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ABSTRACT 

Proteins, which participate in virtually every process within cells, implement 

many of their functions through interactions with various ligands. Although a 

substantial effort in characterization and prediction of protein-ligand interactions 

was observed in the past two decades, these subjects remain far from completion. 

This dissertation focuses on computational (in-silico) analysis and prediction of 

the protein-small ligand interactions, with particular emphasis on the protein-

nucleotide interactions. We start by analyzing regularities, referred to as the 

interaction patterns, in the atomic-level protein-small ligand interactions which 

lead to the discovery of ten interaction patterns that cover majority of the known 

interactions. The discovery of these interaction patterns demonstrates that protein-

ligand interactions can be predicted for a given protein. Next, we performed an 

extensive comparative analysis of the predictive performance of ten representative 

methods that predict binding residues and binding sites for small organic ligands. 

Our results reveal that although the predictive quality of these methods was 

significantly improved during the past decade, there is still a large room for 

further improvements, particularly when predicting for certain types of the 

organic compounds. We also found a few limitations of the existing methods 

which motivate the development of new predictors of the protein-small organic 

ligand interactions. Consequently, we proposed two methods that address 

prediction of the protein-nucleotide interactions. We selected nucleotides from 

among the organic compounds because they are highly abundant and ubiquitous 

(they are involved in a wide range of biological processes), and thus they 
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constitute an important and challenging problem. The first method predicts 

nucleotide binding residues from protein sequences, and the second method 

identifies the binding sites from protein structures. We empirically demonstrate 

that both, the sequence-based and the structure-based, methods significantly 

improve predictions over the existing state-of-the-art solutions. Our study aims to 

help with the characterization and annotation of biological functions of proteins 

and elucidation of the molecular-level mechanisms of cellular activities, and it 

provides tools that can be used to implement improved molecular-docking based 

rational drug discovery protocols. 
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CHAPTER 1 Introduction 

Proteins are biochemical compounds which are essential parts of every organism 

and which participate in virtually every process within cells. They perform a wide 

variety of biological functions, maintaining the cell shape, catalyzing biochemical 

reactions, neutralizing antigens during the immune response, and serving as signal 

receptors during cellular signal transduction, to name just a few (Howard and 

Hyman, 2007; Gutteridge and Thornton, 2005; Gilman, 1987). The knowledge of 

structures and functions of proteins is crucial for elucidation of the mechanism of 

cellular activities and for the development of molecular-docking based rational 

drug discovery protocols (Meng et al., 2011; Brooijmans and Kuntz, 2003). With 

the development of high-throughput sequencing techniques, a tremendous 

quantity of protein sequences was determined in the past three decades. For 

instance, as of April 5th, 2011, the UniProt Archive (UniProt consortium, 2010), a 

comprehensive publicly accessible protein sequence database, contains 

26,004,569 non-redundant protein sequences. In contrast, mostly due to the 

difficulties in protein expression, purification, and crystallization, our knowledge 

of structures and functions of proteins is limited, i.e., as of April 2011, the Protein 

Data Bank (PDB) (Berman et al., 2000), the most comprehensive database of 

tertiary structures of macromolecules, includes only 67,001 protein structures. 

Moreover, the annotation of biological functions of proteins in PDB is incomplete. 

The wide and growing gap between the number of known protein sequences and 

the number of known protein structures with the annotated biological functions 

motivates the development of computational tools for protein sequence analysis, 

protein tertiary structure prediction, and protein function annotation; the latter is 

the focus of this thesis. 

Proteins perform their biological functions through interactions with various 

molecules, including nucleic acids (DNA and RNA), metals, carbohydrates, other 

proteins, and small organic compounds. The interactions with the large ligands, 

such as protein-DNA, protein-RNA, and protein-protein interactions have been 
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systematically investigated (Ellis et al., 2007; Luscombe et al., 2001; Jones and 

Thornton, 1996) and dozens of computational methods have been developed for 

the prediction of DNA and RNA binding sites (Murakami et al., 2010; Gao and 

Skolnick, 2008) and identification of protein-protein interaction interfaces 

(Fiorucci and Zacharias, 2010). In contrast, the protein-small ligand interactions 

were not yet systematically studied. To this end, this dissertation is focused on 

computational analysis and prediction of protein-small ligand interactions, with 

special emphasis on protein-small organic compound interactions. Interactions 

between proteins and small organic compounds are of particular interest because 

they find applications in elucidation of mechanisms of numerous cellular 

activities, such as cellular signaling, regulation of cell cycles, and growth of 

neurons (Mukherjee et al., 2010; Popova et al., 2010; Whittard et al., 2006), to 

name just a few. The small organic compounds also constitute more than 80% of 

the drugs approved by the U.S. Food and Drug Administration (Wishart et al., 

2008). Consequently, the knowledge of their interactions with proteins, including 

their binding sites, plays a crucial role in the molecular docking-based rational 

drug discovery (Meng et al., 2011; Brooijmans and Kuntz, 2003). 

1.1 Existing solutions 

The studies concerning prediction of the protein-small ligand interactions could 

be categorized into to two classes based on their inputs. The first class of methods 

takes the protein sequences as the input and predicts the binding residues, i.e., 

amino acids in the protein sequence that interact with a given ligand. The second 

class of predictors takes the protein tertiary (three-dimensional) structure as the 

input and generates the coordinates of the binding sites, i.e., location of the amino 

acids that interact with a given ligand. The first class includes approaches that aim 

at the prediction of metal-binding residues (Horst and Samudrala, 2010), ATP-

binding residues (Chauhan et al., 2009), GTP-binding residues (Chauhan et al., 

2010), and carbohydrate-binding residues (Chou et al., 2010). The second class of 

methods could be further subdivided into three groups, approaches based on 
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geometrical analysis, calculation of energy of protein-ligand binding, and 

threading using structural templates. This class includes the geometry-based 

SURFNET (Laskowski, 1995), PocketFinder (Hendlich et al., 1997), PASS 

(Brady and Stouten, 2000), LIGSITEcsc (Huang and Schroeder, 2006), 

PocketPicker (Weisel et al., 2007), ConCavity (Capra et al., 2009), and Fpocket 

(Le et al., 2009), the energy-based Q-SiteFinder (Laurie and Jackson, 2005), and 

the threading-based Findsite (Skolnick and Brylinski, 2008). Additionally, 

MetaPocket (Huang, 2009) is based on a consensus of the geometry- and energy-

based approaches. Although our recent survey shows that the quality of the 

predicted binding sites of small organic compounds was significantly improved 

during the last decade (Chen et al., 2011), the success rates for certain ligand 

types are relatively low and there is a need and plenty of room for further 

improvements. 

1.2 Outline, thesis statements, and contributions 

This dissertation is focused on computational analysis and prediction of protein-

small ligand interactions. Since the small ligands that are known to interact with 

proteins, i.e., which are deposited in complexes with proteins in PDB, are diverse 

and thus are likely to interact with proteins in different ways, we first investigate 

whether there are generic interaction patterns that occur across different protein-

small ligand interactions. Our study demonstrates that the interactions between 

proteins and different small ligand types are dissimilar and no generic pattern is 

observed across all of these interactions. However, we note that some interaction 

patterns occur frequently for certain ligand types. This result implies that although 

it would be challenging (or virtually impossible) to build a well-performing 

generic model that predicts all types of protein-small ligand interactions, it should 

be feasible to develop a solution that accurately predicts a certain type of protein-

small ligand interactions. Before we embark on the development of new 

predictive methodologies, we analyze the state of the art of existing 

computational methods for the prediction of the protein-small ligand interactions 
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to investigate whether there is a need for development of novel methods. To this 

end, we perform an extensive comparative survey of existing methods that predict 

interactions with small organic compounds. The protein-small organic compound 

interactions attract more attention when compared with the interactions with other 

small ligands, like protein-metal ion, protein-inorganic anion, and protein-

inorganic cluster interactions. Our survey indicates that new and improved 

methods are needed and shows that the predictive performance of the top 

performing methods varies substantially between different types of the organic 

compounds. Our survey also reveals that consensus predictions lead to 

improvements and that certain approaches generate predictions with favorable 

quality. Motivated by the conclusions of the survey and our earlier result, which 

demonstrates that predictions should be performed for a specific type of small 

ligands, we develop new solutions to tackle prediction of protein-nucleotide1 

interactions. We focus on the nucleotides since they are highly abundant and 

ubiquitous and since the knowledge of the protein-nucleotide interactions is 

crucial for the protein function annotation, elucidation of the mechanism of 

cellular activities, and molecular docking-based rational drug discovery (Barrell et 

al., 2009; Goto et al., 2002). Consequently, our third hypothesis is whether a 

novel strategy for the improved prediction of protein-nucleotide interactions, 

when compared with the existing solutions, can be built. 

The major contributions of this work include: 

1. We show that the interactions between proteins and different small ligand 

groups are governed by many different patterns. Therefore, there is no 

common interaction pattern that occurs in all protein-small ligand 

complexes. We systematically categorize the protein-small ligand 

interactions and we discovered ten patterns that cover significant majority of 

the protein-small ligand complexes in PDB. 

                                                 
1 nucleotides are one of the types of the small organic ligands 
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2. We perform an extensive comparative analysis of the predictive 

performance of ten representative predictors of the protein-small ligand 

interactions. We found that the recent binding site predictors significantly 

improve predictions over the older solutions. However, the predictive 

quality of the existing methods is not satisfactory for certain small ligand 

types. We also derive a couple of observations that are useful for the 

development of new predictors, which we utilize to develop our solution. 

3. We develop five accurate sequence-based predictors that identify binding 

residues for the five most abundant nucleotides in the PDB, including ATP, 

ADP, AMP, GTP, and GDP. Our predictors are shown to significantly 

improve over the existing sequence-based methods. 

4. We develop a novel predictor that identifies nucleotide-binding sites from 

protein structures. Our method is empirically shown to significantly 

improve predictions over the existing structure-based predictors, including 

the geometry-, energy-, and threading-based approaches. 

1.3 Organization of the thesis 

The remainder of this dissertation is presented as follows. Chapter 2 includes 

background necessary to understand the issues discussed in the remaining 

chapters. Both the biological background concerning proteins and protein-ligand 

interactions and the background concerning computational methods that are used 

in this thesis are discussed. Chapter 3 describes goals and provides a detailed 

outline of the remainder of the thesis. Chapter 4 proposes several interaction 

patterns that are crucial for protein-small ligand interactions. Chapter 5 surveys 

the existing binding site predictors. Chapter 6 presents the sequence-based method 

that predicts protein-nucleotide interactions. Chapter 7 introduces the structure-

based algorithm that identifies protein-nucleotide interactions. The dissertation is 

summarized in Chapter 8. 
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CHAPTER 2 Background 

The following sections include background information necessary to understand 

the issues discussed in the subsequent chapters. Section 2.1 provides background 

concerning proteins, ligands, and their interactions. Section 2.2 describes the 

background concerning computational methods, including classification, 

clustering, and feature representation and selection. Section 2.3 introduces the 

preparation of datasets and evaluation protocols. 

2.1 Background on proteins, ligands, and their 
interactions 

2.1.1 Amino acids 

Amino acids (AAs) are molecules that contain an amine group (-NH2), a 

carboxylic acid group (-COOH) and a side-chain (R) that varies between different 

AAs. AAs are linked together by peptide bonds, which are formed between the 

amine group of one AA and the carboxylic acid group of the adjacent AA. Figure 

2-1 shows the structure of AA and Figure 2-2 demonstrates the formation of a 

peptide bond between two consecutive AAs. 

 

Figure 2-1: Atomic structure of amino acids. 
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Figure 2-2: Formation of a peptide bond between two amino acids. 

There are 20 different R groups and each corresponds to one AA type. The list of 

the 20 AA types is given in Table 2-1. 

Table 2-1: The names of the 20 amino acid (AA) types, including their 3-letter 
and 1-letter encoding. 

Name of AA 3-letter 
encoding 

1-letter 
encoding 

 Name of AA 3-letter 
encoding 

1-letter 
encoding 

Alanine ALA A  Leucine LEU L 
Arginine ARG R  Lysine LYS K 
Asparagine ASN N  Methionine MET M 
Aspartic acid ASP D  Phenylalanine PHE F 
Cysteine CYS C  Proline PRO P 
Glutamic acid GLU E  Serine SER S 
Glutamine GLN Q  Threonine THR T 
Glycine GLY G  Tryptophan TRP W 
Histidine HIS H  Tyrosine TYR Y 
Isoleucine ILE I  Valine VAL V 

AAs are linked together by peptide bonds and form a polypeptide chain. When a 

protein is translated from messenger RNA, it is created from amine-terminus (N-

terminus) to carboxyl-terminus (C-terminus). One or several polypeptide chains 

make up a protein. For instance, the ubiquitin, a regulator protein that is 

responsible for degrading and recycling of unwanted proteins, contains a single 

protein chain while hemoglobin, a protein that is responsible for the transportation 
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of oxygen, consists of four chains. An example polypeptide chain is given in 

Figure 2-3. 

 

Figure 2-3: A polypeptide chain (adapted from Wikipedia public domain image 
resource) (Wikimedia Foundation, 2006). 

2.1.2 Protein Structure Hierarchy 

The protein structure is categorized into four levels: primary, secondary, tertiary, 

and quaternary (Linderstrøm-Lang, 1952).  

• Primary structure is the basic level of the hierarchy and is defined as the 

linear sequence of amino acids that comprise one polypeptide chain. 

• Secondary structure is the regular folding of spatially local regions within 

one polypeptide chain into particular, structural patterns. Alpha helix and 

beta sheet/strand are the two common types of the secondary structure 

elements. The remaining portions in the chain which are not classified to 

helix and strand are called coils. The secondary structures are usually 

maintained by hydrogen bonds between the carbonyl oxygen and the amide 

hydrogen of the peptide bond. 
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• Tertiary structure is a particular three-dimensional arrangement of all the 

amino acids in one polypeptide chain. This structure is usually the native and 

active conformation and is held together by multiple non-covalent 

interactions. The tertiary structure of a protein is represented by the 

coordinates of all atoms of the protein. 

• Quaternary structure is the particular spatial arrangement, and interactions, 

between two or more polypeptide chains, which are called subunits. The 

quaternary structure complex could involve up to 60 subunits, e.g., in the 

viral capsids. 

An example of the primary, secondary, tertiary and quaternary structures of 

tubulin protein is given in Figure 2-4. 



 10 

 

  

Figure 2-4: Protein structure hierarchy. A) The primary and secondary structures 
of α-tubulin protein, which is pivotal for maintaining the cell structure; B) 
The tertiary structure of α-tubulin protein; C) The quaternary structure of 
microtubule which is formed by α and β-tubulin proteins. On panels A and B, 
helix is colored red (dark grey), strand is colored yellow (light grey), coiled 
turn is colored purple and the remaining coils are colored black. On panel C, 
green (light grey) and red (dark grey) balls stand for α and β-tubulin proteins 
respectively. 
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2.1.3 Ligands 

In biochemistry, a ligand refers to a substance that forms a complex with a 

biomolecule where the formation of the complex has an impact on certain 

biological processes. Though some compounds, e.g., glycol, frequently occur in 

PDB structure files, they are usually introduced by the procedures during protein 

expression, purification, and crystallization and are not relevant to biological 

processes. These biologically-irrelevant ligands are excluded from discussion in 

this dissertation. The biological-relevant ligands, which occur in PDB, mainly 

include metal ions, nucleotides, and carbohydrates. 

• Metal ions are essential mineral nutrients and are present in every cell type in 

every organism. They play pivotal roles in cellular signaling, enzyme 

activation, and catalysis (Que et al., 2008). It was estimated that metal ions 

are involved in the activities of one third of the enzymes (Silva and Williams, 

1991). 

• Nucleotides are multifunctional molecules that are essential for numerous 

biological processes. These molecules are structural units of nucleic acid 

chains (DNA and RNA), and they serve as sources for chemical energy, 

participate in the cellular signaling, and they are involved in the enzymatic 

reactions (Fields and Burnstock, 2006; Rich, 2003; Fredholm, 1994). 

• Carbohydrates are organic compounds with the Cm(H2O)n formula. They are 

components of coenzymes and the backbone of the DNA and RNA. 

Carbohydrates are essential for the storage of energy and play key roles in 

the immune system, fertilization, prevention of pathogenesis, blood clotting, 

and development of organisms (Maton et al., 1993). 

This dissertation is focused on protein-small organic compound interactions with 

special emphasis on protein-nucleotide interactions. Therefore, the structure and 

functions of nucleotides are discussed in detail. 
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2.1.4 Structure and biological functions of nucleotides 

A nucleotide is composed of a nucleobase, a five-carbon sugar, and between one 

and three phosphate groups. The phosphate groups form bonds with the 2, 3, or 5-

carbon of the sugar, with the 5-carbon site being the most common. The structures 

of the common nucleotides are summarized in Figure 2-5. 

 

Figure 2-5: Structure elements of nucleotides (adapted from Wikipedia public 
domain image resource) (Wikimedia Foundation, 2006).  

When the phosphate group is bound to two of the sugar's hydroxyl groups, a 

cyclic nucleotide is formed. Figure 2-6 presents the structure of adenosine 

monophosphate (panel A) and the structure of cyclic adenosine monophosphate 

(panel B). 

 

 
A 

 
B 

Figure 2-6: Structures of adenosine monophosphate (panel A) and cyclic 
adenosine monophosphate (panel B) (adapted from Wikipedia public domain 
image resource) (Wikimedia Foundation, 2006).  
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The biological functions of nucleotides mainly include: 

• Production of energy for majority of the cellular activities. The supply of 

energy for cellular process involves the conversion between Adenosine 

triphosphate (ATP) and Adenosine diphosphate (ADP) or the conversion 

between Guanosine triphosphate (GTP) and Guanosine diphosphate (GDP). 

Plants use photosynthetic pathways to convert and store the energy from 

sunlight, via conversion of ADP and GDP to ATP and GTP (Rich, 2003). 

Animals use the energy released in the breakdown of glucose and other 

molecules to convert ADP and GDP to ATP and GTP, which can then be 

used to fuel necessary growth and cell maintenance (Rich, 2003). 

• Maintenance of cell structure by facilitation of assembly and disassembly of 

certain elements of the cytoskeleton. For instance, ATP is required for the 

shortening of actin and myosin filament cross-bridges required for muscle 

contraction, which is essential for locomotion and respiration (Bárány et al., 

2001). On the other hand, the binding of GTP prevents the depolymerization 

of microtubule (Mitchison and Kirschner, 1984). 

• Signaling. ATP, ADP, GTP, cyclic AMP, cyclic GMP and some other 

nucleotides are involved in a variety of extracellular signaling processes and 

signal transduction, a process by which an extracellular signaling molecule 

activates a membrane receptor that in turn alters intracellular molecules 

creating a response (Fields and Burnstock, 2006; Fredholm, 1994). 

• Building of nucleic acids. Nucleotides are also structure bases for the 

synthesis of DNA and RNA, the generic materials that define the 

development and functioning of all known living organisms. 

2.1.5 Interactions between proteins and ligands  

Proteins interact with ligands by the means of forming a complex where the 

ligand is attached to a certain patch on the protein surface. This patch is often 
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called a binding site or a binding pocket, and the amino acids in the protein that 

form bonds with the ligand (which interact with the ligand) are called binding 

residues. Consequently, prediction of protein-ligand interactions boils down to the 

prediction of the binding residues or binding pockets. The protein-ligand 

interactions are established through covalent, coordination, and hydrogen bonds, 

and the electrostatic and Van der Waals forces. 

Covalent bond is a form of chemical bonding that is characterized by the sharing 

of pairs of electrons between atoms. The structure of the macromolecules, i.e., 

proteins and nucleic acids, are maintained by covalent bonds. Several types of 

covalent interactions, i.e., thioether bond and disulfide bond, are observed 

between proteins and ligands. The interaction between a non-hydrogen atom A1 of 

a residue (a residue is an amino acid in a protein) and a non-hydrogen atom A2 of 

a ligand is defined as the covalent bond if the residue and the ligand do not have 

the opposite charge that would result in electrostatic force of attraction and the 

distance d of these two atoms satisfies d < radius(A1) + radius(A2) + 0.5Å, where 

radius(Ai) represents the radius of Ai. As discussed by Davis and colleagues 

(Davis et al., 2003), in a typical 3Å resolution structure, the uncertainty of the 

position of the individual atoms can be at 0.5Å or more. The marginal 0.5Å value 

used in the formula accommodates for the uncertainty of the positions of both 

atoms and for the variation of the length of covalent bonds, i.e., the length of a 

single bond between carbon atoms ranges between 1.2Å to 1.54Å. 

Coordination bond is a kind of 2-centre, 2-electron covalent bond in which the 

two electrons derive from the same atom. The coordination bonds are frequently 

observed among protein-metal ion interactions. Metal ions usually do not contain 

electrons in their outer shell. Therefore, if a metal ion forms the covalent bond 

with another atom, the pair of electrons shared by the metal ion and the second 

atom should be provided by the other atom. The corresponding covalent bond is 

defined as the coordination bond.  
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Hydrogen bond is the attractive interaction of a hydrogen atom with an 

electronegative atom, such as nitrogen, oxygen or fluorine, which belongs to 

another molecule or chemical group. Hydrogen bond plays a crucial role in the 

formation and maintenance of protein secondary structures and the double helix 

structure of DNA. Hydrogen bond is also pivotal in protein-organic compound 

interactions. The hydrogen bonds were calculated with HBPLUS program 

(McDonald and Thornton, 1994). To identify hydrogen bonds, this program finds 

all proximal donor (D) and acceptor (A) atom pairs that satisfy specified 

geometrical criteria for the formation of the bond. Theoretical hydrogen atom (H) 

positions of both protein and ligand are calculated with REDUCE program (Word 

et al., 1999). Following the criteria used in a previous study by Luscombe et al. 

(2001), hydrogen bond is established if H–A distance < 2.7Å, D–A distance < 

3.5Å, D–H–A angle > 90° and H–A–AA angle > 90°, where AA is the atom 

attached to the acceptor. 

Electrostatic force represents the interaction between electrically charged 

particles. The strength of the interaction is calculated by the Coulomb's law. 

Among the 20 AAs, the electrostatic force concerns positively charged Arg, His, 

and Lys residues and negatively charged Asp and Glu residues. The charge of the 

ligand is annotated using PDB dictionary located at http://deposit.rcsb.org/public-

component-erf.cif, which provides the charge of each atom of the ligand. An atom 

of the ligand and an AA in the protein are considered to exert electrostatic force 

with each other if they have opposite charges and at least one non-hydrogen atom 

of the AA is less than 3.5Å away from the charged atom of the ligand. 

Van der Waals force is the sum of the attractive or repulsive forces between 

molecules (or between parts of the same molecule) other than those due to 

covalent bonds or to the electrostatic interaction of ions with one another or with 

neutral molecules. The Van der Waals force is relatively weak compared to 

covalent bonds or electrostatic interactions. However, Van der Waals interactions 

are the dominant forces in many protein-protein and protein-organic compound 

interactions. Following the definition by Ma and colleagues (Ma et al., 2003), A 

http://deposit.rcsb.org/public
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non-hydrogen atom A1 of a protein and a non-hydrogen atom A2 of a ligand form 

van der Waals contact if the distance d between these two atoms satisfies d < 

vdW(A1) + vdW(A2) + 0.5Å, where vdW(Ai) is the van der Waals radius of Ai and 

where these two atoms do not form covalent bond, coordination bond, hydrogen 

bond, and electrostatic force. Similar as for the covalent bond, the 0.5Å is used to 

accommodate for the uncertainty in the position of the atoms. 

2.2 Background on computational methods 

2.2.1 Classification and clustering 

Computational analysis and prediction of protein-small ligand interactions 

involves the classification, clustering, and feature selection using protein datasets. 

In machine learning, classification refers to the task of assigning a set of instances 

in a given dataset into a (small) number of categories. The method or algorithm 

that performs the classification task is called classifier. To perform a classification 

task, a training set and a test set should be prepared.  Each instance in the training 

set is represented by a feature vector that describes the characteristic of the 

instance and a label that indicates the category it belongs to. The instances of the 

test set contain only the feature vectors and the corresponding categories/labels 

are hidden. A classifier learns from the training set with instances that have been 

properly labeled and assigns/predicts labels for the instances from the test set. A 

number of classification algorithms have been developed in the past several 

decades. We use support vector machine (SVM) since this method provides 

accurate predictive models and is included among the top 10 data mining 

algorithms (Wu et al., 2007). The SVMs are introduced in (Cortes and Vapnik, 

1995) and here we briefly introduce the main concepts behind this methodology. 

We define a training set D={(xi, yi)| i=1,2,…,n}, where xi is the feature vector of 

ith instance and yi is either 1 or -1, indicating the class (category) of the ith instance. 

The SVM classifier intends to find the maximum-margin hyperplane that 

separates the instances with yi=1 (positive instances) from those with yi=-1 

(negative instances). A hyperplane could be written in the 0w x b⋅ − =  form, 
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where w is a normal vector. We use two parallel hyperplanes 1w x b⋅ − = and 

1w x b⋅ − = −  to separate the instances. The distance between the two hyperplanes 

is 2
|| ||w

. Therefore, the objective is to minimize || ||w  (in order to maximize the 

size of the margin) given the following constraints: the positive instances should 

satisfy 1iw x b⋅ − ≥  and the negative instances should satisfy 1iw x b⋅ − ≤ − . The 

corresponding optimization problem is: 

minimize  || ||w  

subject to ( ) 1i iy w x b⋅ − ≥  for i=1,2,…,n 

However, if no hyperplane that separates the positive and negative instances can 

be found, the Soft Margin method, which chooses a hyperplane that separates the 

instances with as few violations of the constrains (misclassifications) as possible, 

is used. The soft margin allows for misclassification of instances but it still 

maximizes the margin between the “cleanly” split instances. The objective 

function is augmented by a function which penalizes the misclassification with 

non-zero constants ξi, and the optimization becomes a trade off between a large 

margin and a small error penalty. Given a linear penalty function, the optimization 

problem becomes: 

, 1

1min || ||
2

n

iw i
w C

ξ
ξ

=

 + 
 

∑  

subject to ( ) 1 ,    0i i i iy w x b ξ ξ⋅ − ≥ − ≥  for i=1,2,…,n 

The abovementioned linear hyperplane may not be able to cleanly separate 

positive and negative instance, while a transformation of the data into a new space 

could lead to a better separation. To this end, the kernel extension was proposed. 

By using kernel functions, the original data are mapped through non-linear 

function into a feature space where the instances are potentially linearly separable. 
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In this dissertation we apply two popular kernel functions, the polynomial and 

radial basis function (RBF) kernels. These two types of kernels are defined as 

( , ) ( )

( , ) i j

d
i j i j

x x
i j

k x x x x

k x x e γ− −

= ⋅

=
 

where d is the degree of the polynomial and γ is the spread of the Gaussian 

function. The setup (selection) of the values of these two parameters is discussed 

in subsequent chapters. In this dissertation, the SVM classifier is used for the 

sequence-based prediction of the nucleotide-binding residues where the instances 

(amino acids) are labeled as “binding” or “non-binding”. Therefore, we do discuss 

the multi-class (for more than 2 labels) extension of the SVM.  

Clustering is the assignment of a set of instances into subsets (called clusters) so 

that instances in the same cluster are similar. The clustering methods include the 

hierarchal algorithms, the partitional algorithms, and the subspace clustering 

algorithms. In this dissertation, we use the hierarchal clustering algorithm for the 

structure-based prediction of the nucleotide-binding sites. We use the 

agglomerative algorithm that begins with each instance as a separate cluster and 

merge them into successively larger clusters. The agglomerative algorithm is 

given as follows: 

STEP 1. Each instance is initialized as a separate cluster. 

STEP 2. Calculate distances between any pair of the clusters. The distance 

between cluster A and B is defined as the minimum distance 

between any instance of cluster A and any instance of cluster B. 

STEP 3. Find the minimum distance d among the distances between the 

clusters. If d≤D, where D is the cutoff distance to terminate the 

clustering procedure, merge the two clusters with distance d. Repeat 

the STEP 2 and 3 until the minimum distance d is above the cutoff 

distance D. 
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2.2.2 Feature representation and feature selection 

Instances must be represented by feature vectors with the same number of 

dimensions when performing classification or clustering. To this end, the 

observed data, e,g,, the amino acids in a protein sequence, are converted into 

feature vectors of a fixed size. The feature representation that is used in this 

dissertation includes three types of features: features calculated from the primary 

sequence, features generated from the multiple sequence alignment, and features 

based on predicted structural descriptors, such as the predicted secondary 

structure. 

The complete feature representation includes thousands of features and requires a 

tremendous amount of computations for classification and clustering. The 

exclusion of irreverent and redundant features not only reduces the computations 

but may also improve the predictive quality. The feature selection algorithms 

typically fall into two categories: feature ranking and subset selection. The 

methods based on feature ranking rank the features using a given metric and 

eliminate all features that do not achieve an adequate score. The subset selection 

methods search over the entire feature set for a subset that results in an “optimal” 

predictive quality. The subset selection methods iteratively evaluate a candidate 

subset of features (by removing features or adding additional features to the 

subset and evaluating whether the new subset results in an improvement of the 

predictive quality over the old subset). In this dissertation, we use a hybrid feature 

selection method that combines feature ranking and subset selection. Details are 

given in the subsequent chapters. 

2.2.3 Architecture of the prediction pipeline 

The classification and clustering of protein datasets include three steps, see Figure 

2-7. First, the protein sequences/structures are converted into vectors of a fixed 

length; this step is named feature representation. Next, the irreverent and 

redundant features are removed from the feature set, and this step is called feature 

selection. Lastly, the selected features are fed into a classifier or a clustering 
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method and the outputs are generated. The feature selection step is optional and 

may not be implemented in some studies. 

 

Figure 2-7: Architecture of classification and clustering of protein datasets. 

2.2.4 Docking scoring function 

Docking scoring functions are fast approximate mathematical methods used to 

estimate the strength of the non-covalent interaction between two molecules. In 

this work, docking scoring functions are used to estimate the binding affinity, 

which measures the strength of the interaction, between proteins and nucleotides.  

The calculated binding affinity is used to rank the predicted binding sites. There 

are three classes of scoring functions: the force field-based, empirical, and 

knowledge-based scoring functions. We utilize the AMBER force field (Cornell et 

al., 1995), a classical force field-based scoring function, which is used by a 

number of docking programs for energy calculation, i.e., AutoDock (Morris et al., 

1998). The functional form of the AMBER force field is 
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where the first term (sum over bonds) represents the energy between covalently 

bonded atoms, the second term (sum over angles) represents the energy due to the 

geometry of electron orbital involved in covalent bonding, the third term (sum 

over torsions) represents the energy for twisting a bond due to bond order and 

neighboring bonds or lone pairs of electrons, and the fourth term (sum over i and j) 

Protein 
sequence 

or structure 

Feature 
representation 

Feature 
vector 

Feature 
selection 

Selected 
features 

Classification 
or clustering 

Outputs 



 21 

represents the non-bonded energy between all atom pairs, which can be 

decomposed into the van der Waals and electrostatic energies. In our case, when 

using the AMBER force field, we assume that both the protein and the ligand 

structures are rigid. Therefore, the first three terms in the AMBER function do not 

change for a given protein-ligand pair and are omitted in the calculation. In the 

fourth term, i and j represent the number of atoms of protein and ligand 

respectively; rij represents the distance between the ith atom of the protein and the 

jth atom of the ligand; qi and qj represent the charge of the pair of atoms; and Aij, 

Bij, andεare constants which are parameterized by AMBER GAFF. 

2.2.5 Sequence alignment and BLAST 

Sequence alignment is an arrangement of DNA, RNA, or protein sequences to 

identify similar regions (between a query chain and a given database of chains) 

that may be a consequence of functional, structural, or evolutionary relationships 

between these sequences. Aligned sequences are typically represented as rows of 

characters and gaps are inserted among the sequences so that identical or similar 

characters are aligned in successive columns. An example of multiple sequence 

alignment of protein sequences is given in Figure 2-8. 

 

Query … K R L E H G G G V A Y A I A K A C A G D A G L … 
YP_002995377 … K Y L E H G G G V A Y A I A K A A S G D V R E … 
YP_002958591 … K Y L E H G G G V A Y A I A K A A A G N V A E … 
YP_003418650 … S Y L Q H G G G V A Y A I V K K G G - - - - - … 
YP_002828572 … S Y L Q H G G G V A Y A I V K K G G - - - - - … 
ZP_04861702 … G M L K H V G G V A A A I V K K G G - - - - - … 
ZP_05391340 … G A L K H G G G A A A A I V K A G G - - - - - … 
YP_003345806 … E Y L K H G G G V A G A I V R A G G - - - - - … 
YP_003496764 … S H L K M G G G V A G A I R R A G G - - - - - … 

Figure 2-8: An example of multiple sequence alignment. The first row shows the 
query chain and the subsequent rows show the eight aligned proteins. Each 
row contains the protein sequence ID (the first column) and the 
corresponding amino acid sequence (the third and subsequent columns), 
where “…” denotes continuation of the chain and “–” denotes a gap, which 
means that this part of the sequence could not be aligned. 
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BLAST is a package of programs that perform sequence alignment tasks (Altschul 

et al., 1997). Two programs in the BLAST package were used in this dissertation. 

