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Abstract 

This research focuses on the study of mechanisms of proppant transport in reservoirs during frac-

packing operation. As an attempt to improve current numerical modeling of proppant transport, a 

multi-module, numerical proppant, reservoir and Geomechanics simulator was developed, linked 

and tailored for capturing the processes and mechanisms that are believed to be of significance in 

frac-pack operations. 

Extensive laboratory experiments have shown that several factors affect the final distribution of 

proppants in the fracture. Most often these factors are accounted for through an empirical 

correlation coming from a wide range of experiments. Although it is extremely hard, or 

impossible, to include all of these interacting phenomena of proppant transport in a numerical 

model, we have investigated most of them and involved them in our numerical model.  

The complicating phenomena that are addressed in the literature and has been captured by our 

developed tool are: hindered settling velocity (terminal velocity of proppants in the injection 

fluid), effect of fracture walls, proppant concentration and inertia on settling (due to extra drag 

exerted on particles, compared to single particle motion in Stokes regime in unbounded 

medium), possible propped fracture porosity and also mobility change due to the presence of 

proppants and fracture closure or extension during proppant injection. 

Most of the current (published) numerical models for simulating proppant transport require an 

analytical hydraulic fracture model. Most of the time the fracture width, if not assumed to be 

constant, is calculated based on PKN, KGD, P3D or PL3D models. Even in most recent works, 

an adaptive re-meshing technique is employed to couple a fully 3D fracture model with a 

proppant transport model, yet the fracture model is fully elastic. These models neglect plastic 

deformations of the medium, assuming plasticity has minor effects during the operation. In 
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addition, unlike our model, conventional simulators do not include deformation resulting from 

the interaction between stress and fluid flow response in a porous medium.   

The main objective of this research is to link a numerical hydraulic fracture model to a proppant 

transport model to study the fracturing response and proppant distribution and to investigate the 

effect of proppant injection on fracture propagation and fracture dimensions. The results have 

provided valuable information in the field for frac-packing operations and optimization. An 

investigation of different design parameters in proppant transport operation was performed. This 

investigation not only is useful in testing the robustness of the developed numerical tool, it 

provides practical recommendations and trends in a better design of the treatment operation. 

Moreover, the errors in the model were distinguished through this sensitivity analysis when an 

unexpected relationship between inputs and outputs was observed. 

From a numerical point of view, we have utilized different techniques to reduce the expected 

long computational time of the model. Local mesh refinement, dimensional splitting and sparse 

method of solving matrix equations were employed to optimize the running time of the model. 

Geomechanics and fluid mechanics equations were solved by finite difference method, while the 

hyperbolic proppant transport PDE were solved by WENO scheme of finite volume through the 

application of flux limiters. The reason of using this method is that the solution of hyperbolic 

PDEs may encounter smooth transition or there can be large gradients of the field variables. The 

numerical challenge posed in a shock situation is that high-order finite difference schemes lead 

to significant oscillations in the vicinity of shocks despite that such schemes result in higher 

accuracy in smooth regions. On the other hand, first-order methods provide monotonic solution 

convergences near the shocks, while giving poorer accuracy in the smooth regions. Accurate 
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numerical simulation of such systems is a challenging task using conventional numerical 

methods.  

As of now, there is a significant uncertainty in the effect of proppant properties and fluid 

parameters on the final proppant distribution. Therefore, our tool will increase the understanding 

of the relationship between fluid and proppant properties and the final distribution of these 

particles, which in turn determines the conductivity of the propped fracture, leading to reduction 

of the mentioned uncertainty and more realistic production forecast especially for reservoirs 

under improved or enhanced oil recovery scheme as found in heavy oil and oil sands projects.  
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Chapter 1: General introduction 

1.1 Introduction 

The technique of hydraulic fracturing consists of injecting a fluid into a medium to initiate and 

propagate (a) fracture(s) inside that medium. Hydraulic fracturing was first introduced in the 

Houston gas field in western Kansas in 1947 (Howard & Fast, 1970) and it has been successfully 

used for stimulation purposes and improving oil recovery. In 1950, Shell Oil Company in 

Germany used the term "frac-pack" for sand control completions that were hydraulically 

fractured before being gravel packed (Ellis, 1998). The second successful treatment in which 

viscous crude oil and sand were pumped dates back to 1963 in a Venezuelan field (Roodhart et 

al., 1994). However, it was more than 20 years before the technique was widely applied. After 

1985, the improvement in production of frac-packs compared to other completion methods and 

the development of deep-water fields in the Gulf of Mexico, suddenly increased the impetus for 

frac-packing (Bale et al., 1994; Hannah et al., 1994). 

Proppant injection also helps to increase the productivity of the stimulated well. Proppants, 

which are granular materials like sand, prevent the fracture closure and provide a conductive 

path to facilitate flow from the reservoir through the fracture and to the well. However, 

premature bridging of the fracture by proppant particles, which is called screen-out, should be 

avoided. After pumps are shut down, proppants need to withstand in-situ stresses and they should 

remain in place at flowback. 

An important part of hydraulic fracturing modelling is proppant transport and deposition, since 

the proppant placement and the properties of the proppant bed strongly affect the eventual 

productivity of the well. Injection of low viscosity fluids makes the proppant transport and 

deposition even more important as the faster settling of the proppants may reduce propped 

fracture length and the expected productivity.  
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Figure 1.1: Frac-Packing Treatment (Weng & Klein, 1998) 

The final distribution of the proppant bed in the fracture may be affected by several processes. 

These are:  

1. Leak-off of the carrying fluid through the fracture walls into the formation.  

2. Settling of proppant particles due to gravity.  

3. Variation in the rheology of the carrying fluid 

4. Difference in the velocity of proppants and carrying fluid  

5. Extra drag force exerted on the particles by the walls of the fracture 

 The majority of the current proppant transport models do not calculate the fracture dimensions 

numerically but rather they use analytical equations. None of the available frac-pack models are 

able to capture geomechanical effects in the fracturing process. In the current research, an 

intensive literature survey was carried out to investigate the results of laboratory experiments on 

particle motion to be able to simulate the proppant distribution more accurately. The objective is 

to gather all the mechanisms previously studied at the laboratory scale in our numerical model.  

In this research, a 3D numerical proppant transport model is coupled to our developed numerical 

fracture simulator to properly investigate proppant transport phenomenon in hydraulic fractures. 

A smeared fracture approach will be implemented and utilized in a numerical model based on the 

continuum mechanics assumption. This is the first model that couples the fluid flow, solid 
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deformation, proppant transport, and mechanics of fracture growth to create a numerical tool for 

fracture creation when proppants are injected. This is the first and only model that links 

numerical fracture geometry calculations with a proppant transport model. 

The model can be used by operators to design and optimize frac-pack treatments in a systematic 

way. The simulator will aid in identifying the important parameters for frac-packing, leading to 

improvements in fracture design and proppant transport. 

1.2 Problem Statement 

Proppant transport models in hydraulic fracturing have been developed with various levels of 

success. Fracture simulation in these models usually has some serious shortfalls that lessen their 

suitability for field applications. Regarding the way that these models simulate the fracture, two 

different categories can be recognized: models with constant rectangular or elliptical width (slot 

experiment simulations) and models with the fracture geometry coming from an analytical 

equation (like PKN, P3d or PL3D). These models simulate a planar fracture in a pre-determined 

direction; In addition, they are unable to capture plastic deformations in the reservoir which are 

very important in weak formations. Regarding solid transport simulations, they do not include 

simultaneous settling velocity corrections for fracture wall, proppant concentration and inertia, 

fracture closure on the proppants and mobility reduction as a function of proppant concentration 

among others. Although these aspects have been studied separately, a numerical model that takes 

account of all these effects has not been published. Also, the numerical methods used in the 

published models are not accurate for transport problems.   

We propose to develop a coupled hydro-mechanical, multi-module numerical model to capture 

the abovementioned processes that occur during the frac-packing. The model will interface a 

numerical hydraulic fracture model to a reservoir simulator and a proppant transport simulator. A 

very accurate finite volume numerical technique for transport problem was combined with the 

dimensional splitting method to reduce the running time of multi-dimensional simulations. 

1.3 Background 

A typical hydraulic fracturing treatment consists of three steps: (1) a fluid pad without proppant 

is pumped down the well under high pressure to initiate and extend the induced fractures. (2) A 

high-viscosity fracturing fluid containing proppant is pumped to extend the fracture and place 
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proppants. Proppant is transported into the fracture by the proppant laden fluid, and its function 

is to prop the fractures and keep the created fractures open after the pumping stops. (3) A fluid 

pad without proppant is pumped following the proppant to displace all the proppant laden slurry 

in the well-bore into the fracture (Brannon et al., 2009; Cipolla, 2009; Grieser et al., 2009; 

Crafton, 2008; Fisher, et al., 2004; Wiley et al., 2004). Usually the fluid which carries the 

proppant is required to have a high viscosity, so that the proppant can be distributed uniformly 

inside the fracture and form a high-conductivity path. Fracture conductivity and propped fracture 

length are the two main factors determining the productivity of fractured wells. In high-

permeability reservoirs, fracture conductivity is more important to enhance well productivity 

than fracture length, while for low-permeability reservoirs, the fracture length is more important. 

Both of these factors are dependent on proppant transport. Ideally the proppant should distribute 

uniformly across the production interval. This requires that the fluid have good proppant 

suspension capability to keep the proppant from settling. In all the fracturing treatments, 

proppant transport is a key issue because it determines whether or not a large amount of proppant 

settles down to the fracture bottom and forms a proppant bed. Horizontal transport of the 

proppant determines how far the proppant is transported into the fracture and how long the 

propped portion of the fracture is. In this research models are proposed and implemented to show 

the impact of proppant transport on fracture geometry. 

Though different approaches have been implemented for studying sediment transport and 

developing sediment transport functions, basic aspects of sediment transport due to fluid 

movement remain the same. The transport of sediment particles by a flow of liquid can be in the 

form of bed-load and/or suspended-load, depending on the particle characteristics (particle size 

distribution and concentration) and flow conditions (the velocity profile, bed-shear stress and 

shear velocity). Typically, three modes of sediment motion have been observed: 1) traction 

motion, 2) saltation motion, and 3) suspended motion. When the bed-shear stress exerted on an 

individual particle exceeds the critical value for initiation of motion (referred to as Shields 

parameter or Shields criterion), the particle starts to move by rolling and/or sliding, and is 

referred to as traction motion. During traction motion, the particles pivot out of the position and 

move in the direction of the flow while maintaining contact with the channel bed.  

As the bed-shear velocity increases, the particles start moving along the bed in the form of 

regular jumps, which are referred to as saltations (Brannon et al., 2005). During the saltation 
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motion, the turbulence tries to lift the particle into suspension, but the particle weight is too 

heavy to be in a suspended state, and thus, falls back to the channel bed. Usually, the transport of 

particles by rolling, sliding, and saltating is commonly referred to as the bed-load transport. 

When the bed-shear velocity exceeds the particle settling velocity, the turbulent forces become 

higher than the particle weight and the particles move by suspended motion (van Rijn, 1984). 

The mechanics of sediment transport are controlled mainly by the horizontal fluid velocity. At 

low velocities, the sediments mainly move as a result of sliding and/or rolling. At intermediate 

velocities, a fluidized layer is formed which promotes bed-load transport. At higher velocities, 

sediments are transported due to suspended motion (Biot & Medlin, 1985). 

Our model numerically solves the mass balance of proppant and slurry during the packing 

process. The developed proppant model accounts for the leak off of fracturing fluid from the 

fracture, effects of fracture walls on settling velocity, changes in settling velocities caused by 

changes in proppant concentration and inertial effects associated with large relative velocities 

between the proppant and the fluid. The model also accounts for the formation of proppant bed at 

the bottom of the fracture. The most important input of the tool is the fracture geometry, which 

can be assessed analytically (e.g., through PKN fracture model), or by using a numerical fracture 

model. The distribution of the proppant concentration in the fracture is the main output of this 

model. The model has been verified against numerical slot test simulations. The model has been 

used in a sensitivity analysis to study how the final proppant distributions are impacted by the 

proppant size and density, carrying fluid viscosity and fluid flow rate. The new tool is a 

noticeable step towards improving the efficiency and consistency of proppant transport 

modeling. The model can be used to improve proppant placement under a given set of in-situ 

conditions.  

1.4 Research Objective 

Significant amounts of research have been directed towards understanding the hydraulic 

fracturing and solid transport mechanisms in underground formations. Yet, several aspects of the 

process remain unclear.  

The main objective of the research is to develop the capability to simulate hydraulic fracturing 

and frac-packing in reservoirs using a coupled multi-module numerical model. The model 

consists of a smear fracture simulator and a proppant transport module. The model can be used to 
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investigate the effect of proppant injection on fracture width, length, and mobility. We have also 

investigated the effect of various proppant and pad parameters on frac-pack performance. This 

study is a unique approach for further understanding of the proppant transport process to allow 

for possible enhancements of frac-packing performance. The sensitivity analysis is one of the 

significance of this research. Modeling the field problem due to the lack of data and variability of 

properties is so complex that makes the simulation almost impossible. Therefore, the purpose of 

our sensitivity analysis is establishing trends based on which optimizations and 

recommendations can be made. Besides, by performing a parametric analysis, the impact of such 

factors as flow rate, and fracturing fluid rheology and proppant properties on proppant transport 

is assessed. This model provides a platform to analyze the fracturing response of field operations 

as well. 

Smeared fracture approach has been used to develop our numerical fracture module, which is 

capable of simulating multiple shear and tensile fractures and rotating fractures. The results of 

this research can provide valuable information for field fracturing practices, optimization and 

management of fracturing jobs. 

To the best of our knowledge, such a model that incorporates numerical fracture simulation and a 

proppant transport model has not been developed or published. The important features of the 

proposed numerical model include: 

1. Explicit modeling of fracturing phenomenon (avoiding predetermined geometries for 

fractures) 

2. Capability for capturing plastic deformations in the reservoir 

3. Comprehensive modeling of proppant injection, by including Stokes velocity corrections 

for inertia, wall and concentration effects, retardation factor, and for the first time, 

fracture closure on proppant,  

4. Applying an accurate form of finite volume method that has been proposed specifically 

for hyperbolic (transport) partial differential equations 

This research will help in the understanding of the mechanisms involved in the process of 

proppant transport in hydraulic fractures. The main questions to be answered in this research are: 
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1. What are the physical phenomena that have an impact on the proppant distribution inside 

the fractures? 

2. How can the results of experiments on transport of proppants, fluidization and 

sedimentation be applied in a flexible manner in a numerical model? 

3. How the design of the frac-packing treatments can be optimized with our numerical tool? 

The results of this research will provide valuable information for field frac-packing practices, 

optimization and management of the jobs.  

1.5 Research Hypothesis 

This research focuses on the study of mechanisms of proppant transport in reservoirs during frac-

packing operation. According to laboratory experiments several factors affect the final 

distribution of proppants in the fracture. Inertia, fracture walls and presence of other particles 

have an effect on the settling velocity of the particles. The relationship between Reynolds 

number and drag coefficient exerted on particles changes with increasing inertia. Fracture walls 

significantly reduce settling velocity of particles due to extra drag force they exert on particles. 

Proppant concentration has a similar effect to walls. However, after concentration reaches a 

certain level, the packed fracture behaves like a porous medium and no more proppant particles 

can be injected into this packed system. The existence of the proppants changes the mobility of 

the fluid since the viscosity of carrying fluid is enhanced. The higher the concentration, the 

higher the slurry viscosity, net pressure and fracture width. The length of the fracture, on the 

other hand, shortens due to the higher pressure losses inside the fracture. 

Several design parameters, such as injection rate, proppant density and diameter and injection 

fluid viscosity affect the final concentration of proppants inside the fractures. According to the 

published numerical works on proppant transport in slots, viscosity of injection fluid shows a 

strong impact on the concentration distribution (by changing settlement and convection) and 

shape of the fracture. Increased flow rate causes the fracture to fill up faster and reduces both 

convection and settlements. Proppant density and diameter have a moderate effect on settlement 

only. The combined effect of these parameters can be obtained by looking at the Buoyancy 

number of the system. The Buoyancy number is an important factor in determining the shape of 

concentration plume. Very different design parameters, if provide similar Buoyancy number, are 
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expected to result in similar distribution of proppants. Unfortunately, the Buoyancy number 

cannot be defined for geometries other than fixed shape slots and has to be determined through 

numerical simulations. 

Advanced numerical techniques and state of the art in solid transport experiments were 

combined to develop an efficient numerical tool. Our developed tool helps the understanding of 

the relationship between fluid and proppant properties and reduces the existing uncertainty in the 

underground proppant distribution. 

1.6 Methodology 

The methodology in this research consists of developing a 2D continuum-based numerical frac-

pack model capable of simulating hydraulic fracturing and proppant transport. Finite Difference 

software FLAC (ITASCA Consulting Group, 2006) is the platform for stress/strain analysis. A 

single-phase finite difference fluid flow analysis code has been developed in MATLAB to 

perform flow simulations. The third module is a proppant transport simulator, which maps 

conductivity to the fluid flow module, while receiving geometry of the fracture from 

geomechanics module. In other words, FLAC geomechanical tool is linked to a proppant and 

reservoir flow simulator, developed in MATLAB, using an iterative coupling scheme, to capture 

the mechanical and fluid flow aspects of the process. 

The modules are as follows: 

• Mechanical module (FLAC) 

• Fluid flow module (in-house program coded in MATLAB) 

• Proppant module (in-house program coded in MATLAB) 

• Linking interface (MATLAB) 
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Figure 1.2: Interaction between different modules  

Different parameters are transferred among the modules (Fig. 1.2). The fracture module produces 

the fracture geometry for fracture flow analysis and proppant transport analysis and also provides 

the fluid flow module with permeability and porosity, which are required to calculate the pore 

pressure and fluid flow. The proppant module calculates the fracture face pressure and proppant 

concentration, which are then fed into the fracture module as the mobility increase or decrease 

(fracture creation or closure).  

 The main outputs of the model are: 

• Stress/strain distribution 

• Pore pressures 

• Fracture geometry 

• Fracture conductivity  

• Proppant concentration along the fracture 
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To develop the smeared-based numerical tool for simulation of proppant transport, the following 

steps have been taken: 

• A smeared hydraulic fracture model that was previously developed by Taghipoor et al. 

(2013), is our numerical fracture model. In this model, a permeability model for tensile 

fracturing is utilized to relate the permeability of the fractured element to its deformation in 

the continuum model. In addition, the coupled mechanism between shearing and the 

concomitant permeability evolution has been considered in this hydraulic fracture model. The 

details of Taghipoor et al. (2013) model are outside the scope of this work. 

• From a numerical point of view, we have utilized different techniques to reduce the expected 

long run-time of the model. Dimensional splitting and sparse method of solving matrix 

equations are employed to optimize the running time of the model.  

• Geomechanics and fluid mechanics equations are solved by finite difference. A full 

permeability tensor is used in the fluid flow simulations. The proppant mass balance equation 

forms a non-linear hyperbolic PDE, which needs to be solved by high-resolution methods of 

finite volume through the application of flux limiters. The slurry mass balance equation 

forms an elliptical PDE, which can be solved implicitly by finite difference method. The 

procedure of solving the two equations is similar to IMPES method in reservoir simulations 

and iterations are performed to achieve convergence.  

The developed model has two stages. The first stage is during the pad flow before the onset of 

proppant injection. Fig. 1.3a shows the calculation scheme for this stage. The second stage is 

after the proppant injection for which proppant transport simulation is necessary. The calculation 

procedure is depicted in Fig. 1.3b.   
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A b 

Figure 1.3: Modeling flow chart for the a) injection of the initial fracking pad, b) injection of 

proppants  

To carry out the simulation some simplifications have been made: 

A vertical hydraulic fracture is considered. In the proppant module, the dominant flow in the 

fracture can be two or three dimensional in the horizontal and vertical directions. Therefore, our 

proppant code considers a 3D geometry. The proppant motion inside the fracture occurs 

horizontally, caused by fluid flow, and vertically (downward), caused by gravity. The horizontal 

velocity of the proppant is related to horizontal fluid velocity through the retardation factor. The 

vertical sand velocity (usually referred to as “hindered settling velocity”) is governed by fluid 

properties as well as particle size and specific gravity. 

The fracture plane is a horizontal section of the 3D vertical fracture. We have assumed 2D plain 

strain geometry for fracture simulation. The flow rate is assumed to be uniformly distributed 

over the fracture height. With this simplification, the 3D fluid/proppant flow problem is reduced 

to a 2D problem in the horizontal plane. This greatly reduces the complexity of the numerical 

problem and makes the computation feasible. In addition, extending this model to full 3D will be 

easier in the future, since our proppant model is written for a 3D geometry.  
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Modeling the field problem due to the lack of data and variability of properties is so complex 

that makes the validation of the model by actual treatment jobs almost impossible. Therefore, we 

simulated a slot test flow and compared the results of our simulations with commercial software 

COMSOL.  

 

 Figure 1.4: Geometry of Our Field Model  

1.7 Thesis Layout 

The research discussed here forms the basis of a multi-module numerical hydraulic fracture and 

proppant transport simulator. The research methodology consists of numerical model 

development, model verification against analytical solutions, published simulations, and 

commercial software, and application examples to field size models. The research is divided into 

the following chapters:  

In Chapter 2, a literature survey is carried out to investigate the results of small- and large-scale 

laboratory experiments on proppant transport and sedimentation and fluidization. The objective 

was to study the physical phenomena that occur at the laboratory scale and capture them in our 

numerical tool. Proposed correlations for the effect of inertia, concentration and fracture wall on 

settling velocity and also correlations regarding viscosity evolution of slurry is summarized. In 
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Chapter 5, the effect of these correlations are reviewed in slot test simulations, and in Chapter 6, 

some of these correlations are implemented into our flexible numerical tool which can 

accommodate any other correlation. A literature survey is also carried out in Chapter 2 on the 

existing numerical proppant transport models with the focus on the type of hydraulic fracture 

considered. Various features of the numerical tools were evaluated particularly those related to 

the accuracy, flexibility and comprehensiveness of the models.  

Chapter 3 presents the assumptions, mathematical formulations and theories of fracture, fluid 

flow and proppant simulations and covers all the computational aspects that are essential when 

developing the proppant transport code. Different solution techniques of transport partial 

differential equations are compared with the focus on their accuracy close to proppant front, with 

the objective of implementing the most accurate technique in our tool.  

Chapter 4 concentrates on the verification of our proppant transport simulator. Commercial 

software COMSOL is used for the verification of our developed tool. Also, a sensitivity analysis 

was performed to distinguish the errors by finding unexpected results and relationships between 

inputs and outputs. Also, the results of this chapter show how much difference in proppant 

placement can be obtained if convection and gravity settling are changed. 

Chapter 5 describes the numerical algorithm based on which our hydraulic fracture tool is 

developed. In addition, after discussing different methods of numerical coupling, the transfer of 

information between the modules and our convergence criteria are discussed. Also, our proposed 

permeability modifications are verified against analytical, static hydraulic fracture equations. 

Chapter 6 is a compilation of example runs that show how the model works for field 

applications. The model is used in a comprehensive sensitivity analysis to show its capabilities in 

providing practical recommendations and trends in a better design of the frac-pack operation. 

This sensitivity study includes a comparison between different components and properties of 

fluid and proppant and shows which parameters have a dominant effect on the final proppant 

distribution. 

Chapter 7 is a summary of conclusions from each chapter and it also outlines recommendations 

for future work involving this subject. 
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1.8 Significance 

The main requirements of any completion technique are effective, long life span and proper 

support during high-rates of production. Frac-packing not only has these two requirements, but it 

also ensures lower average skin values. When compared to other sand control completion 

techniques, this method delivers consistently higher flow efficiencies (Ghalambor and Norman, 

2009). Moreover, the failure rate of frac-packing is about a quarter of that for cased hole gravel-

pack and half that for water-pack completion (Ghalambor and Norman, 2009). 

The mechanisms involved in the proppant transport in hydraulic fracturing are very complex 

both experimentally and numerically, although significant amounts of research have been 

directed towards understanding these mechanisms. Additionally, the lack of numerical tools 

specifically suited for transport PDEs, has hindered the optimized design and the field 

implementation of the treatment.  

Since the fracture width is typically so much smaller than other dimensions, a large number of 

elements will be needed to simulate a field treatment. By applying a partially decoupled 

numerical approach, we were able to overcome this deficiency in numerical modeling.  

Moreover, the transport phenomenon of proppants in a fracture caused by hydraulic fracturing is 

described by a hyperbolic PDE. The solution of this kind of PDEs may encounter smooth 

transition or there can be large gradients of the field variables. The numerical challenge posed in 

a shock situation is that high-order finite difference schemes lead to significant oscillations in the 

vicinity of shocks despite that such schemes result in higher accuracy in smooth regions. On the 

other hand, first-order methods provide monotonic solution convergences near the shocks, while 

giving poorer accuracy in the smooth regions. Accurate numerical simulation of such systems is 

a challenging task using conventional numerical methods. Therefore, application of accurate and 

efficient shock capturing numerical techniques is crucial in obtaining a solution for this class of 

problems.  

The model developed in this research will greatly increase the understanding of the mechanisms 

involved in proppant transport in hydraulic fractures. Such improved understanding can help in 

management and optimization of fracturing jobs. 
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Chapter 2: Review of Numerical and Experimental Works on Proppant Transport 

2.1 Introduction 

Fundamental aspects of fluid-particle interactions have long been the subject of applied 

mathematics and applied physics. The particles can be gas (bubbles), liquid (drops or droplets) or 

solid. For example, operations such as distillation, absorption, flotation in chemical and 

metallurgical engineering rely on bubbles and drops, while chemical catalysts or reactants use 

solid particles. Droplet behaviors in combustion operation, and bubbles in electro-machining and 

boiling are studied in mechanical engineering. In all these particle-fluid interactions, there exists 

a relative motion between the particle and the surrounding fluid. In this chapter, we focus on 

such relative motion and try to do a comprehensive literature on the experiments performed on 

the flow of solid particles in fluids.  

To increase the well productivity, which is the final goal of hydraulic fracturing, the fractures 

should be propped open by some granular materials called proppants. Proppants prevent fracture 

closure after pumps are shut down and at the same time act as a filling with high permeability 

inside the fracture. The proppant pack inside the fracture should provide high permeability 

compared to the formation so that the flow from the reservoir to the well faces little resistance 

and can be facilitated. Proppant particles should also satisfy other requirements such as having 

enough compressive strength to withstand in-situ stresses and remaining firmly in place at 

flowback. Therefore, it is obvious how strongly the properties of proppant bed, proppant 

transport, placement and deposition affect the well productivity. 

In the proppant transport literature, accurate determination of settling velocity still remains a 

problem, despite the fact that all aspects of particle settlement have been studied in other areas 

like sedimentation and fluidization for many years. Results of these studies, although can be 

applied to proppant transport application without loss of accuracy, is neglected in proppant 

related studies. Therefore, the need for such a review seems necessary.  

We assume that the surrounding liquid or the continuous phase is a Newtonian fluid. Another 

assumption we use throughout this research is that the solid particles or the dispersed phase are 

rigid particles meaning that they can withstand large normal and shearing stresses without a 

noticeable deformation. It is also assumed that all the particles have the same size, while in 
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reality proppants with different sizes may be injected sequentially which can further complicate 

the movement of the suspended particles.  

2.2 Past Numerical Works on Proppant Transport 

This section is a quick literature review on the limited numerical proppant transport simulations 

that have been published and their shortcomings. From a mathematical point of view, three 

proppant transport models have been proposed in the literature since 1970. The type of modeling 

can be categorized based on the type of the hydraulic fracture description or based on the 

equations that describe transport phenomena. Based on transport equations the modeling types 

are: simplified proppant transport and settling model, mixture models and granular kinetic theory 

models. Our model is a mixture type model with the same formulations that exist in the 

literature. However, we are improving this type of modeling by including more physical 

transport processes in the model and applying a more accurate numerical solution technique. In 

addition, we are modeling the geomechanical effects associated with the injection process inside 

underground formations, and accounting for its effects in transport simulation. 

2.2.1 Simplified Proppant Transport and Settling Model 

Simplified models of proppant transport and deposition assume a vertical fracture and discretize 

it into vertical elements (columns) as shown in Fig. 2.1 (Novotny 1977, Daneshy 1978). 

Generally, in this type of modelling, proppant concentration in each element is calculated based 

on the fluid loss and injected amount of fluid at each time step. Empirical settling velocity 

equations can also be included in the model. Then, in the next step, the amounts of deposited and 

suspended proppants are calculated. Finally, the results are presented in the form of bed profile 

showing suspended and deposited proppants as well as the shape of the bank bed.  
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Figure 2.1: fracture discretization employed in simplified proppant transport and settling models (Lavrov, 

2011) 

Novotny (1977) used the simplified approach and presented one of the early simulations of 

proppant transport. To obtain the dimensions of the hydraulic fracture, he used the analytical 

equations of Geertsma and de Klerk (1969) for fracture width and length. Then he applied a 

simple volume balance on the amount of fluid that enters a given fracture segment and the 

amount lost to the formation. He also extended the model by incorporating heat transfer between 

the slurry and the formation and investigated the temperature variation effects on fluid loss, 

viscosity and settling velocity. 

Daneshi (1978) simulated proppant transport in a hydraulic fracture by using the simplified 

approach. The fracture length and width in his modeling were derived from a simple material 

balance on the injected and lost fluid and the height of the fracture was assumed to be constant. 

He also used a lower limit for the volume of injected pad in the simulations to make sure the 

width of the created fracture is at least two or three times bigger than the particle diameters and 

particle bridging is avoided. He computed a hindered settling velocity for proppants due to the 

concentration effects.  

It is evident from the brief description above that these models are limited to planar vertical 

fractures and many details of fluid flow and geomechanics are being neglected. 
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2.2.2 Mixture Models 

The second type of numerical proppant transport model, which is more general than the previous 

model, is called mixture-type model. Our numerical tool falls within this category and all the 

details of this modelling type will be discussed later in this thesis. However, we briefly describe 

the evolution of this type of modelling.  

Typically, in mixture-type modelling, the slurry flow inside the fracture is described by the 

lubrication theory. An essential element of this theory is the averaging of the variables such as 

concentration and velocities, in the fracture width direction. As a result, it is implied that the 

concentration of proppant is constant across the fracture aperture in any cross-section or the 

variation is insignificant and can be neglected. This simplification resolves a huge modeling 

complication: since the fracture width is typically so much smaller than other dimensions, 

discretizing an actual size fracture in a field treatment across its width requires a large number of 

elements to keep the element aspect ratio reasonably small. Among other assumptions of this 

modeling (that was removed in later simulations), we can mention no slip condition and thus no 

momentum transfer between the carrying fluid and the granular phase. The consequence of this 

assumption was that, originally, the proppant velocity was assumed to be equal to the carrying 

fluid velocity. In addition, the diffusion is assumed to be negligible and thus the front of the 

proppant concentration profile remains sharp (Adachi et al., 2007). The flow is assumed to be 

incompressible and the proppant particles are small compared to the fracture aperture. 

