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Abstract

The first part of this thesis theoretically studies the low temperature physics

of parahydrogen (p-H2) confined in cylindrical channels of diameter of the or-

der of 1 nm, based on the Continuous-Space Worm Algorithm quantum Monte

Carlo simulations. On varying the attractive strength of the wall of the cylin-

drical pore, as well as its diameter, the equilibrium phase evolves from a single

quasi-one-dimensional (1D) channel along the axis, to a concentric cylindrical

shell. It is found that the quasi-1D system retains a strong propensity to crys-

tallization, even though on weakly attractive substrates quantum fluctuations

reduce somewhat such a tendency compared to the purely 1D system. No

evidence of a topologically protected superfluid phase (in the Luttinger sense)

is observed. Secondly, this research work explores the possibility of existence

of a metastable superfluid phase of p-H2 in the low temperature limit. It was

found that any possible occurence of superfluidity in supercooled p-H2 would

have to be at a much lower temperature than 2 K. Furthermore, this thesis in-

vestigates how different p-H2 is from a Bose system that possesses a metastable

superfluid phase despite having a crystalline ground state. Finally, study is

also carried out to elucidate the inherent distinctions between an hypothetical

metastable p-H2 liquid and a metastable 4He liquid, underscoring the essential

origin of the almost conclusive absence of superfluidity in any phase of p-H2.

Extensive discussions are also provided on the implications of this work for

the possible existence of a bulk superfluid phase of parahydrogen.
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Chapter 1

INTRODUCTION

Superfluidity is a macroscopic manifestation of quantum mechanics, a phe-

nomenon in which a substance is capable of sustaining non-dissipative (su-

per)flow. Superflow can in principle be observed in all three phases of ag-

gregation of matter, namely liquid, solid and gas. However, it is most easily

observed and/or intuitively pictured in the liquid phase. A superfluid liquid

will remain in a state of persistent flow (if set in motion below a critical veloc-

ity) through a pipe, without dissipation, and will flow through constrictions

that are impassable to the normal liquid without any measurable pressure dif-

ference. It would rise through the narrowest capillaries with a flow velocity

that is independent of the pressure head, indicating its non viscous flow, and

it possesses a high thermal conductivity, which increases as the temperature

is lowered below the superfluid transition temperature, making it nearly im-

possible to set up a measurable temperature gradient across the superfluid

liquid. There exist several spectacular manifestations of superfluidity in the

liquid phase, for example the fountain effect [1].

Helium (He) is the only known naturally occurring substance that exhibits
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superfluid behaviour, in its liquid phase. Under the pressure of its own vapour,

He condenses into a liquid at a temperature of 4.2 K [2], and remains a liq-

uid all the way to temperature T = 0 K, at pressures below 25 atm. It was

independently discovered by Kapitza [3], and Allen and Misener [4], that the

liquid phase of 4He, which is the more abundant isotope, undergoes a continu-

ous phase transition into a superfluid at a temperature Tλ = 2.17 K. The less

abundant isotope, 3He, also turns superfluid, but at a much lower temperature,

of the order of a few mK.

According to a useful phenomenological model introduced by Tisza [5],

which we utilize throughout this thesis, a superfluid below the transition tem-

perature can be regarded as a mixture of two fluids, one that is normal and

the other that is superfluid. The normal component carries entropy and is

subjected to dissipation like an ordinary fluid, while the superfluid component

has no entropy and is able to flow without dissipation. In a system that is

translationally invariant, e.g. a liquid, the superfluid fraction ρS, namely the

fraction of the system in the superfluid phase, tends to 100% as the tempera-

ture T → 0 (it is of course zero above Tλ). By definition, ρS + ρN = 1, where

ρN is the so called normal fraction.

Several decades of experimental and theoretical investigation have afforded

a great amount of insight into the microscopic origin of superfluidity. In par-

ticular, it is now widely accepted [6] that, at least in three dimensions, super-

fluidity is intimately connected to a phenomenon called Bose-Einstein Con-

densation (BEC), which manifests in assemblies of indistinguishable particles

of integer spin (Bosons). BEC is a collective low temperature phenomenon

that consists of the occupation of the same single-particle quantum-mechanical

state by a finite fraction of particles in the system. The connection between
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BEC and superfluidity is the key to understanding the widely different super-

fluid transition temperatures of 3He and 4He. 3He atoms have spin 1/2, and

therefore obey Fermi statistics. Thus, they are not able to undergo BEC by

themselves. The formation of bound pairs of 3He atoms of opposite spin pro-

jections, forming a composite object of spin 1, underlies occurrence of super-

fluidity, as these composite objects act in a sense as bosons and are therefore

able to undergo BEC. Indeed superfluidity occurs in 3He at a temperature

which is of the order of the binding energy of two 3He atoms in forming such

bosonic pairs. Such a pairing mechanism is believed to underlie superfluidity

in all Fermi systems, including superconductors, which are basically charged

superfluids [1].

First principle computer simulations, based on the Path Integral formu-

lation of quantum mechanics due to Feynman [7], have made it possible to

achieve giant strides toward the clear understanding of superfluidity. Specif-

ically, the subtle relationship between superfluidity and BEC has been well

highlighted by the Path Integral Monte Carlo method [8], which has revealed

unambiguously that the same effect which underlies BEC, i.e. formation of

macroscopic exchange cycles of indistinguishable particles (helium atoms), is

also responsible for superfluidity and that superfluid 4He, in 3D, is indeed a

Bose-Einstein condensate. There remain however some nontrivial outstanding

issues. For example, the quantitative connection between superfluidity and

BEC is still unclear; it is not understood whether BEC and superfluid tran-

sition should necessarily occur at the same temperature; also controversial is

whether any Bose system escaping crystallization at low temperature should

have a superfluid ground state [9].

Discovering superfluidity in another liquid of the simplicity and accessi-

3



bility of 4He, might considerably strengthen the current microscopic under-

standing of this phenomenon, insofar as it could help address the above issues,

and others that still need to be elucidated. While it is true that superfluidity

has been observed in cold atomic gases [10], that is a highly dilute system,

in which the fraction of atoms in the Bose condensate is essentially 100% in

the ground state. In that context, a relatively simple mean-field treatment

furnishes a rather accurate account of the superfluid properties of the gas [10].

More interesting is the situation in a strongly interacting condensed matter

quantum fluid, in which Bose Condensation is strongly reduced, such as in
4He.

Among naturally occurring substances, molecular hydrogen, specifically

parahydrogen (p-H2) has long been regarded as the most plausible candidate

to feature a superfluid phase at low temperature. Its elementary constituents

are diatomic molecules of zero net spin, thereby obeying Bose statistics, of

mass half that of a helium atom, i.e., quantum-mechanical effects should in

principle be even more pronounced than in the condensed phase of 4He. In fact,

the prediction was first made over 40 years ago that a fluid of p-H2 molecules

should undergo a superfluid transition at a temperature around 6 K [11]. Such

a prediction is based on a very simple model that regards a fluid of p-H2

molecules as a non-interacting Bose gas, a crude assumption which nonetheless

yields a surprisingly accurate estimate of the superfluid transition of liquid 4He.

A more realistic theoretical treatment, taking interparticle interactions into

consideration, places the superfluid transition temperature of p-H2 at around

∼ 2 K [12, 13].

However such a hypothetical superfluid phase has so far eluded direct,

unambiguous experimental observation. The problem with the original pre-
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diction is that it assumes fluidlike behavior of p-H2 at low T , when in fact

the system undergoes crystallization (under the pressure of its own vapor) at

T = 13.8 K, almost a factor 7 higher than the temperature at which Bose-

Einstein Condensation and superfluidity ought to occur [14, 15]. Solidification

results mostly because of the depth of the attractive well of the intermolecular

potential, roughly three times that between two 4He atoms.

If the propensity of p-H2 fluid towards crystallization could be in some way

suppressed, it is widely believed that p-H2 would undergo a superfluid tran-

sition. Supercooling of fluid parahydrogen below its freezing temperature has

been attempted experimentally, but it has so far not been possible to reach

a temperature below ∼ 9 K [16]. Reduction of dimensionality, disorder and

confinement have long been regarded as plausible avenues to the stabilization

of a fluid phase of p-H2 down to temperatures sufficiently low that a superfluid

transition could be observed. Reduction of dimensionality can lower signifi-

cantly the freezing temperature, owing to the lower coordination number and

the consequent lesser role played by the potential energy. The simplest way

of achieving it experimentally consists of adsorbing a p-H2 monolayer on a

suitable substrate [17].

However, the zero temperature equilibrium phase of p-H2 has been theoret-

ically shown to be a (nonsuperfluid) crystal even in two and one dimensions,

with no metastable fluid phase existing at T=0 K [18, 19].

The suggestion was made, almost two decades ago [20], that superfluidity

might occur in a (quasi) two-dimensional p-H2 fluid embedded in a crystalline

matrix of alkali atoms. The contention was that the presence of the underlying

lattice of foreign atoms, incommensurate with the equilibrium crystal structure

of pure p-H2, would cause the appearance of a new phase, presumed to be a
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liquid on account of its much lower density than that of the equilibrium phase

of p-H2 in two dimensions. Numerical simulations appeared to support such a

scenario, providing evidence of a superfluid transition at a temperature T close

to 1 K. Subsequent studies [21, 22, 23], however, disproved such a prediction,

showing it to be merely an artifact of simulations carried out on systems

of extremely small size (about 10 particles). In actuality, the equilibrium

phase is a non-superfluid crystal, commensurate with the underlying impurity

lattice. A broader conclusion of those studies was that, although it is true

that confinement and disorder can indeed lead to novel phases of matter, the

strong propensity of p-H2 to solidify renders it exceedingly unlikely that one

may arrive at a superfluid phase in this way, as a commensurate crystal is

the only additional phase that can result from the presence of an external

periodic potential. The tendency of p-H2 to crystallize is in fact so pronounced,

that even on a disordered substrate the system forms an irregular (i.e., defect

ridden) crystal [22].

Going back to three dimensions, one way of lowering the freezing tem-

perature of a fluid is to confine it in a porous medium such as vycor glass

[24, 25, 26]. In the pores of vycor, whose characteristic size [27] is ∼ 4 nm,

p-H2 freezes [28] at a temperature T ∼ 8 K, considerably lower than that of

bulk p-H2, but still significantly above the estimated superfluid transition tem-

perature; for this reason, the search for superfluid behaviour of p-H2 in vycor

has not met with success [29, 30].

