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Abstract

Financial systemic crisis could be broadly understood as the deterioration

of the banking sector which results in damage to the real economy. From

elementary accounting, a firm’s financial position can be characterized by the

value of its asset holdings versus the amount it borrow from others. If assets are

not worth sufficiently more than the firm owes, it will be in distress, and will

not be able to operate its business efficiently. In the case of a bank, this means

the difference between the dollar amount it lends and the amount it receives

from depositors is not sufficiently high or even worse, is negative. If either case

happens to the aggregate banking sector, a systemic crisis will ensue, and there

will be significant costs incurred by society. This M.Sc. thesis will concentrate

on an existing economic model which incorporates the risk of systemic crisis,

as defined above, at a future time. In the context of this model, a tax as

a function of the banks’ dollar value of investments, raised debt, and equity

funding at present time will incentivize them to choose these quantities in the

interest of social welfare. The thesis will provide mathematical explanations

for this effect. Moreover, MATLAB codes are included to calculate the tax

amounts charged to each bank when they behave in a socially optimal manner.
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Chapter 1

Introduction

In the simplest form, a bank’s role in the economy is to distribute money from

agents who possess funds to those who need to borrow. Banks can carry out

this action efficiently because of their expertise in assessing the credibility of

borrowers. When a bank lends money to a borrower, it is making an investment

for which a return is expected. For example, when it offers a mortgage, the

terms of the contract requires the home buyer to pay interest in addition to

the borrowed amount. Funding for the bank to make these investments comes

from its depositors or debtholders (i.e. those with money in the economy) and

its equityholders (i.e. those who own shares of the bank). A stylized balance

sheet for a bank at a fixed point in time is given in Figure 1.1. Basic accounting

principles state that the equation Assets = Liabilities + Equity must hold at

all times, and a firm is in financial distress when its equity is not above an

acceptable threshold, or even more, if it is negative. The first situation means

the firm is undercapitalized and the latter defines its bankruptcy, when

asset holdings are worth less than liabilities, and the firm is unable to repay

all its debt.
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Figure 1.1: Stylized Bank Balance Sheet at a Fixed Point in Time

When a bank cannot perform the function of channeling funds, borrowers

will have less opportunities of raising money to finance their productive activ-

ities. In view of the balance sheet, this will occur when a bank is bankrupt.

Even if it is solvent (not bankrupt), if equity is sufficiently low, the bank will

have reduced efficiency in performing this function, because its debtholders

will lose confidence in making deposits in the future (or even start withdraw-

ing). If undercapitalization happens to numerous banks, or to a few large

banks which provide most of the lending in the economy, it will become costly,

if not impossible, for agents to borrow from the banking sector. Thus, a finan-

cial crisis will materialize and as a result, productivity in the economy will be

hampered.

To prevent the financial sector from collapsing, governments have histori-

cally bailed out failing banks that are major players in the industry. However,

this hurts society’s well-being, as spending for other areas in need is reduced

(Honohan and Klingebiel (2000)). In the recent financial crisis of 2007-2009,

the gross world product, which measures economic productivity of the world

as a whole, contracted for the first time in decades (by 0.8%) and interna-

tional trade reduced dramatically by 12% (Acharya, Pedersen, Philippon, and

Richardson (2013)). Hoggarth, Reis, and Saporta (2002) have shown that a

country’s gross domestic product (GDP) drops by about 15% to 20% during
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crises. Moreover, Honohan and Klingebiel (2000) documented that national

governments spend an average of 12.8% of GDP to support the financial sector

in the event of a crisis.

The significant costs to social welfare suggest the necessity of effective

financial regulation. This should be aimed at providing banks with incentives

to make decisions (i.e. choices for types and quantities of assets, liabilities,

and equity) while considering the potential consequence of contributing to a

loss in financial intermediation in the banking sector at a future time.

1.1 Tools for Financial Regulation

This section will explore methods that governments may use to regulate sys-

temic risk in the financial sector. Namely, the descriptions for capital require-

ment, contingent capital, and systemic taxation will be provided.

1.1.1 Capital Requirement

Traditionally, bank regulations have focused on the use of capital requirements,

which are rules that set the minimum value of equity a bank must hold. The

rationale for such an approach is intuitive. For any fixed amount of assets, the

more reliant a bank is on debt funding (i.e. the less equity funding it uses),

the higher its risk of default (unable to pay back debtholders in full). This is

because assets will need to decrease by a smaller percentage in order for the

bank to have insufficient funds to fully pay back its debt. To see this reasoning,

consider an analogy of an individual who has no money on hand and borrows

the full purchase price (say $100) from another person to buy a stock. Assume

that the lender does not charge interest, but wants the loan repaid after one

3



month. If at that time, the stock is worth $90, the borrower will only be able to

sell it for this value and repay the lender in this amount. Of course, the lender

will not be happy. This extreme case would be reflective of a bank which uses

100% debt and 0% equity funding. As long as the stock (asset) price is lower

than $100 (its original value) in one month, the borrower will not be able to

fully repay the loan. Now, suppose the stock buyer originally had $20 on hand

and borrowed $80 to buy the $100 stock (80% debt, 20% equity), and assume

again the stock’s price is $90 in one month’s time. In this case, the stock will

be sold for $90, and the lender will be repaid in full ($80). Thus, requiring the

dollar amount of equity (like the stock buyer’s own money at the beginning)

to be at least a percentage of the value of assets reduce the possibility of the

bank’s default in the future (like the stock buyer’s inability to fully repay the

loan), and to an extent, this is an assurance that its debtholders will be repaid

(Tarullo (2008)).

Another reason for imposing capital requirements involve the relation-

ship between deposit insurance and the risk of a bank’s assets (Acharya and

Richardson (2009)). In simple terms, deposit insurance is a guarantee that the

government provide a bank’s depositors up to a certain amount. For example,

a person depositing up to CAD 100,000 into a bank in Canada can withdraw all

of his/her money on demand (Canada Deposit Insurance Corporation (2014)).

If the bank is in distress and cannot fulfill this request, the Canada Deposit

Insurance Corporation (a crown corporation) will provide the money to the

depositor. The intent of deposit insurance is to provide individuals the con-

fidence to place funds into the country’s banking sector, which is a necessary

ingredient for financial intermediation. As explained by Acharya and Richard-

son (2009), the side effect, though, is that depositors will have less incentives
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to monitor risks taken by the bank’s managers. For example, knowing that

they can get some of their money back from the government if the bank shuts

down, depositors will exercise less discipline (e.g. demand higher interest in

savings accounts, or threaten a bank run) on management, even if very risky

assets (e.g. mortgages earning high returns, but with high chances of default)

are held on the balance sheet. To address this shortcoming, the riskier a bank’s

assets are, the more equity capital government rules would require it to hold.

The reasoning comes from a concept in corporate finance (Berk, DeMarzo, and

Stangeland (2012)): raising equity (issuing shares) is costly for a firm because

it signals to the market that the company’s performance will decline. Berk,

DeMarzo, and Stangeland (2012) explains that this is because the market as-

sumes that managers of the firm have inside knowledge, and if shares are being

issued, they must believe firm value will decline in the future, and it is better

to issue the stock for a higher value now. Due to this belief, the market will

suppress the price of stock after an issuance. Hence, requiring more equity for

holding assets bearing higher risk will incentivize banks to reduce excessive

risk taking when making investments.

The Basel Committee on Banking Supervision at the Bank for International

Settlements sets the guidelines for capital requirements, which are generally

followed by jurisdictions around the world. For example, the general rule from

the accords known as Basel I and II states that a bank’s capital adequacy ratio

(equity value divided by risk-weighted assets (RWA)) should be at least 8%

(Acharya, Kulkarni, and Richardson (2011)). RWA is calculated by multiply-

ing each asset’s value by a weight according to the risk category it belongs to

and summing the results together (Basel Committee on Banking Supervision

(1998)). The weight for each category is fixed, but a category of greater risk
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will have a higher weight. For example, suppose the bank’s assets consist of

a $100,000 residential mortgage and a $50,000 AAA-rated (low default risk

relative to the mortgage) government bond. Moreover, assume the risk weight

of the mortgage is 35%, while that for the bond is 20%. Then, the bank’s

RWA is ($100,000)(0.35) + ($50,000)(0.20) = $45,000.

It has been argued (Acharya and Richardson (2009), Acharya, Schnabl,

and Suarez (2011), Slovik (2012)) that the structure of Basel I and II was

insufficient to curb systemic risk and even more, encouraged banks to behave

in a way that led to the recent financial crisis. Acharya and Richardson (2009)

explains that banks issued risky sub-prime mortgages to borrowers with high

chances of default and restructured (securitized) these assets into mortgage-

backed securities (MBS), which were then deemed to carry low risk by rating

agencies. The fallacy of rating agencies to properly assess the risk of these

securities have also been blamed for contributing to the crisis (Altman, Öncü,

Richardson, Schmeits, and White (2011)). If the securities were simply sold

to outside investors, the bank would eliminate its exposure to risk from mort-

gages altogether. However, banks retained this risk in their asset holdings

by, for example, buying these securities themselves (Acharya and Richardson

(2009)). Due to the low risk rating attached to MBS, the corresponding risk

weight for calculation of RWA was also low, so the bank’s capital adequacy

ratio will not decrease much, indicating that it is still well-capitalized and no

additional equity needs to be raised. Thus, banks were engaged in regulatory

arbitrage, meaning they were making profits by taking high risks, but escaped

the capital requirements for doing so. When the housing market crashed, the

original mortgages dropped in value (borrowers defaulted) and the MBS be-

came worthless. This amounted to huge losses on the asset side of the balance
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sheet for many banks, and the financial crisis surfaced (Acharya and Richard-

son (2009)).

In addition to this shortcoming, Basel I and II capital requirements were

focused on regulating individual banks, without consideration of the systemic

risk posed by them (Acharya, Kulkarni, and Richardson (2011), Schwerter

(2011)). For example, in calculating risk-weighted assets, one does not con-

sider the systemic impact of the bank when assets are simply assigned to

categories with different risk weights based on the possibility that they will

become worthless. Hence, banks are not provided with incentives to operate

with the well-being of the financial system in mind.

In response to these issues during the recent crisis, the Basel Committee

devised the Basel III accord. One recommendation was that a bank’s leverage

ratio, which roughly equals equity divided by total assets, should be at least

3% (Basel Committee on Banking Supervision (2014)). With the denominator

being total assets, the intention is that the minimum leverage ratio require-

ment would reduce opportunities for banks to manipulate assets to receive

lower risk weights and not hold adequate capital against the exposure (like in

securitization).

The Committee also recommends to impose additional capital require-

ments for systemically important banks (Basel Committee on Banking Su-

pervision (2011c)), which will be described as follows. First, a sample of

important banks in the global financial system is considered. Then, each bank

should be assigned scores under the categories of size, interconnectedness,

cross-jurisdictional activity, substitutability, and complexity, reflecting its rel-

ative significance in each of these factors. In particular, a bank’s score for an

attribute is calculated as its position in that area with respect to the sample
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total, in percentage terms. For example, suppose a bank’s assets are worth $50,

while those for the sample (sum of assets over all the banks) are worth $200.

Then, the bank’s score for size is 50/200 = 0.25. A bank’s final score is calcu-

lated as the average over its categorical scores, and would fall into a particular

range (bucket) of values which then determines its additional capital require-

ment. Four buckets (threshold0 < threshold1 < threshold2 < threshold3 <

threshold4) with equal lengths (i.e. threshold1 − threshold0 = threshold2−

threshold1, etc.) are used, and a bank is deemed systemic if its final score ex-

ceeds threshold0. The higher the final score is, the higher the range it belongs

to, and the higher is the additional capital requirement. Within each bucket,

the additional requirement represented as a percentage of risk-weighted assets

is a constant value. For example, if it is 2.5%, the bank would need to have

a capital adequacy ratio (equity/RWA) of at least 8% + 2.5% = 10.5%, where

the 8% is the standard from Basel I and II. The goal is that a requirement to

hold more equity (which again, is costly for a bank) will disincentivize a bank

to possess systemic characteristics.

The following explanations were given by the Basel Committee for selecting

the five categories to evaluate a bank’s systemic importance.

• The larger the size of a bank (i.e. the more assets it holds, or in simple

terms, the more it lends), the greater is its contribution to the banking

sector’s loss of financial intermediation, if it were to encounter distress.

• The more a bank is involved with interbank borrowing (lending), the

more damage it will cause to assets of other banks (the more its assets

will decline in value) if it were not able to pay them back (if other

banks were not able to pay back their loans). In other words, the more
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interconnected a bank is in the financial system, the more potential it

has to threaten the sector’s function of financial intermediation.

• The recent financial crisis caused disturbances to economies worldwide.

Therefore, the more cross-border activities a bank is engaged in, the

more opportunities it has to negatively impact international markets.

The mechanisms (borrowing and lending) to explain this attribute is

similar to those for interconnectedness.

• If a bank is specialized in providing a particular service, with few or no

competitors, then in the event that it cannot operate, it will be costly or

impossible for its customers to find another bank (substitute) to meet

their needs.

• As explained before, the creation of mortgage-backed securities has been

argued as a cause of the recent crisis. Assets like these add to the com-

plexity of a bank’s operations, and hence have the potential to create

sector-wide damage.

The Financial Services Authority (2009) mentioned that using a cutoff

score to define a bank as systemic, and assigning it a fixed percentage of

additional capital requirement with respect to assets if it is so will induce the

bank to carry out regulatory arbitrage. For example, the bank may find that

the constant additional requirement is not too costly, but having itself labeled

as systemic may incline the desire for the government to bail it out when it is

distressed. To reduce this distortion of incentives, the Authority recommends

to determine requirement percentage as a continuous and increasing function

of a bank’s contribution to systemic risk. Even though Basel III does tie higher
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additional requirement percentages to scores in higher buckets, the relationship

between the two is not continuous (i.e. buckets are separated by thresholds,

and within each bucket, the additional requirement is a constant percentage).

Moreover, calculating a bank’s final score as an arithmetic average over the

categorical scores implies that each of the five systemic factors are weighted

the same, and thus are equally important. However, the Basel Committee

does not provide reasons for doing so (Sullivan and Cromwell LLP (2011)).

Other methods to set capital requirements in relation to systemic risk have

been proposed. For example, Webber and Willison (2011) considers a net-

work of banks that are capable of lending and borrowing with each other as

well as with non-bank entities. They assume that banks choose their liability

amounts which are fixed over time. Their value of initial asset holdings will

be determined once equity capital requirements are known (due to Assets =

Liabilities + Equity). Then, any (random) change in a bank’s value of assets

as time progress will only be met with a change in equity. Since holding equity

is costly for the firm (explained earlier), higher capital requirements (imposed

at present time) translate into more expensive loans for those who need to

borrow from banks. In other words, having more capital in the aggregate fi-

nancial system reduces the chance of a crisis, but could lead to inefficient credit

markets. Knowing the fixed value of each bank’s liabilities, the regulator’s ob-

jective is to choose the levels of equity capital for each of them now such that

the total (summed over all banks) is minimized, while the probability of a

crisis at a future time is equal to an acceptable target. Crisis is defined as the

event that the sum of liabilities over all banks is greater than the sum of asset

values, at the future time. The levels of capital which solves the regulator’s

problem are then imposed on individual banks. Although the regulator’s in-
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centives are modeled, those of individual banks are not. In other words, in the

presence of such a regulation scheme, it is not clear how banks will respond

when choosing the fixed liability amounts that consequently determines their

required equity capital. Moreover, the costs of government support and those

to the real economy in the event of a crisis are not modeled.

Gauthier, Lehar, and Souissi (2012) also model the financial system as a

network of banks which are allowed to borrow and lend with each other as well

as with non-bank agents. It is assumed that banks have chosen their initial

asset holdings, but at a future time, asset values will be random. Moreover,

the aggregate level of initial equity capital (summed over all banks) is a given

constant and the regulator needs to choose an allocation among banks to reflect

each of their contribution to systemic risk. Again, due to the equation Assets

= Liabilities + Equity, once this solution is found, banks will then know their

corresponding values for liabilites as well. Finding this allocation is described

as solving a fixed point problem in the following sense. Suppose the levels

of initial equity capital for n banks are given as a vector C = (C1, ..., Cn).

Base on C, one obtains the joint distribution of the n banks’ future losses

(in simple terms, loss is the value liabilities - assets), which is then used to

determine the contribution of each bank to systemic risk. For example, if li

is the future random loss for bank i, lp =
∑n

i=1 li is the loss of the banking

system, and βi := cov(li,lp)

σ2(lp)
, then the amount of initial equity capital that

bank i should hold, in reflection of its contribution to the system’s losses, is

Cβ
i = βi

∑n
i=1Ci. Note that

∑n
i=1 βi = 1, so it is a matter of reallocating the

fixed total amount of initial capital in the system,
∑n

i=1Ci = γ. The regulator

needs to find C∗ = (C∗1 , ..., C
∗
n) such that

∑n
i=1C

∗
i = γ and C∗i = β∗i

∑n
i=1C

∗
i ,

where β∗ = (β∗1 , ..., β
∗
n) is determined based on the joint loss distribution with
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C∗ as the initial equity capital allocation among the n banks. In this model, the

incentives for both regulator and banks are not clearly defined. In particular,

it is difficult to see whether imposing capital requirements as such will be

optimal for society. Again, the costs of government support and those to the

real economy are not considered.

