
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Table 3.1. Biases and MSEs of SCDE & MLE under the Logistic CDF and
θ0 = −1, θ1 = 0.4, Model I-IV

Method Model Bias(θ0) Bias(θ1) MSE(θ0) MSE(θ1)
I -0.1002 0.0185 0.1629 0.0047

SCDE II 0.0224 -0.0041 0.1443 0.0038
III -0.2558 0.0460 0.2260 0.0065
IV 0.4555 -0.0266 0.3435 0.0048
I -0.0152 0.0031 0.1284 0.0036

MLE II 0.1051 -0.0192 0.1297 0.0035
III -0.1666 0.0301 0.1643 0.0046
IV 0.5147 -0.0414 0.3853 0.0052

Table 3.2. Biases and MSEs of SCDE & MLE under the Logistic CDF and
θ0 = −3, θ1 = 0.75, Model I-IV

Method Model Bias(θ0) Bias(θ1) MSE(θ0) MSE(θ1)
I -0.2630 0.0444 0.6153 0.0168

SCDE II -0.0030 -0.0011 0.5333 0.0141
III -0.4575 0.0844 0.8014 0.0235
IV 0.8252 -0.0436 1.1069 0.0153
I -0.0808 0.0122 0.4585 0.0122

MLE II 0.1666 -0.0319 0.4520 0.0123
III -0.2861 0.0533 0.5613 0.0161
IV 0.9458 -0.0737 1.2688 0.0165

Table 3.3. Biases and MSEs of SCDE & MLE under the Logistic CDF and
θ0 = −1, θ1 = 0.4, Model V-VII

Method Model Bias(θ0) Bias(θ1) MSE(θ0) MSE(θ1)
V 0.1397 -0.0250 0.1641 0.0045

SCDE VI -0.4457 0.0819 0.3595 0.0114
VII 0.9249 -0.0593 0.9766 0.0075
V 0.2239 -0.0402 0.1732 0.0049

MLE VI -0.3613 0.0656 0.2683 0.0082
VII 0.9841 -0.0768 1.0753 0.0091

IV, otherwise the MLE has a smaller bias under the clean model and for Model III. On

the other hand, if we only compare mean squared errors of the two estimators, then the
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Table 3.4. Biases and MSEs of SCDE & MLE under the Logistic CDF and
θ0 = −3, θ1 = 0.75, Model V-VII

Method Model Bias(θ0) Bias(θ1) MSE(θ0) MSE(θ1)
V 0.2379 -0.0443 0.5478 0.0158

SCDE VI -0.8304 0.1516 1.3085 0.0392
VII 1.6973 -0.1073 3.2907 0.0257
V 0.3891 -0.0725 0.5577 0.0165

MLE VI -0.6472 0.1190 0.8887 0.0268
VII 1.8118 -0.1415 3.6497 0.0313

SCDE has a smaller MSE than the MLE under the model IV only. The MLE has a smaller

MSE than the SCDE for Models I, II & III. This may suggest that the SCDE has bet-

ter performance than the MLE with respect to both bias and MSE under strict-increase

contaminations; and the SCDE is less biased under 10% elongated contamination models,

but it has a slightly higher mean squared error value. This could due to, for example, the

bias-variance tradeoff.

I further studied the behaviour of SCDE under greater contamination levels. In par-

ticular, three more models were selected under a 20% contamination rate:

Model V: F (y) = 0.8L(y) + 0.2L(0.5 y)

Model VI: F (y) = 0.8L(y) + 0.2L(2 y)

Model VII: F (y) = 0.8L(y) + 0.2

Tables 3.3 and 3.4 present the simulation results for biases and MSEs of SCDE and

MLE under the Models V, VI and VII. By comparing bises of the SCDE and MLE, we see

that the SCDE has a smaller bias than the MLE under Models V & VII. By comparing

the two estimators based on the MSE, we note that the MLE has a smaller MSE than

the SCDE, except for the Model V &VII. From this simulation, one can thus conclude

that if bias is the primary criteria used for comparison, then the SCDE is better than the
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MLE when a long-tailed contamination is present; and the SCDE does not offer protection

when a short-tailed contamination is present. In the case of (θ0 = −3, θ1 = 0.75), the

mean and variance of zTj θ is different from that of (θ0 = −1, θ1 = 0.4). This might be

the reason that the deviation when (θ0 = −3, θ1 = 0.75) is used is generally bigger than

when (θ0 = −1, θ1 = 0.4).