It is worth noting that a) crystallization inside vycor glass originates at the

surface of the pores [28], as the silica substrate acts as a strong attractor of

p-H2 molecules, and b) first principle theoretical simulations based on realistic

intermolecular potential [31, 32, 33] yield evidence that small p-H2 clusters
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(thirty molecules or less), of typical size 1-2 nm, which remain liquidlike at

low temperature, display superfluid behavior at a temperature of the order of

1 K; on the other hand, as the size of the clusters is increased, crystallization

quickly sets in, with the concurrent suppression of superfluidity. Based on

the above two observations, one is led to the speculation that different physics

(possibly including a superfluid phase) may be observed in a different confining

environment, e.g., with pores of smaller size (1-2 nm) and/or with a substrate

less strongly adsorbing than silica.

The bulk of the research carried out during my Master’s degree focused on

the study of superfluidity of p-H2 confined in weakly adsorbing spherical cavi-

ties of size 2 nm or less. The most important result is the theoretical prediction,

based on computer simulations [34], that p-H2 clusters of ∼ 30 molecules con-

fined in weakly adsorbing spherical cavities of size ∼ 2 nm surprisingly feature

an enhanced superfluid response compared to that of free clusters. It is there-

fore conceivable that the same effect may take place in a different geometry,

e.g., cylindrical channels, experimentally relevant to actual porous media. One

could therefore think of achieving a bulk superfluid response in a network of

interconnected, quasi-one-dimensional channels of characteristic diameter 1-2

nm, made of the appropriate material.

As the diameter of the channel is reduced to one nm or less, the physics of

a fluid confined in it approaches the 1D limit, and becomes therefore amenable

to interpretation within the framework of Luttinger liquid theory (LLT) [35],

as revealed by computer simulations of 4He confined in nanopores of such a

characteristic size [36]. Although no true superfluid order can exist in one

dimension, there exists a well-defined theoretical scenario in which a 3D bulk

superfluid phase may arise in a network of interconnected, quasi-1D chan-
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nels [37, 38]. Such a scenario requires that the fluid inside the channel be a

superfluid, in some specific (Luttinger) sense which will be described later on.

The first part of this thesis consists of the theoretical exploration, by means

of Quantum Monte Carlo simulations, of the phase diagram of a quasi-1D fluid

of p-H2 in the narrow confines of a cylindrical channel of diameter of the order

of 1 nm. The hypothesis being probed here is whether quantum excursions

of molecules in the direction perpendicular to the axis of the cylinder, which

act to screen the intermolecular potential, may act to the point of reducing

the propensity of the system to form a crystal, possibly stabilizing a super-

fluid phase, in the Luttinger sense. Our results show that confinement of p-H2

in relatively weak cylindrical channels (alkali metals) leads to stable quasi-

1D phases with much reduced propensity to crystallize. While this outcome

is qualitatively consistent with the previously reported [34] enhancement of

superfluid response of p-H2 inside spherical cavity, quasi-1D p-H2 remains in-

sulating in the Luttinger sense. The main consequence is that the superfluid

“Shevchenko state” scenario does not appear feasible for p-H2 in porous media.

In the second part of the thesis, the more general question is addressed of

the possibility of existence of a metastable superfluid phase of p-H2 at low tem-

perature. First, we present results of simulations of supercooled liquid p-H2

down to a temperature T = 3 K, showing no evidence of incipient superfluid

behaviour. Specifically, the extreme infrequency with which permutations of

identical particles occur, known to underlie superfluidity, yields strong evi-

dence that a superfluid transition, if it occurs at all in supercooled p-H2, likely

takes place at a significantly lower temperature than presently estimated.

The general conditions are then investigated for the existence of a metastable

superfluid phase in the low temperature limit in a Bose system whose ther-
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modynamic ground state is a crystal, if it is “stretched” to lower density than

its equilibrium one (i.e., at negative pressure). The purpose of this study is to

see how far p-H2 is, in the space of interaction parameters, from a system that

possesses a metastable superfluid phase despite having a crystalline ground

state. In this context, the Lennard-Jones pair potential is used as a model

interaction. The results of this study may be relevant to the present inves-

tigation of superfluidity in the context of cold atoms, where the interaction

between individual particles can be “tuned” by means of mechanism such as

the Feshbach resonance [39].

The remainder of this thesis is organized as follows: In the next chapter,

a description is provided of the computational methodology adopted in this

research work, and some of the basic terminology regarding the microscopic

model(s) utilized in the various studies is introduced. Chapter three summa-

rizes the main results of the studies that precede and are propaedeutic to the

investigation described in the present work; such studies constitute the bulk of

my Master’s thesis [40]. Specifically, the results of the study of p-H2 trapped

inside nanoscale size spherical cavities show that it is indeed possible to have

robust superfluid response in p-H2 in a confining medium. A detailed descrip-

tion of the results of the simulations of quasi-one-dimensional parahydrogen in

cylindrical channels, which constitute a central result of my doctoral research,

is offered in Chapter 4. In Chapter 5, results are shown of the simulation of

supercooled liquid parahydrogen down to temperatures where the hypothetical

superfluid transition should take place, not showing any presence of superfluid

behaviour. This study definitively revises previous estimates furnished in the

literature. Finally, the study of the phase diagram of Lennard-Jones fluids

at T=0 K is illustrated. Concluding remarks are offered in the last Chapter,
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where the implications of the findings of this work on the possible observation

of a bulk superfluid phase of parahydrogen are discussed.
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Chapter 2

METHODOLOGY

In this chapter, we present details of the computational approach adopted

in our study of para-hydrogen in both bulk and in confinement.

2.A The Many-body Hamiltonian

Our system of interest consists of N p-H2 molecules, regarded as pointlike

particles of mass m and spin zero, hence obeying Bose-Einstein statistics. In

a typical simulation, particles are enclosed in a vessel, shaped like a paral-

lelepiped, and periodic boundary conditions are applied in all three directions

[41]. Periodic boundary conditions are unnecessary whenever the system of

interest is inherently finite, and that is the case for a cluster of molecules in

confinement, whose study is described in the next chapter.

The many-body Hamiltonian of the system utilized in all of the studies

carried out in this work is the following:

Ĥ = −λ
∑
i

∇2
i +

∑
i<j

v(rij) +
∑
i

V (ri). (2.1)
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Here, λ ≡ ~2/2m = 12.031 KÅ2, rij ≡ |ri− rj| is the distance between any

two p-H2 molecules and ri is the position of the ith molecule. The potential

v describes the pair-wise interaction of p-H2 molecules, whereas V that of

p-H2 molecules with a specific confining agent. While the latter depends on

the geometrical and physical details of confinement, and therefore takes on a

different expression depending on the specific physical settings in which one

is interested, v is always the same in all of the studies carried out in this

work. Because p-H2 molecules are to a good approximation spherical objects,

the approximation is normally made of regarding v as a central potential, i.e.,

only depending on the relative distance between two molecules.

The simplest expression that one can use for v is the so-called Lennard-

Jones interaction, which captures all of the minimal, essential features of es-

sentially any intermolecular or interatomic interaction:

v(r) = 4ε
[(
σ

r

)12

−
(
σ

r

)6]
(2.2)

In the above equation, σ can be roughly physically understood as the mini-

mum distance down to which two molecules can be brought before a strong

repulsion sets in, whose physical origin is quantum-mechanical, namely the

Pauli exclusion principle, acting so as to prevent electronic clouds of different

molecules from overlapping spatially. At large interparticle separation, the

potential is weakly attractive and asymptotically tends to zero as 1/r6, as a

consequence of the attraction between the mutually induced electric dipoles

associated to the two molecules [42].

Expression (2.2) has a minimum at an interparticle separation r ∼ 1.12 σ,

where the potential is worth −ε, i.e., the quantity ε is the depth of the at-
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tractive well of the potential. Such a distance is that at which two nearest-

neighboring particles would sit in the classical (crystalline) ground state of

the system. The accepted values of these two parameters for the interaction

between two p-H2 molecules are σ = 2.96 Å, ε=34.16 K [43].

Although the potential (2.2) does capture the basic physical features of

the interaction between two p-H2 molecules, more elaborate potentials must

be used if one is seeking quantitative agreement with experiment. To that aim,

more accurate expressions have been developed, among which that of Silvera

and Goldman [44] has been most commonly utilized in theoretical studies of

the condensed phases of p-H2. Although such a potential is reasonably accurate

in reproducing the physical properties of p-H2 in the equilibrium solid phases,

it proves increasingly less reliable as the system is pressurized. In a study like

that carried out here, this can be a potentially serious shortcomings, as the

interest here is that of elucidating the nature of the thermodynamic phases

of p-H2 in tight (nanoscale size) confinement, wherein the density of p-H2 is

not uniform, and it could be quite high in the vicinity of the surface, e.g.,

in case of a strongly attractive substrate. It makes therefore sense to utilize

a pair potential that is more accurate at high pressure than the standard

Silvera-Goldman pair potential.

In all of the studies described here, use is made of a refinement of a po-

tential recently proposed by Moraldi [45]. Obtaining such a refinement, which

eliminates some unphysical features of the potential originally proposed by

Moraldi, constituted a major portion of the work carried out in my Master’s

thesis [40]. The modified pair potential was shown [46] to reproduce rather

accurately the experimental equation of state of solid p-H2, up to megabar

pressure.
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2.B The Continuous-space Worm Algorithm

The Path Integral Monte Carlo (PIMC) technique is the most reliable com-

putational method for computing accurate thermodynamic properties of Bose

systems at finite temperature. In particular, it has proven an immensely valu-

able tool to elucidate the connection between superfluidity and Bose-Einstein

condensation [8]. Our calculations exclusively utilize Path Integral Monte

Carlo (PIMC) simulations based on the Continuous Space Worm Algorithm

[47, 48]. The PIMC approach involves implementing the Feynman’s Path

Integral [49] space-time approach to quantum statistical mechanics through

a suitable Monte Carlo strategy. The PIMC scheme is at least in principle

numerically exact, and has no adjustable parameter, taking the microscopic

Hamiltonian as its only input. It also does not have any inherent bias, since

no a priori assumption is made on the physics of the system, e.g., a trial wave

function is not needed. The methodology is numerically exact for Bose sys-

tems. For Fermi systems, not considered in this work, it is only approximate.