First, the psiblast program was used to identify similar protein sequences from a 

given sequence database for a given query sequence. The psiblast program returns 

the p-value and sequence identity (which quantify similarity between the query 

and a given aligned sequence), and the alignment between the query sequence and 

the identified similar sequence form the sequence database. Second, the blastpgp 

program was used to generate the Position Specific Score Matrix (PSSM) for a 

given protein sequence. The program first identifies a list of related (similar) 

protein sequences from a given sequence database. Next, these sequences are 

combined into a general "profile", which summarizes similarity (and dissimilarity) 

across these sequences. Second, another query against the sequence database is 

run using the generated profile, and a larger group of sequences is found. This 

larger group of sequences is used to construct another profile, and the process is 

repeated. The PSSM profile was found useful for building various methods to 

predict protein structure, including prediction of the protein secondary structure 

(McGuffin et al., 2000) and solvent accessibility (Faraggi et al., 2009); the latter 

quantifies the ratio of the surface area of a given residue that is accessible to 

solvent. In this dissertation, the PSSM profile is used for the sequence-based 

prediction of the nucleotide-binding residues. An example of the PSSM profile is 

given in Figure 2-9. 
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  A R N D C Q E G H I L K M F P S T W Y V 
         ... ... ... ... ... ...        
         ... ... ... ... ... ...        

1 K -1 2 0 -1 -3 1 1 -2 -1 -3 -3 5 -2 -3 -1 0 -1 -3 -2 -3 
2 R -2 2 -2 -3 -3 -1 -2 -3 1 -2 -1 0 -1 2 -3 -2 -2 2 7 -2 
3 L -2 -2 -4 -4 -1 -2 -3 -4 -3 2 4 -3 2 0 -3 -3 -1 -2 -1 1 
4 E -1 0 0 2 -4 2 5 -2 0 -4 -3 1 -2 -4 -1 0 -1 -3 -2 -3 
5 H -2 0 1 -1 -3 0 0 -2 8 -4 -3 -1 -2 -1 -2 -1 -2 -3 2 -3 
6 G 0 -3 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -3 -3 -4 
7 G 0 -3 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -3 -3 -4 
8 G 0 -3 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -3 -3 -4 
9 V 0 -3 -3 -4 -1 -2 -3 -4 -3 3 1 -3 1 -1 -3 -2 0 -3 -1 4 

10 A 4 -2 -2 -2 0 -1 -1 0 -2 -1 -2 -1 -1 -2 -1 1 0 -3 -2 0 
11 Y -2 -2 -3 -4 -2 -2 -2 -4 1 0 1 -2 0 3 -3 -2 -2 2 6 -1 
12 A 4 -2 -2 -2 0 -1 -1 0 -2 -1 -2 -1 -1 -2 -1 1 0 -3 -2 0 
13 I -1 -3 -4 -3 -1 -3 -4 -4 -4 5 2 -3 1 0 -3 -3 -1 -3 -1 3 
14 A 4 -2 -2 -2 0 -1 -1 0 -2 -1 -2 -1 -1 -2 -1 1 0 -3 -2 0 
15 K -1 2 0 -1 -3 1 1 -2 -1 -3 -3 5 -2 -3 -1 0 -1 -3 -2 -3 
16 A 4 -2 -2 -2 0 -1 -1 0 -2 -1 -2 -1 -1 -2 -1 1 0 -3 -2 0 
17 C 2 -3 -3 -3 9 -2 -3 -2 -3 -1 -1 -2 -1 -3 -2 0 -1 -3 -2 -1 
18 A 4 -1 -1 -1 -1 -1 -1 0 -2 -2 -2 -1 -1 -3 -1 2 0 -3 -2 -1 
19 G 0 -3 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -3 -3 -4 
20 D -2 -2 1 6 -4 0 2 -1 -1 -3 -4 -1 -3 -4 -2 0 -1 -5 -3 -4 
21 A 3 -2 -2 -2 -1 -1 -1 -1 -2 0 -1 -1 -1 -2 4 0 0 -3 -2 1 
22 G 0 3 0 -1 -3 3 0 2 -1 -3 -3 1 -2 -3 -2 1 0 -3 -2 -3 
23 L -1 0 -1 0 -3 1 4 -2 -1 -1 1 2 0 -2 -2 -1 -1 -3 -2 -1 

         ... ... ... ... ... ...        
         ... ... ... ... ... ...        

Figure 2-9: An example of the PSSM profile generated by the blastpgp program. 
The first and second columns are the residue number and type, respectively, 
in the input protein chain. The subsequent columns provide values of the 
multiple sequence alignment profile for a substitution to an amino acid type 
indicated in the first row. Initially, a matrix {pi,j}, where pi,j indicates the 
probability that the jth amino acid type (in columns) occurs at ith position in 
the input chain (in rows), is generated. The position-specific scoring matrix 
{mi,j} is defined as mi,j = log(pi,j / bj), where bj is the background frequency of 
the jth amino acid type. 

2.2.6 Calculation of protein sequence conservation 

Protein sequence conservation describes the phenomenon that similar or identical 

protein sequences are observed across species and in the same organism. Analysis 

of sequence conservation aids the detection of functionally important residues, i.e., 
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residues that are involved in the interactions with ligands (Capra and Singh, 2007). 

Mapping the conservation information onto a protein tertiary structure helps with 

visualization of potential functional surfaces, i.e., parts of the protein surface that 

interact with ligands, of a given protein. The protein sequence conservation is 

calculated from the multiple sequence alignment profiles. Several formulas and 

algorithms, including the Shannon entropy, the derivatives of Shannon entropy 

that incorporate background frequency of amino acids (Capra and Singh, 2007; 

Wang and Samudrala, 2006; Pei and Grishin, 2001) and the Rate4Site algorithm 

(Pupko et al., 2002) were proposed for the calculation of the conservation scores. 

The ConSurf-DB database (Goldenberg et al., 2009) collects the pre-calculated 

conservation scores by Rate4Site algorithm for all protein sequences in PDB. 

2.3 Performance evaluation 

This section describes the concepts related to the preparation of datasets and the 

protocols that are used to evaluate the various methods presented in the following 

chapters. 

2.3.1 Dataset preparation 

The analysis and development of methods described in this dissertation require 

preparation of various datasets of protein sequences and structures. The sequences 

and structures are taken from the PDB (Berman et al., 2000) and the CulledPDB 

(Wang and Dunbrack, 2003). The PDB is a world-wide repository for the tertiary 

structural data of large biological molecules, which include proteins and nucleic 

acids. By the end of 2010, the PDB has included around 65,000 protein structures. 

The protein files in PDB include information concerning the protein sequence, the 

coordinates of all non-hydrogen atoms of a protein, the coordinates of the ligand 

atoms, the ligand type, and the method used to determine the protein structure, etc. 

Therefore, the PDB protein files contain sufficient information for the calculation 

and visualization of protein-ligand interactions and to establish ground truth to 

build and validate prediction methods. Since some protein families (proteins that 

share similar function) are overrepresented by PDB and these protein families 
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may contain hundreds of similar structures, we use CulledPDB to choose a list of 

representative proteins in PDB. The CulledPDB pre-calculates a number of 

protein lists according to the desired quality of the structure (quality with which 

the structure was experimentally determined) and sequence similarity. For 

instance, a user may download a list of protein chains that share a maximal 

sequence identity of 25% that have high quality structures (e.g., with the R-factor 

below 0.25 and a resolution below 2.0 Å). Such list includes proteins that are 

dissimilar to each other, which means that they uniformly cover the protein space, 

and which have high quality structures, i.e., for which the ground truth is accurate.  

In general, similar protein sequences usually have similar structures and 

biological functions. The sequence similarity between the training and test 

datasets has a substantial impact on the predictive quality of a given method 

(Kurgan and Homaeian, 2006). To this end, similar protein sequences and 

structures are usually removed from the training and test datasets and the pairwise 

sequence identity within one dataset is usually reduced to between 25% and 40%. 

However, we note that in some cases the sequence similarity is insufficient for 

disclosing the relationship between two chains. For instance, many globins (a 

family of proteins that are responsible for oxygen transport) have similar tertiary 

structures and biological functions whereas they have less than 10% sequence 

similarity. To properly reflect the structural and functional relationships between 

proteins, the structural similarity between proteins are used. Currently, two 

databases, the SCOP (structural classification of proteins) database (Andreeva et 

al., 2008) and CATH Protein Structure Classification databases (Cuff et al., 2009) 

provide a hierarchical classification of protein domains with known structures. In 

this dissertation, we use the SCOP database for the annotation of protein family, 

superfamily, fold, and class, which are the 4 levels of the SCOP hierarchy. 

2.3.2 Evaluation protocols 

The optimization of a model on the training dataset may result in overfitting into 

the training data, i.e., a situation where the model memorizes the dataset, 
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including potential noise and incorrect and inconsistent values. The overfitting on 

the training data may lead to over-estimation of the performance of a given 

method on that dataset. Cross-validation is a technique that prevents the 

overfitting of the training data. Two types of cross-validation are used in this 

dissertation, the n-fold cross-validation and the jackknife test. 

In the n-fold cross-validation, the original dataset is randomly partitioned into n 

equally-sized subsets. Each of the n subsets is used as a test dataset once and the 

remaining n-1 subsets are used as the corresponding training dataset. The cross-

validation process is repeated n times (the n folds). The results from the n folds 

are averaged to produce a single estimate of the predictive quality. The 

advantages of the n-fold cross-validation are that all samples are used for both 

training and testing and that each sample is used for test exactly once. 

Jackknife test (leave-one-out cross-validation) involves using a single sample 

from the original dataset as the test dataset, and the remaining samples as the 

training dataset. This is repeated such that each sample in the dataset is used as 

the test data once. This is the same as the n-fold cross-validation with n being 

equal to the number of samples in the original dataset. Leave-one-out cross-

validation is usually computationally expensive due to the large amount of 

computations during the training process, i.e., larger number of bigger training 

dataset is used, when compared with the n-fold cross-validation that utilizes a 

smaller value of n. 

2.3.3 Statistical tests 

The Wilcoxon signed-rank test (Wilcoxon, 1945) is a non-parametric statistical 

test that is used to compare two related samples or repeated measurements on a 

single sample to assess whether their population means differ. This test is used as 

an alternative to the paired t-test when the considered populations do not follow 

normal distribution. We used the Shapiro-Wilk test (Shapiro and Wilk, 1965) to 

verify that our data are not normal. In this dissertation, we use the Wilcoxon 

signed-rank test to measure significance of the differences between the qualities 
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of the predictions generated by different methods on the same dataset. Suppose 

we have collected 2 sets of observations (predictive qualities for two methods), 

denoted as {Ai} and {Bi} (i=1,2,…,n). Ai and Bi refer to the first and second 

observations measured on the same subject (the same dataset), which means that 

Ai and Bi are paired. We have multiple pairs of the measurements generated over 

different folds in the n-fold cross-validation test. Let Zi = Ai －Bi (i=1,2,…,n), the 

procedures to perform the Wilcoxon signed-rank test are given as follows: 

1. Exclude observations with Zi = 0 and let m be the reduced sample size. 

2. Sort the absolute values |Z1|, |Z2|,…,|Zm| in ascending order and assign the 

rank of 1, 2, …, m to the m absolute values. 

3. The Wilcoxon signed-rank statistic W+ is defined as 
1

( ) ( )
n

i i
i

W Z R Zϕ+
=

= ∑ , 

where ( )iZϕ equals 1 if Zi >0 and equals 0 otherwise. ( )iR Z  is the rank of 

|Zi|. 

4. The Wilcoxon signed-rank statistic W−  is defined as 
1

( ) ( )
n

i i
i

W Z R Zϕ−
=

= ∑ , 

where ( )iZϕ equals 1 if Zi <0 and equals 0 otherwise. ( )iR Z  is the rank of 

|Zi|. 

5. Set S as the smaller of these two rank sums: S = min(W+, W-). 

6. Find the critical value for the given sample size m and compare S to the 

critical value, a value that a test statistic must exceed in order for the null 

hypothesis to be rejected. If S is equal or greater than the critical value, we 

conclude that {Ai} and {Bi} differ significantly. 
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CHAPTER 3 Organization of the thesis 

This dissertation addresses computational characterization and prediction of 

protein-small ligand interactions. As of April 2011, the PDB included 11,865 

distinct types of ligands, which are characterized by a diverse atomic composition 

(different number and different atom types) and a wide range of molecular 

weights and structures. We systematically analyze interactions between proteins 

and these 11,865 types of ligands to find whether they are governed by some 

generic patterns. These patterns summarize the interacting atoms on the 

corresponding protein and ligand and the corresponding interacting amino acid 

types on the protein. Initially, we investigate whether there are generic interaction 

patterns that occur in all protein-small ligand complexes. Since we could not find 

such generic patterns, we analyze patterns that occur in the interactions with 

specific types of ligands and for the specific types of bonds. This analysis, which 

is explained in Chapter 4, demonstrates that the interactions between proteins and 

small ligands are diverse and can be described only partially using several 

different patterns. These interaction patterns are specific to interactions with 

individual ligand types, and many of these interactions are too specific to form a 

pattern. Our results imply that it would be challenging, if not impossible, to build 

a well-performing model that can predict all protein-small ligand interactions, 

which is what current prediction methods attempt to do. However, it should be 

feasible to build a divide-and-conquer type of solutions that predict certain types 

of interactions, i.e., interactions with certain types of small ligands, and combine 

them together to establish a generic model.  

To date, more than a dozen methods have been already proposed for the 

prediction of protein-small ligand interactions. Therefore, before attempting to 

build a new method, we investigate the predictive quality of the state-of-the-art 

methods. Such investigation allows us to find out potential weaknesses/strengths 

of the current methods, which can be then addressed/exploited in our solution. We 

note that the existing methods concentrate on the prediction of binding sites for 
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small organic compounds because such compounds are of substantial research and 

development interest, i.e., they constitute more than 80% of the drugs approved 

by the U.S. Food and Drug Administration (Wishart et al., 2008). The 

comparative survey on the existing predictors is given in Chapter 5. The result 

shows that the predictive quality of the existing methods was significantly 

improved during the past decade but there is still plenty of room for 

improvements, particularly when predicting for certain types of organic 

compounds. We observe that the predictive qualities of the top performing 

methods are quite different for different organic compound types, and thus we 

identify the need to develop predictors that address interactions with these specific 

types. Moreover, we also show that use of a consensus-based predictor results in 

improvements and that certain types of predictors (i.e., template-based methods) 

outperform other types of solutions. These conclusions provided us with useful 

feedback to develop new solutions. 

Among the organic compounds, we focus our attention on nucleotides because 

they are highly abundant and ubiquitous, i.e., they interact with more than 10% of 

the proteins that are deposited in PDB and they play important roles in a number 

of biological processes, including metabolism, cellular signaling, maintenance of 

cell structure, and enzyme activation and catalysis (Barrell et al., 2009; Goto et al., 

2002). The high abundance in PDB demonstrates high interest in these ligands. 

Building of a prediction method for nucleotides is relatively challenging due to 

the ubiquity of these ligands, i.e., ability to perform so many diverse functions and 

thus the ability to interact with so many diverse proteins. This means that the 

protein-nucleotide interactions are complex and would require the divide-and-

conquer solution. To this end, we designed two methods that address the 

prediction of protein-nucleotide interactions from protein sequences and from 

protein structures, respectively. The sequence-based annotation of the nucleotide-

binding residues is motivated by the fact that the tertiary structures of majority of 

the protein sequences are unknown (see Chapter 1). The biological functions of 

the protein sequences without the known tertiary structures can be 
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analyzed/predicted only using sequence-based methods. In Chapter 6, we propose 

a method that takes protein sequences as the input and predicts the nucleotide-

binding residues. This method decomposes the problem by utilizing a 

combination of models that address prediction of the interactions with specific 

nucleotides, including ATP, ADP, AMP, GTP and GDP. We empirically show 

that the proposed method significantly outperforms existing methods and several 

baseline predictors. We also identify several sequence-derived hallmarks that are 

characteristic for the protein-nucleotide interactions. 

Some proteins with the known tertiary structure lack annotations of (some of) 

their biological functions. These proteins are of particular interest because they 

find applications in molecular docking-based rational drug discovery (Meng et al., 

2011; Brooijmans and Kuntz, 2003). This motivates the development of 

computational methods that annotate biological functions, i.e., nucleotide-binding, 

for proteins with the known structures. In Chapter 7, we propose a method that 

takes protein structures as the input and predicts nucleotide-binding sites on the 

protein surface. Based on the conclusions from Chapter 5, we design a new 

consensus-based approach, in which we perform search for local similarity 

(within the binding pocket) between the input structure and a library of known 

protein-nucleotide interactions. We demonstrate that this method significantly 

outperforms the existing structure-based binding site predictors, including the 

geometry-, energy-, and threading-based approaches. We also show that our 

method can accurately, when compared to the current methods, find distant 

functional relationships between proteins from different families, superfamilies, 

and folds. 
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CHAPTER 4 Investigation of atomic level patterns 
in protein-small ligand interactions 

4.1 Introduction 

The facts that the protein-small ligand interactions were never systematically 

studied and that the rules that govern these interactions are not yet fully disclosed 

motivate the work presented in this chapter. We analyze both covalent bonding 

(normal covalent bonds and coordination bonds) and non-covalent interactions 

(electrostatic force, hydrogen bonds, and van der Waals force) between proteins 

and small ligands (Chen and Kurgan, 2009). Our objective is to discover 

interaction patterns that describe frequently occurring regularities observed in the 

binding sites, i.e., favored residue types that interact with a certain atoms on the 

ligand and the spatial arrangement of the binding residues. 

4.2 Related work 

Although the protein-small ligand interactions were not systematically studied in 

the past, the interactions between proteins and macromolecules, i.e., protein-

protein (Zhu et al., 2008; Rajamani et al., 2004; Ma et al., 2003; Jones and 

Thornton, 1996), protein-DNA (Luscombe et al., 2001), and protein-RNA 

interactions (Ellis et al., 2007), have been systematically investigated. Thornton's 

study compared the size, shape, residue interface propensities and hydrophobicity 

of the protein-protein interface for four different types of protein-protein 

complexes (Jones and Thornton, 1996). Ma's report shows that several structurally 

conserved residues could be used to distinguish between binding sites and general 

exposed surface; for instance, conservation of Trp, Phe, and Met residues on the 

protein surface was shown to be associated with a higher likelihood of formation 

of a binding site (Ma et al., 2003). Rajamani and colleagues show that the anchor 

residues in protein-protein interactions maintain similar conformations before and 

after the binding, which allows for a relatively smooth binding process (Rajamani 
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et al., 2004). Luscombe et al. studied the role of hydrogen bonds, van der Waals 

contacts, and water mediated bonds in protein-DNA interaction. They concluded 

that the majority of the amino acid-base interactions follow general principles that 

apply across all protein-DNA complexes (Luscombe et al., 2001).  

There was also some work concerning the protein-small ligand interactions. The 

principles that govern protein-metal ion interaction were investigated by Dudev 

and Lim (Dudev and Lim, 2008a). They summarized several rules with respective 

to the coordination mode, coordination number, metal selectivity and coordination 

stereochemistry. In another study by Dudev and Lim, various factors governing 

metal binding affinity and selectivity were systematically analyzed (Dudev and 

Lim, 2008b). The structure and properties of the metal-binding sites were also 

discussed for specific metal ions like Ca2+ and Zn2+ (Gifford et al., 2007; Maret, 

2005). However, studies that would consider a wider range of small ligands, 

including organic compounds, various inorganic ligands, and metal ions are 

missing. 

4.3 Problem definition 

We focus on the study of interactions between proteins and small ligands that 

exclude proteins and nucleic acids which were already investigated by other 

researchers. Our aim is to find frequent atomic-level regularities (patterns) that 

could be used to summarize interactions between the protein and the considered 

ligands. The term “atomic-level” refers to the fact that patterns concern 

interactions between individual atoms of the protein residues and the ligand. We 

discuss specific details of these interactions across different residue types and 

ligands, e.g., the number of residues and the residues types that are involved in the 

coordination bonds with specific metal ions, and we quantify their relative 

abundance, which can be used to assess their importance in protein-ligand 

interactions. The protein-ligand interactions are grouped into four categories 

including protein-organic compound, protein-metal ion, protein-inorganic anion 

and protein-inorganic cluster interactions. 
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4.4 Dataset preparation 

The protein chains, which are selected using culledPDB list (Wang and Dunbrack, 

2003), are characterized by the following criteria: 1) the chains share sequence 

identity of below 25%; 2) the resolution of the protein-ligand complex structure is 

below 2.0Å; and 3) the R-factor value is below 0.25. These criteria, which result 

in selection of 2320 chains, assure that the selected proteins share low sequence 

identity (they adequately sample the sequence space) and that the corresponding 

structures have sufficient quality. The protein and a ligand are assumed to interact 

with each other when at least one pair of non-hydrogen atoms, one from the 

protein and one from the ligand, can be found within a 3.9Å distance (Luscombe 

et al., 2001). If the same ligand binds a given protein in multiple pockets, all 

pocket-ligand complexes are included. Excluding the water molecule, all 

molecules annotated as “HET” in PDB, which includes organic compounds and 

ions, are taken as ligands. This excludes protein and nucleic acid chains. As a 

result, 7759 pockets which have at least one contact with the considered ligand 

are extracted from the 2320 chains. 

Among the 7759 complexes, some of the ligands appear multiple times, some are 

similar and could be grouped together and the same/similar ligands bind to a 

variety of pockets. To facilitate analysis of the protein-ligand interactions we 

select only these ligands that occur frequently and we group them into several 

categories. The ligands that bind to at least 100 pockets cover 59.4% of the 

considered complexes. Among these ligands, EDO, NAG, and ACT are organic 

compounds, Ca2+, Zn2+, Na+, Mg2+ and Cd2+ are metal ions, and SO4
2−, PO4

3−, Cl−, 

Br− and I− are inorganic anions. Additionally, some inorganic clusters, i.e., Fe-S 

cluster, also bind to a relatively large number of pockets. Therefore, the 

considered ligands (including those that occur in less than 100 pockets) are 

grouped into four categories: organic compounds, metal ions, inorganic anions, 

and inorganic clusters. We analyze total of 3685 organic compounds (that include 

560 distinct types), 1682 metal ions (25 types), 1837 inorganic anions (19 types), 
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and 54 inorganic clusters (9 types), which cover (3685+1682+1837+54)/7759 = 

93.5% of all extracted pockets. 

4.5 The atomic level patterns in protein-ligand interactions 

4.5.1 Summary of the interaction patterns 

The protein pocket-ligand interactions are summarized in Figure 4-1. The top 

layer divides the 7759 protein pocket-ligand complexes into 5 categories based on 

the ligand type. The second layer lists the major forces that are involved in 

formation of protein-ligand complexes for a given ligand type. For instance, 

protein-organic compound complexes are formed mainly by the means of 

covalent bonds, hydrogen bonds, and van der Waals contacts, which 

accommodate for 99.9% of the interactions. The remaining 0.1% of the contacts 

between a protein and the organic compound, which are omitted in the Figure 4-1, 

is based on the electrostatic force. The bottom layer provides significant patterns 

that are associated with interactions for a given type of the ligand and a given type 

of bond/force, which are discussed in detail in the following subsections. The 

patterns are shown in XR…YL or XR – YL format where X denotes an atom type 

of residue R in the protein, Y denotes an atom type of the ligand L, strong 

interactions (covalent and coordination bonds) are depicted by “–”, and weak 

interactions (hydrogen bond) are represented by “…”. 

The forces that are omitted in Figure 4-1 are less significant (less frequent or 

nonexistent) for a given type of the protein-ligand interaction. Our analysis 

concentrates on the forces that are characterized by frequently occurring patterns 

for a given ligand category, while omitting some forces which are listed in Figure 

4-1 and for which we could not find strong regularities (patterns). For the protein-

organic compound interactions, we focus on the hydrogen and covalent bonds 

since they exhibit more regular and frequent patterns than the van der Waals 

contacts. In the case of the protein-metal ion interactions, electrostatic force and 

coordination bonds, which cover 95% these interactions, are analyzed. The 

discussion of the protein-inorganic anion interactions concentrates on the 
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electrostatic force and hydrogen bonds; the van der Waals contacts are omitted 

due to lack of regular interaction patterns. Finally, our analysis of the protein-

inorganic cluster interactions concerns only the coordination bonds since they 

constitute the main driving force for these interactions, i.e., they are involved in 

all considered protein-inorganic cluster complexes. Although we investigate all 

four interaction types, in our analysis we concentrate on the protein-organic 

compound and the protein-metal interactions since they occupy the largest 

fraction of the considered protein-ligand complexes and they are important for 

many biological processes (Zoltowski et al., 2007; Ma et al., 2006). 

 

 

Figure 4-1: An overview of the protein pocket-ligand interactions. The top layer 
divides protein-ligand complexes into 5 major groups based on the type of 
the ligand. The second layer shows the major forces that are involved in 
formation of protein-ligand complexes for each type of the ligand. The 
bottom layer summarizes significant (frequently occurring) patterns for each 
force/bond type and each type of the ligand. The patterns are shown in 
XR…YL or XR – YL format where X denotes an atom type of residue R in the 
protein, Y denotes an atom type of the ligand L, strong interactions (covalent 
and coordination bonds) are depicted by “–”, and weak interactions 
(hydrogen bond) are represented by “…”. 

4.5.2 Interaction patterns in protein-organic compound complexes 

Organic compounds bind to proteins mainly by the means of the van der Waals 

contacts and the hydrogen bonds. Total of 85771 contacts are observed between 
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an organic compound and a protein and they include 77554 van der Waals 

contacts, 7914 hydrogen bonds, and 246 covalent bonds. The remaining 0.1% of 

contacts is due to the electrostatic force. Among the 3685 protein pocket-organic 

compound complexes, 1067 complexes (29%) are based solely on the van der 

Waals contacts, 2309 (62.7%) involve both hydrogen bonds and van der Waals 

contacts, 107 (2.9%) incorporate covalent bonds and van der Waals contacts, and 

135 (3.7%) include covalent bonds, hydrogen bonds, and van der Waals contacts, 

see Figure 4-2. We note that the number of hydrogen bonds is likely 

underestimated since REDUCE program could not supply complete coordinates 

for hydrogen atoms of some ligands and thus some potential hydrogen bonds 

could not be counted. 

 

Figure 4-2: The summary of forces/bonds that are involved in formation of 
protein-organic compound complexes. The chart shows that most of the 
complexes involve multiple contact types with the most frequent contacts 
involving both van der Waals force and hydrogen bonds. 
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Covalent bonds 

Majority of the 246 covalent bonds formed between organic compounds and 

proteins are summarized with four patterns: 1) 27 covalent contacts are formed 

between the thiol of Cys residue and the carbon atom of the organic compound 

(thioether bond); 2) 139 are formed between the nitrogen atom of Asn residue and 

the carbon atom of N-Acetyl-D-Glucosamine (NAG); 3) 28 concern the thiol of 

Cys residue and the sulfur atom of the organic compound (disulfide bond); and 4) 

23 involve the nitrogen atom of Lys residue and the carbon atom of organic 

compound. We observe that the interaction between protein and NAG is 

established through the process of glycosylation and this interaction is not 

observed for other ligands. Therefore, this interaction is not included as a pattern 

for covalent bond. We denote the other three patterns as Scys—Cligand, Scys—Sligand, 

and Nlys—Cligand respectively. They cover (27+28+23)/107 = 73% of all 

investigated covalent bonds between proteins and organic compounds; see 

summary in Table 4-1. Both the thiol of Cys and the nitrogen atom of Lys could 

interact with a variety of organic compounds. The result indicates that the 

covalent bonds could be formed only between a few specific atoms of some AAs 

and a few specific atoms of the organic compounds. 

Table 4-1: A summary of interaction patterns concerning covalent bonds formed 
between a protein and an organic compound. The patterns are shown in 
XR – YL format where X denotes an atom type of residue R in the 
protein and Y denotes an atom type of the ligand L. 

Interaction 
pattern1 

Average bond 
length (Å) Occurrence Ligands (organic compounds) 

Scys—Cligand 1.83 27 
3GC, 6NA, ACM, CYC, DBV, DKA, 
DPM, FAD, GOA, GVE, HC4, LBV, 
MKE, PEB, PLM, PYR, T10, XY2 

Scys—Sligand 2.09 28 BME, DTT, SEO 

Nlys—Cligand 1.37 23 3PY, AZE, BGX, HPD, P3T, PBG, PLP, 
PYR, RET 

Since some covalent bond patterns concern only a few dozens of complexes, we 

investigate whether they are specific to a certain protein family or whether they 

are more generic and associated with a variety of families. We note that in 
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contrast to the covalent bonds, in the case of the subsequently discussed 

coordination and hydrogen bonds, thousands of contacts between the proteins 

belonging to a wide range of families and the ligands are established. Based on 

SCOP classification system (Andreeva et al., 2008), the Scys—Cligand bonds are 

formed for proteins belonging to 15 families, which cover four major structural 

classes, i.e., all-α, all-β, α/β, and α+β. Similarly, the Scys—Sligand and Nlys—Cligand, 

bonds concern proteins from 15 and 10 families and 4 and 3 structural classes, 

respectively. This shows that the above patterns span dozens of structurally 

different protein families, which in turn indicates that they are not specific to a 

certain protein family. 

Hydrogen bonds 

Hydrogen bonds are formed in 2466/3685 = 66.9% of the protein-organic 

compound complexes. Although all 20 AAs can establish hydrogen bonds with 

compounds, their ability to form hydrogen bonds varies. Table 4-2 shows the 

distribution of occurrence of the hydrogen bonds formed by each AA and the 

occurrence of the AAs in the 3685 pockets. The seven hydrophilic residues (based 

on the low values of their hydropathy index (Kyte and Doolittle, 1982)), including  

Arg, Lys, Asn, Thr, Ser, Gln, and His establish larger number of hydrogen bonds 

when compared their occurrence in the pockets. Moreover, six hydrophobic 

residues, i.e., Ala, Cys, Val, Ile, Met, and Leu, occupy 26.1% of the residues in 

the pockets and they form only 10.7% of the hydrogen bonds. This suggests that 

the hydrophilic residues form hydrogen bonds with the organic compounds more 

frequently when compared with the hydrophobic residues. Among the 7914 

hydrogen bonds between proteins and organic compounds, AAs serve as donors 

for 6526 hydrogen bonds, and as acceptors for only 1371 hydrogen bonds; they 

serve as both donors and acceptors for the remaining bonds. 

Table 4-2: A summary of hydrogen bonds formed between specific amino acids 
and organic compounds. 1the hydropathy index values from reference 
(Kyte and Doolittle, 1982); the larger (smaller) the index values is, the 
more hydrophobic (hydrophilic) the amino acid. 2the percentages of 
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hydrogen bonds between specific amino acids and DNA molecules 
were taken from Table 2 of reference (Luscombe et al., 2001). 

# hydrogen bonds Amino 
acid 

% hydrogen bonds 
with  organic 
compounds 

% of 
occurrence in 
binding sites 

% hydrogen 
bonds with  

DNA molecules2 as acceptor as donor 

Hydropathy 
index 
value1 

Arg 20.0% 7.5% 33.6% 29 1555 -4.5 
Lys 10.4% 5.1% 14.8% 18 802 -3.9 
Ser 8.8% 6.2% 10.1% 63 631 -0.8 
Thr 8.0% 5.6% 8.2% 68 566 -0.7 
Asn 7.6% 5.1% 7.9% 106 497 -3.5 
Gly 6.8% 8.8% 3.7% 50 488 -0.4 
Tyr 5.2% 5.9% 3.5% 69 346 -1.3 
His 5.1% 4.0% 3.6% 91 312 -3.2 
Asp 4.8% 5.7% 1.0% 278 103 -3.5 
Gln 4.5% 3.3% 6.3% 75 282 -3.5 
Glu 4.5% 4.9% 1.6% 300 53 -3.5 
Ala 3.0% 5.6% 1.8% 38 200 1.8 
Leu 2.2% 7.3% 0.4% 40 137 3.8 
Trp 2.1% 3.6% 0.3% 13 156 -0.9 
Val 2.1% 5.1% 0.7% 36 128 4.2 
Ile 1.8% 4.4% 1.3% 27 113 4.5 
Phe 1.2% 5.2% 0.4% 21 72 2.8 
Met 0.9% 2.2% 0.4% 11 57 1.9 
Cys 0.7% 1.5% 0.4% 9 43 2.5 
Pro 0.4% 3.0% 0.1% 29 2 -1.6 

The distribution of occurrence of the hydrogen bonds with the organic compounds 

for the individual AAs is compared with the corresponding results obtained for 

protein-DNA interactions, which were derived based on 129 protein-DNA 

complexes (Luscombe et al., 2001), see Table 4-2. In both cases, the distributions 

are similar, i.e., Arg, Lys, Ser, Thr, and Asn establish the largest number of 

hydrogen bonds with both the organic compounds and the DNA molecules, while 

Phe, Met, Cys, and Pro establish the smallest number of hydrogen bonds with 

both types of ligands. The two AAs that establish the highest number of hydrogen 

bonds, Arg and Lys, are characterized by a larger number of bonds in the case of 

the binding with DNA, although we emphasize that the order of AAs in both cases 

is consistent. This suggests that the ability of AAs to establish hydrogen bonds 

could be an intrinsic characteristic of the AA itself, which is independent of the 

type of the ligand. 
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The negatively charged residues Asp and Glu did not exhibit strong affinity 

towards establishing hydrogen bonds in spite of having relatively high solvent 

accessibility and inclusion of two oxygen atoms in their side chains. We observe 

that Asp and Glu form the largest number of hydrogen bonds (278 and 300) when 

the AA serves as an acceptor. At the same time they form only 103 and 53 

hydrogen bonds when they serve as donors, which is relatively small when 

contrasted with the number of hydrogen bonds formed by other hydrophilic 

residues, e.g., 1555 for Arg and 802 for Lys. This low affinity to form hydrogen 

bonds could be explained by considering that the carboxyl groups of Asp and Glu 

often lend their H+ to solution, and as a result the two oxygen atoms on the 

carboxyl group are not bonded to hydrogen atom and cannot serve as a donor 

when forming the hydrogen bond. 