3.3.2. Normal CDF

In this section, the CDF of the normal density N (1 .2 , 1 .21 ) is used as F. The following

four models were considered first:

Model I: F (y) = Φ(y)

Model II: F (y) = 0.9 Φ(y) + 0.1 Φ(0.5 y)

Model III: F (y) = 0.9 Φ(y) + 0.1 Φ(2 y)

Model IV: F (y) = 0.9 Φ(y) + 0.1

Table 3.5. Biases and MSEs of SCDE & MLE under a Normal CDF and
θ0 = −1, θ1 = 0.4, Model I-IV

Method Model Bias(θ0) Bias(θ1) MSE(θ0) MSE(θ1)
I -0.0347 0.0055 0.0709 0.0018

SCDE II 0.0881 -0.0436 0.0684 0.0035
III -0.0461 0.0175 0.0675 0.0021
IV 0.4868 -0.0462 0.2957 0.0038
I -0.0207 0.0028 0.0670 0.0018

MLE II 0.1399 -0.0511 0.0714 0.0040
III -0.0135 0.0150 0.0608 0.0020
IV 0.4986 -0.0528 0.3031 0.0043

The simulation results for biases and MSEs of SCDE and MLE are given in Tables

3.5 and 3.6. We observe that if we are to compare biases only, then the SCDE has a

smaller bias for Models II & IV. If we use the mean squared error for comparison, then
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we can see that the SCDE has smaller MSE values for Models II & IV as well. It is

expected that the MLE has both a smaller bias and smaller MSE when the model is

free from contamination. Notice that the difference between SCDE and MLE is not too

big, and this might be due to normal CDF has a narrower distribution. Under a small

contamination rate, the SCDE performs better than the MLE when contamination has

long tails, as well as in the strict-increase case.

In order to see the behavior of SCDE under increased contamination, the contamina-

tion rate increased to 20% and then compared the performance between the SCDE and

the MLE again for the following three models:

Model V: F (y) = 0.8 Φ(y) + 0.2 Φ(0.5 y)

Model VI: F (y) = 0.8 Φ(y) + 0.2 Φ(2 y)

Model VII: F (y) = 0.8 Φ(y) + 0.2

Table 3.6. Biases and MSEs of SCDE & MLE under a Normal CDF and
θ0 = −1, θ1 = 0.4, Model V-VII

Method Model Bias(θ0) Bias(θ1) MSE(θ0) MSE(θ1)
V 0.0706 -0.0419 0.0718 0.0034

SCDE VI -0.0708 0.0298 0.0774 0.0028
VII 0.8759 -0.0812 0.8102 0.0080
V 0.1228 -0.0491 0.0756 0.0039

MLE VI -0.0520 0.0341 0.0674 0.0031
VII 0.8907 -0.0897 0.8369 0.0094

Under 20% contamination, the SCDE has less bias for Models V & VII (i.e., same

as the previous case), and the MLE has less bias in the Model VI again. Based on the

simulation of this chapter, the SCDE should be preferred over the MLE when the potential

contamination has longer tails, or strictly increasing. It is also worth to note that, the

bias and MSE of SCDE for parameter θ1 is smaller than those of the MLE.
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Simulation results given in Tables 3.7 and 3.8 based on (θ0 = −3, θ1 = 0.75) reveal that

the SCDE is superior in every category compared to the MLE. This may suggest that the

SCDE is robust against misspecification of CDF when data zj has a wider scattering (i.e.,

larger sample variance). Such cases may happen when the values of zTj θ are clustered

around boundary probabilities that are close to 0 or 1. We will further investigate the

behaviour of SCDE in comparison with the MLE and MHDE in the next chapter.