1.1.2 Contingent Capital

Another tool that regulators may use to control a bank’s level of capitalization

is the requirement for it to hold contingent capital. Contingent capital is a debt

(liability) for the bank which converts to equity (shares) when some trigger has

been hit. The trigger is usually designed to define situations when a bank or

banking system experience low levels of equity, so that the contingent capital’s

conversion will re-capitalize (i.e. reduce liabilities and increase equity) the

bank, avoiding, or reducing the severity of its bankruptcy and associated costs

to society.

For example, Flannery (2009) considers a bank to have hit the trigger when

its market value of equity divided by book value of total assets is below a pre-

specified value, emphasizing the importance of using market value of equity,

as book value is more prone to the managers’ manipulation in times of distress

when they try to make a good appearance of the firm.

The Squam Lake Working Group (2009) propose to use a double trigger.

First, the regulator have to declare that there is a financial crisis, and second,

the bank itself would have to be in distress (e.g. its capital adequacy ratio

= equity/risk-weighted assets is below a given value). The Group argues

that the first trigger is required because conversion will reduce a bank’s debt,
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but debtholders have the important role of providing discipline for the firm’s

managers in case they take excessive risks, while equityholders are not able

to do so. Investing in risky assets may bring equityholders high dividends,

and the worst case scenario is that the bank defaults, but the shares they

hold will just drop to a value of zero, rather than become negative. That is,

equityholders have unlimited gains but limited losses. On the other hand, even

in the presence of deposit insurance, debtholders will still be more cautious

than equityholders because the most they will receive is the bank’s repayment,

while the worst case is that they will have no repayment at all. In other words,

debtholders have limited gains, so they may ask for higher returns or withdraw

their funds if they view the bank’s assets as too risky. Therefore, conversion

of contingent capital should occur only if there is an absolute need to do so

for the stability of the financial system. The requirement of the second trigger

would avoid cases of conversion occurring to well-capitalized banks during a

crisis.

McDonald (2013) calls for the use of a dual trigger as well, but with com-

plete reliance on market, rather than accounting (book) quantities. In par-

ticular, conversion takes place when an index for financial institutions (like a

stock index) and the stock price for the bank in question declines below cer-

tain values. The reasoning for the dual trigger is similar to that for the case

provided by Squam Lake Working Group. However, the use of solely market-

value triggers have the benefit that the decision to convert only depends on the

market’s view of the firm’s financial position, rather than on the interference

of the regulator.

Holding contingent capital only fix the problem of undercapitalization when

its likelihood of occurring increases, as intended by the use of triggers. In
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other words, it is an ex-post solution, which does little to control banks to

be risky (individually or to the system) in the first place (Acharya, Kulkarni,

and Richardson (2011)). As explained by Acharya, Kulkarni, and Richardson

(2011), banks will continue to invest in risky assets which are capable of gener-

ating both high returns (boom) and huge losses (bust). In the case of a boom,

contingent capital will remain as a liability. If a bust occurs, its conversion to

equity may still be insufficient to re-capitalize the firm because it is not likely

that all the bank’s liabilities are contingent capital, so there will be debt which

the bank cannot repay in full.

The Basel Committe on Banking Supervision (2011c) also indicate that

contingent capital could embed a new type of “event risk,” which it describes

as the market’s loss of confidence in the financial sector when a bank hits the

conversion trigger(s), however it is defined. Moreover, the Committee indicate

that trigger mechanisms could negatively distort the incentives of a bank’s

shareholders and managers, because the conversion of contingent capital to

equity effectively increase the number of shares outstanding, which reduces

the bank’s stock price. As such, when it is imminent that conversion will take

place, shareholders/managers of a bank may want to reduce asset holdings

(lending) to improve its capital adequacy ratio and avoid the conversion. The

result is that less money is available for borrowers in the economy.

1.1.3 Systemic Taxation

Another method for regulating systemic risk is to use taxation. As mentioned

before, when banks make investment and funding decisions, they have the

potential to disturb the sector’s financial intermediation ability in the future,
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which consequently impose costs on the real economy because funds avail-

able for borrowers will be reduced and government spending may have to be

directed to compensate a failing bank’s debtholders. The rationale for taxa-

tion, then, is that if the bank has to pay for taking risks which increase this

potential, it will be disincentivized to do so excessively. Similar in spirit to

Basel III’s additional capital requirement, Doluca, Klüh, Wagner, and Weder

di Mauro (2010) propose to use a scoring method based on a bank’s balance

sheet and market figures to determine its level of systemic importance. In par-

ticular, a bank is deemed systemically important if its score exceeds a given

cutoff value. The tax rate is then a continuous and increasing function with

respect to score values above the cutoff, and is zero for values below it. A

bank’s liabilities will be taxed based on the rate corresponding to its score.

The idea is that for a fixed value of assets, the more liabilities it hold, the

less equity capital the bank has, and the closer it is to bankruptcy. Therefore,

liabilities is used as the base for taxation. Moreover, for a fixed amount of

liabilities, the higher the bank’s score is, the higher will be its tax rate, and

this mechanism has the intention to reduce the bank’s desire of increasing its

systemic importance. The paper of Doluca et al. (2010) however, does not

explicitly describe the incentives of the government and the banks. Hence, it

does not explain whether social welfare will be optimal in the presence of such

a tax scheme.

Another reason for use of taxation is that unless banks pay for the costs

they impose on the economy, they will operate in a way which is not optimal

for society’s well-being (Acharya, Pedersen, Philippon, and Richardson (2011),

Kocherlakota (2010), Schwerter (2011)). As Kocherlakota (2010) explains, one

can consider an analogy of a production factory that causes pollution to the
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environment. If it does not have to pay for the pollution, it will operate

solely on the basis of its own revenues and expenses. The result is that the

production and pollution levels generated will not be socially optimal, as all

costs associated with pollution are borne by society. Kocherlakota (2010)

continues to argue that if the factory knows it will be charged exactly the cost

of its pollution externality, then it will produce and pollute at levels which

are best for social welfare. Even though systemic taxation in this sense does

reduce the potential occurrence of a crisis due to the increased costs for banks

relating to their risk-inducing behaviour, it does not necessarily eliminate this

possibility altogether. Rather, taxes provide banks with incentives to operate

in a socially optimal manner (Schwerter (2011)).

An economic model by Acharya, Pedersen, Philippon, and Richardson

(2010) explicitly define the objectives of the government and banks in util-

ity terms and argue that a tax designed in this line of reasoning will induce

banks to make decisions which are optimal for the general economy. In par-

ticular, the model considers one time period (times t = 0, 1), one government,

and N ∈ N banks. At time t = 0, a bank will make its investment and funding

decisions. That is, it decides on the quantity of money and to whom it will

lend to, but also on the dollars of funding it will obtain from debtholders and

equityholders respectively. At time t = 1, it is obliged to pay debtholders a

fixed quantity of money, but the amount of dollars it will receive from bor-

rowers as they repay their loans is random (e.g. loan default may occur if

economic conditions are bad). On the basis of these two amounts relative to

each other, the market will judge on the bank’s level of financial soundness,

and provide its valuation of the bank’s assets at that time (i.e. repayments

from bank loan borrowers). In other words, the market value of assets that
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the bank invest in at time t = 0 will be worth a random amount at time t = 1.

The difference between this random amount and the quantity of money that

it needs to give debtholders is the bank’s equity value at time t = 1. Again,

in view of the balance sheet, this value will determine whether the bank is

bankrupt (equity is negative) and/or undercapitalized (equity is low) at that

time. The system’s equity value is the sum of those over all banks and a crisis

is defined as the event that this value is sufficiently low. Banks which are

undercapitalized when the system’s equity is sufficiently low, then, contribute

to the formation of a crisis. The individual bank’s objective is to maximize its

shareholders’ utility, but the government’s goal is to maximize the sum of bank

utilities net of expected costs arising from crisis and those incurred from bank

insolvencies. When each bank knows it will be charged a tax at time t = 0

equal to the expected costs to the government due to its potential bankruptcy

at time t = 1 plus the expected costs that it impose on society in the event of

a systemic crisis (at time t = 1), the banks’ incentives will align with those of

the government.

1.2 Focus of this thesis

The contribution of this M.Sc. thesis is the rigorous mathematical interpreta-

tion of how taxes in the model of Acharya, Pedersen, Philippon, and Richard-

son (2010) will ensure bank and government incentives align. Based on this

formulation, we also develop a MATLAB algorithm to calculate the banks’ tax

bills once they make decisions at time t = 0 which are optimal for society (the

government).
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Chapter 2

Model Description

To account for uncertainty between times t = 0 and t = 1, consider a discrete

and finite probability space Ω = {ω1, ..., ωK} equipped with a probability

measure P . Assume that pk = P [ωk] ∈ (0, 1) for all k ∈ {1, ..., K} and∑K
k=1 pk = 1. The index for each bank is i ∈ {1, ..., N} and that for each asset

which a bank can invest in is j ∈ {1, ..., J}.

2.1 Random Variables

2.1.1 Bank i’s Gross Asset Returns

• rij : Ω→ (0,∞) is the gross return that asset j earns for bank i from time

t = 0 to t = 1. That is, $1 invested at time t = 0 becomes $rij (ω) at time

t = 1 if ω ∈ Ω is realized. We restrict rij > 0 because bank investments

typically have collateral (e.g. real estate property as collateral for a

mortgage).

• ~ri (ω) = (ri1 (ω) , ..., riJ (ω))
T

is the vector of asset returns for bank i, in
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scenario ω ∈ Ω.

2.2 Bank i Decision Variables

2.2.1 Dollar Amounts of Investment

• xij ∈ [0,∞) is the quantity of dollars that bank i invest in asset j at time

t = 0.

• ~xi = (xi1, ..., x
i
J)
T

is the vector with the jth entry equal to xij, j ∈

{1, ..., J}.

• ai =
∑J

j=1 x
i
j is the total dollar amount of investment made by bank i

at time t = 0.

2.2.2 Face Value of Debt fi ∈ [0,∞) in dollars at Time

t = 1

At time t = 0, bank i borrows money from a group of investors called debthold-

ers. Bank i promises to pay this group a total of fi ∈ [0,∞) dollars at time

t = 1. The quantity fi is called the face value of bank i’s debt. As explained in

the upcoming Section 2.3.3, this promise may not always be fulfilled. Hence,

one of the government’s role is to support debtholders in the event that bank

i breaks this promise.
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2.3 Functions

2.3.1 Dollar Cost of Financial Distress Φ

At time t = 1, bank i will realize a gross (book) value of assets of
∑J

j=1 x
i
jr
i
j (ω)

and is liable to pay debtholders the face value of fi, in scenario ω ∈ Ω. Based

on these two quantities, the market will have its perception on the level of

distress for bank i. The market value of bank i’s assets will then be suppressed

from its book value. This is modelled by the cost of financial distress, which

is defined as follows.

Let Φ : R2 → [0,∞) be the dollar cost of financial distress at time t = 1

which applies to all banks. Assume Φ ∈ C2,2, Φ1 < 0, Φ11 > 0, Φ2 > 0, and

Φ22 > 0 where Φl and Φll are the first and second derivatives with respect to

the lth variable.

For bank i, the first variable is gross dollar value of assets:
∑J

j=1 x
i
jr
i
j (ω),

while the second variable is face value of debt fi. Intuitively, this explains

my assumption of Φ1 < 0 and Φ2 > 0 because higher asset value implies

lower distress and higher promised debt payment implies higher distress. The

convexity of Φ is assumed by convention.

The dollar quantity Φ
[∑J

j=1 x
i
jr
i
j (ω) , fi

]
reduce bank i’s time t = 1 assets

to a post-distress (market) value of
∑J

j=1 x
i
jr
i
j (ω)− Φ

[∑J
j=1 x

i
jr
i
j (ω) , fi

]
.
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2.3.2 Bank i’s Dollar Value of Equity wi
1 at Time t = 1

Bank i’s equity in dollars at time t = 1 is a function wi1 : RJ×RJ×R×Ω→ R

defined by

wi1
(
~xi, ~ri (ω) , fi, ω

)
=

J∑
j=1

xijr
i
j (ω)− Φ

[
J∑
j=1

xijr
i
j (ω) , fi

]
− fi. (2.1)

After assets earn the respective returns, financial distress costs and face

value of debt are deducted to arrive at this value of net worth for bank i’s

equityholders at time t = 1. If wi1 < 0, bank i is bankrupt.

2.3.3 Bank i’s Dollar Value of Debt bi Raised at Time

t = 0

To fund its total dollar investment in assets at time t = 0 (ai), bank i may

raise bi dollars of debt, with a promised payment of fi dollars to its holders

at time t = 1. However, depending on the realized ω ∈ Ω, and the resulting

dollar value of equity at time t = 1 (wi1), bank i may not be able to keep its

promise, and the quantity bi will be affected. This is further described below.

At time t = 1, if bank i’s equity is negative (wi1 < 0) , it is considered

bankrupt and will not have sufficient funds to pay its debtholders fi dollars,

because its value of assets net of distress costs,
(∑J

j=1 x
i
jr
i
j (ω)−

Φ
[∑J

j=1 x
i
jr
i
j (ω) , fi

])
= wi1 + fi , will be less than fi. Then, its debtholders

will seize this value of post-distress assets and receive

αi ×
(
fi −

[∑J
j=1 x

i
jr
i
j (ω)− Φ

[∑J
j=1 x

i
jr
i
j (ω) , fi

]])
= −αi × wi1 > 0 dollars

from the government, for some αi ∈ [0, 1]. In other words, (αi × 100) is the
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percentage of bank i’s debt which is covered by the government. The parameter

αi is assumed to be given. For example, it could represent an existing deposit

insurance scheme provided by the government.

On the other hand, if bank i’s equity is non-negative (wi1 ≥ 0) at time

t = 1, its debtholders will receive fi dollars.

The debtholders’ payoff at time t = 1 can then be described by the following

random variable.

Y (ω) =



fi; if wi1 (ω) ≥ 0

αifi

+ (1− αi)
[∑J

j=1 x
i
jr
i
j (ω)− Φ

[∑J
j=1 x

i
jr
i
j (ω) , fi

]]
; if wi1 (ω) < 0

Using the definition of wi1 (Section 2.3.2), an equivalent notation for Y is

Y (ω) = αifi + (1− αi) min

(
fi,

J∑
j=1

xijr
i
j (ω)− Φ

[
J∑
j=1

xijr
i
j (ω) , fi

])
.

As the authors assume, the quantity of dollars (bi) that debtholders provide

to bank i at time t = 0 is equal to their expected payoff at time t = 1.

Therefore,

bi = αifi + (1− αi)E

[
min

(
fi,

J∑
j=1

xijr
i
j − Φ

[
J∑
j=1

xijr
i
j, fi

])]
. (2.2)
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2.3.4 Bank i’s Dollar Value of Equity wi
0 used at Time

t = 0

As an alternative to debt, bank i may also obtain money from its equityholders

to fund the total dollar of investments in assets (ai) at time t = 0.

The dollar value of equity funding to use is

wi0 = ai − bi

=
J∑
j=1

xij − αifi − (1− αi)E

[
min

(
fi,

J∑
j=1

xijr
i
j − Φ

[
J∑
j=1

xijr
i
j, fi

])]
.

(2.3)

2.3.5 Utility Function u at Time t = 1

u : R → R is the utility function at time t = 1 which applies to every bank’s

equityholders. Assume that u ∈ C2, u
′
> 0, and u

′′
< 0, where u

′
and u

′′
are

the first and second derivatives.

In the model of the authors, if bank i realizes a time t = 1 equity of wi1

dollars, the value of utility will be u
(
wi11[wi1>0]

)
.

Suppose that wi1 > 0. As the dollar value of equity increase, bank i’s

equityholders will receive a higher utility (u
′
> 0), but the rate of increase will

decline (u
′′
< 0). That is, equityholders are risk-averse with respect to wi1 > 0.

Whenever wi1 ≤ 0, utility takes the constant value u (0). This is because

if bank i is bankrupt at time t = 1, its equityholders have limited liability.

Therefore, they will have a net worth of zero dollars regardless of how negative
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wi1 becomes.

2.4 Constraints

To guarantee that the time t = 0 dollar values of debt and equity (bi and wi0)

are non-negative, the following constraints are assumed to hold.

2.4.1 Minimum Dollar Invesment in Assets at Time t =

0

∀i ∈ {1, ..., N} :
J∑
j=1

xij ≥ fi (2.4)

The total dollar amount that bank i invest in assets at time t = 0 needs to

be at least the promised payment to debtholders at time t = 1.

If the above constraint holds, the time t = 0 dollar value of equity is

non-negative (wi0 ≥ 0), since

bi = αifi + (1− αi)E

[
min

(
fi,

J∑
j=1

xijr
i
j − Φ

[
J∑
j=1

xijr
i
j, fi

])]

≤ αifi + (1− αi) fi

= fi (2.5)

implies that

wi0 = ai − bi =
∑J

j=1 x
i
j − bi

(2.5)

≥
∑J

j=1 x
i
j − fi

(2.4)

≥ 0.
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2.4.2 Dollar Value of Gross Assets Net of Financial Dis-

tress Cost at Time t = 1

∀i ∈ {1, ..., N} ∀ω ∈ Ω :
J∑
j=1

xijr
i
j (ω)− Φ

[
J∑
j=1

xijr
i
j (ω) , fi

]
≥ 0 (2.6)

In all scenarios, for all banks, the time t = 1 dollar value of gross assets

net of distress cost must be non-negative. This constraint will guarantee that

the dollar value of debt raised at time t = 0 (bi) is non-negative, because

fi ∈ [0,∞) and (2.6) implies that E
[
min

(
fi,
∑J

j=1 x
i
jr
i
j − Φ

[∑J
j=1 x

i
jr
i
j, fi

])]
≥ 0. Then, since 0 ≤ αi ≤ 1 as well, from the expression (2.2), bi ≥ 0.

