
Kaleidoscope: A Cloud-Based Platform for Real-Time
Video-based Interaction

by

Hu Zhang

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c© Hu Zhang, 2016

Abstract

Mobile video streaming becomes increasingly useful in a variety of contexts (so-

cial interaction, education and entertainment) and increasingly feasible with

the rapid development of wireless networks and mobile technologies. In this

thesis, we develop a platform for multimedia streaming on mobile devices,

enhanced with textual and touch-display interactions for a rich user experi-

ence. Users (Senders) can use our Kaleidoscope mobile application to set up a

streaming channel on the platform server, and invite their contacts (Receivers)

to share their real-time video recordings. At the Sender site, the Kaleidoscope

app captures the video and shares it with the streaming server. The streaming

server saves the multimedia streams into files. At the Receiver site, the Kalei-

doscope app replays the video. At both sites, users can send text messages

to the connected peers and touch the display to point out interesting video

scenes; the Kaleidoscope app shares these interactions with all the peers. The

data (audio/video, text, touch events) is stored on the cloud server with times-

tamps to support feature extraction and analytic services on the cloud. We

evaluated the Kaleidoscope system on the SAVI cloud at multiple locations,

testing the CPU and memory usage of Kaleidoscope streaming server with

different numbers of clients, in different locations.

ii

“MAT VICTORIA CURAM”

— Latin Proverbs

VICTORY LOVES PREPARATIONS

iii

Acknowledgements

With two and half years of my graduate studies experience, there are so many

words to say and so many things to be thankful.

Firstly, I’d like to thank my supervisor Dr. Eleni Stroulia for her patient

instructions and advice, sincerely. She is a so nice professor. She gave me a

great help in my graduate study.

I also want to thank my colleagues in SSRG lab and my friends in Canada.

Thanks to my family and especially my Chang Chen. Thanks for their

unselfish love and emotional support.

Finally, I wish all the best to all of you, love you.

iv

Table of Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 4
1.3 Outline . 4

2 Background 6
2.1 Media Streaming . 6

2.1.1 Media Streaming Categories 6
2.1.2 Media Streaming Protocols 7

2.2 Instant Messaging . 10
2.2.1 Extensible Messaging and Presence Protocol 10
2.2.2 Authentication and Security 13

2.3 Compression and Codec . 14
2.4 Literature Review . 16

3 The Kaleidoscope System 19
3.1 System Overview . 19

3.1.1 Architecture . 20
3.1.2 The Overall Kaleidoscope Process 25

3.2 Communication and Behavior 27
3.2.1 Clients and Social Interaction Service 27
3.2.2 Clients and Streaming Service 33
3.2.3 Touch-display Feature 38

3.3 Storyboard . 40

4 Evaluation 44
4.1 Experiment Setup . 44
4.2 Results . 46

5 Conclusions 51

Bibliography 53

v

List of Tables

2.1 An audio-only SDP example. 10

3.1 An example of presence broadcast and response between clients
and server. 29

3.2 An XMPP example of retrieving friend list from server. 29
3.3 The chat room configuration request and response between clients

and server. The value of 0 means false and 1 means true. . . . 30
3.4 The Sender sends invitation to a Receiver. 31
3.5 The Receiver gets the invitation from the Sender. 31
3.6 Server response containing the Receiver’s role in the chat room. 32
3.7 The clients communicate in a chat room. 32
3.8 The Receiver leaves chat room. 33
3.9 The Sender destroys the room. 33

4.1 Hardware configuration of the devices used in our experiment. 45
4.2 Results of Edmonton-Edmonton-Edmonton experiment. 47
4.3 Results of Edmonton-Calgary-Edmonton experiment 47
4.4 Results of Edmonton-Toronto-Edmonton experiment. 47
4.5 Results of Edmonton-Calgary-Calgary experiment. 47
4.6 Results of Edmonton-Edmonton-Edmonton with higher video

quality experiment. 47
4.7 Results of number of Receivers in multi-locations. 48

vi

List of Figures

1.1 The SAVI Infrastructure (The figure is from http://www.savinetwork.
ca/news-events/poster-booklet-of-savi-agm-workshop-2015/). 3

3.1 Kaleidoscope system interaction diagram. On the Sender side
a user can create a chat room, invite friends to join and share a
video streaming with friends in that chat room. On the Receiver
side a user can accept the invitation, join the chat room and
play the video streaming in real-time. On both Sender and
Receiver sides users can communicate by sending text messages
or touching the video screen to annotate video content to share
with each other. 20

3.2 The libVLC library view. 21
3.3 XMPP Client Library aSmack liabrary view. 22
3.4 ESS project view. 23
3.5 The libstreaming library view. 24
3.6 Communication between Sender, social interaction server and

Receiver. When explaining these messages below, we use Si to
refer to Sender side’s step i, and Ri to refer to the Receiver
side’s step i. 27

3.7 Streaming communication between Sender, streaming server and
Receiver. When explaining these messages below, we use Si to
refer to Sender side’s step i, and Ri to refer to the Receiver
side’s step i. 34

3.8 The touch-display feature on a Sender and Receiver side. . . . 39
3.9 Configuration interface. 41
3.10 Friend list interface. 41
3.11 The Receiver gets an invitation from Sender. 42
3.12 The Receiver touches the screen to add some tags. 42
3.13 The Sender receives touch-display annotation. 43
3.14 The Receiver gets a destroy-room notification from Sender. . . 43

vii

Chapter 1

Introduction

In this thesis, we deal with the problem of video streaming on mobile devices.

Our contribution is a platform that supports video streaming and sharing

through a mobile client, enhanced with social interaction. In this chapter

we introduce the motivation and objectives of this work, we summarize the

contributions, and give an outline of the thesis.

1.1 Motivation

In recent years, the proliferation of social-networking sites and content shar-

ing applications have enabled a sudden increase in video traffic. According

to Cisco’s forecast 1, consumer Internet video traffic will increase up to 80

percent of all consumer Internet traffic by 2019. The increasing video traffic

is accompanied by a fast growth of the mobile industry, producing widespread

adoption and providing capabilities for new kinds of content and interactions,

especially high-quality video streaming. The Pew Research Center estimated

that around 68 percent of American adults have a smartphone in 2015. In

contrast, only 33 percent of the same population owned a similar smart device

in 2011 2. In fact, mobile video traffic exceeded 50 percent of the total mobile

data traffic in 2014 3; and this number is predicted to grow to 72 percent by

1http://www.cisco.com/c/en/us/solutions/collateral/service-provider/

global-cloud-index-gci/Cloud_Index_White_Paper.html
2http://www.pewinternet.org/2015/04/01/us-smartphone-use-in-2015/
3http://www.cisco.com/c/en/us/solutions/collateral/service-provider/

visual-networking-index-vni/white_paper_c11-520862.html

1

the end of 2019. This growth momentum will greatly reinforce the widespread

of mobile video applications.

Many well-known video-sharing applications emerged. Likely the most

successful and well known among these applications is YouTube 4. YouTube

allows users to upload, view, and share videos. The available content on

YouTube includes video clips, TV clips, and live events. Vevo and Hulu 5 offer

similar kinds of content. All the aforementioned applications serve on-demand

videos, whose content has already been uploaded to the Internet. Furthermore,

user interaction with the content is limited to asynchronous social-network-

agnostic actions, such as adding comments.

More recently, the high adoption of mobile smart devices and broadband

gave rise to a new breed of applications, with rich media, such as video, au-

dio, or graphics elements. These applications encourage users to interact and

engage with the content, frequently based on the user’s social context. For

example, Snapchat 6 is a mobile application, where users can share personal

photos, short videos, text and drawings with a controlled list of recipients.

Although Snapchat is a context-aware application, its design is limited to only

on-demand videos of about 10 seconds duration.

Very recently, Periscope 7 offered live video streaming, in which users can

follow other users, called broadcasters, and view their live videos. In Periscope,

users can interact by sending messages or“hearts” as a form of appreciation

to broadcasters during a chat. Although the above applications are popular

and widely used, the interactions are limited to monolithic pieces of content,

and ignore the temporal dynamics of such content. These messages are syn-

chronous with the video streaming but are not directly related to video content

itself.

Under these premises, in this thesis we introduce Kaleidoscope, a scalable

context-aware mobile video streaming and sharing platform, enhanced with

textual and touch-display interactions for a rich user experience.

4YouTube: https://www.youtube.com/
5Vevo: http://www.vevo.com/, Hulu: http://www.hulu.com
6Snapchat: https://www.snapchat.com/
7Periscope: https://www.periscope.tv/

2

Our platform can be deployed in a hierarchical cloud, such as the “Smart

Applications on Virtual Infrastructures” (SAVI) cloud 8 which consists of mul-

tiple smart edges, geographically close to end users, and a (set of) core node(s)

(Figure 1.1). A smart edge is a computing infrastructure that provide hetero-

geneous virtualized resources and services close to end-users. In contrast, the

core node provide resources at a massive scale and services available to all

end-users, agnostic from their location.

Figure 1.1: The SAVI Infrastructure (The fig-
ure is from http://www.savinetwork.ca/news-events/

poster-booklet-of-savi-agm-workshop-2015/).

With the SAVI infrastructure, our platform can potentially offer low la-

tency by assigning broadcasters to the smart edge that is closest to viewers.

In addition, the platform can automatically optimize the entire life cycle of

the the applications, such as the topology of the servers and devices in the

infrastructure, based on available resources such as CPU or memory. Finally,

we would be able to use the core, with its powerful computation and ample

storage resources, in order to provide persistence for the user-generated con-

tent, and perform content analysis such as extracting knowledge from videos,

text and annotations in parallel.

8SAVI: http://www.savinetwork.ca/

3

1.2 Contributions

Developing a stable real-time video sharing platform is very challenging. First,

streaming videos to allow real-time playing on multiple mobile devices is chal-

lenging because different mobile devices support different audio/video encod-

ing. Second, these systems are architecturally complex, consisting of senders

(users who share their video), servers (streaming server and interaction server),

and receivers (users who receive the shared videos); an effective system should

implement these components and also the communications between them.