Table 3.7. Biases and MSEs of SCDE & MLE under a Normal CDF and
θ0 = −3, θ1 = 0.75, Model I-IV

Method Model Bias(θ0) Bias(θ1) MSE(θ0) MSE(θ1)
I -0.0351 0.0078 0.2113 0.0057

SCDE II 0.2576 -0.0763 0.2889 0.0115
III -0.2155 0.0465 0.2715 0.0078
IV 0.8818 -0.0800 0.9793 0.0120
I -0.0202 0.0039 0.2201 0.0061

MLE II 0.3420 -0.0899 0.3216 0.0135
III -0.2281 0.0536 0.2802 0.0095
IV 0.9119 -0.0950 1.0168 0.0143

Table 3.8. Biases and MSEs of SCDE & MLE under a Normal CDF and
θ0 = −3, θ1 = 0.75, Model V-VII

Method Model Bias(θ0) Bias(θ1) MSE(θ0) MSE(θ1)
V 0.2607 -0.0745 0.3042 0.0117

SCDE VI -0.3244 0.0728 0.3349 0.0113
VII 1.6522 -0.1553 2.9065 0.0293
V 0.3562 -0.0901 0.3297 0.0135

MLE VI -0.3466 0.0853 0.3614 0.0144
VII 1.6895 -0.1724 3.0230 0.0345
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CHAPTER 4

Comparison between MLE, MHDE and SCDE

In this chapter, I compare the performance of the proposed estimators, MHDE and

SCDE, with the traditional estimator MLE under the same conditions. Again, the be-

haviors of MHDE and SCDE are studied under some contamination models. Further,

K (= 10) groups of Bernoulli random variables are generated. Within each group,

nj(= 30) Bernoulli random variables are independently and identically distributed with

corresponding probability of success pj equal to F (zTj θ), j = 1, ..., 10, where F (.) is a

CDF.

4.1. Logistic CDF

In this section, the CDF of Logistic(1.2, 1.21) distribution is used as the CDF for F

to represent the true distribution function to study the estimators. A parameter vectors

(θ0 = −1, θ1 = 0.4) and (θ0 = −3, θ1 = 0.75) are used as the “true ′′ parameter vector.

Again, the same four models used in Chapters 2 & 3 are studied in this chapter, namely

the clean, 10% short-tailed, 10% long-tailed, 10% strict-increase models. Biases and mean

squared errors of the three estimators are presented in Table 4.1 under these four different

models.

From Table 4.1, we can observe the following. If we use bias as the measure of

comparison, then the SCDE has a smaller bias in absolute value than the MLE and

MHDE for Models II and IV. On the other hand, if we use the mean squared error as the

measure of comparison, then the SCDE again has a slightly smaller MSE than the MLE

and MHDE as well for IV. So, this suggests that the SCDE is an overall better estimator if
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Table 4.1. Baises and MSEs of MHDE, SCDE and MLE under a Logistic
CDF and θ0 = −1, θ1 = 0.4, Model I-IV

Method Model Bias(θ0) Bias(θ1) MSE(θ0) MSE(θ1)
I -0.0692 0.0116 0.1451 0.0039

MHDE II 0.0543 -0.0106 0.1293 0.0036
III -0.2076 0.0371 0.1908 0.0053
IV 0.4682 -0.0330 0.3487 0.0047
I -0.1215 0.0210 0.1779 0.0049

SCDE II 0.0017 -0.0012 0.1476 0.0041
III -0.2548 0.0457 0.2346 0.0066
IV 0.4354 -0.0236 0.3299 0.0047
I -0.0288 0.0042 0.1333 0.0036