2.5 Given Parameters

2.5.1 Bank i’s Dollar Value of Endowment wi
0 ∈ (0,∞)

at Time t = 0

At time t = 0, bank i’s equityholders are endowed with wi0 ∈ (0,∞) dollars.

2.5.2 Total Dollars of Tax Revenue τ ∈ (0,∞)

Let τi (described in a later Section 2.8.3) be the dollar value of tax paid by

bank i at time t = 0. Then, τ =
∑N

i=1 τi should hold. That is, τ ∈ (0,∞) is

the total dollar amount of taxes that the government wants to collect at time

t = 0.
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2.5.3 Rate of Utility c ∈ (0,∞) for Consumption at Time

t = 0

For each dollar that bank i equityholders consume at time t = 0, they will

experience a utility of c ∈ (0,∞). The parameter c applies to every bank

i ∈ {1, ..., N}.

In the model of the authors, bank i equityholders’ value of utility at time

t = 0 is c× (wi0 − wi0 − τi).

If wi0 − wi0 − τi > 0, bank i’s endowment at time t = 0 is sufficient to

fund its desired dollar value of equity (wi0) and tax bill (τi). The remainder

positive dollar amount wi0 − wi0 − τi is consumed immediately (e.g. paid as

dividends to its shareholders) at time t = 0, with a corresponding utility of

c× (wi0 − wi0 − τi) > 0.

On the other hand, if wi0−wi0−τi < 0, the bank’s endowment is not enough

to fund its desired equity amount and tax bill. Therefore it will need to raise an

additional − (wi0 − wi0 − τi) > 0 dollars by issuing shares. From the perspec-

tive of bank i’s equityholders, this is a cash outflow (negative consumption)

at time t = 0, with a corresponding utility of c× (wi0 − wi0 − τi) < 0.

2.5.4 Undercapitalization Threshold z ∈ (0, 1]

Bank i is deemed undercapitalized at time t = 1 if wi1 < zai, when its dollar

value of equity at time t = 1 is less than (z × 100) percent of its initial total

dollar value of assets (ai).
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2.5.5 Rate of Disutility e ∈ (0,∞) for Undercapitaliza-

tion at Time t = 1

Using the notion of individual bank undercapitalization in Section 2.5.4, con-

sider the case of that occurring system-wide (i.e. a crisis ensues), when

W1 < zA, where W1 =
∑N

i=1w
i
1 and A =

∑N
i=1 ai.

The externality cost to social utility due to the possible event of a crisis is

e× (W1 − zA) 1[W1<zA] ≤ 0. In other words, if there is indeed a crisis, for each

dollar that W1 falls below zA, society experiences a utility amount of −e < 0.

One example to justify this term is that when the banking system’s equity

W1 is low at time t = 1, other agents in the economy will find it more costly

to obtain funds (e.g. take out a loan) for their operations. As a result, overall

productivity in the economy will decline, which is a cost to social utility.

2.5.6 Rate of Disutility g ∈ (0,∞) for bankruptcy at

Time t = 1

If wi1 < 0, bank i is considered bankrupt at time t = 1. When this happens,

recall from Section 2.3.3 that the government will provide −αi×wi1 > 0 dollars

to bank i’s debtholders.

The cost to social utility due to the possible event of bank i’s bankruptcy

is g× αi ×wi11[wi1<0] ≤ 0. That is, for each dollar that bank i’s equity at time

t = 1 (wi1) falls below zero, society experiences a utility amount of −g×αi < 0.

The reasoning is that when a bank is bankrupt, government funds used to

guarantee its debtholders could have alternative uses, and therefore represent

an opportunity cost (in monetary and utility terms) for other agents in the

economy.
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The parameter g applies to every bank i ∈ {1, ..., N}.

2.6 Events

2.6.1 Bank i Bankruptcy

The bankruptcy of bank i at time t = 1 is defined as {ω ∈ Ω : wi1 < 0}.

2.6.2 Bank i Undercapitalization

The undercapitalization of bank i at time t = 1 is defined as

{ω ∈ Ω : wi1 < zai}.

2.6.3 Systemic Crisis (Aggregate Undercapitalization)

Let W1 =
∑N

i=1w
i
1 and A =

∑N
i=1 ai. Then, a systemic crisis at time t = 1

is defined as {ω ∈ Ω : W1 < zA}.

2.7 Measures of Risk

2.7.1 Expected Shortfall

The expected shortfall measures bank i’s bankruptcy risk, and is defined as

ESi := −E [wi1|wi1 < 0].

2.7.2 Systemic Expected Shortfall

The systemic expected shortfall for bank i is defined as

SESi = E [zai − wi1|W1 < zA]. This quantity measures the systemic risk of
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bank i, as its expected contribution to aggregate undercapitalization in the

event of a crisis.

2.8 Incentives and Taxation

Recall from Section 2.2 the definitions for ~xi = (xi1, ..., x
i
J)
T

and fi. Let x =(
~x1, ..., ~xN

)
be the (J ×N) matrix of the banks’ dollar investment amounts,

and f = (f1, ..., fN) be the (1×N) vector of their face value of debt.

2.8.1 Bank Incentives

Let τi be the dollar amount of taxes that bank i pays at time t = 0. Then, its

objective function is as follows.

Fi = c×
(
wi0 − wi0

(
~xi, fi

)
− τi

)
+ E

[
u
(
wi1
(
~xi, fi

)
1[wi1>0]

)]

= c×

(
wi0 − τi −

J∑
j=1

xij + αifi

+ (1− αi)E

[
min

(
fi,

J∑
j=1

xijr
i
j − Φ

[
J∑
j=1

xijr
i
j, fi

])])

+E
[
u
(
wi1
(
~xi, fi

)
1[wi1>0]

)]
(2.7)
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Bank i will choose ~xi and fi to solve the following problem.



Max~xi,fiFi

Subject To:

•∀j ∈ {1, ..., J} : xij ≥ 0

•fi ≥ 0

•
∑J

j=1 x
i
j ≥ fi

•∀ω ∈ Ω :
∑J

j=1 x
i
jr
i
j (ω)− Φ

[∑J
j=1 x

i
jr
i
j (ω) , fi

]
≥ 0

(2.8)

Bank i will maximize its equityholders’ time t = 0 utility plus time t = 1

expected utility by choosing the dollar amount of investment in each asset j(
i.e.

{
xij
}
j∈{1,...,J}

)
and the promised payment to debtholders (fi).

The quantities decided for these variables will consequently determine the

total dollars it invest in assets (ai) from time t = 0 to time t = 1, as well as

the corresponding dollar amounts of debt (bi) and equity (wi0) funding.

2.8.2 Government Incentives

The government will maximize the sum of individual bank objectives, while

accounting for

• expected disutility to society due to costs of government support when

individual banks are bankrupt
(

i.e.
∑N

i=1 αigE
[
wi11[wi1<0]

])
and

• expected disutility to society due to negative externalities when the bank-

ing system as a whole is undercapitalized
(
i.e. eE

[
(W1 − zA) 1[W1<zA]

])
.

30



Applying the constraint τ =
∑N

i=1 τi from Section 2.5.2, its objective func-

tion is as follows.

F (x, f) =
N∑
i=1

Fi +
N∑
i=1

αigE
[
wi11[wi1<0]

]
+ eE

[
(W1 − zA) 1[W1<zA]

]

= −c× τ +
N∑
i=1

c×

(
wi0 −

J∑
j=1

xij + αifi

+ (1− αi)E

[
min

(
fi,

J∑
j=1

xijr
i
j − Φ

[
J∑
j=1

xijr
i
j, fi

])])

+
N∑
i=1

E
[
u
(
wi1
(
~xi, fi

)
1[wi1>0]

)]
+

N∑
i=1

αigE
[
wi1
(
~xi, fi

)
1[wi1<0]

]

+eE
[
(W1 (x, f)− zA (x)) 1[W1<zA]

]
(2.9)

The government would like to achieve social optimality as described by the

following problem.



Maxx,fF (x, f)

Subject To:

•∀i ∈ {1, ..., N} ∀j ∈ {1, ..., J} : xij ≥ 0

•∀i ∈ {1, ..., N} : fi ≥ 0

•∀i ∈ {1, ..., N} :
∑J

j=1 x
i
j ≥ fi

•∀i ∈ {1, ..., N}

∀ω ∈ Ω :
∑J

j=1 x
i
jr
i
j (ω)− Φ

[∑J
j=1 x

i
jr
i
j (ω) , fi

]
≥ 0

(2.10)
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2.8.3 Taxation

Let
(
x̃, f̃

)
be an optimal solution to the government’s problem (2.10). In the

presence of regulation described below, banks will choose
(
x̂, f̂

)
and pay taxes

so that F
(
x̂, f̂

)
= F

(
x̃, f̃

)
.

1. Let

τ̂i = τ̂i (x, f)

= −αig
c
E
[
wi1
(
~xi, fi

)
1[wi1<0]

]
− e

c
E
[(
wi1
(
~xi, fi

)
− zai

(
~xi
))

1[W1<zA]

]

=
αig

c
P
[
wi1 < 0

]
ESi +

e

c
P [W1 < zA]SESi (2.11)

be the dollars of taxes payable by bank i, in functional form. Note that

while wi1 and ai only depends on bank i decisions (~xi, fi), W1 and A

depends on those of every bank (x, f).

2. With τ̂i, the objective function of bank i becomes

F̂i (x, f) = c×

(
wi0 −

J∑
j=1

xij + αifi

+ (1− αi)E

[
min

(
fi,

J∑
j=1

xijr
i
j − Φ

[
J∑
j=1

xijr
i
j, fi

])])

+E
[
u
(
wi1
(
~xi, fi

)
1[wi1>0]

)]
+ αigE

[
wi1
(
~xi, fi

)
1[wi1<0]

]

+eE
[(
wi1
(
~xi, fi

)
− zai

(
~xi
))

1[W1<zA]

]
(2.12)
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Then, bank i will face the following problem.



Max~xi,fiF̂i (x, f)

Subject To:

•∀j ∈ {1, ..., J} : xij ≥ 0

•fi ≥ 0

•
∑J

j=1 x
i
j ≥ fi

•∀ω ∈ Ω :
∑J

j=1 x
i
jr
i
j (ω)− Φ

[∑J
j=1 x

i
jr
i
j (ω) , fi

]
≥ 0

(2.13)

However, the objective function F̂i, and hence optimal utility for its

equityholders now depends on decisions of every bank (x, f).

Therefore, the banks will have the incentive to collectively solve the

following multi-objective problem.



Maxx,f

{
F̂1 (x, f) , ..., F̂N (x, f)

}
Subject To:

•∀i ∈ {1, ..., N} ∀j ∈ {1, ..., J} : xij ≥ 0

•∀i ∈ {1, ..., N} : fi ≥ 0

•∀i ∈ {1, ..., N} :
∑J

j=1 x
i
j ≥ fi

•∀i ∈ {1, ..., N}

∀ω ∈ Ω :
∑J

j=1 x
i
jr
i
j (ω)− Φ

[∑J
j=1 x

i
jr
i
j (ω) , fi

]
≥ 0

(2.14)

Suppose
(
x, f

)
is a feasible point of problem (2.14). Then, we can make
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a Pareto improvement over
(
x, f

)
if the following condition holds.

∃ (x, f) 6=
(
x, f

)
:[

∀i ∈ {1, ..., N} : F̂i (x, f) ≥ F̂i
(
x, f

)
and ∃i′ ∈ {1, ..., N} : F̂i′ (x, f) > F̂i′

(
x, f

)] (2.15)

On the other hand, the point
(
x, f

)
is Pareto optimal if it is impos-

sible to make any Pareto improvement over it. That is, the following

condition, which is the negation of (2.15), defines Pareto optimality of(
x, f

)
.

∀ (x, f) 6=
(
x, f

)
:[

∀i ∈ {1, ..., N} : F̂i (x, f) ≥ F̂i
(
x, f

)
⇒ ∀i′ ∈ {1, ..., N} : F̂i′ (x, f) ≤ F̂i′

(
x, f

)]

⇔

∀ (x, f) 6=
(
x, f

)
:[

∃i′ ∈ {1, ..., N} : F̂i′ (x, f) > F̂i′
(
x, f

)
⇒ ∃i ∈ {1, ..., N} : F̂i (x, f) < F̂i

(
x, f

)]

(2.16)

In other words, suppose (x, f) is another feasible point of problem (2.14)

for which a bank obtains a higher objective value than at
(
x, f

)
. Then,

there must be another bank which experience a lower objective value at

(x, f) than at
(
x, f

)
.

The solutions to the multi-objective problem (2.14) is defined as the set
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S of
(
x, f

)
for which Pareto optimality is achieved. That is,

S =
{(
x, f

)
feasible for problem (2.14) :

(
x, f

)
satisfies (2.16)

}
.

3. It is common to obtain a solution of a multi-objective problem, like

(2.14), under assumptions about the decision maker, which in this case,

is the collection of banks. Assume that banks believe, as a group, that

each individual bank i’s objective is equally important. Together, the

banks will solve the following problem, which is scalarized from (2.14)

with weights 1
N

applied to the objective function of each bank i, F̂i (x, f).



Maxx,f
∑N

i=1
1
N
F̂i (x, f)

Subject To:

•∀i ∈ {1, ..., N} ∀j ∈ {1, ..., J} : xij ≥ 0

•∀i ∈ {1, ..., N} : fi ≥ 0

•∀i ∈ {1, ..., N} :
∑J

j=1 x
i
j ≥ fi

•∀i ∈ {1, ..., N}

∀ω ∈ Ω :
∑J

j=1 x
i
jr
i
j (ω)− Φ

[∑J
j=1 x

i
jr
i
j (ω) , fi

]
≥ 0

(2.17)

Let
(
x̂, f̂

)
be a solution of (2.17). Then,

(a)
(
x̂, f̂

)
is Pareto optimal. That is,

(
x̂, f̂

)
∈ S, which implies it is a

solution of (2.14).

Justification:

Since
(
x̂, f̂

)
solves (2.17), it must be that

∑N
i=1

1
N
F̂i

(
x̂, f̂

)
≥∑N

i=1
1
N
F̂i (x, f), for all (x, f) in the feasible set of (2.17). Suppose

that
(
x̂, f̂

)
is not Pareto optimal. This means that there exists a
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feasible (xnew, fnew) such that for all i ∈ {1, ..., N}, F̂i (xnew, fnew) ≥

F̂i

(
x̂, f̂

)
and there exists i

′ ∈ {1, ..., N} for which F̂i′ (xnew, fnew) >

F̂i′
(
x̂, f̂

)
. This implies that

∑N
i=1

1
N
F̂i (xnew, fnew) >∑N

i=1
1
N
F̂i

(
x̂, f̂

)
, which contradicts the assumption that

(
x̂, f̂

)
solves (2.17).

Therefore, it must be true that
(
x̂, f̂

)
∈ S.

(b)
(
x̂, f̂

)
solves the government’s problem (2.10).

Justification:

Notice that the feasible set of problem (2.10) is the same as that

for (2.17).

Let the objective function of (2.17) be denoted as

G (x, f) :=
∑N

i=1
1
N
F̂i (x, f). Then, the objective function of the

government, expressed in (2.9), is related to
{
F̂i (x, f)

}
i
, written

in (2.12), as follows.

F (x, f) = −c× τ +
N∑
i=1

F̂i (x, f) = −c× τ +N ×G (x, f)

Therefore, a solution of (2.17) coincides with a solution of (2.10).

That is, G
(
x̂, f̂

)
= G

(
x̃, f̃

)
.

4. After the banks solve problem (2.17), they will report a solution
(
x̂, f̂

)
∈

S as their investment and funding decisions. Then, based on these re-

ported quantities, bank i will be charged τ̂i

(
x̂, f̂

)
dollars by the govern-
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ment. Moreover, each bank must pay a dollar amount equal to

τ0 =
τ −

∑N
i=1 τ̂i

(
x̂, f̂

)
N

. (2.18)

This adjustment (τ0) after banks make their decisions ensure that the

government will collect a total of τ dollars of tax revenue. Taking τ0

into account, at
(
x̂, f̂

)
, bank i’s objective becomes −c× τ0 + F̂i

(
x̂, f̂

)
.

Then, as in (2.9), the government’s objective function takes the following

value.