2.B.1 Thermal Averages and Path Integration

The thermal average of a physical observable, for an N -particle system

described by Eq. (2.1) at temperature T , represented by an operator Ô, is

given by

〈Ô〉 = Tr (Ôρ̂)
Tr ρ̂ =

∫
dRO(R)ρ(R,R, β)∫
dR ρ(R,R, β) (2.3)

where R ≡ r1 r2 . . . rN , i.e, the positions of all the N particles in the N -

particle configuration and β = 1/(kBT ). Henceforth, we shall set kB = 1. For

all cases of practical relevance in this work, the observable Ô only depends
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on the positions of all (or some) the particles in the system. The many-body

density matrix, ρ(R,R′, β), is given by

ρ(R,R′, β) = 〈R|e−βĤ |R′〉 (2.4)

with Ĥ being the quantum-mechanical many-body Hamiltonian of Eq. (2.1)

while the partition function, which is the trace of the many-body density ma-

trix, is given by

Z =
∫
dR ρ(R,R, β) .

The many-body density matrix is not usually known and Eq. (2.3) is evaluated

through the path integration procedure prescribed by R. P. Feynman in 1948.

Accordingly, the partition function is given by

Z =
∫
DR(u) exp {−S[R(u)]} . (2.5)

The integration in Eq. (2.5) is performed over all possible continuous, β-

periodic N -particle configuration paths R(u), i.e., R(u) ≡ r1(u) r2(u)...rN(u),

the quantity 0 ≤ u~ ≤ β~ typically being referred to as “imaginary time”.

Paths are β-periodic, i.e., R(0) = PR(β), namely the positions of all the

particles at u = 0 and those at u = β are the same, except for a possible

permutation P of particle labels at u = β. S[R(u)] is the so-called Euclidean

action of a given path, expressed as

S[R(u)] =
∫ β

0
du


N∑
i=1

m

2~2

(
dri
du

)2

+ V(R(u))

 , (2.6)
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where V(R(u)) is the total potential energy of the system at the configura-

tions visited along the path. The Euclidean action is related to the balance

between kinetic (path curvature) and potential energy, which depends on in-

teractions, along the various paths. Generally, smooth, straight paths have

higher probability while paths of high potential energy have lower probability

[49].

2.B.2 PIMC and Quantum Statistics

The evaluation of the thermal average, (2.1) is most suitably achieved

through a Monte Carlo strategy. This involves employing the Metropolis Al-

gorithm [50] to sample many-particle paths R(u) through configuration space,

based on a probability distribution proportional to exp[−S(R(u))]. Thermal

expectation values, such as (2.1), are then calculated as statistical averages of

the physical observable of interest along paths.

The calculation of the action integral involves time discretization, which

inevitably leads to a time-step error, like in most numerical schemes; this can

however be made arbitrarily small, provided enough computer time. Thus,

one considers discrete paths R(u) ≡ {R0, R1, . . . , RM−1} for a finite number

M of “time slices”. The imaginary “time step” τ is defined through Mτ = β.

The simplest approximate action (due to path discretization) is given by (with

an obvious notation)

S[R(u)] ≈
N∑
i

M−1∑
l=0

m(ril − ril+1)2

2τ~2 + τ
M−1∑
l=0
V(Rl) . (2.7)
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The probability with which a discrete path R(u) is sampled is then given by

P ∝ exp {−S[R(u)]} =
N∏
i=1

M−1∏
l=0

ρ◦(ril, ril+1, τ)×
M−1∏
l=0

e−τV (Rl,τ) (2.8)

where

ρ◦(r, r′, τ) =
(
2π~2τ/m

)−d/2
exp

[
−m(r− r′)2

2~2τ

]
(2.9)

is the density matrix for a free particle, where d is the dimensionality of the

system (d is always equal to three in this work). The discrete action becomes

exact in the limit M →∞.

As previously mentioned, quantum statistics, i.e, particle indistinguisha-

bility, is effected in the above formalism by allowing R(β=Mτ) = PR(0), the

permutation P implying that, while actual positions occupied by particles in

R(β) and R(0) are the same, particles are allowed to trade place. This re-

produces the necessary symmetrization of the many-body density matrix, Eq.

(2.4), i.e., it results in,

ρ(R,R′, β) = 1
N !

∑
P
ηPρ(R,PR′, β) (2.10)

where η = +1 for Bosons, -1 for Fermions. This is a crucial ingredient in quan-

tum statistical mechanics; in Bose systems, as mentioned above, permutations

underlie phenomena such as Bose condensation, whereas in Fermi systems par-

ticle indistinguishability results in the existence of a Fermi surface in normal

Fermi liquids. The sampling of many-particle paths which allows particles to

“trade place” as described, can be formally accomplished quite straightfor-

wardly using the methodology described below. The two different types of
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quantum statistics, however, lead to very different implementation issues, as

will be clarified below.

Finally, the thermal expectation of a physical observable O, given by Eq.

(2.3), is then evaluated as

〈Ô〉 ∼
∑
paths η

PO(Rpath)∑
paths ηP

(2.11)

where P is the parity of the permutation associated with particle relabelling

(exchange), O(Rpath) is the average value of O along a path and, as before,

η = +1 for Bose , -1 for Fermi statistics.

The direct averaging over paths as expressed in Eq. (2.11) becomes expo-

nentially intractable with increasing N for Fermi systems at low temperature,

when contributions from paths in which particles permute become important;

for, the sum over paths comprises in that limit “an alternating series of terms

of opposite signs”, which very nearly cancel each other out [51]. As one is

attempting to evaluate numerically the ratio of two exponentially small quan-

tities, one encounters a very low “signal-to-noise” ratio, rendering the calcula-

tion not feasible in practice at low temperature, for system comprising more

than just a few particles. For Bose systems, on the other hand, η = +1, and

therefore no such problem arises. Because in this work we are only concerned

with Bose systems, we shall make no further mention of the above difficulty,

referred in the literature as “sign problem of quantum Monte Carlo”.

2.B.3 Thermal Wavelength and Particle Permutations

Although in principle permutations of identical particles should always be

taken into account, in practice at sufficiently high temperature only the iden-
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Figure 2.1: Permutation sampling in conventional PIMC

tity permutation (i.e., the one with r(β) = r(0)) will yield a significant contri-

bution. Permutations of identical particles become increasingly important as

T → 0, and it is relatively simple to estimate the “degeneracy temperature”,

namely that below which permutations can be expected to yield a significant

contribution. The characteristic “size” of a single particle path is measured by

the thermal wavelength

λT = ~√
mT

Permutations can occur when λT is of the order of the mean interparticle

distance i.e, T ∼ ~2n2/d/m, where n is the particle density.

2.B.4 Permutation Sampling In PIMC

Sampling of configurations (i.e., many-particle paths) in PIMC is achieved

by implementing moves in configuration space; each move modifies the current

configuration, i.e., the set of N world lines, and creates a “trial” new one,

which is accepted or rejected according to the Metropolis recipe. The simplest

moves are those that involve the path of a single particle, and are reminiscent

of those implemented in classical (e.g., polymer) systems. Sampling of many-

particle permutation paths, on the other hand, is an essential ingredient of
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a bona fide quantum simulation, especially when effects of quantum statistics

are of interest. Thus, basic to an effective Monte Carlo implementation of

the Path Integral formalism is an efficient scheme of sampling permutations

[8]. The path sampling procedure in the simplest implementation of PIMC,

as described, for instance, in Ref. [52], is achieved through elementary moves

that modify portions of single-particle paths. In particular, permutations are

sampled by explicit construction of permutation cycles. As depicted in Fig.

(2.1), this involves disconnecting the world lines of individual particles in pairs

and attempting to reconnect them together to achieve exchanges of particles

(figure shows a two-particle permutation). However, in the presence of any

realistic interaction potential, typically possessing a “hard” repulsive core, any

such sampling of permutations is bound to have high likelihood of rejection

and therefore becomes inefficient. Rejection occurs because the constructed

trial path will almost always bring two particles within near vicinity of each

other, i.e, the trial configuration will have high potential energy. In practice,

efforts required to sample macroscopic permutation cycles scales exponentially

with the system size. This challenge limits the number of particles for which

the low temperature thermodynamics of a system can be effectively studied,

making accurate extrapolation of results to the thermodynamic limit highly

problematic, using the conventional PIMC implementation. The conventional

PIMC implementation also does not allow for the simultaneous evaluation of

diagonal and off-diagonal correlations, as its configuration space only contains

closed world lines (particle paths).
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2.B.5 Effective Permutation Sampling: The Worm Al-

gorithm

The Worm Algorithm completely resolves the issues mentioned above. A

fundamental feature of the continuous-space worm algorithm is that it func-

tions in an extended configurational space, including both closed world line

configurations, referred to as the Z-sector, as well as configurations having

one open world line (worm), known as the G-sector. A schematic view of

the G-sector of the configuration space of the worm algorithm is seen in

Fig. (2.2) (from Ref. [48]). The Worm Algorithm simultaneously accumu-

late statistics for diagonal (Z-sector) and off-diagonal (G-sector) correlations

at no additional computational cost with respect to the simpler algorithm.