Many modifications have been made in the original mixture models by different researchers to 

better simulate the transport phenomena. Settari et al. (1990) was the first to propose the concept 

of partially decoupled fracture modeling. In his approach, they linked a fracture simulator to a 

fluid flow simulator and mapped the fracture geometry in terms of permeability and porosity 

onto the reservoir simulator grids. Later, several researchers used this approach in their 

numerical simulation of proppant transport. Miranda et al. (2010), Shaoul et al. (2007) and Behr 

et al. (2006) linked a commercial reservoir simulator to a commercial fracture and proppant 

simulator and used the same concept that Settari et al. (1990) had used for frac-pack analysis. 

Later, other methods were proposed for numerical simulations of proppant transport (Friehauf, 

2009; Liu, 2006; Sharma & Gadde, 2005; Gadde et al., 2004; Ouyang, 1994). These new class of 
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simulations can be categorized as fully decoupled models in which only the fracture and 

proppant distribution is simulated, without paying attention to the reservoir-fracture interactions. 

Ouyang (1994) proposed an adaptive meshing technique for the hydraulic fracture simulation 

that was adopted in a later work by Rebeiro, (2013) for proppant injection simulations. Friehauf 

(2009), Liu (2006) and Gadde et al. (2004) used PKN fracture geometry and included some of 

the experimental works in the literature related to proppant transport in their numerical model.  

Adachi (2007) in his proppant transport modeling assumed the incompressibility of the proppant 

and the slurry, which is an acceptable assumption, but further he assumed that the only 

mechanism to account for ‘‘slip’’ between the proppant and the carrying fluid is gravity-induced 

settling. This implies that, in the absence of gravity, the proppant and fluid move at the same 

velocity at any given point. He did not discuss the type of settling equation, if any, that he has 

used. In addition, he employed an analytical integral equation between width and pressure in his 

fracture simulator. 

Another major work in this context is the work published by Barrie and Conway in 1994 and 

1995. These two documents served as a validation to their commercial proppant simulator 

GOHFER. From the very basic theory they have published about GOHFER, it can be understood 

that they have corrected Stokes equation for the effect of concentration, but they did not correct 

it for wall and inertial effects and they have employed only one simple equation for this 

correction. They applied the same correlation to account for the unequal horizontal velocity of 

proppant and fluid. Barrie and Conway fracture simulator again uses an integral equation 

between width and pressure (integral of the displacement for the point load over the surface of 

the fracture). There are some simulations done with GOHFER (Al-quraishi et al., 1999, Shokir et 

al., 2007) and the same limitation exists in them.  

Mobbs et al. (2001), Unwin et al. (1995) and Hammond (1995) published their simulations with 

the objective of investigating the effect of fluid flow profile on final proppant distribution. They 

considered homogeneous flow (in which proppant particles are uniformly distributed across the 

fracture width) and sheet flow (in which some unspecified, but rapid process has caused all 

proppant to migrate across the fracture width into a close-packed sheet at the fracture center). 

They assumed constant rectangular and elliptical PKN type fracture width. They also neglected 

the retardation phenomenon and did not modify the Stokes law. 
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Probably, the most complete works in proppant transport simulation are the ones published by 

Rebeiro (2013), Freihauf (2009), Liu (2006), and Gadde (2004). All these works were done at 

the University of Texas at Austin. Each work is a gradual improvement to the previous one. The 

main deficiency of these models is the analytical PKN fracture geometry assumption. Although 

Rebeiro (2013) did not use this assumption and employed an adaptive re-meshing technique to 

couple a fully 3D fracture model with the proppant transport model, yet the model was fully 

elastic. Assuming minor effects of formation plasticity, these models neglect the plastic 

deformations in the medium.  

Du et al. (2011) from Schlumberger developed another totally different methodology to model 

the hydraulic fracturing network, and, subsequently, simulated a shale gas reservoir as a dual-

porosity system. Microseismic (MS) responses were used to delineate stimulated reservoir 

volumes. Microseismic events and/or natural fracture intensity were utilized to estimate the 

initial intensity of this induced fracture network. They assumed a simplistic in-situ fracture 

network geometry (elliptical shape) with the average width coming from the PKN equation. 

From MS mapping data, they calibrated a parameter called fracture network intensity. They did 

not solve any PDE for proppant distribution estimation and the calculation was very approximate 

in their work. 

Our proposed work incorporates a numerical fracture simulator and a proppant simulator, 

whereas most existing models utilize an analytical (e.g., PKN) fracture model. Our model is also 

linked to a reservoir and a geomechanics simulator for flow and stress analysis during the life of 

the wellbore. Moreover, we have done an extensive literature on the settling corrections and 

retardation factors and coded them in our simulator. 

In all the numerical models proposed in the literature, the transport and placement of proppant 

within the fracture is usually modeled by representing the slurry as a two-component, 

interpenetrating continuum. This implies that the fluid flow equations (i.e., conservation of mass 

and conservation of momentum) are solved for the mixture, and not for each individual 

component. We will follow the same procedure and solve the mass balance equation of the 

proppant and slurry through the method of mixture models. However, we will improve the 

current proppant modeling by capturing much more phenomena than the current models. This of 
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course, requires an extensive literature review on the experimental works in this area which is the 

topic of Section 2.3. 

2.2.3 Granular Kinetic Theory Models 

The third class of proppant transport modeling in a fracture is based on the concepts of granular 

kinetic theory (Gidaspow, 1994) and was proposed by Eskin and Miller (2008). They considered 

steady-state flow of slurry in the fracture with flat faces without including leak-off effects on 

slurry dynamics. In this modelling, micro-level particle dynamics is taken into account. Due to 

the particle migration from zones of high shear rate at the fracture walls towards the center of the 

fracture where shear rates are lower, non-uniform solid concentration across the fracture width 

will characterize the slurry flow. Kinetic theory is using Maxwellian velocity distribution for 

particle fluctuations and assumes that particles move like ideal gas, i.e. do not interact with each 

other. The intensity of particle fluctuations is determined by a parameter called granular 

temperature. 

Eskin and Miller (2008) were not the first who used kinetic theory for modelling particle 

transport, although they were the first who applied it for proppants. As an example, Nott and 

Brady (1994) or Leighton and Acrivos (1987), used the kinetic approach for modeling particle 

migration across a flat channel in a Newtonian slurry flow.  

The model by Eskin and Miller (2008) is for steady state only and extending it to transient flows 

may make it computationally prohibitive for any practical use in a hydraulic fracturing coupled 

simulator. As the authors of the model pointed out, application of the granular kinetic theory, 

though mature for gas-solids flows, is still in its infancy for liquid-solids flows since the original 

kinetic theory was developed mainly for gas–particle flows. 
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Figure 2.2: solid-liquid flow in fracture, yellow circles represent sand particles  

In the model of Eskin and Miller (2008), many of the equations make use of empirical laws and 

correlations and are therefore valid only within certain ranges. Leak-off was neglected in the 

numerical computations (its introduction should be straightforward, if needed, though).  

2.3 Experimental Works on Proppant Transport 

In early experimental investigations of proppant transport, settling velocity and the size of 

proppant bed bank at the bottom of fracture was the focus of all the researches. Kern et al. (1959) 

studied sand movement through a simulated fracture in the laboratory. They concluded that if 

injection rate per foot of formation is very high, the proppant bed will not form at the bottom of a 

vertical fracture. Babcock et al. (1967) through their experiments identified the equilibrium 

velocity (velocity required to keep proppants suspended) and bank build-up constant as the two 

important parameters affecting propping agents’ distribution. Clark et al. (1977) used a large 

vertical slot model with no fluid loss to evaluate the effect of fluid type and viscosity, proppant 

concentration and flow rate on proppant bed growth. Schols and Visser (1974) experimentally 

and theoretically explored the build-up of a proppant bank in a slot without leak off, using a low-

viscosity fracturing fluid. They proposed three consecutive phases for the proppant bank build-

up. During the first phase, bed build-up gradually occurs until an equilibrium height is reached 

near the wellbore after which the growth stops because of erosion. In the second phase, the bank 

grows only in height until it reaches an equilibrium height over its full length. Finally, in the 

third phase the proppants saltate toward the front of the bed, increasing its length in the direction 

of flow. 
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After 1980, many investigators turned their attention to convection flow and settling of the 

proppants, inertia, fracture wall and proppant concentration effects on settling.  

Cleary and Fonseca (1992) concluded that most important consideration in uncontained vertical 

hydraulic fractures should be convection of heavier proppant-laden stages. They also mentioned 

that even in simple fluid treatments, convection dominates settling. Barree and Conway (1994) 

performed an experimental study of slurry transport in a large slot model in an attempt to 

develop a numerical simulator that captures particle settling and density driven flow. They 

observed vertical convective proppant velocities can be hundreds of time faster than single 

particle settling velocities. Al-quraishi and Christiansen (1999) investigated a wide variety of 

flow conditions using small glass models. In their observations, significant convection could 

occur even with small density differences. Clark and Zhu (1996) through a series of slot 

experiments developed a useful dimensionless group called Buoyancy number in predicting the 

importance of convection, for Newtonian and Non-Newtonian fluids. 

Brannon et al. (2006) performed over 20 large-scale slot flow tests to investigate an extensive 

range of proppant transport parameters. Using the information obtained, an empirical proppant 

transport model was developed that could provide the length of propped fracture. They claimed 

their model could optimize effective fracture length and well performance by using the most 

favorable combination of slurry and proppant properties.  

In actual field treatments, thousands of liters of slurry can be injected (Adachi et al., 2007), with 

a proppant mass concentration ranging from 2 to 3 lb/gal (0.24-0.36 kg/l) or proppant volume 

concentration of 0.1-0.15 (Novotny, 1977). This concentration may reach 11 lb/gal, i.e. a volume 

fraction of above 0.5 as the proppants move along the fracture.  

The movement of carrier fluid and the forces of gravity acting on the proppant particles bring 

about the movement of proppant particles. As mentioned before, the topic of sediment transport 

has been studied in other areas beside the petroleum industry. Though different approaches have 

been implemented for studying sediment transport, basic aspects of sediment transport due to 

fluid movement remain the same and the results, without loss of generality can be applied to 

proppant transport in hydraulic fractures. The purpose of this section is providing a 

comprehensive literature on experimental works that has been performed on solid-fluid systems. 

In the next chapter, we describe how the correlations presented in this section can be included in 
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our numerical tool, so that more physical phenomena that happen during transport process can be 

captured. Including these physical parameters that govern proppant movement and settling in our 

numerical tool will lead to an improved understanding of proppant transport inside hydraulic 

fractures, improved simulations, and finally more efficient treatment designs. 

2.3.1 Effect of Inertia on Proppant Settling  

To calculate the hydrodynamic drag force exerted on a suspended solid particle in a fluid, a 

relationship between Reynolds number and a coefficient called drag coefficient is needed. The 

form of this relationship is different in different flow regimes. These flow regimes are 

distinguished by the value of particle Reynolds number and are called “Stokes” or “creeping 

flow” regime, “intermediate” regime and “Newtonian” regime. The expression of drag force in 

the intermediate and Newtonian flow regimes, unlike Stokes regime, does not have a satisfactory 

theoretical form and many different experimental relations have been proposed, some spanning 

only for a limited range of Reynolds number. In this section, we investigate the drag force 

expressions in different flow regimes as it is very important in calculating the proppant settling 

velocity. We don’t intend to construct new formulas nor do we want to compare the performance 

of different proposed equations here, but only to provide a simple method of calculating the 

settling velocity over the whole Reynolds range.    

Newton’s second law governs the motion of immersed particles in fluids. Applying this law to an 

infinitesimal control volume of an incompressible Newtonian fluid (our focus) leads to Navier-

Stokes equation. Exact analytical solution to Navier-Stokes equation is only possible under very 

restricted conditions or to the cases in which certain terms in the equation can be omitted or 

modified. More often, numerical techniques are necessary to obtain a solution to the problem at 

hand. The Navier-Stokes equation is expressed as: 

  
  

  
                  

(2.1) 

where  is fluid density,  is fluid viscosity, p is pressure and u is velocity. The terms on the left-

hand side, arises from the product of mass and acceleration. The first term, which is a local 

derivative, represents changes at a fixed point in the fluid while the second term which is the 

convective term, accounts for changes due to the motion of the fluid. The first term on the right-
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hand side is the gravity force acting on unit volume of the fluid and the final two terms represent 

the surface force on the element of the fluid (Bird et al., 1976; Schlichting, 1979). 

The velocity and pressure fields are the unknowns of the Navier-Stokes equation. A solution can 

be obtained if the overall continuity equation is also considered. Application of the conservation 

of mass to an incompressible fluid leads to continuity equation:   

      (2.2) 

Solving these two equations are outside the scope of our research and therefore, we will not 

discuss more details such as boundary conditions and analytical or numerical techniques of the 

solution here.   

2.3.1.1 Drag Force at Low Reynolds Numbers 

As mentioned before, analytical solution to Eq. 2.1 and 2.2 can be obtained with certain 

assumptions. For example, in certain conditions, such as flow at high Reynolds number, 

viscosity terms in the equation will be negligible compared to inertia terms for which the 

idealized inviscid flow concept has been proposed. Another example would be boundary layer 

theory in which viscosity effects are neglected in large regions of the flow field and in these 

regions the fluid is treated as if it is inviscid. However, in very thin regions adjacent to the 

boundary, the effect of viscosity must be considered. Many simplifications can be made due to 

thinness of this layer. 

Another important simplification which is more relevant to our research is known as the creeping 

flow approximation which applies at very low Reynolds number and velocities. In this case the 

convective term can be neglected from the Navier-Stokes equation. This means that fluid inertia 

is completely neglected (Clift et al., 1978). The creeping flow approximation has found wide 

application in flow through porous media. In this chapter, we discuss its application relevant to 

proppant transport.  

In creeping flow regime, the Reynolds number is very low and the solution to Navier-Stokes 

equation for the drag force FD on a sphere gives (Stokes, 1851, Batchelor, 1967):  

          (2.3) 
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Drag coefficient is expressed in terms of resistance force per unit projected area in a plane 

perpendicular to the direction of motion, which, for a sphere, is always the area of a circle.  
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(2.4) 

This equation can be written based on two dimensionless groups as: 

 

   
 

   

    
 

(2.5) 

It is noted that the Reynolds number appears on right-hand side of the equation and the left-hand 

side appears in the definition of dimensionless drag coefficient. That is: 

   
 

 
    

 
  

  
 

(2.6) 

As mentioned earlier, the second equality is valid only in the Stokes region which is up to 

Re=0.2, when the error is about 4% (Clift et al., 1978). 

In proppant transport application, what we are more interested in is the settling velocity of the 

proppants rather than the amount of drag force exerted on the particles. To convert the 

relationship between the drag coefficient and Reynolds number to a relation between the settling 

velocity and fluid parameters, another definition of drag coefficient is needed. As explained in 

Appendix A, the second expression of drag force which is valid for all the flow regimes is: 

   
 

 
    

 
 

 

          

  
   

 
(2.7) 

 

Substituting Eq. 2.7 into Eq. 2.6, the corresponding terminal velocity in viscous regime would be 

(described in the next section): 

   
   

        

   
 

(2.8) 

Obtaining the settling velocity from drag coefficient-Reynolds number relationship is not always 

this simple since most of the time we are dealing with highly non-linear CD-Re equations. In 

Section 2.3.5, we will discuss this topic in detail and introduce another dimensionless variable 

that is more useful than CD in proppant applications. 
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In obtaining this relationship between drag force and Reynolds number, the inertia terms in 

Navier-Stokes equation were neglected and only viscous terms were retained. There is a 

fundamental difficulty in this approach as first noted by Oseen (1910): this approximation is 

invalid at higher distances from the particle. The ratio of neglected inertia term to retained 

viscous term becomes high at higher distances from the particle which means for any Reynolds 

number, at higher distances, the neglected inertia terms dominate and the approximation is only 

valid for distances less than the order dp/Re. To solve this problem, Oseen (1910) simplified the 

Navier Stokes equation rather than neglecting inertia terms and obtained a drag coefficient 

greater than Stokes law value which is applicable to Reynolds number up to 0.1. Oseen’s 

modification is:  

   
  

  
   

 

  
    

(2.9) 

To extend the applicability of Oseen’s relationship to higher Reynolds number, several series 

solutions have been suggested to simplify Navier-Stokes equation that Oseen used, including one 

with 24 terms (Dyke, 1970). As another example, Goldstein (Goldstein, 1929) proposed an 

expression involving Reynolds numbers up to the power of 5:  

   
  

  
   

 

  
   

  

    
    

  

     
    

     

        
    

      

         
     

(2.10) 

 

Although the series solutions are accurate representatives to the Oseen’s drag, the Oseen’s drag 

itself is only an approximation to the exact drag value and all these solutions diverge rapidly 

from the experimental data at higher Reynolds numbers. Lewis and Carrier (1949) multiplied the 

final term in Oseen’s equation by a parameter CL which is a weak function of Reynolds, to 

improve the approximation and obtained a semi-empirical modification: 

   
  

  
   

 

  
      

(2.11) 

They proposed a value of 0.43 for CL.  

Proudman and Pearson (1957) suggested successive approximations to Navier-Stokes equation 

rather than obtaining accurate solutions to Oseen’s equation. He defined a stream function using 

Stokes approximation near the sphere and Oseen’s approximation away from the sphere: 

   
  

  
   

 

  
   

 

   
     

  

 
         

(2.12) 
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Chester and Breach (1969) improved the approximation by reducing the order of error: 

   
  

  
   

 

  
   

 

   
   [       

 

 
    

   

   
]  

  

   
      

  

 
          

(2.13) 

where  is Euler’s constant equal to 0.5772157. 

Applying the same approach, Chester et al. (1969) proposed the following expression: 
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(2.14) 

where: 

     
  

  
  

    
(2.15) 

Pruppacher et al. (1970) suggested a value of 5 for parameter m. 

Liao (2002) also proposed an analytical solution to 10th order of approximation for the steady-

state laminar viscous flow past a sphere in a uniform stream governed by the exact, fully non-

linear Navier-Stokes equations which is applicable in a region of Re < 30 that is broader than the 

previous theoretical laws.  

Figure 2.3 plots the proposed equations, except for Eq. 2.14 which is not explicit in drag 

coefficient and needs trial and error. 

 
Figure 2.3: Comparing Proposed Equations of Drag Coefficient in Viscous Flow Regime 

As it can be seen from Fig. 2.3, all these complex equations do not provide a huge improvement 

over Stokes equation. Also, they diverge very rapidly at higher Reynolds numbers. Thus, 

analytical solutions for flow around a spherical particle have little value at Re > 1. In this 
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situation, the flow field can be represented most accurately by numerical solution to Navier-

Stokes equation, while empirical forms should be used for drag coefficient. 

2.3.1.2 Drag at Intermediate High Reynolds Number 

At high Reynolds numbers (Re > 1), no analytical solution exists for the flow of fluid past a 

sphere. At intermediate Reynolds number (1 < Re < 1000) for steady axisymmetric flow, 

numerical solutions provide more information than experiments. At unsteady state flow regime, 

numerical calculation of flow field is no longer feasible and experimental results possess more 

value (Clift et al., 1978). 

Different forms of curve fitting for terminal falling velocities experimental data has been carried 

out (Lapple and Shepherd, 1940, Tanaka and linoya, 1970, Vlajinac and Covert, 1972). Based on 

experimental data of Allen (1900), Wieselsberger (1922), Prandtle and Tietjens (1931), and 

Schiller (1932), which have been corrected for the effect of walls, a log-log graph of drag 

coefficient versus Reynolds number has been well established (Fig. 2.4). This graph is called 

“standard drag curve” where CD is plotted against Reynolds number.  

As previously described, there are only three theoretical methods for the calculation of CD: The 

Stokes law, the Oseen law, and the Goldstein law which are only applicable for limited ranges of 

Reynolds number and none of them can precisely agree with experimental data of Fig. 2.4. There 

are many empirical equations in the literature based on this graph that have varying complexity 

and contain many constants. Most of them are listed in Table 2.1. The emergence of all these 

empirical formulas is due to various attempts to obtain a better match for wider ranges of 

Reynolds number. 

One of the most accurate expressions is the one proposed by Clift et al. (1978) in which they 

provided their correlations for 10 Reynolds subintervals. 
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Figure 2.4: Standard Drag Curve 

Although the improvement of high-performance computers has helped in further development of 

many complex empirical equations which are approaching experimental values, most of the 

empirical expressions, are based on the three abovementioned theoretical methods in Stokes 

region. For example, Flemmer and Banks (1986), Turton and Levenspiel (1986), Brown and 

Lawler (2003), and Cheng (2009) are based on Stokes law and Dou (1981) expression which is 

an addition type equation (explained below in this section) is based on Oseen’s law. Despite the 

low Reynolds numbers for which the theoretical laws are applicable, empirical expressions for 

CD should be based on these classical theoretical laws.  
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Table 2.1: Drag Coefficient as a Function of Reynolds Number 

Researcher Reynolds No. Range Drag Coefficient 
Allen (1900) {

        
         

 {         

           

Schiller and 

Naumann 

(1933) 

                  

  
                

Wadell (1934)              
      

   

√  
   

Rouse (1938)            

  
 

 

√  
      

Dallavalle 

(1948) {
         
        

          

 

{
 
 

 
 

  

  

    
  

  
    

 

Langmuir and 

Blodgett (1948) 

           

  
                               

Lappel (1951)               

  
                

Fair and Geyer 

(1954) 

         

  
 

 

√  
      

Gilbert et al. 

(1955) 

            
     

  

      
 

Torobin et al. 

(1959) 

           

  
                             

Kurten et al. 

(1966) 

            
     

 

√  
 

  

  
 

Kurten et al. 

(1966) {
     
      
      

 

{
 
 

 
   

  

  

  
  

  

    
  

  

 

Clift and 

Gauvin (1970) 

           

  
                

    

                 
 

Tanaka and 

Linoya (1970) 

{
  
 

  
 

     
      
       

         
          
          
          

 

                 

a b c 

0.07595304 -0.8840749 1.421616 

0.0930571 -0.8850516 1.414214 

0.1015314 -0.8922549 1.408914 

0.1118878 -0.9263436 1.427460 

0.1126893 -0.9278250 1.426984 

0.1132479 -0.9112787 1.401578 

0.1180904 -0.9222214 1.399194 

0.1 -0.9 √  
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Table 2.1: Continued 

Researcher Reynolds No. Range Drag Coefficient 
Abraham 

(1970) 

       
         

    

√  
   

Brauer and 

Mewes (1972) 

         
    

 

√  
 

  

  
 

Ihme et al. 

(1972) 

       
     

    

       
 

  

  
 

Morsi and 

Alexander 

(1972) 

{
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Clift et al. 

(1978) 

{
 
 
 
 

 
 
 
 

       
          
         

           
                  

                  

                   

                 

            

      

 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
    

 

  
 

  

  

     [
    

  
  ]                     

     [
    

  
  ]                 

                               

                                 

        

                                

                                

             
            

          
   

  

 

Concha and 

Almendra 

(1979) 

       
       

    

√  
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Table 2.1: Continued 

Researcher Reynolds No. Range Drag Coefficient 
Due (1981)            

  
(  

 

  
  )                 

  

{
 
 

 
 

                 
     

      

 

 
                

 

 
               

 

Concha and 

Barrientos 

(1982) 

         
           (  

    

     
)

 

∑     

 

   

 

                 

                 

                   

                  

                   

                  

Flemmer 

and Banks 

(1986) 

           
      

     

  
                            

     

    
 

Turton and 

Levenspiel 

(1986) 

                

  
                 

     

              
 

Khan and 

Richardson 

(1987) 

                                           

Haider and 

Levenspiel 

(1989) 

             

  
                   

      

  
       

  

  

Swamee and 

Ojha (1991) 

           
       (

  

  
)
   

 (
   

  
)

    

       
     

  
                

Hesketh et 

al. (1991) 

           

       √      
  

  
   

Ceylan et al. 

(2001) 

 

 

 

                                   
 ⁄             

            
 ⁄          

      

                           

                       

Brown and 

Lawler 

(2003) 

           

  
                 

     

          
 

  

  
                 

     

              
 

                                 
  

  
  

                                
          ⁄  
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Table 2.1: Continued 

Researcher Reynolds No. 

Range 

Drag Coefficient 

Almedeij 

(2008) 

       
 

 

       
     

      
    

    
  

  
     

  

      
     

 

      
            

   
 

                         
 

                        

   
 

                           
 

Cheng (2009)          
       

  

  
                                  

  

Mikhailov 

and Freire 

(2013) 

                (         
    ⁄ )  (       

    ⁄ )        
    ⁄      

      (      
   ⁄ )  (      

   ⁄ )           ⁄      
 

Morrison 

(2013) 

       
  

  
 

    
  
 

 

   
  
 

     
 

      
  

       
      

   
  

       
      

  
     

       
  

Terfous et al. 

(2013) 

      
       

      
      

  
 

     

   
 

      

     
 

      

     
 

Where           

 

One of the best classifications of the drag coefficient empirical equations has been suggested by 

Hongly (2015). He classified the equations based on the fact that they are either of multiplication 

type, the addition type or rational type. If for example, the Stokes law is multiplied by a power 

function or exponential function, the multiplication equations are obtained while if the same law 

is added by a growing function, the addition formulas are obtained. 

The multiplication equations based on analytical laws can be expressed as: 

   
  

  
        Stokes Law  (2.16) 

   
  

  
(  

 

  
  )        Oseen’s Law (2.17) 

 

And the addition equations based on analytical laws can be expressed as: 

   
  

  
               Stokes Law (2.18) 

   
  

  
   

 

  
                  Oseen’s Law (2.19) 

 

where f1(Re), f2(Re) and f3(Re) are empirical expressions. Table 2.2 summarizes Hongly’s 

(2015) equations. The applicable range of Reynolds number for all the equations is Re < 2×10
5
. 
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Table 2.2: Hongly’s (2015) Expressions for Drag Coefficient  

Type Correlation Law 

Multiplication 
   

  

  
         

                                     

Stokes 

Multiplication 
   

  

  
             

                                   

Stokes 

Multiplication 
   

  

  
   

 

  
    

  

   
   

                                     

Oseen 

Multiplication 
   

  

  
   

 

  
                 

                                   

Oseen 

Addition 
   

  

  
         

                                   

Stokes 

Addition 
   

  

  
                                      

                 

Stokes 

Addition 
   

  

  
                                      

                    

Stokes 

Addition 
   

  

  

    
  ⁄          

                  
                    

                    

Oseen 

Addition 
   

  

  
   

 

  
                         

                       
 
 

 
 

Oseen 

where                                                                    
    

  
 

 

Hongly (2015) also provided rational type expressions based on Goldstein law, but the topic is 

out of the scope of this research and for brevity, we don’t describe rational type expressions here.  

2.3.1.3 Terminal Velocity of Single Particle in Infinite Medium 

In proppant transport simulations, the drag exerted on the particles is not as important as the 

terminal velocity of the particles. As we will discuss the transport partial differential equations, 

we will see that terminal velocity is the parameter that appears in the equations and not the drag 

force. On the other hand, all the expressions proposed in the fluidized bed expansion studies give 

a relationship between the Reynolds number and drag coefficient (e.g. Clift et al., 1978; Liao, 

2002; Hongly et al., 2015). The calculation of settling velocity from Re-CD relationship is 
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always not an easy task because the drag coefficient (CD) is not a constant over a wide range of 

Reynolds number (Re) and there is no definite formula for the calculation of CD. 

In this section, we use a simple method to express these expressions in terms of terminal 

velocity. 

At very low Reynolds numbers (Re<0.1), as stated earlier: 

   
  

  
 

(2.20) 

and 

   
 

 

          

  
   

 
(2.21) 

After substitution: 

   
   

        

   
 

(2.22) 

Also, for 750 <Re <3.510
5
 CD is constant and equal to 0.445 (Clift et al. 1978). Therefore, with 

the same approach, terminal velocity in this range will be: 

        
   (     )

  
 
 
  

(2.23) 

Outside these ranges of Re, in intermediate regime, or even when more accurate predictions are 

required, the relationships between Reynolds number and drag coefficient are inconvenient in 

giving explicit expressions of terminal velocity, since in both dimensionless numbers terminal 

velocity is involved and an iterative procedure is needed. However, the terminal velocity can be 

omitted by defining another dimensionless parameter: 

   
 

 
      

  
           

  
 

(2.24) 

where Ga is Galileo Number (Clift et al., 1978). It can be seen that Galileo number is 

independent of terminal velocity and can be evaluated from physical properties of the proppant 

and carrying fluid. Therefore, for proppant transport simulations, it is more satisfactory to 

express Galileo number rather than drag coefficient as a function of Reynolds number. In this 

case: 

         (2.25) 

or 



 37 

   
 

   
      

(2.26) 

 

In Table 2.3, we mentioned the empirical equations which were proposed in terms of Galileo 

number and Reynolds number. Most of the researchers did not provide such a relationship and 

most of the time, obtaining this form of the equations becomes very complex and impractical to 

use. 

Table: 2.3: Reynolds Number as a Function of Galileo Number 

Researcher Reynolds No. Range Expression 
Allen (1900) {

        
         

     
 

  
   

 
  

    
 

  
   

 
   

Oseen 

(1910) 

       

   
   

  
        √  

  

  
   

Dallavalle 

(1948) {
         
        

          

    
  

  
 

   
 

 
 
   

  
            

   
  

  
          

McGauhey 

(1956) 

       
   

  
 

 ⁄

       √    
 

Al-Salim and 

Geldart 

(1969) 

               

   
 

         

     
 

         

          

  
          

          

 
          

          
       

Turian et al. 

(1971) 

                                      
 

            
        

 

            
  

Fouda and 

Capes (1976) 

            

  ∑   
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Table: 2.3: Continued 

Researcher Reynolds No. Range Expression 
Clift et al. 

(1978) 

{
 
 

 
 

              
                      

                

                

                   

                 

 

{
 
 
 
 

 
 
 
 
                     

               
 

               
 

                         

         

                          

                    

                                   

          

 

          

Concha and 

Almendra 

(1979) 

       
    

     

    
 

 ⁄
 √        √          

Zigrang and 

Sylvester 

(1981) 

       
    √          √          

Slot (1984)         
    

  

  
              

 

 
     

 ⁄     

Turton and 

Clark (1987) 

         

     
 

 ⁄  (
  

  
 

 ⁄
)

     

  
     

  
 

 ⁄
              

Khan and 

Richardson 

(1987) 

             

         
                                  

Brown and 

Lawler 

(2003) 

       

         

         

         

         

    √          √          

                                    

     
 

 ⁄  (
  

  
 

 ⁄
)

     

  
     

  
 

 ⁄
              

     
 

 ⁄  (
  

  
 

 ⁄
)

[       
 

 ⁄   

  
 

 ⁄   
⁄ ]     

  
     

  
 

 ⁄
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Table: 2.3: Continued 

Researcher Reynolds No. 