F
(
x̂, f̂

)
=

N∑
i=1

[
−c× τ0 + F̂i

(
x̂, f̂

)]
+

N∑
i=1

αigE
[
wi1

(
~̂xi, f̂i

)
1[wi1<0]

]

+eE
[(
W1

(
x̂, f̂

)
− zA (x̂)

)
1[W1<zA]

]

= −c× τ +
N∑
i=1

c×

(
wi0 −

J∑
j=1

x̂ij + αif̂i

+ (1− αi)E

[
min

(
f̂i,

J∑
j=1

x̂ijr
i
j − Φ

[
J∑
j=1

x̂ijr
i
j, f̂i

])])

+
N∑
i=1

E
[
u
(
wi1

(
~̂xi, f̂i

)
1[wi1>0]

)]

+
N∑
i=1

αigE
[
wi1

(
~̂xi, f̂i

)
1[wi1<0]

]

+eE
[(
W1

(
x̂, f̂

)
− zA (x̂)

)
1[W1<zA]

]
(2.19)
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By the above point 3(b), it follows that F
(
x̂, f̂

)
= F

(
x̃, f̃

)
, and the

optimal objective value for the government’s problem is achieved.
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Chapter 3

Analysis of Objective Function

To understand how regulation described in Section 2.8.3 affect decisions made

by banks, we shall investigate the objective function of the scalarized multi-

bank problem (2.17).

3.1 Restricted Domains

For variables fi ∈ [0,∞) and xil ∈ [0,∞), the constraints from Section 2.4 will

have an impact on the domain for which the objective function is defined.

3.1.1 Restricted Domain for fi: D (fi)

1.
∑J

j=1 x
i
j ≥ fi provides an upper bound for fi.

2. ∀ω :
∑J

j=1 x
i
jr
i
j (ω) − Φ

[∑J
j=1 x

i
jr
i
j (ω) , fi

]
≥ 0 also provides an upper

bound f i for fi. Namely, f i = min
{
f i (1) , ..., f i (K)

}
, where f i (k) is

such that
∑J

j=1 x
i
jr
i
j (ωk)− Φ

[∑J
j=1 x

i
jr
i
j (ωk) , f i (k)

]
= 0.

Let’s denote h (fi, ω) :=
∑J

j=1 x
i
jr
i
j (ω)− Φ

[∑J
j=1 x

i
jr
i
j (ω) , fi

]
.
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Then,

• ∂h(fi,ωk)
∂fi

= −Φ2

[∑J
j=1 x

i
jr
i
j (ωk) , fi

]
< 0 implies that h (fi, ωk) is

decreasing in fi, and

• ∂2h(fi,ωk)

∂(fi)
2 = −Φ22

[∑J
j=1 x

i
jr
i
j (ωk) , fi

]
≤ 0 implies that h (fi, ωk) is

concave in fi.

One must assume that for all ωk ∈ Ω,
{
xij
}
j

and
{
rij (ωk)

}
j

are fixed

such that ∃fi ≥ 0 : h (fi, ωk) ≥ 0. Otherwise, it must be that:

• f i (k) < 0, which together with the constraint fi ≥ 0 would lead to

an empty domain for fi (i.e. D (fi) = ∅), or that

• ∀fi ∈ R : h (fi, ωk) < 0, which violates the required constraint.

Therefore, assuming that ∃fi ≥ 0 : h (fi, ωk) ≥ 0 and using the fact

that h (fi, ωk) is decreasing and concave in fi, such f i (k) exists and is

non-negative
(
f i (k) ≥ 0

)
, for all ωk ∈ Ω.

Notice that for every ωk ∈ Ω, h (fi, ωk) ≥ 0 for fi ≤ f i (k).

Then, considering all ωk ∈ Ω simultaneously, f i = min
{
f i (1) , ..., f i (K)

}
is an upper bound for fi.

Therefore, one should restrict attention to the domain D (fi) =
[
0, f i

]
,

where f i = min
{∑J

j=1 x
i
j, f i

}
.

3.1.2 Restricted Domain for xil: D
(
xil
)

1.
∑J

j=1 x
i
j ≥ fi ⇔ xil ≥ fi −

∑
j 6=l x

i
j provides a lower bound for xil.
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2. ∀ω :
∑J

j=1 x
i
jr
i
j (ω) − Φ

[∑J
j=1 x

i
jr
i
j (ω) , fi

]
≥ 0 also provides a lower

bound for xil.

First, for a fixed ωk ∈ Ω, denote

h (xil, ωk) := xilr
i
l (ωk)+

∑
j 6=l x

i
jr
i
j (ωk)−Φ

[
xilr

i
l (ωk) +

∑
j 6=l x

i
jr
i
j (ωk) , fi

]
,

and xil (k) such that h (xil (k) , ωk) = 0.

Then, the lower bound for xil is xil = max {xil (1) , ..., xil (K)}, and the

reasoning is as follows.

Notice that

• ∂h
∂xil

= ril (ωk) − ril (ωk) Φ1

[∑J
j=1 x

i
jr
i
j (ωk) , fi

]
> 0 implies that h is

increasing in xil, and

• ∂2h

∂(xil)
2 = − (ril (ωk))

2
Φ11

[∑J
j=1 x

i
jr
i
j (ωk) , fi

]
< 0 implies that h is

concave in xil.

One must assume that
{
xij
}
j 6=l,
{
rij (ωk)

}
j

and fi are fixed such that

xil (k) satisfying h (xil (k) , ωk) = 0 exists. Otherwise, since h (xil, ωk) is

increasing and concave, it must be that h (xil, ωk) < 0, for all xil ∈ R,

which makes it impossible for h (xil, ωk) ≥ 0 to be satisfied.

Therefore, xil (k) must exist, and it will be a lower bound for xil, since

h (xil, ωk) ≥ 0 for xil ≥ xil (k).

Considering all ωk ∈ Ω simultaneously, xil = max {xil (1) , ..., xil (K)} is a

lower bound for xil which ensures that ∀ω : h (xil, ω) ≥ 0 will be satisfied.

Altogether, one can restrict attention to the domain of D (xil) = [xil,∞),

where xil = max
{
fi −

∑
j 6=l x

i
j, x

i
l, 0
}

.
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3.2 Objective for the Group of Banks when

Taxes are Present

When banks as a group solve problem (2.17), the objective function is

1
N

∑N
i=1 F̂i (x, f), which equals the sum of individual bank objectives when

taxes are accounted for, multiplied by 1
N

. Therefore, the time t = 0 utility and

t = 1 expected utility for equityholders of an average bank will be captured.

Since banks are now determining investment and funding decisions({
xij
}
i,j
, {fi}i

)
as a group, we shall study how this objective depends on fi,

and xil. For ease of notation, denote Ψ = 1
N

∑N
i=1 F̂i.

3.2.1 Effect of fi ∈ D (fi) on Ψ

Consider Ψ as a function of fi only, with other variables taking fixed values.

(i) Continuity

Ψ is continuous for fi ∈ D (fi), but is indifferentiable at 0 < f̆ 1
i < ... <

f̆Li < f i ∈ D (fi), 0 ≤ L ≤ 2K.

For values of fi greater than that of f̆ li , l ∈ {1, ..., L}, there exists a

scenario ω ∈ Ω for which bank i is bankrupt (wi1 < 0) or the system is in

crisis (W1 < zA).

(ii) Increase/Decrease

There is no generalization about the increasing/decreasing behaviour of

Ψ with respect to fi ∈ D (fi).

(iii) Convexity

For fi within
(

0, f̆ 1
i

)
,
(
f̆ 1
i , f̆

2
i

)
,...,
(
f̆Li , f i

)
, Ψ is concave.
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Discussion

Consider the following as a function ψ of fi, i ∈ {1, ..., N} only, with ωk ∈ Ω

and other variables fixed. Note that Ψ = E [ψ].

ψ (fi, ωk) =
N∑
m=1

c

N
×

(
wm0 −

J∑
j=1

xmj + αmfm

+ (1− αm) min

(
fm,

J∑
j=1

xmj r
m
j (ωk)− Φ

[
J∑
j=1

xmj r
m
j (ωk) , fm

]))

+
N∑
m=1

1

N
u
(
wm1 1[wm1 >0]

)
+

N∑
m=1

αmg

N
wm1 1[wm1 <0]

+
e

N
(W1 − zA) 1[W1<zA]

= ψi (fi, ωk)

+
∑
m6=i

c

N
×

(
wm0 −

J∑
j=1

xmj + fm + (1− αm)wm1 (ωk) 1[wm1 <0]

)

+
∑
m6=i

1

N
u
(
wm1 (ωk) 1[wm1 >0]

)
+
∑
m6=i

αmg

N
wm1 (ωk) 1[wm1 <0]
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where

ψi (fi, ωk) =
c

N
×

(
wi0 −

J∑
j=1

xij + fi + (1− αi)wi1 (fi, ωk) 1[wi1<0]

)

+
1

N
u
(
wi1 (fi, ωk) 1[wi1>0]

)
+
αig

N
wi1 (fi, ωk) 1[wi1<0]

+
e

N
(W1 (fi, ωk)− zA) 1[W1<zA].

In other words, ψ (fi, ωk) is the sum of time t = 0 and t = 1 utilities of an

average bank’s equityholders when taxes are considered, for a fixed ωk ∈ Ω

(i.e. assuming that ωk ∈ Ω occurs with certainty).

For the moment, assume that fi ∈ R. Then, the relationship between

ψ (fi, ωk) (equivalently ψi (fi, ωk)) and fi will depend on the behaviour of

wi1 (fi, ωk) andW1 (fi, ωk)−zA, whereW1 (fi, ωk) = wi1 (fi, ωk)+
∑

m6=iw
m
1 (ωk).

Notice that wi1 (fi, ωk) and W1 (fi, ωk)−zA are continuous, decreasing, and

concave since

• ∂wi1
∂fi

= ∂[W1−zA]
∂fi

= −Φ2

[∑J
j=1 x

i
jr
i
j (ωk) , fi

]
− 1 < 0, and

• ∂2wi1
∂(fi)

2 = ∂2[W1−zA]
∂(fi)

2 = −Φ22

[∑J
j=1 x

i
jr
i
j (ωk) , fi

]
≤ 0 .

As such, there is at most one f̃ki such that wi1

(
f̃ki , ωk

)
= 0 and one ˜̃fki

such that W1

(
˜̃fki , ωk

)
− zA = 0. When fi > f̃ki , bank i is bankrupt (wi1 < 0)

and when fi >
˜̃fki , the system is in crisis (W1 < zA) for scenario ωk ∈ Ω.

Now, ψi (fi, ωk) can be studied in one of the five possible forms as follows,

depending on the existence and values of f̃ki and ˜̃fki .

44



(I) Suppose both f̃ki and ˜̃fki exists, and f̃ki <
˜̃fki . Then,

ψi (fi, ωk) =



c
N
×
(
wi0 −

∑J
j=1 x

i
j + fi

)
+ 1

N
u (wi1 (fi, ωk)) ;

if −∞ < fi ≤ f̃ki

c
N
×
(
wi0 −

∑J
j=1 x

i
j + fi + wi1 (fi, ωk) (1− αi)

)
+ 1
N
u (0) + αig

N
wi1 (fi, ωk) ;

if f̃ki < fi ≤ ˜̃fki

c
N
×
(
wi0 −

∑J
j=1 x

i
j + fi + wi1 (fi, ωk) (1− αi)

)
+ 1
N
u (0) + αig

N
wi1 (fi, ωk) + e

N
(W1 (fi, ωk)− zA) ;

if ˜̃fki < fi <∞

In general, ψi (fi, ωk) is continuous, but not differentiable at f̃ki or ˜̃fki .

For other fi ∈ R, ψi (fi, ωk) is differentiable.

The first derivative is

∂ψ

∂fi
=
∂ψi
∂fi

=



c
N
− 1

N
u

′
(wi1 (fi, ωk))

(
Φ2

[∑J
j=1 x

i
jr
i
j (ωk) , fi

]
+ 1
)

;

if −∞ < fi < f̃ki

c
N
−
(

Φ2

[∑J
j=1 x

i
jr
i
j (ωk) , fi

]
+ 1
) (

c
N

(1− αi) + αig
N

)
;

if f̃ki < fi <
˜̃fki

c
N
−
(

Φ2

[∑J
j=1 x

i
jr
i
j (ωk) , fi

]
+ 1
) (

c
N

(1− αi) + αig
N

+ e
N

)
;

if ˜̃fki < fi <∞
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There is no generalization about the positivity/negativity of ∂ψ
∂fi

, so

no conclusions are made about the increasing/decreasing behaviour of

ψ (fi, ωk). However, ∂ψ
∂fi

does reflect incentives faced by the group of

banks when deciding on fi, the promised payment to bank i’s debthold-

ers at time t = 1. Let’s consider fi increasing within each interval(
−∞, f̃ki

)
,
(
f̃ki ,

˜̃fki

)
, and

(
˜̃fki ,∞

)
.

(i) −∞ < fi < f̃ki

In this region of fi, bank i is not bankrupt (wi1 ≥ 0) and the system

is not in crisis (W1 ≥ zA). Therefore, bank i’s debtholders will

receive fi dollars and equityholders will obtain wi1 ≥ 0 dollars at

time t = 1. Since ωk ∈ Ω is seen in isolation, fi is also the amount

of funding debtholders provide the bank at time t = 0.

As such, if fi increase but does not exceed f̃ki , bank i equityholders’

consumption at time t = 0,
(
wi0 −

∑J
j=1 x

i
j + fi

)
, and thus their

utility, will increase at that time. This is captured by c
N
> 0 in

∂ψ
∂fi

, which means the time t = 0 utility of an average bank will

also increase as a result.

However, since wi1 decreases in fi, equityholders of bank i will

receive a lower utility at time t = 1. This is captured by

− 1
N
u

′
(wi1) (Φ2 + 1) < 0 in ∂ψ

∂fi
, which means the average bank’s

utility will also decrease.

Notice that since wi1 ≥ 0 and W1 ≥ zA for ωk ∈ Ω if −∞ <

fi < f̃ki , an increase in fi within this region has no effect on taxes,

because bank i would not require government compensation for its

debtholders or cause a crisis to occur at time t = 1.
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(ii) f̃ki < fi <
˜̃fki

In this region of fi, bank i is bankrupt (wi1 < 0) but the system

is well-capitalized (W1 ≥ zA). At time t = 1, bank i’s debthold-

ers will receive its post-distress value of assets (wi1 + fi) plus an

amount of government compensation −αiwi1 > 0. Since ωk ∈ Ω is

considered in isolation, this is also the amount of debt funding pro-

vided to bank i at time t = 0. The derivative of debt funding with

respect to fi is thus
∂[wi1+fi−αiwi1]

∂fi
= 1 − (1− αi) (Φ2 + 1), which

may be positive or negative for different values of fi. Therefore,

debt funding for bank i may increase or decrease as fi increases.

Moreover, the cost to social utility for the government compensa-

tion is −αigwi1 > 0, so bank i will pay taxes of −αig
c
wi1 > 0 dollars

at time t = 0. An increase in fi will increase the bank’s tax bill

because
∂[−αigc wi1]

∂fi
= αig

c
(Φ2 + 1) > 0.

Altogether, bank i equityholders’ time t = 0 utility is

c×
(
wi0 −

∑J
j=1 x

i
j + fi + wi1 (1− αi) + αig

c
wi1

)
, and its first deriva-

tive with respect to fi is c− (Φ2 + 1) (c (1− αi) + αig), which may

be positive or negative for different values of fi. The derivative

of an average bank’s time t = 0 utility with respect to fi is this

expression divided by N , as captured by ∂ψ
∂fi

. The result is that

an increase in fi may increase or decrease an average bank’s time

t = 0 utility.

Note that the time t = 1 utility for equityholders of bank i (and

consequently, those of the average bank) will not be affected be-

cause when wi1 < 0, it takes a constant value of u (0).
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(iii) ˜̃fki < fi <∞

The reasoning from (ii) regarding debt funding applies in this case

to explain c
N

[1− (1− αi) (Φ2 + 1)] in ∂ψ
∂fi

, because for ˜̃fki < fi <

∞, bank i is bankrupt (wi1 < 0).

However, the banking system is also undercapitalized (W1 < zA)

for fi >
˜̃fki . Considering ωk ∈ Ω in isolation, the tax for bank m

is −αmg
c
wm1 (ωk) 1[wm1 <0] −

e
c

(wm1 (ωk)− zam) 1[W1<zA] dollars. So,

the tax for an average bank is − 1
N

∑N
m=1

αmg
c
wm1 (ωk) 1[wm1 <0] −

e
cN

(W1 (fi, ωk)− zA) dollars. A higher value of fi will increase

this tax amount, because its derivative with respect to fi is(
αig
cN

+ e
cN

)
(Φ2 + 1) > 0. When a bank is charged τ dollars of

taxes, its equityholders’ obtains a utility of −c× τ . Therefore, for

an average bank, the utility experienced due to taxes will decrease,

because its derivative with respect to fi is −
(
αig
N

+ e
N

)
(Φ2 + 1) <

0, as reflected in ∂ψ
∂fi

.