The most frequently formed hydrogen bond is established between NH- group (as 

the donor) of an AA and the oxygen atom of an organic compound. This type of 

the hydrogen bond covers 5206/7914 = 65.8% of all hydrogen bonds. To compare, 

the NH- group of organic compound serving as the donor and the oxygen atom of 

AAs account for only 325 hydrogen bonds. The surface patch that is characteristic 

for NH- group has high potential to form hydrogen bonds with organic 

compounds. For instance, in the chain A of neuraminidase protein (PDB entry 

1F8E) (Smith et al., 2001), the pocket that binds 4,9-AMINO-2,4-DEOXY-2,3-

DEHYDRO-N-ACETYL-NEURAMINIC (abbreviated to 49A in PDB) includes 

4 Arg residues, i.e., Arg118, Arg152, Arg292, and Arg371, see Figure 4-3. Three 

of them, Arg118, Arg292, and Arg371, are spatially adjacent and they form 5 

hydrogen bonds with the oxygen atoms of 49A, while the other residues in the 

pocket establish only 2 hydrogen bonds. The cluster of the five hydrogen bonds is 

crucial for the interaction between the protein chain and the compound.  



 41 

 

Figure 4-3: An example stereo diagram of hydrogen bonds formed between NH- 
group of a residue and oxygen atom of an organic compound. The oxygen 
atom is colored red, nitrogen atom is blue, carbon atom is gray, and 
hydrogen atom is white. The residues in the pocket are in ball and stick 
format while the ligand is in stick format. Hydrogen bonds are represented 
by “…”. The structure is taken from chain A of neuraminidase protein (PDB 
entry 1F8E), which interacts with 49A. The binding pocket contains four Arg 
residues and each residue contains 2 NH- groups. Three Arg residues 
(Arg118, Arg292, Arg371) are spatially adjacent, and they form five 
hydrogen bonds with the oxygen atoms of the ligand. 

Van der Waals contacts 

Majority of the van der Waals contacts are formed between carbon, oxygen and 

nitrogen atoms. These three atoms result in nine potential combinations which 

cover 94.8% of all van der Waals contacts between proteins and organic 

compounds. The most common van der Waals contacts are established between a 

carbon atom of a residue and a carbon atom of a compound, and a carbon atom of 

a residue and an oxygen atom of a compound. Each of the abovementioned two 

cases accounts for more than 25% of all van der Waals contacts. In contrast to the 

covalent and hydrogen bonds, van der Waals contacts are irregular and lack 

frequently occurring patterns that would indicate involvement of particular 

residues. 
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4.5.3 Interaction patterns in protein-metal ion complexes 

Among 1682 protein-metal ion complexes, 639 involve both coordination bonds 

and electrostatic force, 459 are based on electrostatic force but with no 

coordination bonds, and 499 incorporate coordination bonds with no electrostatic 

force. Overall, electrostatic force and coordination bonds are involved in 

(639+459+499) = 1597 complexes, which correspond to 1597/1682 = 94.9% of 

all protein-metal ion complexes. 

Asp and Glu residues are negatively charged and could potentially form 

electrostatic contact with metal ions. Since the charge is not evenly distributed 

over the AAs, we analyzed which non-hydrogen atom of Asp/Glu is the closest to 

the metal ions. Among 1098 complexes which involved the electrostatic force, 

metal ions formed electrostatic interactions with Asp and Glu for 1511 times (in 

some complexes more than 1 electrostatic interaction is formed). In the case of 

1385 out of the above 1511 interactions, the oxygen atoms of the carboxyl group 

of Asp and Glu are the closest to the metal ion. This suggests that these two 

oxygen atoms could be more negatively charged than other atoms in the side 

chains. 

Metal ions are observed to form coordination bonds with up to 6 atoms of a given 

protein, i.e., in chain A of 4-chlorobenzoyl coenzyme A dehalogenase protein 

(PDB entry 1NZY) (Benning et al., 1996), the calcium ion is coordinated with 

oxygen atoms of Gly49, Leu202, Ala203, Ala205, Thr207 and Gln210. On the 

other hand, some metal ions form coordination bonds with just one atom, i.e., in 

the chain A of human sex hormone-binding globulin protein (PDB entry 1D2S) 

(Grishkovskaya et al., 2000), the calcium ion interacts only with His136. A total 

of 2345 coordination bonds are formed among the 1138 protein-metal ion 

complexes that involve this type of bond. The nitrogen atom in the side chain of 

His forms 787 bonds with the coordinating metal ions, sulfur atom of Cys forms 

434 coordination bonds with metal ions, and oxygen atom (of any AA except 

Asp/Glu since interaction between metal ion and Asp/Glu is considered to be 



 43 

based on the electrostatic force) forms 1039 coordination bonds. The bonds based 

on these three patterns correspond to (787+434+1039)/2345 = 96.4% of all 

coordination bonds. The strong affinity of the oxygen atom to form coordination 

bonds with metal ion suggests that the interaction between the negatively charged 

Asp and Glu residues and metal ions could be a combination of both the 

coordination and the electrostatic force. The interaction between metal ions and 

Asp/Glu has been considered as coordination in many other studies. For instance, 

Angkawidjaja and colleagues reported that Ca2+ is coordinated by the side chains 

of Asp153, Asp157, and Gln120, and the carbonyl oxygens of Thr118 and Ser144 

(Angkawidjaja et al., 2007); similarly, Declercq and coworkers show interaction 

between Ca2+ and the coordinating oxygen atoms of Asp51, Asp53, Ser55, Phe57, 

Glu59 and Glu62 (Declercq et al., 1999). As a result, the interactions between 

metal ions and Asp/Glu should be regarded as both coordination and electrostatic 

contacts if the distance between the corresponding atoms satisfies the definition of 

the coordination bond and the electrostatic contact. 

Although the generic principles that govern protein-metal ion interactions were 

discussed in prior works (Dudev and Lim, 2008a; Dudev and Lim, 2008b; Gifford 

et al., 2007; Maret, 2005), e.g., interactions concerning Cys-rich Zn2+-binding 

sites and affinity of interaction between Mg2+ and Asp/Glu in protein cavities 

(Dudev and Lim, 2008a), we could not find a systematic study that investigates 

how many residues and what residues types are involved (“preferred”) in the 

coordination bonds with specific metal ions, and that provides insights concerning 

similarities in the geometry of the coordination-based interactions with metal ions, 

which are discussed below. 

Among the metal ions, Ag+, Ca2+, Cu2+(Cu+), Cd2+, Co2+(Co+), Fe3+(Fe2+), Hg2+, 

K+, Mg2+, Mn2+, Na+, Ni2+, Pb2+, Sm2+ and Zn2+ form coordination bonds with 

atoms of residues, see Table 4-3. Zn2+ forms coordination bonds in the largest 

number of pockets. This ion is coordinated by atoms of at most 4 residues in a 

given pocket and it favors to be coordinated by 3 or 4 residues. The second 

highest number of pockets that involve coordination bonds with a metal ion 
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concerns Ca2+. These ions are coordinated by atoms of up to six residues in a 

pocket, and they prefer to form the coordination bonds with 4 or 5 residues. 

Coordination bonds with Mg2+ and Cd2+ ions involve 228 and 109 pockets, 

respectively. In contrast to Zn2+ and Ca2+, Mg2+ and Cd2+ ions form most of these 

bonds with atoms of 1 or 2 residues in a given pocket. Na+ ions form coordination 

bonds in 150 pockets and it favors to be coordinated by atoms of 3 or fewer 

residues. These 5 ions form coordination bonds in (426+328+228+109+150) = 

1241 pockets, which constitutes 1241/1542 = 80.5% of all relevant pockets. The 

above results suggest that different metal ions prefer to be coordinated by a 

different number of residues in a given protein pocket. 

Table 4-3: A summary of the coordination bonds between metal ions and a given 
number of residues in a protein pocket that contributes at least one 
atom to form the bond. 

# pockets in which a given metal ion forms coordination 
bond with atoms of x residues 

Metal 
ion 

x = 6 x = 5 x = 4 x = 3 x = 2 x = 1 

# of pockets for a 
given metal ion 

Zn2+ 0 0 120 123 74 109 426 
Ca2+ 24 70 84 44 50 56 328 
Mg2+ 1 0 14 59 73 81 228 
Na+ 1 5 17 44 41 42 150 
Cd2+ 0 1 5 7 26 70 109 
Mn2+ 0 1 16 24 20 24 85 
Fe3+ 1 4 15 28 6 5 59 
K+ 1 7 13 11 11 3 46 

Cu2+ 1 1 5 19 8 5 39 
Ni2+ 0 0 4 14 10 7 35 
Co2+ 0 0 4 9 5 0 18 
Hg2+ 0 0 1 0 6 9 16 
Ag+ 0 0 0 1 0 0 1 
Sm2+ 0 0 0 0 1 0 1 
Pb2+ 0 0 0 0 0 1 1 

The residues which are coordinated by the same metal ion are grouped and we 

denote such groupings as the residue groups. We count the frequencies of the 

residue groups among different metal ions. For instance, given that Zn2+ forms 

coordination bonds with 4 Cys residues in 47 pockets, the corresponding 

frequency of (Cys)4 residue group is 47. The residue groups that are coordinated 

by at least 10 metal ions are shown in Figure 4-4, Figure 4-5 and Figure 4-6. The 
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frequencies of residue groups that contain 5 or more residues are below 10 and 

thus they are not included in the above Figures. Total of 5 residue groups, i.e., 

(Cys)4, (Cys)3(His), (Cys)2(His)2, (Asp)2(His)2, and (Asp)(His)3, include 4 

residues, see Figure 4-4. We observe that the (Cys)4 group is coordinated by the 

largest number of metal ions (47 metal ions). There are 11 residue groups that 

incorporate 3 residues, see Figure 4-5. These groups include (Cys)3, (Cys)1(His)2, 

(Asp)3, (Asp)2(Glu), (Asp)2(His), (Asp)(Glu)2, (Asp)(Glu)(His), (Asp)(His)2, 

(Glu)2(His), (Glu)(His)2 and (His)3. The (Asp)(His)2 and (His)3 groups are 

coordinated by the largest number of 44 and 38 metal ions, respectively. Finally, 6 

residue groups, i.e., (Asp)2, (Asp)(Glu), (Asp)(His), (Glu)2, (Glu)(His) and (His)2, 

that make contact with 2 residues, see Figure 4-6. 

 

Figure 4-4: The residue groups that are coordinated by at least 10 metal ions and 
consist of 4 residues. 
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Figure 4-5: The residue groups that are coordinated by at least 10 metal ions and 
consist of 3 residues. 
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Figure 4-6: The residue groups that are coordinated by at least 10 metal ions and 
consist of 2 residues. 

Cys and His are among the residues that have a strong ability to form coordination 

bonds with the metal ions. We observe that although the geometry of (Cys)4–

metal ion and (His)3-metal ion interactions is different, each of these residue 

groups has similar geometry across the set of the corresponding pockets. The 

prevalent way to form the coordination bond between Cys and a metal ion 

involves four Cys residues arranged spatially close to each other to form a pocket; 

the metal ion is located in the center of this pocket. For example, in the chain A of 

PHD finger protein 21A (PDB entry 2PUY) (Lan et al., 2007), the zinc ion forms 

coordination bonds with Cys503, Cys506, Cys529, and Cys532. The distance 

between zinc ion and the sulfur atom of the four Cys residues varies between 2.26 

Å and 2.41 Å. The four sulfur atoms form an approximate regular tetrahedron and 

the zinc ion is located in its center, see panel A in Figure 4-7. The length of the 

tetrahedron edges varies between 3.63 Å and 3.93 Å. On the other hand, the 
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coordination interaction between His and metal involves three His residues 

arranged to form a pocket with the metal ion located in approximately the same 

distance to the nitrogen atoms of these three residues. For example, in the chain A 

of Zn-dependent hydrolase protein (PDB entry 2R2D) (Liu et al., 2007), the zinc 

ion forms coordination bonds with nitrogen atoms of His111, His113, and His191. 

The distance between the zinc ion and the nitrogen atoms varies between 2.06 Å 

and 2.18 Å, see panel B in Figure 4-7. The three nitrogen atoms form an 

approximate equilateral triangle with the length of the sides that varies between 

3.14 Å and 3.31Å. 

 

Figure 4-7: Examples of typical coordination bonds between metal ions and Cys 
and His residues. Coordination bonds are represented by solid lines; the 
dashed lines show the distance between atoms of different residues. Panel A 
shows the coordination bond between zinc ion and four Cys residues where 
sulfur atom is shown in gray, carbon atom in white, and zinc ion in black. 
The sulfur atoms of four Cys residues form an approximate regular 
tetrahedron and the zinc ion is located in its center. Panel B shows the 
coordination bond between zinc ion and three His residues. The nitrogen 
atoms are shown in gray, other atoms of the His side chain are in white, and 
zinc ion is colored black. The three nitrogen atoms form an approximate 
equilateral triangle with the length of the sides that varies between 3.14 Å 
and 3.31 Å. The zinc ion is not located on the triangle plane. 

4.5.4 Interaction patterns in protein-inorganic anion complexes 

Inorganic anions bind to proteins mainly through electrostatic force, hydrogen 

bonds and van der Waals contacts. Among the 1837 anions, 1188 interact with the 
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positively charged AAs such as Arg, His and Lys based on electrostatic 

interaction and 641 bind to the pocket by the means of hydrogen bonds and van 

der Waals contacts. 

Similarly as in the case of metal ions, we studied which atoms of the positively 

charged residues are the closest to the inorganic anions. Among the 1188 protein-

anion complexes that involve electrostatic force, 202 anions bind to His, 327 to 

Lys, and 659 to Arg. The nitrogen atom in the side chain of these three residues is 

the closest atom to the anion for 172 anion-His interactions, 222 anion-Lys 

interactions, and 565 anion-Arg interactions. These numbers suggest that the 

nitrogen atoms of positively charged residues may be closer to the center of the 

charge than other non-hydrogen atoms. 

Among the anions that occur in PDB more than 100 times, 743 SO4
2− (743/948 = 

78.5%) and 109 PO4
3− (109/148 = 73.6%) bind to positively charged residues, 

while some other anions less frequently bind with the charged residues. More 

specifically, 165 Cl− (165/345 = 47.8%), 33 Br− (33/126 = 26.2%), and 22 I− 

(22/108 = 20.4%) bind to positively charged residues. This could be explained by 

the formation of hydrogen bonds between the oxygen atoms of SO4
2− and PO4

3− 

and the NH- group of positively charge residues. For instance, PO4
3− forms 254 

hydrogen bonds with positively charge residues (254/109 = 2.3 hydrogen bonds 

per pocket) and SO4
2− forms 1394 hydrogen bonds with positively charge residues 

(1394/743 = 1.9 hydrogen bonds per pocket). The combination of electrostatic 

force and hydrogen bonds stabilizes the anion-positively charged residue 

interaction. 

Similarly to the protein-organic compound complexes, the most frequent 

hydrogen bond incorporates the NH- group of a residue that serves as the donor 

and the oxygen atom of a ligand that serves as acceptor. This pattern concerns 

2777 hydrogen bonds which converts into 2777/3190 = 87.1% of all hydrogen 

bonds between a protein pocket and an inorganic anion. 
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4.5.5 Interaction patterns in protein-inorganic cluster complexes 

Amidst the nine types of inorganic cluster that could be found in PDB, FS4, FES, 

SF4, F3S, CLF, and FS3 are Fe-S clusters and contain only iron and sulfur atoms. 

The remaining three inorganic clusters, which include CFN, FSO, and NFS, also 

mainly contain iron and sulfur atoms. 

We observe that coordination bonds are involved in all 54 protein-inorganic 

cluster complexes. These bonds are usually formed between the iron atom of the 

cluster and the sulfur atom of Cys residue, and the iron atom of the cluster and the 

nitrogen atom in the side chain of His residue. These two coordination bond 

patterns cover 201/204 = 98.5% of all coordination bonds between inorganic 

cluster and a protein pocket. Although FS4, SF4, F3S, and FS3 are positively 

charged and FSO is negatively charged, these clusters do not interact with charged 

residues. We did not find the electrostatic force based interactions between the 

inorganic clusters and proteins. 

4.5.6 Overlap and coverage of the interaction patterns 

The 10 patterns that concern covalent bonds, coordination bonds and hydrogen 

bonds, see the bottom layer in Figure 4-1, appear in 2013 protein-organic 

compound complexes, 1138 protein-metal ion complexes, 1115 protein-anion 

complexes, and 53 protein-inorganic cluster complexes, which corresponds to 

(2013+1138+1115+53)/7759 = 55.7% of all protein-ligand complexes. Significant 

majority of the above complexes incorporates just one of the discussed patterns. 

More specifically, except for 81 protein-organic compound complexes and 546 

protein-metal ion complexes that incorporate two or more interaction patterns, the 

remaining 4238 protein-ligand complexes include one interaction pattern. 

4.6 Conclusions 

In this chapter, we investigated several frequently occurring interaction patterns 

that concern atomic-level protein-ligand interactions. The considered protein 

pocket-ligand complexes were grouped into four categories: protein-organic 
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compound, protein-metal ion, protein-anion, and protein-inorganic cluster 

complexes. These groups cover 93.5% of all protein-ligand complexes from PDB 

and we show that they are governed by different types of interaction forces. The 

protein-organic compound complexes are governed by the hydrogen bonds, van 

der Waals contacts and covalent bond. The protein-metal ion complexes are based 

on the electrostatic force and coordination bonds while the protein-anion 

complexes are governed by the electrostatic force, hydrogen bonds and van der 

Waals contacts. Finally, the protein-inorganic cluster complexes are established 

mostly due to the coordination bonds. 

We present several frequently occurring interaction patterns, defined in terms of 

prevalent interactions between specific atoms of specific residue in the protein's 

pocket and specific atoms of the ligand, for the abovementioned four groups and 

for the specific types of interaction forces. We quantify relative abundance of 

specific interaction types and discuss their characteristic features such as 

commonly interacting amino acid types. Total of 10 interaction patterns that occur 

in 56% of all considered complexes are found. For example, we show that 66.9% 

of the protein-organic compound complexes involve hydrogen bonds and that 

65.8% of these hydrogen bonds are formed between the NH- group of the 

protein's residue and the oxygen atom of the organic compound. As a result, we 

believe that the geometric and electrostatic complementary, which are used for 

molecular recognition, should be supplemented by implementation of hydrogen 

bond(s) in the case of the protein-organic compound complexes. As another 

example, only three interaction patterns are sufficient to summarize significant 

majority, i.e., 73%, of normal covalent bond interactions between proteins and 

ligands; they include the covalent bond between the thiol of Cys residue and the 

carbon atom of the ligand (thioether bond), the thiol of Cys residue and the sulfur 

atom of the ligand (disulfide bond), and the nitrogen atom of Lys residue and the 

carbon atom of the ligand. We also show that the AAs serve as donors for 

significant majority of these hydrogen bonds. We observe that most of the 

inorganic anions interact with positively charged AAs including Arg, His, and Lys. 
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We show that the organic compounds form hydrogen bonds more frequently with 

hydrophilic AAs when compared with hydrophobic AAs, which is consistent with 

the results obtained for the protein-DNA interactions (Luscombe et al., 2001). 

This suggests that the ability of AAs to establish hydrogen bonds could be an 

intrinsic characteristic of a given AA, which is independent of the ligand type.  

To conclude, we show that for a given type (group) of ligands and a given type of 

the interaction force, majority of protein-ligand interactions are repetitive and 

could be summarized with several simple atomic-level patterns. These interaction 

patterns not only provide a comprehensive overview of protein-ligand interactions, 

but they also may have important implications for the development of binding site 

prediction methods. Our results suggest that one model cannot effectively predict 

all protein-small ligand interactions. The prediction method should be composed 

of several modules that target predictions for specific types of small ligands, for 

which interaction pattern can be found. 
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CHAPTER 5 Assessment on existing binding site 
predictors for small organic ligands 

5.1 Introduction 

In chapter 4, we have demonstrated that some interaction patterns are shared by a 

number of protein-ligand complexes. This result implies that (some) binding sites 

are predictable. They could be identified, for example, by comparing them to a 

library of known, similar binding sites or by using a model that describes a given 

pattern or a set of patterns. To date, more than a dozen methods have been already 

proposed for the prediction of binding sites of small organic compounds. 

Unfortunately, these methods were never systematically compared and analyzed. 

Some studies that introduced new binding site predictors have compared them to a 

few existing solutions, however, the benchmark dataset used for the comparison is 

characterized by a largely incomplete annotation of binding sites. Additionally, 

prior benchmark datasets include annotations of biologically “irrelevant” ligands, 

such as the glycol molecule that is introduced by the purification and 

crystallization procedures. To this end, we perform a comparative evaluation of 

the predictive quality of ten representative binding site predictors on a set of 

proteins that are annotated with multiple binding sites, which are confirmed to be 

biologically relevant (Chen et al., 2011). This chapter gives an overview of the 

state-of-the-art binding site predictors and finds several limitations of these 

methods. These limitations should be addressed by the future designers of the 

binding site predictors. 

5.2 Related work 

We selected 10 prediction methods that offer either a web-server or a standalone 

program to generate the predictions. Overall, the structure-based binding site 

predictors utilize three types of approaches including geometrical analysis, 

calculation of binding energy, and threading using structural templates; 
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additionally, one solution is based on a consensus of geometry- and energy-based 

approaches. The geometry-based methods find crevices/pockets on the protein 

surface and output them (after sorting them based on their volume and/or 

sequence conservation) as the predicted binding sites. This approach is based on 

the premise that small ligands usually bind to pockets on the protein surface. The 

energy-based methods find patches on the protein surface that offer energetically 

favorable conformation, as evaluated using one of the scoring functions discussed 

in Section 2.2.4. These patches include atoms that could potentially interact with 

small ligands. The threading-based methods utilize a library of known protein-

small ligand complexes and perform predictions by finding the most similar 

complex for a given input protein. The considered methods include the geometry-

based SURFNET (Laskowski, 1995), PocketFinder (Hendlich et al., 1997), PASS 

(Brady and Stouten, 2000), LIGSITEcsc (Huang and Schroeder, 2006), 

PocketPicker (Weisel et al., 2007), ConCavity (Capra et al., 2009), and Fpocket 

(Le et al., 2009), the energy-based Q-SiteFinder (Laurie and Jackson, 2005), the 

threading-based Findsite (Skolnick and Brylinski, 2008), and the consensus-based 

MetaPocket (Huang, 2009). We evaluate the predictive quality of the 10 methods 

using two criteria that were introduced in prior works and a new quality index that 

gives additional insights. For convenience, we use ‘ligands’ and ‘binding sites’ to 

refer to the small organic compounds and the sites on the protein structure where 

they bind, respectively. 

5.3 Preparation of benchmark dataset 

The benchmark dataset is designed to cover a wide range of non-homologous 

(functionally dissimilar) protein structures and to include structures with the 

largest number of annotated binding sites. We select a representative chain for 

each SCOP family and we map the binding sites of other similar structures into 

this chain. Prior work shows that two chains from different SCOP families have 

less than 1% chance to share more than 25% sequence similarity (Levitt, 2007). 

Since every chain in our dataset comes from a different protein family, the 
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included proteins should be dissimilar in both their tertiary structure and sequence. 

We download all available protein-ligand complexes from the PDB as of August 

18th, 2009 and we annotate these proteins with their corresponding SCOP families. 

One chain for each SCOP family is selected using the following procedure. First, 

sequence similarity and structural similarity expressed with TM-score (Zhang and 

Skolnick, 2005) are calculated for every pair of chains within a given SCOP 

family. TM-score measures the structural similarity between a pair of protein 

structures and varies between 0 and 1 (Zhang and Skolnick, 2005); larger values 

indicate higher similarity. Next, the two similarity scores are used to perform 

clustering. Two chains are assigned to the same cluster if their sequence similarity 

is above 80% and their TM-score is above 0.5, as suggested in (Zhang and 

Skolnick, 2005). We assume that the chains of the same cluster are homologous 

and that they share the same binding sites. Finally, we count the number of types 

of ligands that interact with the chains of each cluster. The cluster with the largest 

number of the ligand types is selected and this cluster is represented by the protein 

with the largest number of bound ligands. The latter choice is made to maximize 

the number and accuracy of the annotations of the binding sites. The ligands in the 

other chains in the selected cluster are superimposed into the representative 

structure using Fr-TM-align (Pandit and Skolnick, 2008). If the superimposed 

ligand structure clashes with the representative protein structure, then this ligand 

is removed. This step results in a protein structure that includes a (large) number 

of bound ligands, where some of these ligands could be redundant. A single-

linkage clustering was performed to remove the redundancy. The distance 

between two ligands is defined as the minimum distance between any atom of one 

ligand and any atom of the other ligand. The clustering is terminated using 5Å 

threshold to ensure that ligands from one cluster do not overlap with ligands from 

another cluster. The median structures are chosen for each cluster of ligands. 

These median structures form a set of non-redundant ligands that bind to the 

protein structure, which represents a given SCOP family. 
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The resulting dataset contains 314 protein structures. These structures are 

manually inspected to filter out biologically irrelevant ligands, such as the glycol 

molecule that is introduced by the purification and crystallization procedures. For 

the structures with a published reference, a ligand is considered as biologically 

relevant if it is mentioned in the title or the abstract of the reference or the 

interaction between the ligand and the target protein is discussed in the results 

section. The ligands that only appear in the materials section or are never 

mentioned in the reference are removed. In case of the structures with no 

published reference, we use rules that were recently suggested by Wodak and 

colleagues (Dessailly et al., 2008). A given ligand is considered as biologically 

relevant if 1) it includes at least 10 non-hydrogen atoms; 2) it establishes at least 

70 inter-atomic contacts with the protein atoms; and 3) the interaction does not 

concern lipid and membrane proteins. Our benchmark dataset includes 251 

proteins after removing the “irrelevant” ligands. These are ligand-bound (i.e., holo) 

structures. Since the protein-ligand interactions could lead to conformation 

changes, we also generate a dataset that consists of the matching ligand-unbound 

(i.e., apo) structures. For each protein in the benchmark dataset we searched for its 

corresponding apo structure in the PDB. An apo structure is assumed to 

correspond to a given holo structure if they belongs to the same SCOP family, 

they share more than 80% sequence similarity and their TM-score is above 0.5. 

We found 104 apo structures and we created two additional datasets, DApo dataset 

that includes the 104 apo structures and DHolo dataset which is a subset of the 

corresponding 104 holo structures from the benchmark dataset. 

The proteins in the benchmark dataset have diverse overall structural topology. 

Based on the annotation from the SCOP database, they cover 6 structural classes, 

148 protein folds, 184 superfamilies, and 251 protein families. The maximal 

pairwise sequence similarity is between 11% and 24%. The 251 proteins are 

annotated with 475 binding sites which interact with 253 types of ligands. All 

datasets including the full benchmark dataset and the DHolo
 and DApo datasets are 

available at http://biomine.ece.ualberta.ca/BindingSitesPredictors/main.htm. 

http://biomine.ece.ualberta.ca/BindingSitesPredictors/main.htm
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5.4 Evaluation measures 

We use three indices to evaluate predictions of the considered binding site 

predictors:  

• DCA, which is defined as the minimal distance between the center of the 

predicted binding site (pocket) and any atom of the ligand, was widely used 

to assess the prediction quality in several prior studies. For instance, authors 

of LIGSITEcsc, PASS, PocketPicker and Fpocket assume that a predicted site 

is correct if its center is no farther that 4Å to any atom of the ligand. Instead 

of using one arbitrary threshold, we compute the success rates using DCA 

values for integer thresholds between 1Å and 20Å. 

• DCC, which is defined as the minimal distance from the center of the 

predicted binding site to the center of the ligand, was proposed by Skolnick 

and colleagues (Skolnick and Brylinski, 2008). When compared with DCA, 

this measure compensates for the size of the ligand, i.e., DCA gives higher 

success rates for larger ligands. DCC was recently used to compare Findsite 

and LIGSITEcsc (Skolnick and Brylinski, 2008). The success rates are 

computed using integer thresholds between 1Å and 20Å. 

• OPL, which quantifies overlap between the predicted binding site and the 

ligand, is proposed in this dissertation. This measure is defined as the ratio 

between the volume of the intersection of the predicted site and ligand, and 

the volume of their union. In addition to being sensitive to the size of the 

ligand, this quality index improves over both DCA and DCC by compensating 

for the relative spatial orientation of the ligand and the binding site. It can be 

computed for the four methods that output the full set of grid points of the 

predicted site (Q-SiteFinder, PocketPicker, ConCavity, and PocketFinder) 

instead of just the center of the pocket that is predicted by the other 

considered predictors. To calculate this value, both the binding site (pocket) 

and ligand are represented using a set grid points in the same grid scale. A 
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grid point is assigned to the ligand/site if the distance between this point and 

ligand/site is smaller than half of the length of diagonal in the grid cube. The 

OPL value is computed as the ratio between the number of grid points that are 

shared by the ligand and the binding site, and the number of grid points that 

belong to either the ligand or the site. 

5.5 Assessment on binding site predictors 

We evaluate the performance of the ten prediction methods on a non-redundant 

benchmark dataset of 251 proteins. These methods are also compared against a 

baseline predictor which randomly selects a surface patch on the target protein; 

the center of the patch is used as the prediction. Prior studies usually take top 

three or top five predictions and verify whether any of them are within a certain 

distance (which is used as a cutoff for calculation of prediction accuracy) to the 

actual binding site. If at least one of the top predictions is below the cutoff, then 

the binding site is assumed to be correctly predicted. Since the previously used 

benchmark datasets contain proteins that are annotated with one binding site, the 

number of correctly predicted sites equals to the number of proteins and 

predictions were assessed “per protein”. In our case majority of the proteins are 

annotated with multiple binding sites, and thus our assessment is “per binding 

site”. For a protein with n binding sites we take the top n predictions for every 

considered method (in the case that one method generates less number of 

predictions than the number of binding sites, all predictions are used for 

evaluation). A given binding site is correctly predicted if the minimal distance 

between this site and any of the n predictions from a given method is below a 

threshold D. The success rate is defined as the number of correctly predicted 

binding sites divided by the total number of sites. 

5.5.1 Comparison of the overall prediction quality 

The success rates of the ten methods and the random baseline predictor quantified 

using DCC, which measures the distance from the center of the predicted site to the 

center of the ligand, are shown in Figure 5-1, where y-axis stands for the success 
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rates and the x-axis represents the cutoff distance D. Findsite outperforms all other 

considered predictors for thresholds D up to 10Å. The ConCavity achieves the 

“second-best” success rates and is chosen to represent the geometry-based 

approaches in the subsequent analysis. Several predictors, including Q-SiteFinder, 

MetaPocket and PocketPicker have comparable, “third-best” success rates. The 

SURFNET, which is the oldest method that was designed over a decade ago, has 

the lowest success rates but it still improves over the baseline.  
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Figure 5-1: The success rates (y-axis) of the ten representative methods measured 
using DCC (the minimal distance from the center of the predicted site to the 
center of the ligand) on the benchmark dataset. A given binding site is 
regarded as correctly predicted if the minimal distance between this site and 
the top n predictions is below the cutoff distance D (x-axis), where n is the 
number of binding sites of the protein that includes the evaluated binding site. 