Range 

Expression 

Almedeij 

(2007) 

       
  

 
   

 

(
 

  
     

     )
  

   
  

     

  

 
 

        
 

 ⁄              
     

 ⁄              
   

 ⁄              
   

 ⁄     
 

           
     

 ⁄             
   

 ⁄     

             
 

 ⁄     

          
      

 ⁄             
   

 ⁄     
 

Cheng 

(2009) 

           
        

   

  
                                        

Hongli 

(2015) 

         

   
   

  
(       √  

  

  
)

     

                

                      
 
 

 
 

  
       

 
  

  
⁄  

Where: 

         
   

           

   
 

 

 
   

and 
   

 

 

  

  
 

         

  
   

 
 

 

As it can be seen from Table 2.3, the expressions that relate Galileo number to Reynolds number 

are very complex. Instead of using these relationships in our numerical code, we plotted 

Reynolds number as a function of Galileo number, from data in Fig. 2.4. Using this graph will be 

more accurate than fitting a complex equation that always contains some degree of errors. 
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Figure 2.5: Reynolds Number vs Galileo Number 

2.3.2 Effect of Fracture Walls on Proppant Settling 

It is well stablished that when a particle is settling in a liquid, the confining walls around the 

system produce retardation effect on the particle. In other words, terminal settling velocity of 

proppants is known to be lower in a confined liquid compared to the case that no walls are 

present under identical conditions. This retardation of the motion of particles in confined 

medium is due to the backflow of the fluid caused by a falling sphere through the annular region 

between the sphere and the wall and the corresponding increase in the drag force acting on 

sphere. The smaller the available space for fluid counter flux compared to the particle size, the 

more important the phenomenon. Furthermore, the walls also change the onset of flow separation 

and subsequently the boundaries between flow regimes. Regarding analytical solutions, the 

confining walls change the boundary conditions of the equations of motion and continuity of the 

continuous phase and the condition of uniform flow far from the particles does not exist as in 

infinite mediums. The obvious outcome of these boundary conditions is changes in the exerted 

drag force on the particles and the reduction in the settling velocity of proppants. In our study, 

we will only consider the simplest case of a sphere settling on the axis of a long cylindrical tube. 

There are little studies on the other geometrical shapes like parallel plates (Staben, 2003) or in 
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triangular and square cylinders (Miyamura et al., 1981), which for the completeness of our 

discussion, we will review them very quickly, but not as detailed. 

The severity of the wall effect is dependent on the size and the shape of the confining walls. The 

location of the sphere, i.e., whether the sphere is falling on the axis of the cylindrical tube, also 

influences the severity of the wall effect. In this work, however, we mostly consider the 

prediction of the wall effect for a sphere falling through a long tube, which is the topic of most of 

the investigations in the literature. This effect has been studied both theoretically and 

experimentally for many years. Knowledge of this retardation effect is necessary in calculating 

the net hydrodynamic drag and in turn the settling velocity of the falling particles in bounded 

media. Some researchers considered settling of a single sphere in Newtonian fluids (Miyamura et 

al., 1981; Machac and Lecjaks, 1995; Balaramakrishna and Chhabra, 1992), some focused on the 

settling of the non-spherical particles (Chhabra, 1995) and some concentrated on non-Newtonian 

Fluids (Lali et al., 1989; Venu Madhav and Chhabra, 1994; Chhabra, 1996; Ataide et al., 1999; 

Chhabra and Uhlherr, 1980; Song et al., 2009).   

In this section, we only consider settling of a spherical particle in a Newtonian, incompressible 

fluid. There are different useful ways to quantify the retardation effects of the walls. As the drag 

force ratio, based on the same particle properties at the same fluid velocity (Latto et al., 1973; 

Duduković, and Končar-Djurdjević, 1981; Iwaoka and Ishii, 1979): 

   
                     

                      
 

   

  
 

(2.27) 

as the velocity ratio based on constant particle dimensions,  

   
                                  

                                   
 

  

   
 

(2.28) 

 

or as the viscosity ratio (Clift et al., 1978),  

   
 

  
 

(2.29) 

Where   is the actual fluid viscosity and    is the viscosity of the unbounded fluid which would 

give the observed Stokes velocity: 

   
          

         
 

(2.30) 
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It should be noted in some literature the inverse of Eqs. 2.27 to 2.29 is considered as the wall 

factor.  

In creeping flow regime, all the three ratios are equal but at higher Reynolds numbers, the 

relationships become complex. 

The simplest and most relevant to proppant transport way of describing wall effect is by defining 

the wall factor as a velocity ratio: 

   
  

  
 

(2.31) 

where    and    are the settling velocity of the sphere with and without the presence of the 

walls. Dimensional analysis suggests that if the container is long enough for the end effects to be 

negligible (which is the case for hydraulic fractures) the wall factor,   , will be a function of 

only Reynolds number and the ratio of the diameters of the spheres and container,  :   

                      
  

  
 

(2.32) 

where    is the container diameter (or the width of hydraulic fracture) and    is the diameter of 

proppant. Two boundary conditions must be satisfied for any meaningful wall factor. For   = 0 

the settling velocity should become the settling velocity in infinite medium and for   = 1 the 

value of settling velocity must become zero. 

Except for the creeping flow regime, little analytical work has been reported on the motion of 

contained fluids past the rigid spheres. However, according to the considerable experimental 

literature (Clift et al., 1978; Di Felice, 1996; Chhabra et al., 2003), it is now well known that the 

wall factor does not depend on the Reynolds number at very low and very high values of the 

Reynolds number. However, in the intermediate regime, the wall factor is a function of both   

and Reynolds number. It should be noted that the value of Reynolds number marking the 

transition between viscous to intermediate and then from intermediate to Newton flow regime is 

different for confined and unconfined mediums. In the presence of walls the Reynolds number 

boundaries for flow regimes is a function of  . Different methods have been proposed in the 

literature on how to distinguish these boundaries. As an example, Clift et al. (1978) noticed the 

walls increase the point of transition between the regimes. Coutanceau (1972) based on 

visualization of the flow around a sphere moving along the axis of a tube containing a stationary 
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fluid, noticed a delay in the formation of the attached recirculatory wake, and the onset of 

separation (start of intermediate region) was given by:  

                 (2.33) 

Using the detectable departure from front and rear symmetry of streamlines around the sphere, 

he defined the following expression for finding the upper limit of Stokes flow: 

    (
  

 
)                      

(2.34) 

Table 2.4 summarizes some of the best-known correlations of the wall factor with their range of 

applicability. The purpose is not to compare the accuracy of many proposed correlations in the 

literature, but to provide a way of including this phenomenon in the numerical work. 

Chhabra et al. (2003) by reviewing many experimental data on wall effects for a sphere falling in 

incompressible Newtonian media in cylindrical tubes, recommended the use of Haberman and 

Sayre equation (1958) in the viscous regime, and the Newton equation (1678) for the turbulent 

regime. According to their work, the Di Felice equation (1996) correlates most of the literature 

data in the transition regime with an overall minimum error of about 12.5%. However, deviations 

increase steeply with increasing values of   and/or the Reynolds number. They also suggested 

that for   >0.88 only limited data is available and any expression in this condition should be used 

with extreme caution.  

During most of the experiments, researchers ignored data when the particles showed zigzag or 

spiral movement and rotation. Only runs in which the particle moves approximately along a 

straight line without rotation in the tube axis according to visual observations were considered in 

the analysis.  
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Table 2.4: Correlations for the wall factor 

Author Wall Factor Note 
Newton (1687)                      Turbulent Regime, 

      

Munroe (1889)          Turbulent Regime, 

                
           

Ladenburg 

(1907) 
  

 

        
 

Viscous Regime 

Faxen (1923) 
  

 

      
 

      

Faxen (1923)                               Viscous Regime 

      

Lunnon (1928)           Viscous Regime 

      

Suga (1931)        
   

      ⁄
 

        

Francis (1933) 
   

   

        
   

Viscous Regime 

         

Lee (1948) 

  
  

 
 

  
 
 

   
 
 

     

  
 
 

 
 

  
 

  
 
 

   
 
 

   
 

  
        

  √ 
 
 
 

 

      

      

        

Mott (1951) 

  √
 

     
                  

  √
 

      
 

          

          

Happle and 

Byrne (1954) 

                         

Haberman and 

Sayre (1958) 
  

                                    

           
 

Viscous Regime,       

Bohlin (1960)                                         

                

      

Fidleris and 

Whitmore (1961) 

Graphical Method All Regimes 

                

Happel and 

Brenner (1965) 

                            Viscous Regime 

Achenbach 

(1974) 
  

       

          
 

Turbulent Regime, 

                

Happel and Bart 

(1974) 

                    Viscous Regime 

      

Garside (1977) 
  

 

         
 

Viscous Regime 
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Table 2.4: Continued 

Author Wall Factor Note 
Clift et al. (1978)                              

     

Iwaoka and Ishi 

(1979) 

                                     

                                

                                

                                

                          
        

      

Khan and 

Richardson 

(1989) 

                    
                  

      

Almeida (1995) 
  

  

      
 

             

                   

 

Di Felice (1996) 
   

   

       
     

Viscous Regime 

Di Felice (1996) 
   

   

       
   

     

      
         

Intermediate and 

Turbulent Regime, 

                
    

Di Felice (1996) 
   

   

       
      

Turbulent Regime 

Wham et al. 

(1996) 
  

                  

                      
 

                       

                        

  
           

                                
 

                                  

 

Intermediate Regime, 

               

     

 

 

 

 

 

Ataide et al. 

(1999) 
  

      

      
 

             

                

         

              

Kehlenbeck and 

Di Felice (1999) 
  

    

   
 
  

  
 

        

      

          
      

                 
                 

              
                   

Intermediate Regime 

       

Arsenijević et al. 

(2010) 

                           
              

       

Haberman and Sayre (1958) theoretical expression has gained a wide acceptance in the literature 

and it was initially thought to be applicable up to =0.8. However, subsequent numerical studies 
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(Paine et al., 1975; Bowen and Sharif, 1994; Higdon and Muldowney, 1995) extended its 

applicability to   =0.9.  

Extensive comparisons between the data of circular and square cross-section fall containers have 

clearly shown that the Newton expression is the most reliable at high Reynolds number. 

Although there is no detail about its range of applicability, it is usually assumed to be applicable 

over the complete range, namely 0 <   <1. Newton’s expression (1678) applies to more general 

cases other than a cylindrical tube as well. His original expression is: 

   
  

   

 
 

  
  

   

 
 

     

(2.35) 

where   is the cross section of the container. The prediction of Munroe’s equation (1889) and 

Newton’s equation (1687) differ only marginally. 

Obviously, the Wham et al. (1996) equation is implicit in terms of   and an iterative procedure is 

needed to obtain   from known   and Reynolds number. Also, this equation reduces to 

Haberman and Sayre (1958) expression as the Reynolds number is reduced.  

As for inertial effects, analytic solutions have not been extended beyond the creeping flow range. 

For example, Faxen (1923) using Oseen’s linearization made predictions for drag force exerted 

on a sphere moving axially in a tube which were not reliable in higher Reynolds number 

situations (Fidleris and Whitmore, 1961; Happel and Brenner, 1973; Sutterby, 1973). However, 

there are considerable experimental results which are in remarkably good agreement for freely 

settling spheres (McNown et al., 1948; Fidleris and Whitmore, 1961; Sutterby 1973) and spheres 

fixed in a fluid flow (McNown et al., 1948; Achenbach, 1974).  

Miyamura et al. (1981) performed experiments on the wall correction factor in various 

geometries other than cylinders and proposed a 19th order equation as:  

     ∑   
 

  

   

 

(2.36) 

with coefficients in Table 2.5. 

 
 
 
 



 47 

Table 2.5: Coefficients of Equation (2.36)  

Coefficient Triangular Cylinder Square Cylinder Parallel Plates 

R0 1.0000000 1.0000000 1.0000000 

R1 -0.1524694×10
1
 -0.1923777×10

1
 -0.4027060×10

0
 

R2 -0.9356945×10
1
 0.1649393×10

1
 -0.8435362×10

1
 

R3 0.6788950×10
2
 -0.1153624×10

2
 0.3487996×10

2
 

R4 -0.1634936×10
3
 0.2682020×10

2
 -0.2359584×10

2
 

R5 0.6563649×10
2
 0.1367386×10

2
 -0.1193919×10

3
 

R6 0.1929998×10
3
 -0.5060226×10

2
 0.1362242×10

3
 

R7 0.4729873×10
2
 -0.1042480×10

3
 0.1601959×10

3
 

R8 -0.3751033×10
3
 0.1170802×10

3
 -0.4106427×10

1
 

R9 0.2752887×10
3
 0.2395431×10

3
 -0.3171554×10

3
 

R10 -0.1190656×10
4
 -0.1757552×10

3
 -0.1989548×10

3
 

R11 0.6542166×10
3
 0.1097079×10

2
 0.4608181×10

2
 

R12 0.2075038×10
4
 -0.2409061×10

3
 0.3581750×10

3
 

R13 0.3268518×10
3
 -0.9802373×10

2
 0.2128604×10

3
 

R14 -0.2014247×10
4
 0.1344775×10

3
 0.2338137×10

3
 

R15 -0.2869939×10
4
 0.2037087×10

3
 -0.8912624×10

2
 

R16 0.1553641×10
4
 0.9298401×10

2
 -0.6472198×10

2
 

R17 0.1483049×10
4
 -0.1153909×10

3
 -0.2528621×10

3
 

R18 0.2078562×10
4
 0.2791606×10

3
 0.2000882×10

3
 

R19 -0.2211987×10
4
 -0.3434466×10

3
 0.2897953×10

3
 

The work of Fidleris and Whitmore (1961) is probably the most thorough investigation of the 

wall effect for spheres. They interpreted the results of over 3,000 velocity measurements and 

presented wall effect correction factors graphically. Fidleris and Whitmore’s graph is reproduced 

here in Fig. 2.6. According to the figure, the wall effect is highest at high diameter ratios and at 

low Reynolds numbers. 
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Figure 2.6: Fidleris and Whitmore, 1961 Graphical Method in determining Wall Factor 

2.3.3 Effect of Concentration on Particle Settling 

The settling velocity in suspensions has been the subject of many studies for more than a half 

century. Many empirical expressions that were proposed in fluidization can be applied to the 

proppant settling inside the fractures as both phenomena are following the same physics. In this 

section, we investigate the deviation of settling velocity from single terminal velocity due to the 

presence of other particles which in turn modifies the flow field. Other interactions such as wall 

effects are not considered here. In addition, the many empirical relations that have been proposed 

in fluidization context are examined in this section and an attempt is made to classify these 
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expressions by the method that they were obtained and also, by the graphical shape of the 

expressions. 

In proppant transport application, we are dealing with a multi-particle system. The presence of 

other particles changes the drag force exerted on each particle. The motion of other particles 

creates a “return flow” of carrying fluid. Moreover, presence of other particles increases the 

viscosity of the suspension.  

In fluidization research, the ratio of the terminal drag force in a multi-particle system to the drag 

force exerted on a single particle is called voidage function or concentration function (voidage is 

defined as 1-c) and is used to measure the concentration effects: 

     
   

   
 

(2.37) 

 
where FDt and FDs are terminal drag force in multi-particle and single-particle systems, 

respectively. Obviously, the value of the concentration function depends on the particle 

concentrations, and drag forces in calculating this function should be evaluated at the same 

velocity. In different applications and problems this ratio may be expressed in other forms than 

forces to investigate different quantities. For example, in sedimentation research this ratio is used 

to calculate piezometric pressure drop through the bed of particles. In proppant transport studies 

the main application of this term is the calculation of the hindered settling velocity. Therefore, it 

is more convenient to express this ratio in terms of velocities rather than forces. Furthermore, 

here all the voidage function formulas are expressed in terms of concentration rather than 

voidage.   

De fellice (1994), based on particles momentum equation and the drag force equation, showed 

that the concentration function can be expressed in terms of velocities as: 

     (
  

 
)
     

   
      

(2.38) 

 
In Stokes region or creeping flow region (Rep < 0.1): 

    

   
 

  
   

  
  

 
 

  
 

(2.39) 
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Therefore: 

     
  

 
      

(2.40) 

 
In Newton’s region or turbulent region (500 < Rep < 200,000): 

         (2.41) 

 
Therefore: 

    

   
   

(2.42) 

 
Substituting: 

     (
  

 
)
 

      
(2.43) 

 
The first type of approaches in finding voidage function is fully theoretical approach in which a 

solution for Navier-Stokes equation for multi-particle system is proposed. Exact solution of 

fluid-solid interaction force can only be obtained for very low Reynolds number or dilute 

suspensions. As an example, we can mention Barnea and Mizrahi (1973) voidage function 

expression for fixed spatial particle arrangements: 

            
 

 ⁄        (2.44) 

 

with   having values ranging between 1 and 2. For random particle arrangements, Batchelor 

(1972) obtained: 

     
             

       
 

(2.45) 

 
Happel (1958) proposed the following expression: 

     
     

 
 ⁄       

      
 

 ⁄      
 

 ⁄     
 

(2.46) 

 
Some researchers, with limited success, tried to utilize theoretical approaches and extend the 

applicability of the equations to higher Reynolds number. The reader is referred to the work of 

LeClair and Hamielec (1968) or El-Kaissy and Homsy (1973). 
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The limited range of applicability of theoretical solutions leaves ample space for less exact 

approaches to be carried out in multi-particle-fluid systems. In completely empirical approaches, 

the proposed expressions relating velocity to concentration are derived exclusively from 

experimental data. Experimental data in this regard over the full range of flow regime are 

abundant. For example, if we use Rechardson-Zaki, (1954), correlation: 

  

 
         

                                                                  

(2.47) 

 
Hence for low Reynolds regime: 

                         (2.48) 

 
And for high Reynolds regime: 

                         (2.49) 

 
These two famous correlations show that for extremely low or high Reynolds conditions the 

concentration function has almost the same form. Based on this conclusion, some researchers 

proposed that the concentration function is independent of Reynolds number due to constancy of 

the exponent in the above expressions. Therefore, the same type of expression can be used for 

intermediate flow regime as well (Richardson and Jeronimo, 1979; Foscolo et al., 1983; Kmiec, 

1976). 

Khan and Richardson (1990) calculated the drag coefficient of a sphere in a concentrated 

suspension of particles as a function of concentration. They observed inconsistency between 

abovementioned generalization and the behavior of fluidized beds. They were the first 

researchers who modified the expression of concentration function in intermediate regime. For 

intermediate flow regimes, De fellice (1994) using Dalla valle (1948) drag coefficient correlation 

for spherical particles obtained: 

         
   

     
   

(2.50) 

Richardson and Zaki (1954) equation for hindered settling velocity can be expressed as: 

  

   
        

(2.51) 

and Rowe (1987) correlation for exponent n in Richardson-Zaki correlation is:  
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(2.52) 

 
De fellice (1994) concluded that the exponent is not a constant and it varies depending on the 

Reynolds number. He proposed the following expression for the concentration function: 

             (2.53) 

 
where exponent   changes with the Reynolds number: 

            
            

 
⁄   

(2.54) 

 
There are also semi-empirical approaches in which the parameters in the existing theoretical 

models are adjusted. In approaches based on single-particle-fluid systems, in order to extend the 

single particle equations to multi-particle systems, a “pseudo-fluid” whose density and viscosity 

is such that it gives the same fluid dynamic effect on the single particle as the presence of 

neighboring particles, is considered. In these early studies, some researchers were using Stokes 

equation with modified viscosity and density of slurry rather than the fluid (Robinson, 1926, 

Steinour 1944). Robinson (1926) published this idea which was later adopted by Steinour (1944). 

Hawksley (1951), assuming pseudo fluid density to be equal to the suspension density and its 

viscosity is calculated from Vand equation (mentioned later in this chapter), obtained the 

following expression for particle settling velocity: 

 

  
        

      

  
  
  

 
⁄  

 
(2.55) 

which is strictly valid for the creeping flow regime. Barnea and Mizrahi (1973) using similar 

approach provided voidage function for the entire flow regime, which can only be stated 

explicitly for low and high Reynolds numbers:  

     
   

 
 ⁄

     
 

   
      ⁄  

 
(2.56) 

     
   

 
 ⁄

      
 

(2.57) 

Other examples of this approach can be found in the work of Letan (1974), Ishii and Zuber 

(1979), Patwardhan and Chi Tien (1985a). This approach gives a fair agreement with the 

published experimental data for a wide range of flow regimes. 
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There are approaches with the analogy with fluid flow in pipes in which the relationship between 

pressure drop and concentration is given. More complete reviews are reported by Dullien (1975) 

and Barnea and Mednick (1978). 

There are many studies in the literature that were trying to formulate the effect of particle 

concentration on settling velocity. Many of the proposed correlations apply over a restricted 

range of Reynolds number. Table 2.6 summarizes these equations with their range of 

applicability.  

Table 2.6: Expressions for Effect of Particle Concentration on Settling Velocity 

Researcher Range of Applicability Equation 

Steinour (1944)                
 

  

               

Brinkman (1947)       

 

 

  

            √
 

 
     

Lewis et al. (1949)            
 

  

           

Hawksley (1951)             
 

  

        
 
     

  
  
  

    

Jottrand (1952)              
 

  

          

Lewis and Bowerman (1952) 
          

 

  

              

                 
 

  

               

Richardson and Zaki (1954) 

 
 

  

        

                 
  

 
 

            
       

  

 
 

   
    

⁄  

            
       

  

 
 

   
   

⁄  
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Table 2.6: Continued 

Researcher Range of Applicability Equation 

Happel (1958)         
 

  

 
  

 
 

 
 
  

 
 

 
 
     

    
 
 

 

Loeffler and Ruth (1959)         
 

  

 

      

 

    
      

 

 

Oliver (1961)         
 

  

                  
 
   

Wen and Yu (1966)                              
                

Gelperin et al. (1972)                          
             

Ramamurthy and Sabbaraju 

(1973) 
  

     

  

    

     
     

  

     

  
     

  

     

       
  

(       
 
 )

    

       

 

          
  

(       
 
 )

    

       

 

   
 

 
   

  

(       
 
 )

    

       

 

Barnea and Mizrahi (1973)                
          

   

√   

   

    
        

    
 
  

 

    
  

      
  

      

 

[
   (     ) 

    
 

] [
   

   
 
 

]       
   

√   

 

Letan (1974)               

  

 
          

              

      (   
 
  

)
     

         

 

Wen and Fan (1974)           
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Table 2.6: Continued 

Researcher Range of Applicability Equation 
Garside and 

Al-Dibouni 

(1977) 

 

                            
 

                               

      
       

 

 
  

          

  
 
  

 

 

 

Riba and 

Couderc 

(1977) 

First Equation: 

           

Second Equation: 

           

First form: 

   
  

     

                                         

   
  

     

                                         

Second form: 

                     (
  

     

)

     

    

                    (
  

     

)

     

     

Third form: 

{
 

            
    

  

     

    

           
   

  

     

       
  

     

  

     

 

{
 

               
    

  

     

    

              
    

  

     

 
     

     

  

     

 

{
 

             
    

  

     

    

           
   

  

     

       
  

     

  

        

 

   
 

        
 
  

 

Ganguly 

(1980) 

  

 
     

   
                  

 

  
    

     

 

 

               
um: minimum fluidization velocity 

Le: height of expansion bed 

W: mass of feed 
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Table 2.6: Continued 

Researcher Range of Applicability Equation 

Limas-

Ballesteros et 

al. (1982) 

                    
  

     

                         

         
      

       
   

  
                              

       
  

  
                              

                                              

Foscolo et al. 

(1983) 

        

            

        

 

  

 
      

         
 

 

  

 
                                 

         

 

 

  

  
      

            
     

 

Jean and Fan 

(1989) 

         

  

 
      

 
 ⁄      

 
 ⁄     

    
 

 ⁄
 

Hirata and 

Bulos (1990) 

As Rechardson and Zaki 

 
                               

       
   

 
 

       

     Static Bed Voidage 

     Bed Voidage Calculated from Richardson-

Zaki Equation 

 

As it can be seen, there is a large amount of published correlations on the effect of concentration 

on settling velocity. There are wide discrepancies between the prediction of these published 

correlations. However, Di felice (1995) provided a more systematic approach in categorizing 

different correlations based on the shape of the correlations when    ⁄  vs. voidage is plotted on 

a log-log scale. Di felice (1996) recognized four different types of behavior as shown in Fig. 2.7.  
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Figure 2.7: Different Classes of Velocity vs Concentration Correlations 

In Case I, the plot is smooth and linear and the extrapolation of experimental points to c = 0, 

corresponds to the single particle velocity. The main characteristic of Case II is that the plot is 

divided into two regions with different slopes. For high concentrations, the extrapolation of the 

straight line coincides with a velocity well below the single particle terminal velocity. However, 

the slope increases in the second region and the extrapolated line approaches the correct value of 

single particle settling velocity. Case III is similar to Case II but in the second region the slope is 
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decreasing. In Case IV the first part of the plot is linear, while the second part is concave, 

approaching the unhindered settling velocity. 

2.3.4 Random Close Packing Concentration and Maximum Close Packing 

Concentration 

The maximum volume fraction of solids (proppants) obtained, when they are packed randomly, 

gives a parameter called random close packing (RCP). A clear geometric point at which 

proppants are in a densely packed but non-crystalline state gives random close packing 

concentration (cRCP). The empirical nature of RCP and whether it is a well-defined property or 

dependent on shear history of suspension and precise definition of end of randomness and 

crystallinity start is very controversial (Torquato et al., 2000; Mewis and Wagner, 2009). 

However, there are several predictive theoretical models that can determine cRCP from particle 

size distribution (Phan et al., 1998; Kansal et al., 2002; Farr and Groot, 2009; Brouwers, 2011), 

the topic of which is beyond the scope of this work. In addition, increasing size dispersity of the 

system, increases cRCP (Chong et al., 1971; Farr and Groot, 2009; Mewis and Wagner, 2011).   

It should be noted that cRCP is the most “geometrical” consolidated packing that can be achieved 

by tapping or vibrating a large container of spheres. (Mewis and Wagner, 2011) and has a highly 

repeatable experimental value. Depending on the size of the particles, different values for 

random close pack concentration is reported in the literature (for example Shapiro and Probstein 

(1992) reported cRCP = 0.52 and Chong and Christiansen (1971) reported cRCP = 0.61). Later in 

our numerical code, we assume a value of 0.66 for this parameter. On the other hand, there is 

another parameter called maximum packing concentration (cm) at which suspensions become 

highly viscous. This parameter is defined from a “thermodynamic” point of view, however, for 

the mono-disperse suspensions it is very close to cRCP. In the next section, one approach of 

determining this parameter will be discussed.  

An overview of random close packing is given by Koos (2009). It should be noted that another 

packing which is called random loose packing (concentration in the range 0.55-0.61) also exists 

which is defined as the loosest state that particles can obtain while they are still in contact.   

In our numerical code, maximum packing concentration (sometimes called saturation 

concentration in proppant applications) is important in determining the evolution of slurry 

viscosity (as will be discussed in the next section) and also gives the point at which fracture is 
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filled with proppant and should be treated like a porous medium. Although, there are very few 

models that can predict maximum packing concentration, in this research, we assume it is 

equivalent to cRCP, which is easier to determine. An approach which is also supported by 

theoretical and experimental literature (Brady, 1993; Quemada and Berli, 2002; Mendoza and 

Santamaria-Holek, 2009).  

2.3.5 Viscosity Evolution of Slurries 

Rheology of suspensions is a rapidly increasing function of particle concentration which is also 

sometimes called phase volume (c, phase volume is the volume of suspending particles divided 

by the total volume of suspension). The reason is that the transfer of momentum between each 

particle and fluid is effected by the presence of other particles, which is equivalent to the 

increase of the apparent bulk viscosity of the slurry, a phenomenon more evident when the bulk 

slurry is sheared. 

Another factor that also effects slurry viscosity is the particle diameter. In high viscosity liquids, 

the effect of particle diameter is negligible while in low viscosity liquids, slurry viscosity is 

weakly dependent on the diameter of the proppants. Effect of particle shape and particle size 

distribution is totally neglected in our work since we are assuming uniform spherical proppants 

are being injected inside the formation. Present section is focusing on the flow behavior of 

proppant laden slurries, since viscosity evolution of such fluids strongly modify the mobility of 

fluids inside the fractures. Obviously, the focus would be on slurries with large particles and high 

solid fraction. The assumption of random position of the particle, with no segregation comes 

closer to reality for narrow size distributions and highly concentrated suspensions. Flocculating, 

colloidal and aggregating suspensions are beyond the scope of our study. Assumptions 

mentioned above are common to almost all previous publications in proppant laden slurries. 

There has been a vast number of theoretical and experimental studies on the subject of viscosity 

of suspensions. Many theoretical and semi-empirical closed form expressions have been 

proposed for viscosity evolution with concentration. A complete overview has been given by 

Rutgers (1962) and Horri et al. (2011). The most common way of describing slurry viscosity 

evolution is by introducing a parameter called relative viscosity which is the ratio of dynamic 

viscosity of slurry to dynamic viscosity of the carrying fluid: 
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(2.58) 

 
Relative viscosity is an indication of the factor by which the viscosity of the liquid is increased 

due to the presence of proppants. 

Over 100 years ago, Einstein (1906) theoretically derived his famous viscosity equation for 

dilute suspensions of rigid particles: 

          (2.59) 

 
He proposed a value of 2 for   (intrinsic viscosity) for spherical particles. Einstein work is based 

on the dissipated energy from suspending particles in the liquid, which is assumed to take place 

in the portion occupied by the particles. This assumption is permissible only in the case of dilute 

suspensions and very small particles. When the particles are densely populated, the calculation of 

the dissipated energy is overestimated since dissipation does not occur in the portion occupied by 

the particles.  Einstein equation is valid for very dilute suspensions when concentration is around 

0.01-0.02 (Rutgers, 1962). The possibility of a higher   value, e.g. 4.5 or 5.5 has been 

mentioned repeatedly, e. g. by Hatschek (1913) or Happel (1957). 

The viscosity-concentration correlations can be categorized according to the type of the proposed 

equation. Rutgers (1962) classified the correlations in terms of their mathematical forms. Table 

2.7 shows a summary of the famous proposed equations.  