Again, the time t = 1 utility for equityholders of bank i and for

those of the average bank is unaffected because u
(
wi11[wi1>0]

)
=

u (0) when ˜̃fki < fi <∞.
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The second derivative of ψ (fi, ωk) is

∂2ψ

∂ (fi)
2 =

∂2ψi

∂ (fi)
2

=



− 1
N
u

′
(wi1 (fi, ωk)) Φ22

[∑J
j=1 x

i
jr
i
j (ωk) , fi

]
+ 1
N

(
−Φ2

[∑J
j=1 x

i
jr
i
j (ωk) , fi

]
− 1
)2
u

′′
(wi1 (fi, ωk)) < 0;

if −∞ < fi < f̃ki

−Φ22

[∑J
j=1 x

i
jr
i
j (ωk) , fi

] (
c
N

(1− αi) + αig
N

)
< 0;

if f̃ki < fi <
˜̃fki

−Φ22

[∑J
j=1 x

i
jr
i
j (ωk) , fi

] (
c
N

(1− αi) + αig
N

+ e
N

)
< 0;

if ˜̃fki < fi <∞

Therefore, ψ (fi, ωk) is concave within
(
−∞, f̃ki

)
,
(
f̃ki ,

˜̃fki

)
, and

(
˜̃fki ,∞

)
.
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(II) Suppose both f̃ki and ˜̃fki exists, and f̃ki >
˜̃fki . Then,

ψi (fi, ωk) =



c
N
×
(
wi0 −

∑J
j=1 x

i
j + fi

)
+ 1

N
u (wi1 (fi, ωk)) ;

if −∞ < fi ≤ ˜̃fki

c
N
×
(
wi0 −

∑J
j=1 x

i
j + fi

)
+ 1

N
u (wi1 (fi, ωk))

+ e
N

(W1 (fi, ωk)− zA) ;

if ˜̃fki < fi ≤ f̃ki

c
N
×
(
wi0 −

∑J
j=1 x

i
j + fi + wi1 (fi, ωk) (1− αi)

)
+ 1

N
u (0)

+αig
N
wi1 (fi, ωk) + e

N
(W1 (fi, ωk)− zA) ;

if f̃ki < fi <∞

ψi (fi, ωk) is continuous, but not differentiable at f̃ki or ˜̃fki . For other

fi ∈ R, ψi (fi, ωk) is differentiable.

∂ψ

∂fi
=
∂ψi
∂fi

=



c
N
− 1

N
u

′
(wi1 (fi, ωk))

(
Φ2

[∑J
j=1 x

i
jr
i
j (ωk) , fi

]
+ 1
)

;

if −∞ < fi <
˜̃fki

c
N
−
(

Φ2

[∑J
j=1 x

i
jr
i
j (ωk) , fi

]
+ 1
)(

u
′
(wi1(fi,ωk))

N
+ e

N

)
;

if ˜̃fki < fi < f̃ki

c
N
−
(

Φ2

[∑J
j=1 x

i
jr
i
j (ωk) , fi

]
+ 1
) (

c
N

(1− αi) + αig
N

+ e
N

)
;

if f̃ki < fi <∞
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Similar to (I), there is no general conclusion about the positivity/nega-

tivity of ∂ψ
∂fi

. Nonetheless, ∂ψ
∂fi

does show the tradeoff encountered by the

group of banks when choosing fi. Again, three regions of fi:
(
−∞, ˜̃fki

)
,(

˜̃fki , f̃
k
i

)
,
(
f̃ki∞

)
may be considered.

(i) −∞ < fi <
˜̃fki

The explanation is equivalent to (i) of (I), since wi1 ≥ 0 and W1 ≥

zA in this case.

(ii) ˜̃fki < fi < f̃ki

In this region of fi, bank i is not bankrupt (wi1 ≥ 0), but the system

is in crisis (W1 < zA).

The effects on the average bank’s quantity of debt funding received

at time t = 0 and on its equityholders’ utility at time t = 1 are de-

scribed in (i) of (I). This explains c
N
> 0 and − 1

N
u

′
(wi1) (Φ2 + 1) <

0 in ∂ψ
∂fi

.

However, since the system is in crisis for ˜̃fki < fi < f̃ki , an in-

crease in fi will affect dollars of taxes paid by an average bank:

− 1
N

∑N
m=1

αmg
c
wm1 (ωk) 1[wm1 <0]−

e
cN

(W1 (fi, ωk)− zA). Since wi1 ≥

0, the derivative of this amount with respect to fi is e
cN

(Φ2 + 1) >

0. That is, an average bank will pay more taxes. Similar to (iii)

of (I), for an average bank, the utility experienced due to paying

taxes will decrease, since its derivative is − e
N

(Φ2 + 1) < 0, which

is reflected in ∂ψ
∂fi

.

(iii) f̃ki < fi < ∞ The explanation is equivalent to (iii) of (I), since

wi1 < 0 and W1 < zA in this case.
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Similar to (I), one may take the second derivative ∂2ψ

∂(fi)
2 and conclude

that ψ (fi, ωk) is concave within
(
−∞, ˜̃fki

)
,
(

˜̃fki , f̃
k
i

)
, and

(
f̃ki ,∞

)
.

(III) Suppose f̃ki exists, but ˜̃fki does not exist.

This situation occurs when W1 (fi, ωk) < zA for all fi ∈ R (i.e. the sys-

tem is in crisis regardless of fi), and bank i is not bankrupt (wi1 (fi, ωk) > 0)

for fi < f̃ki .

ψi (fi, ωk) =



c
N
×
(
wi0 −

∑J
j=1 x

i
j + fi

)
+ 1

N
u (wi1 (fi, ωk))

+ e
N

(W1 (fi, ωk)− zA) ;

if −∞ < fi ≤ f̃ki

c
N
×
(
wi0 −

∑J
j=1 x

i
j + fi + wi1 (fi, ωk) (1− αi)

)
+ 1

N
u (0)

+αig
N
wi1 (fi, ωk) + e

N
(W1 (fi, ωk)− zA) ;

if f̃ki < fi <∞

ψi (fi, ωk) is continuous but not differentiable at f̃ki . For other values of

fi, ψi (fi, ωk) is differentiable.

∂ψ

∂fi
=
∂ψi
∂fi

=



c
N
−
(

Φ2

[∑J
j=1 x

i
jr
i
j (ωk) , fi

]
+ 1
)(

u
′
(wi1(fi,ωk))

N
+ e

N

)
;

if −∞ < fi < f̃ki

c
N
−
(

Φ2

[∑J
j=1 x

i
jr
i
j (ωk) , fi

]
+ 1
) (

c
N

(1− αi) + αig
N

+ e
N

)
;

if f̃ki < fi <∞

Similar to (I) and (II), no generalizations are made about the positivi-
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ty/negativity of ∂ψ
∂fi

. However, it can still be used to explain incentives

for the group of banks when deciding on fi.

The explanation of ∂ψ
∂fi

for −∞ < fi < f̃ki is equivalent to (ii) of (II)

(wi1 ≥ 0 and W1 < zA), and that for f̃ki < fi < ∞ is equivalent to (iii)

of (I) (wi1 < 0 and W1 < zA).

As in (I) and (II), one can consider ∂2ψ

∂(fi)
2 and conclude that ψ (fi, ωk) is

concave within
(
−∞, f̃ki

)
, and

(
f̃ki ,∞

)
.

(IV) Suppose ˜̃fki exists, but f̃ki does not exist.

This situation occurs when wi1 (fi, ωk) < 0 for all fi ∈ R (i.e. bank i is

bankrupt regardless of fi) and the system is not in crisis (W1 (fi, ωk) ≥ zA)

for fi <
˜̃fki .

ψi (fi, ωk) =



c
N
×
(
wi0 −

∑J
j=1 x

i
j + fi + wi1 (fi, ωk) (1− αi)

)
+ 1
N
u (0) + αig

N
wi1 (fi, ωk) ;

if −∞ < fi ≤ ˜̃fki

c
N
×
(
wi0 −

∑J
j=1 x

i
j + fi + wi1 (fi, ωk) (1− αi)

)
+ 1
N
u (0) + αig

N
wi1 (fi, ωk) + e

N
(W1 (fi, ωk)− zA) ;

if ˜̃fki < fi <∞

ψi (fi, ωk) is continuous but not differentiable at ˜̃fki . For other values of
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fi, ψi (fi, ωk) is differentiable.

∂ψ

∂fi
=
∂ψi
∂fi

=



c
N
−
(

Φ2

[∑J
j=1 x

i
jr
i
j (ωk) , fi

]
+ 1
) (

c
N

(1− αi) + αig
N

)
;

if −∞ < fi <
˜̃fki

c
N
−
(

Φ2

[∑J
j=1 x

i
jr
i
j (ωk) , fi

]
+ 1
) (

c
N

(1− αi) + αig
N

+ e
N

)
;

if ˜̃fki < fi <∞

Again, there is no generalization about whether ∂ψ
∂fi

is positive or nega-

tive, but it still describe incentives for the group of banks when deciding

on the value of fi.

The explanation of ∂ψ
∂fi

for −∞ < fi <
˜̃fki is equivalent to (ii) of (I)

(wi1 < 0 and W1 ≥ zA), and that for ˜̃fki < fi < ∞ is equivalent to (iii)

of (I) (wi1 < 0 and W1 < zA).

∂2ψ

∂(fi)
2 may be considered, and one will conclude that ψ (fi, ωk) is concave

within
(
−∞, ˜̃fki

)
, and

(
˜̃fki ,∞

)
.

(V) Suppose that neither f̃ki or ˜̃fki exists.

This situation occurs when bank i is bankrupt (wi1 (fi, ωk) < 0) and the

system is in crisis (W1 (fi, ωk) < zA) for all fi ∈ R. Then,

ψi (fi, ωk) =
c

N
×

(
wi0 −

J∑
j=1

xij + fi + wi1 (fi, ωk) (1− αi)

)
+

1

N
u (0)

+
αig

N
wi1 (fi, ωk) +

e

N
(W1 (fi, ωk)− zA)

for all fi ∈ R. This function is differentiable with first derivative as
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follows.

∂ψ

∂fi
=
∂ψi
∂fi

=
c

N
−

(
Φ2

[
J∑
j=1

xijr
i
j (ωk) , fi

]
+ 1

)( c
N

(1− αi) +
αig

N
+

e

N

)

There is no generalization about whether ψ (fi, ωk) is increasing or de-

creasing, but ∂ψ
∂fi

does describe incentives for choosing fi when it takes

values where bank i is bankrupt and the system is undercapitalized.

The explanation of ∂ψ
∂fi

is equivalent to that of (iii) in (I).

Similar to previous situations, one can consider ∂2ψ

∂(fi)
2 and conclude that

ψi (fi, ωk) is concave in (−∞,∞).

Recall that so far, ψ (fi, ωk) is assumed to be defined for fi ∈ R. To

understand the relationship between ψ (fi, ωk) and fi ∈ D (fi), one has to take

the following steps.

(a) For the fixed scenario ωk ∈ Ω, determine which of (I) to (V) applies.

Depending on the behaviour of wi1 (fi, ωk) and W1 (fi, ωk)− zA, only one

of the five situations is relevant. Then, one will know whether f̃ki and ˜̃fki

exist, and their corresponding values.

(b) Determine f i, which defines D (fi) =
[
0, f i

]
. See Section 3.1.1.

(c) (a) and (b) implies that the values of 0, f i, f̃
k
i and ˜̃fki , relative to each

other, are now known.

(d) One can now describe ψ (fi, ωk) for fi ∈ D (fi), using information for ∂ψ
∂fi

and ∂2ψ

∂(fi)
2 for whichever case ((I) to (V)) was determined in (a).
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In the restricted domain fi ∈ D (fi), ψ (fi, ωk) is continuous but will exhibit

at most two indifferentiable (corner) points. For values of fi greater than that

of an indifferentiable point, either bank i is bankrupt (wi1 (fi, ωk) < 0) or the

system is in crisis (W1 (fi, ωk) < zA) in scenario ωk ∈ Ω. Although there is

no generalization about its increasing/decreasing behaviour for fi ∈ D (fi),

ψ (fi, ωk) is concave within intervals separated by indifferentiable points.

As a convex combination of ψ (fi, ω) over all ω ∈ Ω, Ψ = E [ψ]

=
∑K

k=1 pkψ (fi, ωk) is continuous with indifferentiable points at 0 < f̆ 1
i < ... <

f̆Li < f i ∈ D (fi), 0 ≤ L ≤ 2K and is concave within
(

0, f̆ 1
i

)
,...,

(
f̆Li , f i

)
. The

group of banks will consider the sum of time t = 0 and t = 1 utilities of an

average bank’s equityholders (ψ) in expected value, when fi is being selected.

3.2.2 Effect of xil ∈ D
(
xil
)

on Ψ

Consider Ψ as a function of xil only, with other variables taking fixed values.

(i) Continuity

Ψ is continuous for xil ∈ D (xil), but is indifferentiable at xil < x̆il (1) <

... < x̆il (M) ∈ D (xil), 0 ≤M ≤ 3K.

(ii) Increase/Decrease

There is no generalization about the increasing/decreasing behaviour of

Ψ with respect to xil ∈ D (xil).

(iii) Convexity

For xil within (xil, x̆
i
l (1)), (x̆il (1) , x̆il (2)),...,(x̆il (M) ,∞), Ψ is concave.

Discussion
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Consider the following as a function ψ of xil, i ∈ {1, ..., N}, l ∈ {1, ..., J}

only, with ωk ∈ Ω and other variables fixed. Notice that Ψ = E [ψ].

ψ
(
xil, ωk

)
=

N∑
m=1

c

N
×

(
wm0 −

J∑
j=1

xmj + αmfm

+ (1− αm) min

(
fm,

J∑
j=1

xmj r
m
j (ωk)− Φ

[
J∑
j=1

xmj r
m
j (ωk) , fm

]))

+
N∑
m=1

1

N
u
(
wm1 1[wm1 >0]

)
+

N∑
m=1

αmg

N
wm1 1[wm1 <0]

+
e

N
(W1 − zA) 1[W1<zA]

= ψi
(
xil, ωk

)

+
∑
m6=i

c

N
×

(
wm0 −

J∑
j=1

xmj + fm + (1− αm)wm1 (ωk) 1[wm1 <0]

)

+
∑
m6=i

1

N
u
(
wm1 (ωk) 1[wm1 >0]

)
+
∑
m6=i

αmg

N
wm1 (ωk) 1[wm1 <0]

where

ψi
(
xil, ωk

)
=

c

N
×

(
wi0 − xil −

∑
j 6=l

xij + fi + (1− αi)wi1
(
xil, ωk

)
1[wi1<0]

)

+
1

N
u
(
wi1
(
xil, ωk

)
1[wi1>0]

)
+
αig

N
wi1
(
xil, ωk

)
1[wi1<0]

+
e

N

(
W1

(
xil, ωk

)
− zA

(
xil
))

1[W1<zA].
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As in Section 3.2.1, ψ (xil, ωk) is the sum of time t = 0 and t = 1 utilities

of an average bank’s equityholders when taxes are accounted for, with ωk ∈ Ω

fixed (i.e. considering that ωk ∈ Ω occurs with certainty).

For the moment, assume that xil ∈ R. Then, the relationship between

ψ (xil, ωk) (or equivalently ψi (x
i
l, ωk)) and xil depends on the behaviour of

wi1 (xil, ωk) and W1 (xil, ωk)− zA (xil), where W1 (xil, ωk) = wi1 (xil, ωk)

+
∑

m6=iw
m
1 (ωk) and A (xil) = xil +

∑
j 6=l x

i
j +
∑

m6=i
∑J

j=1 x
m
j .

Notice that wi1 (xil, ωk) is increasing and concave because

∂wi1
∂xil

= ril (ωk)− ril (ωk) Φ1

[∑J
j=1 x

i
jr
i
j (ωk) , fi

]
> 0 and

∂2wi1

∂(xil)
2 = − (ril (ωk))

2
Φ11

[∑J
j=1 x

i
jr
i
j (ωk) , fi

]
< 0. Hence, there is at most one

x̃il (k) for which wi1 (x̃il (k) , ωk) = 0.

However, ∂[W1−zA]
∂xil

= ril (ωk)− ril (ωk) Φ1

[∑J
j=1 x

i
jr
i
j (ωk) , fi

]
− z and

∂2[W1−zA]
∂(xil)

2 = − (ril (ωk))
2

Φ11

[∑J
j=1 x

i
jr
i
j (ωk) , fi

]
< 0. Therefore, W1 (xil, ωk)−

zA (xil) is concave, but its increasing/decreasing behaviour depends on whether

ril (ωk) ≥ z or ril (ωk) < z.

(a) If ril (ωk) ≥ z, then ∂[W1−zA]
∂xil

> 0.

⇒ W1 (xil, ωk)− zA (xil) is increasing.

(b) If ril (ωk) < z, then consider the following condition.

58



∃ẍil (k) :
∂ [W1 − zA]

∂xil

(
ẍil (k)

)
=
(
ril (ωk)− z

)

−ril (ωk)×

Φ1

[
ẍil (k) ril (ωk) +

∑
j 6=l

xijr
i
j (ωk) , fi

]

= 0 (3.1)

(b.1) Assume that (3.1) holds. Then, since Φ11 > 0,

• for xil < ẍil (k), ∂[W1−zA]
∂xil

(xil) > 0, and W1 (xil, ωk) − zA (xil) is

increasing.

• for xil > ẍil (k), ∂[W1−zA]
∂xil

(xil) < 0, and W1 (xil, ωk) − zA (xil) is

decreasing.

Hence, if (3.1) holds, W1 (xil, ωk) − zA (xil) reaches a maximum at

xil = ẍil (k). From the above two results, this ẍil (k) is unique.

(b.2) Assume that (3.1) does not hold. Then,

• if ∂[W1−zA]
∂xil

(xil) > 0 for all xil, W1 (xil, ωk)− zA (xil) is increasing.