Figure 5-2 summarizes the success rates measured using DCA, which is based on 

the distance from the center of the predicted site to any atom of the ligand. The 

results are similar to the results obtained using DCC, except for D = 1Å where the 

Q-SiteFinder is the top-performing predictor. For the cutoff D = 4Å, which was 
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suggested by Skolnick and colleagues (Skolnick and Brylinski, 2008), the 

threading-based Findsite successfully predicts around 57% and 68% of the 

binding sites for the DCC and DCA distance definition, respectively, the geometry-

based ConCavity identifies 28% and 51% of the binding sites, the energy-based 

Q-SiteFinder finds 26% and 44% of the binding sites, and the remaining methods 

cover 11-25% and 31-45% of the binding sites, respectively. To compare, the 

baseline random predictor correctly finds 5% and 9% of the binding sites when 

considering DCC and DCA distances, respectively. 
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Figure 5-2: The success rates (y-axis) of the ten representative methods measured 
using DCA (the minimal distance from the center of the predicted site to any 
atom of the ligand). A given binding site is regarded as correctly predicted if 
the minimal distance between this site and the top n predictions is below the 
cutoff distance D (x-axis), where n is the number of binding sites of the 
protein that includes the evaluated binding site. 

The overlap index OPL, which is defined as the ratio between the volume of the 

intersection of the predicted binding site and the ligand, and the union of the two 

volumes, expresses normalized spatial overlap between the predicted and the 
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actual location of the ligand. The OPL could be calculated only for the ConCavity, 

Q-SiteFinder, PocketPicker and PocketFinder which generate a full set of grid 

points of the predicted pocket instead of just the center of the pocket that is 

outputted by the remaining predictors. We observe that about 60% of the binding 

sites predicted by ConCavity overlap with the predicted pocket while the coverage 

is only around 40% for Q-SiteFinder and PocketPicker; see Figure 5-3, where the 

y-axis shows the percentage of binding sites that have their OPL values equal or 

greater than value on the x-axis. However, in most cases, the overlapping volume 

measured using OPL is rather small; for instance, OPL is above 20% only for about 

16% of the binding sites. 
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Figure 5-3: The success rates (y-axis) of PocketPicker, Q-SiteFinder, ConCavity 
and PocketFinder measured using OPL (overlap between the predicted pocket 
and the ligand). 

5.5.2 Statistical analysis of the predictions by the considered 
methods 

We investigate significance of differences in the prediction quality measured with 

DCC for all pairs of the considered prediction methods. For a protein with n 
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binding sites we take the top n predictions for every considered prediction method. 

We generate a set of minimal distances between each of the m binding sites (in the 

entire dataset) and the corresponding n predictions for each of the prediction 

methods. We assume that the predictions from different methods that are farther 

than 10Å away from the site are equally wrong, i.e., they are too far away to be 

meaningful, and thus we round them down to 10Å. The significance of the 

differences between a given pair of predictors was measured by evaluating the 

corresponding, for the same m, minimal distance values. Since the distances for 

the considered predictors are not normally distributed, per the Shapiro-Wilk test 

of normality at p = 0.05, we used the non-parametric Wilcoxon signed-rank test. 

We assume that the differences are significant if p < 0.05. Statistical analysis 

shows that the Findsite is significantly better than all other methods, see Table 5-1, 

where the “+”/“–” indicates that a method in a given column is significantly 

better/worse than a methods in a given row with p < 0.05 and “=” denotes that a 

given pair of methods is not significantly different. The ConCavity, Q-SiteFinder, 

MetaPocket and PocketPicker are second-best and not significantly different 

between each other (except for the ConCavity which significantly improves over 

the Q-SiteFinder), and this group is statistically better than LIGSITEcsc, 

SURFNET, PASS, PocketFinder and Fpocket. 

Table 5-1: Statistical significance of the differences in distances measured using 
DCC between the predicted and the actual location of the binding site 
for all pair of the considered ten prediction methods measured using 
Wilcoxon signed-rank test. 

 PASS SURFNET Pocket- 
Finder Fpocket LIGSITEcsc Q- 

SiteFinder 
Pocket- 
Picker 

Meta- 
Pocket 

Con- 
Cavity Findsite 

PASS   = + + + + + + + + 
SURFNET  =  + + + + + + + + 
PocketFinder  – –  = + + + + + + 
Fpocket – – =  = + + + + + 
LIGSITEcsc – – – =  + + + + + 
Q-SiteFinder  – – – – –  = = + + 
PocketPicker – – – – – =  = = + 
MetaPocket – – – – – = =  = + 
ConCavity – – – – – – = =  + 
Findsite – – – – – – – – –  
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5.5.3 The impact of structural similarity between predicted protein 
and template library 

Findsite is a threading-based method that utilizes a library of template structures. 

Its predictions are generated by clustering binding sites of the template structures 

and they rely on the availability of templates that are similar to the predicted 

protein. To study the impact of the availability of similar templates, we use a 

threshold to limit the structural similarity between the predicted proteins and the 

templates used for the prediction. Only the template structures with a similarity 

score below the threshold are utilized. The structural similarity is measured with 

TM-score, which varies between 0 and 1 (Zhang and Skolnick, 2005). We vary 

the threshold between 0.5 and 1 with step of 0.1. Findsite also utilizes a default 

cut-off TM-score = 0.4 below which a given template is rejected. In case if 

Findsite does not find a suitable template above the 0.4 cut-off, we lower it by 0.1 

until a template is found.  

We compare Findsite with the Q-SiteFinder, which is the only energy-based 

method, the ConCavity, a representative (best-performing) geometry-based 

method, and with the MetaPocket that represents the consensus-based approaches. 

The success rates of these four methods are quantified using DCC. For Findsite, we 

generate six sets of predictions that correspond to the consecutive values, between 

0.5 and 1, of the maximal similarity threshold. The MetaPocket, ConCavity, and 

Q-SiteFinder do not utilize templates thereby they have one set of predictions. 

Figure 5-4 reveals, as expected, that the predictive quality of Findsite improves 

with the increase of the similarity threshold. For the cutoff D = 4Å, its success 

rates equal 16%, 25%, 34%, 37%, 43% and 57% for the maximal TM-score 

threshold of 0.5, 0.6, 0.7, 0.8, 0.9, and 1, respectively. This indicates that the 

predictive quality of Findsite is largely dependent on the availability of 

structurally similar templates. We investigate significance of differences in the 

prediction quality measured with DCC between the predictions generated by the 

four methods. Findsite is significantly better than the other three methods when 

the similarity threshold is 0.7 or higher, comparable to the other three methods 
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when the threshold is set to 0.6, and significantly inferior for the threshold equal 

0.5. These results suggest that if Findsite identifies a template that shares a TM-

score ≥ 0.7 with the query protein, then its predictions are expected to be better 

than the predictions of the ConCavity, MetaPocket and Q-SiteFinder. On the other 

hand, if the maximal TM-score between the Findsite’s templates and the query 

protein ≤ 0.5, then the predictions generated by the ConCavity, MetaPocket or Q-

SiteFinder are likely to be better. 
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Figure 5-4: Comparison of the success rates (y-axis) of Findsite using its entire 
template library measured using DCC for different cutoff distances D (x-axis) 
on the benchmark dataset with the predictions where the maximal structural 
similarly between a query protein and the templates limited to TM-score ≤ 
0.9, ≤ 0.8, ≤ 0.7, ≤ 0.6, and ≤ 0.5. The figure also includes the success rates 
for Meta-pocket, ConCavity, and Q-SiteFinder. 

5.5.4 Comparison of prediction quality between Apo and Holo 
structures 

The benchmark dataset consists of holo structures, i.e., structures that are bound 

to ligands. Since the protein-ligand interactions may lead to conformational 

changes at the vicinity of the binding site, we also investigate the binding site 
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predictions performed on the apo structures, i.e., unbound-state proteins. We 

select a subset of proteins, for which both apo structures and holo structures are 

known, from the benchmark dataset. This results in two datasets, DApo that 

includes 104 of these apo structures and DHolo that includes the corresponding set 

of the 104 holo structures (a subset of the benchmark dataset). 
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Figure 5-5: Comparison of success rates (y-axis) on the DHolo and DApo datasets 
measured using DCC for Findsite, MetaPocket, ConCavity, and Q-SiteFinder. 
The two datasets contains structures of the same set of proteins where DHolo 
includes ligand-bound structures and DApo includes structures at the ligand-
unbound state. The x-axis shows the cutoff distance D that is used to 
calculate the success rates. 

We assess predictions generated by the four representative methods, the 

threading-based Findsite, the energy-based Q-SiteFinder, the consensus-based 

MetaPocket, and the best performing geometry-based ConCavity on both datasets; 

see Figure 5-5. Using the DCC distance, the success rates of Findsite on the DHolo 

dataset is on average (over different thresholds) about 1.6% higher than on the 

DApo dataset. For the MetaPocket, Q-SiteFinder, and ConCavity the success rates 
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on the DHolo dataset are on average 6.7%, 6.2%, and 7.3% higher than on the 

ligand-unbound dataset. Similar trends are observed when using the DCA, see 

Figure 5-6. Specifically, Findsite, MetaPocket, Q-SiteFinder, and ConCavity 

achieve 1.1%, 6.7%, 7.5%, and 6.9% better success rates on the DHolo dataset, 

respectively. The significance of the differences in the predictive quality between 

the DHolo and DApo datasets was calculated using the Wilcoxon signed-rank test. 

The test reveals that MetaPocket, ConCavity and Q-SiteFinder, achieve 

significantly better predictions with p < 0.01, p < 0.01 and p < 0.05, respectively, 

on the DHolo dataset when compared with the DApo dataset, while Findsite achieves 

comparable results on both datasets. These results suggest that the geometry-, 

energy-, and consensus-based methods benefit from the usage of the holo 

structures, likely because the geometrical descriptors and the energy function can 

be calculated more accurately using these structures. 
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Figure 5-6: Comparison of the success rates (y-axis) on the DHolo and DApo datasets 
measured using DCA for the threading-based Findsite, the energy-based Q-
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SiteFinder, the best performing geometry-based ConCavity, and the 
consensus-based MetaPocket. The two datasets include structures from the 
same set of proteins where DHolo is composed of structures in the ligand-
bound state and DApo in the ligand-unbound state. A given binding site is 
regarded as correctly predicted if the minimal distance between this site and 
the top n predictions is below the cutoff distance D (x-axis), where n is the 
number of binding sites of the protein that includes the evaluated binding site. 

5.5.5 Impact of the size of the binding sites 

We assessed the impact of the size of the binding sites on the predictive quality. 

The size is approximated by the number of interacting atoms in the binding site. A 

non-hydrogen atom of a residue is considered as an interacting atom if it is within 

3.9Å to a non-hydrogen atom of the ligand (Luscombe et al., 2001). The binding 

sites that are sorted by their sizes are divided into five subsets with equal number 

of sites. The success rates of the four representative predictors are calculated 

using these five subsets. Using DCC, we observe a consistent trend that higher 

success rates are achieved for the larger binding sites, see Figure 5-7. For instance, 

the average success rates for Findsite are 23%, 35%, 45%, 57% and 69% for the 

consecutive five subsets, respectively, when considering cutoff distances D 

between 1Å and 5Å. Similarly, the average success rates for Q-SiteFinder, 

MetaPocket, and ConCavity equal 3%, 4%, and 5%; 14%, 12%, and 11%; 22%, 

18%, and 22%; 26%, 26%, and 24%; and 33%, 28%, and 34% on the five subsets, 

respectively. The Pearson correlations between the average success rates, over 

cutoff distances D between 1Å and 5Å, and the average size of the binding sites in 

each of the five subsets, see Figure 5-8, equal 0.98 for Q-SiteFinder and 

MetaPocket and 0.99 for Findsite and ConCavity. This shows that the predictive 

quality of these four methods is linearly correlated with the size of the binding 

sites. We measure the ratio between the solvent accessible area of the binding 

residues, computed with the DSSP program (Kabsch and Sander, 1983), and the 

protein surface, i.e., the sum of the solvent accessible area of all residues, for each 

protein. The average ratios in each the five subsets are similar and they vary 

between 0.085 and 0.105. This shows that the improved success rates are not due 
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to the larger binding areas, but rather due to inherent characteristics of these 

predictive models. 
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Figure 5-7: Success rates (y-axis) measured using DCC for different cutoff 
distances D (x-axis) for A) Findsite, B) Q-SiteFinder, C) MetaPocket, and D) 
ConCavity as a function of the size of the binding site, which is 
approximated by the number of interacting atoms. The binding sites in the 
benchmark dataset are sorted by their sizes in the ascending order and they 
are binned into five equally sized subsets. Each line corresponds to the 
results on one of these subsets, where subset 1 includes the smallest sites and 
subset 5 the largest sites. 
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Figure 5-8: Relation between the average, over cutoff distances D between 1Å 
and 5Å, success rates (y-axis) measured using DCC and the size of the 
binding sites for Findsite, Q-SiteFinder ConCavity, and MetaPocket. The 
binding sites in the benchmark dataset are sorted by their sizes, which are 
approximated by the number of interacting atoms, in the ascending order and 
they are binned into five equally sized subsets. The x-axis shows the average 
size of the binding sites for the five consecutive subsets. 

5.5.6 Predictive quality for different ligand groups 

The benchmark dataset includes 475 biologically relevant ligands that are 

categorized into 253 types. We manually inspected the ligands that occur in the 

dataset at least 3 times and we grouped them into four categories, including acids, 

carbohydrates, mononucleotides and cofactors (excluding mononucleotides). The 

breakdown of the ligand types in each category is given in Table 5-2. These 

ligands occur 219 times in the benchmark dataset and they cover 46% of all 

binding sites; see Figure 5-9. The remaining ligands are more unique and could 

not be clustered into sets that would allow for a statistically sound evaluation of 

the predictive quality.  
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Table 5-2: List of ligand types in the four considered major ligand categories. 

Ligand category 3-letter abbreviation of ligand name 
(the same as in the PDB files) 

Formula 
BEZ C7 H6 O2 
SAH C14 H20 N6 O5 S 
ASP C4 H7 N O4 
EPE C8 H18 N2 O4 S 
GLU C5 H9 N O4 
MYR C14 H28 O2 
PEB C33 H40 N4 O6 

Acids 

TRP C11 H12 N2 O2 
BGC C6 H12 O6 
GLC C6 H12 O6 
FUL C6 H12 O5 
GAL C6 H12 O6 
GLA C6 H12 O6 
XYP C6 H10 O5 
MAN C6 H12 O6 
FUC C6 H12 O5 

Carbohydrates 

NAG C8 H15 N O6 
2GP C10 H14 N5 O8 P 
5GP C10 H14 N5 O8 P 
A2P C10 H15 N5 O10 P2 
A6P C6 H13 O9 P 
ADP C10 H15 N5 O10 P2 
AGP C6 H16 N O8 P 
AMP C10 H14 N5 O7 P 
AMZ C9 H15 N4 O8 P 
ANP C10 H17 N6 O12 P3 
ATP C10 H16 N5 O13 P3 
C5P C9 H14 N3 O8 P 
CMP C10 H12 N5 O6 P 
G1P C6 H13 O9 P 
GDP C10 H15 N5 O11 P2 
GTP C10 H16 N5 O14 P3 
NOS C10 H12 N4 O5 
PAP C10 H16 N5 O13 P3 
TMP C10 H15 N2 O8 P 
TPP C12 H19 N4 O7 P2 S 
U5P C9 H13 N2 O9 P 
UDP C9 H14 N2 O12 P2 
UMP C9 H13 N2 O8 P 

Mononucleotides 

UTP C9 H15 N2 O15 P3 
ACO C23 H38 N7 O17 P3 S Cofactors 
COA C21 H36 N7 O16 P3 S 
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FAD C27 H33 N9 O15 P2 
FMN C17 H21 N4 O9 P 
HEM C34 H32 Fe N4 O4 
NAD C21 H27 N7 O14 P2 
NAP C21 H28 N7 O17 P3 
PLP C8 H10 N O6 P 
PQQ C14 H6 N2 O8 
SAM C15 H22 N6 O5 S 
U2G C19 H24 N7 O13 P 

10%
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Carbohydrates
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Figure 5-9: The rate of occurrence of the four major ligand groups, which include 
acids, carbohydrates, mononucleotides and cofactors (excluding 
mononucleotides) in the benchmark dataset. These four groups cover 46% of 
all ligands in the dataset. 

We compare the success rates of the four representative prediction methods on the 

four ligand categories. Using the DCC measure, the Findsite and ConCavity 

achieve the highest success rates for the cofactors, followed by the 

mononucleotides and acids, and the lower accuracies for the carbohydrates; see 

panels A and C in Figure 5-10. These differences are quite substantial, e.g. at D = 

4 Å the success rates for cofactors and carbohydrates differ by 50%. In contrast, 

the differences between the success rates for different ligand groups for the Q-

SiteFinder and MetaPocket are relatively minor; see panels E and G in Figure 

5-10. Similar trends are observed when using DCA; see panels B, D, F, and H in 
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Figure 5-10. The above suggests that the predictions generated by Q-SiteFinder 

and MetaPocket are not sensitive to the ligand types, while the predictive quality 

of Findsite and ConCavity varies relatively widely between different ligand 

groups. 
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Figure 5-10: Comparison of the success rates (y-axis) for prediction of binding 
sites for four categories of ligands including acids, carbohydrates, 
mononucleotides and cofactors measured using DCC (panels on the left) and 
DCA (panels on the right). The x-axis shows the cutoff distance D used to 
calculate the success rates. A) results of Findsite measured using DCC; B) 
results of Findsite measured using DCA; C) results of ConCavity measured 
using DCC; D) results of ConCavity measured using DCA; E) Results of Q-
SiteFinder measured using DCC; F) results of Q-SiteFinder measured using 
DCA; G) results of MetaPocket measured using DCC; H) results of MetaPocket 
measured using DCA. 

5.5.7 Complementarity of predictors 

The four representative methods are based on different approaches, i.e., Findsite 

uses threading, Q-SiteFinder is based on the energy calculations, ConCavity 

utilizes geometrical descriptors, and MetaPocket combines geometrical 

descriptors and energy calculations. We investigate whether these differences 

result in complementarity in their predictions. A given binding site is regarded as 

covered by a combination of several methods if it is correctly predicted by any of 

these methods. Figure 5-11 demonstrates that combining predictions of the best 

performing Findsite with the other three methods results in a larger coverage. For 

the thresholds D between 1Å and 10Å, the coverage when using the four methods 

together increases between 4% and 10% when compared with the predictions of 

the Findsite. For the cutoff distance D = 4Å, 7% of binding sites that are not 

captured by the Findsite are successfully predicted by the Q-SiteFinder and 10% 

of the sites that are missed by the Findsite are correctly predicted by one of the 



 74 

three other methods. This shows that the four methods are complementary, which 

implies that they could be combined to build a consensus-based method. 

We developed a simple consensus predictor by re-ranking the predictions 

generated by Findsite using the predictions from Q-SiteFinder, ConCavity, and 

MetaPocket. This solution, in contrast to a straightforward merging of the 

predictions from the three methods, is motivated by overall high predictive quality 

of Findsite, when compared to the runner-up approaches. Moreover, we observe 

that for a protein with n binding sites, Findsite sometimes generates more than n 

predictions and some of the correct predictions are not ranked among the top n 

outputs. Predictions generated by Findsite are scored by comparing them to the 

predictions generated by the other three methods to improve the ranking. A 

Findsite’s prediction receives score of 3 if it is within 4Å to the predictions from 

Q-SiteFinder, MetaPocket, and ConCavity. The score equals 2 if the Findsite’s 

prediction is within 4Å to the predictions of the two other methods. The score of 1 

corresponds to the case when the Findsite’s prediction is within 4Å to a prediction 

from one of the other three methods, and the score equals 0 if the other three 

methods did not generate predictions within the 4Å radius. The predictions are 

sorted in the descending order by their scores, and ties are resolved by using the 

original order of the predictions from Findsite. The solid line in Figure 5-11 

reveals that the re-ranking improves the success rates of the original Findsite. 

When considering the cutoff distances D between 1Å and 5Å, the re-ranked 

predictions improve over the original Findsite on average by 2%. Although the 

magnitude of these improvements is relatively small, the Wilcoxon signed-rank 

test at the 0.05 significance level shows that they are statistically significant. This 

means that the distances between the native and the predicted positions of the 

ligand are consistently smaller when using our consensus approach. These 

preliminary results suggest that these four methods generate complementary 

predictions, and they motivate further research on the ensemble-based predictors. 
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Figure 5-11: The success rates (y-axis) of the Findsite, Q-SiteFinder, ConCavity, 
MetaPocket and a consensus-based method measured using DCC on the 
benchmark dataset compared to the coverage of the binding sites predicted 
by combination of the four methods. The x-axis shows the cutoff distance D 
that is used to calculate the success rates and the dashed line shows the 
success rates of the consensus-based re-ranking of the Findsite predictions. 

5.5.8 Case studies 

We use the chain A of Bcr-Abl protein (PDB code: 3K5V) (Zhang et al, 2010) 

and M2 proton channel of influenza A virus (PDB code: 2RLF) (Schnell and 

Chou, 2008) to demonstrate the utility of the four representative binding site 

predictors. These proteins are not included in our benchmark dataset and are 

subject to recent studies to reveal the atomic-level insights into their binding 

interactions (Zhang et al, 2010; Schnell and Chou, 2008). We superimpose the 

above two structures with other Bcr-Abl and M2 proton channels structures in the 

PDB, respectively, using Fr-TM-align (Pandit and Skolnick, 2008). This is 

performed to assure a complete (to date) annotation of the native binding sites. As 

a result, both proteins are annotated with two binding sites. We use the web 

servers of Findsite, MetaPocket, ConCavity, and Q-SiteFinder to generate the 
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predictions. The two structures with the ligands shown in black and the 

predictions from Findsite, ConCavity, MetaPocket and Q-SiteFinder that are 

colored green, pink, red and blue, respectively, are given in Figure 5-12. 

 

Figure 5-12: The binding sites predicted by Findsite, MetaPocket, ConCavity, and 
Q-SiteFinder for chain A of the Bcr-Abl protein (panel A) and the M2 proton 
channel (panels B and C show the side and the top views, respectively). The 
predictions by Findsite, MetaPocket, ConCavity, and Q-SiteFinder are 
denoted with green, red, and pink spheres and blue mesh, respectively. The 
Q-SiteFinder predicted grid points of the pocket are shown using the mesh. 
The ligands are in the stick format and are colored in black. The M2 proton 
channel consists of 4 chains and has 5 binding sites. Each of the 4 chains is 
annotated with 2 sites, where the site at the center of the channel is common 
to all of them. The other 4 sites are symmetrically distributed at the lipid-
facing side of the four chains. The key interacting residues for the central 
binding site, Ser31, on these four chains are colored in yellow in panels B 
and C. 

For the Bcr-Abl protein, we evaluated the top 2 predictions from each predictor 

since this protein has two binding sites. Both of these sites are predicted correctly 

by Findsite and Q-SiteFinder, see panel A in Figure 5-12. The distances between 

the predicted site and the center of the ligand are 1Å and 2Å for the Findsite and 

1Å and 3Å for the Q-SiteFinder. The Q-SiteFinder predicts the grid points of the 

binding sites, which have more than 40% overlap, measured using OPL, with the 

ligands. The predictions by the MetaPocket are less accurate; its DCC for the two 

binding sites equals 6Å and 2Å. ConCavity generates one prediction for this 
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structure with the DCC equal 5Å. The pocket identified by ConCavity is not shown 

in panel A of Figure 5-12 because it would obstruct predictions from the other 

methods; this pocket is visualized in the panel A of Figure 5-13. We note that 

these two sites are biologically relevant; a recent study has shown that inhibitors 

that bind to these two sites lead to the inhibition of Bcr–Abl activity (Zhang et al, 

2010). 

 
A 

 
B 

Figure 5-13: The pockets identified by the ConCavity, denoted by a pink mesh, 
for A) chain A of the Bcr-Abl protein; B) M2 proton channel. 

The binding sites on the M2 proton channel of influenza A virus have recently 

attracted significant attention since a class of antiviral drugs, such as adamantane 

M2 inhibitors, interacts with this channel. The structure of the M2 proton channel 

in complex with inhibitors was solved in 2008 by two groups which proposed two 

distinct binding sites (Schnell and Chou, 2008; Stouffer, et al., 2008). A recent 

study confirmed that Adamantane and its derivatives are capable of interacting 

with both binding sites (Rosenberg and Casarotto, 2010). The sites on the M2 

proton channel are difficult to predict due to two facts: 1) the channel is formed 

by 4 protein chains while some predictors, including Findsite, are designed to 

predict using a single chain; and 2) the binding sites are located in the 

transmembrane regions (Rosenberg and Casarotto, 2010) while most of the 
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complexes used to develop the binding site predictors concern globular proteins. 

Each of the four chains has two sites. The site located at the center of the channel 

is common to all four chains and the other sites are symmetrically distributed at 

the lipid-facing side of the four chains. As a result, this protein complex has total 

of five binding sites and thus we evaluated the top five predictions generated by 

each of the four prediction methods. The predicted binding sites and the ligands 

are shown in panel B (side view) and C (top view) in Figure 5-12. The binding 

site at the pore of the channel is predicted only by the MetaPocket. Although the 

distance between the predicted site and center of the ligand is around 6Å, the 

predicted site is at the center of four key binding residues (Ser31 on the four 

chains), which are depicted in yellow in panels B and C in Figure 5-12. The other 

sites, which are targeted by Rimantadine, are located at the base of the 

transmembrane helix on each of the chains. Only one of these sites is correctly 

predicted by the MetaPocket, and none of the top five predictions by Q-SiteFinder 

is close to the ligand (DCC > 8Å). The ConCavity predicts one pocket, which is 

shown in panel B of Figure 5-13, and this prediction relatively far from the actual 

site (DCC > 8Å). We note that Findsite did not generate predictions for the M2 

proton channel due to the unavailability of suitable templates. Overall, we 

conclude that majority of the considered binding sites are found by at least one of 

the top four methods, which suggests that they provide useful inputs for the 

atomic-level discovery of protein-ligand interactions. 

5.6 Conclusions 

In this chapter, we empirically compare ten structure-based binding site predictors 

which were developed in the past decade and which offer either a web-server or a 

standalone program to generate predictions. The more recent methods including 

Findsite, Q-SiteFinder, ConCavity, and MetaPocket are shown to provide 

significant improvements over the older solutions. This indicates that progress 

was made over the last several years. However, a considerable fraction of the 

binding sites is not identified by any of the considered methods, which motivates 
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further research in this area. For instance, at a cutoff of 4Å and using the DCC 

measure, about 33% of the binding sites are missed by the four best-performing 

methods. We demonstrate that the quality of the predictions is strongly positively 

correlated with the size of the binding sites. We also show that although Findsite 

is significantly more accurate than the other considered predictors and is more 

robust when performing predictions using the apo structures, this method is 

largely dependent on the completeness of its template library. When the maximal 

TM-score between the predicted protein and the best template identified by 

Findsite is below 0.5, then certain energy-, structure- and consensus-based 

predictors are shown to provide more accurate predictions. We developed a 

simple consensus-based approach that uses four complementary predictors, the 

threading-based Findsite, the energy-based Q-SiteFinder, the geometry-based 

ConCavity, and consensus-based MetaPocket. This method is shown to provide 

success rates improved by 2% when compared with the best performing Findsite. 

The important conclusions from our survey, which we use in Chapter 7, are that 

consensus-based predictions are useful and that threading-based approach is 

promising. 

Since the threading-based method works by identifying a known similar fold for a 

given query protein, the templates that are used in the prediction are restricted to 

one structural fold. However, a recent study shows that conserved sugar-binding 

and aromatic-group binding fragments are found across multiple protein folds 

(Petrey et al., 2009). The phosphate-binding fragment that occurs in dozens of 

protein families was discovered already two decades ago (Saraste et al., 1990). 

This means that the approach taken by the Findsite may not work in these and 

related cases and it motivates further research. One of the potential solutions 

would be to develop a measure of similarity between surface patches on the query 

protein and the surfaces of the known binding sites. By comparing relevant “sub-

structures” (fragments of the fold concerning the binding sites), the above 

approach could overcome the constraint on the similarity of the overall fold 
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between the query and the template structures. This approach is explored in 

Chapter 7. 



 81 

CHAPTER 6 Prediction of nucleotide binding 
residues from protein sequence 

6.1 Introduction 

We surveyed the performance of existing structure-based binding site predictors 

in the previous chapter. We also evaluated the predictive quality of these methods 

on different compound groups, i.e., acids, carbohydrates, nucleotides, and 

cofactors. Among these compound groups, we focus on the nucleotides due to the 

following two reasons. First, nucleotides play important roles in a number of 

biological processes, as we discusses in Section 2.1.4. For instance, they are 

structural units of nucleic acid chains, they serve as sources for chemical energy, 

participate in the cellular signaling, and they are involved in the enzymatic 

reactions. Second, nucleotides interact with a wide range of proteins. As of June 

2010, 5293 proteins in the PDB are annotated as “nucleotide binding”, which 

means that nucleotides constitute about 15% of biologically relevant ligands 

included in this database (Dessailly et al, 2008; Goto et al., 2002). This 

demonstrates the ubiquity and the substantial interest in the protein-nucleotide 

interactions. Although a substantial effort in identification and characterization of 

the nucleotide binding sites was observed in the past two decades, most of these 

approaches are based on the analysis of known nucleotide-binding sequences and 

structures, which were used to identify conserved motifs in protein sequences and 

structures. For instance the Walker A and B sequence motifs were identified for 

the adenine nucleotide binding proteins (Walker et al., 1982). A fuzzy recognition 

template was proposed for the characterization of the adenylate-protein 

interactions (Moodie et al., 1996). The Johnson motif was reported to cover one-

third of the adenine mononucleotide-binding proteins (Denessiouk and Johnson, 

2000). The abovementioned studies characterize the sequence and structural 

motifs for a relatively narrow range of the nucleotide-protein interactions, usually 

only for a selected interaction mode for a single nucleotide type, or they require 

tertiary protein structures as the input, which substantially limits their utility. On 
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the other hand, the large number of protein chains with uncharacterized tertiary 

structures motivates the development of computational tools for high-throughput 

sequence-based annotation of the nucleotide-binding residues for a wide range of 

the nucleotides. To this end, in this chapter we introduce a method that predicts 

the nucleotide-binding residues from protein sequence. 

6.2 Related work 

Currently there is no method that predicts the binding residues from the protein 

sequence for a comprehensive set of nucleotides, and only recently two methods 

that predict the ATP-binding and GTP-binding residues were proposed (Chauhan 

et al., 2010; Chauhan et al., 2009). These two methods input information 

extracted from the sequence and the corresponding sequence profile using a 

window centered on the predicted residue into a machine learning classifier that 

predicts propensity of this residue to interact with the ATP or GDP. The two 

methods generate a real value that quantifies the probability of binding to ATP or 

GTP for each residue. They were implemented as ATPint and GTPbinder web-

servers and are available at www.imtech.res.in/raghava/atpint/ and 

www.imtech.res.in/raghava/gtpbinder/, respectively. 

6.3 Problem definition 

Our method predicts whether a given amino acid in the input protein sequence is 

involved in the interaction with a given nucleotide type. Similar to the annotation 

of the DNA-binding and small ligand-binding residues (Chen and Kurgan, 2009; 

Luscombe et al., 2001), a given residue is annotated as “nucleotide binding” if at 

least one of its non-hydrogen atom is less than 3.9Å away from a non-hydrogen 

atom of the nucleotide. As suggested in (Luscombe et al., 2001), atoms within 

3.9Å are considered to interact through the van der Waals contacts. For each 

residue, our method generates two levels of predictions, (i) the binary value that 

defines whether a given residue does or does not bind to a given nucleotide type; 

http://www.imtech.res.in/raghava/atpint/
http://www.imtech.res.in/raghava/gtpbinder/
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and (ii) the real value that quantifies the probability of binding to certain 

nucleotide type. 

6.4 Dataset preparation 

The nucleotides that are considered in this study contain at least one of the five 

nucleobases, a 5-carbon sugar, and 1 to 3 phosphates. We extracted all complexes 

from PDB that included these nucleotides; we need these structures to obtain 

annotation of the binding residues to build and evaluate our predictor. The 

maximal pairwise sequence identity of the resulting protein chains for each of the 

nucleotides is reduced to 40% with CD-hit (Li and Godzik, 2006). We include the 

nucleotides with at least 50 chains in the corresponding set. The relatively low 

identity assures that these nucleotides bind a wide range of protein chains, which 

makes it challenging to find the binding residues using the sequence alignment. 

The availability of at least 50 chains provides us with a sufficient amount of 

annotated binding residues to build and evaluate a well-performing predictor. 

Three sets of protein sequences are generated for different evaluation purposes: 

Dataset 1 includes 227, 321, 140, 56 and 105 chains that were released in PDB 

before March 10th 2010 and that bind to ATP, ADP, AMP, GTP and GDP, 

respectively. Dataset 1 includes 4688 ADP-binding, 3393 ATP-binding, 1756 

AMP-binding, 853 GTP-binding, and 1577 GDP-binding residues, and 121158, 

80409, 44009, 18888, and 36561 non-binding residues, respectively. 