Table 2.7: Summary of Different Viscosity Models for Suspensions 

Author Formula Comment 

Einstein (1906)           
K=2.5 for 

spheres, c < 0.02 

Baker (1913)              

Whole 

concentration 

range 

Kunitz (1926)      
      

      
 Valid for large c 

Bredee (1933) 
      

√    

    
Whole 

concentration 

range 

Phillipoff and Hess 

(1935) 
        

 

 
    

Whole 

concentration 

range 

Papkow and Kunststoffe 

 (1935) 
           n = 1.2; K = 2.3 

Guth and Simha (1936)      
            

          
 c < 0.08 
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Table 2.7: Continued 

Author Formula Comment 

Eiler (1941)         
     

   
   

 

Whole 

concentration 

range 

Arrhenius (1942)           
K = 2.78, Low 

concentration 

Vand (1948)           
    

        
  

No attraction or 

repulsion 

between the 

particles 

Vand (1948)           
          

        
  

No triplets 

collisions 

Mooney (1951)           
    

    
  0.75< K < 1.5 

Weissberg and Simha 

(1951) 

      

  
 

 

  
   

 

 
      

Whole 

concentration 

range 

Simha (1952)                
   

   
    

For dilute 

suspensions 

Simha (1952)    
    

       
  

   
(

 

      ⁄   
) 

For very 

concentrated 

suspensions 

only 

Rosco (1952)                    
High 

Concentrations 

Oliver and Ward (1953)        ∑     

 

   

 

Low to 

moderate 

concentrations 

(c < 0.2) 

Flory (1953)             
 

 ⁄  
n = 1.13, K = 

2.3 

Maron and Pierce 

(1956) 
        

 

  

    c > 0.2 

Happel (1957) 
             

  
 

 ⁄        
  ⁄   

 
 ⁄

      
  

 ⁄         
 

 ⁄   
  

 

Approximated 

by (if c < 0.3): 

    

             

Krieger and Dougherty 

(1959) 
        

 

  

     
B = 2.5 for solid 

spheres 

Thomas (1965)                                        
Whole 

concentration 

range 

Frankel and Acrivos 

(1967) 
     

         ⁄  
 

 ⁄

      ⁄  
 

 ⁄
 

Whole 

concentration 

range 

Frankel and 

Acrivos (1967) 
      {   

 

  

 
 

 ⁄ }
  

 
For concentrated 

suspensions 

only, 
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Table 2.7: Continued 

Author Formula Comment 

Chong et al. (1971)             
 

  ⁄

   
  ⁄

   
High 

concentrations 

Nicodemo and Nicolais 

(1974) 
        

 

  

      
Whole 

concentration 

range 

Batchelor (1977)                 
A = 6.2 for 

spheres 

Dabak and Yucel (1986)         
       

       
   

High 

concentrations, 

Low to high 

shear rates 

Barree, (1994)         
 

  

      
Whole 

concentration 

range 

Mendoza and 

Santamaria-Holek 

(2009) 

              
    

      
 

   
       

  
⁄  

 
cexcl: Excluded 

Volume 

Brouwers (2010)       
   

   
  ⁄

 
     

    
⁄

 

High 

concentrations, 

Mono-sized, 

spherical 

particles 

The most commonly used equation involves the maximum solid fraction. The maximum solid 

fraction is the concentration at which viscosity of the slurry becomes infinity, as shown in the 

Fig. 2.8. It should be noted that concentrated suspensions above maximum packing concentration 

can exist under compression. The behavior of such suspensions is defined by inter-particle 

interactions and micro-structure through theoretical and semi-empirical approaches and 

definition of suspension modulus (G’), the topic of which is beyond the scope of our work.  
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Figure 2.8: Rheological Behavior of Suspensions 

2.4 Conclusion 

Only a limited number of approaches are available for numerical simulations of particle 

transport. Although the application of granular kinetic theory for gas-liquid systems has been 

successful, the approach is still insufficient for solid-liquid systems. On the other hand, mixture 

models can be easily modified to accommodate different physical phenomena occurring during 

proppant placement. To this purpose, various aspects of hydrodynamics of solid settling in fluids 

were investigated. Laboratory investigations have shown that concentration, wall and inertial 

effects are among the most key factors that control the settling velocity of proppants. However, 

there still are some disagreements between proposed correlations.  

In particle-fluid systems, the effect of inertia on drag force exerted on particles has been 

thoroughly studied. Based on many experimental data of different researchers, a standard graph 

of drag coefficient versus Reynolds number has been established. Since the effect of inertia on 
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settling velocity cannot be explicitly recognized from standard drag curve, we re-plotted this 

graph in terms of Galileo number and Reynolds number. Galileo number can be easily obtained 

from the physical properties of fluid and particles. 

Fracture walls cause a hydrodynamic retardation that significantly reduce settling velocity, 

especially when particle diameter becomes comparable to slot width. 

Increased particle concentration generally hinders settling rate. As the concentration reaches to 

maximum packing concentration, settling velocity becomes zero. At this point, packed fracture 

can be treated like porous medium. Moreover, the viscosity of the proppant laden slurry 

significantly increases as concentration increases. The effect would be a huge change in mobility 

and consequently, pressure field inside the fracture. 

Incorporation of the state of the art in proppant transport laboratory experiments enables the 

numerical simulators to routinely design and evaluate field size stimulation and proppant 

injection. The current tools have not reached a fully foretelling capability which would allow for 

daring optimization schemes. Most of our effort was devoted to developing a robust numerical 

tool that captures physical phenomena and facilitates predictive designs. 
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Chapter 3: Mathematical Formulation of the Proppant Transport Simulator 

3.1 Introduction 

The transport phenomenon of proppants in hydraulic fractures is described by hyperbolic partial 

differential equations (PDE). Hyperbolic PDEs are based on conservation laws and describe a 

wide range of wave propagation and transport phenomena arising in practical engineering 

problems (Leveque, 2004).  

The solution to this kind of PDEs is highly dependent on the specified initial conditions. Solution 

to hyperbolic PDEs simply transports the initial condition within the model. On the other hand, it 

is well known that the hyperbolic partial differential equations (PDE) accept both smooth as well 

as discontinuous solutions. A discontinuous solution, also referred to as a shock, is characterized 

by large gradients in the variables such as velocity, density (concentration), depth or pressure. 

Even with smooth initial conditions, discontinuities may develop with time (Chen, 2006). 

Accurate numerical simulation of such systems is a challenging task using conventional 

numerical methods. The numerical challenge in the vicinity of large gradients (shocks) is that 

high order FD schemes lead to significant oscillations despite the fact that such schemes result in 

higher accuracy in smooth regions. On the other hand, first-order methods provide non-

oscillatory (monotonic) solution near the shocks, while giving poorer accuracy in the smooth 

regions.  

In this chapter, we investigated several shock-capturing schemes. The competency of each 

scheme was tested against a 1D benchmark problem. The main purpose of this chapter is to 

provide a step-by-step description of the numerical solution to proppant transport PDE, since 

such a description, although exists in related math textbooks, is missing in the hydraulic 

fracturing context. It should be noted that the classification of PDEs can be found in Appendix B. 

3.2 Theory and Governing Equations of Slurry Proppant Transport  

In this section, we derive the most general form of mass conservation equation for proppant 

transport. For this purpose, we need to define several terms. If we assume a control volume of 

dimensions dx, dy and w (width of the fracture), according to Fig. 3.1, the rate of change of 

proppant mass inside the element will be: 
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(3.1) 

where mp, ρp and Vp are proppant mass, density and volume respectively. On the other hand, 

proppant volume, Vp can be related to total element volume, V, by proppant concentration, c: 

             (3.2) 

Since we assume proppant density is not changing with time, the rate of change of proppant mass 

can be written as:  

   

  
   

         

  
 

(3.3) 

 The mass rate entering the system in the x-direction, from the left boundary of the element will 

be: 

   

  
                 

(3.4) 

where up is proppant horizontal velocity. With the same reasoning, proppant mass rate in the y-

direction entering from bottom boundary of the system can be written as: 

   

  
                 

(3.5) 

where vp is proppant vertical velocity. The proppant mass rate leaving the system from right and 

top boundaries can be written as: 

   

  
          

 [        ]

  
   

(3.6) 

   

  
          

           

  
   

(3.7) 
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Figure 3.1: Small Control Volume 

Now according to the law of conservation of mass, proppant mass entering the system minus 

proppant mass leaving the system plus source or sink term during a certain amount of time will 

give the change of mass in the system in that time: 

         [         
 [        ]

  
  ]          

 [         
 [        ]

  
  ]           

         

  
 

(3.8) 

After some simplification and dividing by dxdy: 

  

     

  
 

         

  
 

         

  
         

(3.9) 

It should be noted that up and vp can be related to fluid velocities. In fact, proppant and fluid are 

not moving at the same velocities in horizontal and vertical directions. Therefore, defining: 

     
  

  
 

(3.10) 

where uf is horizontal fluid velocity and Rret is called retardation factor which is the ratio of 

proppant to fluid horizontal velocities and: 

           (3.11) 

where vf is fluid vertical velocity and vset is proppant settling velocity. Therefore, Eq. 3.9 can be 

written as: 
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(3.12) 

Now, this form of mass conservation is categorized as pure advection since no diffusion term 

exists in the PDE expression. The solution to pure advection PDE simply translates the specified 

initial condition along the model, without smearing. Bird et al (1976) applied Fick’s law of mass 

diffusion for binary systems to proppant flow and obtained the following relationship for the 

diffusion of proppants in the bulk flow of slurry as: 

                                    (3.13) 

where ρsl is slurry density, Dpf is diffusivity coefficient and ωp is mass fraction of the proppant 

and is defined as: 

    
  

   
 

(3.14) 

Applying the diffusion term in the mass balance Eq. 3.12, we get:  

  

     

  
 

             

  
 

                

  
                      

(3.15) 

Bird et al. (1976) mentioned that the diffusivity coefficient, Dpf, can be broken into three sources: 

molecular movement, Dpf
mo

, turbulent flow, Dpf
tu

 and temperature gradient, Dpf
te
. In other words: 

       
      

      
   (3.16) 

The diffusion associated with molecular movement is very small in hydraulic fracturing 

problems. Also, in our modeling, assumptions are made that the flow of frac-fluid is laminar and 

that the entire field is in a constant temperature field. For these reasons, the diffusive term can be 

dropped. The obvious outcome of neglecting diffusion is that the advancing front of proppant 

will be a ‘‘sharp’’ front, without any diffusion ahead. In addition, we are assuming proppant 

grains are incompressible and ρp can also be omitted from the equations. Therefore:  

     

  
 

           

  
 

              

  
         

(3.17) 

Law of mass conservation can also be written for fluid injected into the wellbore. Again, for 

brevity, we don’t bring the full derivation of the equation as it is very similar to proppant mass 

conservation.  
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(3.18) 

If we consider Eqs. 3.17 and 3.18, we will be dealing with a system of hyperbolic PDEs. To 

avoid solving a complicated system of hyperbolic PDEs, we can do some manipulations. If we 

add proppant and fluid mass conservation equations, we obtain slurry mass conservation 

equation: 

     

  
 

       

  
 

       

  
 

         

  
 

           

  
 

           

  

        

(3.19) 

or: 

  

  
 

                 

  
 

                 

  
        

(3.20) 

Slurry velocity can be viewed as a volume fraction weighted sum of proppant and fluid 

velocities: 

                (3.21) 

                (3.22) 

After substitution of slurry velocities given in Eqs. 3.21 and 3.22 into Eq. 3.20, we obtain: 

  

  
 

       

  
 

       

  
        

(3.23) 

To obtain a solution to our system of equations we need another expression which is Navier-

Stokes equation (conservation of momentum for incompressible flow of Newtonian fluid). In the 

next section, we will see that combining Navier-Stokes equation with slurry transport equation 

leads to an elliptic type PDE, the solution of which would be easier to obtain compared to a 

system of hyperbolic PDEs.  

The Navier-Stokes equations can be expressed as: 

 (
   

  
   

   

  
   

   

  
   

   

  
)   

  

   
 (

    

  
 

    

  
 

    

  
)      

(3.24) 

where u is the velocity, g is the gravitational acceleration and i is x, y or z. p is pressure and τ 

represent different stress components. 
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In hydraulic fracturing applications, the solution to the Navier-Stokes equation is called cubic 

law. The derivation of cubic law can be found elsewhere (e.g. Economides and Nolte, 2000). 

     
  

   

  

  
 

(3.25) 

Similarly, for y direction: 

     
  

   

        

  
 

(3.26) 

where μ is the equivalent viscosity of the slurry. The second term in Eq. 3.26 is convection 

velocity. If we substitute Eq. 3.25 and 3.26 in Eq. 3.23, we obtain:  

 

  
(

  

   

  

  
)  

 

  
(

  

   

        

  
)       

  

  
 

(3.27) 

This PDE is now of elliptic class and simple finite difference schemes can be used to solve it to 

obtain the fluid pressures. In addition, the rheology of the slurry which is affected by the 

proppant concentration, inertia or walls of the fracture can be included in the model by their 

effect on settling velocity, through any of the correlations provided in Chapter 2. 

3.3 Convective Flow  

Settling and convection are the two controlling mechanisms in proppant placement. Proppant 

settling velocity was extensively discussed in Chapter 2 and it was mentioned that uncorrected 

Stokes settling can be expressed as: 

   
   

        

   
 

(3.28) 

On the other hand, as the proppants are injected inside the fracture, the density of the carrying 

fluid starts to increase, generating a density gradient along the fracture. This density gradient, 

even in its moderate amount, can generate large scale fluid movement which dominates particle 

settling in most field scale conditions. This complex phenomenon causes vertical segregation of 

suspensions of different density. 

In this section, we explain how convective flow can be quantified and measured for slot flow 

based on fluid rheological properties and local proppant concentration, just like settlement of 

particles. We will further present simulation results that confirm the theory that we discuss here 
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later in Chapter 4. The simulations are aimed to investigate the concurrent occurrence of particle 

settlement and convective movement. 

Based on the cubic law, the horizontal flow of a fluid down a slot as a function of pressure drop 

can be expressed as (Bird et al., 1976): 

   
   

   

  

 
 

(3.29) 

Solving for pressure gradient yields: 

  

 
 

     

   
 

(3.30) 

In addition, the force on the fluid per unit length, in the horizontal direction is given by: 

   
  

 
   

(3.31) 

Combining the above equations: 

   
     

  
 

(3.32) 

On the other hand, the vertical force on a fluid section of unit length is expressed as: 

   
      

 
          

(3.33) 

The ratio of the horizontal force to vertical force yields a dimensionless group called Buoyancy 

number which is useful in predicting dominance of horizontal or vertical flow: 

    
   

       
 
  

 
 

(3.34) 

Buoyancy number is the ratio of the axial flow velocity to the typical convection velocity, driven 

by gravity due to density differences. The lower the Buoyancy number, the stronger the 

convection mechanism. This dimensionless parameter is an indicator of the relative importance 

of convection and horizontal flow. It can be observed from Eq. 3.34 that NBu is extremely 

sensitive to changes in the width of the fracture.  

As mentioned before, in real placement designs, it is assumed that proppants are uniformly 

distributed inside the fracture. However, strong gravity driven motions can cause this distribution 

uniformity to be lost over the total or part of the fracture height. Production from the upper 

section of the pay-zone can be dramatically reduced if proppants did not extend vertically 

through the fracture height and instead misplaced at the bottom of the fracture.  
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Comparing settling and convection velocities (Eqs. 3.28 and second term of Eq. 3.26), it can be 

concluded that convection is scaled to fracture width while settling is scaled to proppant 

diameter. Since proppant entry requirement states that the fracture width should be at least 4 to 5 

times larger than the proppant diameter and also convection is related to width to the power of 

two, while settling is related to proppant diameter to the power of two, it is reasonable to expect 

that convection has a much larger effect than settling on proppant placement.   

As mentioned before, convection transport depends on the density difference, which is a function 

of concentration. Therefore, a correct modelling of convectively driven flow requires that the 

numerical method of solution has the capability of capturing sharp concentration fronts. 

3.4 Finite Volume Formulation of Proppant Transport Equation 

In mathematical books, hyperbolic PDEs which describe the process of transport of material are 

generally written as: 

  

  
 

  

  
 

  

  
   

(3.35) 

where q is the conservative variable to be advected and f and g are the flux vector. Comparing 

Eqs. 3.30 and 3.48, we can say that in proppant transport, the conserved variable is: 

     (3.36) 

And the components of proppant mass flux vector are: 

                     (3.37) 

                       (3.38) 

Proppant velocities in these equations determine the speed of information propagation.  

As a starting point, we consider the 1-Dimensional form of Eq. 3.35: 

     

  
 

       

  
   

(3.39) 

All the subsequent materials can be extended to multi-dimensional problems without the loss of 

generality. In finite volume method, integral form of conservation laws is dealt with. In Eqs. 3.36 

and 3.37, we know that the terms (cw) and (upcw) are functions of x and t (time). So, we will use 

the following notations for these two parameters: 

                (3.40) 
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                         (3.41) 

If we consider the grid shown in Fig. 3.2 and integrate Eq. 3.39 from xi-0.5 to xi+0.5 we will obtain: 
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(3.42) 

However, we know that: 
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(3.43) 

  

 

Figure 3.2: Illustration of a FVM for updating the cell average Q
i
n

i by Fluxes at the Cell Edges. 

Shown in x–t Space 

Now integrating Eq. 3.42 in time from tn to tn+1 yields: 
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(3.44) 

Again we know that the first term can be written as: 
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(3.45) 

We can use this expression to develop a time marching algorithm as: 

∫                     
 
  

 
 

 
  

 
 

 ∫                 
 
  

 
 

 
  

 
 

  ∫ [    
  

 
 
      

  
 
 
      

  
 
 
   ]   

    

  

 ∫ [    
  

 
 
      

  
 
 
      

  
 
 
   ]    

    

  

 

(3.46) 

Now, if we use the fact that the average value of a conserved quantity over a gridblock i at time 

tn can be expressed as: 
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(3.47) 
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(3.48) 

and divide Eq. 3.46 by Δx, the above averaging definitions gives: 

  
      

  
  

  
  

  
 
 

   
  

 
 

   
(3.49) 

where: 
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(3.51) 

The function F can be seen as an approximation to the average flux along boundary. 
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Eq. 3.39 is a non-linear advection equation since velocity of proppant changes with space and 

time. Therefore, special techniques suitable for non-linear hyperbolic problems must be utilized. 

In solving this kind of hyperbolic PDEs, different capturing schemes have been developed which 

can be classified as classical or traditional and modern techniques.   

In the traditional techniques, the finite difference method is employed, while in the modern 

techniques, the finite volume method (which for rectangular grids can be viewed as a 

generalization of the finite difference method) is used. Here, we briefly present the finite volume 

discretization of the hyperbolic equations presented above. The finite difference discretizations 

can also be explained in the more general finite volume discretization. 

In the finite volume method, the integral form of the partial differential equations is developed. 

As we explained, in one dimensional space, the finite volume discretization of Eq. 3.39 is: 

  
      

  
  

  
  

  
 
 

   
  

 
 

   
(3.52) 

All the terms in the above discretization are average values of the variables over the i
th

 interval 

and at time tn. e.g.: 
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(3.53) 
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(3.54) 

Any numerical method for solving hyperbolic equations depends on the choice of F, which is 

called the numerical flux function. 

Since the solution of this kind of PDE may involve shocks or steep gradients, shock capturing 

methods with the ability of tracking discontinuity and maintaining accuracy and stability in 

smooth regions have been developed (Leveque, 2004). In the next section, a review of the 

conventional finite difference methods and recent shock capturing methods is provided. Our 

approach should not be confused with shock tracking or front tracking methods in which a 

combination of the finite difference or finite volume methods (in smooth regions) with an 

explicit method of tracking the location of discontinuity is employed. The goal of shock-

capturing methods is to automatically capture discontinuities in the solution, without having to 

explicitly track them (Davis, 1992). 
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3.5 Review of Numerical Methods in Solving Hyperbolic PDEs 

In solving the hyperbolic equations, traditional finite difference methods generate either non-

physical oscillations or numerical diffusion in the presence of shocks (Leveque, 2004). This 

large error in the solution technique was the motivation behind the development of shock 

capturing schemes. In spectral methods, these oscillations are called Gibbs phenomena and their 

magnitudes do not reduce by refining the mesh. Application of such methods to simulate 

proppant transport often leads to instabilities since transport of proppant is a non-linear problem 

and contains discontinuities. In this section, we review some of the most important techniques in 

solving the first-order hyperbolic problems and apply them in a numerical experiment to 

investigate the capability of each method.  

Before 1987, two numerical methods were largely used to reduce or eliminate the spurious 

oscillations near shocks. The first method is called artificial viscosity and as the name implies a 

diffusive term is added to the discretization scheme. The amount of diffusion added in artificial 

viscosity methods is problem dependent. In other words, the smearing of the solution can be too 

large that it sacrifices the accuracy. The second method was application of flux limiters which 

uses total variation diminishing (TVD) property. In these methods, the discretization scheme is 

non-oscillatory near the discontinuity. However, these methods are first-order accurate near 

smooth regions as well. We will describe some of the artificial viscosity and flux limiter (they 

are also called slope limiter) methods in this section. 

The first proposed successful idea in obtaining a uniformly high order accurate, yet non-

oscillatory results was proposed by Harten et al. in 1987 (Harten et al., 1987). The method was 

named ENO which stands for essentially non-Oscillatory. These researchers used Newton 

divided differences to measure the local smoothness of the stencils. Later on WENO schemes 

(Weighted ENO) were developed based on ENO schemes to reduce the computational cost and 

increase the order of the accuracy (Liu et al., 1994, Jiang and Shu, 1996). We will discuss the 

application of these state of the art methods to the hyperbolic transport equations in the following 

section. 

It should be mentioned that the study of ENO and WENO method is still very active. For 

example, ENO schemes based on point values and TVD Runge-Kutta time discretizations (Shu 

and Osher, 1989, Osher, 1991), Biased ENO (Shu, 1990, Fatemi et al., 1991), ENO based on 
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other than polynomial building blocks (Christofi, 1995, Iske and Soner, 1996), or combination of 

ENO with spectral methods (Cai and Shu, 1993) have been proposed with applications in many 

different fields. Obviously, we cannot describe nor apply all the methods and modifications in 

this short chapter. Only the original ENO and WENO methods will be used in later chapters to 

simulate the process of proppant transport.    

3.5.1 Benchmark Test to Evaluate Different Solution Techniques 

To test the capability of the capturing techniques discussed here, we use a numerical benchmark 

test with known exact solution. We consider a 1D linear advection equation (Eq. 3.55) with unit 

velocity (Garcia-Navarroa and Vazquez-Cendon, 2000). 

  

  
 

  

  
                                 

(3.55) 

For the initial condition of our numerical experiment, we consider a combination of a Gaussian 

wave, a square wave, a sharp triangle and a half ellipse: 
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(3.57) 

The functions G and H are defined as: 

                   (3.58) 

         √                  (3.59) 

Also we set: 

                 
      

    
            

(3.60) 

The exact solution of this problem is the translation of the initial solution at unit speed: 

               (3.61) 

In other words, the shape of the initial condition does not change with time and it simply 

translates in the model. Fig. 3.3 shows a schematic of the initial condition. 
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We used a periodic boundary condition on the left and right sides of the model and ran the 

simulation for 2 seconds. For this model problem, we assigned a Courant number of 0.9 for all 

the schemes. 

 

Figure 3.3: Numerical Experiment with Gaussian, Square, Sharp Triangle, and Half Ellipse 

Initial Waves 

3.5.2 First-Order Finite Difference Schemes 

First or second-order finite difference methods have been traditionally used in capturing shocks. 

A very important family of the first-order schemes is the upwind methods which in its most 

general case becomes Godunov scheme (Fennema and Chaudhry, 1987). Upwind schemes can 

cause strong diffusion and significant smearing in the solutions. In addition, the numerical 

method becomes very complex for non-linear problems. Godunov scheme applies to system of 

hyperbolic equations and it reduces to upwind method if applied to a single PDE. The numerical 

flux of both methods depends on the direction of propagation of information or the sign of 

velocity. The numerical flux of upwind method in Eq. 3.49 can be written as: 
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(3.62) 

which can be written as a single equation: 
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where 

 ̅       ̅    (3.64) 

 ̅        ̅    (3.65) 

and the final discretization of upwind method would be: 
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(3.66) 

Besides upwind method, Lax method is another popular first-order scheme. The centered 

difference discretization of advection equation is unconditionally unstable. In Lax or Lax-

Friedrichs scheme (Lax, 1954), the central difference scheme is stabilized by replacing   
  term 

with the average         
      

   term in the discretization. Lax method is known for its large 

dissipation error when Courant number is not 1 and produces a leading phase error (Pletcher et 

al., 1997). The numerical flux and final discretization of Lax-Friedrichs scheme are: 

 
  

 
 

  
 

 
         

      
   

  

   
   

      
   

(3.67) 

  
    

 

 
     

      
   

  

   
         

          
   

(3.68) 

From Fig. 3.4, it is evident that first-order upwind and Lax-Fridrichs methods are monotone 

everywhere. In other words, they do not lead to oscillations anywhere in the solution. However, 

they have poor accuracy due to large dissipation.  

The reason that each of these schemes lead to smearing of the solution can be explained by 

utilizing modified equation concept. Here we describe the modified equation (Warming and 

Hyett, 1974) of upwind method, but for brevity skip the modified equation of other techniques. 
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Figure 3.4: Results of First-Order Schemes after 2 Seconds, Upwind (Top) and Lax-Fredrichs 

(Bottom), Monotonic without Oscillation 

From Taylor series expansion, we know that: 
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(3.70) 

Now, if we substitute above formulations in upwind discretization equation, assuming u > 0, 

after some manipulation we obtain: 
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(3.71) 

The left-hand side of the above equation corresponds to the original hyperbolic PDE, however, 

substituting Taylor series expansion in upwind scheme did not obtain a zero right hand side. The 

result can be better interpreted if we also substitute all the time derivatives with space 

derivatives. Taking the partial time derivative of above equation yields: 

    
 

   
  

    
 

    
  

  

 

    
 

   
 

   

 

    
 

     
 

     

 

    
 

   
 

      

 

    
 

     
   

(3.72) 

and taking the partial space derivative of the same equation and multiplying by –u gives: 

  
    

 

    
   

    
 

   

 
   

 

    
 

     
 

    

 

    
 

   
 

      

 

    
 

     
 

       

 

    
 

   
   

(3.73) 

Adding the two equations gives: 
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(3.74) 

In a similar manner, the following equations can be obtained for other time derivatives: 
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Substituting all the time derivatives of Eq. 3.71 with above relationships we obtain: 

   
 

  
  

   
 

  
 

   

 
     

    
 

   
 

      

 
          

    
 

   

                                

(3.78) 

where v is the Courant number. Eq. 3.78 is called the modified equation of upwind scheme. It is 

obvious that when upwind discretization is used, it is actually Eq. 3.78 that is solved and not Eq. 

3.68. The right-hand side of the modified equation contains both even and odd derivatives. The 

effect of even derivatives on solution is similar to the diffusion equation that was discussed 
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earlier in this chapter. Even derivatives are called artificial viscosity and they reduce all the 

gradients in the solution, similar to Eq. B-12 in Appendix B. This effect is also called numerical 

dissipation. The direct effect of odd derivatives is distortion of the phase relations between 

various wave. This effect is called numerical dispersion. The combined effect of dissipation and 

dispersion is referred to as numerical diffusion, which spread out sharp fronts in the solution. 

3.5.3 Higher Order Finite Difference Schemes 

In most cases 1st-order schemes, are not employed to solve PDEs due to their intrinsic 

inaccuracy. Higher order shock capturing techniques are utilized to obtain better accuracy. 

Perhaps the simplest second-order scheme is the Leap Frog method. Applying this scheme to 1st 

order hyperbolic equation gives: 

  
      

    
   

  
     

      
   

(3.79) 

A disadvantage of this method is that for the first time step two initial conditions should be 

specified at two time levels. 

Lax-Wendroff scheme (Lax and Wendroff, 1960), which is one of the earliest 2nd order finite 

difference schemes, can be obtained from Taylor series expansion. This scheme can be written 

as: 
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(3.81) 

The Lax-Wendroff scheme has predominantly lagging phase error except for large wave 

numbers with 0.5 <ν<1, where ν is Courant number. It is second-order accurate in both space and 

time.  

There is another version of the Lax-Wendroff scheme, which is called Richtmyer two-step Lax-

Wendroff. This scheme is more suitable for nonlinear problems. It is second-order accurate with 

the same amplification factor and relative phase shift error as the original Lax-Wendroff. In the 

first step of this scheme a Lax- Friedrichs scheme is applied at the mid-point for the half time 

step: 
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(3.82) 

For the remaining of the time step, a leap-frog scheme is applied. 

 
  

 
 

     
  

 
 

  
 
   

(3.83) 

The Lax-Wendroff and two-step Lax-Wendroff schemes are equivalent when applied to linear 

advection equations. 

 

Figure 3.5: Two-step Lax-Wendroff Richtmyer Method, Good Accuracy in Smooth Regions, 

Oscillations Near the Shocks 

The MacCormack method (Wesseling, 2001) is a modified form of two-step Lax-Wendroff 

scheme in which a temporary value of Q
n+1

 is calculated in the first step and is corrected in the 

second step. In the predictor equation, a forward difference for space derivative is employed, 

while in the corrector equation a backward difference is used. The differencing scheme can be 

reversed, depending on the problem at hand: 

Predictor:    
   ̅̅ ̅̅ ̅̅ ̅    

  
   

  
     

    
   (3.84) 

Corrector:    
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Beam-Warming scheme (Beam and Warming, 1978) is a variation of MacCormack method, 

which uses the same differencing in the predictor and corrector steps, depending on the sign of 

the velocity.  
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This scheme, which is a 2nd order upwind scheme, has a predominantly leading phase error for 

0<ν<1 and predominantly lagging phase error for 1<ν<2. On the other hand, the Lax-Wendroff 

method has opposite phase error for 0<ν<1. Therefore, a linear combination of the two methods 

can reduce dispersive error of the scheme. Fromm’s method of zero-average phase error 

(Wesseling, 2001) is based on this observation: 

  
      

  
  

  
      

     
       

      
   (

  

   
 )

 

     
    

      
 

     
   

(3.88) 

Figure 3.6 is another example of application of 2
nd

 order methods to advection equation. These 

methods provide good accuracy in smooth regions, while giving oscillations close to 

discontinuity. The oscillations happening in the vicinity of the discontinuity show the dispersive 

nature of these methods. 
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Figure 3.6: MacCormack Method (Top), Beam-Warming Method (Middle) and Fromm’s 

Method (Bottom) Good Accuracy in Smooth Regions, Oscillations Near the Shocks 
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The methods presented so far were either first-order or second-order accurate. There are a small 

number of 3rd order methods in the literature. Rusanov, (1970) and Burstein and Mirin, (1970), 

separately developed the following third-order three-step scheme: 
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(3.91) 

where for stability requirements: 
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Another famous third-order method was developed by Warming et al. in 1973 and is called 

Warming-Kutler-Lomax. The method can be written as: 
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(3.95) 

High order finite difference schemes are non-dissipative with good accuracy near the smooth 

regions. However, they are prone to generating spurious oscillations across discontinuities or in 

the vicinity of large gradients in the solution (Leveque, 2004). In case the numerical oscillation 

becomes large, then the numerical method becomes inefficient to capture an accurate solution. 