All non-trivial topological modifications of the world lines that leads to long

permutation cycles are intrinsically achieved through the G-sector. Closed

�WK�/HV�+RXFKHV�6FKRRO�LQ�&RPSXWDWLRQDO�3K\VLFV
-XQH�����

:RUP�$OJRULWKP��RI�,UD�DQG�0DVKD�

Ɣ *HQHUDOL]H�FRQILJXUDWLRQ�VSDFH��IURP�WKDW�RI�WKH�SDUWLWLRQ�IXQFWLRQ�WR�WKDW�RI�WKH�
0DWVXEDUD�*UHHQ�IXQFWLRQ�

Ɣ 2QH�RSHQ�ZRUOG�OLQH�ZLWK�WZR�GDQJOLQJ�HQGV��ZRUP�
ż =��DQG�*�VHFWRUV�DUH�LGHQWLILHG��=�VHFWRU�KDV�RSHQ�ZRUOG�OLQH�
ż 6DPSOLQJ�RI�SDWKV�RFFXUV�WKURXJK�VLPSOH�VHW�RI�FRPSOHPHQWDU\�PRYHV

Figure 2.2: A sample of the Configuration space G-sector
.

world line configurations of the worm algorithm contribute to the partition
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function, while configurations with an open world line, the worm, contribute

to the one-particle Matsubara Green function. The worm is an open world line

with two dangling ends which are referred to as Ira and Masha, denoted by I

andM respectively in Fig. (2.2). The one-particle Matsubara Green function

is expressed as

G(r1, r2, τ) = 〈T̂ [ψ̂(r1, τ)ψ̂†(r2, 0)]〉 . (2.12)

where ψ̂† and ψ̂ are time-dependent Bose field operators, T̂ is the time ordering

operator, −β ≤ τ ≤ β. In the τ → 0 limit, the one-particle Matsubara

Green function reduces to the one-particle density matrix, n(r1, r2), from which

the momentum distribution is computed [48] directly in the continuous-space

Worm Algorithm.

The Worm Algorithm accurately calculates various thermodynamic quan-

tities of interest for large Bose systems in easily accessible computation time.

These quantities include the energetics, structure, superfluid density, conden-

sate fraction, one-body density matrix and momentum distribution. Another

elegant feature of the Worm Algorithm is that it can be implemented in ei-

ther a canonical or a grand-canonical ensemble (resulting from fluctuations of

particle number through annihilation and creation of worms).

In our current application of the Worm Algorithm, the Z-sector configura-

tions have a fixed number N of particles, while configurations in the G-sector

are constrained to having N − 1 particle world lines and a single worm. For

details, the reader is referred to Refs. [47, 48].

Having utilized the Worm Algorithm to obtain a statistically representative

set of space-time configurations of the quantum-mechanical system of interest,

which are drawn from the appropriate probability distribution (Eq. (2.8)), one
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becomes fully equipped to accurately compute the thermodynamic properties

of the system. The estimation of the thermodynamic average of quantities

that merely depend on the positions of the particles is straightforward, and

carried out like in classical simulations [41]. For other quantities, appropriate

estimators must be utilized (for details, see, for instance, Ref. [52]).

Estimation of the statistical uncertainty instrinsically associated to the

evaluation of any physical average through Monte Carlo sampling has been

carried out using the blocking/bunching method [53].
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Chapter 3

ENHANCEMENT OF

SUPERFLUID RESPONSE OF

PARAHYDROGEN IN

NANOSCALE

CONFINEMENT

3.A Introduction

This chapter summarizes the main conclusions of the numerical simulations

of parahydrogen clusters in nanoscale spherical confinement, carried out as part

of my Master’s thesis [40]. The most significant outcome of this study, which

is propaedeutic to subsequent (doctoral) research work, is the observation of

an enhanced superfluid response of p-H2 clusters of size up to 2 nm when

confined in spherical cavities with weakly attractive walls, with respect to
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Figure 3.1: Energy per hydrogen molecule e (in K) versus number N
in the T → 0 limit, inside a Cs (filled circles) and glass (diamonds)
cavities of radius 10 Å. Dashed lines are fits to the data. Statistical
errors are at the most equal to symbol size.

their free counterparts. Illustrated below are two sets of simulation results,

both obtained by setting the cavity radius R to 10 Å, but with two distinct

choice of substrates, namely Cs and glass. For details of the model utilized in

the simulations, the reader is referred to Refs. [34, 40].

3.A.1 Energetics

Fig. 3.1 displays the ground state [54] (i.e., T = 0) energy per p-H2

molecule (in K) as a function of the number of molecules in the cavity. Both

curves feature minima at specific number of molecules, which correspond to

the minimum number of molecules that fills the cavity, at thermodynamic

equilibrium. The curve for glass is shifted some 30 K downward with respect

to that for Cs, and its minimum is attained for a value of N close to seventy

molecules, over twice as much as the corresponding one for a Cs cavity. This
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Figure 3.2: Radial density profile n(r) in (Å−3) for 70 p-H2 molecules
inside a glass cavity at T = 0.5 K, modeled as explained in the text.
The strong peak at the origin signals the presence of a particle at the
center of the cavity. Statistical errors are not visible on the scale of the
figure.

is certainly consistent with the greater adsorption exerted by the glass cavity,

and gives us an idea of the range within which N can vary inside a cavity of

this size. An interesting thing to note is that for a Cs cavity, the minimum

occurs at an energy close to -88.5 K, identical to the ground state chemical

potential [40] for solid p-H2. This implies that a cavity of this size is barely at

the wetting threshold for a weakly adsorbing substrate such as Cs.
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3.A.2 Structure of p-H2 cluster in confinement

Glass cavity

In order to gain insight on the structure of p-H2 inside the cavity, we ex-

amine the computed spherically averaged radial density of molecules n(r), as

a function of the distance from the centre of the cavity. Fig. 3.2 shows this

quantity at T = 0.5 K for the case of seventy molecules inside the glass cavity.

Density profiles for systems of sixty and fifty molecules in the glass cavity look

very similar, the heights of the two peaks shown in Fig. 3.2 being slightly

reduced. The density profile shows that molecules are arranged on concentric

spherical shells, corresponding to the sharp density peaks. The half width of

these peaks is less than 1 Å, i.e., shells are rigid, molecular excursions in the

radial direction being fairly limited. This is true even within the shells, as

molecules are scarcely mobile, held in place by the hard core repulsion of the

intermolecular potential, which dominates the physics of the system at such

dense parking. Consequently, quantum mechanical exchanges of molecules,

which underlie the superfluid response in a quantum many-body system of

indistinguishable particles, are strongly suppressed, and no appreciable super-

fluid response is obtained in this case.

Cesium cavity

A very different physical scenario, than in the glass cavity, takes place in

the Cs enclosure, as shown in Fig. 3.3. Solid line shows the density profile

for a cluster of 32 molecules, i.e., the minimum of the energy curve in Fig.

3.1, at T = 1 K. Also shown (dashed line) is the density profile for the same

number of molecules in a glass cavity. There is a clear difference between the
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Figure 3.3: Radial density profile n(r) in (Å−3) for 32 p-H2 molecules
inside a Cs cavity (solid line) at T = 1 K, modeled as explained in
the text. Also shown are the profiles for the same number of molecules
inside a glass cavity (dashed line) and in a free standing p-H2 cluster
(dotted line). Statistical errors are small on the scale of the figure.

arrangements of the p-H2 molecules in the various cases; in the glass cavity,

all the molecules are close to the surface, whereas in the Cs one they form

two concentric shells, the outer sitting considerably closer to the centre of the

cavity, and further away from its surface. This is, obviously, a consequence

of the weakness of the Cs substrate compared to the glass one, and of the

consequent greater importance of the role played by the repulsive core of the

intermolecular potential at short distances.

Another important feature is that, unlike in the case shown in Fig. 3.2,

the demarcation between the two shells present in the Cs cavity is not nearly
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as sharp as in the glass one, as the density dips but does not go all the way

to zero between the two peaks, as in Fig. 3.2. This is indicative of molecular

delocalization, as well as of the possibility of significant quantum mechanical

exchanges and ensuing superfluidity. In this respect, the density profile of 32 p-

H2 molecules in the Cs cavity is closer to that of a free p-H2 cluster comprising

the same number of molecules (also shown in Fig. 3.3, dotted line, computed

separately in this work), than to that predicted in the stronger glass enclosure.

The profile of a free standing cluster extends further out as no repulsive cavity

wall is present.

3.A.3 Enhanced superfluid response in cesium cavity

The most important result of this study, however, is that the superfluid

response of the cluster which is enclosed in the Cs cavity is greatly enhanced

compared to the free ones. For example, in the case of the minimum filling

in the Cesium cavity, at T = 1 K, corresponding to 32 p-H2 molecules, the

superfluidity of the cluster in the Cs cavity is close to 50%, whereas that of

the free cluster at the same temperature is essentially zero (statistical noise

level) [55]. In other words, confinement has the effect of greatly enhancing the

superfluid response of the p-H2 cluster. This is confirmed by the occurence of

exchange cycles including as many as 25 of the 32 molecules in the Cs cavity

enclosed cluster, whereas no cycles comprising more than six molecules are

observed in a free cluster. The radial density profile of the free cluster displays

considerably more structure in the inner shell, suggesting that molecules are

more localized than inside the cavity. Indeed, in the case of 30 p-H2 molecules,

the cluster is 100% superfluid when enclosed in a Cs cavity of radius 10 Å, while
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Figure 3.4: Radial density profile n(r) in (Å−3) for 30 p-H2 molecules
inside a Cs cavity (solid line) at T = 0.5 K, modeled as explained in
the text. Also shown are the profiles for the same number of molecules
inside a glass cavity (dashed line) and in a free standing p-H2 cluster
(dotted line). Statistical errors are not visible on the scale of the figure.

the free standing cluster is only 30% superfluid, both at T = 0.5 K. Alongside

our direct computation of the superfluidity of these clusters in both cases, the

radial density profile, Fig. 3.4, and observation of the exchange cycles do lend

further evidence to the enhancement of the superfluid response. Fig. 3.5 is a

quantitative comparison of the probability of occurrence of permutation cycles

including n molecules (1 ≤ n ≤ 30) in a cluster of 30 p-H2 molecules enclosed

in the Cs cavity, versus in one that is free standing. Indeed, the occurrence

of cycles including as many as twenty-five of the thirty molecules is orders

of magnitude more likely in a cluster that is enclosed in the Cs cavity [56].
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Figure 3.5: Logarithm of the probability of occurrence of permutation
cycles of length n (i.e., comprising n p-H2 molecules) in a cluster of
thirty molecules enclosed in a Cs cavity (see text), and in a free cluster,
at T = 0.5 K. Values lower than∼ 10−4 should be regarded as statistical
noise.