MLE II 0.0927 -0.0175 0.1282 0.0036
III -0.1622 0.0288 0.1631 0.0045
IV 0.4988 -0.0397 0.3706 0.0049

-2
.5

-2
.0

-1
.5

-1
.0

-0
.5

0.
0

-2
.5

-2
.0

-1
.5

-1
.0

-0
.5

0.
0

-2
.5

-2
.0

-1
.5

-1
.0

-0
.5

0.
0

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Figure 4.1. Boxplots of MHDE, SCDE and MLE under a Logistic CDF and
θ0 = −1, θ1 = 0.4, Model I

the model has longer tails; otherwise both MHDE and SCDE are subpar compared to the

MLE when short-tailed models are present. Boxplots based on different contamination
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Figure 4.2. Boxplots of MHDE, SCDE and MLE under a Logistic CDF and
θ0 = −1, θ1 = 0.4, Model II

models suggests a systematic trends of estimators θ0 and θ1. It appears that θ0 tend to be

under-estimated, and θ1 tend to be over-estimated for the clean and short-tailed models,

whereas the othe way around for the long and strict-increase models. The skewness of

histograms suggests the systematic deviation. To further study the behaviour of the

estimators, three more models with a higher contamination rate of 20% as described in

Chapter 1 are again used. Table 4.2 present the corresponding simulation results for

biases and MSEs for the SCDE, MHDE and MLE.

Under the higher contamination rate, simulation results show that if we wish to com-

pare biases only, then the SCDE has a clear advantage over both MHDE and MLE for

Models V and VII. On the other hand, if we compare based on the mean squared error,

then the MHDE and SCDE has smaller MSEs over MLE. The MLE outperforms both

the SCDE and MHDE for the Model VI. In summary, both estimators MHDE and SCDE
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Figure 4.3. Boxplots of MHDE, SCDE and MLE under a Logistic CDF and
θ0 = −1, θ1 = 0.4, Model III

Table 4.2. Biases and MSEs of MHDE, SCDE and MLE under a Logistic
CDF and θ0 = −1, θ1 = 0.4, Model V-VII

Method Model Bias(θ0) Bias(θ1) MSE(θ0) MSE(θ1)
V 0.1973 -0.0353 0.1588 0.0045

MHDE VI -0.4018 0.0734 0.3288 0.0097
VII 0.9609 -0.0687 1.0349 0.0081
V 0.1466 -0.0271 0.1605 0.0044

SCDE VI -0.4422 0.0808 0.3839 0.0114
VII 0.9234 -0.057 0.9723 0.0072
V 0.2309 -0.0415 0.1656 0.0048

MLE VI -0.3501 0.0640 0.2749 0.0080
VII 0.9841 -0.0751 1.0745 0.0088

have some protection when the postulated models have long-tailed contamination and the

SCDE is slightly better. When a strict-increasing contamination is present, the MHDE

provides a smaller MSE for θ0 in model V only.
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Figure 4.4. Boxplots of MHDE, SCDE and MLE under a Logistic CDF and
θ0 = −1, θ1 = 0.4, Model IV

The bahavior of these three estimators are displayed in boxplots and histograms as

well, see Figures 4.1 to 4.11. Boxplots and histograms show that all three estimators are

subject to different skewness. In particular, they are left-skewed for θ0 and right-skewed

for θ1. The MHDE has less skewed distributions than the SCDE overall. Histograms

further validate this observation.

Biases and MSEs are also studied with the true parameter set equal to θ0 = −3, θ1 =

0.75 with adjusted location and scale for the logistic CDF, see Tables 4.3 and 4.4. Again,

the observations are similar in nature to the previous case of the true parameter.