3.5.4 Artificial Viscosity 

Lax- Friedrichs, Lax-Wendroff, and MacCormack methods belong to a class of solution methods 

that use artificial viscosity. This property is employed to introduce enough dissipation near 
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discontinuities to smear oscillations (Fig. 3.7). The amount of this artificial viscosity should be 

negligible close to smooth regions (Fennema and Chaudhry, 1990).  

However, the difficulty with this approach is that it is hard to determine the amount of 

dissipation needed without causing unnecessary smearing. For this reason, the high-resolution 

methods were developed. 

 

(a) 

 

(b) 

Figure 3.7: a) Comparison of MacCormack Method Result with Exact Solution Showing 

Numerical Distortion and b) Comparison of Lax Method Result with Exact Solution Showing 

Numerical Distortion Dissipation 
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3.5.5 High-Resolution Methods 

In the past decade, attempts have been made to devise a method that can combine the monotone 

feature of first-order methods with high accuracy of higher order methods. This was achieved 

through high-resolution methods which are at least 2nd order accurate in smooth regions and 

non-oscillatory at discontinuities (Leveque, 2004). A measure of the oscillation in the total 

variation is given by: 
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(3.96) 

It is obvious that in this definition more oscillations will give rise to more total variations. 

Therefore, to avoid oscillations it is necessary that the total variation decreases with time. Any 

numerical scheme that has this capability is called Total Variation Diminishing (TVD) scheme. 

In flux limiter schemes, limiters are imposed on numerical flux function such that higher order 

schemes are used in smooth regions, while lower order schemes are employed close to the 

discontinuity. This combination can be achieved through: 
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where FL denotes lower order flux function and FH denotes higher order flux function.  
  

 

 

  is 

called flux limiter which will be near zero closer to the discontinuities and around 1 close to the 

smooth data. 

The definition of the limiter leads to a wide variety of other methods of this form. Flux Corrected 

Transport (FCT) scheme of Boris and Book (1973) is one of the earliest limiter applications. 

Other popular choices of limiters include the Superbee limiter (Roe, 1985), van Leer limiter (Van 

Leer, 1977), the Woodward limiter (Colella, 1985), the Minmod limiter (Colella, 1985) and the 

Monotone Upstream-centered Scheme for Conservation Laws (MUSCL) by van Leer (Colella, 

1985). To be able to apply simpler 1D flux limiter schemes to advection equation, we utilized 

dimensional splitting, a description of which is given in section 3.5.6.  

3.5.6 Dimensional Splitting 

Dimensional splitting is a type of fractional step methods which can be used to transform a PDE 

with source term to a homogeneous and ordinary differential equation. The two sub-problems 

can be solved independently, with any scheme for each sub-problem. It can also be applied in 
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converting a multi-dimensional problem into several one-dimensional problems. The advection 

equation in 2D with source term can be written as: 

  

  
       

  

  
       

  

  
      

(3.98) 

where u and v are velocities in the x and y directions and      is a source term. In proppant 

injection application the source term is the injection rate of proppants. Now, applying 

dimensional splitting to Eq. 3.98, we obtain:  
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(3.101) 

Eq. 3.99 is an ordinary differential equation and can be integrated using standard methods for 

solving ODEs (e.g. Euler or Runge-Kutta methods, explained later in section 3.5.7. In the next 

step, the high-resolution methods can be applied to Eqs. 3.100 and 3.101 to advect the solution.  

Figures 3.8 and 3.9 present the results of the simulations with high-resolution methods. It is 

evident from figures that the first-order schemes non-oscillatory property along with good 

accuracy of higher order methods is obtained in the higher order schemes.  
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Figure 3.8: Flux Limiter Schemes: Accurate in Smooth Regions and 1
st
 OrderNear Shocks 
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Figure 3.9: Flux Limiter Schemes: Accurate in Smooth Regions and 1
st
 Order Near Shocks 

3.5.7 Runge-Kutta Methods 

It should be noted that ENO or WENO schemes are frequently used with Runge-Kutta methods 

and a flux differencing scheme. Therefore, before explaining ENO and WENO, we briefly 

describe Runge-Kutta methods and some of the flux differencing methods. 

Runge-Kutta methods are a family of iterative methods that are used for temporal discretization 

of ordinary differential equations. Jameson et al. in 1981 applied these methods to PDEs as well. 
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In the first step of the method, the PDE will be converted to a pseudo ODE. For wave equation 

the pseudo ODE takes the following form: 

        (3.102) 

        (3.103) 

fx will be obtained by ENO or WENO and qt will be obtained by Runge-Kutta methods. The 

first-order Runge-Kutta method is also called Euler method: 
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Here we only introduce 3
rd

 and 4
th

 order Runge-Kutta methods. 
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4
th

 order: 
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3.5.8 Essentially Non-Oscillatory (ENO) Schemes 

The idea of essentially non-oscillatory schemes, as mentioned before, was developed by Harten 

et al. in 1987. The accuracy of these schemes does not depend on the location of discontinuity as 

they are uniformly high order and non-oscillatory. In ENO, the magnitude of highest degree 

Newton divided differences is compared to measure the local smoothness of the stencil, although 

other methods could also be utilized for such a purpose.  
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In this section, we briefly describe the construction of ENO schemes for hyperbolic partial 

differential equations. However, detailed mathematical proofs will not be addresses here, as they 

can be found in other related textbooks. 

ENO starts by finding a polynomial      , of degree at most k-1, based on cell averages   
    , 

such that it is a k
th

 order accurate approximation of the unknown function     : 
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In other words, the unique polynomial       has the following property: 
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We show the stencil based on r cells to the right and s cells to the left:  

                    (3.115) 

and we know that: 

        (3.116) 

It can be shown that the k
th

 order accurate polynomial that we are looking for can be found by: 
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where crj are the constant coefficients of the polynomial. Shu (1997) using the Lagrange form of 

the interpolation polynomial obtained the following expression for non-uniform grids: 
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For a uniform grid, above expression reduces to: 
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In solving a hyperbolic PDE, we know that we have the point values of the unknown at the 

nodes, from initial conditions. In ENO method, these nodal values are used to approximate a 

high order accurate derivative of the function. In other words, knowing the point values: 

                         (3.120) 

a numerical flux function should be found based on nodal values:  
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  ̂                                     (3.121) 

such that the flux difference approximates the function derivative to the k
th

 order accuracy: 

 

   
( ̂

  
 
 
  ̂

  
 
 
)                                  

(3.122) 

A major difference between ENO and flux limiter schemes is the fact that ENO is based on point 

values (finite difference) rather than cell averages (finite volume). Again, it can be shown that 

the coefficients crj defined above can be used to achieve such a property: 
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(3.123) 

All the traditional finite difference or finite volume schemes can be derived by the above 

approach. 

As explained earlier in this chapter, fixed stencil approximations with orders higher than one 

lead to spurious oscillations. In ENO schemes, Newton divided differences, which are a measure 

of the smoothness of a function, are used to create an adaptive stencil, namely, the left shift, r, 

changes with the location of the gridcell.  

Forward Newton divided differences are defined as: 
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(3.125) 

Large Newton divided differences imply large or discontinuous derivatives. On the other hand, 

the smaller the divided difference, the smoother the function will be in the interval. ENO 

schemes make the stencil adaptive by using this property of Newton divided differences and 
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choosing the smoothest stencil compared to other stencils in the interval. As the first step, a two-

point stencil is selected: 

       
  

 
 
  

  
 
 
  (3.126) 

In the next step one point should be added to this stencil. This point can be on the right-hand side 

or left hand side of the stencil. To decide which point to add, we compare the Newton divided 

differences: 
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(3.128) 

This procedure is repeated with one point added to the stencil until the desired order of accuracy 

is reached. 

 

Figure 3.10: 3
rd

 Order ENO Scheme: High Order in Smooth Regions and Near Shocks 

3.5.9 Weighted Essentially Non-Oscillatory (WENO) Schemes 

As stated earlier, ENO is uniformly high order everywhere in the model right next to the 

discontinuity. WENO method has been created based on ENO, with an attempt to remove some 

of the disadvantages of ENO. In ENO, the free adaptation of the stencil is not needed in smooth 

regions. In addition, applying adaptation of stencil to hyperbolic PDEs may cause some loss of 
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accuracy [Shu, 1990, Rogerson and Meiberg, 1990). Moreover, the numerical flux that is 

obtained by changing the stencil based on its smoothness may have different form at neighboring 

points. Last but not least, one of the main advantages of WENO over ENO is the order of 

accuracy. In ENO if for example 2k-1 cells are used to give k stencil candidates, only one of 

them is chosen to give k
th

 order accuracy. In WENO, on the other hand, all k stencil candidates 

are used to give 2k-1 order accuracy. To be more precise, a convex combination of all the 

candidate stencils is used. If we show all the stencil candidates by: 

                                    (3.129) 

and k different numerical fluxes by: 
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WENO uses a convex combination of all the candidates as: 
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For stability and consistency, weights  should follow below requirements: 
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The way that the weights are defined is different in smooth regions and near discontinuity. In 

smooth regions the weights are shown by dr: 
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dr weights are always positive. As an example, dr values are calculated for k between 1 to 3: 
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When a discontinuity exists in the region, the corresponding weights r would be zero, to 

emulate ENO idea. Originally, polynomials or rational functions were used to define weights 

since they are computationally efficient: 
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with 

   
  

       
 

(3.138) 

In the above equation  is introduced to avoid denominator from becoming zero. A value of  = 

10
-6

 has been suggested for this purpose. In WENO method, similar to ENO the smoothness of 

each stencil is measured. However, in WENO Newton divided differences are not used and r 

which is called smooth indicator is employed. Jiang and Shu, (1996) after extensive experiments, 

proposed following relationship for smooth indicators: 
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Again, as an example, if k = 2, we will have the following interpolating polynomials: 
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or  
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Therefore, 
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If k = 3, we will have: 
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and the three indicators of smoothness will be: 
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Figure 3.11 is an example of the application of 5
th

 order WENO to our numerical experiment. 

High order accuracy of this scheme in smooth regions is apparent. 

 

Figure 3.11: 5th Order WENO Scheme: High Order in Smooth Regions and Near Shocks 

3.6 Conclusion 

In this chapter, the capability of several FD and FV schemes for capturing shocks in hyperbolic 

conservation PDEs was investigated. The solution methods available to this kind of problem are 
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numerous in the literature and the subject is still very active. The application of many of the 

proposed methods requires advanced mathematical backgrounds. Here, we only tried to 

introduce and later apply the most famous methods of solution to proppant injections in 

hydraulic fractures. Based on the numerical example of this chapter, the following can be 

concluded regarding the competency of the applied solution methods:  

1) First-order finite difference schemes are always monotonic preserving. However, they are not 

accurate enough near smooth regions of solution. 

2) Although higher order finite difference schemes give good accuracy in smooth regions, they 

produce spurious oscillations near regions with high gradients in the solution. 

3) High resolution method of finite volume through the application of flux limiters are always 

non-oscillatory (total variation diminishing) and 1
st
-order accurate near the location with large 

gradients. These schemes also produce accurate results in the smooth regions. 

4) ENO and WENO schemes are uniformly high order accurate and resolve shocks with sharp 

and monotone transitions. They are especially suitable for problems containing both shocks and 

complicated smooth solutions like proppant injection in hydraulic fractures. 

5) Godunov splitting technique is very effective in simulating multi-dimensional problems. 

Applying this method eliminates unnecessary complexity of the un-split methods and makes 

modeling easier for coding. 
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Chapter 4: Verification and Sensitivity Analysis of Proppant Injection into a Slot 

4.1 Introduction 

Various physical aspects of slurry and proppant transport have been discussed in Chapter 2 based 

on a review of literature and experimental studies. It is now well realized that different physics of 

proppant transport such as hindered settling velocity of proppants or slurry flow viscosity 

evolution, as some examples, should be addressed in a well-established modelling tool. The 

numerical solution of the first-order hyperbolic transport equation has also been described in 

Chapter 3. Considering these two chapters, we have directed the current chapter at the 

development of a numerical tool of proppant transport that incorporates physical aspects of the 

process, while applies an accurate and proper numerical technique. 

In this chapter, we will introduce the mathematical equations of motion of a slurry and boundary 

conditions that govern proppant injection into a fixed dimension fracture. As a starting point of 

code development, we tried to develop a numerical tool for simple slot flow. This gave us the 

chance to verify our proppant transport module by the results of available simulations in the 

literature. 

In the design of hydraulic fracture treatment, volumetric average fluid velocity is typically used 

in the calculations of fluid transport since it is implicitly assumed that solid proppants which are 

carried by the injection fluid are moving at that calculated average velocity and therefore 

particles are uniformly distributed. This simple assumption is the base of many design decisions 

like total fluid requirements, pad size and proppant staging.  

A series of sensitivity analysis using realistic parameter values was conducted to explore the 

legitimacy of these assumptions and to provide better guidelines that allow more accurate 

predictions of the proppant and fluid transfer. In addition, we will also investigate the amount of 

gravity driven vertical motion of proppant which is driven by density differences (convection) 

and compare it to a second gravity driven motion which is proppant settlement. Both of these 

two well recognized mechanisms can occur inside a fracture during proppant placement, 

however, the importance of each mechanism as a function of proppant injection design 

parameters is not fully understood. In addition to considering a rectangular channel width, we 
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also investigate proppant placement in an elliptic fracture cross section since this shape is 

predicted by many idealized analytical fracture propagation models such as PKN.  

4.2 Mathematical Formulation and Solution Technique 

The governing equations of a proppant transport model are: a) conservation of mass for the 

injection fluid, which yields the pressure distribution, b) conservation of mass for the solid 

proppants which yields the proppant concentration distribution during the simulation, c) 

momentum equations which for the case of flow between parallel plates leads to the cubic law, a 

relation between pressure gradient and fluid velocity and d) proppant settling velocity or the 

terminal velocity of the proppant particles inside the fracture. The main output of this kind of 

modelling is the distribution of the proppant that is given by its volumetric concentration 

(defined as the volume of the proppant over the volume of the slurry). 

In our simulations, we have neglected flocculation and slumping of the particles and we assumed 

uniform concentration across the width of the fracture (slot). This assumption avoids 

unnecessary complications arising from large aspect ratio of elements in the numerical model or 

high running time of a model with large number of elements.  Therefore, a 2D modeling of the 

problem seems sufficient.  

In addition, for the binary system of proppant flow, Taylor dispersion, which consists of 

diffusion associated with the molecular movement, turbulent flow and temperature gradient (Bird 

et al., 1976) can be neglected. The most obvious consequence of these assumptions is that this 

moving boundary problem consists of a sharp proppant front (without any diffusion ahead) 

which needs special numerical techniques.  

We use the Finite Volume Method (FVM) technique which minimizes numerical dispersion that 

occurs in traditional Finite Difference (FD) schemes. We applied WENO numerical solution of 

FVM which was explained in Chapter 3. This scheme gives high accuracy where the solution is 

smooth (away from proppant front) and non-oscillatory near discontinuities (proppant front).     

4.2.1 Mass Balance (Continuity) Equations 

Continuity equation is basically a statement based on the conservation of mass. In proppant 

transport context two mass conservation equations are required for the slurry which consists of 
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proppant and injection fluid. The derivation of these balance equations can be found in Chapter 3 

and here we only mention these conservation equations. 

For slurry: 
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For proppant: 
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(4.2) 

where w is the width of the fracture, c is the volumetric proppant concentration defined as the 

ratio of proppant volume to slurry volume and up and vp are the horizontal and vertical velocities 

of proppant respectively.   

In this set of equations, the width of the slot is constant. Therefore, the right hand side of the Eq. 

4.1 disappears for the case of flow through fixed slots. We adopted the finite difference scheme 

to solve this elliptic PDE and obtain the fluid pressures.  

In addition, the rheology of the slurry is affected by the proppant concentration. We assume that 

the increase in viscosity can be described by the following (Barree & Conway, 1994): 

  
  

   
 
   

    
 (4.3) 

where c* is the saturation concentration and µ0 is the initial viscosity of the clean fluid. 

Saturation concentration corresponds to the maximum concentration that can be achieved by 

random packing of regular spheres. At saturation concentration, proppant particles create a pack 

and behave like solid porous medium. Thereafter, only the fluid phase is able to mobilize 

through the pack. Saturation concentration can be determined experimentally and depends on the 

type of the proppant and it varies between 0.52 (loose packing) to 0.65 (dense packing). We 

assign a value of 0.6 to this parameter in the simulations.  This apparent viscosity is used to 

calculate fluid transmissibilities in the pressure equation (Eq. 4.1). 

Eq. 4.3 has been obtained by laboratory experiments (Barree and Conway, 1994) and lumps all 

the effects of interactions between particles and particles and fluid into a modified viscosity of 

the fluid. There are also a variety of other equations as discussed in Chapter 2.  
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According to Eq. 4.3, viscosity of the slurry increases with increasing concentration. This, 

however, imposes a limitation on the numerical implementation of this relationship. This is 

because the viscosity increases very rapidly when concentration approaches the saturation 

concentration. The most apparent solution is assigning a threshold value to the maximum 

viscosity or concentration. 

It should be noted that our transport model consists of coupling mass balance of slurry and 

proppant. Slurry mass balance equation is an elliptic PDE and is solved by an implicit method 

and the shock capturing methods discussed earlier are not applied to solve this PDE. 

4.2.2 Proppant Mass Balance  

The complexity of the proppant transport problem comes from solving the hyperbolic PDE of 

proppant transport (Eq. 4.2).  Conventional finite difference methods generate either non-

physical oscillations or numerical diffusion in the presence of shocks (Leveque, 2004). We 

reviewed the capability of several finite difference and finite volume techniques in Chapter 2 and 

here we briefly describe the discretization method that we used for this work.  

We can assume that the following relation exists between the slurry and particle velocities 

(Barree et al., 1994; Liu, 2006): 
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(4.5) 

where α accounts for the fact that the velocity of fluid and proppant are not the same. It should 

be emphasized that the first term in Eq. 4.5 which is vsl includes convection velocity the second 

term in Eq. 4.5 accounts for particle settling velocity and is corrected for the effect of particle 

concentration on the settlement of of proppants (Barree & Conway, 1995). For each fluid type, a 

different form of such a function may be required. There are many empirical equations for 

settling velocity that consider the effects of proppant interactions and wall effects (Daneshy, 

1978; Novotny, 1977; Baree and Conway, 1994, Clark and Quadir, 1981). A review of these 

equations can be found in Chapter 2.  

To avoid complications arising from un-split high-resolution methods, we applied dimensional 

splitting method, a type of fractional step method, to solve Eq. 4.2. Using this method, a multi-

dimensional PDE with source terms can be split into several 1D PDE (depending on the 
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dimensionality of the problem) and an ordinary differential equation. In our case, Eq. 4.2 

becomes: 
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Each of these equations can be solved by the 5
th

 order WENO scheme combined with the 4
th

 

order Runge-Kutta method as explained in Chapter 3.  

4.3 Algorithm for Coupling Slurry and Proppant Transport Equations 

We designed a coupling algorithm to link the partial differential equations for fluid flow and 

proppant transport. Two variables are important in our coupling: proppant velocity which is a 

direct result of solving fluid flow and slurry mass conservation, and slurry viscosity which is 

adjusted for proppant concentration changes through Eq. 4.3 (or any of the empirical equations 

mentioned in Chapter 2). Figure 4.1 shows the coupling scheme for the slurry and proppant mass 

balance solvers. According to Fig. 4.1, the latest pressure distribution from Eq. 4.1 is used to 

calculate the proppant velocities needed in solving Eqs. 4.7 and 4.8 to obtain the latest 

concentration. Then the fluid rheological properties are updated as a function of this new 

concentration. Since the proppant transport PDE is solved explicitly, we imposed a Courant–

Friedrichs–Lewy (CFL) stability condition on the time step that assures information travels 

within one element in each time step. Necessity of imposing CFL stability condition is explained 

in Appendix C. 

To provide a numerical solution for the proppant transport partial differential equation, we 

applied a simple iteration approach. The proppant mass balance partial differential equation that 

we obtained in the previous section is non-linear, meaning that the coefficients of the equation 

depend on the unknown. At each time-step the transport problem is divided into three parts: 

First, we calculate the coefficients of the slurry mass balance equation (Eq. 4.1) using viscosity 

of the previous time step (at time level n-1) or at the previous iteration level, k-1. We solve for 

the pressure field using the viscosity obtained in the previous time-step (or the initial condition 

for the first time-step); Next, we calculate the vertical and horizontal velocity of the proppant, 
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using the pressure field calculated in the previous time-step (Eqs. 4.4 and 4.5). Finally, we apply 

a finite-volume method to Eqs. 4.7 and 4.8 to advect the concentration of proppant. 

We iterate on the solution until convergence is achieved. Figure 4.1 shows the coupling between 

the slurry and proppant mass balance solvers. 

 

Figure 4.1: Numerical Algorithm of Solving System of Mass Balance Equations 

4.4 Numerical Example 

A synthetic model with realistic parameters was designed for a series of computer simulations to 

investigate the effects of volumetric proppant injection rate, injection fluid density, proppant 

size, carrying fluid viscosity, fracture shape and Buoyancy number on proppant settling and 

convection inside a fixed dimension slot. This section first presents the results of model 

verification against the results of a commercial PDE solver (COMSOL Multiphysics) for 

rectangular and elliptic shape fractures with constant fracture length, width and height. We first 

describe a base case model whose input parameters are used in the sensitivity study simulations 
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except for one parameter which is changed at a time. In all cases the fracture is rectangular with 

a uniform width of 3 mm. 

 

 

4.4.1 Geometry and Boundary Conditions 

For the verification simulation, the model domain is fixed at 5 m by 5 m with 3-mm uniform slot 

aperture. Initially the slot is filled with the injection fluid (no proppant). Figure 4.2 shows the 

domain and boundary conditions. The slurry injection is assigned a rate of 1.325 l/s with 0.3 

proppant concentration at the left boundary (inlet) over the full slot height. Top, bottom, and 

right boundaries were assigned zero proppant flux. Fluid is assigned zero pressure at the right 

boundary and is not allowed to exit from the top and bottom boundaries. In addition, solid wall 

boundary condition is assigned to the top, bottom and right boundary to prevent proppant from 

exiting the model 

 

Figure 4.2: Model domain and boundary conditions for slurry and proppant transport equations 
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4.4.2 Model Verification   

The model has been verified by comparison with the simulations conducted with COMSOL 

Multiphysics, which is a general-purpose software platform, for modeling physics-based 

problems.  

Figures 4.3a and 4.3b compare the result of pressure field from COMSOL Multiphysics and our 

simulation when no proppant is injected at the left boundary. In this case, both COMSOL 

Multiphysics and our numerical simulator solve only Eq. 4.1 (slurry mass balance). Results 

indicate a general agreement between the predictions of the two models. In Fig. 4.4, we compare 

the pressure profile along the cross section shown in Fig. 4.3. The good match that is observed 

between these simulations results from the fact that traditional numerical schemes give accurate 

results when dealing with elliptic partial differential equations (Eq. 4.1).  

Figures 4.5a and 4.5b show the concentration contour plot after 8 seconds from the start of 

proppant injection for both COMSOL and the current computer code, respectively. Figure 4.6 

shows the concentration profile across the line shown in Fig. 4.5.   
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a 

 

b 

Figure 4.3: Pressure Distribution of a) COMSOL Multiphysics and b) presented model at 20 seconds 
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Figure 4.4: Pressure profile for a horizontal section 2.5 m from the model base 

A comparison between Figs. 4.5a and 4.5b indicates that the travel distances of proppant front 

for both simulations are the same at approximately 2 m from the left boundary. However, 

COMSOL simulation shows more numerical diffusion at the proppant front, while the results of 

our numerical technique indicate a sharper front and less numerical diffusion. According to Eq. 

4.2, there is no second-order space derivative in the proppant transport equation. Even-order 

derivatives indicate diffusion and, therefore, a suitable numerical technique in solving this type 

of problems is the one that results in minimum diffusion. According to Fig. 4.6, COMSOL 

Multiphysics gives more gradual change in concentration gradient compared to our simulation. 

We can see how traditional numerical schemes fail close to shock fronts when dealing with 

hyperbolic partial differential equations. 

The second difference is the oscillatory nature of the solution technique in COMSOL as can be 

seen in Fig. 4.6. The oscillation originates from the fact that all traditional numerical techniques 

with orders higher than one generate oscillations in places with large gradients. This limitation 

does not exist in our numerical simulation as shown in Figs. 6b and 7.   
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b 

Figure 4.5: Result of COMSOL Multiphysics and presented model 



 111 

 

Figure 4.6: Concentration profile at horizontal cross section 2.5 m from the base  

4.4.3 Base Case Model 

Table 4.1 shows the input parameters of the base case model. The simulation continued until the 

entire slot was filled with proppant. 

Table 4.1: Input parameters for the base model 

Fluid Flow Rate (lit/sec) 1.325 

Proppant Diameter (mm) 0.200 

Proppant Density (kg/m
3
) 2,600 

Fluid Viscosity (Pa sec) 0.4 

Saturation Concentration* 0.6 

*This parameter was kept constant for all simulations. 

Figure 4.7 shows the concentration maps at different times during the injection as predicted by 

the numerical transport model. The amount of particle concentration is indicated by the colour 

change in the contour plots. Figures 4.7a and 4.7b show the proppant front continues to extend 

with no change in concentration as the slurry travels through the length of the model.  
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Figure 4.7: Concentration maps for the base model at different injection times 

The Buoyance number of the base case according to Eq. 3.34 is 3.00 and, therefore, due to much 

higher proppant horizontal velocity relative to its vertical velocity in the specified condition of 

the simulation, little settlement is observed at the bottom of the slot before the proppant front 
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reaches the right boundary. However, Figs. 4.7c-4.7f show a higher proppant concentration at the 

bottom of the slot, indicating the formation of a sediment bed.  

A proppant bank is also created at the discharge part of the model when the front reaches the 

right boundary (Figs. 4.7e-4.7f). The bank grows with time in an unsymmetrical manner due to 

proppant settlement. The proppant concentration increases to the saturation concentration after 

the proppant reaches the right boundary. We set the numerical proppant flux entering the element 

at zero when its proppant concentration reaches the saturation level. 

4.4.4 Effect of Volumetric Flow Rate 

Figure 4.8 shows proppant volume fraction contour plots at 8 seconds of injection for different 

volumetric injection rates of 1.3, 5.3, 10.6 and 15.9 lit/sec (720, 2,880, 5,760 and 8,640 bbl/day, 

respectively). The buoyancy number, NBu is increasing by increasing the flow rate. This means 

flow rate increase favors horizontal flow. Buoyancy number for different volumetric injection 

rates of 1.3, 5.3, 10.6 and 15.9 lit/sec is 3, 12, 24, and 36, respectively. Obviously, the slot fills 

up faster at higher injection rates.  

Figure 4.9 shows the time that is required for the proppant front to reach 4.5 m for different flow 

rates. Obviously, longer injection time is needed for the lower rates. For different volumetric 

injection rates of 1.3, 5.3, 10.6 and 15.9 lit/sec, this time is 46, 12, 6 and 4 seconds, respectively. 

The amount of settling is indicated by the creation of a higher concentration bed at the bottom of 

the slot, which is insignificant in all cases except for the lowest flow rate, as shown in Fig. 4.9a. 

This is mainly because the horizontal proppant velocity for high-rate injections is one order of 

magnitude larger than the vertical proppant velocity. 
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Figure 4.8: Concentration map for injecting proppant with different volumetric flow rates of a) 1.325 , b) 5.3, 

c) 10.6 and d) 15.9 lit/sec after 8 seconds 

If in some situations bed concentration reaches the saturation concentration, the created proppant 

bank alters the area available for fluid flow in the fracture and may cause a blockage at the 

fracture entrance and possibly lead to a premature termination of the fracturing operation. 

It should be noted that while the amount of settling is indicated by the size of the bed at the 

bottom of the fracture or the size of the region with clear fluid at the top of the fracture, the 

amount of convection can be recognized by the slope of the iso-concentration contours. The less 

this slope, the more the convection. Convection occurs because the heavier proppant slurry tends 
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to fall to the bottom of the fracture and the low-viscosity particle-free fluid flows more easily at 

the top. 

  

a b 

  

c d 

Figure 4.9: Concentration map for injecting proppant with different volumetric flow rates of a) 1.3, b) 5.3, c) 

10.6 and d) 15.9 lit/sec after a) 46, b) 12, c) 6 and d) 4 seconds 

Figures 4.10 and 4.11 depict the proppant front, i.e. injection concentration of 0.3, for different 

flow rates during the injection. Solid lines show proppant front advancement before it reaches 

the right boundary of the model. Dashed lines show 0.6 concentration (saturation concentration 

front), which seems to be steeper for higher flow rates due to less convection flow at higher 

horizontal velocities. For the least flow rate case, a stronger convective transport is indicated by 
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a smaller slope of the concentration contours. As expected, the slot is filled up faster for injection 

flow rates. 

 

a 

 

b 

Figure 4.10: Proppant fronts at (a) 1.3 lit/sec, (b) 5.3 lit/sec. Solid lines show the proppant front before 

reaching the right boundary of the model. Dashed lines show the proppant front after reaching the right 

boundary. 
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Figure 4.11: Proppant fronts at (a) 10.6 lit/sec, (b) 15.9 lit/sec. Solid lines show the proppant front before 

reaching the right boundary of the model. Dashed lines show the proppant front after reaching the right 

boundary. 

In conclusion, it can be stated that flow rate has a strong impact on both settling and convection. 

Higher flow rate decreases settling and convection at the same time due to the fact that by 

increasing injection rate, viscous force overrides gravity force more and more. This in turn leads 
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to proppant placement efficiency improvement. In the design applications, applying higher 

injection rate can also create a wider fracture and ease proppant entry. However, higher injection 

rate does not necessarily yield better proppant placement when height growth is expected. In this 

situation, a shorter propped length might be obtained. 