• if ∂[W1−zA]
∂xil

(xil) < 0 for all xil, W1 (xil, ωk)− zA (xil) is decreasing.

Hence, W1 (xil, ωk) − zA (xil) is either always increasing, always decreas-

ing, or increasing then decreasing for xil ∈ R and there could be at most

two points ˜̃xil (k, 1), ˜̃xil (k, 2) for which W1

(
˜̃xil (k, 1) , ωk

)
− zA

(
˜̃xil (k, 1)

)
=

W1

(
˜̃xil (k, 2) , ωk

)
− zA

(
˜̃xil (k, 2)

)
= 0.
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Let’s partition R = X1 (xil, ωk) ∪ X2 (xil, ωk) ∪ X3 (xil, ωk) ∪ X4 (xil, ωk) as

follows.

X1

(
xil, ωk

)
=
{
xil ∈ R : wi1

(
xil, ωk

)
≥ 0 and W1

(
xil, ωk

)
− zA

(
xil
)
≥ 0
}

X2

(
xil, ωk

)
=
{
xil ∈ R : wi1

(
xil, ωk

)
≥ 0 and W1

(
xil, ωk

)
− zA

(
xil
)
< 0
}

X3

(
xil, ωk

)
=
{
xil ∈ R : wi1

(
xil, ωk

)
< 0 and W1

(
xil, ωk

)
− zA

(
xil
)
≥ 0
}

X4

(
xil, ωk

)
=
{
xil ∈ R : wi1

(
xil, ωk

)
< 0 and W1

(
xil, ωk

)
− zA

(
xil
)
< 0
}

Then, consider the form of ψ (xil, ωk) (or equivalently, ψi (x
i
l, ωk)) for xil in each

of X1 (xil, ωk) to X4 (xil, ωk).

(I) Suppose xil ∈ X1 (xil, ωk).

ψi
(
xil, ωk

)
=

c

N
×

(
wi0 − xil −

∑
j 6=l

xij + fi

)
+

1

N
u
(
wi1
(
xil, ωk

))

Then, the first derivative of ψ (xil, ωk) is

∂ψ

∂xil
=
∂ψi
∂xil

= − c

N

+
1

N
u

′ (
wi1
(
xil, ωk

))(
ril (ωk)− ril (ωk) Φ1

[
J∑
j=1

xijr
i
j (ωk) , fi

])

For xil ∈ X1 (xil, ωk), bank i is not bankrupt (wi1 ≥ 0) and there is no

systemic crisis (W1 ≥ zA) for scenario ωk ∈ Ω.
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In particular, since wi1 ≥ 0, debtholders will receive fi dollars at time

t = 1, so an increase in xil will not affect their payoff at that time.

The funding they provide at time t = 0 is therefore unchanged. The

increase of xil (bank i invests more money in asset l) at time t = 0 will

be funded fully by equityholders, which implies that their consumption

dollars
(
wi0 − xil −

∑
j 6=l x

i
j + fi

)
and hence utility will decrease at that

time. Then, the time t = 0 utility for an average bank will also decline.

This is captured by − c
N
< 0 in ∂ψ

∂xil
.

An increase in xil, however, would increase bank i’s time t = 1 equity

(wi1) and thus the utility of its holders. This means the utility of an

average bank’s equityholders will also increase at time t = 1, which is

reflected by 1
N
u

′
(wi1) (ril (ωk)− ril (ωk) Φ1) > 0 in ∂ψ

∂xil
.

The second derivative of ψ (xil, ωk) is

∂2ψ

∂ (xil)
2 = − 1

N
u

′ (
wi1
(
xil, ωk

)) (
ril (ωk)

)2
Φ11

[
J∑
j=1

xijr
i
j (ωk) , fi

]

+
1

N
u

′′ (
wi1
(
xil, ωk

))
×(

ril (ωk)− ril (ωk) Φ1

[
J∑
j=1

xijr
i
j (ωk) , fi

])2

< 0.

Therefore, ψ (xil, ωk) is concave for xil ∈ X1 (xil, ωk).

(II) Suppose xil ∈ X2 (xil, ωk).

ψi
(
xil, ωk

)
=

c

N
×

(
wi0 − xil −

∑
j 6=l

xij + fi

)
+

1

N
u
(
wi1
(
xil, ωk

))
+

e

N

(
W1

(
xil, ωk

)
− zA

(
xil
))
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Then, the first derivative of ψ (xil, ωk) is

∂ψ

∂xil
=
∂ψi
∂xil

= − c

N

+
1

N
u

′ (
wi1
(
xil, ωk

))
×(

ril (ωk)− ril (ωk) Φ1

[
J∑
j=1

xijr
i
j (ωk) , fi

])

+
e

N

(
ril (ωk)− ril (ωk) Φ1

[
J∑
j=1

xijr
i
j (ωk) , fi

]
− z

)
.

The explanations for the terms − c
N

and 1
N
u

′
(wi1) (ril (ωk)− ril (ωk) Φ1)

are equivalent to those for xil ∈ X1 (xil, ωk) (in (I)), since wi1 ≥ 0.

However, when xil ∈ X2 (xil, ωk), the system is in crisis (W1 < zA) in

scenario ωk ∈ Ω, and an increase in xil will affect taxes paid by all

banks, because W1 − zA depends on xil.

In particular, when ωk ∈ Ω is considered in isolation, the dollars of taxes

charged to bank m is −αmg
c
wm1 (ωk) 1[wm1 <0]−

e
c

(wm1 (ωk)− zam) 1[W1<zA].

The tax for an average bank is then − 1
N

∑N
m=1

αmg
c
wm1 (ωk) 1[wm1 <0] −

e
cN

(W1 (xil, ωk)− zA (xil)). Since wi1 ≥ 0 for xil ∈ X2 (xil, ωk), the deriva-

tive of this amount with respect to xil is − e
cN

(ril (ωk)− ril (ωk) Φ1 − z),

which may be positive or negative for different values of xil. When a

bank is charged τ dollars of taxes, its equityholders obtains a utility of

−c × τ . For an average bank, the utility experienced due to payment

of taxes may increase or decrease for different values of xil, because its

derivative with respect to xil is e
N

(ril (ωk)− ril (ωk) Φ1 − z), which may
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be positive or negative. This last expression is included in ∂ψ
∂xil

.

The second derivative of ψ (xil, ωk) is

∂2ψ

∂ (xil)
2 = − 1

N
u

′ (
wi1
(
xil, ωk

)) (
ril (ωk)

)2
Φ11

[
J∑
j=1

xijr
i
j (ωk) , fi

]

+
1

N
u

′′ (
wi1
(
xil, ωk

))
×(

ril (ωk)− ril (ωk) Φ1

[
J∑
j=1

xijr
i
j (ωk) , fi

])2

− e

N

(
ril (ωk)

)2
Φ11

[
J∑
j=1

xijr
i
j (ωk) , fi

]
< 0.

Therefore, ψ (xil, ωk) is concave for xil ∈ X2 (xil, ωk).

(III) Suppose xil ∈ X3 (xil, ωk).

ψi
(
xil, ωk

)
=

c

N
×

(
wi0 − xil −

∑
j 6=l

xij + fi + (1− αi)wi1
(
xil, ωk

))

+
1

N
u (0) +

αig

N
wi1
(
xil, ωk

)
Then, the first derivative of ψ (xil, ωk) is

∂ψ

∂xil
=
∂ψi
∂xil

= − c

N

+
c

N
(1− αi)

(
ril (ωk)− ril (ωk) Φ1

[
J∑
j=1

xijr
i
j (ωk) , fi

])

+
αig

N

(
ril (ωk)− ril (ωk) Φ1

[
J∑
j=1

xijr
i
j (ωk) , fi

])
.
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If xil ∈ X3 (xil, ωk), at time t = 1, bank i is bankrupt (wi1 < 0), but there

will not be a systemic crisis (W1 ≥ zA) for scenario ωk ∈ Ω.

Then, bank i’s debtholders will have a payoff of wi1 + fi − αiw
i
1 at

time t = 1. Since ωk ∈ Ω is considered fixed, this is also the dol-

lars of debt funding provided to the bank at time t = 0. Moreover,

bank i’s tax is −αig
c
wi1 (xil, ωk), so its time t = 0 utility will be c ×(

wi0 − xil −
∑

j 6=l x
i
j + fi + (1− αi)wi1 (xil, ωk) + αig

c
wi1 (xil, ωk)

)
with first

derivative−c+c (1− αi) (ril (ωk)− ril (ωk) Φ1)+αig (ril (ωk)− ril (ωk) Φ1).

The derivative of an average bank’s time t = 0 utility would be this ex-

pression divided by N , which is equal to ∂ψ
∂xil

.

Notice that an increase in xil will increase bank i’s debt funding, since

its derivative is positive: (1− αi) (ril (ωk)− ril (ωk) Φ1) > 0. Also, the

dollars of taxes payable by bank i decreases, since its derivative with re-

spect to xil is negative: −αig
c

(ril (ωk)− ril (ωk) Φ1) < 0. In other words,

from bank i equityholders’ perspective, these two effects are cash in-

flows at time t = 0 and will increase their utility at that time, since

c (1− αi) (ril (ωk)− ril (ωk) Φ1) > 0 and αig (ril (ωk)− ril (ωk) Φ1) > 0.

However, these two cash increases may or may not be sufficient to

cover the increased investment in asset l. Therefore, equityholders

may need to provide, or may receive additional funds at time t =

0, so their utility could increase or decrease at that time. That is,

−c + c (1− αi) (ril (ωk)− ril (ωk) Φ1) + αig (ril (ωk)− ril (ωk) Φ1) may be

positive or negative, for different values of xil.

Note that the time t = 1 utility for bank i’s equityholders, and thus for

those of the average bank, is not affected because u
(
wi11[wi1>0]

)
= u (0)
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when xil ∈ X3 (xil, ωk).

The second derivative of ψ (xil, ωk) is

∂2ψ

∂ (xil)
2 = − c

N
(1− αi)

(
ril (ωk)

)2
Φ11

[
J∑
j=1

xijr
i
j (ωk) , fi

]

−αig
N

(
ril (ωk)

)2
Φ11

[
J∑
j=1

xijr
i
j (ωk) , fi

]
< 0,

so it is concave for xil ∈ X3 (xil, ωk).

(IV) Suppose xil ∈ X4 (xil, ωk).

ψi
(
xil, ωk

)
=

c

N
×

(
wi0 − xil −

∑
j 6=l

xij + fi + (1− αi)wi1
(
xil, ωk

))

+
1

N
u (0) +

αig

N
wi1
(
xil, ωk

)
+

e

N

(
W1

(
xil, ωk

)
− zA

(
xil
))

Then, the first derivative of ψ (xil, ωk) is

∂ψ

∂xil
=
∂ψi
∂xil

= − c

N

+
c

N
(1− αi)

(
ril (ωk)− ril (ωk) Φ1

[
J∑
j=1

xijr
i
j (ωk) , fi

])

+
αig

N

(
ril (ωk)− ril (ωk) Φ1

[
J∑
j=1

xijr
i
j (ωk) , fi

])

+
e

N

(
ril (ωk)− ril (ωk) Φ1

[
J∑
j=1

xijr
i
j (ωk) , fi

]
− z

)
.
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When xil ∈ X4 (xil, ωk) bank i is bankrupt (wi1 < 0) and the system is in

crisis (W1 < zA) at time t = 1 for scenario ωk ∈ Ω. Therefore, the expla-

nation for− c
N

+ c
N

(1− αi) (ril (ωk)− ril (ωk) Φ1)+
αig
N

(ril (ωk)− ril (ωk) Φ1)

is the same as in (III) when xil ∈ X3 (xil, ωk), and e
N

(ril (ωk)− ril (ωk) Φ1−

z) is described in (II), when xil ∈ X2 (xil, ωk).

The second derivative of ψ (xil, ωk) is

∂2ψ

∂ (xil)
2 = − c

N
(1− αi)

(
ril (ωk)

)2
Φ11

[
J∑
j=1

xijr
i
j (ωk) , fi

]

−αig
N

(
ril (ωk)

)2
Φ11

[
J∑
j=1

xijr
i
j (ωk) , fi

]

− e

N

(
ril (ωk)

)2
Φ11

[
J∑
j=1

xijr
i
j (ωk) , fi

]
< 0,

so it is concave for xil ∈ X4 (xil, ωk).

So far, ψ (xil, ωk) is assumed to be defined for xil ∈ R. To understand the

relationship between ψ (xil, ωk) and xil ∈ D (xil), one has to take the following

steps.

(a) For the fixed ωk ∈ Ω, one can analyze wi1 (xil, ωk) and W1 (xil, ωk)− zA (xil)

and determine the values of x̃il (k), ˜̃xil (k, 1), and ˜̃xil (k, 2), if they exist.

Then, the partitions of R (X1 (xil, ωk) to X4 (xil, ωk)) are determined, and

are separated by the points x̃il (k), ˜̃xil (k, 1), and ˜̃xil (k, 2).

From its definition, ψ (xil, ωk) is continuous, but in general, not differen-

tiable at these points. For all other values of xil, it is differentiable.

(b) Determine xil, which defines D (xil) = [xil,∞). See Section 3.1.2.
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(c) (a) and (b) implies that the values of xil, x̃
i
l (k), ˜̃xil (k, 1), and ˜̃xil (k, 2),

relative to each other, are now known.

(d) One can now describe ψ (xil, ωk) for xil ∈ D (xil) = [xil,∞)∩(X1 (xil, ωk) ∪ ...

∪X4 (xil, ωk)) using information for ∂ψ
∂xil

and ∂2ψ

∂(xil)
2 described for each of

X1 (xil, ωk) to X4 (xil, ωk), as determined in (a).

It follows that in the restricted domain D (xil), ψ (xil, ωk) is continuous, and

can have at most three indifferentiable points. The meaning of an indifferen-

tiable point depend on whether it is x̃il (k), ˜̃xil (k, 1), or ˜̃xil (k, 2). Moreover, the

meaning of ˜̃xil (k, 1), and/or ˜̃xil (k, 2) depends on whether W1 (xil, ωk)− zA (xil)

is increasing or decreasing.

• To illustrate steps (a) to (d), let’s consider an example.

Let ωk ∈ Ω and values for all variables except xil be fixed. Suppose that

as a function of xil, W1 (xil, ωk) − zA (xil) is increasing (e.g. ril (ωk) ≥ z

would imply W1 − zA is increasing). As discussed previously, we also

know that wi1 (xil, ωk) is increasing, and that both wi1 and W1 − zA are

concave.

Furthermore, suppose that x̃il (k) and ˜̃xil (k, 1) satisfying wi1 (x̃il (k) , ωk) =

0 and W1

(
˜̃xil (k, 1) , ωk

)
− zA

(
˜̃xil (k, 1)

)
= 0 exists, and 0 < x̃il (k) <

˜̃xil (k, 1). Then, X4 (xil, ωk) = (−∞, x̃il (k)), X2 (xil, ωk) =
[
x̃il (k) , ˜̃xil (k, 1)

)
,

X1 (xil, ωk) =
[
˜̃xil (k, 1) ,∞

)
, and X3 (xil, ωk) = ∅.

Assume that the lower bound xil of D (xil) = [xil,∞) is positive but less

than x̃il (k).
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Then, for xil ∈ D (xil),

ψi
(
xil, ωk

)
=



c
N
×
(
wi0 − xil −

∑
j 6=l x

i
j + fi

+ (1− αi)wi1 (xil, ωk)) + 1
N
u (0) + αig

N
wi1 (xil, ωk)

+ e
N

(W1 (xil, ωk)− zA (xil)) ;

if xil ≤ xil < x̃il (k)

c
N
×
(
wi0 − xil −

∑
j 6=l x

i
j + fi

)
+ 1
N
u (wi1 (xil, ωk)) + e

N
(W1 (xil, ωk)− zA (xil)) ;

if x̃il (k) ≤ xil < ˜̃xil (k, 1)

c
N
×
(
wi0 − xil −

∑
j 6=l x

i
j + fi

)
+ 1
N
u (wi1 (xil, ωk)) ;

if ˜̃xil (k, 1) ≤ xil <∞

.

So, ψi (x
i
l, ωk) (equivalently, ψ (xil, ωk)) is continuous, but indfferentiable

at x̃il (k) and ˜̃xil (k, 1). For other xil ∈ D (xil), it is differentiable. Within

(xil, x̃
i
l (k)),

(
x̃il (k) , ˜̃xil (k, 1)

)
and

(
˜̃xil (k, 1) ,∞

)
, the function is concave.

Finally, as a convex combination of ψ (xil, ω) over all ω ∈ Ω, Ψ = E [ψ] =∑K
k=1 pkψ (xil, ωk) is continuous with indifferentiable points at xil < x̆il (1) <

... < x̆il (M) ∈ D (xil), 0 ≤ M ≤ 3K. Moreover, Ψ is concave within each

of (xil, x̆
i
l (1)),...,(x̆il (M) ,∞). When the group of banks choose xil, it has to

consider the time t = 0 plus t = 1 utilities of an average bank’s equityholders

(ψ), in expected value.
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3.3 Remarks

When a scenario ωk ∈ Ω is fixed, bank i equityholders’ dollar value of con-

sumption at time t = 0 and net worth at time t = 1 (gross value of assets -

distress cost - debt) will relate differently with respect to a change in a deci-

sion variable’s (xil or fi) value, depending on whether its bankruptcy and/or

a systemic crisis will occur at time t = 1. Therefore, the same is said about

their utility at those two points in time.