If the cavity is made much more attractive, as is the case for the glass one,

exchanges are strongly suppressed, as molecules arrange orderly, to form a

thin shell near the surface; on the other hand, in a weakly attractive cavity,

confinement renders the cluster more compact than in free space, increasing

the tendency of molecules to exchange. Thus, the environment experienced

by molecules inside the weak Cs cavity is such that the formation of a solid-

like cluster, which takes place in free space, is frustrated; the cluster remains

liquid-like, as the substrate is not attractive enough to promote crystallization

near the surface, which is what happens in strong adsorbents like silica or

carbon.
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Thus, the main physical conclusion of this work, besides offering a simple

explanation for the failure to observe a superfluid response in porous glass, is

that it is possible to enhance significantly the superfluid behaviour of p-H2 in

certain types of confinement. In principle the theoretical prediction presented

in this chapter can be tested against experiment, by measuring the momentum

distribution, as explained in Ref. [34], which can provide indirect evidence of

the onset of superfluidity in the cavities, assuming that it be experimentally

feasible to fashion a matrix consisting primarily of quasi-spherical cavities of

radius of order 1 nm, with walls featuring the required attractive properties.

However, the ultimate goal of this research effort remains that of identifying

the conditions for the possible occurrence of superflow with transport of matter

in space.

The results of this investigation suggest that a similar enhancement of the

superfluid response might take place inside a cylindrical geometry, if the prop-

erties of the substrate are comparable to those that yield the enhancement

in spherical confinement. Upon stabilizing a quasi-one-dimensional Luttinger

superfluid, then it might be feasible to achieve three-dimensional superflow

through an interconnected network of channels, according to a theoretical sce-

nario come to be known as “Shevchenko state” [37]. Such a scenario requires,

however, that a strong superfluid response exist in the single channel, and that

is the subject of the main research project undertaken in my doctoral research.
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Chapter 4

QUASI-ONE-DIMENSIONAL

PARAHYDROGEN IN

NANOPORES

This chapter presents the results of the major research project carried out in

my doctoral work, namely the study of the low temperature physics of parahy-

drogen confined in nanosized cylindrical channels. As mentioned earlier, this

study is in sequel to the observed enhancement of the superfluid response of p-

H2 in spherical confinement and the idea is to see if it is feasible to extend that

result to the possibility of achieving bulk superfluidity in 3D porous medium

(Shevchenko state) comprised of individual spherical cavities interconnected

by narrow cylindrical channels (schematically illustrated in Fig. 4.1), in which

the physics of p-H2 closely approaches the one-dimensional limit [36, 57]. The

appearance of a global three-dimensional superfluid response crucially hinges

on the existence of a quasi-superfluid phase in the single channel, and that is

the scenario investigated here.
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It is important to note that such a scenario is conceptually distinct from

that studied in previous works [58], namely weakly interacting quasi-one di-

mensional channels, e.g., consisting of helium adsorbed in a bundle of carbon

nanotubes. What is being studied here is a network of Luttinger liquids that

are essentially disconnected, i.e., particles only interact with particles in the

same channel only; for, the interaction between particles in different channels

is rendered negligible by the average distance, as well as the presence of the

medium itself, filling the space between channels. This is nothing like what

one has in a bundle of carbon nanotubes, for instance, wherein helium atoms

in different quasi-1D channels interact weakly but still appreciably, underlying

low temperature phase transitions between 3D and quasi-1D physics. More-

over, helium is a (Luttinger) superfluid in 1D at equilibrium, which is why one

can have a three-dimensional superfluid in that way (whereas p-H2 could not

turn superfluid in that setting, precisely because it is not a Luttinger superfluid

in 1D).

Figure 4.1: Porous medium model: Interconnected spherical cavities.
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4.A Model

The quantum-mechanical model Hamiltonian is expressed in the general

form given by Eq. (2.1), which now is aimed at describing a fluid of p-H2

molecules confined inside a cylindrical channel of diameter d and length L,

whose axis is in the z direction (the only one along which periodic boundary

conditions are relevant). The interaction potential between two p-H2 molecules

utilized in here is the revised version of the Moraldi pair potential [46] also used

in the study of Chapter 3. It is worth repeating that the aim of using such a

potential is that of obtaining a quantitatively more accurate description of the

equation of state of p-H2 at high pressure. This is particularly important in

the vicinity of the surface of the channel, where the pressure could conceivably

exceed significantly that in the middle of the channel.

For the the interaction V between a p-H2 molecule and the wall, we made

use of the expression arising from the integration of a Lennard-Jones potential

over an infinite continuous medium surrounding the cylinder, regarded as in-

finitely long [59]. The resulting expression only depends on the radial distance

of a molecule from the axis of the cylinder, and contains two parameters: a)

a characteristic length a, which is essentially the distance of closest approach

of a molecule to the wall of the channel, where the potential becomes strongly

repulsive, and b) an energy D, which is basically the depth of the attractive

well of the potential which particles experience from the wall [60]. These

two parameters are adjusted to reproduce, as accurately as allowed by such a

relatively simple model, the interaction of a particle with a substrate.

The values of the parameters of the potential utilized in this work are

reported in Table 4.1. They were taken from Ref. [61], except those for glass,
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Substrate D (K) a (Å)
Cs 37.8 3.88
Rb 39.7 3.87
K 44.4 3.76
Na 69.5 3.40
Li 99.7 3.19
Mg 191.8 2.76
Glass 232 2.22

Table 4.1: Potential parameters D and a utilized in this work. The values
are taken from Ref. [61]. Substrates are listed in order of increasing strength,
from top to bottom.

which were obtained starting from those proposed in Ref. [62] for helium

atoms near a glass substrate, using Lorentz-Berthelot mixing rule to adjust

them for p-H2. The resulting potentials are shown in Fig. 4.2.

Figure 4.2: Potentials describing the interaction between a p-H2 molecule and
the wall of the confining cylindrical channel, for some of the substrates con-
sidered here. Cs (cesium) is the weakest, glass is the most strongly attractive,
and Li (lithium) has intermediate strength. Here, ρ is the distance of a particle
from the axis of the channel.

The focus here is mostly on metallic alkali substrates which are known to

be weak adsorbers, for the purpose of identifying physical conditions in which

the equilibrium phase of the system may be a quasi-1D liquid, i.e., with p-H2
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molecules lined up along the axis of the channel, as opposed to concentric,

solidlike shells which are expected to form inside a strong adsorber like silica.

The above model, similar to that utilized in the study of p-H2 inside spher-

ical cavities (described in the previous chapter), clearly contains major sim-

plifications, notably the assumption that the interactions between two p-H2

molecules can still be regarded as central, when in fact it is quite plausi-

ble that such an interaction may be significantly altered in the presence of

a strong attractive wall, which could have the effect of polarizing molecules.

Moreover, the cylindrical cavity wall itself is regarded as smooth, free of cor-

rugation or defects. These simplifications can in part be justified by the fact

that the substrates of interest are weak, and therefore the distance from the

surface (over 3 Å) at which molecules should be sitting (this is confirmed by

our results) is such that the influence of the substrate on the intermolecu-

lar interaction ought to be relatively minor. The same argument justifies the

neglect of surface defects and corrugation, an assumption routinely made in

numerical studies of adsorption of He or p-H2 on alkali substrates [63]. And

despite its simplicity, such a model allows us to address the physical question

that we wish to pose here, namely the effect of confinement on the superfluid

response of p-H2. Equivalent, or even simpler models (e.g., cavities with hard

walls) have been utilized to study structure of 4He in confinement [36, 57, 58].

4.A.1 Luttinger Liquid Theory

As the diameter of the channel is reduced to one nm or less, which is the

physical setting of interest here, the physics of a fluid confined in it approaches

the one-dimensional limit, and becomes therefore amenable to interpretation
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within the framework of Luttinger liquid theory [35] as shown, for example,

by computer simulation of 4He confined in nanopores of such a characteristic

size [36, 57]. The LLT provides an elegant and universal description of Bose or

Fermi systems in one dimension, in terms of linear quantum hydrodynamics.

It asserts that, while no true long range order exists in 1D, two-particle corre-

lations display a slow power-law decay as a function of interparticle separation

r. The specific power law, in turn, reflects different physical properties of

the underlying system. Consider for definiteness the pair correlation function

g(r), measuring the relative probability that any two system particles be at

any given time at a distance r from one another. The LLT asserts that at any

finite temperature T will take on the following behavior in the thermodynamic

limit:

g(r) ∼ 1− 1
2π2Kn2r2 + A cos(2πnr) 1

n2r2/K (4.1)

Here, n is the linear density of particles and A a non-universal, system-

dependent constant. The Luttinger parameter K describes how quickly the

oscillations of g(r) decay at long distance; based on its value one can mean-

ingfully differentiate between phases that are “quasi-crystalline” or “quasi-

superfluid” in character. Specifically, if K > 2 the static structure factor

will develop peaks (experimentally indistinguishable from conventional Bragg

peaks) at reciprocal lattice vectors, which is the experimental signature of a

crystalline solid. On the other hand, if K < 0.5 the system features a robust

propensity to superflow, and for 0.5 ≤ K ≤ 1.5, the system can be regarded as

a “glassy” insulator (at the high end of the interval), or as a weak superfluid,

subjected to pinning by either disorder or an external potential. Henceforth,

whenever speaking of “crystal” versus “superfluid”, we shall refer to the above
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classification.

The scenario that we are exploring here, namely that of three-dimensional

superflow through a network of quasi-one-dimensional, interconnected chan-

nels, known as “Shevchenko state” [37, 38], requires that the system be a

Luttinger superfluid in the individual channels; that is the conjecture that has

been investigated in this work, by means of computer simulations. Now, in one

mathematical dimension, the ground state of condensed p-H2 is known to be a

Luttinger insulator, with a value of the parameter K ≈ 3.5 at the equilibrium

density, growing monotonically as the system is compressed. Thus, one may

wonder how such a state of affairs, which rules out the Shevchenko scenario

for the reason mentioned above, might change if the system approaches the

one-dimensional limit in the tight confines considered here. Should one not

expect the value of K in confinement to approach that in one dimension?

Figure 4.3: Schematic representation of the physical origin of the softening
of the intermolecular potential due to zero point motion in the transverse
direction.