4.4.5 Effect of Proppant Density 

We applied four different proppant densities of 2100, 2600, 3100 and 3600 kg/m
3
. Figure 4.12 

shows the concentration contours at 40 seconds of injection. Clearly, settlement velocity 

increases for heavier proppants. As it is shown in Fig. 4.12, a thin layer of proppant is formed at 

the bottom of the slot, before the front reaches the right boundary. For the selected input 

parameters in these simulations, changing the density of the proppant did not alter the proppant 

distribution significantly. This can be attributed to the relatively high viscosity of the injection 

fluid in these numerical exercises.    
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Figure 4.12: Concentration profile for different proppant densities of a) 2,100, b) 2,600, c) 3,100 and d) 3,600 

kg/m
3
 after 40 seconds of injection 

4.4.6 Effect of Proppant Size 

We applied different proppant diameters of 0.1, 0.6, 1.5 and 2.36 millimeters. These sizes are 

chosen based on the real proppant diameter range. It should be mentioned that in real case, the 

mobility of the proppants rapidly decreases when the fracture width is of the same order of 

magnitude as the proppant diameter. The fracture width should be 4 to 5 times bigger than the 

particle diameter for effective placement. However, we have neglected this fact here since our 

focus is to observe the settling characteristics of the particles. This effect can be accounted for by 

simply imposing a minimum fracture width (as a multiple of proppant diameter) required for free 
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proppant circulation, in the numerical code. Figure 4.13 shows the proppant concentration 

profiles after 40 seconds of injection. Increasing proppant diameter has the same but stronger 

effect as increasing proppant density and causes more settlement by increasing the vertical 

velocity component of proppants. This is predictable since according to Eq. 3.28, proppant 

settling velocity is proportional to the square of the particle diameter, while it is only 

proportional to the density to the power of one.  

  
a b 

  
c d 

Figure 4.13: Concentration Maps for Different Proppant Diameters; a) 0.2 b) 1 and c) 2 mm, After 40 seconds 

of injection 

4.4.7 Effect of Injection Fluid Viscosity 

Figures 4.14 and 4.15 show proppant volume fraction contour plots at 50 and 65 seconds of 

injection for four different fluid viscosities of 0.05, 0.1, 0.4 and 1 Pa.Sec. For small values of 
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viscosity, settlement is very strong, resulting in a buildup of particles at the bottom of the slot. It 

can be observed from Figs. 4.14 and 4.15 that at lower viscosities, concentration has reached the 

saturation value in a large portion of the slot height. This can cause a premature termination of 

fracturing treatment since the carrying capacity of the injecting fluid reduces by reducing 

viscosity. Another issue with having low viscosity injection fluids is the creation of narrow 

fractures. If the width of the fracture is comparable to proppant diameter, the proppant transport 

can be altered significantly due to extra drag forces exerted on the proppants by the fracture 

walls.   

  
a b 

  
c d 

Figure 4.14: Concentration maps for different injection fluid viscosities; a) 0.01, b) 0.1, c)0.4 and d) 1 Pa.Sec, 

after 50 seconds of injection 
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a b 

  
c d 

Figure 4.15: Concentration maps for different injection fluid viscosities; a) 0.01, b) 0.1, c) 0.4 and d) 1 Pa.Sec, 

after 65 seconds of injection 

The Buoyancy number for the different simulated cases, as the viscosity increases are 0.375, 

0.75, 3, and 7.5, displaying better carrying capacity for higher viscosity fluids. Based on the size 

of the bed at the bottom of the slot, settling is greatly enhanced in low viscosity fluids, while the 

slope of the concentration front in Fig. 4.14 shows convection is reduced in high viscosity fluids. 

Obviously, poor proppant placement should be expected specially when a long hydraulic fracture 

is created and a low viscosity fluid is used. Overall, viscosity is strongly effecting both settling 

and convection. 
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4.4.8 Elliptical Slot 

The results presented so far related to the case of rectangular slot with a uniform width of 3 mm 

along the entire fracture height. In this section, we change the width of the slot from rectangular 

to elliptical to investigate the effect of fracture shape on proppant distribution. The width of the 

fracture here is calculated from: 

             
  

 
       

(4.9) 

where wcentre is the maximum width of the slot in the middle (5 mm), h is the height of the model 

(5 m), and y is the vertical axis with the coordinate origin placed at the middle of the fracture.  

Figure 4.16 shows the concentration map for the elliptic slot at different injection times. It is 

interesting that the concentration distribution is greatly different compared to the rectangular 

case. The reason is that for elliptical slots, horizontal slurry velocity is calculated from Eq. 4.10 

(Nordgren, 1972) instead of Eq. 3.25:  

     
   

   

  

  
 

(4.10) 

Obviously, proppant particles travel faster in the middle part of the slot, where the width is the 

greatest and offers least resistance to flow. In addition, at the top and bottom of the model the 

width is less than particle diameter. Therefore, both top and bottom of the slot are not covered by 

proppants. In real situations where there is leak off of injection fluid to formation, proppant will 

have some tendency to move towards the edges of the fracture. Therefore, the leak off reduces 

the tendency for proppant packing in the center part of the elliptic fracture to some extent. 
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 Figure 4.16: Simulation Result of Presented Model for Elliptic Slot 
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4.4.9 Buoyancy Number 

To confirm the effectiveness of Buoyancy number in predicting the dominance of gravity over 

viscous forces, several simulation examples were carried out and the results are presented in this 

section. In the previous simulations, smaller tendency for downward slurry flow  to the bottom of 

the slot and a more symmetrical proppant distribution were evident for higher Buoyancy 

numbers. To verify these phenomena, two simulations were conducted in which Buoyancy 

number was set to 0.1 and 1. Figure 4.17 shows the concentration distribution for 

abovementioned Buoyancy numbers at times that the front has advanced 2 m. As shown in Fig. 

4.17, the lower slope of the concentration front indicates a higher convection. At the same time, 

higher convection means more lateral advancement of concentration front at the bottom of the 

fracture. Even at Buoyancy number of 1 the tendency of the injected slurry to go to the bottom of 

the slot is not diminished. Simulations at higher Buoyancy numbers result in an increased 

symmetry of the concentration distribution as a more uniform flow into the slot is expected for a 

higher NBu. 

  

a b 

Figure 4.17: Effect of Buoyancy number on Convective Flow: a)  

NBu=0.1, b) NBu=1 

It is interesting to note that the shape of concentration front depends only on the value of 

Buoyancy number and not on a particular input parameter.  
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a) w=0.0032 m, =1600/8 kg/m
3
 b) q=0.0035 m

3
/s, =16005 kg/m

3
 

  

c) q=0.0032 m
3
/s, =0.4/2 Pa.s d) q=0.0038 m

3
/s, w=0.0032 m 

  

e) =0.45 Pa.s, =16005 kg/m
3
 f) =0.48 Pa.s, w=0.0032 m 

Figure 4.18: Constant Buoyancy Number and Similarity of Concentration Plume 

In a series of simulations, two parameters from Eq. 3.34 were changed in a way that the value 
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of Buoyancy number was kept constant. Figure 4.18 shows the simulation results for different 

density-width, flow rate-density, flow rate-viscosity, flow rate-width, density-viscosity and 

width-viscosity, when concentration front has advanced to 3 m from the injection boundary. 

The general shapes of all the concentration fronts are the same. The size of the concentration 

plume might vary a bit since it is difficult to capture the time at which identical sizes are 

obtained. The amount of settling is different in some cases and that is because Buoyancy 

number is not a measure of the settling. In addition, since the velocity field is different for 

different simulations, the time at which the concentration front reaches a certain point is also 

different. 

4.5 Discussion of Results 

During proppant injection, vertical motion of the proppants affects the final distribution and can 

lead to the creation of a proppant bed at the bottom of the fracture. The concentration of 

proppants inside the bank can reach its maximum value, which is the saturation concentration. If 

the bank covers a major portion of the fracture height, it can block further proppant injection 

leading to a premature termination of the proppant injection. The amount of vertical motion of 

proppants depends on the volumetric injection rate, suspending fluid viscosity, proppant density 

and proppant size. Overall, these parameters impact the concentration distribution by changing 

the proppant velocity field. Low suspending fluid viscosity, high proppant density, large 

proppant sizes and low injection rate can increase the proppant settlement.  

According to our simulations, the viscosity of the carrying fluid is the most important parameter 

in controlling the lateral transport dominance over settling. Among other factors, density of the 

particles has a small impact on the final distribution of the proppants.  

Based on the proppant distribution for elliptic slots, we can conclude that the fracture shape can 

affect the slurry convection and settlement. Convection was stronger than settlement in the cases 

we attempted since no bed was created in our simulations. 

In field-scale fracture designs, the fluid velocity will be affected by several other variables such 

as fluid leak off, non-uniform proppant size distribution, and non-spherical particle shapes. 

Although we neglected these factors, our modelling results can still be used to improve treatment 

designs. For example, we can obtain an estimate of the flow rate which will disperse proppants 
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more uniformly over the fracture height, without creating a bed at the bottom. Similarly, a low 

pump rate in the order of leak off rate will confine the particles at the bottom of the fracture 

rendering an ineffective frac-packing operation. 

4.6 Conclusion 

We have numerically simulated proppant transport inside a slot by solving the equations of 

motion of slurry and proppants. We assumed incompressible and Newtonian fluid and an 

isothermal system. We accounted for the change of the slurry viscosity due to the change of 

proppant concentration. An effective numerical technique was used to capture the proppant front 

more precisely and with minimum oscillation and diffusion. In this numerical scheme, WENO 

scheme of finite volume was employed to approximate the solution of the hyperbolic transport 

partial differential equation. We used dimensional splitting technique to reduce the running time 

and complexity of solving hyperbolic partial differential equations.  

We investigated the effects of injection rate, proppant density, proppant size and injection fluid 

viscosity on proppant placement. These parameters change the final proppant concentration 

distribution since they control particle settlements. Some of the conclusions from the sensitivity 

analysis presented in this paper include: 

 The model simulated the proppant bank creation at the bottom of the fracture during the 

treatment time. 

 The fracture fills up faster at higher injection rates with less proppant settlement.  

 Viscosity of the carrying fluid has the strongest effect on the amount of proppant 

settlement.  

 Within practical ranges, parameters such as proppant size and density only have a modest 

effect on proppant settlement.  

As of now, there is a significant uncertainty in the effect of physical proppant and fluid 

parameters on the final proppant distribution. The numerical model presented here enhances our 

understanding of the relationship between fluid and proppant properties and the final proppant 

distribution that determines the conductivity of the propped fracture. The outcome is improved 

design and implementation of the fracpack operation and reduced uncertainty in the fracpack 

performance. 
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Chapter 5: Smeared Modeling of Hydraulic Fracture Using Partially Decoupled 

Modeling of Reservoir and Geomechanics Simulators 

5.1 Introduction 

In this chapter, we describe the numerical method of coupling between our reservoir simulator 

and geomechanics commercial software FLAC2D to build a smeared fracture type hydraulic 

fracture simulator. The new development falls within the category of partially decoupled model, 

and is very versatile, flexible and efficient. This approach can be used to couple any other 

advanced commercial fluid flow or geomechanics simulators with good accuracy to better 

describe the initiation and propagation of hydraulic fractures. As we will see later in the next 

chapter, transport of proppants inside the created fractures can also be linked to this package as a 

third module. 

Sophisticated reservoir simulators should include not only the solution of fluid flow and stresses, 

but also the dependencies between the two. Such dependencies although ignored or 

approximated safely in elastic reservoirs, are pronounced in high-pressure injection operations 

like hydraulic fracturing and require the use of some sort of coupled modeling. In petroleum-

related operations, many of the processes and technical problems root in interactions between 

flow and stress-strain response of the formation. Injection of fluids and proppants into the 

hydrocarbon reservoirs during hydraulic fracture treatment induces significant variations in 

reservoir pressures which leads to the modification of the stress state in and around the reservoir. 

The reservoir properties like porosity and permeability could be altered by this change in the 

stresses which may in turn modify the fluid flow within the reservoir. This means that in these 

situations, geomechanical effects (deformations and stresses) are strongly coupled to fluid flow.  

In numerical simulations, these interconnected effects should be captured and analyzed through 

the coupling of the geomechanics and reservoir fluid flow simulators. 

There are many descriptions of such coupled simulators in the literature. As an example we can 

mention Settari and Mourits (1994) and Chin and Thomas (1999) in investigation of the effects 

of reservoir compaction, Chin et al. (1998) in the context of reservoir stress dependent 

permeability, Gutierrez and Makurat (1997) for studying fracture permeability variation of 

fractured reservoir, Behr et al. (2006) in the study of damage zone around a hydraulically 

fractured tight gas reservoir, and Miranda et al. (2010) in the study of hydraulic fracturing. 
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Previous works have proved that coupling of the reservoir simulation and geomechanics 

modeling is essential in better understanding of the hydraulic fracturing treatment. The coupling 

of fracture propagation with reservoir fluid flow and heat transfer were mathematically 

established first in 1980s (Hagoort et al, 1980, Settari, 1980, Nghiem, 1984), and more recently 

in Al-Thawad et al. (2004) or Longuemare (2001). In the early works, essentially two 

independent grid systems were used for the numerical solution of the continuity equation in the 

fracture and the partial differential equations for the reservoir multi-phase flow. The coupling 

was improved later on by using only one set of common gridblocks for both fracture and 

reservoir flow and considering a high permeability for the fracture (Settari et al, 1990; Weill and 

Latil, 1992). Further improvement was achieved by using pressure/stress dependent permeability 

in the coupled simulations (Garon and Dunayevsky, 1988, Settari and Mourits, 1994, 1998, Ji et 

al, 2004, 2006). Lebel (2002) used a type of upstream weighting in evaluating the effective 

permeability between fractured gridblocks. Hustedt et al. (2005) used a two-way explicit 

coupling approach between a reservoir simulator and a fracture simulator which was proposed by 

van den Hoek et al, earlier in 1996 but was using a pseudo 3-D fracture model. Ehrl (2000) 

optimized future field development by integrating a 3-D geologic model and a field-scale 

reservoir simulation model in which local grid refinements were used around the wells to remove 

numerical stability problems. However, the most flexible approach was suggested by the use of 

partially de-coupled approach (Settari et al, 1990; Weill and Latil, 1992).   

Although most of the field evidence is related to the importance of coupling in unconsolidated or 

soft formations, where the reservoir undergoes large rock deformation, Heifer et al. (1994) 

showed that coupling effects can also be significant in fractured reservoirs. 

Historically, numerical modeling of such coupled processes were performed in a fully decoupled 

manner and based on the primary purpose of the computation, were categorized into 

geomechanical modelling, reservoir simulation and fracture mechanics with the primary goal of 

computation as stress-strain behavior, flow in porous media and fracture propagation, 

respectively. Simplifying assumptions were inevitable about part of the problem that was not of 

primary interest. It is obvious that such an approach proves to be inadequate in situations where 

strong coupling between these processes exists. As an example, porosity and permeability of the 

formation may change in any type of reservoir modelling of fluid injection into the wellbore, due 

to the stress changes and failure of the underground formation. 
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This chapter describes an approach for the modular coupling of an in-house developed fluid flow 

code with a 2D stress/strain code (FLAC2D). In the next chapter, a 3D proppant transport 

simulator will be added to these modules. The iteratively coupled modules have been recognized 

to be equivalent to a fully coupled solution of geomechanics and fluid flow (Settari and Mourits, 

1998). We discuss the partial coupling of fluid flow and geomechanics in modeling fracture 

initiation and propagation by considering a common gridblock for fracture and reservoir and 

updating porosity and permeability. The method captures the effects of fracture on reservoir fluid 

flow and formation geomechanics through stress dependent permeability and porosity. We also 

elaborate the numerical algorithm of the linkage which uses MATLAB as the interface. Several 

examples will be presented to show the robustness and flexibility of the approach. The hydraulic 

fracture simulator described in this chapter is a key step in simulating proppant transport inside 

fractures, which is the topic of the next chapter. 

5.2 Coupling Approaches 

The linkage between the simulators falls within three main categories. It can be either a fully 

decoupled linkage, a fully coupled type or partially decoupled type of linkage. In the first two 

types of linkage, an explicit fracture is simulated in the model, but in the third approach, some 

sort of “effect” of the fracture is included.  

Traditionally, fracture mechanics in impermeable rocks has been adopted to porous media in the 

petroleum industry (Settari et al., 1989). In these models, stress changes around the fracture 

caused by geomechanical effects are estimated by simple 2D analytical approaches which 

decouple reservoir simulation and stress solution. Generally, in fully decoupled approach, the 

fracture equations are solved independently of the reservoir response. In other words, the fracture 

geometry is obtained by numerical or analytical methods and its effect is represented in the 

reservoir model by several methods, ranging from an overall leak-off or permeability 

modification in the reservoir block containing the fracture or increasing the wellbore radius 

(Vairogs, 1971; Aziz and Settari, 1979). This approach is computationally efficient; nevertheless, 

it is a simplistic approximation of the reservoir. The main disadvantage of this type of coupling 

is its restricted range of validity. 

In fully coupled models, as the name implies, the fracture and reservoir equations are solved 

simultaneously at all times. The fracture propagation is simulated in a fixed reservoir grid. 
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Although the reservoir fluid flow is not simplified in this approach, the implementation of a 

numerical solution is cumbersome and it lacks flexibility. Simultaneous formulation of flow and 

geomechanics results in large matrices and the model will therefore be very computationally 

expensive. Moreover, in fully coupled models, iterations are needed in the same fashion as 

iterative coupling, and this approach does not reduce the complexity of the problem. 

The third approach falls in between the other two approaches in which the fracture propagation 

and reservoir fluid flow are solved independently. However, the result from each module is 

transferred to the other simulator to improve the outcome. In this approach, which is called 

partially coupled or partially decoupled, the new fracture grids can be easily generated and in 

principal, it can be conveniently attached to any type of reservoir or fracture simulator. This 

greatly increases the flexibility and range of application of the method. Settari (1988) was the 

first researcher who proposed the modular coupling. In modular coupling information is passed 

between different modules and iterations are used to converge the solution. Such an approach 

can even use highly advanced commercial reservoir and geomechanics simulators.  

Here we don’t discuss fully coupled models since we are using a multi-module simulator and 

different modules are linked together through partially coupled principals. This approach seems 

to be effective when we consider proliferation of the available geomechanics codes outside the 

petroleum engineering. Our in-house developed fluid flow simulator, which is coded in 

MATLAB, is the host and is linked to the commercial stress simulator FLAC to develop our 

numerical hydraulic fracture simulator. After proppant injection starts, a third module, which is 

the proppant transport simulator, is added to the modules. In the following sections, after a quick 

review of various modular couplings, we describe the coupling between the fluid flow and 

geomechanics in developing our numerical hydraulic fracture simulator. The linkage of the 

proppant transport simulator to this package will be discussed in the next chapter. 

5.3 Different Methods of Partial Coupling 

Models can be built based on solving the fluid flow and stress equations in different modules. 

Our model consists of three separate simulators: fluid flow, geomechanics and proppant. In 

modular simulators, different strategies are applied to link the modules.  

In “one way coupling”, pore pressures which ae the output of reservoir simulator, are passed to 

the geomechanics module, but no information is passed back to the reservoir simulator (Settari 
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and Walters, 2001). In other words, the geomechanics module does not attempt to improve the 

fluid flow solution. This old-style type of coupling can lead to large errors when porosity 

strongly depends on the flow. In the “loose coupling”, reservoir and geomechanics modules are 

run sequentially and the solution from each module is passed to the other one (Settari and 

Walters, 2001). However, this transfer of information happens one time in each time step and no 

iteration is performed. Such coupling cannot represent complex constitutive plasticity models of 

the formation. Loose coupling is also called “explicit coupling” or “sequential coupling”. The 

type of coupling that we used is “iterative coupling” which is shown schematically in Fig. 5.1. In 

this type of coupling, iteration is carried out in each time step, between the fluid flow and 

geomechanics modules until certain convergence criteria are met. In each iteration, the previous 

guess of the permeability and porosity is used to solve the flow equation and the corresponding 

change of pore pressure is used to calculate new deformations and stresses, which in turn provide 

new update of permeability. Iterative coupling, when converged, gives equivalent solution to a 

fully coupled model, while it is much more flexible and less computational demanding. 

 

Figure: 5.1: Numerical Algorithm for Iterative Coupling 
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Each of the abovementioned strategies of partially coupled models can be performed in two 

ways: “Pore Volume Coupling” and “Flow Properties Coupling” (Settari and Mourits, 1998). 

The information that is updated and transferred to the other module is different in these two 

methods. Flow properties coupling was implemented in our linkage algorithm and therefore will 

be described in detail is given in the next section.  

5.3.1 Flow Properties Coupling 

The second type of coupling is called flow properties coupling, in which permeability is 

modified as a function of effective stresses. Such a relationship has been investigated for many 

types of formation rocks and is stronger in low permeability materials. In addition, it is now 

known that the tensor character of permeability may also have an important role in fractured 

reservoirs. Moreover, porosity dilation in soft and unconsolidated formations can also lead to 

permeability enhancement. Furthermore, flow properties coupling does not have any effect on 

the mass balance formulation, as pore volume coupling does and, therefore, is easier to apply. In 

the traditional approach of flow dependent coupling, tables of primary flow property, which is 

permeability, versus pressure is used in an uncoupled model. In those approaches, different 

assumptions are made about stress change during time. However, in the modern attempts of this 

type of coupling, stresses are obtained by including geomechanics equations. The main 

advantage of such coupling is its capability in predicting permeability changes from the 

geomechanics of opening fractures or failure (dilation) of joints. The orientation of fractures or 

joint requires a full tensor permeability in the flow model. Consequently, flow properties 

coupling, can capture the change in reservoir description through time because of geomechanics. 

In hydraulic fracturing simulation, the transmissibility multiplier in the potential fracture plane is 

dynamically changed and the changes in fracture propagation pressure with time, which may be 

large, can be captured. 

5.4 Hydraulic Fracture Module 

Our hydraulic fracture numerical simulator consists of two modules: fluid flow and 

geomechanics. From now on, when we use the term “hydraulic fracture module”, we refer to the 

coupled fluid flow and geomechanics modules.  

Fluid flow simulator is the host or master module in the iteratively coupled model, which means 

it is run in the beginning of each time steps and it triggers (calls) the geomechanics module to 
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calculate stresses and displacements. In practice, as mentioned before, the iterative modular 

coupling has a great range of flexibility since each of the modules can be any commercial 

software.  

It is well known that the orientation of the hydraulic fracture is determined by the in-situ stress 

field: the hydraulic fracture will propagate perpendicular to the minimum principal in-situ stress. 

In all of our simulations we assumed the minimum principal stress is horizontal and therefore the 

fracture plane is a vertical plane, normal to the direction of minimum stress.    

For simplifying the illustrations, we assume that the minimum in-situ stress is along y direction 

as depicted in Fig. 5.2 and compressive stresses are negative. 

 

Figure 5.2: Geometry and Boundary Condition of the Model 

There are many different fracture initiation and propagation criteria in the literature. In this work, 

we utilized the geomechanical results for this purpose and assumed that fracture initiation and 

propagation are determined by the effective stresses (tip+p). The fracture initiation and 

propagation in this work are assumed to occur when the tensile stress exceeds the tensile 

strength: 

       (5.1) 

where    is the minimum principal stress,   is the pore pressure and   is tensile strength of the 

rock.  
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Due to the fluid injection and poroelastic effects, the stress at the tip of the fracture is changing 

with time. This change varies along the model and is generally complex. Hence, we reformulate 

the initiation and propagation criterion as:  

         (5.2) 

 where      is the  stress at the tip of the fracture in the minimum principal stress direction. This 

equation means that fracture will propagate through a gridblock if the least principal effective 

stress at that gridblock exceeds the tensile strength of the rock. This criterion is checked in every 

time step in the geomechanical module to give the dimensions of the fracture. 

The total length of the fracture is determined by the sum of the length of all the elements that 

satisfy Eq. 5.2 criterion. There is, however, one issue that should be addressed here. There will 

always be a situation in which the effective stress at cell i is higher than tensile strength of the 

rock, while the same property at cell i+1 is less than tensile strength of the rock (Fig. 5.3). This 

means that the fracture tip will be somewhere between the gridblocks i and i+1. 

 

Figure 5.3: Linear Interpolation of Fracture Penetration Length 
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To more accurately calculate the length of the fracture, the amount of fracture penetration into 

the gridblock i+1 should also be considered. According to Fig. 5.3, the length of the fracture, Lf, 

is: 

                (5.3) 

where        is the sum of the element sizes that are completely penetrated by the fracture and 

      is the fracture penetration distance into the element that contains the tip of the fracture. 

Obviously: 

       ∑   

 

   

 
(5.4) 

where   is the number of the elements in which the effective stress is more than the tensile 

strength of the rock. On the other hand, the amount of fracture penetration into gridblock i+1 can 

be calculated by interpolation and assuming the effective stress at the tip is equal to tensile 

strength of the rock: 

      
  

   

   
       

 
  

  
 
 
 

(5.5) 

The height of the fracture is assumed to be equal to the payzone thickness.  

The width on the other hand can be calculated from geomechanics. If the initiation criterion is 

met in any gridblock, then the width of the fracture at the corresponding location is determined 

from nodal displacement of that gridblock in the direction normal to the minimum principal 

stress, as: 

                (5.6) 

where   is fracture width and    is displacement perpendicular to the minimum principal stress. 

5.4.1 Calculation of the Average Permeability in Fractured Gridblocks 

In our hydraulic fracture simulator, only one common grid system is considered for both the 

reservoir and the fracture. If the fracture is modeled with its actual dimensions, a severe time step 

limitation arises in the simulation. Correspondingly, the permeability and porosity of the fracture 

is smeared in the encompassing gridblock. Based on the fluid flow cubic law, the permeability of 

the fracture depends on the fracture aperture or width as:  
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(5.7) 

This equation gives a large value for the permeability and, therefore, the fracture is the highly 

permeable part of the encompassing gridblock. For this reason, the permeability of the fractured 

gridblocks should be enhanced to include the effect of fracture on fluid flow. As mentioned 

before, fracture can penetrate completely or partially into a gridblock. The permeability 

enhancement follows different formulations for these two cases. 

5.4.2 Permeability Enhancement for Grids Completely Penetrated by Fracture 

All the gridblocks in the reservoir simulator that contain the fracture will be completely 

penetrated by the fracture, except for one gridblock that contains the fracture tip. Obviously, the 

presence of fracture results a significant permeability enhancement. However, in smeared 

fracture approach, this enhancement should be averaged within the whole gridblock. 

 

Figure 5.4: Grids Completely Penetrated by the Fracture 

According to Fig. 5.4, there are two flow paths between adjacent blocks, namely through the 

fracture and through the matrix. Therefore, the total flow from grid i to i+1 will be the sum of the 

flow through matrix and fracture: 

         (5.8) 

where    is the matrix flow rate and    is the fracture flow rate. According to Darcy’s law, each 

of these flow rates can be stated as: 

   
        

    
          

(5.9) 

   
          

    
          

(5.10) 
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(5.11) 

Substituting Eq. 5.9 to 5.11 into Eq. 5.8 gives the average permeability of the fractured block as:  

     
            

  
 

(5.12) 

     is the permeability of the gridblock that contains the fracture. The fracture width is usually 

ignored in the matrix flow rate calculation since it is generally much smaller than    of element. 

However, we keep this term in all the formulations. 

5.4.3 Permeability Enhancement for Grids Partially Penetrated by the Fractures 

For elements partially penetrated by the fracture, we need to define the distance, or length of 

fracture penetration into the gridblock. We denote this length by Lp and we know that this length 

is always smaller than the length of the gridblock: 

           (5.13) 

 

 

 

Figure 5.5: Last Grid is Partially Penetrated by the fracture  

According to Fig. 5.5, the pressure drop between cells i and i+1 can be written as: 

                      
           

     (5.14) 

This pressure drop can be written as a function of total flow rate from cell i to cell i+1 as: 

        
  

        
    

 (5.15) 

Between locations i+Lp (Fig. 5.5) and i+1, the flow only passes through the matrix and qt=qm. 

Therefore: 



 140 

          
 

  

      
            

 (5.16) 

and between points i and i+Lp, the pressure drop will be:  

     
    

  

          
       

 
     
       

 (5.17) 

substituting these pressure drops (Eqs. 5.15 to 5.17) into Eq. 5.14 gives the smeared cell 

permeability when the gridblock contains fracture tip: 
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(5.18) 

The permeabilities of the fractured gridblocks are dynamically updated during each time step 

according to Eq. 5.12 and 5.18. 

Fracture permeability is a function of aperture and aperture is a function of net pressure inside 

the fracture (or effective stress). Therefore, it can be concluded that above treatment makes the 

permeability pressure-dependent or effective stress-dependent. In addition, in our numerical 

simulations, such a dynamic calculation of permeability through time can be used to capture the 

change of matrix permeability due to pore pressure changes during injection (or production) in 

stress sensitive formations or change in fracture mobility due to proppant injection. We will 

discuss the reduction of propped fracture mobility in the next chapter. 

5.4.4 Porosity Change 

During fluid injection into the formation, porosity of the formation rock changes. It is desirable 

to state this change of porosity in terms of volumetric strains, so that the direct outputs of 

geomechanics module can be used to obtain the new porosity value in each time step. Assuming 

the original porosity of the formation is: 

   
     

  
 

(5.19) 

where Vt is the total volume and Vg is grain volume, if any volume change, V, occurs, the new 

porosity will be: 

     
          

       
 

(5.20) 
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The volumetric strain, v, on the other hand is: 

   
  

  
 

(5.21) 

Therefore: 

     
            

         
 

(5.22) 

or: 

     
     

    
 

(5.23) 

This change in porosity is due to the deformation of the rock. On the other hand, fracture 

porosity also needs to be included in the porosity calculation of the fracture gridblocks. Fracture 

volume in a given gridblock can be calculated as: 

      
    (5.24) 

where Lfi is the fracture length in the gridblock. Therefore, the fracture porosity is: 

   
  

  
 

   
   

      
 

   
 

    
 

(5.25) 

where Vb is the bulk volume of the gridblock. The total porosity of a fractured gridblock will be: 

     
     

    
 

   
 

    
 

(5.26) 

By treating porosity in this way, any closing or opening of the fracture which in turn results in 

fracture volume change, can be captured as a change of fracture porosity. 

5.5 Coupling between Fluid Flow and Geomechanics Modules 

In this section, we describe our numerical technique in developing a hydraulic fracture simulator 

through iterative coupling of a reservoir simulator and an advanced commercial geomechanics 

software, FLAC 2D, with considering plasticity effects. Only one grid system is used for 

reservoir simulation and geomechanics modeling to better evaluate the mutual influence between 

dynamic fracture propagation and fluid flow. Although, in theory, the stress model can have an 

independent mesh from the reservoir simulator mesh, it is advantageous and simpler to use the 

same mesh for the two modules. In this case, since the location of the nodes are the same in the 

two gridding systems, there is no need to map the results from one grid system to another. The 



 142 

zero-displacement boundaries of the model are placed far enough from the well such that they do 

not influence the solution.  

The communication between the simulators takes place through an interface code developed in 

MATLAB. The pressure changes occurring in the reservoir simulator are passed to the 

geomechanical simulator by the interface code and the updated stresses and displacements are 

passed back to the reservoir simulator and are used to evaluate coupled parameters in the 

reservoir formulation. Iterations are needed to ensure convergence. The interface code has 

enough flexibility to allow different degrees of coupling depending on the accuracy needed. 

Figure 5.6 is a schematic of the coupling in one iteration. 

 

Figure 5.6: Algorithm of Coupling during Each Iteration 

As it can be concluded from presented formulation of permeability and porosity, a strong 

dependency exists between fluid flow and geomechanics outputs; therefore, the linkage between 

the modules is essential. In our coupling scheme, porosity and permeability are used as the 

coupling parameters between the modules. Figure 5.6 illustrates the procedure of partial coupling 

through flow properties, between the fluid flow simulator and the stress code FLAC2D, with the 

reservoir simulator being the host module. 