Dataset 2 consists of nucleotide-binding chains that were released after March 

10th 2010. The maximal pairwise sequence identity in dataset 2 was reduced to 

40%. Moreover, if a given chain in Dataset 2 shares above 40% identity to a chain 

in Dataset 1 and both chains interact with the same nucleotide, then we remove 

the chain from Dataset 2. This assures that the Dataset 2 is independent of the 

Dataset 1 and can be used to test models developed using Dataset 1. Consequently, 

Dataset 2 includes 17, 25, 18, 6, and 9 chains that bind to ATP, ADP, AMP, GTP, 

and GDP, respectively. 
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Dataset 3 consists of chains that do not interact with nucleotides, and is used to 

evaluate whether our method would “overpredict” nucleotide-binding residues. 

We use the pre-culled list of 1853 PDB chains generated by the PISCES server 

(Wang and Dunbrack, 2003) at 20% sequence identity, which correspond to high-

quality structures with maximal resolution of 1.6Å and maximal R-factor of 0.25. 

Next, among this set of representative chains, we remove all chains that 

(potentially) interact with nucleotides. Any chain that shares > 40% identity to 

any chain in Dataset 1 (which is used to build our predictive model), or which is 

annotated as nucleotide-binding in the Gene Ontology database (Ashburner et al., 

2000), or which binds to nucleotides among the depositions in the PDB is 

removed. As a result, we extracted 1372 chains that do not interact with the 

nucleotides. 

Dataset 1 is used to build and evaluate the prediction models and the results on 

dataset 1 are based on 5-fold cross validation. Dataset 2 and 3 are used as 

independent datasets to assess the prediction models that are built utilizing 

Dataset 1.  Dataset 2 is used to assess the performance of the prediction models on 

unobserved data while dataset 3 is used to evaluate whether the prediction models 

would “overpredict” nucleotide-binding residues. The datasets are available at 

http://biomine.ece.ualberta.ca/nSITEpred/. 

6.5 Evaluation protocol 

6.5.1 Evaluation measures 

The binary predictions are assessed using 5 measures:  

Precision (PREC) = TP/(TP+FP) 
Recall (REC) = TP/(TP+FN) 
Specificity (SPEC) = TN/(FP+TN) 
Accuracy (ACC) = (TP+TN)/(TP+FP+TN+FN) 
MCC = (TP*TN–FP*FN) / sqrt[(TP+FP)*(TP+FN)*(TN+FP)*(TN+FN)]  

where TP (true positives) and TN (true negatives) are the counts of correctly 

predicted binding and non-binding residues, respectively, FP (false positives) are 

http://biomine.ece.ualberta.ca/nSITEpred/
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non-binding residues that were predicted as binding, and FN (false negatives) are 

binding residues that were predicted as non-binding. The precision, recall, and 

specificity evaluate quality of predictions for the predicted binding residues, 

native binding residues, and native non-binding residues, respectively. The 

Matthews correlation coefficient (MCC) evaluates the overall predictive quality. 

MCC values are between -1 and 1 with higher values for better predictions; 0 

means that all residues are predicted as binding (or non-binding). 

The receiver operating characteristic (ROC) curves are used to examine the 

predicted probabilities. For each value of probability p achieved by a given 

method (between 0 and 1), all residues with probability ≥ p are set as the binding 

residue and all other residues are set as the non-binding residue. Next, the TP-rate 

= TP / (TP + FN) and the FP-rate = FP / (FP + TN) are calculated to draw the 

ROC curve and we use the area under the curve (AUC) to quantify the predictive 

quality. Unlike the measures that assess the binary predictions, which depend on 

the cutoff threshold to define binding/non-binding residues, the AUC value 

considers all possible thresholds and thus it provides a more comprehensive 

evaluation. 

We analyzed statistical significance of the differences in the MCC and AUC 

values between predictions generated by our method (for convenience, our 

method is named as NsitePred in the following text) and the other considered 

methods. The MCC values are available for all considered methods, while the 

AUC values cannot be calculated for an alignment-based predictor (described in 

Section 6.5.2) which provides only a binary annotation. The MCC and AUC 

values are calculated per sequence (using the cross-validated predictions) for each 

method and we compare them using a paired test. Since these values are not 

normal, as tested using Shapiro-Wilk test at the 0.05 significance, we use the non-

parametric Wilcoxon rank sum test to measure the differences between the paired 

MCC (AUC) values calculated for two predictors. We annotate the difference as 

significant when the p-value < 0.01. 
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6.5.2 Considered baseline predictors 

The NsitePred is compared with the current predictors for the ATP and GDP, 

ATPint (Chauhan et al., 2009) and GTPbinder (Chauhan et al., 2010), and 3 

baseline predictors based on the residue conservation, sequence alignment, and a 

simple classifier similar to the methods in (Chauhan et al., 2010; Chauhan et al., 

2009) that uses the evolutionary profile:  

• Rate4site program (Pupko et al., 2002) predicts functional sites by finding 

conserved residues. We first run psiblast program with the query sequence 

against the NCBI non-redundant database (Pruitt et al., 2009). For chains 

with at least 3 significant matches, we created alignments of the best 50 

sequences, which is the default for the web version of the rate4site called 

consurf (Ashkenazy et al., 2010), using ClustalW (Larkin et al., 2007) and 

we inputted them into the rate4site. The rate4site generates conservation 

score for each residue, and the residues with the lower scores, which indicate 

higher conservation, have a higher probability to be binding residues. We use 

these scores to compute ROC curves and the corresponding AUC values. We 

threshold these scores by maximizing the MCC value on the entire dataset to 

obtain binary predictions. Both the AUC and MCC values are computed 

separately for each of the five nucleotide types. 

• Sequence alignment using BLAST identifies similar sequences or segments 

from an annotated (with the nucleotide binding residues) dataset for a given 

query sequence. This approach predicts the binding residues by using the 

nucleotide binding annotations from the best aligned sequence, i.e., sequence 

with lowest E-value. We execute the BLAST-based alignment between a 

query sequence and all other sequences (except the query sequence itself) in 

the dataset for a given nucleotide type. The residues in the query sequence 

that are aligned with the binding residues on the best aligned chain are 

predicted as the binding residues. 
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• PSSM profile is widely used in related sequence-based predictors, including 

ATPint (Chauhan et al., 2009) and GTPbinder (Chauhan et al., 2010). To 

validate the effectiveness of the sequence representation proposed in this 

work, we build a simple predictor that uses SVM (with the same parameters 

as the corresponding SVM in our NsitePred) and takes PSSM profile as the 

only input. This allows estimation of the improvement provided by the new 

features that are used by our method and which exploit conservation scores 

and predicted secondary structure, relative solvent accessibility, and dihedral 

angles. 

6.6 Proposed solution 

6.6.1 Architecture 

For a given protein sequence we use PSIPRED (McGuffin et al., 2000) to predict 

the secondary structure, REAL Spine3 (Faraggi et al., 2009) to predict the relative 

solvent accessibility (RSA) and dihedral angles (angles between consecutive 

amino acids in the protein chain), and BLAST (Altschul et al., 1997) to generates 

the PSSM profile. These inputs together with the sequence are processed using a 

sliding window to compute a set of numeric features that describe the residue in 

the center of the window; the features are inputted into a SVM classifier, which 

outputs probability of nucleotide binding for this residue. This machine learning-

based approach is named as SVMPred. Moreover, we run the BLAST-based 

alignment between the predicted sequence and sequences in the training dataset 

for a given nucleotide type. The residues in the predicted sequence that are 

aligned with the binding residues in the best aligned training chain are predicted 

as the binding residues, i.e., they are assigned with probability equal 1 while the 

other residues are assigned with probability equal 0. The proposed NsitePred 

method implements a consensus of SVMPred and the alignment-based predictor 

by averaging the probabilities generated by SVMPred and the alignment-based 

predictor. 
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6.6.2 Feature-based sequence representation 

The SVMPred utilizes both sequence and predicted structural descriptors, 

including the secondary structure, dihedral angles, and RSA, to generate features. 

We utilize a sliding window of size 17 centered on the predicted residue to extract 

the features, which include 

• Predicted secondary structure generated by PSIPRED (McGuffin et al., 

2000). We use probabilities of the 3 secondary structure states 

(helix/strand/coil) for each residue in the window (total of 3×17 = 51 

features). 

• Predicted relative solvent accessibility generated by Real-SPINE3 (Faraggi 

et al., 2009). We use the real values, which quantify the fraction of the 

surface area of a given residue that is accessible to the solvent, for each 

residue in the window (total of 17 features). 

• Predicted dihedral angles generated by Real-SPINE3 (Faraggi et al., 2009). 

We utilize two real values, which represent phi (involving the backbone 

atoms C'-N-Cα-C') and psi (involving the backbone atoms N-Cα-C'-N) angles, 

for each residue in the window (total of 2×17 = 34 features). 

• PSSM profile generated by blastpgp program (Altschul et al., 1997) with 

default parameters using the NCBI non-redundant database. We normalize 

these inputs with 1/(1+2-x), where x is the raw value from the PSSM profile; 

this transformation is commonly used in the secondary structure prediction. 

For a window centered at Ri residue at ith position, we calculate 17×20 

features fi+k,j where k = −8, −7,…, 7, 8 is the index of the position in the 

window and j = 1, 2,…, 20 is the index of the PSSM column. We average the 

values to the left and to the right of the central residue gi+z,j = (fi+z,j + fi−z,j)/2 

where z = 0, 1,…, 8. As a result, the original 17×20 values are transformed to 

9×20 values (total of 9×20 = 180 features). 
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• AA groups including hydrophobic residues (Ala, Cys, Ile, Leu, Met and Val), 

negatively charged (Asp and Glu), positively charged (His, Lys, Arg) and 

carboxamide-containing amino acids (Asn and Gln), are used to aggregate 

the normalized and averaged 9×20 PSSM values. The PSSM values for the 

AA types from a given group for a given position z = 0, 1,…, 8 are averaged 

(total of 9×4 = 36 features). 

• Terminus indicator is set to 1 for the first and the last 3 residues in the 

sequence, and it equals to 0 for the other positions (total of 17 features). 

• Secondary structure segment indicators for helix/strand/coil predictions from 

PSIPRED on both sides of the window are calculated. If at least 4 / 3 

consecutive residues on the left / right side of the window are predicted as 

helix (strand), then we set the helix (strand) indicator as 1 for the left/right 

side. If helix and strand indicators equal 0, then the coil indicator is set as 1 

(total of 3(helix/strand/coil)×2(left/right) = 6 features).  

• Residue conservation scores are calculated using the PSSM values for each 

position based on the Shannon entropy, and based on  using two formulas 

proposed in (Capra and Singh, 2007; Wang and Samudrala, 2006) which 

incorporate the background frequency of the amino acids (total of 3×17 = 51 

features). 

• Collocation of AA pairs is calculated for the residues in the window. This is 

motivated by results for the membrane proteins where certain amino acid 

pairs are over-represented (Senes et al., 2000). Similarly, several sequence 

motifs occur frequently in the nucleotide-binding sites. To accommodate for 

mutations in these motifs, we use collocated AA pairs (pairs with gaps) to 

characterize these motifs. We only consider pairs formed between the central 

residue in the window and another residue up to 5 positions away. This 

results in 20×20×10=4000 frequencies (for 20 AA types and 10 positions; 5 

on each side). The same as in (Senes et al., 2000), we calculated p-values 
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that indicate the significance of the association between a given amino acid 

pair and the nucleotide binding annotations. A low p-value indicates a low 

probability that the association between the corresponding amino acid pair 

and the nucleotide binding annotations is a coincidence. When analyzing 

4000 randomly distributed variables, we expect to observe by chance one 

instance of a difference from expected value with significance p < 0.00025 

(1/4000). We exclude the amino acid pairs with p ≥ 10-6, since based on the 

Engelman’s study (Senes et al., 2000) their association with nucleotide-

binding event would be random. 

We note that the abovementioned features, except for the PSSM profile, were 

never before used for the prediction of the nucleotide-binding residues.  

6.6.3 Feature selection and parameterization 

The same features, except for the collocated amino acids pairs are considered to 

predict binding residues for each of the five nucleotides. Some of these features 

may not be relevant to the prediction of the nucleotide binding residues and they 

could be also redundant (correlated) with each other. Therefore, we perform 

feature selection to remove the irrelevant and redundant features. The selection is 

performed using the 5-fold cross validation separately for each of the five 

nucleotide types. First, the biserial correlation (Tate, 1954) between each of the 

features and the binary annotation of the binding residues is calculated for each of 

the 5 training sets. The averaged, over the 5 training sets, correlation values are 

used to rank the features. We use a wrapper-based feature selection with the 

forward best first search. More specifically, for a given list of feature F = [fi where 

i = 1, 2,…, n] sorted in the descending order by their average biserial correlation 

and an empty list S that stores the selected features, we add the top-ranked feature 

from F to S and run a linear SVM (Fan et al., 2008; Fan et al., 2005) with default 

parameters (i.e., linear kernel and complexity constant C = 1) using feature set S 

in the cross validation regime. If the addition of the top-ranked feature improves 

the average AUC value over the 5 test folds, then this feature is retained in S; 
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otherwise it is removed. We repeat that until F is empty, i.e., we scan the entire 

feature set once. Next, the SVM classifier is parameterized on the selected feature 

set. We considered the polynomial and the Radial Basis Function (RBF) kernels. 

For the polynomial kernel, the complexity constant C is initially fixed at 1 and the 

degree of the polynomial is adjusted between 0.5 and 5 with step = 0.5. The 

degree that results in the highest cross-validated AUC value is selected, and next 

we adjust C using consecutive powers of 2 between 2-3 and 25. Similarly for the 

RBF kernel, the gamma parameter is first optimized using the 2-7 to 23 range when 

C is fixed at 1, and next C is adjusted using the 2-3 to 25 range. We select the 

parameters that maximize the cross-validated AUC and we perform a separate 

parameterization for each of the five nucleotide types. 

6.7 Results 

6.7.1 Comparison between NsitePred and existing methods 

Table 6-1 compares the NsitePred with the ATPint, GTPbinder and the three 

baseline predictors based on the alignment, conservation scoring, and 

evolutionary profiles. We use the tripeptide-based GTPbinder, which outperforms 

the single-residue and dipeptide-based versions (Chauhan et al., 2010), in two 

configurations including the GTPbinder_PSSM which utilizes PSSM profiles and 

the GTPbinder_seq which is based solely on the protein sequence. 

Table 6-1: Comparison of the quality of the sequence-based prediction of the ATP, 
ADP, AMP, GDT, and GTP-binding residues between the NsitePred 
and the related predictors of nucleotide binding residues, including 
ATPint and GTPbinder that predict ATP-binding and GTP-binding 
residues, respectively, and predictors based on the alignment (utilizing 
BLAST), conservation scoring (utilizing Rate4site), evolutionary 
profiles (utilizing PSSM and SVM classifier), and SVMPred (utilizing 
the same feature representation as NsitePred and SVM classifier) on 
Dataset 1. We report the average values over the 5-folds cross 
validation. The highest values for each ligand type and each quality 
index, including AUC, precision (PREC), recall (REC), specificity 
(SPEC), accuracy (ACC), and MCC, are set in bold. The significance 
of the differences between NsitePred and the other methods are 
measured for the AUC and MCC and they are given in the “sig.” 
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columns. The significance tests compare paired per-sequence 
prediction quality over a given benchmark dataset. The + and – mean 
that the NsitePred is statistically significantly better / worse with p 
<0.01, and = means that results are not significantly different. The 
“NA” means that the corresponding value could not be computed, i.e., 
BLAST generates only the binary predictions. 

AUC MCC 
Type Predictor 

value sig. value sig. 
PREC REC SPEC ACC 

NsitePred 0.861  0.46  0.519 0.444 0.982 0.96 
SVMPred 0.854 + 0.433 + 0.564 0.361 0.988 0.962 
Rate4site 0.749 + 0.182 + 0.132 0.446 0.87 0.852 
PSSM+SVM 0.824 + 0.27 + 0.262 0.354 0.957 0.933 
BLAST NA NA 0.359 + 0.578 0.243 0.993 0.962 

ATP 

ATPint 0.627 + 0.078 + 0.061 0.539 0.651 0.648 
NsitePred 0.893  0.572  0.633 0.544 0.988 0.971 
SVMPred 0.885 + 0.555 + 0.704 0.458 0.993 0.973 
Rate4site 0.749 + 0.161 + 0.106 0.472 0.844 0.83 
PSSM+SVM 0.826 + 0.296 + 0.344 0.298 0.978 0.953 

ADP 

BLAST NA NA 0.439 + 0.658 0.311 0.994 0.969 
NsitePred 0.829  0.377  0.511 0.304 0.988 0.962 
SVMPred 0.82 + 0.36 + 0.667 0.208 0.996 0.966 
Rate4site 0.755 + 0.174 + 0.107 0.562 0.799 0.79 
PSSM+SVM 0.788 + 0.203 + 0.142 0.46 0.889 0.873 

AMP 

BLAST NA NA 0.222 + 0.395 0.145 0.992 0.959 
NsitePred  0.91  0.675  0.734 0.646 0.991 0.976 
SVMPred 0.905 + 0.655 + 0.716 0.623 0.989 0.977 
Rate4site 0.733 + 0.17 + 0.11 0.516 0.823 0.811 
PSSM+SVM 0.879 + 0.442 + 0.433 0.502 0.972 0.952 

GDP 

BLAST NA NA 0.564 + 0.780 0.426 0.995 0.972 
NsitePred 0.844  0.562  0.706 0.473 0.991 0.968 
SVMPred 0.836 + 0.551 + 0.848 0.373 0.997 0.97 
Rate4site 0.748 + 0.18 + 0.108 0.569 0.806 0.796 
PSSM+SVM 0.801 + 0.308 + 0.331 0.346 0.968 0.941 
BLAST NA NA 0.461 + 0.689 0.327 0.994 0.968 
GTPbinder_seq 0.548 + 0.03 + 0.055 0.177 0.876 0.849 

GTP 

GTPbinder_PSSM 0.802 + 0.388 + 0.655 0.246 0.995 0.965 

For Dataset 1, across predictions for the five nucleotide types, the NsitePred 

obtains AUC ≥ 0.83, MCC ≥ 0.38, and accuracy > 0.96. Our method outperforms 

the other approaches by a statistically significant margin for both AUC and MCC 

measures. Although some other approaches provide higher precision, recall or 

specificity, the NsitePred provides favorable balance between these three 

measures. Based on the MCC, which provides an overall estimate of the quality of 

the binary predictions, the NsitePred is superior to SVMPred and the BLAST-

based predictor, followed by the PSSM profile-based predictor, and the Rate4site. 

We note that the consensus-based NsitePred achieves higher AUC and MCC 
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values and a better balance between the precision and recall than SVMPred. This 

suggests that the predictions from SVMPred are complementary to the alignment-

based predictions. Since the Rate4site only considers the residue conservation, its 

relatively low predictive performance could be explained by the fact that the 

conserved residues could also include binding residues for other types of ligand 

such as the metal ions, carbohydrates, peptides, etc. This explanation is supported 

by the relatively high recall (i.e., high fraction of the correctly predicted native 

binding residues) coupled with the low specificity (which indicates an over-

prediction of the binding residues) which are achieved by the Rate4site. 

The AUC, MCC, precision, specificity and accuracy of ATPint are lower than the 

values achieved by NsitePred and the 3 baseline predictors, see Table 6-1, and 

they are also lower than it was originally reported (Chauhan et al., 2009). The 

likely reason for that is the fact that the authors of ATPint used a balanced number 

of binding and non-binding residues to design and evaluate their method, which 

resulted in the lower predictive quality when applied here to the full chains (where 

the number of binding residues is substantially lower than the number of non-

binding residues). Our results indicate that the ATPint over-predicts the ATP-

binding residues, which is evidenced by the low specificity and precision, i.e., a 

high number of false positives. We show that, as expected and as shown in 

(Chauhan et al., 2010), GTPbinder that utilizes the evolutionary profile 

(GTPbinder_PSSM) outperforms the version that does not use this information 

(GTPbinder_seq). The PSSM-based GTP_binder achieves AUC = 0.8 and MCC = 

0.39 that are lower than the values achieved by the NsitePred (by the statistically 

significant margin) and the BLAST-based predictor, and higher than the values 

achieved by the PSSM profile-based predictor and Rate4site. 
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Figure 6-1: The ROC curves for the NsitePred (denoted using thick solid lines 
with filled circle markers), SVMPred (denoted using thick solid lines with 
hollow square markers), ATPint (thick solid line with x markers), GTPbinder 
(thick solid lines using cross and hollow triangle markers), Rate4site (thick 
solid line without markers), and the predictor based on the PSSM with the 
SVM classifier (thin solid line with cross makers) for predictions on Dataset 
1. The BLAST-based solution is shown using a single point (star marker on 
grey background) that corresponds to the binary predictions. The results are 
based on 5-folds cross validation. A) The FP-rate is constrained to [0, 0.05] 
range for all 5 types of nucleotides; B) The full ROC curve for ADP; C) The 
full ROC curve for ATP; D) The full ROC curve for AMP; E) The full ROC 
curve for GDP; F) The full ROC curve for GTP. 

The ROC curves based on the predictions on Dataset 1 are shown in Figure 6-1. 

Panel A focuses on the FP rates < 0.05 since only about 4% of residues bind to 

nucleotides; the full ROC curves are given in panels B, C, D, E and F. The 
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BLAST-based predictor does not provide the probabilities, and thus we include a 

single point that corresponds to its binary predictions. The ROC curves reveal that 

NsitePred provides higher TP rates for the FP values between 0.01 and 0.05 when 

compared with the other methods for each of the five types of the ligands. 

Table 6-2 compares NsitePred with the existing methods and baseline predictors 

on Dataset 2, which consists of chains that were released after the NsitePred was 

designed and which are dissimilar to chains in the Dataset 1 that was used to build 

the predictive models. Similar to the results on Dataset 1, NsitePred achieves 

significantly higher AUC and MCC values when compared with the other 

methods for all 5 nucleotide types. NsitePred improves by 0.01 to 0.02 in AUC 

and 0.01 to 0.04 in MCC, depending on a nucleotide type, over the predictions 

from SVMPred by implementing the consensus of SVMPred and the BLAST-

based alignment. These improvements are shown to be statistically significant. 

The ROC curves of NsitePred and the other methods on Dataset 2 are given in 

Figure 6-2 (panel A for the FP rates < 0.05 and panels B, C, D, E and F for entire 

range of FP rates). The ROC curves reveal that NsitePred provides higher TP 

rates for the FP values between 0.012 and 0.05 when compared with the other 

methods for each of the five types of the nucleotides. We also evaluated the 

predictive quality of the considered methods for prediction of all nucleotide-

binding residues. In this case, a residue is defined as a “nucleotide-binding” if it 

interacts with any of the five nucleotides, and a residue is predicted as a 

“nucleotide-binding” when a given method predicts that this residue interacts with 

any of the five nucleotides; see the “All” rows in Table 6-2. Similarly as for the 

prediction of individual nucleotide types, NsitePred achieves higher AUC, MCC, 

and recall than the remaining methods, while the BLAST-based predictor 

achieves higher precision, specificity and accuracy, see Table 6-2.  

Table 6-2: Comparison of the quality of the sequence-based prediction of the ATP, 
ADP, AMP, GDT, GTP, and nucleotide-binding (indicated by all) 
residues between the NsitePred and the related predictors of nucleotide 
binding residues, including ATPint and GTPbinder that predict ATP-
binding and GTP-binding residues, respectively, and predictors based 
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on the alignment (utilizing BLAST), conservation scoring (utilizing 
Rate4site), and SVMPred (utilizing the same feature representation as 
NsitePred and SVM classifier) on Dataset 2. In the evaluation of 
nucleotide-binding residue, a residue is defined as a “nucleotide-
binding” if it interacts with any of the five nucleotides, and a residue is 
predicted as a “nucleotide-binding” when a given method predicts that 
this residue interacts with any of the five nucleotides. The highest 
values for each ligand type and each quality index, including AUC, 
precision (PREC), recall (REC), specificity (SPEC), accuracy (ACC), 
and MCC, are set in bold. The significance of the differences between 
NsitePred and the other methods are measured for the AUC and MCC 
and they are given in the “sig.” columns. The significance tests 
compare paired per-sequence prediction quality over a given 
benchmark dataset. The + and – mean that the NsitePred is statistically 
significantly better / worse with p <0.01, and = means that results are 
not significantly different. The “NA” means that the corresponding 
value could not be computed, i.e., BLAST generates only the binary 
predictions. 

AUC MCC 
Type Predictor 

value sig. value sig. 
PREC REC SPEC ACC 

NsitePred 0.875  0.476  0.528 0.46 0.985 0.967 
SVMPred 0.868 + 0.451 + 0.587 0.367 0.991 0.969 
Rate4site 0.741 + 0.167 + 0.107 0.464 0.862 0.849 
BLAST NA + 0.422 + 0.611 0.31 0.993 0.97 

ATP 

ATPint 0.606 + 0.066 + 0.051 0.512 0.66 0.655 
NsitePred 0.893  0.512  0.589 0.474 0.987 0.968 
SVMPred 0.886 + 0.5 + 0.68 0.388 0.993 0.971 
Rate4site 0.735 + 0.166 + 0.102 0.521 0.823 0.812 

ADP 

BLAST NA + 0.376 + 0.608 0.249 0.994 0.966 
NsitePred 0.876  0.501  0.606 0.423 0.987 0.969 
SVMPred 0.87 + 0.478 + 0.721 0.335 0.994 0.967 
Rate4site 0.752 + 0.175 + 0.114 0.52 0.824 0.811 

AMP 

BLAST NA + 0.339 + 0.504 0.255 0.989 0.959 
NsitePred 0.867  0.576  0.598 0.585 0.985 0.97 
SVMPred 0.855 + 0.553 + 0.632 0.511 0.988 0.971 
Rate4site 0.748 + 0.173 + 0.116 0.545 0.793 0.781 

GDP 

BLAST NA + 0.454 + 0.593 0.372 0.99 0.967 
NsitePred 0.909  0.64  0.711 0.604 0.988 0.969 
SVMPred 0.887 + 0.602 + 0.783 0.485 0.993 0.969 
Rate4site 0.745 + 0.168 + 0.103 0.531 0.817 0.806 
BLAST NA + 0.539 + 0.761 0.403 0.994 0.966 
GTPbinder_seq 0.742 + 0.276 + 0.544 0.276 0.988 0.954 

GTP 

GTPbinder_PSSM 0.822 + 0.418 + 0.597 0.321 0.989 0.957 
NsitePred 0.905  0.48  0.386 0.663 0.957 0.946 
SVMPred 0.899 + 0.455 + 0.374 0.62 0.958 0.945 
Rate4site 0.741 + 0.17 + 0.107 0.512 0.83 0.818 

All 

BLAST NA + 0.423 + 0.426 0.468 0.974 0.955 
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Figure 6-2: The ROC curves for the NsitePred (denoted using thick solid lines 
with filled circle markers), SVMPred (denoted using thick solid lines with 
hollow square markers), ATPint (thick solid line with x markers), GTPbinder 
(thick solid lines using cross and hollow triangle markers) and Rate4site 
(thick solid line without markers) for predictions on Dataset 2. The BLAST-
based solution is shown using a single point (star marker on grey background) 
that corresponds to the binary predictions. Dataset 2 consists of chains that 
were released after the NsitePred was designed and which are dissimilar to 
chains in the Dataset 1 that was used to build the predictive models. A) The 
FP-rate is constrained to [0, 0.05] range for all 5 types of nucleotides; B) The 
full ROC curve for ADP; C) The full ROC curve for ATP; D) The full ROC 
curve for AMP; E) The full ROC curve for GDP; F) The full ROC curve for 
GTP. 

6.7.2 Performance on non-binding chains 

We also assess the predictive quality of NsitePred and the other methods on 

protein sequences that do not interact with nucleotides (Dataset 3). We measure 
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the error rate, which is defined as ratio between the number of false positives (FPs) 

and the total number of residues, for all considered methods; we note that there 

are no positive (nucleotide-binding) residues in this dataset. The error rates of 

NsitePred are 0.48%, 1.15%, 0.76%, 0.93%, and 0.67% for ATP, ADP, AMP, 

GTP, and GDP respectively, see Table 6-3. The error rates of NsitePred are 

slightly higher than the error rates of BLAST-based method and SVMPred, but 

lower than the error rates of ATPint and GTPbinder. We note that NsitePred 

predicts 3.6% and 3.1%, 3.2% and 3.1%, 2.4% and 2.2%, 2.6% and 4.0%, and 

3.3% and 4.3% of the residues in Dataset 1 and Dataset 2 as ATP-, ADP-, AMP-, 

GTP- and GDP-binding residues, respectively. These results demonstrate that 

NsitePred predicts fewer nucleotide-binding residues for the non-binding chains 

than for the nucleotide-binding chains. 

Table 6-3: The error rates of NsitePred and the other considered predictors on 
protein chains from Dataset 3 that do not interact with nucleotides. The 
error rate is defined as the ratio between the number of false positives 
and the total number of instances. 

6.7.3 Evaluation per binding site 

Besides the evaluation at the residue level, we investigate the quality of the 

predictions at the binding site level. A given binding site, which is made of 

residues that interact with the same molecule, is assumed to be correctly predicted 

if at least 50% of its residues are correctly predicted. We vary the per-residue 

precision between 0.05 and 0.8 (the number of correctly predicted binding sites is 

approximately 0 when the precision > 0.8) with 0.05 step to control the number of 

false positives. This is performed by thresholding the predicted probabilities (we 

vary the threshold to obtain the binary predictions) for all methods except for the 

Error rate Predictor 
ATP ADP AMP GTP GDP 

NsitePred 0.48% 1.15% 0.76% 0.93% 0.67% 
SVMPred 0.36% 0.86% 0.58% 0.75% 0.53% 
BLAST 0.28% 0.59% 0.43% 0.51% 0.34% 
ATPint 20.1% NA NA NA NA 
GTPbinder_seq NA NA NA 3.47% NA 
GTPbinder_PSSM NA NA NA 2.94% NA 
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BLAST-based predictor, which is represented with one point that corresponds to 

its binary prediction. Figure 6-3 shows that NsitePred correctly predicts around 

62% of the ADP-binding sites, 38% of the ATP-binding sites, 19% of the AMP-

binding sites, 76% of the GDP-binding sites, and 37% of the GTP-binding sites at 

the precision equal 0.5, i.e., when half of the predicted binding residues are 

correct. To compare, the PSSM-profile based predictor correctly predicts only 6%, 

0%, 0%, 34% and 2% of the binding sites for the ADP, ATP, AMP, GDP and 

GTP, respectively, when considering the same precision. The Rate4site predictor 

cannot achieve such high precision for any of the five types of nucleotides, and 

thus we assume that its success rate equals 0. The ATPint and GTPbinder_seq 

also cannot correctly predict any sites at precision of 0.5, while the 

GTPbinder_PSSM correctly predicts about 13% of the GTP-binding sites. When 

compared with the BLAST-based predictor at the same precision, the NsitePred 

correctly finds 5%-15% more binding sites. Overall, the results indicate that the 

NsitePred captures more binding sites than the other predictors, especially at the 

higher precision rates. 
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Figure 6-3: Evaluation of the predictions per binding site on Dataset 1 (based on 
5-folds cross validation) for the NsitePred (denoted using square markers), 
ATPint (solid line with x markers), GTPbinder (dashed lines using x and 
square markers), Rate4site (cross markers), and the predictor based on the 
PSSM with the SVM classifier (hollow circle makers); the BLAST-based 
solution is shown using a single point (star marker on grey background) that 
corresponds to the binary predictions. A given binding site is assumed to be 
correctly predicted if at least 50% of its residues are correctly predicted. The 
y-axis shows the percentage of the correctly predicted binding sites. We vary 
the per-residue precision (x-axis) between 0.05 and 0.8 with 0.05 step to 
control the number of false positives. 

6.7.4 Impact of the degree of spread of the binding residues in the 
protein chain 

Some nucleotide binding sites consist of a single segment in the protein chain, e.g., 

the p-loop motif GXXXXGKS(T)T, while other sites are composed of binding 

residues that are sparsely distributed over the sequence. We hypothesize that the 

difficulty of the sequence-based prediction of the nucleotide binding sites depends 

on the degree to which the corresponding binding residue are spread over the 

sequence. The sites that are composed of a single segment of consecutive binding 
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residues should be easier to predict than the sites for which the binding residues 

are sparsely distributed over a large, relative to the total number of binding 

residues, stretch of the sequence. We study the relation between this degree of the 

spread of the binding residues in the chain and the predictive quality. We quantify 

this spread/clustering of the binding residues using a spread index that reflects the 

average number of non-binding residues between the consecutive binding residues 

in the chain, and which equals zero when a given site consists of a single segment 

of the consecutive binding residues. The spread index is defined as follows 
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where Ri and Ri+1 are the ith and (i+1)th binding residue, respectively, in a given 

binding site that consists of n residues. Given that the binding residues are sorted 

by their residue number in the protein sequence, the gap(Ri, Ri+1) is defined as 
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where Ni and Ni+1 are the residue numbers in the protein chain of the Ri and Ri+1 

binding residues, respectively The “Ni+1 − Ni − 1” quantifies the number of the 

non-binding residues between Ri and Ri+1. Moreover, we assume that a given pair 

of consecutive binding residues that are separated by 12 or more non-binding 

residues is not likely to form local interactions in the tertiary structure and thus 

the corresponding gap(Ri, Ri+1) value is rounded down to 12. This cut-off 

threshold is based on the definition of the long-range interactions, which are 

defined as contacts formed between residues that are at least 12 positions away in 

sequence (Tegge et al., 2009). 