4.2. Normal CDF

In this section, the CDFs of N(1.2, 1.21) and N(1.125, 2.27) distributions are used as

the CDF for F in the model. Again, the Models I to VII used in the previous section are
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Figure 4.5. Histograms of MHDE, SCDE and MLE under a Logistic CDF
and θ0 = −1, θ1 = 0.4, Model I

Table 4.3. Biases and MSEs of MHDE, SCDE and MLE under a Logistic
CDF and θ0 = −3, θ1 = 0.75, Model I-IV

Method Model Bias(θ0) Bias(θ1) MSE(θ0) MSE(θ1)
I -0.0994 0.0167 0.4552 0.0124

MHDE II 0.1449 -0.0276 0.4648 0.0127
III -0.4581 0.0825 0.7287 0.0210
IV 0.8809 -0.0584 1.1919 0.0157
I -0.1827 0.0316 0.5363 0.0145

SCDE II 0.0590 -0.0122 0.4932 0.0131
III -0.5375 0.0958 0.8676 0.0247
IV 0.8108 -0.0399 1.1137 0.0155
I -0.0262 0.0035 0.4156 0.0112

MLE II 0.2166 -0.0406 0.4584 0.0126
III -0.3704 0.0664 0.6202 0.0175
IV 0.9356 -0.0704 1.2726 0.0165

used to compare the MHDE, SCDE and MLE here as well. We observed the following:

the SCDE performs better than the MHDE and MLE in Model II, but it has a higher
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Figure 4.6. Histograms of MHDE, SCDE and MLE under a Logistic CDF
and θ0 = −1, θ1 = 0.4, Model II

Table 4.4. Biases and MSEs of MHDE, SCDE and MLE under a Logistic
CDF and θ0 = −3, θ1 = 0.75, Model V-VII

Method Model Bias(θ0) Bias(θ1) MSE(θ0) MSE(θ1)
V 0.3107 -0.0591 0.5693 0.0164

MHDE VI -0.7624 0.1360 1.1223 0.0335
VII 1.7920 -0.1311 3.5995 0.0287
V 0.2308 -0.0449 0.5818 0.0162

SCDE VI -0.8410 0.1507 1.3237 0.0392
VII 1.7168 -0.1085 3.3741 0.0258
V 0.3780 -0.0712 0.5843 0.0171

MLE VI -0.6693 0.1193 0.9536 0.0281
VII 1.8360 -0.1433 3.7422 0.0313

bias in Model IV. For Model IV, the MHDE has the edge over the other two. A higher

contamination rate case (i.e., Models V, VI and VII) shows the difference in terms of bias

and mean squared error begin to diminish, while MHDE and SCDE still perform superior
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Figure 4.7. Histograms of MHDE, SCDE and MLE under a Logistic CDF
and θ0 = −1, θ1 = 0.4, Model III

to the MLE in Models V and VII. This may suggest that both the MHDE and SCDE

offer greater protection if the postulated model is of long-tailed contamination.

Table 4.5. Biases and MSEs of MHDE, SCDE and MLE under a Normal
CDF and θ0 = −1, θ1 = 0.4, Model I-IV

Method Model Bias(θ0) Bias(θ1) MSE(θ0) MSE(θ1)
I -0.1026 0.0189 0.0882 0.0026

MHDE II 0.0701 -0.0405 0.0740 0.0034
III -0.1103 0.0324 0.0969 0.0035
IV 0.4566 -0.0436 0.2662 0.0037
I -0.0509 0.0096 0.0704 0.0019

SCDE II 0.0696 -0.0414 0.0686 0.0033
III -0.0477 0.0168 0.0702 0.0021
IV 0.4906 -0.0475 0.2962 0.0038
I -0.0294 0.0056 0.0638 0.0018

MLE II 0.1257 -0.0495 0.0731 0.0039
III -0.0288 0.0169 0.0659 0.0022
IV 0.5049 -0.0541 0.3051 0.0044
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Figure 4.8. Histograms of MHDE, SCDE and MLE under a Logistic CDF
and θ0 = −1, θ1 = 0.4, Model IV