After creating model geometry and the mesh, fluid flow simulator starts the simulation to give 

pore pressures of the gridblocks. These pressures are transferred to the geomechanics module in 

which stresses and strains are calculated. The pore pressures are used to calculate effective 
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stresses and check the fracture initiation and propagation criteria (Eq. 5.2). If the criteria are met 

in any gridblock, it is marked as fractured. Next, Eq. 5.3 through 5.6 are used to obtain fracture 

geometry. This geometry is used to update the permeability of the gridblocks that contain the 

fracture, according to permeability sensitive laws described in Section 5.4.2 and 5.4.3 (Eq. 5.12 

and 5.18). Also, porosity of the gridblocks is modified according to Eq. 5.26. Using the updated 

permeability and porosity, the reservoir simulator is run again, for the same time step, but next 

iteration to improve pore pressure results. This process is repeated until the maximum change in 

pore pressure, porosity, permeability and width falls below a certain level.   

The procedure of the coupling is as follows: 

1) Initialize all the reservoir and geomechanics parameters for all the gridblocks at n = 0, p
n

i, j, k, 


n

i, j, k 

2) Start the iterations,  = 0, by running the fluid flow simulator to obtain pore pressures, p
v+1

i, j, k 

3) Transfer the pore pressures in all the gridblocks to the geomechanics module. 

4) Calculate the stresses and displacements in geomechanics module, by calling the 

geomechanics module 

5) Based on the effective stress, determine the fractured gridblocks and the fracture tip location. 

6) Evaluate the permeability of the fractured gridblocks according to Eq. 5.12 and 5.18. 

7) Calculate new value of porosity based on Eq. 5.26, as a function of volumetric strain.  

8) With the new permeability and porosity, run the fluid flow simulator again for the new 

iteration level and obtain p
v+1

i, j, k 

9) Move to next iteration if the convergence criteria are not satisfied, otherwise go to the next 

time step. 

As it can be seen, reservoir fluid flow and geomechanics equations are solved separately in each 

time step, implying the name partially decoupled.  
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Figure 5.7: Flowchart of the Coupling Algorithm between Fluid Flow and Geomechanics Modules 

 

5.5.1 Explicit and Implicit Treatment of permeability enhancement 

Explicit treatment of permeability enhancement means evaluating average permeabilities based 

on fracture dimensions at previous time step. The amount of permeability enhancement is 

calculated only once and at the beginning of each time step and it will not change during 

iterations:  

    
    

            
   

  
 

(5.27) 
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(5.28) 

Implicit treatment, however, means that the average permeability is calculated from latest 

iteration level of the fracture dimensions: 



 145 

    

   
    

  (    
   
 )    

   
  

   
 

  
 

(5.29) 

or 

    

   
    

         (    
   
 )    

   
  

   
  

   (     

   
 ) [  (    

   
 )    

   
  

   
 ]        

   
  

 

(5.30) 

where  shows iteration level and n shows step time level. 

Ji, 2008 reported that explicit treatment of permeabilities causes oscillations while the implicit 

treatment generates smoother results in length and in pressures. Therefore, for all HF simulations 

in this research, an implicit treatment of permeabilities (Eq. 5.29 and 5.30) was adopted. 

5.6 Verification of the Hydraulic Fracture Model 

The above formulation of permeability enhancement in fractured gridblocks was tested in a 

simulation of an isothermal reservoir with single-phase, slightly compressible flow. A static 

fracture was represented in the model by assigning higher values of permeability to the 

gridblocks containing the fracture. Analytical solution of such a problem exists in the literature 

and it is used as a validation to the permeability modification of our numerical tool. The problem 

description is as follows: 

Figure 5.8 shows a schematic view of the reservoir simulation problem that was used for our 

validation purposes. A horizontal, homogeneous, isotropic reservoir, saturated with slightly 

compressible fluid is considered. Gravity effects are neglected and the reservoir is at an initial 

pressure of pi. The well is assumed to be in a rectangular drainage area. A vertical fracture is 

assumed extending over the entire height of the formation, which is parallel to the drainage 

boundary and is located symmetrically within the square drainage area. In the numerical model, a 

homogeneous, isotropic, square drainage model filled with slightly compressible fluid of 

constant viscosity was created. The fracture was assumed to be in the center of the model, as 

shown in the Fig. 5.8. Table 5.1 shows the input data used in the model. 
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Table 5.1: Input Parameters for Infinite Conductivity Fracture Simulation 

Parameter Value 

Porosity 0.25 

Permeability 0.9869×10
-13

 m
2
 (0.1 Da)  

Viscosity 1 cp (0.001 Pa.Sec) 

Fluid Compressibility 1e-10 Pa
-1

 

Injection Flow Rate 8 × 10
-5

 m
3
/Sec 

Reservoir Dimensions (Drainage Area) 300 m by 300 m (90000 m
2
) 

Reservoir Height 1 m 

Initial Reservoir Pore Pressure 5 MPa 

Grid Size 2.9412 m × 5.8824 m  

Grid Number 51 by 51 

Fracture Width 0.001 m 

Fracture Half Length Variable 

 

 

Figure 5.8: Schematic View of Fractured Well and Reservoir Drainage Volume 
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The boundary conditions that complete our problem are no flow boundary around the model.  

 

Figure 5.9: Plan View of the Fractured Reservoir 

Greengarten (1974) by using Green’s function and product solution method, obtained the 

analytical solution to pressure distribution in the abovementioned problem as: 
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(5.31) 

where: 

    
  

           
 

(5.32) 

and 
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(5.33) 

xe and ye are half length of reservoir drainage area and xw and yw show fracture axis coordinates 

(see Fig. 5.9), and pi is the initial reservoir pressure. Therefore, the pressure drop at the center of 

a square drainage area (xe = ye, xw = yw) is: 
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(5.34) 

The pressure drop on the fracture can be obtained by setting xD = 0 in Eq. 5.34. Greengarten also 

presented numerical results of above function which we have used for validation. Figure 5.10 is a 

graphical representation of the analytical solution of Greengarten.  

 

Figure 5.10: Graphical Representation of Greengarten Solution 

Figure 5.11 presents a comparison between the dimensionless pressure drops from the numerical 

model and the analytical solution of Greengarten (1974). The results indicate that permeability 

enhancement method gives accurate results which match reasonably well and within 5% 

difference with the analytical solutions. 
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Figure 5.11: Comparison of Greengarten Analytical Solution with Numerical Simulation 

5.7 Effect of Local Grid Refinement 

A mesh sensitivity analysis is performed in this section to investigate the effect of different 

meshing strategies on the pressure response. The model input parameters are the same as in 

Table 5.1 and it is assumed that the ratio of reservoir drainage length to fracture length is 5 

(xe/xf=5). In some of the simulations of this part, uniform grids are used, but the size of the grid 

is changing in each case. In the non-uniform case mesh (71 by 71), a locally refined mesh is 

designed in which the size of the mesh in an 11-meter band around the injection point is about 1 

m by 1 m and then increases to 5 m by 5.5 m around the refined band, as shown in Fig 5.12. 
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Figure 5.12: Locally Refined Mesh 

 

 

Figure 5.13: Effect of Uniform Size Mesh Refinement 

As it can be seen from Fig. 5.13, as the size of the gridblock becomes smaller, the pressure 

response becomes closer to the analytical solution. However, when uniform grids are used, 

running time of the simulation becomes too expensive and still the accuracy is not desirable. On 

the other hand, locally refined mesh gives a high accuracy with manageable running time, as 

shown in Fig. 5.14.  
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Figure 5.14: Effect of Locally Refined Mesh 

5.8 Effect of Maximum Limit of Permeability 

The higher the permeability of the fracture, the less the friction loss inside the fracture will be. 

However, it is recognized that after a certain value of permeability, increasing this parameter 

does not change the fracture behavior. It is because when permeability of the fracture is much 

higher than the matrix permeability, the majority of fluid passes through the fracture. It is well 

known that the permeability of the fractured elements should be gradually increased in each 

iteration or otherwise severe oscillations will arise (Ji, 2008). Obviously, higher value of 

permeability of the fracture requires higher number of iterations to bring matrix permeability to 

fracture permeability. Setting a maximum limit for permeability in our numerical work reduces 

the number of iterations and consequently running time. Therefore, it is worth to investigate the 

fracture permeability that leads to solutions that match reasonably well with those obtained from 

a model with “infinite conductivity” fracture. We investigated the effect of setting a maximum 

limit of permeability, both for static and dynamic fractures. 

The static fracture model is the same as the model explained in Section 5.6. Figure 5.15 shows 

how the change of maximum permeability of the fracture changes the injection pressure. As the 

maximum limit of permeability is increasing, the pressure at the wellbore decreases and gets 

closer to the analytical solution. However, since we are using smeared approach in simulating the 

fracture, the numerical results and analytical solutions will never match unless a very fine grid is 

used.  
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Figure 5.15: Effect of Maximum Permeability Limit on Static Fracture 

For the case of dynamic fracture propagation, a 50 m by 50 m model was built and geomechanics 

and fluid flow modules were linked as explained in Section 5.5. Table 5.2 presents the input 

parameters of the model. It is assumed that formation rock follows Mohr-Coulomb plasticity 

model and water is used as injection fluid. 
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Table 5.2: Input Parameters for Dynamic Fracture Model 

Parameter Value 

Model Dimensions 100 m by 50 m 

Injecting Fluid Viscosity 0.001 Pa.Sec. 

Formation Initial Porosity 0.2 

Formation Initial Horizontal Permeability 0.1 Da 

Formation Initial Vertical Permeability 0.1 Da 

Initial Reservoir Pressure 1.6 MPa 

Young’s Modulus 1.785 GPa 

Poisson’s Ratio 0.3 

Vertical Principal Stress 4 MPa 

Maximum Horizontal Principal Stress 6.7 MPa 

Minimum Horizontal Principal Stress 3 MPa 

Cohesion 1.185 MPa 

Friction Angle 20 

Dilation Angle 22 

Injection Time 2000 Seconds 

Figure 5.16 displays the boundary conditions of the geomechanics and fluid flow simulators. 
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Figure 5.16: Fluid Flow and Geomechanics Boundary Conditions 

In dynamic fracture case, the width changes along the fracture length and, therefore, a variable 

permeability limit should be assigned to fractured elements. In Figs. 5.17 and 5.18, permeability 

ratio means the ratio of the assigned permeability in the numerical code to the actual smeared 

permeability coming from Eq. 5.12 and 5.18.  

Figure 5.17 compares the maximum width of the fracture while Fig. 5.18 shows fracture length 

for different maximum limits of permeability. Again, acceptable results are obtained even when 

a limit is assigned to the maximum number of permeability. However, in the dynamic fracture 

model, assigning a value of 0.01 to permeability ratio, leads to completely different results. 

Therefore, whenever fracture propagation is occurring inside the model, the maximum limit for 

permeability should be applied with some care. 
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Figure 5.17: Effect of Maximum Permeability Limit on Fracture Width 

 

 

Figure 5.18: Effect of Maximum Permeability Limit on Fracture Length 
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5.9 Implicit versus Explicit Solutions 

Our in-house fluid flow code that is developed in MATLAB can provide reservoir pressures 

from explicit or implicit approaches. When the permeability of the fractured element is enhanced 

based on the displacements, stable time step of explicit approach becomes very small 

accordingly. On the other hand, permeability enhancement does not influence the run time in the 

implicit approach and, therefore, the implicit solution seems to be more practical here. However, 

as we will explain in the next chapter, CFL condition put a severe restriction on the stable time 

step of proppant transport simulator. Having this in mind, the implicit solution time step should 

be reduced so that the change of properties due to proppant injection can be included in the 

simulation iterations in smaller time steps. Performing a HF simulation with implicit approach 

and small time steps will require a longer run time compared to the explicit approach, even when 

the permeability is high. Therefore, we decided to use the explicit method when proppants are 

being injected in the reservoir. Since previously all the verification and validation works of the 

HF simulator were done with implicit approach (Taghipoor et al., 2013), in this section, we 

compare the result of explicit versus implicit solutions in the dynamic fracture case.  

Figure 5.19 compares the maximum width and fracture length for the explicit and implicit 

approaches. A good agreement for fracture dimensions is observed between the two approaches. 

In addition, Fig. 5.20 shows some of the main geomechanical parameters at the end of the 

simulation. Again, both approaches obtain almost identical results. 
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Figure 5.19: Implicit vs. Explicit Solution Technique 
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Explicit Scheme Implicit Scheme 

  

  

  
Figure 5.20: Implicit vs. Explicit Solution Technique 
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5.10 Conclusion 

A partially decoupled hydraulic fracture simulation was described in this chapter in which the 

fracture was represented by enhancing the permeability in the reservoir grids. Such a detailed 

modelling approach can represent stimulation as well as damage in the formation and can bring 

the realism of hydraulic fracturing to a new level. Geomechanical effects on fracture initiation 

and propagation was also included in our modeling through utilizing FLAC2D. Formation 

displacements rigorously calculated in the geomechanics module, were utilized to give the 

fracture width while fracture length was calculated based on effective stresses. This can 

demonstrate the importance of stress change in controlling fluid flow inside the fracture. The 

modular coupling between fluid flow and geomechanics simulators was carried out through flow 

properties, i.e. pressure-dependent permeability and porosity. The extremely flexible modular 

structure of the system can adapt any advanced commercial geomechanics or reservoir simulator.  

Gridding strategy is very important in obtaining more precise dimension of the fracture. Locally 

refined mesh shows accurate results and, at the same time, does not increase the run time 

significantly.  

The work presented in this chapter is a necessary first step in developing a proppant transport 

simulator in hydraulic fracturing. In Chapter 6, we will develop such a numerical tool that 

integrates reservoir and geomechanics simulator to a proppant transport simulator at the field 

scale. 
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Chapter 6: Coupled Hydraulic Fracture and Proppant Transport Simulation  

6.1 Introduction 

In numerical reservoir simulation, a hydraulic fracture that extends over several gridblocks can 

be represented by its actual size (Dowdle and Hyde, 1977, Hoditch 1979). Since the fracture has 

a high permeability and a very small width, compared to the model dimensions, having one grid 

system for fracture and one grid system for reservoir (Konoplyov and Zazovsky, 1991, Settari et 

al, 1996) requires a large degree of refinement that poses serious stability and run-time 

limitations. To overcome these limitations, maximize the numerical stability and reduce the run 

time, Settari et al. (1990, 1996) proposed the use of one common grid system for both fracture 

and reservoir and representation of the fracture by increasing the permeability of the grids that 

contain the fracture. However, proppant transport simulation requires an explicit representation 

of the fracture. In our modular simulation, the reservoir module treats the fracture following 

Settari et al. (1990) approach, and the proppant module, simulates an actual fracture with its true 

dimensions. In other words, the benefits of the previous two approaches have been combined in 

our modular simulation. To include the geomechanical effects, a third module is considered that 

calculates stresses and displacements during fracture propagation.  

This chapter presents the linkage between the three modules of fluid flow simulator, 

geomechanics module and proppant transport simulator. The main algorithms implemented in 

our numerical code such as adaptive re-meshing of the propagating fracture, moving boundary 

conditions, time stepping scheme and mobility averaging in the simulator, are discussed in this 

chapter.  

6.2 Linkage Algorithm of Reservoir, Geomechanics and Proppant Modules 

Although approaches that link fracture and reservoir simulators are not new, in all of them 

fracture simulators which are using simplified analytical or semi-analytical approaches are 

interfaced with a reservoir simulator. It is now amply accepted that complexity of the fractures 

cannot be modeled by such simple methods.  

Our current approach takes the advantages of a robust and sophisticated simulator that was 

previously developed in our group and incorporates an in-house built proppant transport module 

to obtain propped fracture dimensions and concentration distribution. A smeared fracture 
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approach is used to model the fracture geometry, as explained in the previous chapter. Therefore, 

fracture propagation, proppant transport and fluid flow are solved numerically in Cartesian grid 

cells. The flexibility of the coupling allows any type of fracture simulator (analytical or explicitly 

simulated fractures) be used without a huge modification of the tool. In the developed software 

capability, the propped fracture geometry and proppant concentration which are the output of the 

proppant module, are imported to hydraulic fracture simulator through mobility modification. 

There are several algorithms implemented in our tool to better capture different phenomena 

occurring during injection. To better illustrate the coupling of the modules, these algorithms are 

explained in this section before presenting the last step of our development: linkage of the 

modules of our numerical tool.  

6.2.1 Proppant Entry Requirement 

When the injection of proppants stars, the dimensions of the fracture should be known. As 

explained in Chapter 5, our hydraulic fracture simulator (linked reservoir and geomechanics 

modules) provides the created fracture length and width based on the effective stresses and nodal 

displacements, respectively. However, proppants cannot enter the fracture if the width is not 3 to 

4 times greater than proppant diameters. This phenomenon is well known in the literature and is 

called fracture entry requirement.   

In all our simulations, we assumed that a proppant can enter the fracture as long as its diameter is 

equal to the fracture width. Hence, the length of the fracture is shortened to the point that its 

width is equal to proppant diameters. It is this new shortened length that is discretized and used 

in the proppant simulator module. Figure 6.1 shows this process schematically. 
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Figure 6.1: Fracture Width Determines Entry 

6.2.2 Mesh Design and Adaptive Re-meshing of Different Modules 

Fluid flow and geomechanics modules are incorporated the hydraulic fracture simulator. 

Although the two modules can have different meshing strategies, the same mesh was used for 

both to prevent the necessity of mappings between the two modules. However, proppant 

simulator grids are designed to be much finer than the hydraulic fracture simulator to explicitly 

model the fracture. Therefore, the fracture grid that may contain proppants should be merged into 

the bigger reservoir grid. We use the term “subgrids” to refer to the proppant simulator grids, 

since they are much smaller than the reservoir and geomechanics grids. Figure 6.2 is a schematic 

of the mesh design of the simulators. In all the simulations of this part, based on the input 

parameters which determine the numerical stability of the model, we divided each reservoir 

simulator grid into 10 subgrids for proppant transport simulation. The width of the fracture, as 

mentioned before, is calculated from the geomechanics module. Although the proppant simulator 

assumes uniform properties along the width of the fracture and does not solve mass balance 

along the width, a gradual width reduction towards the tip of the fracture is considered in 

calculating fracture permeability according to the cubic law. Fracture width in each subgrid is 

calculated by linear interpolation between the widths coming from geomechanics module.  
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Figure 6.2: Mesh Design for Different Modules  

As the fracture propagates, its length and width will change while the height is assumed to be 

constant. At the start of each time step, the mesh of the proppant simulator is adaptively changed 

to include newly fractured grids. However, the dimension of the grids is kept the same during the 

entire simulation time. This approach provides two advantages. First, the stable time step of 

proppant simulator (based on CFL condition) will change only due to change of velocity and not 

change of fracture length. Second, there is no need to interpolate the result of previous time step 

from the old mesh to the new time step with new mesh. Figure 6.3 below shows how the 

adaptive re-meshing technique has been implemented in our model.  
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Figure 6.3: Fracture Propagation and Adaptive Re-meshing 

In addition to interpolating width between larger geomechanics grids and proppant subgrids, the 

pore pressures should also be linearly interpolated between larger reservoir grids and proppant 

subgrids. Figure 6.4 is a schematics of interpolation process. 
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Figure 6.4: Linear Interpolation of Pressure at the Fracture Tip 

It should be noted although the length and height of the subgrids are kept constant, the width of 

them might change during each time step. Consequently, the volume of each subgrid is not 

constant during the simulation. Obviously, proppant concentration is inversely proportional to 

the volume of the subgrids: 

  
  

         
 

(6.1) 

where    denotes proppant volume. As it can be seen from above equation, any change in the 

volume of the subgrids will change the concentration. Therefore, before each time step, the 

concentration of previous time step should be adjusted to account for the change of subgrids 

volume. The old volume of each subgrid is assumed to be: 

        
               (6.2) 

while the new volume of the subgrid is: 
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               (6.3) 

Hence, the adjusted proppant concentration would be: 

     
  

        
         

        
   

        
         

    

    
 

(6.4) 

6.2.3 Averaging Mobility 

As the concentration of proppants increases, the viscosity of the slurry is also increased. On the 

other hand, the width of the fracture and consequently, the permeability, along its length will be 

different. Therefore, the ratio of permeability to viscosity or mobility of the slurry will be 

variable during the simulation.   

The mobility that is needed in the reservoir simulator should be obtained by averaging. Before 

running the simulators, we ensure that each reservoir grid block contains a certain number of 

proppant subgrids (for example, in every and each reservoir gridblocks, there exists 10 subgrids). 

For each subgrid, after running the proppant simulator, the proppant concentration and the 

dimensions of the subgrid are known. If the permeability and viscosity of subgrids is assumed to 

be k1, k2, …, kn, and 1, 2, …, n respectively, with n being the total number of subgrids in a 

reservoir gridblock, considering Fig. 6.5, the total pressure drop along all subgrids will be: 
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Substituting Darcy’s equation for the pressure drop in Eq. 6.5: 

    

      
 
 

 
    

    

  
 

 

  
   

    

  
 

 

  
     

    

  
 

 

  
   

(6.6) 

where X is the length of the coarse reservoir grids: 
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(6.7) 

and wavg is the average width of first and last subgrids: 

     
       

 
 

(6.8) 
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However, flow rate passing through each subgrid would be equal: 

           (6.9) 

Therefore,   
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Since permeability of each subgrid is related to the width according to cubic law, we finally 

obtain: 
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(6.12) 

 

 

Figure 6.5: Averaging Mobility of Fracture Subgrids 
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Now that the average mobility of the subgrids is found, a parallel averaging should be used 

between matrix and fracture mobilities. According to Fig. 6.6 the total flow rate passing through 

reservoir grid is the sum of flow rates through matrix and fracture: 

         (6.13) 

Using Darcy’s law in Eq. 6.13: 

 
 

 
    

       

  
  

 

 
   

          

  
  

 

 
  

              

  
 

(6.14) 

But the pressure drops would be the same across the fracture and matrix: 

            (6.15) 

Finally, the average mobility of the grids containing proppants will be: 
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Figure 6.6: Averaging Mobility of Reservoir Grids 

If the fracture partially penetrates a grid, the procedure of finding total mobility will be the same, 

with another series averaging between the portion of grid that is fractures and the portion that is 
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not fractured. Injection of proppants may cause a significant increase in the viscosity of slurry 

which in turn decreases the slurry mobility to very low values. Our formulation accounts for the 

change of width and proppant concentration on a subgrid scale.  

6.2.4 Closure 

When the mobility of the injection fluid is decreased due to presence of proppant particles, a 

large pressure drop might occur inside the fracture. Consequently, the length and width of the 

fracture will change. As shown in Fig. 6.7, two outcomes should be expected to occur: 

1. If no proppant exists in some portions of the fracture, it may completely close to zero 

width. Therefore, the fracture length will be shortened.  

2. On the other hand, portions of the fracture that contain proppant will not completely close 

to zero width since the proppants prevent the fracture from closing. However, the width 

of the fracture will be reduced to “propped fracture width”. At this state, the fracture 

width cannot decrease any further. 

 

Figure 6.7: Fracture Closure When No Proppant Exists 

The first case can be easily implemented in the numerical code, since an adaptive re-meshing 

technique along with a moving BC has been utilized in our code. However, the amount of 
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fracture closure on proppants and resulting width reduction in the second scenario should be 

calculated. 

The reduction of fracture width will modify proppant concentration, while the volume of the 

proppants inside subgrids will be constant. Before fracture width reduction happens, volume of 

proppants in subgrids will be: 

             (6.17) 

We assume that after fracture closes on proppants, the concentration in the subgrid will reach 

saturation concentration. Hence, the proppant volume can be obtained from: 

                     (6.18) 

where          is fracture propped width. Since the volume of proppant will not change during 

closure,  

        (6.19) 

or 

         
    

    
 

(6.20) 

This calculation process is shown schematically in Fig. 6.8. 

 

Figure 6.8: Fracture Closure on Proppants  

The value of propped width is calculated for all the subgrids at the beginning of each time step. It 

determines the maximum reduction of y-displacement in the geomechanics module. When the 

total y-displacement in two adjacent geomechanics nodes reach the critical y-displacement 
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(propped width) the nodes are fixed in the y-direction which assures that no more y-displacement 

happens. There is, however, one issue with this approach that needs to be resolved. If due to the 

injection of slurry, the fracture reopens, the previously fixed nodes should be freed. This can be 

done by looking at the pore pressures inside the grids. For every gridcell, the pore pressure and 

corresponding fracture width is saved like a table in the numerical code. The propped width will 

also correspond to a certain pore pressure. We call this pore pressure, “critical pore pressure”. As 

soon as the pore pressure of the grid reaches the critical pore pressure, two nodes of that grid will 

be freed.  

There are other methods of simulating fracture closure in which the stiffness matrix is changed to 

ensure nodal y-displacement is a constant number (wpropped/2). The approach is called penalty 

approach (Chandrupatla and Belegunda, 1991; Ji, 2008). Penalty approach could not be 

implemented in our work since we are using commercial software FLAC2D and only a method 

that does not require a change of the global stiffness matrix could be utilized.  

6.2.5 Saturation Concentration and Proppant Pack Permeability 

As it was explained in Chapter 2, there is a maximum concentration of proppants that can fill up 

fracture. This maximum concentration is an empirical parameter and depends on density of 

packing. In the simulations of this chapter, it was assumed that the maximum proppant packing 

concentration is 0.6 which corresponds to a dense pack.  

Before the proppant concentration reaches its maximum value, the permeability of the fracture is 

calculated from cubic law. However, this law does not apply to a stationary pack of particles. If 

the concentration in any element reaches the maximum value, it is assumed that it behaves like a 

porous medium with a permeability coming from Kozeny-Carman equation (Rajani, 1988): 

  
        

 

     
 

(6.21) 

the coefficient 1/180 was suggested by Carman (1939) for uniform spherical particles. 

6.3 Verification of Finite Conductivity Fracture 

When proppants are injected inside the fracture, the mobility of the slurry reduces since viscosity 

is increasing. The effect of mobility decrease on pressure profile would be similar if permeability 
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decreases. In other words, it can be said that conductivity of the fracture will not be infinite any 

longer.  

To verify the average mobility calculations explained in the previous section, the results of our 

numerical model is compared with analytical solutions of Cinco-Lay et al. (1978), and numerical 

work of Barker (1978), for static fractures. Cinco-Lay et al. model contains a vertical fracture 

with finite conductivity at the center of an isotropic, horizontal, infinite, circular drainage area. 

They assumed the cylindrical reservoir slab was bounded by impermeable strata. As shown in 

Fig. 6.9 a finite conductivity fracture intersects the wellbore and a slightly compressible fluid is 

injected inside the wellbore. Barker (1978) in a numerical work simulated an explicit fracture in 

a finite acting square reservoir with the same abovementioned assumptions. In both studies, the 

results were presented in terms of dimensionless pressure and dimensionless time defined in Eq. 

6.22 and 6.23: 

    
  

     
  

(6.22) 

    
    

   
            

(6.23) 
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Figure 6.9: Geometry of the Verification Model 

It should be noted that the two reference results from literature deviates at larger times since 

Cinco-Lay et al. (1978) assumed an infinite acting reservoir. Figure 6.10 shows a comparison 

between the analytical work of Cinco-Lay et al. (1978) and numerical work of Barker (1978) for 

a full penetrating fracture with 0.2 conductivity. 
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Figure 6.10: Analytical Solution of Cinco-Lay et al. (1978) vs. Numerical Simulation of Barker (1978) for a 

Full Penetrating Fracture with 0.2 Conductivity 

To verify our averaging scheme explained in Section 6.2.3, we built a 2D model with input 

parameters of Table 6.1. We assumed the half length of the fracture is 150 m and its width is 

constant at 0.001 m with a proppant concentration of 0.5. Assuming the maximum packing 

concentration is 0.66, this amount of concentration gives a slurry viscosity of 107.5 cp according 

to Barree equation (1994) mentioned in Chapter 2, Table 2.7. Each reservoir grid is divided into 

10 subgrids for all the simulations. According to Eq. 6.16 the average mobility of the slurry 

becomes 9.310
-9

 m
2
/Pa.Sec. This is equivalent of having a fracture conductivity of 0.2.  
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Table 6.1: Input Parameters for Finite Conductivity Fracture Simulation 

Parameter Value 

Porosity 0.25 

Permeability 0.9869×10
-13

 m
2
 (0.1 Da)  

Fluid Viscosity 1 cp (0.001 Pa.Sec) 

Fluid Compressibility 1e-10 Pa
-1

 

Injection Flow Rate 8 × 10
-5

 m
3
/Sec 

Reservoir Dimensions (Drainage Area) 300 m by 300 m (90000 m
2
) 

Initial Reservoir Pore Pressure 5 MPa 

Fracture Conductivity 0.2 

Fracture Half Length 150 m 

Reservoir Grid Size Variable 

Fracture Subgrid Size 0.1 of Reservoir Grid Size 

Fracture Width 0.001 m 

Slurry Viscosity 107.5 cp (0.1075 Pa.Sec) 

Figure 6.11 is a comparison between our result and Cinco-Lay et al. (1978) analytical and Barker 

(1978) numerical results. A good match is observed except for the early time. According to the 

mesh sensitivity shown in Fig. 6.11, accurate modeling of early transient flow requires a very 

fine grid, comparable to wellbore radius, near the wellbore to capture wellbore boundaries.  
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Figure 6.11: Comparison of Current Numerical Results with Analytical and Numerical Works in the 

Literature 

6.4 Numerical Algorithm of Coupling the Three Modules 

In our simulations, we are utilizing three modules, namely, fluid flow, geomechanics and 

proppant simulators. The coupling between the fluid flow and geomechanics has been previously 

explained in Chapter 5. The result was a new stress-dependent hydraulic fracture simulator, in 

which, an in-house finite difference fluid flow simulator is coupled to the finite difference code 

FLAC2D. Following the definition of Settari and Mourits (1994), such a treatment is called a 

partially coupled simulation. The coupling between the modules relies on the stress state 

computations inside the reservoir induced by injection and the increase in pore pressure. In the 

next step, the calculated strains and displacements in the geomechanical module are used to 

modify reservoir permeability for fluid flow simulation. The partial coupling has the advantage 

of being flexible and computationally cost effective compared to the fully coupled based solver. 

In this section, we describe the coupling of our stress dependent reservoir simulator, 

geomechanical simulator, and proppant transport simulator in detail.  

In the linkage that we implemented, any existing sophisticated modeling tool for each component 

can be used. The linkage has been termed partially decoupled or partially coupled approach, 
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since there is a separate module for stress and fluid flow that solves the equations separately in 

each time increment. 

The critical aspect in partially decoupled modeling is the fracture in the reservoir model. Our 

numerical tool consists of three computational modules.  The geomechanics module gives the 

stresses and also fracture geometry based on the smeared approach. The reservoir module solves 

the fluid flow equations in the reservoir and includes fracture by assigning a high permeability to 

the grids that contain the fracture. Finally, the proppant module simulates the proppant transport 

until all the proppant become immobile when the concentration reaches the saturation 

concentration and the fracture is filled up with proppants. Figure 6.12 is a schematic of the 

coupling process. 