In this thesis, we developed a platform (Kaleidoscope) for multimedia

streaming sharing on Android devices, enhanced with textual and touch-

display interactions. With the Kaleidoscope, users can sign in and create“chat

rooms” to share videos in real time. A novel feature of Kaleidoscope is that

during a video sharing process, users can touch the screen and annotate the

video content and they can discuss the video through text messaging. We have

implemented three services. The streaming service is responsible for receiving

audio/video streaming data from senders, and transmitting these data to the

receivers. The social-interaction service takes care of user management, video-

chat room management and instant messaging. The storage service saves

audios/videos into files with timestamps to support extended services such

as video content analysis and automatic feature extraction. We evaluate the

Kaleidoscope platform on SAVI and Cybera clouds. Our empirical results show

that the success connection rate is very high whether the clients and servers

are in different locations such as Edmonton, Calgary and Toronto.

1.3 Outline

In Chapter 2, we present a background of media streaming, social activity in-

teractions and related works. In Chapter 3, we begin with a system overview

of Kaleidoscope. We describe the components and services as well as the

flow of video sharing with textual and touch-display social interactions. We

also give details of communication between clients (Sender and Receiver) and

4

servers (social interaction server and video streaming server). We evaluate our

platform by testing it on the SAVI and Cybera clouds with different num-

ber of requesting loads in Chapter 4. Finally, in Chapter 5, we discuss our

contributions and lay out our plans for future work.

5

Chapter 2

Background

In this chapter, we review media streaming, including on-demand streaming

and live streaming. Then we introduce related protocols and technologies

of media streaming in Section 2.1. Next we describe the social-interactions

technologies used in our system (Section 2.2). In Section 2.3 we introduce two

series of audio/video compression and codec algorithms. Finally, we discuss

related works in Section 2.4.

2.1 Media Streaming

2.1.1 Media Streaming Categories

Media Streaming is a technology that presents data to end-users over the

internet continuously at the same time of data transmission [1, 16, 25]. During

the transmission, the media information is packed into data packets and sent

to the client. The media information can be text, audio or video.

There are two types of media streaming [20], including on-demand stream-

ing and live streaming. On-demand streaming is a traditional way which users

cannot watch the video until the whole resource is downloaded or enough data

is cached. With on-demand streaming, users can pause or stop the stream,

playback or fast forward it, even jump to a specific time point. Conversely,

with live streaming the media is sent in a continuous way to clients and it is

played as it arrives in real-time. Based on the fact that live streaming trans-

mits data in real time, there are more limitations than on-demand streaming.

For example, live streaming allows users to go back to a history point, but

6

they can not fast forward to a future point.

Our work is focused on live streaming. When we use “video streaming” or

“media streaming” in the remainder of this thesis, it refers to live streaming.

2.1.2 Media Streaming Protocols

In past decades, many real-time video streaming protocols and mechanisms

for mobile devices have been implemented, such as the Real Time Streaming

Protocol [32] (RTSP) and Real Time Messaging Protocol [26] (RTMP). These

protocols make it possible for users to share audio and video streams over the

network and play them in real-time.

In this thesis, we choose RTSP to implement video streaming. For real-

time media streaming on mobile devices, RTMP has a few disadvantages.

RTMP is a TCP-based protocol, which supports retransmission for lossless

data communication. That means system designers need to come up with a

good missing-data retransmission strategy to avoid audio and video delay, jit-

ter and asynchronization because of the data-packet loss. Furthermore, RTMP

uses different protocols/ports from HTTP [7], which makes it vulnerable to

getting blocked by firewalls and it only works in Flash [18].

Real-time Transport Streaming Protocol (RTSP)

RTSP is a text-based application-layer protocol. It plays the role of “net-

work remote control” in multimedia services such as audio and video in real-

time. In the media streaming transmission, RTSP involves a few basic pro-

tocols for data transmission, media control, and media content description.

Most RTSP servers use Real-time Transport Protocol (RTP) as a delivery

mechanism to transmit the data stream by building a Transmission Control

Protocol (TCP) or User Datagram Protocol (UDP) connection as a media

streaming delivery channel. RTSP defines a series of commands for commu-

nication of clients and streaming servers including OPTIONS, ANNOUNCE,

DESCRIBE, SETUP, PLAY, PAUSE, REDIRECT, RECORD AND TEAR-

DOWN. When a client starts a media streaming session to a streaming server

through RTSP commands, they use the Session Description Protocol (SDP)

to exchange media details, transport addresses, and other session description

7

metadata.

Transmission Control Protocol (TCP)

TCP is a connection-oriented and reliable byte-stream protocol [27]. The

sender and receiver should build a TCP connection before data transmission.

TCP is a transport layer protocol. It has a series mechanisms to ensure the

transmission reliability. Three-way handshake, also referred to as “SYN-SYN-

ACK”, is needed before transmitting data. During data transmission, each

data segment should be acknowledged by the receiver. If the sender does not

get the acknowledged information from the receiver in a predetermined time,

TCP will use a retransmission timeout mechanism to qualify non-loss data and

use sequence acknowledgement numbers to make sure the data segment is in

the right order. In order to control the flow of data and to improve transmission

efficiency, TCP has a sliding window mechanism and uses slow-start algorithm

to avoid network congestion.

User Datagram Protocol (UDP)

UDP is a connectionless and unreliable protocol [28]. Similar to TCP,

UDP is also a transport layer protocol. UDP is only responsible for sending

and receiving the datagram, but it does not guarantee the datagram is received

by the destination after sending the datagram. As a result, the data can be

received out of order, or even lost. Compared to TCP, UDP is faster because

UDP has no flow control, no error checking and no datagram acknowledged

mechanisms. Therefore, UDP is often used by multimedia applications for

transmitting the data stream, such as audio and video streaming data because

these applications are demanding on real-time response and cannot be delayed.

Real-time Transport Protocol (RTP)

RTP is an Internet transport protocol that manages real-time multime-

dia data streams transmission [33]. It is defined as working in the transport

layer, built on the top of UDP. The purpose of RTP is to provide time infor-

mation and to synchronize multiple streams. RTP only guarantees real-time

data transmission but it does not support a reliable transport mechanism for

the transmission of data packets in order. Furthermore, it does not provide

flow control and congestion control, which rely on Real-time Transport Con-

8

trol Protocol (RTCP). RTP provides a timestamp, serial number, and other

structures to manage the real-time streaming data. After receiving data pack-

ets, the clients recover these data packets in an original order according to

the RTP header information which tells the clients how to recover the data

packets and how the codec bit streams are unpacked. RTP header information

contains timing information, sequence number, payload identification, frame

indication, source identification, intramedia synchronization, etc.

Real-time Transport Control Protocol (RTCP)

RTCP is a RTP control protocol [24]. RTCP is responsible for managing

transmission quality between applications to exchange control information on

large networks, mainly for streaming media, telephone and video conferenc-

ing. During an RTP session, an application uses two adjacent ports: one for

RTP, the next one for RTCP. RTCP packets are sent periodically to moni-

tor the quality of service and transfer of users’ session information and other

functions. RTCP packet contains the number of packets sent, the number of

lost packets and other statistics through receiver report (RR), sender report

(SR), source description items (SDES), indicates end of participation (BYE)

and application specific functions (APP) packet formats. Therefore, the server

can use these information to dynamically change the transmission rate, and

even change the payload type. RTP and RTCP work together to minimize

transmission overhead and optimize efficiency.

Session Description Protocol (SDP)

SDP is used for describing multimedia sessions [10]. It serves for session

announcement, invitation and what other forms. SDP does not support the

negotiation operation of SDP session content or media encoding.

When initiating audio/video streaming, video conference, or other sessions,

there is a requirement to convey media details, transport addresses, and other

session description metadata to the participants. SDP provides a standard rep-

resentation for such information such as session name and objectives, session

time, media session and so on.

Table 2.1 shows an audio-only SDP example.

9

Table 2.1: An audio-only SDP exam-
ple.

v=0
o=- 0 0 IN IP4 127.0.0.0
s=Unnamed
i=N/A
c=IN IP4 0.0.0.0
t=0 0
a=recvonly
a=control:*
m=audio 0 RTP/AVP 96
a=3GPP-Adaptation-Support:1
a=rtpmap:96 AMR/8000
a=fmtp:96 octet-align=1;
a=control:trackID=0

In Table 2.1, the parameter v

means protocol version; o is origina-

tor and session identifier; s is the ses-

sion name; i is the session informa-

tion (optional); c is the connection

information (optional); t is the time

description and time the session is

active; a means attribute lines (op-

tional). m means media name and

transport address. If a media in-

cludes video stream, the m tag looks

like “m=video 0 RTPAVP 96”, op-

tionally followed by some attribute

lines.

There are some other optional parameters. For more details, please refer

to [10].

2.2 Instant Messaging

In this section, we give a description of technologies we used in instant mes-

saging (IM) with touch-display interactions.

2.2.1 Extensible Messaging and Presence Protocol

Extensible Messaging and Presence Protocol (XMPP) [30, 31], also known as

Jabber protocol, developed in 1999 that is intended for IM and online presence

detection. XMPP is based on Extensible Markup Language (XML) streaming

technology. XMPP makes messaging over the internet possible, independent

of operating systems and browsers. In addition, XMPP is designed to support

IM tasks such as authentication, access control, end-to-end encryption, and

compatibility with other protocols.

Furthermore, the XMPP Standards Foundation (XSF) develops many ex-

10

tensions (XEPs) 1 which make XMPP more powerful such as roster, client and

server elements or attributes whose extended namespaces are “jabber:iq:roster”,

“jabber:client” and “jabber:server”, respectively.

Each XMPP entity needs an address to identify itself, called Jabber ID

(JID). JID format is, “node@domain/resource” where“node” can be a user

name or chat room, “domain” is server name and “resource” is the entity’s de-

vice identifier. A complete example: “sender@myria/Smack” where “sender”

is the username, “myria” is the server name and “Smack” is the mobile identi-

fier. There are three core elements or stanzas: <presence/>, <message/> and

<iq/> in XMPP. In each of them, there are five common attributes: from, to,

id, type, and xml:lang :

• from means the initiator of the XMPP entity sending the stream element;

• to indicates the JID of the intended recipient which the initiator knows;

• id is a unique identifier of the stream;

• type means the purpose or context of stanzas;

The definition of <presence/>, <message/> and <iq/> stanzas and example

are below.

