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The aim of commercial pig breeding programs is to maximize the number of pigs produced per sow per year.
Given that sows exhibit an estrus during lactation is a potentialmeans of increasing productivity of a pig breeding
herdwithout reducing in lactation length, conventionally, weaning of piglets at a relatively young age is often re-
lated to post-weaning piglet performance which compromises piglet welfare. Therefore, intermittent suckling
(IS) is a management technique in which lactating sows are separated from their piglets for a fixed period of
the days and allowing sows to continue nursing piglets while exhibiting estrus and being breed during lactation,
thereby promoting both piglet well-being and sow reproductive performance [1]. For this study, primiparous
sows (PP) were exposed to 28 day (D28) lactation with intermittent suckling (IS) during the final week prior
toweaning. The sows detected to be in estrus during lactationwere either bred at this first estrus (FE) during lac-
tation (IS21FE), or were “skipped” and bred at their second estrus which occurred after final weaning at D28
(IS21SE). Despite the benefits of IS, the effects of the maternal physiology related to breeding during lactation
on embryonic transcriptome are largely unknown. Recent advances in the ability to assess embryonic gene ex-
pression in both sexes have made these analyses possible. Here, we describe the experimental procedures of
two color microarray analyses and annotation of differentially expressed (DE) genes in detail corresponding to
data deposited at NCBI in the Gene Expression Omnibus under accession number GSE53576 and GSE73020 for
day 9 embryos (D9E) and day 30 embryos (D30E) respectively. Although only a few DE genes were discovered
between IS21FE and IS21SE in both sexes from D9E or D30E, the raw data are still valuable for future use to un-
derstand the gene expression profiling from two different developmental stages.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1.Microarray design for day 9 and day 30 embryos of both sexes indicated in A and B
respectively. The numbers indicate the biological replicates in each group and arrows
indicate dye swap between groups. Three embryos with similar weight were pooled in
each biological replicate.
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See Fig. 1.

2. Experimental design, materials and methods

2.1. Embryos collection and PCR sexing

First parity sowswere submitted to an ovulation-induction protocol,
intermittent suckling (IS), during lactation [2]. Sowswere humanely eu-
thanized at day 9 (D9E) and day 30 (D30E) of gestation for embryo col-
lection. An additional control group of day 30 embryos (C28) was also
collected from control sows bred after weaning at day 28 of lactation.
All embryos were stored at −80 °C before further usage. A modified
HotSHOTmethod [4] was used to obtain DNA for sex typing. PCR sexing
was performed using a single pair of primers (Table 1) redesigned based
on the pig amelogenin (AMEL) genes located on X and Y chromosomes
[5,6]. Phire Hot Start II DNA Polymerase (F-122S, ThermoFisher Scientif-
ic) was used to perform PCR with an initial denaturation at 98 °C for
30 s, followed by setting the PCR program for 30 cycles first at 98 °C
for 5 s, annealing temperature at 61.8 °C for 5 s and extension at 72 °C
for 10 s, and then with final extension temperature at 72 °C for 1 min.
A single band size corresponding to 850 bp amplicon appeared in the
gel for both sexes with an additional smaller amplicon of 670 bp ob-
served for male embryos due to 180 bp of deletion in Y chromosome.

2.2. Microarray design & performance

Agilent custom made array-031068 referring to porcine embryo-
specific microarray (EMPV1) was used in this study [3]. A dye-swapped
Table 1
PCR primers information.

Primer names Sequence Length

AMELF 5′-GCTTGCATCAAGAAGATAGAG-3′ 21
AMELR 5′-GCTCAGTTAATCCTACTCTAGCC-3′ 23

a Melting temperature calculation according to the Tm requirement of Phire hot Start II DNA
(Cy3& Cy5 fluorescent dyes) direct comparison designwith 3 biological
replicates was used in both D9E (GSE53576) and D30E (GSE73020)
studies for both sexes as shown in Fig. 1. In D9E study, no control
group was used when comparing between IS21FE and IS21SE directly
(Fig. 1A), however, for the D30E study (GSE73020) a control group
(C28) was dye-swapped either with IS21FE or IS21SE (Fig. 1B). Dyes la-
beling and arrays hybridization were performed under Ozone Free Box
™ (BioTray, Villeurbanne, France) inside a dark roomwith light control
system.
2.3. Microarray analyses