One may qualitatively understand how a reduction of the value of the pa-

rameter K may occur, as a result of molecular quantum zero point motion in

the direction perpendicular to the axis of the cylinder (transverse direction),

along which molecules line up at low linear density, if the substrate is suffi-

ciently weak; Fig. 4.3 shows this effect schematically. Consider two molecules
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at an axial distance r; because they execute quantum oscillations in the trans-

verse direction, the effective potential ṽ(r) describing the interaction between

them includes contributions from the value of the “bare” potential v(r) at

distances that are greater than r. The overall effect is that of softening the po-

tential, in particular rendering it less attractive, which in turn can be expected

to reduce the propensity of the system to crystallize. One can easily obtain

a semi-quantitative estimate of the effect by modeling molecular transverse

motion by means of a simple harmonic approximation [64], characterized by a

root-mean-square transverse displacement η, and obtain ṽ(r) by means of the

following straightforward integration:

ṽ(r) =
∫ +∞

−∞
dz dz′ ψ2(z) ψ2(z′) v(

√
r2 + (z − z′)2) (4.2)

with ψ2(z) = A exp[−z2/2η2], A being a normalization constant. The ef-

fective inteparticle potential that results is shown in Fig. 4.4, assuming a

Lennard-Jones interaction for v(r) and for various values of η (η = 0 obviously

corresponds to ṽ(r) = v(r)).

4.B Simulations

In this section, some technical details of the calculations are furnished.

Most of the simulations carried out in this work, using the methodology de-

scribed in Chapter 2, pertain to a system with diameter d=10 Å, but some

for a narrower (wider) channel of diameter d=5 Å (d=20 Å) were performed

as well. The value of L, i.e., the length of the cylindrical channel utilized

in most of the calculations is 160 Å, which was empirically established to be
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Figure 4.4: Effective one-dimensional potential between two particles which
can execute small transverse excursions, modeled as explained in the text. The
bare potential v(r) is assumed to be a Lennard-Jones one, and so distances
and energies are expressed in terms of the parameters σ and ε.

sufficient to capture quantitatively the physical behaviour inside an infinitely

long channel. This results in a typical number of particles of the order of a

few hundred for most simulations, 600 being the largest.

In this study, like in that described in Chapter 3, instead of making use of

the simple imaginary-time discretization of the Euclidean action described in

Chapter 2 (Eq. 2.8), a more accurate one was adopted (specifically, accurate

to fourth order [48] in the imaginary time step τ , as opposed to the second

order accuracy in τ afforded by Eq. 2.8). Simulations carried out for a few

cogent cases yielded results showing that the values of the physical averages

obtained with a time step τ◦ = 1/640 K−1 are indistinguishable from those

extrapolated to the τ → 0 limit, within statistical uncertainties. Thus, most

of the results presented here correspond to simulations with τ = τ◦.

41



4.C Results

Most of the results presented and discussed here pertain to adsorption of

a p-H2 fluid inside a cylindrical channel of diameter d=10 Å; the physical

behaviour observed inside channels of greater or smaller diameter will be dealt

with at the end.

We begin by discussing the energetics. Fig. 4.5 shows computed values

of the energy e per p-H2 molecule as a function of the linear particle density

ν = N/L, for three of the alkali substrates considered here. The results shown

here are for a temperature T=1 K; energy estimates for this system, as well as

structural properties, have been consistently found not to change significantly

below T = 4 K, at all physical conditions explored in this work. Thus, the

results can be regarded as ground state (T=0) values.

Figure 4.5: Energy per p-H2 molecule e (in K) versus linear density ν (in
Å−1), at T = 1 K, inside a cylindrical channel of diameter d=10 Å. Results
are shown for three different substrates, namely K (filled circles), Na (filled
triangles) and Li (diamonds), listed in order of increasing strength (see Table
4.1). Dashed lines are polynomial fits to the data. Statistical uncertainties are
of the order of the symbol size.

The curves all display a minimum at the equilibrium density, corresponding
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Figure 4.6: Three-dimensional density of p-H2 inside a cylindrical channel of
diameter d=10 Å, plotted as a function of the distance from the axis. Curves
pertain to different substrates, at the corresponding equilibrium densities. Sta-
tistical errors are not visible on the scale of the figure.

to energy values all well below the bulk chemical potential of p-H2, namely

−90 K. It is noteworthy that a stable adsorbate also exists inside a Cs channel

(the energy minimum in that case is −95 K), which is in contrast to the case of

an infinite flat Cs substrate, which is actually not wetted by p-H2 [63]. Thus,

the cylindrical geometry confers to the substrate greater adorption strength.

It is seen that the equilibrium density increases with the strength of substrate

adsorption, from a value close to 0.23 Å−1 for a K substrate (on a Cs it is

essentially the same), which is ∼ 5% higher than the corresponding value for

the purely 1D system [19], to as high as 0.255 Å−1 inside a Li channel. Despite

the increased equilibrium density of quasi-1D p-H2 confined in alkali metals, it

turns out that the propensity of the system to crystallize is reduced, compared

to pure 1D. This is as a result of the softening of the intermolecular potential,

which arises from the molecular zero-point motion in the transverse direction

as explained above. The adsorbate in these subtrates displays a quasi-1D
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character, as shown by the p-H2 density profiles, computed with respect to the

axis of the channel (Fig. 4.6).

Fig. 4.6 shows the three dimensional density of p-H2 inside a cylindrical

channel of diameter d = 10 Å, plotted as a function of the distance from

the axis at equilibrium density in each of the substrates. On the two least

attractive substrates among the five shown (Cs and Na), molecules line up

along the axis of the cylinder, the greater pull that they experience in the case

of a Na substrate resulting in a greater spread of the molecular wave function

in the transverse direction. At the opposite end, on the stronger substrates

such as Mg and glass, the density of p-H2 is negligible on the axis, as the

equilibrium phase consists of a single cylindrical shell coating the wall, with

molecules sitting at a closer distance from it in the case of glass.

The physics of the system on the substrate labeled as Li, on the other

hand, in a way interpolates between strong and weak adsorption [65]. The

density profile displays a maximum off the axis, but the density on the axis

itself remains finite. This suggests that molecules arrange on a helix, winding

around the axis; this structure remains largely 1D in character.

We now tackle the most interesting issue, namely the physical effect of

the significant molecular excursions away from the axis of the channel, on the

physical character of the quasi-1D adsorbates. As mentioned above, one may

expect such excursions to soften the intermolecular interaction, responsible

for the strong propensity of the system to crystallize, possibly with the result

of imparting to the system quasi-superfluid behaviour. In order to address

this issue, we study the reduced pair correlation function g(r), where r is

the component of the distance between two particles along the axis of the

channel. For systems that approach the 1D limit (and in our study that
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Figure 4.7: Pair correlation functions for p-H2 confined in a cylindrical channel
of diameter d=10 Å. Left panel shows results for a Cs substrate, right panel
for a Na one. In both cases results are shown for the two temperatures T=1
K, for a system of N = 40 molecules, and T=0.5 K, for a system comprising
N = 80 molecules. Statistical errors are smaller of the sizes of the symbols.
Dashed lines represent fits to the maxima of g(r) as explained in the text.

means equilibrium p-H2 layers adsorbed inside channels whose walls have the

adsorption properties of the alkali metals in Table 4.1), the g(r) is expected

a) to depend only on the product LT in the limit L → ∞, T → 0, and b) to

conform to the behaviour predicted by Eq. 4.1, allowing one to infer [19, 36]

the value of the Luttinger parameter K for the particular system of interest.

Fig. 4.7 shows pair correlation functions computed for p-H2 inside a Cs

(left) and a Na (right) channel, in both cases for two different temperatures,

namely T = 0.5 and 1 K, and two different system sizes, comprising N = 40

and 80 molecules. In both cases, calculations are carried out at the equilibrium

density, which, as mentioned above, is slightly above that in purely 1D. As one

can see, collapse of the data is clearly observed. The value of the parameter

K can be obtained by fitting the computed g(r) to the expression (4.1) or,

somewhat more simply, its maxima to the expression f(r) = 1 + A/r2/K .

For the weakest substrate, for which the adsorbate is closest to the 1D
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limit, i.e. for which molecular excursions in the transverse direction are most

limited, the determined value of K is 2.70(5), appreciably lower than that for

a purely 1D system (3.5). As the adsorption strength of the wall of the channel

increases, our estimate of K gradually decreases, the lowest value (very close

to 2) attained for a Li substrate.

As shown above (Fig. 4.6), if the wall of the channel is taken to be slightly

more attractive than Li (i.e., Mg), then the equilibrium phase is a concen-

tric cylindrical shell, with essentially no molecules in the central part of the

channel. The effective 2D coverage of such a layer can be inferred from the

data shown in Fig. 4.6, and is ∼ 0.067 Å−2, i.e., the same with the equilib-

rium coverage [18] of p-H2 in 2D at T=0. Actually, the physics of such an

adlayer is quite close to that of 2D p-H2; that is, the system displays solidlike

behaviour, with molecules localized in space, quantum-mechanical exchanges

are virtually absent and, consequently, no trace of superfluidity can be ob-

served. On increasing the density, a second, quasi-1D inner layer eventually

forms; we studied this system for the case of a glass channel. For simplicity,

we utilized in these calculations an effective harmonic potential, adjusted to

reproduce, in the vicinity of the axis of the cylinder, the combined effect of the

interaction of the molecules with the wall of the channel, as well as with the

molecules in the shell coating it. The resulting, fairly tight confining effect for

the molecules in the central region, combined with the relatively high linear

density of thermodynamically stable inner layers, imparts to the system in the

inner part a markedly solidlike behaviour. Indeed, characteristic values of the

parameter K for quasi-1D inner p-H2 layers surrounded by a p-H2 cylindrical

shell are generally ≥ 3.5.

We now comment on the results obtained in narrower and wider channels.
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Inside a channel of diameter d=5 Å, no adsorption occurs except for the most

attractive of the substrates considered here, namely glass. The quasi-1D inner

layer closely approaches the physics of 1D p-H2, with essentially the same

value of the linear equilibrium density and Luttinger parameter K. Inside a

channel of wider diameter (d=20 Å), on the other hand, adsorption occurs for

all substrates except Cs, and the equilibrium phase is again a single, solidlike

cylindrical shell, concentric with the wall and with an equilibrium density close

to that of 2D p-H2.