• The <presence/> element represents status of entities. It is a broadcast

notification mechanism to notify whenever a user is online or not in IM

applications. A <presence/> stanza format example is,

<presence id="ikRMO-3" from="sender@myria/Smack"

to="receiver@myria/Smack">

<status>online</status>

</presence>

In this example, an online notification is sent from a user to another

user. The id identifies this interaction.

• The <message/> element is used when users send messages to each other

in real-time. It also supports store-and-forward asynchronous messages.

1XEPs: http://xmpp.org/xmpp-protocols/xmpp-extensions/

11

A <message/> stanza example when the owner of a chat room “room@

conference.myria” sends an invitation to a user “receiver@myria” is,

<message from="room@conference.myria" to="receiver@myria" >

<x xmlns="http://jabber.org/protocol/muc#user">

<invite from="sender@myria">

<reason>Join us receiver@myria </reason>

</invite>

</x>

</message >

In this example, an invitation is sent from a room to a user with a reason.

The xmlns is XML schema such as "http://jabber.org/protocol/

muc#user". This XML schema defines a series of elements or tags such

as x, invite, item, etc. Different XML schemas have different elements.

• The <iq/> element is used when users request from and respond to each

other. A <iq/> stanza format example is,

<iq type="result" id="ikRMO-2" to="sender@myria/Smack">

<query xmlns="jabber.iq:roster">

<item jid="receiver@myria" name="Receiver"

subscription="both">

<group>Friends </group>

</item>

</query>

</iq>

In this example, this is friends query response from server to user. The

type=“result” which means this message is a response from server; the

to=“sender@myria/Smack” means the destination; the query element

means this is a query result; the xmlns attribute indicates that this

tag and the following tag are defined in “jabber.iq:roster” schema. For

each friend of this user, it returns an item element with this friend’s

JID, name and the status of subscription. If the friend belongs to some

group, a group tag with group name is returned.

XMPP starts from <stream/> stanza, then followed with these three

core stanzas: <presence/>, <message/> and <iq/>. Including from, to,

12

id, xml:lang attributes, <stream/> also has version attribute which means

the version of protocols.

2.2.2 Authentication and Security

XMPP uses Simple Authentication and Security Layer (SASL) framework to

replace its original authentication and data security mechanism. SASL is a

framework for adding authentication support to application protocols [23].

SASL was designed by Myers, John G. in 1997. SASL has many authentica-

tion approaches that can be easily used in XMPP, including DIGEST-MD5,

EXTERNAL, SKEY and PLAIN. When XMPP uses SASL to connect a con-

nection, it uses DIGEST-MD5 approach to authenticate a session.

A summary of the process of authentication between clients and an XMPP

server is below.

• step 1: Clients initiates a stream to the XMPP server with <stream/>

tag:

<stream:stream to="server Name"

xmlns="jabber:client"

xmlns:stream="http://etherx.jabber.org/streams"

version="1.0">

• step2: The server responds clients with available authentication mecha-

nisms such as DIGEST-MD5, PLAIN, ANONYMOUS and CRAM-MD5

using <features/> tag:

<stream:features >

<starttls xmlns="urn:ietf:params:xml:ns:xmpp-tls"/>

<mechanisms xmlns="urn:ietf:params:xml:ns:xmpp-sasl">

<mechanism>DIGEST-MD5</mechanism>

<mechanism>PLAIN </mechanism>

<mechanism>ANONYMOUS </mechanism>

<mechanism>CRAM-MD5 </mechanism>

</mechanism>

<auth xmlns="http://jabber.org/features/iq-auth"/>

</stream:features>

• step 3: Then clients select an authentication mechanism and return the

choice to the server;

13

• step 4: The server communicates with clients and validate their authen-

tication by sending an encoded challenge and clients need to pass it.

If a client passes, the server will return to the client a response with

<success/> tag:

<success xmlns="urn:ietf:params:xml:ns:xmpp-sasl"/>

or the authentication is failed, the server will return a response with

<failure/> tag:

<failure xmlns="urn:ietf:params:xml:ns:xmpp-sasl"/>

• step 5: Once a client receives <success/> tag, it initiates a new stream

to the server and binds itself to a specific resource with JID by sending

a <bind/> tag. For detailed examples of SASL authentication, please

refer to [30].

2.3 Compression and Codec

Before transmitting the audio and video data to streaming server, the data

should be compressed or encoded because of the limited network bandwidth.

During the past decades, there are many kinds of audio/video compression

and codec algorithms. For instance, the video coding standards have been

developed into two categories. One is the Moving Pictures Expert Group

(MPEG) with video coding standards by ISO/IEC (an ISO organization).

The other is the Video Compression Expert Group (VCEG) with video coding

standards by ITU-T (an organization). In the following, we briefly summarize

these media coding standards.

MPEG series standards

• MPEG-1 is designed for CD-ROM digital media and compressed at bit

rate up to 1.5Mbps in 1990 [5]. It became video coding standard in 1992

and is the first video compression standard made by MPEG. It consists

of five parts (systems, video, audio, conformance testing and reference

software) and is widely used, such as MP3 audio format.

14

• MPEG-2, also known as H.262 [13, 9], was published in 1994 [11, 3, 38]. It

targets television broadcast such as cable and satellite television. MPEG-

2 is backward compatible and is a core technology of DVD-Video.

• MPEG-4 was introduced in 1998 [29, 37]. It keeps many good features

of MPEG-1 , MPEG-2 and other related standards. It is aimed at

web streaming media, voice and broadcast television applications, etc.

MPEG-4 enables encoding and transmitting mixed media data robustly

and efficiently.

H Series standards

• H.261 is another kind of video compression standard which was published

by VCEG in 1996 [12]. It mainly targets on ISDN video conferencing

with a 64kbps bit-rate. H.261 is a milestone in the video compression

development history.

• H.263 is a widely used video compression standard in many applications

[14]. It has a big improvement based on previous video compression

standards such as H.262. In addition, it added many features such as

supporting streaming media and IP-based videoconferencing. It is ex-

tended by H.263+ and H.263++ to improve coding performance.

• H.264/AVC, also known as MPEG-4 part 10 [37] Advanced Video Coding

(MPEG-4 AVC), it was completed in 2003 by VCEG and MPEG and

is one of the most commonly used video compression standards [15].

H.264 is designed for a variety of applications and is more efficient than

MPEG-2 and H.263.

• H.265, also known as HEVC (High Efficiency Video Coding) [35], is

jointly developed by MPEG and VCEG. The first version was published

in 2013 [8]. It targets to provide high quality video with low bit-rate and

high coding efficiency.

In our system, we use the commonly used media compression algorithms

H.263 and H.264 (MPEG-4 part 10). Users can choose one of the algorithms

15

to set it up.

2.4 Literature Review

Due to the rapid development of wireless networks and smart mobile tech-

nologies, mobile video streaming and social networks have become an essential

part in people’s live in many kinds of areas (social interaction, education,

entertainment, surveillance, etc.). There have been lots of well-known tech-

nologies of video streaming on mobile devices over the internet, from client

end to streaming server side, from the video compression to streaming proto-

cols. A majority of research and applications on video streaming are focused

on video-clip sharing and on-demand streaming Some of them are focused on

video-clip or real-time annotation

For example, in video sharing, Cheng and Liu [4] presented a NetTube, a

peer-to-peer for short video sharing application. They designed a model to

reduce the server workload to improve the playback quality and scalability.

Jia [17] and Ma [21] proposed MoviShare (movie video share), a video

sharing platform that can provide video browsing and publishing services for

mobile users. MoviShare targets a seamless combination of location-based

mobile social networking and mobile multimedia sharing. It can also generate

a GIF (Graphics Interchange Format) file of available video clips as video

abstraction to solve bandwidth and energy limitation problems. However,

MoviShare is not a live streaming system but an on-demand streaming. Users

can only share their videos once they have finished recording and uploading

their videos to a server.

Silva et al. [34] described a method for annotating objects on a live video

streaming on Tablets. They designed two approaches to allow users to add

annotations when the objects are moving in the video. They use object track-

ing methods such as Kinect sensor to create anchors on those annotations to

avoid the annotations lost when overlaid.

Yamamoto et al. [43] proposed a way to generate annotations based on so-

cial activities associating with video clips, such as user comments and weblog.

16

They developed a system called Synvie to extract valuable information from

those social and community activities as videos annotations.

El-Saban et al. [6] presented a system for real-time video annotation of

captured videos on mobile phones to facilitate browsing and searching. A user

can use this system to capture a video with his mobile phone. The video is

sent, in real-time, to a centralized server which analyzes video keyframes to

generate annotations by using MSERs (maximally stable extremal regions)

detector with SIFT (scale-invariant feature transform) features. Then these

annotations are returned to the user’s mobile phone. Their work is focused on

generating annotations from real-time videos.

H. Sun et al. [36] presented an overview of scalable video streaming tech-

niques which include scalable video coding, video transcoding, network proto-

cols and streaming methods that have been developed in recent years.

Walker et al. [39] provided an architecture of mobile video streaming un-

der 3G and GPRS networks and some standard techniques for audio/video

streaming such as audio/video compression and streaming protocols. In their

system, they used client buffering for packet loss and stream switch-down de-

cision for lower bit rate. However, their system has a constant delay of tens

of seconds when streaming live events. They tested it with only one mobile

client.

Meyer [22] addressed a research work on mobile video streaming with a

Client/Server architecture. He extended the SpyDroid 2 project and used the

VLC Player 3 as a client streaming player. However, his focus is optimizing

encoding standards according to the quality of connection for transmission and

minimizing consumption of power. It has no social activities or touch-display

interactions.

We developed a platform called Kaleidoscope for live media streaming shar-

ing with social-activities on mobile devices. Users can build a private chatting

room to invite their friends to join and share real-time video streaming. Be-

sides sending instant messages to the whole set of peers, all the users can

2SpyDroid: https://code.google.com/p/spydroid-ipcamera/
3VLC: http://www.videolan.org

17

also communicate through touching the screen to annotate interesting things.