Microarray data analyses were performed using FlexArray software
version 1.6.3 (http://genomequebec.mcgill.ca/FlexArray) for data nor-
malizationmethods using simple background subtraction, LOWESS nor-
malization within and between arrays (Fig. 2). Further analysis to
detect DE genes was performed using embedded programs in the
software such as limma [7] and the Benjamini and Hochberg false
discovery rate (BH-FDR) [8] multiple comparison correction condi-
tion with additional switching on the calculation setting for false
positives due to the dye effect. In analyzing D30E, C28 was set as a
reference during the analysis in order to detect DE genes between
IS21FE and IS21SE (Fig. 3). Threshold parameters setting for DE
genes were considered to be significant when a fold change (FC)
was ≥2 (or ≤0.5) with a BH-FDR adjusted P value (B-H P-value)
≤0.05 in both studies. Under Volcano plot view of P-values from
Flexarray analyses between IS21FE and IS21SE treatment, more
spots were identified to be statistical significantly in female (27
spots) than male (4 spots) of D30E (Fig. 4). A similar trend was
found in D9E study with a total of 26 and 2 spots detected to be sig-
nificant in female and male respectively.
2.4. Gene annotation

Gene annotation was performed using probe sequences from NCBI
BLAST program http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=
BlastSearch&BLAST_SPEC=OGP__9823__10718 by selecting two differ-
ent pig nucleotide databases: Annotated RNAs (Annotation Release
105) or Genome (Sscrofa10.2 reference Annotation Release 105) to
maximize the search with positive hits. Sequences were considered to
be significant alignments when the identity was more than a 98%
match with the bit score ranging from 56.5 to 111. After extensive re-
annotation, only 23 of theDE genes fromboth studies (Table 2) received
the same gene symbols in pig with their human orthologs, and it was
found that only two genes, GTPBP2 [9] and MIR9-3 [10]. could be regu-
lated by the reproductive hormone estrogen after extensive PubMed lit-
erature search.

In conclusion, only a few DE genes were identified in D9E or D30E
between IS21FE and IS21SE and more DE genes were found in females
than males in response to the unique physiological condition present
in IS treated PP sows.
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Fig. 2. Box plot of M-values of expression before and after the normalization process using simple background subtraction, LOWESS normalization within and between arrays.

Fig. 3.Experimental design settings forD30E fromFlexArray analyses in (A) female and (B)male embryos using a control group as a referencewhen comparingbetween IS21FE and IS21SE
to identify DE genes.
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Fig. 4. Volcano plots from Flexarray analyses between IS21FE and IS21SE treatments in (A) female and (B) male D30E. The large red diamonds = significant spots, FC = fold change
threshold, Adj P-val = Adjusted P-value threshold and black spots influenced by dye effect.

Table 2
Gene annotation data.

Query id Subject ids
(human)

%
Identity

Alignment
length,

Mismatches Gap
opens,

q.
start

q.
end

s.
start,

s.
end

evalue Bit
score

Gene
symbol
(human)

Description

NM_001185169.1 NM_005698.3 88.776 1577 148 7 1 1574 24 1574 0 2040 SCAMP3 Homo sapiens secretory
carrier membrane protein 3
(SCAMP3), transcript
variant 1, mRNA

NM_001244237.1 NM_022731.4 93.41 956 62 1 1 955 90 1045 0 1436 NUCKS1 Homo sapiens nuclear
casein kinase and
cyclin-dependent kinase
substrate 1 (NUCKS1),
mRNA

NM_001244939.1 NM_000849.4 87.065 804 97 5 2 804 282 1079 0 966 GSTM3 Homo sapiens glutathione
S-transferase mu 3 (brain)
(GSTM3), transcript variant
1, mRNA

NM_001246214.1 NM_021034.2 87.338 308 38 1 46 353 151 457 3.42E-102 376 IFITM2 Homo sapiens interferon
induced transmembrane
protein 3 (IFITM3),
transcript variant 1, mRNA

NM_214420.1 NM_000772.2 81.368 1900 341 8 47 1937 256 2151 0 1806 CYP2C49 Homo sapiens cytochrome
P450, family 2, subfamily C,
polypeptide 18 (CYP2C18),
transcript variant 1, mRNA