4.D Summary

The extensive simulation studies performed in this work for a realistic

model of p-H2 adsorbed in the interior of a cylindrical channel of diameter

ranging from 5 to 20 Å yield evidence that, although confinement can some-

what reduce the strong tendency of the system to crystallize, as observed in

spherical cavities, nevertheless the effect is quantitatively more limited in a

cylindrical geometry. Specifically, if the diameter of the channel is as large as

merely 2 nm, then the physics observed is qualitatively very similar to that

which takes place when p-H2 is adsorbed on a flat substrate [63]. On the other

hand, inside narrow channels of diameter less than 1 nm, p-H2 will form quasi-

one-dimensional adsorbates (if the substrate is sufficiently strong) that closely

reproduce the physics of the system in purely one dimension, i.e., the phase is

crystalline in nature (in the Luttinger sense). A cylindrical channel of diame-

ter close to 1 nm, with a substrate that is relatively weak (e.g., Li) provides

a confining environment in which the interplay of reduced dimensionality and

quantum excursions off the axis can lead to different physics, specifically to the
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stabilization of quasi-one-dimensional phases with a much reduced tendency

to crystallize. This is qualitatively consistent with the enhancement of the su-

perfluid response of p-H2 clusters trapped inside a spherical cavity; however,

the effect is quantitatively far less significant in the quasi-one-dimensional ge-

ometry considered in this work, as the predicted reduction of the Luttinger

parameter K from its value in one dimension (3.5) all the way to approxi-

mately 2 does not entail a fundamental change of the physical character of

the system, which remains well in the insulating sector of the LLT. Conse-

quently, any scheme aimed at stabilizing a bulk superfluid phase of p-H2 in

a network of interconnected cavities seems to face the insurmountable hurdle

that no superflow may be sustained inside narrow cylindrical channels con-

necting two adjacent cavities. Thus, this study seems to rule out definitively

such a scenario.
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Chapter 5

INVESTIGATION OF THE

METASTABLE FLUID PHASE

OF PARAHYDROGEN

It has been shown in the preceding chapters that the propensity of p-H2

to crystallize at low temperature can be somewhat reduced in confinement.

However, the scenario of a bulk superfluid phase of p-H2 in a networked porous

medium does not appear feasible, as no quasi-one-dimensional superfluid phase

can be stabilized. At this time, no other credible avenue seems to exist, and

the putative superfluid phase of p-H2 remains therefore elusive. In particular,

no approach based on confinement, or reduction of dimensionality, seems likely

to succeed.

The question of whether a hypothetical metastable fluid phase of p-H2

would undergo a superfluid transition remains open, however. As mentioned

in the Introduction, there exists a theoretical estimate of the transition tem-

perature, placing it in the vicinity of 2 K, but such a prediction has not been
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corroborated by robust first principle calculations, based on realistic micro-

scopic potentials.

This issue has so far not been addressed by simulation, owing to the intrin-

sic difficulty to prevent even a simulated system of relatively small size (i.e.,

∼ 100 particles) from spontaneously crystallizing. Indeed, a common mis-

conception among nonpractitioners of computer simulations, is that one will

not observe spontaneous freezing on a computer, unless particles are placed

at specific lattice sites at the start of the run. This contention can be easily

disproven by carrying out the simple “computer experiment” described below.

5.A Computer experiment I

A simulation of N=128 p-H2 molecules at a temperature T=1 K is carried

out, using the methodology illustrated in Chapter 2. Particles are enclosed in

a cubic box, the density set at 0.023 Å−3, namely the freezing density of liquid

p-H2 at T=13.8 K. The interparticle potential is chosen initially to be the

Lennard-Jones one; however, while the well depth ε is set to its recommended

[43] value of 34.16 K, the hard core length σ is taken to be 2.556 Å, i.e.,

the same as that of the Lennard-Jones potential describing the interaction

between two He atoms, which is significantly smaller than the standard value

for p-H2 (2.96 Å). The resulting potential, while it has the same well depth,

is substantially “softer” than the ordinary Lennard-Jones potential for p-H2,

allowing molecules to come to a considerably closer distance than they do in

actual p-H2.

Although particles are initially arranged on a (simple cubic) lattice, the

simulated system melts rapidly, and a robust superfluid response sets in. In-
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Figure 5.1: Instantaneous “snapshots” of many-particle configurations (parti-
cle world lines) generated in the course of a simulation of a system of N=128
p-H2 molecules at a density 0.023 Å−3. The temperature is T = 1 K. The view
is along the x direction. In the configuration shown in the left panel particles
interact via a Lennard-Jones potential with ε=34.16 K and σ=2.556 Å. The
configuration shown in the right panel is obtained by restarting the simula-
tion of left panel, but with particles now interacting via the Silvera-Goldman
potential for p-H2.

deed, long permutation exchanges quickly appear, and the system is 100 %

superfluid [67]. The left panel of Fig. 5.1 shows a many-particle configuration

(particle world lines) generated in the course of the simulation described (the

view is along the x direction). There is no evidence of any kind of order, parti-

cle density is essentially uniform and particle paths overlap, consistently with

the frequent occurrence of exchanges. As a result, it is impossible to identify

visually individual particles.

The second part of the experiment consists of restarting the simulation from

the last configuration generated in the previous run, but with the interaction

potential now switched to the Silvera-Goldman, i.e., a realistic potential for

p-H2. Right panel shows a configuration generated in the simulation restarted

as explained. The physical scenario is clearly very different, as particles are

now arranged on a regular lattice. Such an arrangement emerges without any
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intervention on the part of the investigator, witness the fact that the lattice

is tilted at a random angle with respect to the axes of the simulation cell.

Long exchange cycles of p-H2 molecules present in the initial configuration

quickly disentangle, particles re-acquire their identity, and can now be easily

distinguished. Concurrently, the superfluid signal drops to zero.

It is noteworthy that a similar experiment carried out on 4He slightly above

the freezing pressure, when the equilibrium configuration is a crystal, shows

much greater resilience of the overpressurized, metastable superfluid phase, in

which the simulated system is “locked” by persistent long exchanges [66]. All

of this points to the very different physical character of these two condensed

matter systems, p-H2 being much closer in its behaviour to a classical system.

It also underscores the difficulty of investigating by simulation a metastable

fluid phase of p-H2, rendered problematic by the strong tendency of the system

to solidify. This problem can be alleviated by studying systems of bigger sizes,

for which the free energy barrier required to “jump” from the metastable to

the stable phase (an extensive quantity) can become large enough that the

system may be locked in the former – for a sufficiently long time that one may

collect useful statistics. Large system sizes, however, have become accessible

to quantum simulations only in relatively recent times.

The above results also show how it is not just the well depth that causes

crystallization, but rather the combination of well depth and size of the hard

core radius. This can be expressed more generally and quantitatively in terms

of the so-called De Boer’s parameter.
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5.A.1 De Boer’s parameter

Consider a generic Bose system, and for simplicity let us assume that par-

ticles have spin zero. We are assuming a Lennard-Jones type interaction, and

express the many-body Hamiltonian in dimensionless units as follows:

ĥ = −1
2 η

N∑
i=1
∇̃2
i + 4

∑
i<j

[(1
r

)12
−
(1
r

)6]
, (5.1)

having introduced the De Boer’s parameter η = ~2/(mεσ2). η is the sin-

gle parameter that determines the physical character of the system in the

ground state. In particular, if η → 0, quantum-mechanical effects are in-

creasingly unimportant, and the behaviour of the system is nearly classical;

consequently, its ground state is a crystal, as predicted by classical mechanics,

as the arrangement of particles on a crystal lattice is that which minimizes the

potential energy. On the other hand, if η is appreciably different from zero one

may expect quantum-mechanical effects to be important, possibly leading to

a substantial modification of the classical predictions, not only in quantitative

but also qualitative terms (e.g., the ground state being a liquid, as is the case

for He).

Fig. 5.2 shows the T=0 equation of state for various values of the quantum

parameter η. Here, ρ is the three-dimensional density of particles, in units of

σ−3, while e(ρ) is the energy per particle, in units of ε. These equations of state

were obtained by computing the energy per particle as a function of the den-

sity and extrapolating the results to T=0, using the methodology described in

Chapter 2. It was generally found that the results obtained at a reduced tem-

perature of T = 0.05 ε are indistinguishable from those extrapolated to T = 0,

within statistical uncertainties. These calculations were carried out on systems
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Figure 5.2: T → 0 equation of state (e(ρ) curve) for Lennard-Jones Bose
systems, for various values of η. Here, ρ is the three-dimensional density of
particles and, the energy per particle is expressed in units of ε. The statistical
uncertainties on the computed energies are of the order of, or less than, the
size of the symbols. Thread lines are polynomial fits to the data.

comprising typically N=128 particles. The contribution to the total energy

from the particles lying outside the main simulation cell is estimated by radi-

ally integrating the attractive tail of the potential energy from the boundary

of the simulation cell to infinity while approximating the (three-dimensional)

pair correlation function, g(r), as 1 according to standard procedure [41]. This

contribution usually amounts to less than . 1% of the total potential energy of

the system. The results shown in Fig. 5.2 are in good quantitative agreement

with the variational theory of Nosanow and collaborators [68, 69].

As the value of η increases, the equilibrium density ρe (corresponding to the

minimum of the curve) shifts to lower values; the ground state of the system

is a superfluid liquid for η & 0.15, a crystal for lower values. The value of η for

p-H2 is 0.08, placing it well into the crystalline sector; on the other hand, for
4He it is η = 0.18, consistently with its ground state being a superfluid. An

interesting question that can be asked is whether it is possible for a system
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whose ground state is crystalline to be stretched [70] (i.e., at negative pressure)

into a metastable, low density superfluid. The region of density within which

this is physically allowed is ρS ≤ ρ ≤ ρe, where ρS is known as the spinodal

density, and is defined by the condition d2e/dρ2 = 0 (i.e., change of convexity

of the e(ρ) curve).

As mentioned previously, η = 0.08 corresponds to p-H2. The equilibrium

density in this case is estimated in this work to be ρe ∼ 0.68 σ−3, which

corresponds to ∼ 0.026 Å−3, in excellent agreement with the experimentally

determined equilibrium density of p-H2 in the T → 0 limit [71]. This system

is a crystal at equilibrium and remains such (i.e., non-superfluid) all the way

to the spinodal density. This means that, in analogy with what is already

established in one and two dimensions [18, 19], at sufficiently low temperature

no metastable fluid phase of p-H2 exists. Although this result strictly applies

in the T → 0 limit, it clearly represents another potentially serious hurdle to

overcome in the quest for a metastable superfluid phase of p-H2, as no reliable

estimate presently exists of the superfluid transition temperature [72].