The Kaleidoscope system supports multi-audio/video encoders. Therefore, the

Kaleidoscope supports different screen resolutions and frame rates.

18

Chapter 3

The Kaleidoscope System

In this chapter, we present a synchronous multi-modal interaction system

(Kaleidoscope) that supports streaming video sharing, instant messaging, and

UI interaction sharing. Kaleidoscope enables friends to share live videos and

interact with textual messages and touch-display annotations. Firstly, we give

a system overview of Kaleidoscope. Then we describe the flow of Kaleidoscope

(Section 3.1). The Kaleidoscope system has two major components. One com-

ponent is Kaleidoscope client with Sender, Receiver and functions. The other

component is Kaleidoscope server which is responsible for room management,

video streaming, instant messaging, touch-display annotations and storage.

Then, we describe the communications and behaviors between clients and

servers of Kaleidoscope in Section 3.2. Finally, we provide a storyboard of the

Kaleidoscope in Section 3.3.

3.1 System Overview

The purpose of Kaleidoscope system is to provide a real-time video sharing

platform with social-activity interactions on mobile devices. Figure 3.1 shows

a high level description of the interaction of the Kaleidoscope system. The

Kaleidoscope system uses Client/Server (C/S) model. On the client site, it

consists of two components — the Sender and the Receiver. On the server site,

it has three components which are video streaming service, social interaction

service and storage service.

19

Figure 3.1: Kaleidoscope system interaction diagram. On the Sender side a
user can create a chat room, invite friends to join and share a video stream-
ing with friends in that chat room. On the Receiver side a user can accept
the invitation, join the chat room and play the video streaming in real-time.
On both Sender and Receiver sides users can communicate by sending text
messages or touching the video screen to annotate video content to share with
each other.

3.1.1 Architecture

In Figure 3.1, there are three services on the server. The social interaction

service process starts from step (a) to step (f) by green lines. The video

streaming service process is described from step (A) to step (H) labeled by

black lines. The storage service is responsible for saving social interaction

information and media streams into database. In this section, we describe

all major components in client side and server side with the libraries used in

developing Kaleidoscope system. In Section 3.1.2, we give a detail description

of social interaction and video streaming service.

Kaleidoscope Client

We implement Sender and Receiver clients based on VLC player library

— (libVLC) 1 on Android mobile devices. VLC player is a cross-platform

multimedia player which is open source and supports many kinds of audio and

1libVLC: http://www.videolan.org/vlc/libvlc.html

20

video codecs. The libVLC is the core engine of VLC. To build libVLC and

embed it in our system, we need to download VLC source code and compile it.

The libVLC is a C library. Since Kaleidoscope client is an Android project, we

compile the libVLC library into a dynamic library according to the Android

system requirement and load it into the project. See AndroidCompile [42] and

LibVLC Android Sample [40] for details about compiling VLC and embedding

it into Android applications. Figure 3.2 shows the libVLC library view.

Figure 3.2: The libVLC library view.

In the org.videolan.libvlc pack-

age, it provides decoding library

functions and basic functions of

playing audios and videos. The

org.videolan.vlc.interface defines play-

ing and controlling audio inter-

faces. The org.videolan.vlc.audio

and org.videolan.org.gui.video imple-

ment audio and video decoding play-

ing service. It also provides au-

dio and video player widgets in

org.videolan.vlc.widget package.

Kaleidoscope Server

Social Interaction Service. In Kaleidoscope, the social interaction

service is responsible for user management, chat room management and instant

messaging (IM). We use Openfire 2 as the social activity interaction server.

Openfire is an open-source cross-platform IM server using XMPP protocol.

Openfire provides a plugin interface for further development. With the plugin

interface, developers can extend their own functions or plugins according to

their system requirements. Openfire has many nice features such as providing a

web based administration panel to manage users, chats (peer-to-peer chat and

multi-user chat), chat rooms and database connectivity for storing messages

and user details.

2Openfire: http://www.igniterealtime.org/projects/openfire/

21

We use the aSmack 3 library to implement social interactions client side.

The aSmack is an open source XMPP client library written in Java language.

It allows us to implement user registration, login, chat rooms, friend inviting

and messaging. Figure 3.3 shows the API package view. The latest ver-

sion has been replaced with the Smack library 4. All the XMPP API func-

tions we used are in jivesoftwore.smack and jivesoftware.smackx packages.

Figure 3.3: XMPP Client Library aS-
mack liabrary view.

The jivesoftwore.smack package in-

cludes important classes such as,

SASLAuthentication, XMPPConnec-

tion, ConnectionConfiguration, Chat

and ChatManager, etc. The SASLAu-

thentication class is responsible for

SASL authentication; XMPPCon-

nection and ConnectionConfigura-

tion are responsible for XMMP con-

nection and connection configura-

tion; Chat and ChatManager are re-

sponsible for peer-to-peer messaging

and messages management.

The jivesoftware.smackx is a plugin extension package which contains very

useful classes such as MultiUserChat, Roster, RosterEntry and GroupChat-

Invitation, etc. The MultiUserChat class is used to create chat rooms and

multi-user chatting; GroupChatInvitation is responsible for inviting friends to

a group chat; Roster and RosterEntry classes are used to retrieve all friends

of a user and add friends to a group.

Video Streaming Service. The video streaming service is responsi-

ble for receiving the multimedia streaming data from Senders and forwarding

them to Receivers. We use EasyDarwin 5 (ESS) as the streaming server.

EasyDarwin is an open-source streaming server project based on Apple’s Dar-

3aSmack: http://asmack.org
4Smack: https://github.com/igniterealtime/Smack
5EasyDarwin: https://github.com/EasyDarwin/EasyDarwin

22

win Streaming Server 6. It allows users to send video streaming to clients

through the Internet using RTP/RTSP protocols. Besides live streaming, ESS

also supports on-demand streaming. Furthermore, ESS uses modular design

and provides an interface for further development. We can develop our own

modules according to the requirement of Kaleidoscope system such as storage

module which is used to save audio and video streaming into files. Figure 3.4

shows the ESS project view.

Figure 3.4: ESS project view.

The Server.tproj is the main

project of ESS which contains the

core server code and RTP subsystem

and RTSP subsystem which are re-

sponsible for management of all mod-

ules, RTP/RTSP streams and ses-

sions. There are two important li-

braries CommonUtilitiesLib and QT-

FileLib in ESS project. These two

libraries cover almost all the basic

functions and tools of ESS such as

thread management, data structure,

networking and files parsing utili-

ties. The RTCPUtilitiesLib has func-

tions for processing RTCP requests

and RTSPClientLib is responsible for

implementing server’s RTSP client.

The APIModules contains stream-

ing server modules of ESS such

as QTSSFileModule, QTSSReflector-

Module, QTSSAccessLogModule and

QTSSFlowControlModule. More de-

tailed programming guides are in [2].

6http://dss.macosforge.org/

23

On the video streaming client, we use the libstreaming 7 library to imple-

ment the interactions and data transmission between clients and ESS. The

libstreaming is a video streaming API which provides a strategy for stream-

ing multiple audio and video encoders by using RTP/RTSP. Figure 3.5 shows

the libstreaming library package view. The functions of the packages are as

follows.

Figure 3.5: The libstreaming library
view.

The net.majorkernelpanic.rtsp pack-

age implements RTSP commands

and is responsible for sending RTSP

requests and processing interactions

with streaming server on client

side such as SendRequestAnnounce()

and SendRequestSetup() methods.

The net.majorkernelpanic.audio and

net.majorkernelpanic.video packages

are responsible for encoding au-

dio and video into AAC, AMR,

H.263 or H.264 format. The

net.majorkernelpanic.rtp package de-

fines audio and video “packetizers”

which are responsible for packing

the audio and video streaming data

into RTP packet, and transmitting

them to streaming server. The

net.majorkernelpanic.rtcp package is responsible for processing RTCP re-

quests and sending reports to server. The net.majorkernelpanic.streaming

package is responsible for controlling RTP/RTSP session connections. The

net.majorkernelpanic.mp4 package implements adding MP4 header informa-

tion to audio and video RTP packets such as PPS and SPS information on

the Sender side. On the Receiver side, the header information is used to de-

code videos into MP4. The other packages provide video surface control and

7libstreaming: https://github.com/fyhertz/libstreaming

24

exception handling.

Storage Service. In Kaleidoscope, the storage service is responsible

for storing the content (text messages, touching annotations and audio/video

streams) with timestamps on a cloud. We implement the storage service based

on ESS, Openfire and LAMP (Linux-Apache-MySQL-PHP) stack [41]. LAMP

is an open source software bundle including Linux Operating system, Apache

HTTP server, MySQL relational database management system and PHP script

language. Text messages and touching annotations are stored in database di-

rectly. Audio and video streams are saved into files. All the relevant informa-

tion are connected with timestamps, chat rooms and stream names to support

extended services such as video content analysis and feature extraction.

3.1.2 The Overall Kaleidoscope Process

The whole running process of the Kaleidoscope system is shown in Figure 3.1,

where green lines stand for social interaction process and black lines stand for

video streaming process. The process starts with Step 1 and terminates at

Step 15.

Registration.

Step 1: When a user (Sender) wants to start a video streaming channel,

he should register an account first. When the user registers an account in the

Kaleidoscope system, it needs a username and email.

Login.

Step 2: Then the Sender can sign in the Kaleidoscope system with the

registered account. Once logged in, an online notification is sent to all his

friends.

Initiating a session.

Step 3: The Sender creates a chat room which is used to share content

(text messages, audio, video and touch annotations of videos) with friends.

The content is only visible to friends who joined the room.

Step 4: The Sender sends invitations to selected friends (Receivers). The

invitation information includes the Sender’s name and the subject of video.

Sender: push video streaming

25

Step 5: Then the Sender starts a video streaming channel and sends push-

ing video streaming request to the streaming server through RTSP commands.

Step 6: With the response of streaming server, if the response is OK, the

Sender begins to capture the audio and video streaming data. The Sender

client encodes the streaming data and packetizes them into RTP packets, then

uploads them to a streaming server.

Media streaming storage.

Step 7: When the streaming server receives the streaming data from the

Sender, it saves it into an MP4 file with metadata such as the room name and

Sender name on storage server.

Receiver: accept the invitation.