It follows that the relationship between the utility (t = 0 plus t = 1)

of an average bank and a bank i decision will have this dependence as well.

In expectation, the objective function for the group of banks, Ψ = E [ψ],

will consider this dependence over all scenarios ω ∈ Ω. Although there is

no generalization about whether the objective will increase or decrease, an

analysis with a numerical example is possible, as presented in Appendix C.
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Chapter 4

Conclusion

The recent financial crisis of 2007-2009 has again sparked the interest of the

academia and industry practitioners to study regulation of systemic risk. As

with any regulation, the entities being targeted (i.e. banks) should be given

the incentives to operate in a way that is desired by society.

Besides the traditional tool of setting capital requirements, there are also

suggestions to introduce taxation for banks so that they will consider their

impact on the banking system and the resulting effects on social welfare when

making investment and funding decisions. In particular, Acharya, Pedersen,

Philippon, and Richardson (2010) creates a setting where each bank maximizes

its shareholders’ utility while the government maximizes the sum of those over

all banks net of expected costs to social utility arising from potential bank in-

solvencies and systemic undercapitalization (crisis). The authors suggest that

each bank should pay a tax equal to its contribution to these two expected

costs. As a result of this tax, shareholders’ utility of each bank will be inter-

dependent with those of other banks. The mathematical formulation provided

by this thesis assume that it is then reasonable for them to come together as a
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group and decide on each bank’s investment and funding amounts to achieve

Pareto optimality. That is, any deviation from the group’s decision which in-

crease one bank’s utility can only occur at the sacrifice (decrease) of that for

another bank, and thus will not be allowed. A further assumption that each

bank’s utility is equally important to the group implies that it will maximize

the utility of the average bank. The resulting decisions of banks are Pareto

and socially optimal, meeting the government’s objective.
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Appendix A

MATLAB Code tax.m for Tax

Calculation

[t0,t1,ses,prob,w1,uc,sysuc] = tax(x,f,alpha,p,taubar,z,c,e,g

,r1,...,rN) will take various quantities from Chapter 2 as inputs and gen-

erate τ0, {τ̂i}i, {SESi}i, and the probability of systemic crisis at time t = 1

as outputs. Moreover, some details regarding the dollar values of time t = 1

equity ({wi1}i) and level of capitalization ({wi1 − zai}i) will be provided.

The code is a MATLAB function and can handle any finite number of

assets (J ∈ N), scenarios (K ∈ N), and banks (N ∈ N).

A.1 Inputs of tax.m

• Investment Decisions at Time t = 0

x =
(
~x1, ..., ~xN

)
is the (J × N) matrix containing the banks’ dollar

investment amounts at time t = 0. The jith entry of x corresponds to

the amount for bank i in asset j. See Section 2.2.1 for a description of
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~xi.

• Time t = 1 Debt Values

f = (f1, ..., fN) is the (1×N) vector containing the banks’ face value of

debt at time t = 1. See Section 2.2.2 for a description of fi.

• Government Support Proportions

alpha = (α1, ..., αN) is the (1 × N) vector containing proportions of

government support. See Section 2.3.3 for a description of αi.

• Probabilities

p = (p1, ..., pK) is the (1×K) vector containing probabilities for scenarios

{ω1, ..., ωK} at time t = 1.

• Other Parameters

Scalar parameters taubar (τ), z, c, e, and g, are as described in Section

2.5.

• Return Distributions

ri = (~ri (ω1) , ..., ~r
i (ωK)) is the (J × K) matrix of return distributions

for bank i. The jth row of ri is the distribution of returns of asset j for

bank i.

A total of N such matrices (one for each bank) should be entered. See

Section 2.1.1 for a description of ~ri (ω).

A.2 Outputs of tax.m

• Tax

78



– Based on the inputs to the code, the (1×N) vector t1 = (τ̂1, ..., τ̂N),

where τ̂i is defined by (2.11), is provided as an output.

– Using the results of t1, the additional dollar amount of tax charged

to each bank, calculated as t0 = τ0 =
τ−

∑N
i=1 τ̂i
N

, is provided as

an output. This amount charged to each bank ensures that the

government will collect exactly τ dollars in tax revenue at time

t = 0.

• Systemic Expected Shortfall (Measure of Systemic Risk)

The (1 × N) vector ses = (SES1, ..., SESN), where SESi is defined in

Section 2.7.2, is calculated as an output.

• Probability of Systemic Crisis at Time t = 1

prob = P [W1 < zA] =
∑K

k=1 pk × 1[W1<zA] (ωk) is the probability of a

systemic crisis at time t = 1.

• Scenario Specific Details

– w1 is a (N ×K) matrix, where the ikth entry is wi1 (ωk). See Section

2.3.2 for a description of wi1. A negative value in the ikth component

indicates that bank i is bankrupt in scenario ωk ∈ Ω.

– uc is a (N ×K) matrix, where the ikth entry is wi1 (ωk)−zai. Recall

that ai =
∑J

j=1 x
i
j.

– sysuc is a (1×K) vector, where the kth entry is W1 (ωk)−zA. No-

tice that the kth entry is equal to the sum of column k’s components

in matrix uc.
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Suppose the kth component of sysuc is negative (W1 (ωk) < zA).

That is, ωk ∈ Ω is a crisis scenario. Then, the entries in column k

of uc shows each bank’s level of time t = 1 equity in excess of its

undercapitalization threshold in scenario ωk ∈ Ω. If the ith entry of

column k is negative (wi1 < zai), bank i contributes to the systemic

crisis occurring in ωk ∈ Ω.

A.3 Code of tax.m

The calculations in tax.m make use of indicator functions. For this purpose,

the MATLAB built-in function heaviside.m
(
heaviside (a) = 1[a>0] + 0.5×

1[a=0]

)
is used to create four functions, heaviside1.m to heaviside4.m as

follows.

heaviside1 (a) = 1[a>0]

% Written by Kevin Wai, May 2014.

function Y = heaviside1(a)

% HEAVISIDE1(a) is 0 for a < 0, 1 for a > 0, and 0 for a == 0.

Y = heaviside(a)-2*heaviside(a).*heaviside(-a);

heaviside2 (a) = 1[a<0]

% Written by Kevin Wai, May 2014.

function Y = heaviside2(a)

% HEAVISIDE2(a) is 1 for a < 0, 0 for a > 0, and 0 for a == 0.
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Y = heaviside(-a)-2*heaviside(a).*heaviside(-a);

heaviside3 (a) = 1[a≥0]

% Written by Kevin Wai, May 2014.

function Y = heaviside3(a)

% HEAVISIDE3(a) is 0 for a < 0, 1 for a > 0, and 1 for a == 0.

Y = heaviside(a)+2*heaviside(a).*heaviside(-a);

heaviside4 (a) = 1[a≤0]

% Written by Kevin Wai, May 2014.

function Y = heaviside4(a)

% HEAVISIDE4(a) is 1 for a < 0, 0 for a > 0, and 1 for a == 0.

Y = heaviside(-a)+2*heaviside(a).*heaviside(-a);

Moreover, one must define the cost of financial distress function (Section

2.3.1) as a separate MATLAB function. For example, phi(a, b) = Φ (a, b) =

exp (b)× exp (−a) is specified below.

% Written by Kevin Wai, May 2014.

function Y = phi(a,b)

Y = exp(b).*exp(-a);
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end

Then, the code for tax.m is the following.

% Written by Kevin Wai, May 2014.

function [t0,t1,ses,prob,w1,uc,sysuc] = tax(x,f,alpha,p,...
taubar,z,c,...
e,g,varargin)

u = size(x);
n assets = u(1);
n banks = u(2);
n omega = length(p);

% Initialize matrices to organize input variables.

% The ikˆth entry,
% A1(i,k) = \sum {j=1}ˆ{J} x {j}ˆ{i}*r {j}ˆ{i}(\omega {k}),
% will be the gross dollar value of assets of bank i in
% scenario \omega {k} at time t = 1.
A1 = ones(n banks,n omega);

% The ith row will be F(i,:) = (f(i),f(i),...,f(i)) k
% times, where f(i) is bank i's promised payment to its
% debholders (face value of debt) at time t = 1.
F = ones(n banks,n omega);

% The ikˆth entry,
% Phi(i,k)
% = phi(\sum {j=1}ˆ{J} x {j}ˆ{i}*r {j}ˆ{i}(\omega {k}), f(i)),
% will be the cost of financial distress for bank i in
% scenario \omega {k} at time t = 1.
Phi = ones(n banks,n omega);

% The ikˆth entry, w1(i,k) = A1(i,k) - Phi(i,k) - f(i),
% will be the dollar value of equity for bank i in scenario
% \omega {k} at time t = 1.
w1 = ones(n banks,n omega);

% The ikˆth entry,
% uc(i,k) = w1(i,k) - z*\sum {j=1}ˆ{J} x {j}ˆ{i}, will be the
% level of equity for bank i in excess of its
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% undercapitalization threshold in scenario \omega {k}
% at time t = 1.
uc = ones(n banks,n omega);

% The ikˆth entry, IndW1(i,k) = Indicator(W1(i,k) < 0), will
% take a value of 1 if the bank i is bankrupt in scenario
% \omega {k} at time t = 1 (i.e. if w1(i,k) < 0).
% Otherwise, the entry is zero.
IndW1 = ones(n banks,n omega);

% Enter values for matrices initialized above, based on
% values from function inputs.

for i = 1:n banks

A1(i,:) = x(1,i)*varargin{i}(1,:);

if (n assets >= 2)

for j = 2:n assets

A1(i,:) = A1(i,:) + x(j,i)*varargin{i}(j,:);

end

end

F(i,:) = f(i)*ones(1,n omega);
Phi(i,:) = phi(A1(i,:),F(i,:));
w1(i,:) = A1(i,:) - Phi(i,:) - F(i,:);
uc(i,:) = w1(i,:) - z*sum(x(:,i))*ones(1,n omega);
IndW1(i,:) = heaviside2(w1(i,:));

end

% Create indicator variables Feasible1Ind, Feasible2Ind,...
% ,Feasible13Ind to ensure that the function inputs satisfy
% constraints specified in the government's problem (2.10)
% (and equivalently, the banks' scalarized multi-objective
% problem (2.17)).

% Check if sum(x(:,i)) >= f(i), for all banks i = 1,...,N.
Feasible1 = heaviside3(sum(x)-f);
Feasible1Ind = prod(Feasible1);

% Check if banks will invest such that
% (assets - distress cost) is non-negative in all scenarios
% at time t = 1. That is, if A(i,k) - Phi(i,k) >= 0, for all
% i = 1,...,N, and all k = 1,...,K.
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Feasible2 = heaviside3(A1 - Phi);
Feasible2Ind = prod(prod(Feasible2));

% Check if banks will take non-negative positions in asset
% investments to hold from times t = 0 to t = 1. That is,
% if x(j,i) >= 0, for all j = 1,...,J and all i = 1,...,N.
Feasible3 = heaviside3(x);
Feasible3Ind = prod(prod(Feasible3));

% Check if GROSS investment return is strictly positive.
% That is, if varargin{i}(j,k) > 0, for all i = 1,...,N,
% all j = 1,...,J, and all k = 1,...,K.
Feasible4Ind = 1;

for i = 1:n banks

Feasible4Ind = Feasible4Ind*...
prod(prod(heaviside1(varargin{i})));

end

% Check if face value of debt at time 1 is non-negative.
% That is, if f(i) >= 0, for all i = 1,...,N.
Feasible5Ind = prod(heaviside3(f));

% Check if the proportion of government support is
% between zero and one. That is, if 0 <= alpha(i) <= 1,
% for all i = 1,...,N.
Feasible6 = heaviside3(alpha).*...

heaviside4(alpha-ones(1,n banks));
Feasible6Ind = prod(Feasible6);

% Check if undercapitalization threshold is a proportion
% greater than zero and less than or equal to one.
% That is, if 0 < z <= 1.
Feasible7Ind = heaviside1(z)*heaviside4(z-1);

% Check if time t = 0 rate of utility
% c = (utility/dollar consumption) is strictly positive.
Feasible8Ind = heaviside1(c);

% Check if time t = 1 rate of disutility due to
% undercapitalization, e = (utility/dollars undercapitalized),
% is strictly positive.
Feasible9Ind = heaviside1(e);

% Check if time t = 1 rate of disutility due to government
% support in the event that a bank is bankrupt,
% g = (utility/dollars of negative equity), is
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% strictly positive.
Feasible10Ind = heaviside1(g);

% Check if the sum of all probabilities is one.
Totalp = sum(p);
Feasible11Ind = heaviside3(Totalp - 1)*...

heaviside4(Totalp - 1);

% Check if the probability of each scenario (omega) is
% strictly between zero and one.
Feasible12 = heaviside1(p).*heaviside2(p - ones(1,n omega));
Feasible12Ind = prod(Feasible12);

% Check if the total dollars of taxes that the government
% wants to collect is strictly positive.
Feasible13Ind = heaviside1(taubar);

FeasibleInd = Feasible1Ind*Feasible2Ind*Feasible3Ind...

*Feasible4Ind*Feasible5Ind*Feasible6Ind...

*Feasible7Ind*Feasible8Ind*Feasible9Ind...

*Feasible10Ind*Feasible11Ind...

*Feasible12Ind*Feasible13Ind;

% If function inputs are valid
% (satisfy all required constraints), then the tax calculation
% proceeds. Otherwise, an error message will be displayed.

if FeasibleInd == 1

sysuc = sum(uc);

IndUC = heaviside2(sysuc + 0.0001);

t1 = ones(1,n banks);

for i = 1:n banks

t1(i) = ((-alpha(i)*g/c)*sum(p.*w1(i,:).*IndW1(i,:))...
+ (-e/c)*sum(p.*uc(i,:).*IndUC));

end

t0 = ((taubar - sum(t1))/n banks);

ses = ones(1,n banks);

prob = sum(p.*IndUC);

for i = 1:n banks
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ses(i) = -(sum(p.*uc(i,:).*IndUC))/prob;

end

else

error('Inputs are invalid.')

end

end
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Appendix B

MATLAB Code

socopt patternsearch.m for

Solving Problems of the

Government and the Group of

Banks

[optobj,x,f,t0,t1,ses,prob,w1,uc,sysuc]=socopt patternsearch(

alpha,wbar,p,taubar,z,c,e,g,r1,...,rN) will determine the optimal solu-

tion
(
x = x̃, f = f̃

)
to the government’s problem (2.10) for the model defined

by values of alpha, wbar, p, taubar, z, c, e, g, r1, ..., rN, which are parame-

ters described in Chapter 2. Outputs of tax.m, as well as the objective value

of problem (2.10), will be determined for
(
x̃, f̃

)
.

Because the objective function F of problem (2.10) have indifferentiable

points,
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socopt patternsearch.m will use patternsearch.m, a built-in function in

the Global Optimization Toolbox of MATLAB, to obtain a solution. As the

name suggests, patternsearch.m uses a metaheuristic method known as “pat-

tern search” to determine a solution in an ad-hoc manner. According to MAT-

LAB’s documentation, patternsearch.m can find an optimal solution even if

the objective function is discontinuous or indifferentiable.

As with tax.m, socopt patternsearch.m can handle any finite number of

assets (J ∈ N), scenarios (K ∈ N) and banks (N ∈ N).

B.1 Inputs of socopt patternsearch.m

• Endowment at Time t = 0

wbar =
(
w1

0, ..., w
N
0

)
is the (1×N) vector containing the dollar value

of endowment for the banks’ equityholders at time t = 0, as defined in

Section 2.5.1.

• Descriptions for alpha, p, taubar, z, c, e, g, r1, ..., rN are the same as

those in Section A.1 for tax.m.

B.2 Outputs of socopt patternsearch.m

• Optimal Investment Decisions at Time t = 0

x = x̃ =
(
~̃x1, ..., ~̃xN

)
is the (J ×N) matrix containing the banks’ dollar

amounts of investment at time t = 0 which is optimal for the govern-

ment’s problem (2.10) defined by input parameters in Section B.1. The

jith entry of x̃ corresponds to the amount for bank i in asset j.
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• Optimal Time t = 1 Debt Values

f = f̃ =
(
f̃1, ..., f̃N

)
is the (1×N) vector containing the banks’ face

value of debt (promised dollar payment to debtholders) which is optimal

for the government (2.10), when parameters of the model are prescribed

as inputs in Section B.1.

• Optimal Objective Value for the Government

optobj = F
(
x̃, f̃

)
is the objective value (in utility) of the government’s

problem (2.10) at the optimal solution
(
x̃, f̃

)
.

As discussed in Section 2.8.3, the solution to problem (2.17) for the

group of banks,
(
x̂, f̂

)
, coincides with that of the government’s prob-

lem,
(
x̃, f̃

)
. The optimal objective value of problem (2.17) will be

1
N

∑N
i=1 F̂i

(
x̂, f̂

)
= 1

N

∑N
i=1 F̂i

(
x̃, f̃

)
= 1

N

(
F
(
x̃, f̃

)
+ cτ

)
.