It is worth mentioning, to conclude this section, that the simulations carried

out here cannot furnish a definitive answer as to whether there exists a specific

value of η for which the ground state of the system is a crystal, but a metastable

superfluid phase exists at negative pressure; this is due to the difficulty of

estimating the location of ρS with the required precision. The results presented

in Fig. 5.2 only allow one to state that, if such a scenario occurs, it may only be

within a relatively narrow range of values of η, specifically in the neighborhood

of η ≈ 0.13. While there is no naturally occurring Bose fluid characterized by

such a value of η, this issue may be addressed within cold atom physics, owing

to the “tunability” of the interparticle interactions [39].
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5.B Computer experiment II

In this section the results are presented of simulations of a metastable phase

of fluid p-H2. The lowest temperature down to which such a phase could be

simulated in this work is T=3 K, for which the system can be assessed to be

in a disordered, liquid-like phase.

The simulations were carried out on a system comprising N=512 particles.

The system is initially prepared in the desired, metastable liquid phase typ-

ically by means of the same procedure described in 5.A, namely by initially

setting the interaction to a Lennard-Jones potential with the well depth of

p-H2 but a shorter radius (typically σ=2.556 Å), allowing the system to relax

to a fluid phase and then changing the interaction to one appropriate for p-H2

[73]. Although, as mentioned in 5.A, given a sufficiently long time the crys-

Figure 5.3: Pair correlation function for metastable liquid p-H2 at density
0.0230 Å−3, computed at temperature T=6 K (solid line). Also shown for
comparison (dashed line) is the same quantity for the equilibrium crystalline
(hcp) phase of p-H2 at the same temperature, at density 0.0261 Å−3.

talline phase will eventually start nucleating, the idea is that one may be able
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to observe the mestable fluid phase for a sufficiently long time to accumulate

reliable statistics on its physical properties. Obviously, of particular interest

is any quantitative indication of an incipient superfluid transition

Fig. 5.3 shows the computed pair correlation function g(r), which was first

introduced in Chapter 4 for the one-dimensional case. The quantity plotted

in the figure above is its three-dimensional analogue, normalized as follows:

∫
dr r2 g(r)∫
dr r2 = N − 1

Ω (5.2)

where Ω is the volume of the simulation cell and N the number of particles.

The solid line shows the g(r) for the metastable liquid phase at a temper-

ature T=6 K, for a system density equal to the freezing density at T=13.8

K, namely 0.023 Å−3. Also shown for comparison (dashed line) is the same

quantity computed for the equilibrium crystalline phase (hcp structure) at the

same temperature, which corresponds to a density 0.0261 Å−3. The qualita-

tive and quantitative differences are clear; specifically, the g(r) for the solid

phase displays much more pronounced oscillations, which persist at greater

distances than in the liquid phase. Naturally, the liquid-like nature of the sys-

tem could be ascertained by visual inspection of the configurations generated

in the course of the simulation, none of which suggested any kind of density

long-range order.

At this point it is worth mentioning again that the original, crude prediction

by Ginzburg and Sobyanin [11], based on a picture of fluid p-H2 as a nonin-

teracting Bose gas, identifies the superfluid transition temperature as that of

the onset of Bose-Einstein condensation. For p-H2, that is approximately 6 K,

twice as high as that which the same argument provides for 4He, whose atomic
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mass is very nearly twice that of a p-H2 molecule (the difference in the mean

interparticle distance between the two systems is less than 2%). Qualitatively,

such a temperature is that at which exchanges of indistinguishable particles

begin to occur in the noninteracting system, i.e., the thermal wavelength is

of the order of the average interparticle distance. Now, for 4He, the estimate

obtained in this way is surprisingly close to the actual superfluid transition

temperature of 2.18 K [1]; indeed, although interactions lower the transition

temperature slightly, atomic exchanges are observed in a PIMC simulation of
4He at T=3 K at saturated vapour pressure, albeit infrequently [74]. Markedly

Figure 5.4: One-body density matrix of metastable liquid p-H2 at density
0.0230 Å−3, computed at temperature T=4 K. The same result for the same
quantity, computed at T=6 K and T=3 K is indistinguishable from that shown
here, within statistical errors.

different is the situation for p-H2, as the simulations carried out in this work

show. In particular, exchanges are all but absent not only at T=6 K, but even

at T=3 K; in other words, even at this relatively low temperature (at least

with respect to the original prediction of Ref. [11]) p-H2 molecules act as if

they were de facto distinguishable. This is clearly in stark contrast with 4He,
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which at T=1.5 K is well in the superfluid phase, with long exchange cycles

spanning essentially the whole system. The failure of the system to develop

long exchanges has the immediate consequence that no off-diagonal long range

order develops, down to the lowest temperature reached in this work; specifi-

cally, the one-body density matrix, which in three dimensions must asymptote

to a finite value at long distance (the condensate fraction n◦ [6]), is instead

observed to decay exponentially, with no appreciable temperature dependence

(Fig. 5.4). This can be again contrasted with the behaviour of the same quan-

tity in liquid 4He (Fig. 5.5), i.e., the value of the one-body density matrix

in this case changes by orders of magnitude, going from T=3 K and T=1.5

K, as a consequence of the appearance of long exchanges below the superfluid

transition.

Figure 5.5: One-body density matrix of 4He at equilibrium density, computed
at temperature T=3 K (filled symbols), and T=1.5 K (open symbols).

It is important to note that the absence of exchanges in the simulation of

the metastable liquid phase of p-H2 can not be attributed to algorithmic or

computational inefficiency, as would have been the possibility with a PIMC
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implementation as that described, for example, in [8], where the sampling

of long permutations is bound to become exponentially inefficient for large

system sizes. In this case, the continuous-space Worm Algorithm, described

in Chapter 2 was adopted, and in the course of each simulation a large number

of “swap” moves [48], quickly leading to long permutation cycles in a superfluid

system like 4He, were attempted and accepted. The system does not develop

such long cycles for physical, not computational reasons.

The exponential, temperature-independent decay of the one-body density

matrix observed here down to T=3 K represents a strong piece of numerical

evidence to the effect that even the estimate of the superfluid transition tem-

perature obtained by Apenko [13], taking in part interactions into account and

revising the original one by Ginzburg and Sobyanin to approximately 2 K, is

still at least an order of magnitude too high.

Obviously, based on the conclusion of the previous section, this leaves in-

vestigators with the prospects of searching for a metastable superfluid phase

of p-H2 that may exist only in a very narrow range of temperature, before a

sufficiently low T is reached where no metastable fluid phase exists, as pre-

dicted by the results of the previous section. It is also important to stress that

the low temperature at which superfluidity might be possible, perhaps of the

order of 0.1 K, is presently out of reach of any known experimental method.

What is the physical reason underlying the radically different behaviour

of metastable liquid p-H2 and liquid 4He? As mentioned above, the mean

interparticle distance in the two liquid phases is comparable, of the order of

3.51 Å in p-H2 and 3.58 Å in 4He. On the other hand, the radius of the hard

repulsive core of the interparticle potential is significantly greater for p-H2

(∼ 3 Å) than it is for 4He (∼ 2.6 Å), The physical consequence is that, at
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the equilibrium density of these two liquids, the hard core repulsion in p-H2

is more effective at keeping particles apart, thereby drastically reducing the

propensity to quantum-mechanical exchanges. An interesting question remains

as to whether there actually does exist a sufficiently low temperature at which

a (hypothetical) mestastable fluid phase of p-H2 turns superfluid, or whether

the possibility exists that this fluid may be normal all the way to T = 0. It is

currently believed that no Bose system can be a non-superfluid liquid at T=0

[6]. This remains an outstanding issue.
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CONCLUSIONS

Extensive simulation studies have been performed for a realistic model of

p-H2 adsorbed in the interior of a cylindrical channel of nanoscale size diam-

eter. The results yield evidence that, although confinement can somewhat

reduce the strong tendency of the system to crystallize, as observed in spheri-

cal cavities (Ref. [34]), nevertheless the effect is quantitatively more limited in

a cylindrical geometry. Specifically, the predicted reduction of the Luttinger

parameter K from its value in one dimension of 3.5, all the way to approxi-

mately 2 does not entail a fundamental change of the physical character of the

system, which remains an insulator [75].

Consequently, any scheme aimed at stabilizing a bulk superfluid phase of p-

H2 in a network of interconnected cavities seems to face the hurdle that no

superflow may be sustained inside narrow cylindrical channels connecting two

adjacent cavities.

While the manuscript for Ref. [75] was undergoing review, we became

aware of similar recent work [76], claiming that the value of the Luttinger pa-

rameter K can be lowered considerably with respect to what was found in this

work, in fact to the point where p-H2 could turn superfluid (in the Luttinger

sense), inside Carbon nanotubes. The (cylindrical) geometry and diameters

are similar to ours, but the model considered in Ref. [76] includes substrate
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corrugation. These predictions, seemingly at variance with the results pre-

sented here, were obtained with a different computational methodology with

respect to that utilized here, specifically a ground state one. Clearly, further

studies will be needed to resolve this discrepancy.

A thorough numerical investigation was carried out of the possible super-

fluid properties of a hypothetical metastable fluid phase of p-H2, of density

equal to that of the freezing density, at temperatures below the freezing one,

namely 13.8 K. Simulations were carried out down to a temperature T=3

K, significantly lower than that of the original prediction by Ginzburg and

Sobyanin [11], and fairly close to the revised estimate by Apenko [13]. Simula-

tions show a strong suppression of exchanges of identical molecules, with the

ensuing failure of off-diagonal long range order (and therefore superfluidity)

to set in. The lack of any significant temperature dependence of the physical

behaviour observed in simulation leads to the conclusion that if a superfluid

transition occurs, the transition temperature must be considerably lower than

that currently estimated, at least by an order of magnitude. This conclusion

is based on the expected similarity between p-H2 and 4He near the transition.

Because p-H2 does not have a metastable superfluid phase in the T → 0

limit, as shown by the results presented here, the window of temperature within

which superfluidity of p-H2 may be observable might well be very narrow, and

in any case it is presently not accessible to available experimental methodology.

The question of whether such a phase is obervable remains therefore open,

but most of the avenues initially thought of do not seem viable, based on the

current theoretical understanding.
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