Step 8: On the Receiver side, when Receivers get the invitation, they can

accept or reject the invitation.

Step 9: Once a Receiver accepts the invitation, he joins the chat room; and

Receiver: play video streaming.

Step 10: A watching video streaming request is sent to the streaming server

through RTSP commands.

Step 11: After receiving the request from the Receivers, the streaming

server transponders the streaming data to them.

Chatting and touch-display interactions.

Step 12: Then the Sender can talk about the video content with the Re-

ceiver by sending messages and the Receiver can also send messages back to

the Sender.

Step 13: Furthermore, the Sender and the Receiver can communicate by

touching the screen to annotate the video content to share with each other.

Message and annotation storage.

Step 14: All text messages and touching annotations are stored on MySQL

database with timestamps.

Session teardown.

Step 15: The Sender and Receivers can stop playing the video and leave

the room. When the Sender stops streaming and leaves the room, the room

will be destroyed and an notification is sent to all Receivers that the Sender

26

destroyed the room. Then all Receivers leave room automatically.

3.2 Communication and Behavior

In this section, we discuss communications and behaviors of social interactions

and video streaming. We also explain the information exchange between clients

(including Sender and Receiver) and servers (including interaction server and

video streaming server).

3.2.1 Clients and Social Interaction Service

In this section, we describe the communication between clients and the social

interaction server.

Figure 3.6: Communication between Sender, social interaction server and Re-
ceiver. When explaining these messages below, we use Si to refer to Sender
side’s step i, and Ri to refer to the Receiver side’s step i.

27

In Figure 3.6, the Sender invites a Receiver to watch a video. Detailed de-

scription of the communications between Sender and social interaction server

and between Receiver and social interaction server are as follows. Correspond-

ing to the step numbers in Figure 3.6, we use Si to refer to Sender side’s step

i, and Ri to refer to the Receiver side’s step i.

S1 and R1: All the clients need to be validated by SASL authentication

mechanism to build an XMPP connection when login.

In order to build an XMPP connection with the social interaction server,

the client should first create an object of ConnectionConfiguration class with

three parameters—server IP address, server port and server name; and then set

the security mechanism as SASL authentication mechanism with setSASLAu-

thenticationEnabled(true) method. An XMPP connection is built between

the client and the server by connect() method. A response with <success/>

tag is returned to the clients. Then the login() method is called with two

parameters: username and password. The client will use DIGEST-MD5 au-

thentication method to validate the credentials with the interaction server.

Once authenticated, the user can login the social interaction server.

S2 and R2: After logging in successfully, the client opens an invitation-

listener which listens to the invitations from friends through the Invitation-

Listener() method.

S3 and R3: Once logging into the server, the clients send presence broad-

cast (online notification) to their friends with <presence/> stanza and the

server returns their friends’ online notification to the clients. A request - re-

sponse example is shown in Table 3.1:

28

Table 3.1: An example of presence broadcast and response between clients and
server.

request sent from S3 to R3:

<presence id="HklE3-27">

<c xmlns="http://jabber.org/protocol/caps" hash="sha-1"

node="http://www.igniterealtime.org/projects/smack/"

ver="VFSF0KBWvgtPDuY7gJPzp1m5j4E="/>

</presence>

response:

<presence id="QPEQ8-3" from="receiver@myria/Smack"

to="sender@myria">

<status>online</status>

</presence>

Then the clients will retrieve all their friends from the server through send-

ing <iq/> element with type=“get” to the server. After receiving the <iq/>

element with type=“get” request, the server will perform the query and return

a list of their friends. An example is shown in Table 3.2.

Table 3.2: An XMPP example of retrieving friend list from server.

request:

<iq id="HklE3-26" from="sender@myria/Smack" type="get">

<query xmlns="jabber:iq:roster">

</query>

</iq>

response:

<iq type="result" id="HklE3-26" to="sender@myria/Smack"

type="get">

<query xmlns="jabber:iq:roster">

<item jid="receiver@myria" name="receiver"

subscription="both"/>

<item jid="user3@myria" name="user3"

subscription="both"/>

</query>

</iq>

To get the friend list, we first call XMPPConnection.getRoster() method

which returns a Roster object, and then use Roster.getEntries() method.

S4: The Sender creates a chat room with createMultiUserRoom() method

29

and opens two listeners, room-message-listener (RoomMsgListenerConnection()),

and touch-annotation-listener (PAINTViewRoomMsgListener()). The former

listener is responsible for listening to the messages from the chat room and the

latter is responsible for listening to the screen touching annotation messages.

The Sender configures the chat room settings such as the room name, the

number of members and room persistence by sending a <iq/> element with

type=“set” to the server. If the chat room is created successfully, the server

returns the result with chat room information to the Sender. The example is

shown in Table 3.3:

Table 3.3: The chat room configuration request and response between clients
and server. The value of 0 means false and 1 means true.

request:

<iq id="HklE3-32" to="roomname@conference.myria" type="set">

<query xmlns="http://jabber.org/protocol/muc#owner">

<x xmlns="jabber:x:data" type="submit" >

<field var="muc#roomconfig_roomname" type="text-single"

label="Room Name">

<value>roomname</value>

</field>

<field var="muc#roomconfig_maxusers" type="list-single"

label="Maximum Room Occupants">

<value>30</value>

</field>

<field var="muc#roomconfig_persistentroom" type="boolean"

label="Room is Persistent">

<value>0</value>

</field>

<field var="muc#roomconfig_moderatedroom" type="boolean"

label="Room is Moderated">

<value>1</value>

</field>

<field> ... </field>

</x>

</query>

</iq>

response:

<iq type="result" id="HklE3-32" from="roomname@conference.myria"

to="sender@myria/Smack"/>

30

S5: The Sender sends joining room invitations to selected friends with

media streaming link by inviteToChatRoom() method, and a <message/>

stanza is sent to the server. The example is shown in Table 3.4:

Table 3.4: The Sender sends invitation to a Receiver.

<message id="HklE3-35"

to="receiver@myria/Smack" type="groupchat"

from="roomname@conference.myria/sender@myria/Smack" >

<body>rtsp://162.246.156.33:554/live.sdp ></body>

</message>

The invitation information includes message type, chat room name, Sender’s

JID and the resource URL of media streaming.

Then the Sender starts pushing media streaming to streaming server at

the same time. The communication process of Sender and steaming server is

introduced in Section 3.2.2.

R6: With the invitation-listener, once invited, the Receiver will receive

the invitation with <message/> tag (Table 3.5):

Table 3.5: The Receiver gets the invitation from the Sender.

<message from="roomname@conference.myria" to="receiver@myria" >

<x xmlns="http://jabber.org/protocol/muc#user" >

<invite from="sender@myria" >

<body>rtsp://162.246.156.33:554/live.sdp</body>

</invite>

</x>

</message>

R7: The Receiver can accept or reject. Upon accepting, the Receiver

opens the room-message-listener and touch-annotation-listener, and joins the

chat room. The server sends a message to the Receiver to notify Receiver’s

role in this chat room. A message about the role being a participant example

is as follows (Table 3.6).

31

Table 3.6: Server response containing the Receiver’s role in the chat room.

<presence id="eE58-6" to="receiver@myria/Smack"

from="roomname@conference.myria/sender@myria/Smack">

<x xmlns="http://jabber.org/protocol/muc#user">

<item jid="receiver@myria/Smack" affiliation="none"

role="participant"/>

</x>

</presence>

Then the Receiver sends a streaming request to the streaming server with

the URL received from the Sender. The behavior of requesting media stream-

ing between Receiver and streaming server is described in Section 3.2.2.

S8 and R8: The Sender and Receiver can communicate freely in this

room through sending instant messaging with SendMessage(). An example of

chatting in the chat room is shown in Table 3.7.

Table 3.7: The clients communicate in a chat room.

Sender sends message in a chat room:

<message id="deE58-14" to="roomname@conference.myria"

type="groupchat">

<body>Hello everyone!</body>

</message>

Receiver gets message in the chat room:

<message id="deE58-14"

to="receiver@myria/Smack" type="groupchat"

from="roomname@conference.myria/sender@myria/Smack">

<body>Hello everyone!</body>

</message>

The Sender sends message “Hello everyone!” in the chat room and all

members will receive this message.

S9 and R9: The Sender and Receiver can also communicate by touching

the screen and annotating the video content. This is novel feature of social

interactions. A detailed description is described in Section 3.2.3.

R10: The Receivers can depart the chat room through departChatRoom()

method by sending “unavailable” <presence/> to friends. Table 3.8 shows the

example:

32

Table 3.8: The Receiver leaves chat room.

<presence id="HklE3-22" type="unavailable">

<c xmlns=’http://jabber.org/protocol/caps" hash=’sha-1"

node="http://www.igniterealtime.org/projects/smack/"

ver="VFSF0KBWvgtPDuY7gJPzp1m5j4E="/>

</presence>

S10: The Sender can destroy the chat room to stop playing the media

streaming and instant messaging with stopStream() and destroyChatRoom()

methods. A close<stream/> tag will be sent to the server: </stream:stream>.

If the Sender destroys the room, a notification is sent to all Receivers and the

Receivers leave the chat room, e.g.,

Table 3.9: The Sender destroys the room.

<iq id="HklE3-45" to="roomname@conference.myria" type="set">

<query xmlns="http://jabber.org/protocol/muc#owner">

<destroy jid="roomname@conference.myria">

<reason>destroy reason</reason>

</destroy>

</query>

</iq>

All the contents such as Sender name, Receiver name, room name, instant

messages and touch-display annotations are saved into MySQL database with

timestamps.

3.2.2 Clients and Streaming Service

After creating a chat room and sending invitations to selected friends, the

Sender starts capturing the audio and video data. The Sender client will

encode the streaming data and packetize them into RTP packets, then push

these packets data to the streaming server by sending RTSP push commands.

On the other side, after receiving and accepting the invitation, Receivers

send a video streaming request to the streaming server by sending RTSP

request commands. The communication mechanism between Senders, the

streaming server and Receivers is shown in Figure 3.7. Corresponding to the

33

sequence numbers in Figure 3.6, we use Si to refer to Sender side’s step i, and

Ri to refer to the Receiver side’s step i.