We sort all binding sites for a given nucleotide type in the ascending order 

according to their spread index values, and we divide them into 5 equally sized 

subsets where the first subset contains 20% of sites with the lowest spread. The 
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average spread values for each subset and the corresponding predictive quality for 

NsitePred calculated based on the 5-folds cross validation on Dataset 1 are shown 

in Figure 6-4. Panel A shows the average precision (fraction of correct prediction 

among the predicted binding residues) at the recall equal 0.5, while panel B gives 

the average recall (fraction of correctly predicted native binding residues) at the 

precision equal 0.5. The results show that both precision and recall decline with 

the increase of spread value, and that this trend is independent of the nucleotide 

type. The NsitePred performs very well for compact sites, i.e., sites that include 

residues that are clustered close in the sequence, and its quality declines when the 

binding residues are spread over a longer fragment of the protein chain. Moreover, 

this relation also explains the differences in the predictive quality for different 

nucleotide types. The average spread values for the binding sites of GDP, ADP, 

ATP, GTP, and AMP are 2.53, 2.93, 3.25, 3.35, and 3.53, respectively. The 

Pearson correlation coefficients between these spread values and the 

corresponding AUC and MCC values achieved by NsitePred, see Table 6-1, equal 

-0.96 and -0.98, respectively. 
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Figure 6-4: Relation between the predictive quality (y-axis) and the spread index 
values (x-axis). The binding sites for a given nucleotide type, which are 
sorted in the ascending order based on their spread index values, are divided 
into 5 equally sized subsets where the first subset (the left-most point) 
contains 20% of sites with the lowest spread, and the fifth subset (the right-
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most point) with the 20% of sites with the highest values. Panel A shows the 
average precision (over the sites in a given subset) at the recall = 0.5. Panel B 
shows the average recall at the precision = 0.5. 

6.7.5 Sequence-derived hallmarks of nucleotide-binding residues 

The significant improvements in the quality of the prediction of the binding 

residues for the five considered nucleotides between the NsitePred and the PSSM 

profile-based predictions (denoted as PSSM+SVM), see Table 6-1, suggest that 

the increased quality stems from the use of the novel input features proposed in 

this work. This means that the nucleotide-binding residues could be characterized 

using the information concerning their conservation and the predicted secondary 

structure, relative solvent accessibility, and dihedral angles. We analyze the 

features used by the NsitePred to find the corresponding sequence-derived 

markers of the nucleotide-binding residues. 
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Figure 6-5: The ratios, which are calculated as the average of values of a given 
feature for the nucleotide-binding residues divided by the average for the 
non-binding residues, at the 17 positions in the sliding window used by 
NsitePred. The ratios are calculated for the predicted secondary structures 
(helix, strand, and coil), RSA, dihedral angles (phi and psi), and the three 
conservation scores based on the Shannon entropy (conservation A) and 
formulas proposed in (Wang and Samudrala, 2006) (conservation B), and in 
(Capra and Singh, 2007) (conservation C). The x-axis shows the positions in 
the sequence relative to the predicted residues, which is at 0. 



 106 

We focus on the features that are selected for at least three nucleotide types. We 

observe that the selected features that are based on the predicted secondary 

structure, RSA, and psi angles are biased to positions in the sequence that are 

towards the N-terminus from the predicted residue. We investigate this 

asymmetry (the lack of use of the positions towards the C-terminus  at the same 

position (relative to the predicted residues) computed for all native nucleotide 

binding residues and the non-binding residues, respectively, i.e., ratio = average 

value of a given feature for the nucleotide binding residues divided by the average 

for the non-binding residues. The value close to 1 indicates that similar average 

values are observed for the binding and the non-binding residues, and thus the 

corresponding feature at this position does not differentiate between these two 

types of residues. The ratios along the 17 positions of the sliding window used by 

the NsitePred for the probabilities of secondary structures, RSA values, dihedral 

angles, and the three conservation scores are shown in Figure 6-5. As our feature 

selection suggests, the plots for the secondary structure, dihedral angles and RSA 

are asymmetric, which is in contrast to the conservation scores that are symmetric. 

We note the particularly high ratios for the predicted probabilities of strands at the 

positions that are 4 to 5 residues towards the N-terminus. These ratios show that 

the nucleotide-binding residues are characterized by over twice higher 

probabilities of the predicted strand residues for these positions when compared 

with the non-binding residues. Moreover, positions towards the C-terminus show 

ratios relatively close to 1, i.e. between 0.826 and 1.001. We also observe that the 

helix is less likely to occur towards the N-terminus when compared with positions 

towards the C-terminus, which coincides with the above preference towards the 

strands. Similarly (as expected), the ratios for the phi and psi angles follow the 

pattern of the secondary structures, although they vary in a smaller range, e.g. 

ratios for the psi angles vary between 0.926 and 1.196, with the larger values only 

towards the N-terminus. The RSA values are smaller towards the N-terminus and 

close to 1 towards the C-terminus, which explains the bias towards the former 

positions among the selected features. The plot indicates that residues located near 

by and towards the N-terminus from the nucleotide-binding residues are less 
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likely to be solvent exposed. The ratios for the 3 conservation scores are 

symmetrically distributed around the central residue. Their largest values are at 

the central position, which indicates that the nucleotide binding residues are more 

conserved than the non-binding residues. These 3 plots also reveal that the 

residues at the adjacent positions have smaller ratios, which means that the 

nucleotide-binding residues are flanked by residues with a smaller degree of 

conservation. 

We also note that several features extracted from the PSSM profile (including the 

aggregations using certain amino acid groups) and certain collocated amino acid 

pairs are included among the selected features, and thus they can be used to 

formulate sequence-derived hallmarks of the nucleotide binding residues. The 

PSSM profile-based features are likely correlated with the formation of certain 

secondary structure types, e.g., the scores aggregated for the hydrophobic residues 

is associated with the formation of strands and coils. Three amino acid pairs, 

GXXXS, GXG and GXS, where ‘X’ indicate a wild card residue (any amino acid 

type) and where the right-most residue is located at the center of a sliding window, 

are found to be strong markers for the nucleotide binding residues. These 

collocated pairs are related to the p-loop motif, GXXXXGKS(T), which is 

characteristic to the interactions with ATP (Saraste et al., 1990). 

6.8 Conclusions 

In this chapter, we described the NsitePred method, which is a collection of five 

accurate sequence-based predictors that identify binding residues for the five most 

populated nucleotides in the PDB, including ATP, ADP, AMP, GTP, and GDP. 

Empirical results demonstrate that NsitePred significantly outperforms the 

existing ATPint and GTPbinder methods, as well as solutions based on the 

sequence alignment and residue conservation scoring. The favorable predictive 

quality stems from the usage of novel custom-designed input features that are 

based on the sequence, the sequence-derived evolutionary profiles, the sequence-

predicted structural descriptors, and the BLAST-based alignment. Our study 
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shows that NsitePred performs particularly well for the binding sites in which the 

binding residues are clustered close together in the sequence. Analysis of the 

features used in the predictive model reveals several interesting hallmarks of the 

nucleotide-binding residues, which are related to the arrangement of secondary 

structures, dihedral angles, and certain amino acid pairs in the specific 

neighboring positions in the sequence.  

The NsitePred is implemented as a publicly-available web server at 

http://biomine.ece.ualberta.ca/nSITEpred/. 

http://biomine.ece.ualberta.ca/nSITEpred/
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CHAPTER 7 Prediction of nucleotide-binding sites 
from protein structure 

7.1 Introduction 

In chapter 6, we proposed a method that predicts the nucleotide-binding residues 

from protein sequence. In this chapter, we propose a novel predictor, called 

NSiteMatch, which utilizes tertiary structure as its input. The structure-based 

prediction is expected to provide better performance than the sequence-based 

methods since it uses more information (structure instead of sequence). Although 

the application of the structure-based method is limited to protein for which the 

structure is already solved, we note that many of these proteins lack full 

annotation of their biological functions. Moreover, availability of the structure 

means that these proteins can be utilized to perform molecular docking-based 

rational drug discovery. The NSiteMatch method is similar to the methods that 

were surveyed in Chapter 5. The main difference is that NSiteMatch only predicts 

binding sites of nucleotides while the methods discussed in Chapter 5 identify 

binding sites of all types of small organic compounds. We focused on the binding 

sites of nucleotides because nucleotides play pivotal roles in a number of 

biological processes and they constitute about 15% of biologically relevant 

ligands included in PDB (Dessailly et al., 2008; Shin and Cho, 2005). Although 

the NSiteMatch method is designed for prediction of binding sites of nucleotides, 

it also serves as a platform that could be extended to predict interactions with 

other small ligands. 

7.2 Related work 

Substantial efforts were observed in the identification and characterization of the 

nucleotide binding sites in the past two decades. Most of these approaches 

analyzed the known nucleotide-binding protein sequences and structures to 

identify conserved motifs. For instance, the Walker A sequence motif was found 
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in a variety of nucleotide-binding proteins that include the alpha and beta subunits 

of ATP synthase, myosin, transducin, helicases, kinases and RecA (Walker et al., 

1982). Moodie and colleagues proposed a fuzzy recognition template for the 

characterization of the adenylate-protein interactions (Moodie et al., 1996). 

However, the abovementioned studies characterize the sequence and structural 

motifs for a relatively narrow range of the nucleotide-protein interactions and 

none of these studies concerns prediction of nucleotide-binding sites. Although 

there are no methods that specifically focus on the prediction of the nucleotide-

binding sites, over a dozen methods were proposed for the structure-based 

prediction of binding sites for small organic compounds. These methods were 

surveyed in Chapter 5. They include SURFNET (Laskowski, 1995), PocketFinder 

(Hendlich et al., 1997), PASS (Brady and Stouten, 2000), LIGSITEcsc (Huang and 

Schroeder, 2006), PocketPicker (Weisel et al., 2007), ConCavity (Capra et al., 

2009), Fpocket (Le et al., 2009), Q-SiteFinder (Laurie and Jackson, 2005), 

Findsite (Skolnick and Brylinski, 2008) and MetaPocket (Huang, 2009). In 

Chapter 5, we demonstrated that Findsite outperforms all other methods while 

MetaPocket and Q-SiteFinder are among the second-best existing methods. 

Therefore, the proposed NSiteMatch method is compared with Findsite, 

MetaPocket, and Q-SiteFinder to investigate its predictive performance. 

7.3 Problem definition 

The input of NSiteMatch method is a protein structure with coordinates of all non-

hydrogen atoms while the outputs are the coordinates which represent the centers 

of the predicted binding sites. For instance, if NSiteMatch identifies three binding 

sites for a given protein structure, the output would be the centers of the three 

binding pockets: (x1, y1, z1), (x2, y2, z2), and (x3, y3, z3). 

7.4 Dataset preparation 

The benchmark dataset is designed to cover a wide range of nucleotide-binding 

proteins.  Similarly as in Chapter 6, the nucleotides that are considered in this 
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study contain at least one of the five nucleobases, a 5-carbon sugar, and 1 to 3 

phosphates. We extracted all complexes from PDB that include these nucleotides. 

Next, the maximal pairwise sequence identity of the resulting protein chains for 

each of the nucleotides was reduced to 40% with CD-hit (Li and Godzik, 2006). 

We include the nucleotides that bind to at least 50 chains where these chains 

belong to at least 20 different superfamilies based on the SCOP classification. The 

availability of at least 50 chains provides us with a sufficient number of annotated 

binding sites to build and evaluate a well-performing predictor. While the 

availability of at least 20 superfamilies assures that these nucleotides bind to a 

wide range of proteins that are diverse in their structure and sequence; the latter 

based on the 40% sequence similarity filtration. This also allows us to investigate 

the prediction of the distant functional relationships, i.e., binding of the same 

nucleotides to structurally different proteins. We extracted a total of 227, 321, and 

140 chains that bind to ATP, ADP, and AMP, respectively. The lists of the protein 

chains that interact with the three nucleotides are given in Appendix A. The other 

nucleotide types were excluded due to the small sample size. Since the 

NSiteMatch and Findsite predictors utilize a template library which could contain 

structures that are (too) similar to the predicted protein, we created a reduced 

version of the dataset that contains protein chains annotated using the SCOP 

labels for each of the three nucleotides. In other words, we excluded the chains 

that were not included in the SCOP database. Using these annotations we could 

control the similarity/homology levels between the template library and the 

predicted protein. This allows us to assess the predictive quality of the 

NSiteMatch and Findsite when using templates that are dissimilar, at a given 

homology level, to the predicted protein. As a result, we extracted total of 114, 

158, and 66 chains that are annotated with SCOP labels for ATP, ADP, and AMP, 

respectively. 



 112 

7.5 Proposed solution 

7.5.1 Preparation of the template library of NSiteMatch 

The template library of NSiteMatch consists of the structures of the nucleotide-

binding sites. For a given protein-nucleotide complex, a non-hydrogen atom of the 

protein is considered as an interacting atom if it is within 3.9Å to a non-hydrogen 

atom of the nucleotide (Chen and Kurgan, 2009; Luscombe et al., 2001). A 

binding site is defined as a collection of the interacting atoms that bind to the 

same nucleotide molecule. The 3D-coordinates, the atom types, and the residue 

types of the interacting atoms of each binding site were stored in the template 

library. 

7.5.2 The NSiteMatch algorithm 

The novelty of our approach is two-fold. First, based on the complementarity of 

the existing methods and the resulting improvements offered by the consensus-

based approach, which was demonstrated in Chapter 5, the NSiteMatch combines 

the geometrical, energy-based, and threading approaches. Second, drawing from 

the observation that use of templates with the sufficient structure similarity leads 

to high quality predictions, which were also shown in Chapter 5, we use a 

template database to perform the predictions. However, unlike the only exiting 

threading-based Findsite that relies on the overall similarity of the entire protein 

fold, we use local similarity of the structure in the binding region to find the most 

suitable templates. This allows us to identify a larger number of potentially useful 

templates and to predict distant functional relationships, i.e., NSiteMatch utilizes 

the templates that share similarity in the binding region but which may share low 

homology with the predicted protein. 

The NSiteMatch method includes two major phases. The first phase (steps 1 to 8) 

performs fitting of templates into the structure of the predicted protein based on a 

common substructure defined by the interacting atoms (steps 1 to 8); this is 

repeated for each template and each potential position of the center of the ligand. 
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The second phase (steps 9 and 10) processes the predictions, which are filtered 

using a docking energy function (see Section 2.2.4 for details), and next they are 

clustered and ranked. The method outputs the ranked list of the predicted centers 

of the ligands and the corresponding ranked list of the binding residues for each 

center. The above overview demonstrates that our method combines the 

geometrical approach, which is implemented in the procedures to define and score 

the templates, energy-based approach, by utilizing energy function to filter initial 

predictions, and threading, by using the template database. 

The overall flow of the NSiteMatch algorithm is given in Figure 7-1. Given the 

predicted protein structure and a template library with the nucleotide-binding sites, 

the NSiteMatch algorithm is implemented with the following 10 steps: 

Step 1. Set the 3-dimensional grid space for the predicted protein. We use grid 

with a step size of 2Å and a given grid point is retained if it is within 10Å 

to a non-hydrogen atom of the protein. A grid point is marked as protein 

and removed from the grid space if it is within 1.6 Å to a non-hydrogen 

atom of the protein; otherwise, the grid point is kept and annotated as 

solvent. 

Step 2. Select a binding site from the template library. The binding site contains 

both the coordinates of the interacting atoms of the protein and the 

coordinates of the nucleotide atoms. We calculate the geometrical center 

of the nucleotide and the distances between the center and all interacting 

atoms of the protein. We use these distances to set values of two 

parameters. Among these distances, the maximal distance R represents 

the radius to cover all interacting atoms while the minimal distance r 

represents the distance between the center and the protein surface. The 

two parameters R and r are used in the subsequent steps. 

Step 3. Scan the grid space to assess which grid points fit the geometrical center 

of the binding site. In step 3A, we first choose a grid point from the grid 
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space. Next, we assess whether the chosen grid point fits the geometircal 

center of the binding site, which is perfromed in step 3B. In step 3B, we 

first calculate the distances between this grid point and all atoms of the 

protein. Among these distances, the minimal distance is denoted as r1. 

Our first premise is that if a grid point fits the geometrical center of a 

nucleotide, the distance between the grid point and the protein surface 

should be similar to the distance r between the center of the nucleotide 

and the protein surface. Therefore, a given grid point is retained only if  

| r− r1| ≤ 2Å. The 2Å margin is used to accommodate the step size of the 

grid space. Our second premise is that if a grid point fits the center of a 

nucleotide, the spatial arrangements of interacting atoms (atoms that 

participate in the protein-ligand interaction) around this point should be 

similar to the arrangements of atoms around the center of the nucleotide. 

We use triangles, of which two vertexes are the interacting atoms of the 

protein and the third vertex is the grid point (the third vertex is the center 

of the nucleotide in the template) to represent this spatial arrangements. 

For a given grid point, the grid-associated surface patch is defined as a 

collection of protein atoms that are within R1=R+2Å to the grid point. By 

this definition, the radius R1 of the grid-associated surface patch is 

slightly larger but still similar to the radius R of the binding site. We 

compare the triangles formed by the atoms of the template binding site 

and the triangles formed by the atoms of the grid-associated surface 

patches. The triangles are formed by two atoms of the grid-associated 

surface patch (or template binding site) and the grid point (or the center 

of the nucleotide). Among the vertexes, the grid point or the center of the 

nucleotide is invariant while the other two vertexes are chosen from a 

large number of combinations of the corresponding atoms. Therefore, we 

generate two sets of triangles for the binding site and the grid-associated 

surface patch. We say that a given triangle of the grid-associated surface 

patch matches a given triangle of the template binding site if the 

corresponding vertexes have the same atom type, residue type, and the 
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difference between the side length of the corresponding edges is less than 

or equal 2Å. A grid point and the associated surface patch are retained if 

at least 25% of the triangles in the template site match with the triangles 

of the surface patch, and the surface patch matches at least 50 triangles of 

the template binding site. In step 3C, we go back to step 3A and choose 

another grid point until all grid points are used. Finally, in step 3D, the 

retained grid points are passed to step 4. 

Step 4. Cluster the retained grid points. Two retained grid points are assigned to 

the same cluster if they are neighboring grid points, i.e., the distance 

between the two points is 2Å. The clusters are sorted by the number of 

grid points and the top three clusters are selected; if the total number of 

clusters is smaller than 3 then all clusters are selected. We use two points 

to represent each cluster: the geometrical center of the grid points and the 

point with the maximal number of triangles that match the template 

binding site. We refer to these representative grid points as seeds and the 

associated surface patches as seed-associated surface patches. 

Step 5. Search for the maximal common sub-structure between the binding site 

and the seed-associated surface patches. The seed-associated surface 

patch is defined as the collection of protein atoms that are within 

R1=R+2Å to the seed (grid point), see step 5A. We search for the 

maximal common sub-structure between the template binding site and 

the seed-associated surface patches. We denote the atoms at the template 

binding site as a1, a2, …, an and the atoms at the seed-associated surface 

patch as b1, b2, …, bm. An atom from the template site matches an atom 

from the surface patch if the two atoms have the same atom type and 

residue type. For every pair of the matched atoms, we create a 

corresponding vertex g(ai, bj) on a new graph G, where ai is the atom 

from the binding site and bj is the atom from the selected surface patch 

and ai matches bj. Two vertices gk(ai, bj) and gl(as, bt) in graph G are 

connected if two conditions are satisfied. First, |D(ai, as)−D(bj, bt)| ≤ 2Å, 
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where D(ai, as) is the distance between ai and as and D(bj, bt) is distance 

between bj and bt. Second, ai ≠ as and bj ≠ bt. Searching for the maximal 

common sub-structure between the template binding site and a given 

surface patch is equivalent to searching for the complete sub-graph in G. 

We used the backtracking algorithm to search for the complete sub-graph. 

The identified common sub-structure (atoms connected with green solid 

lines) between the template binding site and the seed-associated surface 

is shown in step 5B. 

Step 6. Superimpose the template binding site into the seed-associated surface 

patches. In step 5 we identified a common sub-structure between the 

template binding site and a given seed-associated surface patch. By using 

the coordinates of the two sub-structures, we calculated the RMSD value 

between the two sub-structures and the translation vector (V) and the 

rotation matrix (M) to achieve this RMSD value. Based on V and M, we 

superimpose the nucleotide structure at the template binding site into the 

corresponding surface patch. 

Step 7. Select the next available seed and repeat steps 5 and 6 until all seeds are 

used.  

Step 8. Select the next available binding site in the template library and repeat 

steps 2 to step 6 until all templates in the library are used, see step 8A. 

Once all templates are used, step 8B passes the predictions (the locations 

of the binding nucleotides) to step 9. 

Step 9. Filter the predictions by using a docking energy function. Our algorithm 

superimposes a number of nucleotide structures on the surface of the 

predicted protein. That is, both the coordinates of the protein and the 

coordinates of the superimposed nucleotides are known. Therefore, we 

can assess the predictions based on docking energy functions. We use the 

AMBER force field for energy calculation. Since protein and the 
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nucleotides are not covalently linked, we only considered van der Waals 

and electrostatic energies. The predicted nucleotide structures with an 

energy that suggests weak interaction between this nucleotide and the 

protein are discarded. 

Step 10. Generate the predicted binding sites and binding residues. The 

NSiteMatch method predicts both binding sites and binding residues. For 

each of the superimposed nucleotide structure, we calculate its 

geometrical center and the residues that interact with this structure. The 

binding sites and binding residues are generated separately. For the 

generation of the binding sites, the geometrical centers are clustered 

based on the distances between them. Two geometrical centers are 

assigned to the same cluster if the distance between them is less than 4Å. 

The clusters are ranked by the number of centers of each cluster. We use 

the geometrical center of all centers of one cluster to represent this 

cluster. The geometrical centers of the top n clusters are outputted as the 

predicted binding sites; by default n=5. For each residue in the predicted 

protein, we count the number of nucleotide structures that the residue 

interacts with. The residues are sorted and scored by these counts in the 

descending order. The scores are used to annotate a given residue as 

binding or non-binding based on a cutoff threshold. We selected 2 

thresholds that result in predictions that match the highest precision or 

recall, respectively, achieved by the other methods, including Findsite, 

MetaPocket, and Q-SiteFinder. 
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Figure 7-1: The overall flow of the NSiteMatch algorithm, which includes 10 
steps. The details of the algorithm are given in section 7.5.2. 

7.6 Evaluation protocol 

7.6.1 Evaluation measures 

The NSiteMatch, Findsite, MetaPocket, and Q-SiteFinder generate both the 

coordinates of the binding sites and the list of the binding residues. Therefore, 

their predictions are evaluated at two levels:  
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Evaluation of the predicted coordinates of the binding sites by using DCC, which 

is the minimal distance from the center of the predicted binding site to the center 

of the ligand. The DCC index was used in the evaluation of binding site predictors 

in a few recent studies (Chen et al., 2011; Skolnick and Brylinski, 2008) and was 

discussed in Chapter 5. For a given predicted protein with n native nucleotide-

binding sites we take the top n predictions for each of the four considered 

methods. A given binding site is assumed to be correctly predicted if the minimal 

DCC between this site and any of the n predictions from a given method is below a 

threshold D. We calculate a success rate over the entire dataset for a given value 

of D, which is defined as the number of correctly predicted binding sites divided 

by the total number of sites. 

Evaluation on the predicted binding residues. A given residue is defined as the 

binding residue if a non-hydrogen atom of that residue is within 3.9Å to a non-

hydrogen atom of the nucleotide. The same 3.9Å threshold was used in the 

investigation of protein-DNA and protein-small ligand interactions (Chen and 

Kurgan, 2009; Luscombe et al., 2001). For a given predicted protein we extract 

the binding residues for the top n predictions generated by each of the four 

methods and we compare them with the native binding residues using the 

following three measures 

Precision (PREC) = TP/(TP+FP) 
Recall (REC) = TP/(TP+FN) 
MCC = (TP*TN–FP*FN) / sqrt[(TP+FP)*(TP+FN)*(TN+FP)*(TN+FN)]  

where TP (true positives) and TN (true negatives) are the counts of correctly 

predicted binding and non-binding residues, respectively, FP (false positives) are 

the non-binding residues that were predicted as the binding residues, and FN 

(false negatives) are the binding residues that were predicted as the non-binding 

residues. 
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7.6.2 Evaluation setup 

The NSiteMatch method is compared with the Findsite, MetaPocket and Q-

SiteFinder on three benchmark datasets that concern ADP-protein, ATP-protein 

and AMP-protein interactions, respectively. The NSiteMatch and Findsite are 

template-based methods and therefore the predictive quality of these two methods 

depends on the similarity between the predicted protein and the template library. 

We use four filters to assess the ability of these two methods to predict binding 

sites on proteins that are dissimilar to the template library. For a predicted protein, 

we use only the template structures that share at most 40% sequence similarity 

and that are in a different protein family, superfamily, and fold to the predicted 

protein, respectively; the latter three filters are based on the SCOP annotations 

(Andreeva et al., 2008). Proteins that lack the SCOP labels were not used to 

perform the evaluation for the homology-based filters, but they were used to asses 

with the 40% identity filter. We note that the first, sequence similarity-based filter 

may use templates from the same family. A study that analyzed SCOP annotations 

demonstrated that pairs of proteins that share > 25% sequence similarity are 

assigned to same protein family in 99% of the cases (Levitt, 2007). Similarly, the 

CATH database (Cuff et al., 2009), which is another protein homology 

classification system, automatically assigns two proteins that share > 35% 

sequence similarity to the same family. The evaluation of the NSiteMatch and 

Findsite are based on the jackknife test, where each protein in the dataset is 

selected once as the test/predicted protein and the remaining chains are used as the 

template library. 

The predictions for the template-free MetaPocket and Q-SiteFinder were 

performed using the corresponding web servers. This means that it is possible that 

some of the predicted proteins were used to build these predictive models. This 

should not lead to a significant advantage since both of these methods use 

prediction models that do not utilize templates and which were computed using a 

large dataset of diverse proteins-ligand complexes. 
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7.6.3 Statistical analysis 

The statistical analysis follows the procedures for the comparative analysis of 

existing binding site predictors, which was performed in Chapter 5. For a protein 

with n binding sites we take the top n predictions for every considered prediction 

method. For each of the n binding site, the minimum distance is calculated 

between this site and the top n predictions. Consequently, for a dataset with m 

binding sites, a set of minimal distances {di; i=1,2,…,m} are generated for each 

method. We assume that the predictions from different methods that are farther 

than 10Å away from the native site are equally wrong, i.e., they are too far away 

to be meaningful, and thus we round them down to 10Å. The significance of the 

differences between a given pair of predictors is measured by evaluating the 

corresponding, for the same m, minimal distance values. Since the distances for 

the considered predictors are not normally distributed, per the Shapiro-Wilk test 

of normality at p = 0.05, we use the non-parametric Wilcoxon signed-rank test. 

We assume that the differences are significant if p < 0.05. 

7.7 Results 

7.7.1 Evaluation of the predicted binding sites 

The success rates of NSiteMatch, Findsite, MetaPocket and QsiteFinder 

quantified using DCC, which measures the distance from the center of the 

predicted site to the center of the ligand in its native location are shown in Figure 

7-2. For each nucleotide type, the success rates are calculated using the four filters: 

the 40% sequence similarity, and the family-, superfamily- and fold-based 

homology. 

For the 40% sequence similarity filter, the NSiteMatch and Findsite achieve 

higher success rates than the Q-SiteFinder and MetaPocket for the three types of 

the nucleotides; see panels A, E and I in Figure 7-2. For the cutoff D = 4Å, which 

was suggested by Skolnick and colleagues (Skolnick and Brylinski, 2008), the 

success rates of NSiteMatch, Findsite, MetaPocket and Q-SiteFinder are 64%, 
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61%, 22%, and 23% for the ADP; 58%, 54%, 28% and 25% for the ATP; and 

43%, 38%, 23% and 31% for the AMP, respectively. When considering the cutoff 

distances D between 1Å and 5Å, NSiteMatch achieves 7-8%, 16-43%, and 21-

45% higher success rates than the Findsite, Q-SiteFinder and MetaPocket, 

respectively. 

At the family level, the NSiteMatch again outperforms the remaining methods; 

see panels B, F and J in Figure 7-2. For the cutoff D = 4Å, the success rates of 

NSiteMatch are 55%, 53%, and 41% for the ADP, ATP, and AMP, respectively. 

To compare, the corresponding success rates for the Findsite, Q-SiteFinder and 

MetaPocket are 38%, 25%, and 23% for the ADP; 39%, 22%, and 29% for the 

ATP; and 19%, 32%, and 25% for the AMP. Although Findsite obtains higher 

success rates than the Q-SiteFinder and MetaPocket for the ADP and ATP, its 

success rates for the AMP are lower than the rates of the other two methods. This 

is likely because the template library for the AMP is smaller than the libraries for 

the ADP and ATP. When we exclude the proteins for which the SCOP label is not 

assigned and thus which cannot be used for the prediction when the homology 

filter is applied, the template libraries contain 158, 114, and 66 structures for the 

ADP, ATP, and AMP, respectively. The number of the available templates is even 

smaller once we also exclude the structures that belong to the same family as the 

predicted protein. Consequently, the lower success rates of Findsite and 

NSiteMatch for the AMP, when compared with the ATP and ADP, are due to the 

fact that fewer templates can be used. Moreover, the rates of the Q-SiteFinder and 

MetaPocket are relatively similar across the three nucleotides since these methods 

do not utilize templates. The Q-SiteFinder and MetaPocket methods also should 

not be sensitive to the filter. 
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Figure 7-2: The success rates (y-axis) of the NSiteMatch and the three competing 
methods (Findsite, MetaPocket, and Q-SiteFinder) measured using DCC (the 
minimal distance from the center of the predicted site to the center of the ligand) 
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on the benchmark datasets. A given binding site is regarded as correctly predicted 
if the minimal distance between this site and the top n predictions is below the 
cutoff distance D (x-axis), where n is the number of binding sites of the protein 
that includes the evaluated binding site. All methods are evaluated at 4 filter 
levels, the 40% sequence similarity level (panels A, E and I), family level (panels 
B, F and J), superfamily level (panels C, G and K) and fold level (panel D, H and 
L). Panels A, B, C and D show results for the ADP. Panels E, F, G and H show 
results for the ATP and panels I, J, K and L show results for the AMP. The 40% 
sequence similarity level indicates that all chains in the template library that were 
used for the prediction share less than 40% sequence similarity to the test protein. 
The family, superfamily and fold levels indicate that all chains in the template 
library that were used for the prediction are classified as belonging to a different 
family, superfamily and fold (annotated using the SCOP database), respectively, 
when compared with the annotation of the test protein. 

The results at the superfamily and fold levels are similar; see panels C, D, G, H, K 

and L in Figure 7-2. Although the NSiteMatch still achieves higher success rates 

than the remaining methods, the corresponding improvements are smaller. When 

considering the cutoff distances D between 1Å and 5Å, the NSiteMatch achieves 

14-20%, 1-12%, and 7-8% better success rates than the Findsite, Q-SiteFinder, 

and MetaPocket, respectively. We observe that at the superfamily and fold filter 

levels, the success rates of the Q-SiteFinder and MetaPocket are higher than the 

success rates of Findsite. 

We also calculate the success rates of the NSiteMatch, Findsite, MetaPocket, and 

Q-SiteFinder quantified using DCC by taking the top 5 predictions for every 

predicted protein, see Figure 7-3. Although the success rates of the four methods 

are improved due to the inclusion of additional predictions, the relative ranking 

does not change when compared with the evaluations based on the n predictions. 