Table 4.6. Biases and MSEs of MHDE, SCDE and MLE under a Normal
CDF with θ0 = −1, θ1 = 0.4, Model V to VII

Method Model Bias(θ0) Bias(θ1) MSE(θ0) MSE(θ1)
V 0.0901 -0.0427 0.0730 0.0035

MHDE VI -0.1398 0.0516 0.1111 0.0055
VII 0.8729 -0.0844 0.8088 0.0087
V 0.0910 -0.0439 0.0752 0.0036

SCDE VI -0.0522 0.0277 0.0737 0.0026
VII 0.8907 -0.0837 0.8362 0.0084
V 0.1440 -0.0515 0.0752 0.0041

MLE VI -0.0441 0.0330 0.0707 0.0031
VII 0.9134 -0.0947 0.8760 0.0102

When a sample size in each group is less than 20, the SCDE shows good robust

property with a price of unstable performance and indistinguishable advantage compared

to the MLE. However, with a moderate sample size of n = 30, the performance of SCDE

is quite stable and is comparable to the MLE and MHDE. When θ0 = −3, θ1 = 0.75,
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Figure 4.9. Boxplots of MHDE, SCDE and MLE under a Logistic CDF and
θ0 = −1, θ1 = 0.4, Model V

both bias and MSE of MHDE is better than those of SCDE, which are both better than

those of MLE. In particular, the SCDE has bias and MSE smaller than those of MLE at

a short-tailed contamination rate of 20%. It suggests that the SCDE might offer some

protection at short-tail as well when contamination gets larger.
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Figure 4.10. Boxplots of MHDE, SCDE and MLE under a Logistic CDF
and θ0 = −1, θ1 = 0.4, Model VI

Table 4.7. Biases and MSEs of MHDE, SCDE and MLE under a Normal
CDF and θ0 = −3, θ1 = 0.75, Model I to IV

Method Model Bias(θ0) Bias(θ1) MSE(θ0) MSE(θ1)
I -0.1824 0.0347 0.3002 0.0085

MHDE II 0.2168 -0.0676 0.2892 0.0110
III -0.3095 0.0687 0.3921 0.0130
IV 0.8424 -0.0806 0.9185 0.0129
I -0.0887 0.0166 0.2246 0.0058

SCDE II 0.2381 -0.0710 0.2894 0.0111
III -0.1711 0.0396 0.2638 0.0075
IV 0.9199 -0.0890 1.0403 0.0136
I -0.0478 0.0100 0.2163 0.0058