Figure 3.7: Streaming communication between Sender, streaming server and
Receiver. When explaining these messages below, we use Si to refer to Sender
side’s step i, and Ri to refer to the Receiver side’s step i.

When a Sender starts a video streaming channel, the Sender needs to ini-

tialize some configuration of the streaming process. Firstly, the Sender calls

PLAYVideoStreaming() function to start a video streaming. After configuring

audio and video settings such as audio/video encoders and video resolution,

PLAYVideoStreaming() will call startStream() to begin to send RTSP com-

mands to the streaming server to start video streaming. The whole process

of communication between Sender and streaming server can be described in a

series of commands: ANNOUNCE — SETUP — PLAY — TEARDOWN.

When a Receiver get the invitation from a Sender, the Receiver parses

the invitation information to get the media URL resource and call load()

34

function first. This method uses audio as a default player. In this method,

it sends RTSP requesting commands to the streaming server according the

stream URL. A streaming requesting process of communication from Receiver

to streaming server through (OPTIONS) — DESCRIBE — SETUP — PLAY

— TEARDOWN commands. Detail interaction of description is explained

below.

S1: ANNOUNCE. When starting a video streaming, the Sender sends

RTSP ANNOUNCE command. Its format is rtsp: // server-ip: port/

streaming-name. sdp RTSP/version where the server-ip is the IP address

of the streaming server, port is the server port, streaming-name.sdp is the

unique identifier of the video streaming, and RTSP/version is the version of

RTSP. This function will return a sequence number and use it to send the next

command.

An example of ANNOUNCE command. ANNOUNCE rtsp: // 162. 246.

156. 33: 554/ live. sdp RTSP/1.0 is sent to the streaming server. In this

example, the Sender sends SDP information of local media to the streaming

server, where the sequence number CSeq starts from 1.

In the streaming server, ANNOUNCE command is processed by DoAn-

nounce() function of QTSSReflectorModule module. It sets the media stream-

ing in a broadcast mode and parses the header of the request of SDP and

return a status code of “200 OK” RTSP/1.0 200 OK to the Sender.

S2 and S3: SETUP. Next the Sender sends SETUP command through

SendRequestSetup() method to the streaming server. Taking video-only stream-

ing for example, a SETUP command is SETUP rtsp: // 162. 246. 156. 33:

554/ live. sdp/ trackID= 0 RTSP/1.0. In the streaming server, the SETUP

command is processed by DoSetup(). The streaming server creates a session

using ReflectionSession class with a session ID, and then parses the media

streaming tracks, such as audio track and video track. For each media stream,

the Sender should send SETUP command independently and the sequence

number increases automatically. For example, if the media mixes audio and

video together, the Sender will send another SETUP command to the stream-

ing server: SETUP rtsp: // 162. 246. 156. 33: 554/ live. sdp/ trackID=

35

1 RTSP/1.0 and sequence number CSeq is 3.

S4: PLAY. After the streaming server parses SDP information from the

Sender, AddRTPStream class will create RTP streams according to the media

streaming tracks and returns “200 OK” to the Sender. Then the Sender sends

PLAY command with a resource link to the streaming server (SendRequest-

Play() method) (PLAY rtsp: // 162. 246. 156. 33: 554/ live. sdp RTSP/1.0)

with CSeq:4. The streaming server calls DoPlay() function to redirect Reflec-

tionSession to RTPSession. Accordingly, ProcessRTPData() method is called

to process the RTP data according to the track’s ID

The streaming server returns a response which has a request address of

media streaming data. The request address is a URL, for example, rtsp:

// server_ ip: port/ streamName. sdp . The server ip is the IP address of

the streaming server, the streamName.sdp is the file location of the media

streaming. The stream name must end with .sdp, because it is a file identifier

to indicate the stream with SDP value.

S5: RECORD. Then the Sender sends RECORD command to the stream-

ing server. The RECORD command is RECORD rtsp: // 162. 246. 156.

33: 554/ live. sdp RTSP/1.0. After receiving the RECORD command, the

streaming server will call openRTSP program to output the media streams

into a MP4 file.

S6: TEARDOWN. The Sender can stop the media stream by sending

a TEARDOWN command (TEARDOWN rtsp: // 162. 246. 156. 33: 554/

live. sdp RTSP/1.0) with stopStream() function to the streaming server.

After receiving the TEARDOWN command, the streaming server stops re-

ceiving the streaming data and forwarding the streaming data to connected

Receivers. The Sender destroys the chat room and the social interaction server

closes all the connections with the Sender and the Receivers.

When a Receiver get the invitation from a Sender, the Receiver parses

the invitation information to get the media URL resource and call load()

function first. This method uses audio as a default player. In this method,

it sends RTSP requesting commands to the streaming server according the

stream URL. A streaming requesting process of communication from Receiver

36

to streaming server through (OPTIONS) — DESCRIBE — SETUP — PLAY

— TEARDOWN commands. Detailed process is as follows.

R2: OPTIONS. The OPTIONS command is optional. Either the OP-

TIONS and DESCRIBE commands together in sequence, or the DESCRIBE

command only can be sent to the streaming server. The OPTIONS command

is responsible for showing the protocol version and available commands from

the server to Receivers.

After receiving OPTIONS command OPTIONS rtsp: // 162. 246. 156.

33: 554/ live. sdp RTSP/1.0, the streaming server returns a “200 OK” sta-

tus code and a series of possible commands to the Receiver.

R3: DESCRIBE. The DESCRIBE command retrieves the description

of the request URL from the server. The server returns a description of the

request resource to Receivers. A DESCRIBE command is DESCRIBE rtsp:

// 162. 246. 156. 33: 554/ live. sdp RTSP/1.0. In this example, a request

address is used which is returned from streaming server before. A streaming

server will call DoDescribe() function which parses the URL address to get the

address of the streaming server and looks for the streaming media resource in

the server.

Then it returns a status code of “200 OK” to the Receiver with the stream-

ing media SDP information. The SDP includes the stream tracks information

such as audio track ID, audio frequency and video encoder.

R4 and R5: SETUP. After receiving SDP information of the media

streaming, the Receiver sends SETUP and PLAY commands to the streaming

server. Note that the Receiver sends a SETUP command to the streaming

server independently for each stream track.

An example of the SETUP command is SETUP rtsp: // 162. 246. 156.

33: 554/ live. sdp/ trackID= 0 RTSP/1.0, which means the Receiver re-

quests the content from the server with track ID. After receiving the request,

the server calls DoSetup() function in a similar way to Sender communicating

with the streaming server.

R6: PLAY. Then the Receiver sends a PLAY command to the streaming

server, e.g., PLAY rtsp: // 162. 246. 156. 33: 554/ live. sdp RTSP/1.0.

37

The server calls DoPlay() to transponder the stream to the Receiver.

R7: TEARDOWN. The Receiver can stop the media stream through

sending a TEARDOWN command: TEARDOWN rtsp: // 162. 246. 156.

33: 554/ live. sdp RTSP/1.0 to the streaming server. After receiving the

command, the streaming server stops forwarding the streaming data to the

Receiver. Then the social interaction server closes the connections with the

Receiver. Then the Receiver leaves the chat room.

3.2.3 Touch-display Feature

In this section, we discuss the novel feature — touch-display feature which is

when a user touches the video screen to tag something in the video, the same

annotation should be displayed in the same position on the screen of the other

side. The problem is challenging. As we know, different mobile devices have

different screen sizes. Normally the video screen size is different on Sender and

Receiver sides when playing videos. Additionally, there may be 90◦ anti-clock

rotation of video between Sender and Receiver sides depending on the angle

that the Sender shoots the video.

For example, Figure 3.8 shows the problem of touch-display. Assume on

Sender side (X1, Y1) is the coordinate of Sender tagged, what is the position

displayed on screen of Receiver side, (XR, YR)? On the other hand, assume a

Receiver tags (X3, Y3) position, what is the position should be displayed on

screen of Sender side, (XS, YS)?

38

Figure 3.8: The touch-display feature on a Sender and Receiver side.

Let Xwidth, Ylength denote the mobile device screen width and length respec-

tively. For drawing a circle, the radius is R. The position the Sender touched

is (X1, Y1) and the radius is RS, (X3, Y3) is the position the Receiver touched,

radius is RR .

X2 = Y1

Y2 = Xwidth −X1

X3 = X2 ∗Xwidth/Ylength

= Y1 ∗Xwidth/Ylength

Y3 = Y2 ∗Xwidth/Ylength + (Y 2

length −X2

width)/(2 ∗ Ylength)

= (X2

width + Y 2

length − 2 ∗Xwidth ∗X1)/(2 ∗ Ylength)

For radius, if the RS = r in the Sender side, the radius in Receiver side RR

should be: RR = r ∗Xwidth/Ylength.

So, if the Sender touches (X1, Y1) and the radius is RS = r, the position on

Receiver side (XR, YR) is

(
Y1 ∗Xwidth

Ylength

,
X2

width + Y 2

length − 2 ∗Xwidth ∗X1

2 ∗ Ylength

)

and the radius is RR = r ∗Xwidth/Ylength.

Similarly, if the Receiver touches (X3, Y3) and the radius is RR = r, the posi-

tion on Sender side (XS, YS) is

(
X2

width + Y 2

length − 2 ∗ Y3 ∗ Ylength

2 ∗Xwidth

,
X3 ∗ Ylength

Xwidth

)

39

and the radius is RS =
√

r ∗ Ylength.

A detailed process of touch-display feature is below. In the step “S9 and

R9” of Figure 3.6, as we discussed before, when explaining these messages

below, we use S9-i to refer to Sender side’s step i, and R9-i to refer to the

Receiver side’s step i. We start from on a Sender side.

S9-1: The Sender touches the screen to annotate some content of the video.

With paintViewTouchListener() touch-listener, the touch position coordinate

(X, Y) is obtained.

S9-2: A circle is drawn on the screen at the touch position with drawCir-

cle() method. The circle is fifty pixels with the center being at the point where

touched.

S9-3: Then an annotation box popes up to let the Sender add some tags

with touchAnnotation() method.

S9-4: Through SendMessage() method, a message with the coordinate of

the circle and annotations is sent to the chat room.