For instance, at the 40% sequence similarity level, the NSiteMatch achieves 

success rates that are higher than the rates of the other three methods, and Findsite 

is the runner-up. At the superfamily and fold filter levels, the NSiteMatch 

outperforms the MetaPocket and Q-SiteFinder, which in turn improve over the 

Findsite. 
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Figure 7-3: The success rates (y-axis) of the NSiteMatch and the three competing 
methods (Findsite, MetaPocket, and Q-SiteFinder) measured using DCC (the 



 128 

minimal distance from the center of the predicted site to the center of the ligand) 
on the benchmark datasets. A given binding site is regarded as correctly predicted 
if the minimal distance between this site and the top 5 predictions is below the 
cutoff distance D (x-axis). All methods are evaluated at 4 filter levels, the 40% 
sequence similarity level (panels A, E and I), family level (panels B, F and J), 
superfamily level (panels C, G and K) and fold level (panels D, H and L). Panels 
A, B, C and D show results for the ADP. Panels E, F, G and H show results for 
the ATP and panels I, J, K and L show results for the AMP. The 40% sequence 
similarity level indicates that all chains in the template library that were used for 
the prediction share less than 40% sequence similarity to the test protein. The 
family, superfamily and fold levels indicate that all chains in the template library 
that were used for the prediction are classified as belonging to a different family, 
superfamily and fold (based on the SCOP database), respectively, when compared 
with the annotation of the test protein. 

Among the four predictors, the NSiteMatch and Findsite are template-based and 

therefore they depend on the availability of suitable templates. As expected, 

Figure 7-4 reveals that the predictive quality of these two methods declines with 

the decrease of the structure similarity to the templates, i.e., when more distant 

homologs are used. For instance, when considering the cutoff D = 4Å, the success 

rates of the NSiteMatch are 64%, 55%, 31%, and 31% for the ADP at the 40% 

sequence similarity, family, superfamily, and fold filter levels, respectively (panel 

A in Figure 7-4). Similarly, for the ATP and AMP, the success rates of the 

NSiteMatch are 58% and 43%, 53% and 41%, 40% and 37%, and 41% and 36% 

for the four filters, respectively (panels B and C in Figure 7-4). Similar declining 

trends are observed for the Findsite; see panels D, E, and F in Figure 7-4. 

Although the results indicate that the availability of similar templates has a 

relatively strong impact on the predictive quality of these two predictors, we note 

that the NSiteMatch maintains higher success rates when predicting with the help 

of more distant homolog. This advantage is due to the use of local similarity and 

consequently, as shown in Figure 7-2, our method also outperforms the two 

template-free methods, MetaPocket and Q-SiteFinder, at the superfamily and fold 

levels even for the hard (characterized by the small template library) AMP ligand. 

To compare, these two approaches improve over the Findsite when the templates 

are filtered at the superfamily and fold levels for each of the three ligands. 
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Figure 7-4: The relation between the predictive quality of the NSiteMatch and 
Findsite and the similarity between the predicted protein and template library. The 
success rates (y-axis) are measured using DCC (the minimal distance from the 
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center of the predicted site to the center of the ligand) on the benchmark datasets. 
A given binding site is regarded as correctly predicted if the minimal distance 
between this site and the top n predictions is below the cutoff distance D (x-axis), 
where n is the number of binding sites of the protein that includes the evaluated 
binding site. Panels A, C, and E evaluate results of the NSiteMatch for the ADP, 
ATP, and AMP, respectively; Panels B, D, and F summarize the corresponding 
results for the Findsite. 

We investigate significance of differences in the prediction quality measured with 

DCC between NSiteMatch and the other predictors, see Table 7-1. We compare the 

DCC values that are calculated by taking top n predictions for each protein where n 

is the number of the nucleotide-binding sites for a given protein. At 40% sequence 

similarity and family levels, the NSiteMatch is significantly better than the other 

three methods. Similarly, our method significantly outperforms the competing 

solutions by using the superfamily and fold filters for the ADP and ATP ligands, 

and the improvements are not significant only when compared with the 

MetaPocket and Q-SiteFinder for the AMP. 

Table 7-1: Statistical significance of the differences in distances measured using 
DCC between the predicted and the actual location of the binding site 
measured using Wilcoxon signed-rank test. The “+” indicates that 
NSiteMatch is significantly better than a method in a given column 
with p < 0.05 and “=” denotes that NSiteMatch and a method in a 
given column is not significantly different. 

Ligand type SCOP level MetaPocket Findsite Q-SiteFinder 
40% + + + 

Family + + + 
Superfamily + + + 

ADP 

Fold + + + 
40% + + + 

Family + + + 
Superfamily + + + 

ATP 

Fold + + + 
40% + + + 

Family + + + 
Superfamily = + = 

AMP 

Fold = + = 



 131 

7.7.2 Evaluation of the predicted binding residues 

Besides the coordinates of the predicted binding site, the NSiteMatch, Findsite, 

MetaPocket, and Q-SiteFinder also predict the binding residues. For the 

NSiteMatch, each residue in the predicted protein structure is assigned with a 

numerical score which indicates the number of ligands that this residue interacts 

with (details concerning the annotation of the binding residues for the NSiteMatch 

are given in 7.5.2). A given residue is regarded as a binding residue if its score is 

above a certain threshold. The selection of this threshold controls the trade-off 

between precision (fraction of the correctly predicted binding residues among all 

predicted binding residues) and recall (fraction of the correctly predicted binding 

residues among all native binding residues). Since the precision and recall values 

achieved by the Findsite, MetaPocket, and Q-SiteFinder vary substantially, we 

selected two thresholds that allow for a direct comparison. Similarly as in (Zhang 

et al., 2008), we set the threshold such that the precision/recall of the NSiteMatch 

is equal to the highest precision/recall achieved by the other methods for a given 

ligand and a given filter. The predictions are evaluated based on the recall (also 

called sensitivity), precision, and MCC; see Table 7-2. The MCC quantifies 

correlation between predictions and the native annotations and thus higher MCC 

values correspond to more accurate predictions. 
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Table 7-2: Comparison of the predictive qualities of the NSiteMatch, MetaPocket, 
Findsite and Q-SiteFinder for the prediction of binding residues for 
ADP, ATP, and AMP. The PRE, REC, and MCC stand for precision, 
recall, and Matthews Correlation Coefficient, respectively. The 
NSiteMatch generates a real value for each residue (propensity to bind), 
which is thresholded to make binary (binding vs. non-binding residue) 
predictions. The rows annotated as the “NSiteMatch p”, are based on 
the thresholds that generate precision values which match the highest 
precision obtained by the MetaPocket, Findsite, and Q-SiteFinder for a 
given ligand type; similarly, the “NSiteMatch r” rows correspond to 
thresholds for which the highest value of recall is matched. The 
matching recall and precision values are shown in italics and the 
highest MCC values are given in bold font. 

40% Family Superfamily Fold Ligand 
type Method PRE REC MCC PRE REC MCC PRE REC MCC PRE REC MCC 

NSiteMatch p 0.48 0.79 0.6 0.43 0.68 0.52 0.43 0.49 0.44 0.43 0.48 0.43 
NSiteMatch r 0.76 0.53 0.62 0.53 0.57 0.53 0.37 0.57 0.43 0.37 0.57 0.43 
MetaPocket 0.41 0.13 0.21 0.43 0.13 0.22 0.43 0.13 0.22 0.43 0.13 0.22 
Findsite 0.48 0.67 0.55 0.41 0.45 0.42 0.31 0.32 0.3 0.31 0.3 0.3 

ADP 

Q-SiteFinder 0.29 0.53 0.36 0.31 0.57 0.39 0.31 0.57 0.39 0.31 0.57 0.39 
NSiteMatch p 0.49 0.68 0.56 0.46 0.54 0.47 0.46 0.41 0.41 0.46 0.41 0.41 
NSiteMatch r 0.61 0.52 0.54 0.47 0.51 0.47 0.4 0.51 0.42 0.4 0.51 0.42 
MetaPocket 0.47 0.16 0.26 0.46 0.14 0.23 0.46 0.14 0.23 0.46 0.14 0.23 
Findsite 0.49 0.52 0.5 0.38 0.43 0.39 0.29 0.34 0.31 0.29 0.34 0.31 

ATP 

Q-SiteFinder 0.31 0.52 0.36 0.29 0.51 0.35 0.29 0.51 0.35 0.29 0.51 0.35 
NSiteMatch p 0.47 0.62 0.51 0.47 0.36 0.39 0.47 0.3 0.35 0.47 0.28 0.34 
NSiteMatch r 0.47 0.62 0.51 0.33 0.6 0.41 0.29 0.6 0.38 0.29 0.6 0.38 
MetaPocket 0.47 0.16 0.26 0.47 0.15 0.25 0.47 0.15 0.25 0.47 0.15 0.25 
Findsite 0.44 0.49 0.44 0.31 0.34 0.31 0.29 0.33 0.3 0.29 0.32 0.29 

AMP 

Q-SiteFinder 0.29 0.62 0.39 0.29 0.6 0.38 0.29 0.6 0.38 0.29 0.6 0.38 

For the 40% sequence similarity filter, the NSiteMatch achieves higher precision, 

recall and MCC values than the Findsite, Q-SiteFinder, and MetaPocket for all 

three types of the nucleotides. The NSiteMatch generates predictions with a 

substantially higher precision when its recall is the same as the highest recall 

produced by the other predictors. Similarly, our method has higher recall when its 

precision matches the highest precision produced by the other methods. The 

Findsite obtains the second best MCC values for the three types of the nucleotides. 

We observe that predictions of MetaPocket are characterized by the precision that 

is higher than the recall, while the Q-SiteFinder has the recall values higher than 

the precision. This indicates that the MetaPocket and Q-SiteFinder under- and 

over-predict the binding residues, respectively. 
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At the family level, the NSiteMatch also provides the highest precision, recall, 

and MCC values when compared with the other methods for the three nucleotides. 

However, as expected, the predictive quality of the NSiteMatch and Findsite 

declines when compared to the 40% sequence similarity filter. Based on the MCC 

value, Findsite outperforms the Q-SiteFinder and MetaPocket for the ADP and 

ATP but is inferior to the Q-SiteFinder for the AMP. The results at the 

superfamily and fold level filters are similar to each other. The NSiteMatch 

maintains the highest precision, recall, and MCC values for the ADP and ATP. 

However, for the AMP, the predictions of the NSiteMatch have quality that is 

comparable to the Q-SiteFinder and higher than the MetaPocket and Findsite. 

The results concerning prediction of binding residues are consistent with our 

statistical analysis based on the DCC values. The lower predictive quality of the 

NSiteMatch (and Findsite) for the AMP, when compared with the ADP and ATP, 

is due to the relatively small size of the template library for that ligand.  

Similarly as for the prediction of the binding sites, we assessed the impact of the 

similarity between the predicted protein and the corresponding template library on 

the predictive qualities of the NSiteMatch and Findsite for the prediction of 

binding residues. The MCC values achieved by NSiteMatch for the ADP, ATP, 

and AMP are 0.6, 0.56, and 0.51, respectively, at the 40% sequence similarity 

level; 0.52, 0.47, and 0.39, respectively, at the family level; 0.44, 0.41, and 0.35, 

respectively, at the superfamily level; and 0.43, 0.41, and 0.34, respectively, at the 

fold level. As expected, the results indicate that NSiteMatch generates better 

predictions when the predicted protein has a higher structural similarity to the 

template library. Similar relation is observed for the Findsite; see Table 7-2. 

However, based on the MCC values, the Findsite is outperformed by the template-

free Q-SiteFinder for the prediction of binding residues of the three nucleotides 

for the superfamily and fold filters. Importantly, we observe that our method 

outperforms Findsite for each filter and each ligand type, and it also improves 

over the Q-SiteFinder and MetaPocket, except for the AMP with the superfamily 

and fold level filters where it provides predictive quality that is comparable to the 
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Q-SiteFinder. This demonstrates that our local similarity-based approach provides 

one of the best solutions for the structure-based prediction of nucleotide binding 

residues, even when predicting for structures from novel/uncharacterized folds 

and superfamilies. 

7.7.3 Case studies 

We present two case studies. The first compares the utility of the NSiteMatch and 

the existing binding site predictors, and the second demonstrates the ability of the 

NSiteMatch to identify similar binding sites across protein folds. 

We use the chain A of the MJ1225 protein (PDB code: 3KH5) (Gómez-García et 

al., 2010) for the first case study. This structure was released after our benchmark 

dataset was created and this sequence shares less than 25% similarity to any 

sequence in our benchmark dataset. We used the web servers of the MetaPocket 

and Q-SiteFinder and the standalone implementation of the Findsite and our 

NSiteMatch to generate the predictions. The template library of Findsite and 

NSiteMatch includes all structures from the benchmark dataset. Since the MJ1225 

protein includes 3 ADP-binding sites and 1 AMP-binding site, the top 4 

predictions generated by each predictor were assessed. For the cutoff distance D = 

4Å, the NSiteMatch and Findsite correctly predict 4 and 3 of the binding sites, 

respectively, while the Q-SiteFinder and MetaPocket find 2 and 1 of the binding 

sites, respectively, see panel A in Figure 7-5. The lower quality of the Q-

SiteFinder and MetaPocket predictions can be explained by the fact that these 

methods predict sites for a generic class of small ligands, while Findsite and 

NSiteMatch use a library that is specific to the three nucleotides. In spite of using 

the same template library, we show that NSiteMatch is more accurate that Findsite, 

which is due to the use of the local similarity. 
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Figure 7-5: Binding sites predicted by the NSiteMatch, Findsite, MetaPocket, and 
Q-SiteFinder for chain A of the MJ1225 protein (panel A) and chain A of the cell 
division inhibitor mind protein (panel B). The predictions by NSiteMatch, 
Findsite, MetaPocket, and Q-SiteFinder are denoted with green, red, purple, and 
blue spheres, respectively. The ligands are in the stick format and are colored in 
black. The MJ1225 contains 3 ADP-binding sites and 1 AMP-binding site and the 
top 4 predictions from each method are shown.  The cell division inhibitor mind 
protein has 1 ADP-binding site and the top prediction for each method is shown. 

We use chain A of the probable cell division inhibitor mind protein (PDB code: 

1ION) (Sakai et al., 2001) to demonstrate that NSiteMatch is capable of 

identifying similar binding sites across protein folds. This would imply that the 

function of a given protein could be inferred from other proteins that have 

different topologies. This structure includes 1 ADP-binding site and thus we 

assess the top prediction from each method. The distances between the predicted 

and the native center of the ligand are 0.6Å, 1.3Å, 3.0Å, and 22.8Å for the 

NSiteMatch, Findsite, Meta-Pocket, and Q-SiteFinder, respectively, see panel B 

in Figure 7-5. The ADP-binding site is implemented by the “GTGKTT” sequence 

segment and this protein is assigned to the “P-loop containing nucleoside 

triphosphate hydrolases” superfamily based on the SCOP annotation. The 
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NSiteMatch uses potentially multiple templates to find a single binding site. We 

analyze the templates that the NSiteMatch finds as similar to the 1ION protein in 

the predicted binding region and which were used to predict this site. Three of 

these templates belong to superfamilies that are different to the superfamily of the 

predicted protein; see Table 7-3. The first template is chain A of 

phosphoenolpyruvate carboxykinase (PDB code: 1K3C) (Sudom et al., 2001), 

which is assigned to the “PEP carboxykinase-like” superfamily in SCOP. The 

other two templates are chain A of UDP-N-Acetylmuramoylalanine-D-Glutamate 

ligase (PDB code: 2JFG) (Kotnik et al., 2007) and chain A of Thermosome alpha 

subunit (PDB code: 1Q3S) (Shomura et al., 2004), which belong to the “MurD-

like peptide ligases” and “catalytic domain and GroEL equatorial domain-like” 

superfamilies, respectively. We superimpose these three templates into the 

predicted, 1ION protein using Fr-TM-align (Pandit and Skolnick, 2008); see 

panels A, B and C in Figure 7-6. The Figures reveal that the templates are 

dissimilar in their overall topology when compared with the 1ION protein. The 

alignment of the binding segments for the three templates and the predicted 

protein, which is given in Table 7-3, reveals that they share key binding residues, 

i.e., the Gly, Lys, and Thr residues. The NSiteMatch works by finding local 

similarity in the binding region between the predicted and the template proteins, 

and we superimposed these regions; see panels D, E, and F in Figure 7-6 where 

the residues are displayed in ball and stick format and the ADP is shown in the 

stick format. The binding site of the phosphoenolpyruvate carboxykinase is very 

similar to the binding site of the predicted protein (panel D in Figure 7-6); we 

found 30 atoms which overlap between these two superimposed sites. The overlap 

between the binding site of the UDP-N-Acetylmuramoylalanine-D-Glutamate 

ligase and the predicted protein includes 16 atoms (panel E in Figure 7-6) which 

mainly involve the Gly114, Lys115, and Thr117 residues on the template and the 

Gly15, Lys16, and Thr18 residues on the predicted chain. The binding site of the 

thermosome alpha subunit is less similar to the predicted protein when compared 

with the other two templates (panel F in Figure 7-6); 11 atoms overlap and they 

correspond to Gly96, Thr98, and Thr99 residues on the template and Gly15, 
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Thr17, and Thr18 residues on the predicted sequence. We observe that the ADP 

binds to the predicted protein and the first two templates mainly through the β-

phosphate group, while it interacts with the third template mainly through the α-

phosphate group, which explains the lower similarity. However, even when the 

interaction group changes, the NSiteMatch was still able to capture a similar 

spatial arrangement of residues at the binding site. This example demonstrates 

that our method can perform annotation of binding sites based on templates with 

distant homology. In contrast to the NSiteMatch, the templates used by Findsite to 

predict the 1ION protein belong to the same “P-loop containing nucleoside 

triphosphate hydrolases” superfamily, i.e., Findsite was not able to capture the 

distant functional relationship between proteins from different superfamilies. 

Table 7-3: The templates identified by NSiteMatch for the probable cell division 
inhibitor mind protein. Three templates, including 
phosphoenolpyruvate carboxykinase, UDP-N-Acetylmuramoylalanine-
D-Glutamate Ligase and thermosome alpha subunit have different 
topologies but similar binding segments and binding sites to the 
predicted protein. 

Polymer name  PDBcode:(chain) Binding segment SCOP label 

Cell division inhibitor mind 
protein 

1ION:A G T - G K T T c.37.1.10 

Phosphoenolpyruvate 
carboxykinase 

1K3C:A G T - G K T T c.91.1.1 

UDP-N-Acetylmuramoylalanine-
D-Glutamate ligase 

2JFG:A G S N G K S T c.72.2.1 

Thermosome alpha subunit 1Q3S:A G D - G T T T a.129.1.2 
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Figure 7-6: Comparison of the structures of templates identified by the 
NSiteMatch as similar to the chain A of the probable cell division inhibitor mind 
protein (PDB code: 1ION), which are classified as belonging to different 
superfamily as the 1ION protein. The 1ION structure is shown in red, while the 
three templates, phosphoenolpyruvate carboxykinase, UDP-N-
Acetylmuramoylalanine-D-Glutamate ligase, and thermosome alpha subunit are 
in green, blue, and grey, respectively. Panels A, B, and C superimpose each of the 
templates to the 1ION structure by using Fr-TM-align. Panels D, E, and F are the 
common sub-structures between the 1ION structure and a given template, which 
were identified by the NSiteMatch. The residues are displayed in the ball and 
stick format and the ADP is shown in the stick format. 

7.8 Conclusions 

Motivated by the importance and the substantial interest in protein-nucleotide 

interactions and the lack of accurate computational predictors, we designed a 

novel and accurate structure-based nucleotide-binding site predictor for the three 

most commonly occurring nucleotides. Empirical test shows that the proposed 

NSiteMatch method significantly outperforms generic, template-free binding site 

predictors, except for the AMP nucleotide, for which NSiteMatch generates 

results that are comparable to the Q-SiteFinder and MetaPocket at the superfamily 

and fold filter levels. We also show that the template-based NSiteMatch and 

Findsite generate better predictions for proteins that share higher similarity with 
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their template library. However, NSiteMatch significantly outperforms Findsite 

when the predicted protein shares low structural similarity to the template library. 

Contrary to the Findsite which relies on identification of templates that have 

similar topology to the topology of the predicted protein, our method recognizes 

templates that share local similarity in the binding area and which are not 

necessarily similar in their overall topology. This allows us to identify similar 

binding sites across potentially very different protein structures. Our method can 

accurately, when compared to the current state-of-the-art, find distant functional 

relationships between proteins from different families, superfamilies, and folds. 

Although the NSiteMatch targets predictions for a few specific nucleotides, our 

methodology constitutes a generic platform that could be extended to predict 

interactions with other small ligands. 
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CHAPTER 8 Summary and conclusions 

8.1 Summary 

This dissertation addresses computational characterization and prediction of 

protein-small ligand interactions, with emphasis on the interactions between 

protein and nucleotides. The four main parts include the investigation of atomic 

level interactions between proteins and small ligands, a comparative survey of 

existing structure-based binding site predictors for small organic compounds, a 

method that predicts the nucleotide-binding residues for protein sequences, and an 

algorithm that identifies the nucleotide-binding sites for protein structures. 

In Chapter 4, we investigate the atomic level patterns that describe the protein-

small ligand interactions. This study opens the dissertation because such analysis 

is crucial not only to understand and summarize these interactions, but also to 

investigate whether computational prediction of these interactions would be 

possible. Our study demonstrates that the protein- small organic compound, 

protein-metal ion, protein-inorganic anion, and protein-inorganic cluster 

interactions are governed by different interaction forces. Therefore, different 

interaction patterns were found for each type of interactions. The 10 proposed 

patterns describe 56% of the protein-small ligand complexes in PDB.  

Among the four abovementioned ligand groups, we focus on the small organic 

compounds driven by the fact that they constitute significant majority of the drugs 

approved by the U.S. Food and Drug Administration. In Chapter 5, we assessed 

the predictive performance of the current structure-based predictors of the protein-

small organic compound interactions. This study not only evaluates the current 

efforts, but most importantly investigates whether new and improved predictors 

are needed and points out potential directions for future research. We 

demonstrated that the predictive quality of these methods was significantly 

improved during the past decade. However, we found that there is a large room 

for further improvements, which suggests that new solutions are needed. We also 
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discovered several limitations of these predictors. For instance, the best-

performing Findsite is largely dependent on the completeness of its template 

library while the runner-up methods, ConCavity, MetaPocket and Q-SiteFinder 

generate less accurate predictions when using the apo structures instead of using 

the holo structures. These limitations motivate further research on the prediction 

of the protein-organic compound interactions. We observe that the predictive 

performance of the top-performing methods varies for different organic 

compound types, which implies that separate models should be designed for 

specific types of organic compounds. Our comparative survey shows that 

improvements can be obtained when using a consensus-based approach and that 

threading is a promising approach, but given that its performance for lower 

similarity templates would be improved. We use these insights to design a new 

method, which is described in Chapter 7.  

Among the different organic compound types, we focus on nucleotides because 

these ligands are abundant, ubiquitous, and have important functions. We 

proposed two novel methods, one that predicts the nucleotide-binding residues 

(see Chapter 6) from protein sequences and the other that identifies the 

nucleotide-binding sites from protein structures (see Chapter 7). These methods 

are designed by taking advantage of the information derived from the preceding 

chapters, i.e., the sequence-based method is based on a consensus of algorithms 

that target predictions for specific nucleotides and the structure-based method 

utilizes an improved (local) threading and hybridizes the geometry-, energy-, and 

threading-based approaches. We demonstrate that both of these methods provide 

statistically significant improvements over the state-of-the-art existing solutions.  

The major contributions of this dissertation include: 

• Creation of a dataset for the analysis of protein-small ligand interactions.  

The proteins in the dataset have a high quality, i.e., the structure resolution is 

below 2.0Å and the R-factor value is below 0.25, and they adequately 

sample the sequence space, i.e., the sequence similarity is reduced to 25%. 
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• First-of-its-kind comprehensive characterization of the molecular-level 

interactions between proteins and small ligands that covers both covalent and 

non-covalent interactions. 

• Discovery of ten molecular-level interaction patterns that cover significant 

majority of the protein-small ligand complexes in PDB. 

• Creation of a benchmark dataset for the assessment of the existing structure-

based binding site predictors. The structures in the dataset are annotated with 

multiple binding sites (using structural alignment and clustering), the dataset 

samples the homology space (proteins belong to different families), and the 

biological-irrelevant ligands are excluded. 

• First-of-its-kind comprehensive comparative analysis of the predictive 

performance of ten representative structure-based binding site predictors. 

• Development of a quality index OPL, which quantifies overlap between the 

predicted binding site and the ligand and provides additional insights into the 

performance of the structure-based binding site predictors. 

• Assessment of the impact of the structural similarity between the predicted 

protein and the template library on the predictive quality of the top-

performing threading-based binding site predictor, Findsite. 

• Assessment of the differences between the predictions generated by top-

performing structure-based predictors when using apo and holo structures, 

respectively. 

• Assessment of the impact of the ligand size and ligand type on the predictive 

quality of the top-performing structure-based binding site predictors. 

• Investigation of the complementarity between the predictions generated by 

the top-performing structure-based binding site predictors. 
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• Creation of three benchmark datasets for the sequence-based prediction of 

the nucleotide-binding residues. 

• Development of five accurate sequence-based predictors (the NsitePred 

method) that identify binding residues for the five common nucleotides, 

including ATP, ADP, AMP, GTP, and GDP. 

• Empirical evaluation of the NsitePred method and comparative analysis 

against the state-of-the-art existing sequence-based solutions. 

• Investigation of the relation between the spread index and the predictive 

quality of the proposed NsitePred method. 

• Development of an algorithm, called NSiteMatch, which predicts the 

nucleotide-binding sites and residues from protein structures. 

• Empirical evaluation of the NSiteMatch method and comparative analysis 

against the state-of-the-art existing structure-based solutions. 

• Development of an evaluation protocol to assess the performance of 

template-based binding site predictors by controlling the structural similarity 

between the predicted protein and the template library. 

The list below outlines the most important findings of the aforementioned studies: 

Investigation of the atomic level patterns in protein-small ligand interactions 

• The interactions between proteins and different ligand types are governed by 

different interaction forces. The protein-organic compound complexes are 

governed by the hydrogen bonds, van der Waals contacts and covalent bond. 

The protein-metal ion complexes are based on the electrostatic force and 

coordination bonds while the protein-anion complexes are governed by the 

electrostatic force, hydrogen bonds and van der Waals contacts. Finally, the 
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protein-inorganic cluster complexes are established mostly due to the 

coordination bonds. 

• 73% of the covalent bonds are formed between proteins and organic 

compounds are covered by three interaction patterns, 1) thioether bond 

formed between the thiol of Cys residue and the carbon atom of an organic 

compound; 2) disulfide bond formed between thiol of Cys residue and the 

sulfur atom of an organic compound; 3) the covalent contacts formed 

between nitrogen atom of Lys residue and the carbon atom of an organic 

compound. 

• 65.8% of all hydrogen bonds are formed between proteins and organic 

compounds are established between NH- group (as the donor) of an AA and 

the oxygen atom of an organic compound. 

• 96.4% of all coordination bonds are formed between proteins and metal ions 

are covered by three interaction patterns, 1) coordination bond established 

between metal and the nitrogen atom in the side chain of His residue; 2)  

coordination bond formed between metal and sulfur atom of Cys residue; 3) 

coordination bond established between metal and the oxygen atoms in the 

side chain of Asp/Glu residues; 

• 87.1% of all hydrogen bonds are formed between proteins and inorganic 

anions are established between NH- group (as the donor) of an AA and the 

oxygen atom of an anion.  

• 98.5% of all coordination bonds are formed between an inorganic cluster and 

a protein are covered by two interaction patterns, 1) coordination bond 

formed between the iron atom of the cluster and the sulfur atom of Cys 

residue; 2) coordination bond formed between the iron atom of the cluster 

and the nitrogen atom in the side chain of His residue. 
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Assessment of the existing structure-based binding site predictors 

• Among the 10 considered binding site predictors, Findsite is significantly 

more accurate than the other considered predictors. The ConCavity, Q-

SiteFinder, MetaPocket and PocketPicker methods are second-best and not 

significantly different between each other (except for the ConCavity which 

significantly improves over the Q-SiteFinder), and this group is significantly 

better than LIGSITEcsc, SURFNET, PASS, PocketFinder and Fpocket. 

• The predictive performance of the threading-based Findsite is largely 

dependent on the completeness of its template library. 

• The geometry-based ConCavity, energy-based Q-SiteFinder, and consensus-

based MetaPocket predictors benefit from the usage of the holo structure and 

generate less accurate predictions when using the apo structures. 

• Predictive quality of Findsite, ConCavity, Q-SiteFinder, and MetaPocket are 

strongly positively correlated with size of binding sites. 

• The predictive performance of same of the top-performing methods 

substantially differs for different organic compound types. Considering the 

four major organic compound groups, Findsite and ConCavity achieve the 

highest success rates for the cofactors, followed by the mononucleotides and 

acids, and lower accuracies for the carbohydrates. In contrast, the differences 

between the success rates for different organic compound groups for the Q-

SiteFinder and MetaPocket are relatively minor. 

• The predictions by different binding site predictors are complementary and a 

simple consensus-based approach improves the success rates of the best-

performing Findsite. 
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Prediction of the nucleotide-binding residues from protein sequence 

• The predictions by machine-learning based approach and alignment-based 

method are complementary. A consensus of these two approaches improves 

the predictive quality. 

• The proposed NsitePred method is significantly more accurate in 

identification of nucleotide-binding residues when compared with the 

existing ATPint and GTPbinder methods, as well as solutions based on the 

sequence alignment and residue conservation scoring. 

• The NsitePred method predicts fewer nucleotide-binding residues for the 

non-binding chains than for the nucleotide-binding chains, and outperforms 

the ATPint and GTPbinder methods on this aspect. 

• Predictive quality of NsitePred is strongly negatively correlated with the 

spread value of the binding sites. NsitePred performs particularly well for the 

binding sites in which the binding residues are clustered together in the 

sequence. 

• The nucleotide-binding residues are associated with certain sequence-derived 

characteristics, including specific arrangements of secondary structures, 

dihedral angles, and certain amino acid pairs in the specific neighboring 

positions in the sequence. 

Prediction of the nucleotide-binding sites for protein structure 

• The proposed NSiteMatch predictor is superior to the template-base Findsite 

for all ligand types and at all filter levels. This supports the utility of our 

novel predictive approach that is based on local similarity in the binding 

region. 

• The proposed NSiteMatch is significantly more accurate than the template-

free binding site predictors Q-SiteFinder and MetaPocket, except for the 
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AMP nucleotide, for which NSiteMatch generates comparable results to the 

Q-SiteFinder and MetaPocket at the superfamily and fold filter levels. 

• The template-based NSiteMatch and Findsite generate better predictions for 

proteins that share higher structural similarity to their template library. 

• The NSiteMatch method is capable of identifying templates that have 

dissimilar overall topology and similar binding area when compared with the 

predicted protein, i.e., our method is capable of finding distant functional 

relationships. 

8.2 Limitations and future directions 

The field of protein-small ligand interactions covers a large number of research 

subjects and the studies performed in this dissertation concern only a few selected 

topics. We acknowledge that several other topics deserve research attention, for 

instance, prediction of the protein-anion and the protein-inorganic cluster 

interactions, and building of a comprehensive structure-based consensus method 

that utilizes the predictions from the existing structure-based predictors. Below we 

discuss the limitations and future directions that are specifically related to the 

work presented in this dissertation. 

Investigation of the atomic level patterns in protein-small ligand interactions 

The pattern for protein-organic compound interactions, i.e., hydrogen bonds 

established between NH- group (as the donor) of an AA and the oxygen atom of 

an organic compound, is relatively generic. Since PDB contains more than 10,000 

organic compounds, it is unlikely to discovery a pattern that covers all protein-

organic compound interactions. An alternative solution is to divide the organic 

compounds into a number of subtypes and summarize the interaction patterns for 

each of these types. For instance, the structural and sequence motifs were 

previously proposed for the protein-ATP interactions (Walker et al., 1982). 
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Prediction of the nucleotide-binding residues from protein sequence 

The limitation of the proposed NsitePred is that this method is designed 

specifically for prediction of the nucleotide-binding residues and cannot be used 

for prediction of binding residues of other organic compounds. Our method needs 

to be rebuilt to predict the other compounds. Moreover, NsitePred provides less 

accurate predictions for the binding sites with larger spread values. These two 

weaknesses will be addressed in our future work. 

Prediction of the nucleotide-binding sites for protein structure 

Although the proposed NSiteMatch method provides more accurate predictions 

than the template-free methods, i.e., MetaPocket and Q-SiteFinder, the 

NSiteMatch method is more computationally expensive than the template-free 

methods. We are planning to modify the grid scanning steps to reduce the amount 

of computations. Since NSiteMatch is a template-based method, its predictive 

quality is largely dependent on the structure similarity between the predicted 

protein and the template library. In the case that the template library contains a 

small number of (dissimilar) binding sites, the NSiteMatch would generate less 

accurate predictions. Our future work will address this shortcoming by iteratively 

enlarging the library, as more native complexes become available. 



 149 

Bibliography 

Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., et al. (1997) 
Gapped BLAST and PSI-BLAST: a new generation of protein database 
search programs. Nucleic Acids Res., 25: 3389-402. 

Andreeva, A., Howorth, D., Chandonia, J.M., Brenner, S.E., Hubbard, T.P., et al. 
(2008) Data growth and its impact on the SCOP database: new 
developments. Nucleic Acids Res. 36: D419-D425. 