NR_035366.1 NR_029525.1 93.506 77 5 0 1 77 3 79 5.09E-24 116 MIR16-2 Homo sapiens microRNA
16-2 (MIR16-2), microRNA

NR_128410.1 NR_029692.1 100 79 0 0 1 79 6 84 3.66E-32 143 MIR9-3 Homo sapiensmicroRNA 9-3
(MIR9-3), microRNA

XM_001927622.6 NM_006699.3 83.103 5492 690 75 51 5412 1 5384 0 5597 MAN1A2 Homo sapiens mannosidase,
alpha, class 1A, member 2
(MAN1A2), mRNA

XM_003124162.1 NM_001005213.1 84.875 919 134 3 1 915 1 918 0 1021 OR9G1 Homo sapiens olfactory
receptor, family 9,
subfamily G, member 1
(OR9G1), mRNA

XM_003125012.3 NM_006062.2 80.803 2615 344 49 7 2512 1 2566 0 2374 SMYD5 Homo sapiens SMYD family
member 5 (SMYD5), mRNA

XM_003128412.5 NM_019096.4 86.846 3018 288 34 1 2962 49 3013 0 3599 GTPBP2 Homo sapiens GTP binding
protein 2 (GTPBP2),
transcript variant 1, mRNA

XM_003353380.3 NM_014793.4 84.317 2219 330 5 5 2214 35 2244 0 2426 LCMT2 Homo sapiens leucine
carboxyl methyltransferase
2 (LCMT2), mRNA

XM_003357386.4 NM_001684.4 87.621 2690 317 7 14 2700 23 2699 0 3333 ATP2B4 Homo sapiens ATPase,
Ca++ transporting,
plasma membrane 4
(ATP2B4), transcript
variant 2, mRNA

XM_005667703.2 NM_001127358.1 91.055 4874 344 34 11 4862 4 4807 0 6754 PHTF2 Homo sapiens putative
homeodomain transcription
factor 2 (PHTF2), transcript
variant 3, mRNA

(continued on next page)
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Table 2 (continued)

Query id Subject ids
(human)

%
Identity

Alignment
length,

Mismatches Gap
opens,

q.
start

q.
end

s.
start,

s.
end

evalue Bit
score

Gene
symbol
(human)

Description

XM_005667845.2 NM_024420.2 88.309 2874 304 10 40 2907 80 2927 0 3653 PLA2G4A Homo sapiens
phospholipase A2, group
IVA (cytosolic,
calcium-dependent)
(PLA2G4A), transcript
variant 1, mRNA

XM_005668710.2 NR_003525.2 73.904 2920 700 27 4085 6984 3299 6176 0 1764 LRRC37A6P Homo sapiens leucine rich
repeat containing 37,
member A6, pseudogene
(LRRC37A6P), non-coding
RNA

XM_013978437.1 NM_203459.2 75.143 4200 925 24 841 4937 669 4852 0 2866 CAMSAP2 Homo sapiens calmodulin
regulated
spectrin-associated protein
family, member 2
(CAMSAP2), transcript
variant 2, mRNA

XM_013980250.1 NM_001178123.1 92.962 2103 126 11 1 2094 71 2160 0 3095 ABI1 Homo sapiens abl-interactor
1 (ABI1), transcript variant
10, mRNA

XM_013984138.1 NM_052905.3 91.127 3539 297 4 125 3650 2 3536 0 4964 FMNL2 Homo sapiens formin-like 2
(FMNL2), mRNA

XM_013986179.1 NM_198510.2 80.555 3245 551 13 1 3208 31 3232 0 3021 ITIH6 Homo sapiens
inter-alpha-trypsin
inhibitor heavy chain
family, member 6 (ITIH6),
mRNA

XM_013989713.1 NM_016548.3 73.903 2575 442 62 1 2432 33 2520 0 1543 GOLM1 Homo sapiens golgi
membrane protein 1
(GOLM1), transcript variant
1, mRNA

XM_013991759.1 NM_001195141.1 79.151 1367 231 15 9 1349 24 1362 0 1162 TCOF1 Homo sapiens Treacher
Collins-Franceschetti
syndrome 1 (TCOF1),
transcript variant 7, mRNA

XM_013999054.1 NM_001010980.4 79.569 881 143 16 715 1572 102 968 0 738 NCMAP Homo sapiens noncompact
myelin associated protein
(NCMAP), mRNA
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