 

Figure 6.12: Information Transfer between the Modules 

The proppant simulator solves the hyperbolic partial differential equations described in Chapter 

3. The grids for proppant simulator are generated dynamically based on fracture growth in the 

geomechanics module. If a fixed number of gridblocks is assigned to the entire fracture in all the 

time steps, the sizes of the cells become bigger as the simulation progresses and this reduces the 
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accuracy significantly. Therefore, we assigned a constant size to the elements in all the time 

steps. In this way, as the computations proceed, the number of gridblocks becomes larger and no 

stability problems occur. In addition, since the position of the gridblocks is the same for all the 

time steps, no interpolation is required. If the length of the fracture in the current time step was 

Lf
n
 and the assumed length of the proppant cells is xp, then the number of gridblocks that are 

added to the simulation model will be:  

              
  
    

   

  
 

(6.24) 

Since structured mesh is employed to discretize our moving boundary problem there is no need 

to check smoothness of the mesh or regularity of the elements. The incremental addition of new 

elements effectively prevents the element size from becoming too large. 

As shown in Fig. 6.13, there are two iteration loops in the coupled algorithms. The first iteration 

loop is between fluid flow and geomechanics simulators and provide fracture dimension. The 

second iteration loop is between proppant transport simulator and HF package (fluid flow and 

geomechanics) and obtains proppant concentration distribution and mobility. 

 

Figure 6.13: Iteration Loops in Numerical Linkage 
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The primary result of the proppant simulator is the distribution of proppant concentration in the 

fracture, which can be translated into the independent grid of reservoir simulator by reducing the 

fractured gridblock mobility.  

Because permeability of the gridblock which contains the fracture has a strong dependency on 

the displacements in geomechanics module, the proppant calculations must be done in small time 

steps after proppant injection starts. The stable time step of explicit reservoir simulator is 

different than the same in proppant simulator and is usually larger (Eq. C-5). However, both of 

these stable times are very small. Therefore, the hydraulic fracture module is run for several time 

steps at constant concentration and the result is transferred to proppant module. Next, the 

proppant transport simulator is run for several time steps at constant fracture dimensions until the 

total time reaches to that of reservoir simulator. Figure 6.14 is the numerical algorithm of the 

linked modules.   

 

Figure 6.14: Numerical Algorithm of Linking Three Modules 

The implemented system has several advantages over the fully coupled models: 
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1. Since fracture and reservoir use different grids, better resolution of the fracturing process 

can be obtained. Any mesh sensitivity analysis with the reservoir model can be performed 

without the need to regenerate the fracture description. 

2. The proppant simulator can be coupled with any fracture simulator, either smeared or 

explicit, numerical or analytical. This greatly increases the versatility of the approach and 

its range of applications. 

3. Due to the smeared approach, the computational efficiency is greatly improved and the 

memory requirement, especially for the fracturing simulation is greatly reduced. 

4. Since the leak off and fracture growth happen naturally in smeared approach, the 

numerical problems of simulating them in the fracture is removed.  

5. The proppant simulator requires very small time steps for stability purposes. Decoupling 

it from the reservoir and geomechanics allow small time steps be assigned to the proppant 

simulator, while bigger time steps assigned to the reservoir simulator. The proppant 

module is run for several time steps until it catches up to the other simulators in time. 

Due to this severe time step limitation, decoupling is inevitable.  

6.5 Numerical Simulations 

Several numerical examples are carried out in this section to investigate the effects of proppant 

injection on hydraulic fracture shape and propagation. Since there are many parameters that can 

influence the results, it is more informative to specify a base case with reference parameters and 

then in a sensitivity analysis change one parameter at a time. The same hydraulic fracture model 

that was simulated in Chapter 5 is used for proppant injection. The fracture is allowed to 

propagate during 2000 seconds of pad injection. At this time, a proppant laden slurry is 

introduced and injection continues until the whole fracture is packed with proppants. The 

boundary conditions and input parameters of the reservoir and geomechanics simulators is 

previously described in Fig. 5.16 and Table 5.2. The additional proppant related parameters and 

boundary conditions of proppant simulator is described here in Fig. 6.15 and Table 6.2.  
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Figure 6.15: Moving Boundary Condition of Proppant Transport Simulator 

It is assumed that at top and bottom of the reservoir section, two barriers exist and they block any 

flow going outside the reservoir. It should also be noted that the proppant transport simulator 

needs two sets of boundary conditions as slurry and proppant mass balances are solved 

separately in this module. As the location of the fracture tip changes due to fracture extension or 

shrinkage, the boundary condition specified at right hand side of the model also moves 

accordingly. 
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Table 6.2: Input Parameters for Proppant Module 

Parameter Value 

Model Dimensions Varies According to Fracture Proppagation 

Injecting Fluid Initial Viscosity 0.001 Pa.Sec. 

Proppant Diameter 0.006 m 

Proppant Density 2600 kg/m
3
 

Saturation Concentration 0.6 

Slurry Viscosity Exponent 1.82 

Slurry Injection Start Time 2000 Seconds 

Figure 6.16 shows fracture length, fracture width and proppant front advance during injection 

time. As proppants are introduced at 2000 second time, the fracture length reduces which means 

fracture partially closes due to increase viscosity of the slurry. Since there are no proppants 

present in the grids near the tip of the fracture to prevent its closure, the length of the fracture 

shortens. However, after injection is continued the length start to increase again. After some 

time, this propagation is stopped again because mobility of injecting fluid is decreased 

significantly. If the closure algorithm explained earlier in this chapter was not implemented, the 

length of the fracture would go to zero. However, the algorithm keeps the track of proppant front 

advancement and does not let full closure happen. When the proppant front reaches the end of 

the fracture, no more propagation is observed and the fracture length is stabilized. 

The situation for the width of the fracture is very different. Increasing viscosity of the injection 

fluid causes an increase in the pressure inside the fracture. Consequently, it is expected the width 

at injection point to increase at a higher rate. This fact is clear in Fig. 6.16 after start of proppant 

injection. Even when proppant front reaches the end of the fracture, the width unlike length, 

increases since the concentration and consequently slurry viscosity are still increasing. 
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Figure 6.16: Fracture Length, Maximum Width and Proppant Front Advance through Time 

Figure 6.17 shows fracture width evolution at different locations along the fracture through time. 

The first observation is the change in rate of width variation after start of proppant injection. In 

subgrids closer to the injection point, the rate of width increase is enhanced while in subgrids 

further away this rate is reduced. As the subgrids become closer to the fracture tip, the width 

might become zero, which means fracture total closure in this area. However, as it can be seen in 

Fig. 6.17, some width development occurs after closure which indicates fracture reopening 

during proppant injection.  

 



 184 

 
Figure 6.17: Fracture Width Variation through Time 

Figure 6.18 and 6.19 show proppant concentration contours at different times during the slurry 

injection period. Again, the length of the fracture is changing until proppant front reaches the end 

of the fracture at which further length development or shrinkage stops. A bed of proppants with 

maximum packing concentration is formed at the bottom of the fracture. The size of this bed 

determines the efficiency of the frac-packing job. If a large bed is formed, it can block the 

transport of proppants to the near tip area of fracture and result in premature screenout. 
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Figure 6.18: Proppant Concentration Distribution at Different Injection Times 
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Figure 6.19: Proppant Concentration Distribution at Different Injection Times 

At this point it is necessary to check the global proppant mass balance error and use it as a 

verification to accuracy of the numerical tool. The mass of proppant that is being injected into 

the fracture can be easily obtained as: 

                      (6.25) 
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where      is slurry volumetric flow rate,      is proppant injection concentration,    is proppant 

density and   is injection time. On the other hand, the amount of proppants inside the fracture can 

be obtained using: 

        ∑      

 

   

 

(6.26) 

where   is the amount of proppant concentration in each subgrid and V is subgrid volume. The 

difference between these two parameters serves as a check on mass balance error. This error 

always exists in numerical simulations. Figure 6.20 shows the mass of proppants injected and 

inside the fracture and their difference which is called mass balance error percent. Although the 

error is accumulating through time, its value is very negligible compared to the injected mass of 

proppant. 

 
Figure 6.20: Global Mass Balance Check 

6.6 Sensitivity Analysis 

A sensitivity analysis was conducted to investigate the effect of proppant density, proppant 

diameter and injection fluid viscosity. In all the simulations, the initial fracture geometry was 

assumed to be the same as in previous section and similarly the proppant was introduced after 
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2000 seconds of pad injection. Table 6.3 shows the value of different parameters in each 

simulation. 

Table 6.3: Input Parameters for Sensitivity Analysis Simulations 

Simulation Number Proppant Density 

(kg/m
3
) 

Proppant Diameter 

(m) 

Viscosity of Injection 

Fluid (Pa.Sec) 

1-1 1100 0.0006 0.01 

1-2 1800 

1-3 2600 

1-4 3900 

2-1 2600 0.0001  0.01 

2-2 0.0006  

3-1 2600 0.0006 0.001 

3-2 0.01 

3-3 0.4 

3-4 1 

Figure 6.21 shows the proppant concentration distribution at 2194.3 seconds of injection for 

different proppant densities ranging from 1100 kg/m
3
 to 3900 kg/m

3
 (the maximum density that 

can be found in ultra-high strength ceramic proppants). Based on the discussions of Chapter 2 

and 3, settling and convection velocities in Stokes region can be expressed as: 

Settling Velocity: 

          
 (     )  

 

   
         

(6.27) 

Convection velocity:  

            
  

   

        

  
 

(6.28) 

where      is the voidage function,      is wall factor and     is the slurry density. 

According to Eq. 6.27 and 6.28, increasing proppant density increases the settling velocity 

directly. In addition, proppants with higher densities create a higher density slurry and 

convection velocity may increase. As a result, a bigger layer of proppant bed is expected to form 

at the bottom of the fracture. Compared to slot flow simulations of Chapter 4, the effect of 

density is more pronounced here due to lower viscosity that is assigned to carrying fluid. 



 189 

 

 

 

 
Figure 6.21: Proppant Distribution Concentration for Different Proppant Densities 

Although very different proppant distribution is obtained, the fracture geometry in all 

simulations remain the same as shown in Fig. 6.16. The reason is that the concentration in most 

part of the fracture has the almost same value of 0.3, except for the proppant bed that is created 

at the bottom of the fracture. This gives very similar value of viscosity and consequently 

mobility which is the main fracture geometry controlling parameter. The same fracture 

propagation behavior was also observed in simulations with varying proppant diameter (Fig. 

6.22).  
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Figure 6.22: Proppant Distribution Concentration for Different Proppant Diameters 

According to Eq. 6.28, proppant diameter does not affect convection velocity. This is particularly 

true when fracture aperture is several orders of magnitude larger than the proppant diameter. 

However, settling velocity is proportional to proppant diameter to the power of 2. Therefore, 

increasing proppant diameter will create a bigger bed of proppants compared to the same order 

increase in density. Although having larger proppants will result in a proppant packed fracture 

with higher permeability (Eq. 6.21), large proppants may not go into a big portion of fracture due 

to minimum width for entry requirement. 

Based on the results of our simulations, viscosity of the carrying fluid has the strongest effect on 

the fracture geometry and proppant distribution. Figure 6.23a and 6.23b shows how the length 

and width of the fracture changes when the carrying fluid viscosity is 400 cp and 1000 cp. In 

both cases, shortly after proppant injection starts, fracture shortens and widens due to mobility 
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increase. The final propped length of fracture is larger and its width is narrower when lower 

viscosity fluid is used.    

 
a 

 
b 

Figure 6.23: Fracture Length, Maximum Width and Proppant Front for Different fluid Viscosities a) 400 cp, 

b) 1000 cp 
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Figure 6.24 shows the proppant distribution for the two viscosity cases at 2312.2 and 2411.2 

seconds. Viscosity strongly changes both settling and convection, as can be seen in Eq. 6.27 and 

6.28. A better proppant placement is obtained by having a higher viscosity fluid. However, at the 

same time, a shorter fracture is to be expected. 

 

 

 

 
Figure 6.24: Proppant Distribution Concentration for Different Carrying Fluid Viscosities 
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In another simulation, we decreased the slurry viscosity to 1cp. A perfect example of tip screen 

out was obtained in this simulation. As it is apparent from Fig. 6.25, small values of viscosity 

result in longer and narrower fractures. It is interesting to note that the proppant front never 

reaches the fracture tip. The reason is more clear when we look at the proppant concentration 

distribution in Fig. 6.26. 

 
Figure 6.25: Fracture Length and Maximum Width in Low Viscosity Fluid 

It can be concluded from Fig. 6.26 that a large bed of settled proppant is created at the bottom 

that covers a huge portion of the fracture. This is expected to happen as the carrying capacity of 

the fluid is reduced when viscosity is reduced. However, the size of the bed is so large that it 

blocks nearly full height of the fracture before proppants reach the tip. In Fig. 6.25 proppant 

front is depicted in the middle section of the model and it can be seen in Fig. 6.26 that it never 

reaches the tip of the fracture during the simulated injection time.   
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Figure 6.26: Tip Screen-out in Low Viscosity Fluid 

6.7 Conclusion 

In this chapter, a hydraulic fracture and proppant transport simulator that includes reservoir and 

geomechanical effects was formulated. The model can consider variable fracture permeability, 

poroelastic effects, fracture closure on proppants and adaptive mesh design to reflect the physics 

of proppant transport in a more accurate manner compared to the existing numerical simulators. 

The fluid flow, mechanical and proppant equations were iteratively coupled in a multi-module 
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numerical tool with adaptive time stepping and re-meshing. The significance of our coupling 

development is its flexibility in integrating any commercial fracture, fluid flow or geomechanics 

simulator in an efficient manner. 

We developed a framework that allows the simulator to seamlessly capture proppant settling, 

fracture closure on proppants, fracture width variation, proppant accumulation into a packed bed 

between fracture walls and tip screen-out.  

A series of sensitivity analysis was performed to confirm the simulation results are plausible and 

also to investigate the effect of different controlling parameters on proppant distribution inside 

hydraulic fractures. Our sensitivity analysis shows the effect of proppant density, proppant 

diameter and fluid viscosity on hydraulic fracture behavior. Viscosity is by far the most 

important parameter in this regard, that can significantly alter fracture geometry and proppant 

placement. 
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1 Chapter 7: Conclusions and Recommendations for Future Work  

In this research, a numerical tool to simulate proppant transport inside propagating hydraulic 

fractures has been developed. Based on the results from simulated examples, the model indeed 

produces reasonable shape of fracture and of proppant concentration distribution inside the 

fracture. Unfortunately, other than fixed shape slots or analytical hydraulic fractures, there are no 

experimental or numerical works in proppant transport area to compare our results. However, 

since the model is consistent with the actual physical condition of hydraulic fracture and 

proppant transport phenomenon, and since the model considers geomechanics and reservoir 

simulation interactions, it is believed that accurate results can be expected from the model. This 

chapter summarizes the key points that can be concluded from this research. 

7.1 Conclusions 

The primary objective of this research was to improve the design of hydraulic fracture and 

proppant transport operation using our developed multi-module simulator. The main tasks 

achieved can be broken down as follows: 

1. A proppant transport simulator was developed using appropriate mathematical solution 

techniques. Most popular mathematical solution approaches were tested to see the 

capability of them in capturing proppant front and distribution. 

2. A hydraulic fracture model following smeared approach was developed that couples a 

reservoir simulator and a commercial geomechanics simulator and captures the initiation 

and propagation of a 2D planar fracture. The model was verified and validated earlier in 

our research group.  

3. We developed the first linkage between a proppant transport simulator and a fully 

numerical hydraulic fracture model in a partially decoupled manner. It is assumed that the 

fluid is Newtonian and incompressible and the system is isothermal. Several examples 

were shown that illustrate the power and usefulness of the model.  

We performed sensitivity analysis for both slots and actual propagating hydraulic fractures and 

provided design recommendations for different type of proppants and injection fluids., in lieu of 

a costly field trial and error approach. Through the analysis, we identified the fluid and proppant 

properties that are crucial in the design of the operation. 
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The following conclusions are made based on the results presented in this dissertation: 

 The modular coupling removes the necessity of having very fine grids due to the fracture 

existence. In other words, only the fracture itself needs to have fine grids.   

 The challenging task of finding numerical solution to first-order hyperbolic transport 

PDE is twofold: the traditional FD methods are either inaccurate or oscillatory. Flux or 

slope limiters resolve both issues but are first-order accurate near the shocks. More recent 

ENO or WENO methods additionally provide high order accuracy everywhere in the 

model.  

 The main disadvantage of flux limiters and ENO or WENO schemes is their complexity 

in multi-dimensions. Notably, using Godunov splitting approach, this complexity is 

eliminated and the schemes can be coded conveniently. 

 Inertia, fracture walls and presence of other particles have an effect on the settling 

velocity of the particles. There exists extensive data on relation between Galileo number 

(coming from physical properties of fluid and proppant) and Reynolds number from 

which settling velocity can be obtained in all flow regimes. Fracture walls significantly 

reduce settling velocity of particles due to extra drag force they exert on particles. 

Proppant concentration has a similar effect to walls. However, after concentration reaches 

a certain level, the packed fracture behaves like a porous medium. 

 Advanced numerical techniques and state of the art in solid transport experiments were 

combined to develop an efficient numerical tool. Effects of injection rate, proppant 

density and diameter and injection fluid viscosity was investigated. Viscosity of injection 

fluid shows a strong impact on the concentration distribution (by changing settlement and 

convection) and shape of the fracture. Increased flow rate causes the fracture to fill up 

faster and reduces both convection and settlements. Proppant density and diameter have a 

moderate effect on settlement only. 

 The Buoyancy number proves to be an important factor in determining the shape of 

concentration plume. Very different design parameters, if provide similar Buoyancy 

number, are expected to result in similar distribution of proppants.  
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 The existence of the proppants changes the mobility of the fluid since the viscosity of 

carrying fluid is enhanced. Comparing to the case without proppants, an increase in the 

net pressure and consequently fracture width is obtained. The higher the concentration, 

the higher the slurry viscosity, net pressure and fracture width. The length of the fracture, 

on the other hand, shortens due to the higher pressure losses inside the fracture. 

The major original contribution, of our research is the development of a model that incorporates 

numerical fracture simulation and a proppant transport model. The important feature of the 

model includes the following: 

1. Numerical modeling of the hydraulic fracture 

2. Capturing plastic deformations in the reservoir and updating the porosity and 

permeability in the flow model in relation to the deformations 

3. Modeling of proppant injection, by several important phenomena such as Stokes velocity 

corrections for inertia, wall and concentration effects, retardation factor, and fracture 

closure, etc. While each of these phenomena had been investigated separately, they had 

not been collectively incorporated in a proppant transport model. 

4. Applying an accurate form of finite volume method that has been proposed specifically 

for hyperbolic (transport) partial differential equations. Further, we utilized different 

techniques to reduce the expected long run-time of the model. Local mesh refinement, 

dimensional splitting and sparse method of solving matrix equations were employed to 

optimize the running time of the model. 

The closest numerical model to our model consists of an analytical hydraulic fracture model 

from PKN, KGD, P3D or PL3D models combined with a proppant transport model which did 

not include several important phenomena in proppant transport. Further, these models neglect 

plastic deformations of the medium, and neglect the effect of sand deformation on its porosity 

and permeability. 

We did not apply the model to or validate the model against a real field case due to the lack of 

data. However, we verified the model in different ways against analytical models, published 

simulations, and commercial software and did a sensitivity analysis using a synthetic model to 
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investigate the sensitivity of the results to multiple parameters such as flow rate, fracturing fluid 

rheology and proppant properties on proppant transport. 

7.2 Recommendations for future work 

The technique of modular coupling that we utilized in our numerical simulation is very well 

accepted in the literature. Consequently, the limitation of the modeling will remain mainly in the 

limitations of the physics of each module. Progress towards models that include all the important 

physics will require a large research effort. However, the idea of modular coupling appears 

promising for the inclusion of these physics and resolving current limitations.   

The following issues seem to make the presented model more effective for practical analysis and 

design use:    

 Probably the main limitation of our model lies in the fact that it is restricted to planar 

(vertical or horizontal) fractures. The ultimate approach is the development of an 

arbitrary 3D fracture model under dynamic in-situ conditions in the reservoir. Obviously, 

a more realistic model should numerically simulate fracture height extension. Another 

important extension of the model can be development of the ability to simulate more than 

one fracture in the reservoir. 

 Our proppant module is using FVM to simulate transport of the proppant. Although in 

this research we only dealt with planar fractures, FVM is capable of simulating transport 

in rotating fractures as well. 

 Majority of the fracturing fluids are non-Newtonian. As mentioned in Chapter 2, the most 

important parameter describing proppant movement in fracture is its settling velocity, 

which is a function of the rheological behaviour of the fluid. Non-Newtonian fluids 

present a series of characteristics including plasticity, yield stress and time-dependent 

behavior. In contrast to the extensive literature on settling in Newtonian media, much less 

work has been carried out on the free settling in non-Newtonian fluids. In non-Newtonian 

fluids, settling velocity change due to inertia, wall effect and proppant concentration 

follow complex correlations. The viscosity evolution of slurry will also be more complex. 

On the numerical aspect, the following form of cubic law applies to non-Newtonian 

fluids:   
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(7.1) 

Such a complex relation between pressure and flow rate make the system of equations 

non-linear and accordingly the running time of the simulation will become much longer. 

 We assumed that proppant particles are perfectly spherical and are of uniform size. 

Settling velocity of non-spherical particles has not been the focus of majority of 

experimental works. There are some experiments on settling of cylinders, cubes 

spheroids or discs in the literature. However, naturally occurring sands are different from 

other non-spherical particles such as discs, cubes, spheroids, and cylinders, because of 

their highly irregular shapes and sizes. The drag force acting on the particles during 

settling highly depends on the shape of the particles. Surface irregularities lead to 

increased drag force and thus reducing the settling velocity compared to that of spherical 

particles.  

On the other hand, although proppants are made to have a narrow grain size distribution, they are 

not perfectly of the same size. Clearly, different sizes of the proppants particles make the settling 

phenomena even more complex as each particle exhibits different settling velocity. The 

experiments in the literature are very limited and mostly consider settling of binary mixtures. 
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Appendix A: Solution to the Momentum Equation for Drag Force on a Single 

Particle Falling in an Infinite Medium 

The general 1D momentum equation of the particles can be written as (Wallis, 1969): 

  (
  

  
  

  

  
)      

  

  
 

(A-1) 

where b represents any body force, p is the pressure, f accounts for surface forces on the 

particles, p is the particle density and v is velocity. In uniform, steady state condition, velocity 

does not change with space and time, and the left hand side vanishes. Therefore, the only body 

force in the system will be gravitational forces. The surface forces will include hydrodynamic 

drag plus direct contact force (this latter force would be zero for suspended particles) and p will 

be fluid pressure. All the terms in above equation represent force per unit volume. Multiplying 

all the terms by the volume of a single particle and applying the abovementioned considerations, 

the steady-state force balance equation for a single particle becomes: 

            

  

  
   

(A-2) 

where Vp is the volume of a single particle and FD is the hydrodynamic drag force. The pressure 

gradient term for a suspension of particles under equilibrium will be: 

  

  
      

(A-3) 

Substituting this in the momentum equation, we obtain: 

   
   

 

 
         

(A-4) 

The resistance force per unit projected area in a plane perpendicular to the direction of motion 

for a sphere falling at its terminal velocity is: 

  
 

  
 

         

 
  

 

 

 
 

 
           

(A-5) 

This equation means that for a particle moving with steady terminal velocity, the drag force 

balances the difference between the weight and buoyancy. Therefore: 
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Appendix B: General Notes on Advection, Diffusion and Partial Differential 

Equations 

Partial differential equations describe a wide range of physical phenomena. These equations can 

be classified into different groups, and each group has certain mathematical method for finding 

the solution. In this chapter, we will show that the transport of proppant is described by a first-

order hyperbolic partial differential equation. In general, mathematical form, the transport 

equation can be written as:   

  

  
 

     

  
   

(B-1) 

or 

  

  
 

  

  
   

(B-2) 

where   is a function of conserved quantity  . This type of hyperbolic equation describes wave 

(information) propagation or transport in the x direction with velocity  . 

For this PDE to be hyperbolic, the matrix   must satisfy certain properties. This PDE is 

classified as hyperbolic if matrix   is diagonalizable with real eigenvalues. Second-order partial 

differential equations are classified in a different way. A linear second-order PDE in two 

dimensions has the following general form: 

      
   

   
       

   

    
       

   

   
     

  

  
 
  

  
      

(B-3) 

This PDE is said to be: 

{

                     

                      

                    

  

It should be noted that although proppant transport PDE is first-order hyperbolic, slurry transport 

PDE is elliptic. Therefore, from here on we only focus on first-order hyperbolic and seccond 

order elliptic type of PDEs.  

Eq. B-1 is the general form of advection equation. Linear advection equation, which is a 

simplified form of Eq. B-1, can be stated as: 
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(B-4) 

which means matrix A (velocity in transport application) is uniform or it can be said that the 

conserved quantity has no effect on the velocity. By taking a closer look at the first-order linear 

hyperbolic PDEs, a general solution to such equation can be found as: 

          (B-5) 

The proof is easy. If we define: 

       (B-6) 

Then by chain rule: 

  

  
 

  

  

  

  
   

  

  
 

(B-7) 

and 

  

  
 

  

  

  

  
 

  

  
 

(B-8) 

Now substituting into Eq. B-4, we obtain: 

  

  
  

    

  
   

  

  
 

  

  
   

(B-9) 

Now, this solution has an intuitive meaning. It means that the solution to a purely advective PDE 

is simply a shift of initial conditions. In other words, any given initial condition is simply 

translated forward or backward, depending on the sign of the velocity, with velocity   through 

the model, without any change in its initial profile (Fig. B-1). 
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Figure B-1: Purely Advection Equation Translating Initial Condition with No Smearing 

The other consequence of such a solution is that q is constant along any path in x-t space which 

satisfies: 

         (B-10) 

These paths or rays are called characteristics of the equation and this method of finding the 

solution is called method of characteristics.  

Realistically, the proppant transport falls into a different category of hyperbolic PDEs since the 

velocity field is not uniform at every location inside the fracture. In this case, the hyperbolic PDE 

is called non-autonomous PDE: 

  

  
 

          

  
   

(B-11) 

Since the velocity is non-uniform, the characteristic curves are not straight lines and the solution 

is not constant along the curves anymore. 

Another important phenomenon that should be described here is diffusion. We need to define 

diffusion mathematically to be able to explain the inadequacy of finite difference schemes in 

later sections. Without going into the details of the proof, using Fick’s law of diffusion which 

states that the net flux is proportional to the gradient of q, the parabolic PDE that describes 

diffusion will be: 
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(B-12) 

where D is known as diffusivity coefficient. The solution to the pure diffusion equation is the 

smearing or damping of the initial condition, without any movement or shift. Fig. B-2 shows 

schematically how the solution changes with time by solving a pure diffusion equation.   

 

Figure B-2: Pure Diffusion Equation Only Smears the Initial Condition with No Shift 

In a more general case, the transport equation can involve advection and diffusion 

simultaneously. The parabolic PDE of this type can be written as:  

  

  
 

          

  
  

   

   
 

(B-13) 

It is obvious that the solution to this type of problem will shift and smear the initial condition at 

the same time. We will discuss the negligible diffusion in proppant transport problem in the 

following sections. An important conclusion that can be drawn from above discussion is that any 

PDE that contains first-order space derivative will advect and shift the initial condition, while the 

presence of second-order space derivatives ensures diffusion and smearing of the initial 

condition. From this discussion and with the help of modified partial differential equations, we 

will show why usual finite difference schemes smear the solution and therefore are inadequate 

for pure advection problem of proppant transport.  
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Appendix C: A Short Note on Courant-Friedrichs-Lewy Stability Condition 

The domain of dependence of hyperbolic partial differential equations should be defined before 

explaining the CFL condition. The solution to scalar hyperbolic PDE, as explained in Chapter 3, 

is q
0
(X-At) which means the solution depends only on a single point at (X, T). For system of m 

hyperbolic PDEs the solution depends on m particular points x-A
p
. In other words, for hyperbolic 

PDEs, the data at other points at t
n
 has no influence on the value of q at t

n+1
. 

                         (C-1) 

This set is called domain of dependence. This concept is shown in Fig. C-1. This bounded 

domain of dependence is a consequence of finite speed travel of information in a hyperbolic 

equation. 

 

Figure C-1: Domain of Dependence of a System of Hyperbolic Equations 

The CFL condition is a necessary condition that is satisfied by any stable and FVM or FDM. 

Stability here means that the method converges to the solution of PDE as the grid is refined. 

If numerical flux function is defined as: 

 
  

 
 

        
    

   (C-2) 

a three-point stencil numerical method is obtained: 

  
      

  
  

  
     

      
         

    
    

(C-3) 

Three-point stencil means that the value of Qi
n+1

 depends on three points Qi-1
n
, Qi

n
 and Qi+1

n
 at 

the previous time step. If such a method is applied to the advection equation qt + Aqx = 0, the 
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exact solution translates a distance of At over one time step. If At ≤ x the information 

propagates less than one grid cell in each time step. As shown in Fig. C-2, in this case it would 

be logical that the numerical flux be defined in terms of two adjacent Q values. On the other 

hand, if At > x the current value of Qi
n+1

 clearly depends on the value of Qi-2
n
 which is not 

used in definition of numerical flux. In this case the method would be unstable no matter how the 

flux is defined in terms of Qi
n
 and Qi-1

n
. 

 

Figure C-2: a) For small time step, flux depends on neighboring cells, b) For larger time steps, flux depends 

on values further away 

The numerical domain of dependence can be defined in the same way as the set of points that 

initial data can affect. As shown in Fig. C-3 the value of Qi
2
 depends on Qi-1

1
, Qi

1
, Qi+1

1
 and 

hence on Qi-2
0
, …, Qi+2

0
. This means that only initial data at interval X - 2X

coarse
 ≤ x ≤ X + 

2X
coarse

 can affect the numerical solution. Refining the grid by a factor of 2 (X
fine

 = X
coarse

/2) 

means that the numerical approximation depends on X - 4X
fine

 ≤ x ≤ X + 4X
fine

, which is the 

same interval as before. Generally, continuous grid refinement with ratio r = t/x results in a 

domain of dependence of X- T/r ≤ x ≤ X + T/r for a point at (X,T).  

 

Figure C-3: Numerical Domain of Dependence of a) Coarse and b) fine Mesh 
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The CFL condition will be satisfied if the numerical method domain of dependence contains the 

domain of dependence of the true solution: 

  
 

 
        

 

 
 

(C-4) 

which means: 

  |
   

  
|    

(C-5) 

The ratio  is called the CFL number or Courant number. A change in the initial condition q
0
 at 

X-AT, while changing true solution, will not change the numerical solution if CFL condition is 

not satisfied. It should also be noted that if a numerical method had a wider stencil, CFL 

condition would be more lenient. For example, for a centered five point stencil,  ≤ 2. 