Angkawidjaja, C., You, D.J., Matsumura, H., Kuwahara, K., Koga, Y., et al. 
(2007) Crystal structure of a family I.3 lipase from Pseudomonas sp. 
MIS38 in a closed conformation. FEBS Lett. 581:5060–4. 

Ashburner, M., Ball, CA., Blake, J.A., Botstein, D., and Butler, H. (2000) Gene 
ontology: tool for the unification of biology. Nat Genet. 25:25-9. 

Ashkenazy, H., Erez, E., Martz, E., Pupko, T., and Ben-Tal, N. (2010) ConSurf 
2010: calculating evolutionary conservation in sequence and structure of 
proteins and nucleic acids. Nucleic Acids Res., 38:W529-33. 

Bárány, M., Barron, J.T., Gu, L., and Bárány, K. (2001) Exchange of the actin-
bound nucleotide in intact arterial smooth muscle. J. Biol. Chem. 
276:48398–403. 

Barrell, D., Dimmer, E., Huntley, R.P., Binns, D., O'Donovan, C., et al. (2009) 
The GOA database in 2009--an integrated Gene Ontology Annotation 
resource. Nucleic Acids Res. 37:D396-D403. 

Benning, M.M., Taylor, K.L., Liu, R.Q., Yang, G., Xiang, H., et al. (1996) 
Structure of 4-chlorobenzoyl coenzyme A dehalogenase determined to 1.8 
A resolution: an enzyme catalyst generated via adaptive mutation. 
Biochemistry, 35:8103–9. 

Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., et al. (2000) 
The Protein Data Bank. Nucleic Acids Res. 28:235-242. 

Brady, G., and Stouten, P. (2000) Fast prediction and visualization of protein 
binding pockets with PASS. J Comput Aided Mol Des. 14:383-401. 

Brooijmans, N., and Kuntz, I.D. (2003) Molecular recognition and docking 
algorithms. Annu Rev Biophys Biomol Struct. 32:335-73. 

Capra, J.A., and Singh, M. (2007) Predicting functionally important residues from 
sequence conservation. Bioinformatics, 23:1875-82. 

Capra, J.A., Laskowski, R.A., Thornton, J.M., Singh, M., and Funkhouser, T.A. 
(2009) Predicting protein ligand binding sites by combining evolutionary 
sequence conservation and 3D structure. PLos Comput Biol. 5, 12. 



 150 

Chauhan, J.S., Mishra, N.K. and Raghava, G.P. (2009) Identification of ATP 
binding residues of a protein from its primary sequence. BMC 
Bioinformatics, 10, 434. 

Chauhan, J.S., Mishra, N.K. and Raghava, G.P. (2010) Prediction of GTP 
interacting residues, dipeptides and tripeptides in a protein from its 
evolutionary information. BMC Bioinformatics, 11, 301. 

Chen, K., and Kurgan, L. (2009) Investigation of atomic level patterns in protein-
small ligand interactions. PLoS ONE, 4, e4473. 

Chen, K., Mizianty, M., Gao, J., and Kurgan, L.A. (2011) A critical comparative 
assessment of predictions of protein binding sites for biologically relevant 
organic compounds. Structure, 19:613-621. 

Chou, W.Y., Chou, W.I., Pai, T.W., Lin, S.C., Jiang, T.Y., et al. (2010) Feature-
incorporated alignment based ligand-binding residue prediction for 
carbohydrate-binding modules. Bioinformatics, 26:1022-8. 

Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M.Jr., et al. (1995) A 
Second Generation Force Field for the Simulation of Proteins, Nucleic 
Acids, and Organic Molecules. J. Am. Chem. Soc. 117:5179–5197. 

Cortes, C., and Vapnik, V. (1995) Support-Vector Networks. Machine Learning, 
20:273-97. 

Cuff, A.L., Sillitoe, I., Lewis, T., Redfern, O.C., Garratt, R., et al. (2009) The 
CATH classification revisited--architectures reviewed and new ways to 
characterize structural divergence in superfamilies. Nucleic Acids Res. 
37:D310-4. 

Davis, A.M., Teague, S.J., and Kleywegt, G.J. (2003) Application and limitations 
of X-ray crystallographic data in structure-based ligand and drug design. 
Angew Chem Int Ed Engl. 42: 2718–36. 

Declercq, J.P., Evrard, C., Lamzin, V., and Parello, J. (1999) Crystal structure of 
the EF-hand parvalbumin at atomic resolution (0.91 A) and at low 
temperature (100 K). Evidence for conformational multistates within the 
hydrophobic core. Protein Sci. 8:2194–2204. 

Denessiouk, K.A. and Johnson MS. (2000) When fold is not important: a common 
structural framework for adenine and AMP binding in 12 unrelated protein 
families. Proteins. 38:310-26. 

Dessailly, B.H., Lensink, M.F., Orengo, C.A., and Wodak, S.J. (2008) LigASite--
a database of biologically relevant binding sites in proteins with known 
apo-structures. Nucleic Acids Res. 36: D667-73. 

Dudev, T., and Lim, C. (2008a) Metal binding affinity and selectivity in 
metalloproteins: insights from computational studies. Annu Rev Biophys. 
37:97–116. 



 151 

Dudev, T., and Lim, C. (2008b) Principles governing Mg, Ca, and Zn binding and 
selectivity in proteins. Chem Rev. 103:773–88. 

Ellis, J.J., Broom, M., and Jones, S. (2007). Protein-RNA interactions: structural 
analysis and functional classes. Proteins. 66:903–11. 

Fan, R.E., Chang, K.W., Hsieh, C.J., Wang X.R, and Lin, C.J. (2008) 
LIBLINEAR: A library for large linear classification. J Mach Learn Res. 
9:1871-4. 

Fan, R.E., Chen, P.H., and Lin, C.J. (2005) Working set selection using second 
order information for training SVM. J Mach Learn Res. 6:1889-1918. 

Faraggi, E., Xue, B., and Zhou, Y. (2009) Improving the prediction accuracy of 
residue solvent accessibility and real-value backbone torsion angles of 
proteins by guided-learning through a two-layer neural network. Proteins. 
74:847-56. 

Fields, R.D., and Burnstock, G. (2006) Purinergic signalling in neuron-glia 
interactions. Nat Rev Neurosci. 7:423–36. 

Fiorucci, S., and Zacharias, M. (2010) Prediction of protein-protein interaction 
sites using electrostatic desolvation profiles. Biophys J. 98:1921-30. 

Fredholm, B.B., Abbracchio, M.P., Burnstock, G., Daly, J.W., Harden, T.K., et al. 
(1994) Nomenclature and classification of purinoceptors. Pharmacol Rev. 
46:143–156. 

Gao, M., and Skolnick, J. (2008) DBD-Hunter: a knowledge-based method for the 
prediction of DNA-protein interactions. Nucleic Acids Res. 36:3978-92. 

Gifford, J.L., Walsh, M.P., and Vogel, H.J. (2007) Structures and metal-ion-
binding properties of the Ca2+-binding heli.-loop-helix EF-hand motifs. 
Biochem J. 405:199–221. 

Gilman, A.G. (1987) G Proteins: Transducers of Receptor-Generated Signals. 
Annu Rev Biochem. 56:615–649 

Goldenberg, O., Erez, E., Nimrod, G., and Ben-Tal, N. (2009) The ConSurf-DB: 
pre-calculated evolutionary conservation profiles of protein structures. 
Nucleic Acids Res. 37:D323-7. 

Gómez-García, I., Oyenarte, I., and Martínez-Cruz, L.A. (2010) The crystal 
structure of protein MJ1225 from Methanocaldococcus jannaschii shows 
strong conservation of key structural features seen in the eukaryal gamma-
AMPK. J Mol Biol. 399:53-70. 

Goto, S., Okuno, Y., Hattori, M., Nishioka, T., and Kanehisa, M. (2002) LIGAND: 
database of chemical compounds and reactions in biological pathways. 
Nucleic Acids Res. 30:402-4. 

Grishkovskaya, I., Avvakumov, G.V., Sklenar, G., Dales, D., Hammond, G.L., et 
al. (2000) Crystal structure of human sex hormone-binding globulin: 
steroid transport by a laminin G-like domain. EMBO J. 19:504–12. 



 152 

Gutteridge, A., and Thornton, J.M. (2005) Understanding nature's catalytic toolkit. 
Trends in Biochem Sci. 30:622–29. 

Hendlich, M., Rippmann, F., and Barnickel G. (1997) LIGSITE: automatic and 
efficient detection of potential small molecule-binding sites in proteins. J 
Mol Graph Model. 15:359-63. 

Horst, J.A., and Samudrala, R. (2010) A protein sequence meta-functional 
signature for calcium binding residue prediction. Pattern Recognit Lett. 
31:2103-2112. 

Howard, J., and Hyman, A.A. (2007) Microtubule polymerases and 
depolymerases. Curr Opin Cell Biol. 19:31-5. 

Huang, B. (2009) MetaPocket: a meta approach to improve protein ligand binding 
site prediction. OMICS. 13:325-30. 

Huang, B., and Schroeder, M. (2006) LIGSITEcsc: predicting ligand binding sites 
using the Connolly surface and degree of conservation. BMC Struct Biol. 6, 
19. 

Jones, S., and Thornton, J.M. (1996) Principles of protein-protein interactions. 
Proc Natl Acad Sci U S A. 93:13–20. 

Kabsch, W., and Sander, C. (1983) Dictionary of protein secondary structure: 
pattern recognition of hydrogen-bonded and geometrical features. 
Biopolymers, 22:2577-637. 

Kotnik, M., Humljan, J., Contreras-Martel, C., Oblak, M., Kristan, K., et al. (2007) 
Structural and functional characterization of enantiomeric glutamic acid 
derivatives as potential transition state analogue inhibitors of MurD ligase. 
J Mol Biol. 370:107-15. 

Kurgan, L., Homaeian, L.  (2006) Prediction of Structural Classes for Protein 
Sequences and Domains - Impact of Prediction Algorithms, Sequence 
Representation and Homology, and Test Procedures on Accuracy. Pattern 
Recognition, 39:2323-2343. 

Kyte, J., and Doolittle, R.F. (1982) A simple method for displaying the 
hydropathic character of a protein. J Mol Biol. 157:105–132. 

Lan, F., Collins, R.E., De Cegli, R., Alpatov, R., Horton, J.R., et al. (2007) 
Recognition of unmethylated histone H3 lysine 4 links BHC80 to LSD1-
mediated gene repression. Nature, 448:718–22. 

Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., et al. 
(2007) Clustal W and Clustal X version 2.0. Bioinformatics, 23:2947-2948. 

Laskowski, R. (1995) SURFNET: a program for visualizing molecular surfaces, 
cavities and intermolecular interactions. J Mol Graph. 13:323-330. 

Laurie, A.T., and Jackson, R.M. (2005) Q-SiteFinder: an energy-based method for 
the prediction of protein-ligand binding sites. Bioinformatics, 21:1908-16. 



 153 

Le, Guilloux V., Schmidtke, P., and Tuffery, P. (2009) Fpocket: an open source 
platform for ligand pocket detection. BMC Bioinformatics, 10,168. 

Levitt, M. (2007) Growth of novel protein structural data. Proc Natl Acad Sci U S 
A. 104:3183-8. 

Li, W., and Godzik, A. (2006) Cd-hit: a fast program for clustering and 
comparing large sets of protein or nucleotide sequences. Bioinformatics, 
22:1658-1659. 

Linderstrøm-Lang, K.U. (1952) Proteins and Enzymes. Stanford University Press. 

Liu, D., Thomas, P.W., Momb, J., Hoang, Q.Q., Petsko, G.A., et al. (2007) 
Structure and specificity of a quorum-quenching lactonase (AiiB) from 
Agrobacterium tumefaciens. Biochemistry, 46:11789–99. 

Luscombe, N.M., Laskowski, R.A., and Thornton, J.M. (2001) Amino acid-base 
interactions: a three-dimensional analysis of protein-DNA interactions at 
an atomic level. Nucleic Acids Res. 29:2860-74. 

Ma, B., Elkayam, T., Wolfson, H., and Nussinov, R. (2003) Protein-protein 
interactions: structurally conserved residues distinguish between binding 
sites and exposed protein surfaces. Proc Natl Acad Sci U S A. 100:5772–7. 

Ma, Q., Zhao, X., Nasser, E.A., Geerlof, A., Li, X., et al. (2006) The 
Mycobacterium tuberculosis LipB enzyme functions as a cysteine/lysine 
dyad acyltransferase. Proc Natl Acad Sci U S A. 103:8662–7. 

Maret, W. (2005) Zinc coordination environments in proteins determine zinc 
functions. J Trace Elem Med Biol. 19:7–12. 

Maton, A., Jean, H., Charles, W., Susan, J., Maryanna, Q.W., et al. (1993) Human 
Biology and Health. Englewood Cliffs, New Jersey, USA: Prentice Hall. 

McDonald, I.K., and Thornton, J.M. (1994) Satisfying hydrogen bonding 
potential in proteins. J Mol Biol. 238:777–93. 

McGuffin, L.J., Bryson, K., and Jones, D.T. (2000) The PSIPRED protein 
structure prediction server. Bioinformatics, 16:404-5. 

Meng, X.Y., Zhang, H.X., Mezei, M., Cui, M. (2011) Molecular docking: a 
powerful approach for structure-based drug discovery. Curr Comput Aided 
Drug Des. 7:146-57. 

Mitchison, T., and Kirschner, M. (1984) Dynamic instability of microtubule 
growth. Nature, 312:237–42. 

Moodie, S.L., Mitchell, J.B. and Thornton, J.M. (1996) Protein recognition of 
adenylate: an example of a fuzzy recognition template. J Mol Biol. 
263:486-500. 

Morris, G. M., Goodsell, D. S., Halliday, R.S., Huey, R., Hart, W. E., et al. (1998) 
Automated Docking Using a Lamarckian Genetic Algorithm and and 
Empirical Binding Free Energy Function. J.Comput.Chem. 19:1639-1662. 



 154 

Mukherjee, S., Acharya, B.R., Bhattacharyya, B., and Chakrabarti, G. (2010) 
Genistein arrests cell cycle progression of A549 cells at the G(2)/M phase 
and depolymerizes interphase microtubules through binding to a unique 
site of tubulin. Biochemistry, 49:1702-12. 

Murakami, Y., Spriggs, R.V., Nakamura, H., and Jones, S. (2010) PiRaNhA: a 
server for the computational prediction of RNA-binding residues in 
protein sequences. Nucleic Acids Res. 38:W412-6. 

Pandit, S.B., and Skolnick, J. (2008) Fr-TM-align: a new protein structural 
alignment method based on fragment alignments and the TM-score. BMC 
Bioinformatics, 9, 531. 

Pei, J., Grishin, N.V. (2001) AL2CO: calculation of positional conservation in a 
protein sequence alignment. Bioinformatics, 17:700-12. 

Petrey, D., Fischer, M., and Honig, B. (2009) Structural relationships among 
proteins with different global topologies and their implications for 
function annotation strategies. Proc Natl Acad Sci U S A. 106:17377-82. 

Popova, Y., Thayumanavan, P., Lonati, E., Agrochão, M., and Thevelein, J.M. 
(2010) Transport and signaling through the phosphate-binding site of the 
yeast Pho84 phosphate transceptor. Proc Natl Acad Sci U S A. 107:2890-5. 

Pruitt, K.D., Tatusova, T., Klimke, W., Maglott, D.R. (2009) NCBI Reference 
Sequences: current status, policy, and new initiatives. Nucleic Acids Res. 
37:D32-6. 

Pupko, T., Bell, R.E., Mayrose, I., Glaser, F., and Ben-Tal, N. (2002) Rate4Site: 
an algorithmic tool for the identification of functional regions in proteins 
by surface mapping of evolutionary determinants within their homologues. 
Bioinformatics, Suppl 1:S71-7. 

Que, E.L., Domaille, D.W., and Chang, C.J. (2008) Metals in neurobiology: 
probing their chemistry and biology with molecular imaging. Chem Rev. 
108:1517-49. 

Rajamani, D., Thiel, S., Vajda, S., and Camacho, C.J. (2004) Anchor residues in 
protein-protein interactions. Proc Natl Acad Sci U S A 101: 11287–92. 

Rich, P.R. (2003) The molecular machinery of Keilin's respiratory chain. Biochem. 
Soc. Trans. 31:1095–105. 

Rosenberg, M.R., and Casarotto, M.G. (2010) Coexistence of two adamantane 
binding sites in the influenza A M2 ion channel. Proc Natl Acad Sci U S A. 
107:13866-71. 

Sakai, N., Yao, M., Itou, H., Watanabe, N., Yumoto, F., et al. (2001) The three-
dimensional structure of septum site-determining protein MinD from 
Pyrococcus horikoshii OT3 in complex with Mg-ADP. Structure, 9:817-
26. 



 155 

Saraste, M., Sibbald, P.R., and Wittinghofer, A. (1990) The P-loop−A common 
motif in ATP-binding and GTP-binding proteins. Trends Biochem Sci. 
15:430-434. 

Schnell, J.R., and Chou, J.J. (2008) Structure and mechanism of the M2 proton 
channel of influenza A virus. Nature, 451:591-5. 

Senes, A., Gerstein, M., and Engelman, D.M. (2000) Statistical analysis of amino 
acid patterns in transmembrane helices: the GxxxG motif occurs 
frequently and in association with beta-branched residues at neighboring 
positions. J Mol Biol. 296:921-36. 

Shapiro, S.S., Wilk, M.B. (1965). An analysis of variance test for normality 
(complete samples). Biometrika, 52:591–611. 

Shin, J.M., and Cho, D.H. (2005) PDB-Ligand: a ligand database based on PDB 
for the automated and customized classification of ligand-binding 
structures. Nucleic Acids Res. 33:D238-41. 

Shomura, Y., Yoshida, T., Iizuka, R., Maruyama, T., Yohda, M., et al. (2004) 
Crystal structures of the group II chaperonin from Thermococcus strain 
KS-1: steric hindrance by the substituted amino acid, and inter-subunit 
rearrangement between two crystal forms. J Mol Biol. 335:1265-78. 

Silva, J. J., and Williams, R.J. (1991) The Biological Chemistry of the Elements, 
Clarendon Press: Oxford.  

Skolnick, J., and Brylinski, M. (2008) A threading-based method (FINDSITE) for 
ligand-binding site prediction and functional annotation. Proc Natl Acad 
Sci U S A. 105:129-34. 

Smith, B.J., Colman, P.M., Von, I.M., Danylec, B., and Varghese, J.N. (2001) 
Analysis of inhibitor binding in influenza virus neuraminidase. Protein Sci. 
10:689–96. 

Stouffer, A.L., Acharya, R., Salom, D., Levine, A.S., Di, Costanzo L., et al. (2008) 
Structural basis for the function and inhibition of an influenza virus proton 
channel. Nature, 451:596-9. 

Sudom, A.M., Prasad, L., Goldie, H., and Delbaere, L.T. (2001) The phosphoryl-
transfer mechanism of Escherichia coli phosphoenolpyruvate 
carboxykinase from the use of AlF(3). J Mol Biol. 314:83-92. 

Tate, R.F. (1954). Correlation between a discrete and a continuous variable. 
Point-biserial correlation. Ann. Math. Statist, 25:603-7. 

Tegge, A.N., Wang, Z., Eickholt, J., and Cheng, J. (2009) NNcon: improved 
protein contact map prediction using 2D-recursive neural networks. 
Nucleic Acids Res. 37:W515-8. 

UniProt Consortium. (2010) The Universal Protein Resource (UniProt) in 2010. 
Nucleic Acids Res. 38:D142-8. 



 156 

Walker, J.E., Saraste, M., Runswick, M.J., and Gay, N.J. (1982) Distantly related 
sequences in the alpha- and beta-subunits of ATP synthase, myosin, 
kinases and other ATP-requiring enzymes and a common nucleotide 
binding fold. EMBO J. 1:945-951. 

Wang, G., and Dunbrack, R.L.Jr. (2003) PISCES: a protein sequence culling 
server. Bioinformatics, 19:1589–91. 

Wang, K., and Samudrala, R. (2006) Incorporating background frequency 
improves entropy-based residue conservation measures. BMC 
Bioinformatics, 7, 385. 

Weisel, M., Proschak, E., and Schneider, G. (2007) PocketPicker: analysis of 
ligand binding-sites with shape descriptors. Chem Cent J. 1, 7. 

Whittard, J.D., Sakurai, T., Cassella, M.R., Gazdoiu, M., and Felsenfeld, D.P. 
(2006) MAP kinase pathway-dependent phosphorylation of the L1-CAM 
ankyrin binding site regulates neuronal growth. Mol Biol Cell. 17:2696-
706. 

Wikimedia, Foundation. (2006) Wikipedia: The Free Encyclopedia. 
http://en.wikipedia.org/.  

Wilcoxon, F. (1945) Individual comparisons by ranking methods. Biometrics 
Bulletin, 1:80–83. 

Wishart, D.S., Knox, C., Guo, A.C., Cheng, D., Shrivastava, S., et al. (2008) 
DrugBank: a knowledgebase for drugs, drug actions and drug targets. 
Nucleic Acids Res. 36:D901-6. 

Word, J.M., Lovell, S.C., Richardson, J.S., and Richardson, D.C. (1999) 
Asparagine and glutamine: using hydrogen atom contacts in the choice of 
side-chain amide orientation. J Mol Biol. 285:1735–47. 

Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., et al. (2007) Top 10 
algorithms in data mining. Knowledge and Information Systems. 14:1-37. 

Zhang, J., Adrián, F.J., Jahnke, W., Cowan-Jacob, S.W., Li, A.G., et al. (2010) 
Targeting Bcr-Abl by combining allosteric with ATP-binding-site 
inhibitors. Nature, 463:501-6. 

Zhang, T., Zhang, H., Chen, K., Shen, S., Ruan, J., et al. (2008) Accurate 
Sequence-based Prediction of Catalytic Residues. Bioinformatics, 
24:2329-2338. 

Zhang, Y., and Skolnick, J. (2005) TM-align: a protein structure alignment 
algorithm based on the TM-score. Nucleic Acids Res. 33:2302-9. 

Zhu, H., Sommer, I., Lengauer, T., and Domingues, F.S. (2008) Alignment of 
Non-Covalent Interactions at Protein-Protein Interfaces. PLoS ONE, 
3:e1926. 

http://en.wikipedia.org/


 157 

Zoltowski, B.D., Schwerdtfeger, C., Widom, J., Loros, J.J., Bilwes, A.M., et al. 
(2007) Conformational switching in the fungal light sensor Vivid. Science, 
316:1054–7. 



 158 

APPENDIX A 

Appendix A presents the list of protein chains used to design and evaluate the 
NsiteMatch predictor in Section 7.4. Each entry contains 5 characters, where the 
first 4 characters indicate the PDB id of the protein and the last letter indicates the 
chain id. 

List of chains interact with ADP. 

1A9XA 1HI5A 1O0HA 1UKYA 2AKOA 2FV7A 2NCDA 2V1XA 3B6VA 3FE2A 

1AO0A 1HQYE 1O51A 1UM8A 2AWNA 2G2IA 2NO0A 2V2ZA 3BF1A 3FH0A 

1AONA 1HTWA 1O6BA 1V1AA 2AXNA 2G5IB 2NR8A 2VASA 3BFNA 3FI8A 

1B62A 1HUXA 1O92B 1VA6A 2B9FA 2GK6A 2NUNA 2VEDA 3BK7A 3FMPB 

1B6SA 1HW8B 1OH9A 1VHLA 2BEJA 2GKSA 2O0JA 2VF7A 3BRBA 3FWRA 

1BS1A 1I58B 1OL5A 1VTKA 2BFRA 2GL6A 2O1VA 2VOSA 3BXZA 3FWYA 

1CNFA 1IAHA 1OSNA 1W44A 2BTDA 2GR0A 2OJWA 2W41A 3C4NA 3G15A 

1CQIB 1II6A 1OXUA 1W5SA 2BUFB 2GRJA 2OLCA 2W4KA 3C4ZA 3G2FA 

1CZAN 1IN4A 1P72A 1W78A 2BVCA 2GRYA 2OLJA 2W58A 3C7NA 3GLFB 

1DJNA 1IONA 1PFKA 1W7IA 2C2AA 2GXAC 2ONMA 2W5AA 3C7NB 3GR4A 

1E19A 1IOVA 1PKGA 1WBPA 2C31A 2H1FA 2OTGA 2W6ED 3C9UA 3GVIA 

1E3MA 1IQPA 1Q3SA 1WNLA 2C9OA 2HENA 2OWMA 2W8RA 3CR3A 3H4SA 

1E4EA 1J1CA 1Q8YA 1X3MA 2CDNA 2HGSA 2OXCA 2WQNA 3CWQA 3HB9A 

1E79B 1J7LA 1R0YA 1X6VB 2CDUA 2HMFA 2P05A 2WW4A 3D36A 3HY6A 

1E8HA 1JBPE 1R7RA 1XJKA 2CGJA 2HMVA 2PL3A 2X6TA 3D54A 3HYOA 

1E9FA 1JEDA 1RFUA 1XMVA 2CH6A 2HV7B 2PO0A 2YWVA 3D5WA 3HZ6A 

1EA6A 1JJ7A 1RK2A 1XRJA 2CN5A 2HYDA 2PYWA 2YX6B 3D8BA 3I0OA 

1EHIA 1K3CA 1RZUA 1XTJA 2CNQA 2I5BA 2Q14A 2Z4RA 3DC4A 3I61A 

1EQMA 1KSFX 1S4EA 1XW4X 2CVXA 2I8CA 2Q2RA 2ZAOA 3DINA 3I73A 

1F48A 1L0OA 1SVLA 1XX6A 2D0OA 2IF8A 2QB5A 2ZBDA 3DKPA 3ICEA 

1FNNA 1L8QA 1SXJE 1Y63A 2D2FA 2IO8A 2QBYB 2ZDGA 3DLSA 3ICSB 

1FP6A 1LTQA 1T3TA 1Y8OA 2DCNA 2IOPA 2QENA 2ZGVA 3DSRA 3IG8A 

1FWKA 1LVGA 1T5CA 1YP4A 2DHRA 2IUUA 2QQ0B 2ZJ5A 3DZVA 3IN1A 

1G6HA 1M15A 1T6XA 1Z2NX 2DPYB 2IW3A 2QR1G 2ZPAA 3ECCA 3K5IA 

1G6OA 1MWMA 1TF2A 1Z59A 2DR3A 2IYQA 2QSYA 2ZS8A 3EGIA 3KALA 

1G8XA 1N06A 1TY8A 1Z6TA 2DWCA 2J0WA 2QV7A 2ZTSA 3EHHA 3KB1A 

1G99A 1NKSF 1TZDA 1ZARA 2E2PA 2J9DB 2R6FA 3A0TA 3EPQA 3KJGA 

1GC5A 1NKTA 1U0JA 1ZS6A 2ECKA 2JA3A 2R7NA 3A1DA 3EQGA 3KO3D 

1GKIA 1NQTA 1U2VA 1ZTHA 2EWVA 2JCBA 2REPA 3A37A 3EX7C 3KQLA 



 159 

1GKZA 1NVAA 1U2VB 1ZXNA 2F1JA 2JFGA 2RIOA 3A4MA 3EZ2A 3KX2B 

1GLBG 1NY3A 1U3FA 2A2CA 2FNAA 2JGVB 2SHKB 3A7JA 3F61A 3L8KA 

1GSAA 1NY5A 1UC9A 2AD5A 2FSNA 2JLSA 2V1UA 3B5ZA 3FD6A 3LV8A 

1GZFC          

List of chains interact with ATP. 

1A0IA 1G3IA 1M83A 1SU2A 1YFRA 2FAQA 2NVUB 2YWWA 3CRCA 3H1QA 

1A49A 1G5TA 1MB9A 1SVMA 1YIDB 2FGHA 2NYJA 2Z02A 3D2EA 3H39A 

1A82A 1GN8A 1MIWA 1TF7A 1YP3A 2FGJA 2O0HA 2Z08A 3DKCA 3H5NA 

1ATPE 1GOLA 1MJHA 1TILA 1YUNA 2FSGA 2OGXA 2Z1UA 3DNTA 3H8VA 

1AYLA 1H4QB 1MO8A 1TQPA 1Z0SA 2HIXA 2OH5A 2ZANA 3DWLA 3HAVA 

1B0UA 1H8HF 1MV5A 1TWAB 1Z7EA 2HMUA 2P09A 2ZDQA 3E1YA 3HGMA 

1B76A 1HI1A 1N5IA 1TYQB 1ZFNA 2HS0A 2PBZA 2ZHZA 3E7EA 3HMNA 

1B8AA 1HP1A 1NGEA 1U5RA 1ZP9A 2I4OA 2Q0DA 2ZSFA 3EA0A 3HRCA 

1BCPE 1II0A 1NSFA 1UA2A 1ZYDA 2IA6A 2Q7GA 2ZT7A 3EFSA 3I7VA 

1BCPF 1J09A 1NYRA 1UF9C 2A5YB 2IAJA 2QB8A 3A8TA 3EHGA 3IBQA 

1CSNA 1J1ZA 1O93A 1V1BA 2AQXA 2IDXA 2QK4A 3B2QA 3ETHA 3IE7A 

1D9ZA 1J7KA 1OBDA 1VJCA 2ARUA 2IJMA 2QKMB 3BG5A 3F5MA 3IKHA 

1DY3A 1JI0A 1OJLE 1WKLB 2B6FA 2ILYA 2QRDG 3BJUA 3FDXA 3IN5A 

1E2QA 1JJVA 1OL6A 1X01A 2BEKA 2IVPA 2QUIA 3BLQA 3FKQA 3INNA 

1E4GT 1JKNA 1PHKA 1XDNA 2C01X 2IXEA 2R7LA 3BU5A 3FPBA 3IQ0A 

1E8XA 1KJ8A 1PJ4A 1XDPA 2CBZA 2IYWA 2R9VA 3C16A 3FVQA 3K5HA 

1EE1A 1KMNA 1PK8A 1XEXA 2CG9A 2J3MA 2RD5C 3C16B 3G59A 3KMWA 

1ESQA 1KO5A 1Q12A 1XMIA 2CJAA 2J9LA 2V92E 3C4WA 3G6VA 3LGXA 

1F2UA 1KP2A 1Q97A 1XNGA 2DDOA 2JJXA 2VHQA 3C5EA 3GBUA 3LKIB 

1F2UB 1KP8A 1QHGA 1XSCA 2E5YA 2JK8A 2VT3A 3C9RA 3GNIB 3LSSA 

1F9AA 1KVKA 1QHXA 1Y56A 2E89A 2KMXA 2W00A 3CISA 3GQNA 3R1RA 

1FMWA 1L2TA 1R8BA 1Y8PA 2EWWA 2NPIA 2W02A 3CQDA 3H0RE 4AT1B 

1G21E 1LHRA 1S9IA 1Y8QB 2F02A 2NT8A 2W5GA    

List of chains interact with AMP. 

12ASA 1GPMA 1NH8A 1TUUB 1ZBUA 2F3DA 2OUNA 2W4YA 3DDJA 3GC0A 

1AMUA 1H3DA 1NKSC 1U9ZA 2A7XA 2FJBA 2PZAA 2WEFA 3DHVA 3GLVB 

1ANKA 1HTOA 1O94C 1UA4A 2AK3A 2G1UA 2QGAB 2YRXA 3DLZA 3H7EA 

1CJAA 1HTTA 1OBDA 1UKZA 2ARTA 2GM3A 2QJTB 2YVOA 3DQXA 3HF7A 

1CT9A 1J20A 1OBTA 1UUYA 2BWJC 2GMKA 2QRCG 2ZE5A 3DRWA 3HW5A 

1DELB 1JWBB 1OREA 1UXNA 2C38A 2GSUA 2QRKA 2ZR2A 3ERRA 3I0QA 
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1DGSA 1K9YA 1P8LA 1V26A 2C38B 2HBLA 2R7MA 3A7AA 3FEGA 3IB8A 

1DMAB 1KHTB 1QB8A 1V8SA 2C5SA 2HCRA 2RIFA 3B6JB 3FHJA 3IUYA 

1DS5A 1KPFA 1RAOA 1VD1A 2CFMA 2I4IA 2V8QE 3BERA 3FHMA 3JWPA 

1ECJA 1KTGA 1RY2A 1XQSC 2D1QA 2IVTA 2VARA 3BLWA 3FIUA 3KD6A 

1EFVB 1LTKA 1S68A 1Y1PA 2DCLA 2J91A 2VFKA 3C0HA 3FNAA 3LFRA 

1FA9A 1MC1A 1T6YA 1YXUA 2DSDA 2J9DE 2VIIA 3C85C 3FWZA 3LHHA 

1G51B 1MD9A 1TB5A 1Z6SA 2EQAA 2JB7A 2VSOA 3CJ7A 3G1ZA 3LOQA 

1GPH1 1MF0A 1TBWA 1Z84A 2F17A 2JGDA 2VZEA 3CW9A 3G89B 3LW7B 

 