MLE II 0.3262 -0.0861 0.3068 0.0128
III -0.1564 0.0401 0.2553 0.0079
IV 0.9320 -0.0997 1.0506 0.0153
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Figure 4.11. Boxplots of MHDE, SCDE and MLE under a Logistic CDF
and θ0 = −1, θ1 = 0.4, Model VII
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Figure 4.12. Histograms of MHDE, SCDE and MLE under a Logistic CDF
and θ0 = −1, θ1 = 0.4, Model V
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Figure 4.13. Histograms of MHDE, SCDE and MLE under a Logistic CDF
and θ0 = −1, θ1 = 0.4, Model VI
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Figure 4.14. Histograms of MHDE, SCDE and MLE under a Logistic CDF
and θ0 = −1, θ1 = 0.4, Model VII
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Figure 4.15. Boxplots of MHDE, SCDE and MLE under a Normal CDF
and θ0 = −1, θ1 = 0.4, Model I
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Figure 4.16. Boxplots of MHDE, SCDE and MLE under a Normal CDF
and θ0 = −1, θ1 = 0.4, Model II
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Figure 4.17. Boxplots of MHDE, SCDE and MLE under a Normal CDF
and θ0 = −1, θ1 = 0.4, Model III
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Figure 4.18. Boxplots of MHDE, SCDE and MLE under a Normal CDF
and θ0 = −1, θ1 = 0.4, Model IV
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Figure 4.19. Histograms of MHDE, SCDE and MLE under a Normal CDF
and θ0 = −1, θ1 = 0.4, Model I
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Figure 4.20. Histograms of MHDE, SCDE and MLE under a Normal CDF
and θ0 = −1, θ1 = 0.4, Model II
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Figure 4.21. Histograms of MHDE, SCDE and MLE under a Normal CDF
and θ0 = −1, θ1 = 0.4, Model III
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Figure 4.22. Histograms of MHDE, SCDE and MLE under a Normal CDF
and θ0 = −1, θ1 = 0.4, Model IV
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Figure 4.23. Boxplots of MHDE, SCDE and MLE under a Normal CDF
and θ0 = −1, θ1 = 0.4, Model V
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Figure 4.24. Boxplots of MHDE, SCDE and MLE under a Normal CDF
and θ0 = −1, θ1 = 0.4, Model VI
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Figure 4.25. Boxplots of MHDE, SCDE and MLE under a Normal CDF
and θ0 = −1, θ1 = 0.4, Model VII
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Figure 4.26. Histograms of MHDE, SCDE and MLE under a Normal CDF
and θ0 = −1, θ1 = 0.4, Model V
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Figure 4.27. Histograms of MHDE, SCDE and MLE under a Normal CDF
and θ0 = −1, θ1 = 0.4, Model VI
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Figure 4.28. Histograms of MHDE, SCDE and MLE under a Normal CDF
and θ0 = −1, θ1 = 0.4, Model VII
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Table 4.8. Biases and MSEs of MHDE, SCDE and MLE under a Normal
CDF and θ0 = −3, θ1 = 0.75, Model V to VII

Method Model Bias(θ0) Bias(θ1) MSE(θ0) MSE(θ1)
V 0.2465 -0.0703 0.2886 0.0111

MHDE VI -0.4752 0.1107 0.5363 0.0215
VII 1.5980 -0.1508 2.7292 0.0284
V 0.2478 -0.0710 0.3013 0.0113

SCDE VI -0.2545 0.0630 0.3015 0.0102
VII 1.6432 -0.1534 2.8590 0.0285
V 0.3490 -0.0878 0.3136 0.0130

MLE VI -0.2962 0.0769 0.3222 0.0127
VII 1.6729 -0.1697 2.9552 0.0335
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CHAPTER 5

Summary and Future work

In this thesis, I have put emphasis on analyzing the asymptotic behaviour and robust

property of two minimum distance estimators for a discrete binomial model. These two

estimators, namely MHDE and SCDE, are based on minimizing under different metric

measures other than the Euclidean metric. These estimators are generally known to be

robust to outliers and model misspecifications.

In Chapters 2 and 3, consistency and asymptotic properties of the proposed MHDE

and SCDE have been discussed through series of mathematical approaches and followed by

simulation examples comparing with the corresponding MLE in order to show robustness

properties of MHDE and SCDE. In Chapter 4, these two estimators along with the MLE

are compared by simulation studies.

Understanding the behaviour of an estimator requires a full investigation of combina-

tion of link function, data frame X and the parameters chosen. This is plausible for a

discrete case analysis, given the condition that distribution of X is known and number of

covariates is small. But as one can see, even in a case assuming independence between

any of two covariates, exhausting combination of all k covariates can quickly explode and

massive calculation would be cumbersome to compute. This is also not possible in a clin-

ical trial, where absent observations (or not enough observations, i.e. less than 15) take

place within some of the categories. Distribution of covariates is known in a simulated

setting, but it is not known in a real-life setting. As for future work, one should try to

fit various distributions (i.e., continuous and discrete), to further examine the behaviour

of proposed estimators. Also, location and scale parameters for a “correct” cumulative
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density function matters, and the relationship of θ and the location and scale parameter

is worth investigating.
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