R9-1: Receivers can get this message with PAINTViewRoomMsgListener()

room-annotation-listener.

R9-2: Then the Receiver parses the message to get the coordinate and

radius of the Sender’s touch-point. According the above rotation rules we

discussed above, the Receiver will get a new coordinate and radius.

R9-3: A circle is drawn on the screen on the Receiver side with drawCir-

cle().

R9-4: The Receiver can also touch the screen to annotate some content of

video and send them to the Sender in a similar way.

3.3 Storyboard

In this section, we provide a few main screenshots (Figure 3.9 — Figure 3.14)

of our Kaleidoscope system with descriptions.

40

Chapter 4

Evaluation

In this chapter, we present an evaluation of the Kaleidoscope platform. We

aim to test the system in various settings. Section 4.1 describes the exper-

iments. In the experiments, we test the system with several situations with

different locations of steaming server and different number of Receivers. For

each situation, we analyze the the usage of CPU and memory, number of suc-

cess requests and the video frames lost. We give a summary of experiment

results in Section 4.2.

4.1 Experiment Setup

In the experiment, we evaluate on our platform by gathering statistics of video

streaming under different traffic and locations. A typical session in Kaleido-

scope starts by a user creating a streaming channel and inviting friends to

participate in a chat room.

The resources used in the experiment are as follows.

• Sender: An Android mobile device in Edmonton.

• Streaming server: A desktop computer in Edmonton, two large cloud

instances (one is on Cybera cloud in Calgary, and the other one is on

SAVI cloud in Toronto).

• Receiver: We also have another android mobile device in Edmonton to

serve as a Receiver in the real world.

44

• Simulated Receivers: A desktop in Edmonton and two medium instances

which are on Cybera cloud in Calgary. For the Simulated Receivers,

to some extent, it is a streaming player which is used to play the live

streaming. So we create a number of Receiver clients on these devices

with VLC player to send video streaming requests to a streaming server.

Because of the limited computational resources, we can only run up to

30 to 50 connections on each simulated receiver machine.

• Network environment: On the client side, we use University of Alberta

University Wireless Service (UWS) network which speed is 72 Mbps.On

the server side, the network speed is 1000 Mbps of the Server in Edmon-

ton. On the Cybera cloud (Calgary), the wireless network is CANARIE

which speed is 100 Gigabit Ethernet and above 100 GbE on SAVI cloud.

The Sender and the Receiver have Android OS v4.1.1 and pre-installed with

our Kaleidoscope App. We also used a server in Edmonton for running ancil-

lary services, such as authentication, persistence and chatting. These services

are not tested as their use of resources is moderate, compared to the streaming

service. The detailed experiment environment and hardware configuration of

these devices is shown in Table 4.1.

Table 4.1: Hardware configuration of the devices used in our experiment.

Device Type Location Memory CPU Disk
Desktop Computer Edmonton 4.7GB RAM 2 CPU 256GB

Large Instance(Cybera) Calgary 8GB RAM 4 VCPU 80.0GB
Large Instance(SAVI) Toronto 8GB RAM 4 VCPU 80.0GB

Medium Instance(Cybera) Calgary 2GB RAM 2 VCPU 20.0GB
Android Mobile Edmonton 2GB RAM ARM 16GB

In the servers, we collect three metrics from ESS logs: the number of RTP

Connections, CPU and memory consumption of the servers.

In the clients, we use VLC to establish the streaming connections and play

the video streaming. We extract two metrics: buffering time and frames lost.

In each experiment, the Sender sends a video sharing request to the Re-

ceiver and pushes streaming data to the streaming server, the Receivers request

45

streaming data from the streaming server. The time duration of the live video

is about 60 seconds for each experiment. Then we increase the number of

Receivers to send streaming requests to the server with a desktop and two

medium instances.

4.2 Results

We performed five test cases in the experiment. In particular, each experiment

is labeled by “Sender location—Server location—Receiver location”. In the

first four tests, the video resolution is 320 × 240 and frame rate is 24. In the

last test, the video resolution 640× 480 and frame rate is 24. The last test is

meant to test the platform in a higher video quality.

Edmonton-Edmonton-Edmonton. In this test case, the Sender, the

streaming server and the Receivers are all in Edmonton. Table 4.2 shows the

result of the test. In this test, we simulate the number of Receivers ranging

from five to thirty in the desktop. The number of frame loss per second is

lower than 15%. (Recall that the number of frames per second is 24.) Thus

the chances of a key frame being lost is low. Keep in mind that frame loss is

largely dependent on the quality of networks.

Edmonton-Calgary-Edmonton. In this case, the Sender and the Re-

ceivers are in Edmonton. The streaming server is in Calgary. Table 4.3 show

the result of this test. We simulate five to fifty Receivers from the desktop.

Edmonton-Toronto-Edmonton. In this test, the Sender and Receivers

are in Edmonton. We move the streaming server to a farther place. Table 4.4

shows the result of this test. We simulate the number of Receivers ranging

from two to thirty in the desktop.

Edmonton-Calgary-Calgary. Table 4.5 shows the result of the test. In

this test, we simulate the number of Receivers ranging from two to fifty in the

two medium instances.

Edmonton-Edmonton-Edmonton with Higher Video Resolution.

In this test, the locations are the same with the first experiment, but the video

quality is higher with video resolution 640× 480. Table 4.6 show the result of

46

this test. We simulate five to thirty Receivers in the desktop.

Table 4.2: Results of Edmonton-Edmonton-Edmonton experiment.

#connections success connection rate average # of lost frames per second
5 100% 2.9
10 100% 3.0
20 100% 3.2
30 95% 2.7

Table 4.3: Results of Edmonton-Calgary-Edmonton experiment

#connections success connection rate average # of lost frames per second
5 100% 1.9
10 100% 3.6
20 97% 2.1
30 100% 2.7
40 100% 2.4
50 100% 4.0

Table 4.4: Results of Edmonton-Toronto-Edmonton experiment.

#connections success connection rate average # of lost frames per second
5 100% 3.5
10 100% 3.6
20 100% 3.1
30 100% 1.4
40 100% 4.2
50 100% 4.0

Table 4.5: Results of Edmonton-Calgary-Calgary experiment.

#connections success connection rate average # of lost frames per second
10 100% 4.8
20 100% 6.1
30 100% 5.6
40 100% 1.9
50 100% 1.0

Table 4.6: Results of Edmonton-Edmonton-Edmonton with higher video qual-
ity experiment.

#connections success connection rate average # of lost frames per second
10 97% 1.6
20 100% 1.7
30 96% 2.1

47

Table 4.7: Results of number of Receivers in multi-locations.

#connec-
tions

success connection
rate

average # of lost frames per second

5 100% 2.1
25 100% 2.2
50 100% 3.9
100 100% 11.8
150 100% 14.9

Finally, we did a complex experiment with number of Receivers in multiple

locations. The Sender is in Edmonton, the streaming server locates on Cybera

cloud in Calgary and number of Receivers are simulated in SAVI and Cybera

clouds. On Cybera and SAVI clouds, we setup two medium instances on each

cloud. With one desktop in Edmonton, there are 5 Receiver simulations. Each

of them simulates 0-30 connections. The total number of connections is 150.

The video streaming lasted 3 minutes based on Receiver side. The result is

shown in Table 4.7.

In the experiments, for each test case (with different number of Receivers),

we repeated three times. In the experiment results, the first column means the

number of total request connections of Receivers. The second column is the

success connection rate, which is the number of success connections divide the

total number of connections of three times. The success connection means that

Receivers should get the streaming data successfully in a timeout threshold

(the default value is 10 seconds). The last column is the average number of

frame lost per second on Receiver side, which is calculated by

frame lost/second =
lost frames of all success connections

success connections× time duration× repeated times
.

One thing should be noted that the bandwidth of network has a severe

effect on video frame loss. In the first five experiments, the time duration of

streaming is about 60 seconds based on Sender side. The results of frame loss

per second seem to decrease as more connections added. The reason is that

When we increased the number of Receivers with desktop, the computer took

a while to open many VLC streaming players (For 30 Receivers, it takes about

10 seconds to start all of them). When we calculated the duration time (60

48

seconds), we were based on the recording time on the Sender side. on the

Receiver side, the playing time maybe just 405̃0 seconds. The last experiment

is more complex with 150 connections in multiple locations at the same time.

And the streaming lasts 3 minutes based On Receiver side.

In all the experiments, the number of Receivers is between 5-50. The

CPU consumption of the streaming server is lower than 1% and the memory

consumption is lower than 8%. We also see the following results.

• When the server and clients are at the same location, the success con-

nection rate is very high. The success connection rate is above 95% with

up 30 connections at the same.

• When the server and clients are at the same location or different loca-

tions, the success connection rate is very high. For example, when the

server is in a far location – Toronto and all the clients are in Edmonton,

the success connection rate is 100% with up to 50 connections at the

same.

• When the receivers are at same location but the server is at the varied

locations, the success connection rate is very high. For example, when

the receivers are in Edmonton and the server is in Calgary and the server

is in Toronto, the rate is above 95% with up to 50 connections.

• Even with a higher video quality, the success connection rate still remains

above 96% with up to 30 connections. The average number of lost frames

is lower than 3 frames.

• The frame loss per second is acceptable with our experimental network

environment, which means users can watch the video normally if the key

frame is not lost (only one key frame in 24 frames per second).

• Including the bandwidth factor, the frame loss can also be affected by

the number of connections. The results of frame loss per second will

increase as more connections added

49

• Under a high wireless network environment, the success connection rate

is very high even with a far distance between the clients and server.

In conclusion, we did some tests on cloud with different situations such as

different number of Receivers in the same and different location(s), low/high

video resolutions and number of Receivers in multiple locations. We evaluated

the CPU and memory consumption on server side and the frame lost on Re-

ceiver side. The results show that the Kaleidoscope is a stable on both client

and server sides.

50

Chapter 5

Conclusions

In this thesis, we present a real-time video streaming sharing platform on

mobile devices with instant messaging and touch-display interaction. The

contributions are as follows.

• We developed an Android App (the Kaleidoscope client). In order for

the client to be used on multiple types of Android devices, we imple-

mented multiple video-encoding (H.263 and H.264) and audio-encoding

algorithms (AAC and AMR). H.263 and AMR is used for Android de-

vices which version is Android 2.3. Android 4.1 supports these two

video-encoding and audio-encoding algorithms.

• With the Kaleidoscope app, users can create “chat rooms” to share

videos in real time. Moreover, users in the same chat room can in-

teract with each other with textual messages. A novel feature of the

Kaleidoscope is that, during a video sharing process, users can touch the

screen and annotate the content in the video to talk about the subjects

through text messaging.

• We have implemented two components to support these services. The

streaming server receives audio/video streaming data from senders, and

transmits these data to the receivers. The social-interaction server takes

care of user management, video-chat room management, and instant

messaging.

51

• The Kaleidoscope platform also includes a storage system to allow saving

various data such as audio/video streaming, text messages and touching

annotations to cloud servers. Later the data can be used to support

extended future services, such as content analysis and feature extraction.

• We evaluated the Kaleidoscope platform on the SAVI and Cybera clouds.

We tested several real-world usage cases of our platform. Results show

that the success connection rate is very high whether the clients and

servers are in Edmonton, Calgary or Toronto.

The Kaleidoscope platform can be improved in the following aspects.

Firstly, we can make the Kaleidoscope system more robust through using

adaptive wireless bandwidth and optimizing video coding technologies [19]

to match the bandwidth of network, network condition and mobile devices

automatically. The quality of video can become better because of lower data-

packet loss.

Secondly, we can add more administrative features to support the Kalei-

doscope system, such as reallocating resources according to CPU and memory

usage by monitoring the load balance of all servers on cloud, and monitoring

and managing all user streaming requests, such as access control and data

control.

Thirdly, we can make a user in a multiple rooms at the same time through

split the screen in multiple parts. For example, we have a user who is a Sender

and he is recording the video and sharing the live video with his friends.

Now he receives an invitation from his friends. The Sender can accept that

invitation and join his friend’s chat room and enjoy the video streaming. The

video screen is split into two parts, e.g. up part and down part. The up-part

is used to recording the video and the down-part is used to play the video

streaming.

Finally, we can add video content analysis and feature extraction in real-

time. We can also bind the video frame with touch-display interaction to-

gether.

52

Bibliography

[1] Apostolopoulos, J. G., Tan, W.-t., and Wee, S. J. (2002). Video streaming:
Concepts, algorithms, and systems. HP Laboratories, report HPL-2002-260.

[2] Apple Computer, I. (2002). Quicktime stream-
ing server modules programming guide @2002,2005.
“http://www.apple.com/quicktime/pdf/QTSS Modules.pdf”.

[3] Bosi, M., Brandenburg, K., Quackenbush, S., Fielder, L., Akagiri, K.,
Fuchs, H., and Dietz, M. (1997). Iso/iec mpeg-2 advanced audio coding.
Journal of the Audio engineering society, 45(10):789–814.

[4] Cheng, X. and Liu, J. (2009). Nettube: Exploring social networks for peer-
to-peer short video sharing. In INFOCOM 2009, IEEE, pages 1152–1160.
IEEE.

[5] Chiariglione, L. (1996). Mpeg-1-coding of moving pictures and associ-
ated audio for digitial storage media at up to about 1.5 mbit/s. In-
ternational Organisation for Standardisation, Technical Report, ISO/IEC
JTC1/SC29/WG11.

[6] El-Saban, M., Wang, X.-J., Hasan, N., Bassiouny, M., and Refaat, M.
(2011). Seamless annotation and enrichment of mobile captured video
streams in real-time. In Multimedia and Expo (ICME), 2011 IEEE In-
ternational Conference on, pages 1–4. IEEE.

[7] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P.,
and Berners-Lee, T. (1999). Hypertext transfer protocol–http/1.1. Technical
report.

[8] Group, I.-T. V. C. E. H.265 : High efficiency video coding - rec-
ommendation h.265. “http://www.itu.int/rec/T-REC-H.265”, Visited on
2014/11/27.

[9] Group, T. M. P. E. Mpeg-2 video.
“http://mpeg.chiariglione.org/standards/mpeg-2/video”, Visited on
2014/11/27.

[10] Handley, M., Perkins, C., and Jacobson, V. (2006). Sdp: session descrip-
tion protocol.

[11] Haskell, B. G., Puri, A., and Netravali, A. N. (1997). Digital Video: An
Introduction to MPEG-2: An Introduction to MPEG-2. Springer Science &
Business Media.

53

[12] ITU-T. H.261 : Video codec for audiovisual services at p x 64 kbit/s
- recommendation h.261 (03/93). “http://www.itu.int/rec/T-REC-H.261-
199303-I/en”, Visited on 2014/11/27.

[13] ITU-T. H.262 : Information technology - generic coding of moving pic-
tures and associated audio information: Video - recommendation h.262.
“http://www.itu.int/rec/T-REC-H.262”, Visited on 2014/11/27.

[14] ITU-T. H.263 : Video coding for low bit rate communication - rec-
ommendation h.263. “http://www.itu.int/rec/T-REC-H.263”, Visited on
2014/11/27.

[15] ITU-T. H.264 : Advanced video coding for generic audiovisual services
- recommendation h.264. “http://www.itu.int/rec/T-REC-H.264”, Visited
on 2014/11/27.

[16] ITU-T. Introduction to streaming media.
“http://www.cod.edu/it/streamingmedia/intro.htm”, Visited on
2014/11/27.

[17] Jia, Z. M. (2009). MoViShare: building location-aware mobile social net-
works for video sharing. PhD thesis, School of Computing Science-Simon
Fraser University.

[18] JWPlayer (2014-11-30). About rtmp streaming.
“http://support.jwplayer.com/customer/portal/articles/1430349-about-
rtmp-streaming” visited on 2014/11/30.

[19] Lindeberg, M., Kristiansen, S., Plagemann, T., and Goebel, V. (2011).
Challenges and techniques for video streaming over mobile ad hoc networks.
Multimedia Systems, 17(1):51–82.

[20] Lu, J. (2000). Signal processing for internet video streaming: A review.
In Electronic Imaging, pages 246–259. International Society for Optics and
Photonics.

[21] Ma, L. (2011). Location-aware mobile social networking for video sharing.
PhD thesis, Applied Science: School of Computing Science.

[22] Meyer, R. (2013). Adaptation mechanism for streaming server applica-
tions optimized for the use on mobile devices with limited resources. PhD
thesis, Technische Universität Dresden.

[23] Myers, J. G. (1997). Simple authentication and security layer (sasl).

[24] Ott, J., Wenger, S., Sato, N., Burmeister, C., and Rey, J. (2006). Ex-
tended rtp profile for real-time transport control protocol (rtcp)-based feed-
back (rtp/avpf). Request for Comments, 4585.

[25] Padmanabhan, V. N., Wang, H. J., Chou, P. A., and Sripanidkulchai, K.
(2002). Distributing streaming media content using cooperative networking.
In Proceedings of the 12th international workshop on Network and operating
systems support for digital audio and video, pages 177–186. ACM.

54

[26] Parmar, H. and Thornburgh, M. (2014). Adobes real time messaging
protocol.

[27] Postel, J. (1981). Transmission control protocol.

[28] Protocol, U. D. (1980). Rfc 768 j. postel isi 28 august 1980. Isi.

[29] Richardson, I. E. (2004). H. 264 and MPEG-4 video compression: video
coding for next-generation multimedia. John Wiley & Sons.

[30] Saint-Andre, P. (2011a). Extensible messaging and presence protocol
(xmpp): Core.

[31] Saint-Andre, P. (2011b). Extensible messaging and presence protocol
(xmpp): Instant messaging and presence.

[32] Schulzrinne, H. (1998). Real time streaming protocol (rtsp).

[33] Schulzrinne, H., Casner, S., Frederick, R., and Jacobson, V. (2003). Rtp:
A transport protocol for real-time applications. Technical report.

[34] Silva, J., Cabral, D., Fernandes, C., and Correia, N. (2012). Real-time
annotation of video objects on tablet computers. In Proceedings of the 11th
International Conference on Mobile and Ubiquitous Multimedia, page 19.
ACM.

[35] Sullivan, G. J., Ohm, J.-R., Han, W.-J., and Wiegand, T. (2012).
Overview of the high efficiency video coding (hevc) standard. Circuits and
Systems for Video Technology, IEEE Transactions on, 22(12):1649–1668.

[36] Sun, H., Vetro, A., and Xin, J. (2007). An overview of scalable video
streaming. Wireless Communications and Mobile Computing, 7(2):159–172.

[37] Team, J. V. (2002). Coding of audio-visual objectspart 10: Advanced
video coding. In Awaji MPEG Meeting, Japan.

[38] Tudor, P. (1995). Mpeg-2 video compression. Electronics & communica-
tion engineering journal, 7(6):257–264.

[39] Walker, M., Nilsson, M., Jebb, T., and Turnbull, R. (2003). Mobile video-
streaming. BT Technology Journal, 21(3):192–202.

[40] Wang, E. (2015-10-14). Libvlc android sample.
“https://bitbucket.org/edwardcw/libvlc-android-sample”.

[41] Ware, B. et al. (2002). Open Source Development with LAMP: Using
Linux, Apache, MySQL and PHP. Addison-Wesley Longman Publishing
Co., Inc.

[42] Wiki, V. (2010-09-09). Androidcompile.
“https://wiki.videolan.org/AndroidCompile”.

[43] Yamamoto, D., Masuda, T., Ohira, S., and Nagao, K. (2008). Video scene
annotation based on web social activities. IEEE multimedia, (3):22–32.

55

	Introduction
	Motivation
	Contributions
	Outline

	Background
	Media Streaming
	Media Streaming Categories
	Media Streaming Protocols

	Instant Messaging
	Extensible Messaging and Presence Protocol
	Authentication and Security

	Compression and Codec
	Literature Review

	The Kaleidoscope System
	System Overview
	Architecture
	The Overall Kaleidoscope Process

	Communication and Behavior
	Clients and Social Interaction Service
	Clients and Streaming Service
	Touch-display Feature

	Storyboard

	Evaluation
	Experiment Setup
	Results

	Conclusions
	Bibliography