• The outputs t0, t1, ses, prob, w1, uc, sysuc as described in Section A.2,

are determined at the optimal solution
(
x̃, f̃

)
of (2.10) (equivalently, of

(2.17)) when the model is prescribed with the inputted parameter values

of Section B.1.

B.3 Code of socopt patternsearch.m

Note that functions heaviside1.m, heaviside2.m, and phi.m as defined in

Section A.3, as well as tax.m are used by socopt patternsearch.m.

Moreover, one must also define the utility function applicable to bank equi-

tyholders at time t = 1 (Section 2.3.5) as a MATLAB function. The function

u(a) = a+ 1− exp (−a) is specified below.
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% Written by Kevin Wai, May 2014.

function Y = u(a)

Y = a + 1 - exp(-a);

end

Then, the code for socopt patternsearch.m is as follows.

% Written by Kevin Wai, May 2014.

function [optobj,x,f,t0,t1,ses,prob,w1,uc,sysuc]...
= socopt patternsearch(alpha,wbar,p,taubar,z,...

c,e,g,varargin)

% Handles for objective and constraint functions for the problem
% to be solved by patternsearch.m (defined below) are created.

ObjectiveFunction = @social objective;
ConstraintFunction = @social constraint;

v = size(varargin{1});
num assets = v(1);
num omega = v(2);
num banks = length(alpha);

Y0 = zeros(1,num banks*(num assets + 1));
LB = zeros(1,num banks*(num assets + 1));
x = zeros(num assets,num banks);
f = zeros(1,num banks);

options = psoptimset('CompletePoll','on');

% The built-in function patternsearch.m (from Global
% Optimization Toolbox) is called to solve a minimization
% problem with objective function equal to the negative of
% that for problem (2.10), and with the same constraints.
% The optimal objective value for problem (2.10) (optobj)
% is thus the negative of that obtained by
% patternsearch.m (obj), but the solution (soln) would be
% the same.
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[soln,obj] = patternsearch(ObjectiveFunction,Y0,[],[],[],[],...
LB,[],ConstraintFunction,options);

optobj = -1*obj;

% Populating matrix x and vector f with values of the optimal
% solution.

for l = 1:num banks

for m = 1:num assets

x(m,l) = soln((num assets + 1)*(l - 1) + m);

end

f(l) = soln((num assets + 1)*l);

end

% With the optimal solution entered into x and f, the
% function tax.m is called to determine the taxes, ses,
% etc., at optimality.

[t0,t1,ses,prob,w1,uc,sysuc] = tax(x,f,alpha,p,taubar,z,c,...
e,g,varargin{:});

% Defining the objective function to be used by
% patternsearch.m (called above), which is the negative
% of that in the government's problem (2.10).
% The reason is that patternsearch.m is designed to solve
% a minimization problem, and (2.10) is a maximization problem.
%
% The variable y is a vector with num banks*(num assets + 1)
% components. For example, suppose there are two banks and
% two assets, then y will have six components, where y(1) is
% for x {1}ˆ{1} (bank 1 asset 1), y(2) is for
% x {2}ˆ{1} (bank 1 asset 2), y(3) is for f {1}, y(4) is for
% x {1}ˆ{2} (bank 2 asset 1), y(5) is for
% x {2}ˆ{2} (bank 2 asset 2), and y(6) is for f {2}.

function objfunc = social objective(y)

invdollars = ones(num assets,num banks);
facedebt = ones(num banks,num omega);
grossassets = ones(num banks,num omega);
distress = ones(num banks,num omega);
postdistressassets = ones(num banks,num omega);
equity = ones(num banks,num omega);
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undercap = ones(num banks,num omega);
indnegequity = ones(num banks,num omega);
indposequity = ones(num banks,num omega);
utility = ones(num banks,num omega);

for i = 1:num banks

for j = 1:num assets

invdollars(j,i)...
= y((num assets + 1)*(i - 1) + j);

end

facedebt(i,:) = y((num assets + 1)*i)...

*ones(1,num omega);

end

for i = 1:num banks

grossassets(i,:) = invdollars(1,i)...

*varargin{i}(1,:);

if (num assets >= 2)

for j = 2:num assets

grossassets(i,:) = grossassets(i,:)...
+ invdollars(j,i)...

*varargin{i}(j,:);

end

end

distress(i,:) = phi(grossassets(i,:),facedebt(i,:));
postdistressassets(i,:) = grossassets(i,:)...

- distress(i,:);
equity(i,:) = postdistressassets(i,:)...

- facedebt(i,:);
undercap(i,:) = equity(i,:)...

- z*sum(invdollars(:,i))...

*ones(1,num omega);
indnegequity(i,:) = heaviside2(equity(i,:));
indposequity(i,:) = heaviside1(equity(i,:));
utility(i,:) = u(equity(i,:).*indposequity(i,:));

end

92



sysundercap = undercap(1,:);

if (num banks >= 2)

for i = 2:num banks

sysundercap = sysundercap + undercap(i,:);

end

end

indcrisis = heaviside2(sysundercap);

BankObj = ones(1,num banks);

for i = 1:num banks

BankObj(i) = c*(wbar(i) - sum(invdollars(:,i))...
+ alpha(i)*facedebt(i,1)...
+ (1 - alpha(i))...

*sum(p.*min(facedebt(i,:),...
postdistressassets(i,:))))...

+ sum(p.*utility(i,:))...
+ alpha(i)*g...

*sum(p.*equity(i,:).*...
indnegequity(i,:))...

+ e*sum(p.*undercap(i,:).*indcrisis);

end

objfunc = c*taubar - sum(BankObj);

end

% Defining the inequality constraint functions in the
% government's problem (2.10). The vector y have
% num banks*(num assets + 1) components, and have the same
% representation as described for the objective function
% above (social objective(y)).
%
% As there are (num banks*num omega + num banks) constraints
% to the problem (2.10), ineqcons will be a row vector
% consisting of this number of components. A constraint of
% the form (h(y) <= constant) will be entered as
% (h(y) - constant) into a component of ineqcons.

function [ineqcons,eqcons] = social constraint(y)
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Invdollars = ones(num assets,num banks);
Facedebt = ones(num banks,num omega);
Grossassets = ones(num banks,num omega);
Distress = ones(num banks,num omega);
Postdistressassets = ones(num banks,num omega);

for i = 1:num banks

for j = 1:num assets

Invdollars(j,i)...
= y((num assets + 1)*(i - 1) + j);

end

Facedebt(i,:) = y((num assets + 1)*i)...

*ones(1,num omega);

end

for i = 1:num banks

Grossassets(i,:) = Invdollars(1,i)...

*varargin{i}(1,:);

if (num assets >= 2)

for j = 2:num assets

Grossassets(i,:) = Grossassets(i,:)...
+ Invdollars(j,i)...

*varargin{i}(j,:);

end

end

Distress(i,:) = phi(Grossassets(i,:),Facedebt(i,:));
Postdistressassets(i,:) = Grossassets(i,:)...

- Distress(i,:);

end

ineqcons = zeros(1,num banks*num omega + num banks);

for i = 1:num banks

ineqcons(((i - 1)*num omega + 1):(i*num omega))...
= -1*Postdistressassets(i,:);
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end

for i = 1:num banks

ineqcons(num banks*num omega + i)...
= Facedebt(i,1) - sum(Invdollars(:,i));

end

eqcons = [];

end
end
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Appendix C

Numerical Example

In this appendix, we will consider a numerical example and utilize the MAT-

LAB code socopt patternsearch.m from Appendix B to determine the so-

cially optimal solution
(

i.e.
(
x̃, f̃

)
for problem (2.10), or equivalently, the

solution
(
x̂, f̂

)
to (2.17), the scalarized multi-bank problem in the presence

of taxes
)

. This will be presented in Section C.1. Then, in Section C.2,

we will verify its optimality for problem (2.17) by considering the scalar-

ized multi-bank objective Ψ = 1
N

∑N
i=1 F̂i (see Section 3.2) as a univariate

function of each decision variable, while others take values of the optimal so-

lution. For example, we will investigate Ψ = Ψ (f1), while other decisions(
{fi}i6=1 ,

{
xij
}
i∈{1,...,N},j∈{1,...,J}

)
are fixed with numerical quantities of the so-

lution from Section C.1. This process will be done by graphically studying

{ψ (•, ωk)}k∈{1,...,K} and Ψ (•), where Ψ (•) = E [ψ] =
∑K

k=1 pk × ψ (•, ωk).

Economic interpretations of {ψ (•, ωk)}k∈{1,...,K} based on Sections 3.2.1 and

3.2.2 will also be provided for selected decision variables 1.

The discussions to follow are based on the model with N = 2 banks, J = 2

1This is not done for all variables due to the repetitive nature of explanations.
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assets, and K = 2 scenarios, along with the following functions and parameter

values.

• u
(
wi11[wi1>0]

)
= wi11[wi1>0] + 1− exp

(
−wi11[wi1>0]

)
• Φ [xi1r

i
1 (ω) + xi2r

i
2 (ω) , fi] = exp {fi} exp {− (xi1r

i
1 (ω) + xi2r

i
2 (ω))}

• p1 = p2 = 0.5

• α1 = α2 = 0.8

• w1
0 = w2

0 = 200

• r11 (ω1) = r11 (ω2) = 1

r12 (ω1) = 0.5, r12 (ω2) = 2

• r21 (ω1) = r21 (ω2) = 1

r22 (ω1) = 2, r22 (ω2) = 1

• τ = 100, c = 1.7, e = 0.2, g = 0.625, z = 0.6

C.1 Optimal Solution

By using socopt patternsearch.m as described in Appendix B, an optimal

solution for the government problem (2.10) is:

• x̃ =

 x̃11 x̃21
x̃12 x̃

2
2

 =

 0 0

352 711


• f̃ =

(
f̃1, f̃2

)
= (176, 709)
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with corresponding objective value F = 819.0413.

As discussed in Section 2.8.3, the problem (2.17) that banks collectively

solve will have the same solution, but with optimal objective value F+cτ
N

=

819.0413+(1.7)(100)
2

= 494.5207.

Moreover, the following results are obtained.

• t0 = τ0 = 46.7519

• t1 = (τ̂1, τ̂2) = (−18.4882, 24.9844)

• ses = (SES1, SES2) = (−316.8, 424.7353)

• prob = P [W1 < zA] = 0.5

• w1 =

w1
1 (ω1) w

1
1 (ω2)

w2
1 (ω1) w

2
1 (ω2)

 =

−1 528

713 1.8647



• uc =

w1
1 (ω1)− za1 w1

1 (ω2)− za1

w2
1 (ω1)− za2 w2

1 (ω2)− za2

 =

−212.2 316.8

286.4 −424.7


• sysuc = [W1 (ω1)− zA,W1 (ω2)− zA] = [74.2,−107.9]

From sysuc, ω2 ∈ Ω is a crisis scenario, with W1 (ω2) − zA = −107.9.

Since p1 = p2 = 0.5, P [W1 < zA] = 0.5. From uc, the undercapitalization

of bank 2 (w2
1 (ω2)− za2 = −424.7) caused a crisis to occur in ω2 ∈ Ω. Bank

1 is well-capitalized (w1
1 (ω2)− za1 = 316.8) in this case, so it actually makes

aggregate undercapitalization (negativity of W1 − zA) less severe.

Notice that in ω1 ∈ Ω, even though bank 1 is undercapitalized,

(w1
1 (ω1)− za1 = −212.2), bank 2 is well-capitalized to a level such that a

crisis does not occur. That is, w2
1 (ω1)− za2 = 286.4 > 0 and W1 (ω1)− zA =∑2

i=1 (wi1 (ω1)− zai) = 74.2 > 0.
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The values in ses (SES1 = −316.8 < 424.7356 = SES2) shows that bank 2

is systemically riskier than bank 1. The reason is that bank 2 is, in expectation,

undercapitalized during crisis scenarios, while bank 1 is not.

In w1, we see that the only case of bankruptcy occurs in ω1 ∈ Ω, for bank

1 (w1
1 (ω1) < 0).

Finally, the tax bill for bank 1 will be τ0+ τ̂1 = 46.7519−18.4882 = 28.2637

and that for bank 2 will be τ0+ τ̂2 = 46.7519+24.9844 = 71.7363. Bank 2 pays

a higher tax due to its higher level of systemic risk (SES2), which resulted

from it being undercapitalized to the extent that a crisis occurs in ω2 ∈ Ω. On

the other hand, bank 1 did not cause a crisis to materialize in any scenario,

and it reduced the severity of the crisis in ω2 ∈ Ω. Therefore, its tax bill is

lower.

C.2 Objective Function at Optimality

Recall from Section 3.2 the notation Ψ = 1
2

∑2
i=1 F̂i for the objective function

of problem (2.17) that banks collectively solve. This section will study the

relationship between Ψ and f1, f2, x
1
1, x

1
2, x

2
1, and x22 individually at the

optimal solution obtained in Section C.1.

C.2.1 Relationship between Ψ and f1

Consider Ψ as a function of f1 only, with other variables (f2, x
1
1, x

1
2, x

2
1, x

2
2)

taking values of the optimal solution in Section C.1.

Following the steps of Section 3.1.1, the domain of f1 is determined to be

D (f1) = [0, 181.17].

Recall from Section 3.2.1 the function ψ (f1, ωk), which is the sum of time
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t = 0 and t = 1 utilities of an average bank’s equityholders when taxes are

considered, if ωk ∈ Ω is to occur for certain. We shall consider functions

ψ (f1, ω1) and ψ (f1, ω2) in order to determine the relationship between Ψ =

E [ψ] and f1.

1. Function ψ (f1, ω1)

The time t = 1 equity for bank 1 is w1
1 (f1, ω1) = 176−exp (f1 − 176)−f1,

and f̃ 1
1 ≈ 175.43 is such that w1

1

(
f̃ 1
1 , ω1

)
= 0.

Moreover, the time t = 1 aggregate level of bank equity in excess of the

undercapitalization threshold is W1 (f1, ω1)− zA = 1256
5
− exp (−713)−

exp (f1 − 176)− f1, and ˜̃f 1
1 ≈ 180.26 is such that W1

(
˜̃f 1
1 , ω1

)
− zA = 0.

This situation
(
f̃ 1
1 <

˜̃f 1
1

)
coincides with that in (I) under the discussion

of Section 3.2.1. Since w1
1 (f1, ω1) and W1 (f1, ω1) − zA are decreasing

and concave in f1, with restriction to f1 ∈ D (f1), ψ (f1, ω1) is as follows,

with the corresponding plot in Figure C.2.1.1. Note that for f1 > 175.43,

bank 1 is bankrupt (w1
1 < 0) and for f1 > 180.26, the system is under-
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Figure C.2.1.1: ψ (f1, ω1), the sum
of time t = 0 and t = 1 utilities of
an average bank’s equityholders in
scenario ω1, for f1 ∈ D (f1)

capitalized (W1 < zA), in scenario ω1 ∈ Ω.

ψ (f1, ω1) =



7
20
f1 − 1

2
exp {exp (−713)− 713} − 1

2
exp (−713)

−1
2

exp {f1 + exp (f1 − 176)− 176}

−1
2

exp (f1 − 176) + 2423
5

;

if 0 ≤ f1 ≤ 175.43

43
100
f1 − 1

2
exp {exp (−713)− 713}

−1
2

exp (−713)− 21
50

exp (f1 − 176) + 23501
50

;

if 175.43 < f1 ≤ 180.26

33
10
f1 − 1

2
exp {exp (−713)− 713}

−3
5

exp (−713)− 13
25

exp (f1 − 176) + 24757
50

;

if 180.26 < f1 ≤ 181.17

• For 0 ≤ f1 ≤ 175.43, bank 1 is not bankrupt and there is no crisis

for ω1 ∈ Ω. That is, w1
1 (f1, ω1) ≥ 0 and W1 (f1, ω1)− zA ≥ 0.

As described in the discussion of Section 3.2.1, (I), (i), an increase

in f1 will have an increasing effect on ψ due to an increased amount

of debt funding provided to bank 1 at time t = 0.
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Figure C.2.1.2: ψ (f1, ω1), the sum
of time t = 0 and t = 1 utilities of
an average bank’s equityholders in
scenario ω1, for 0 ≤ f1 ≤ 175.43

However, there will also be a decreasing effect on ψ due to reduced

equity w1
1 and hence utility of its holders at time t = 1. From the

plot in Figure C.2.1.2, for 0 ≤ f1 ≤ 174.7, the benefit to an average

bank due to increased debt funding for bank 1 outweighs the cost

of its decreased equity at time t = 1, because ψ is increasing. For

174.7 < f1 ≤ 175.43, ψ is decreasing, so the opposite holds (i.e.

the cost to an average bank due to decreased time t = 1 equity for

bank 1 outweighs the benefits of its increased debt funding at time

t = 0).

• For 175.43 < f1 ≤ 180.26, bank 1 is bankrupt but there is no crisis

for ω1 ∈ Ω: w1
1 (f1, ω1) < 0 and W1 (f1, ω1) − zA ≥ 0. From the

discussion of Section 3.2.1, (I), (ii), an increase in f1 may increase

or decrease debt funding provided to bank 1 at time t = 0 and

hence may increase or decrease ψ. However, the taxes for bank 1

will definitely increase, because a higher f1 reduces w1
1 to become

even more negative, and the government has to provide more funds

to compensate debtholders in bank 1’s bankruptcy. The result is

a decreasing effect on ψ, because higher taxes reduce the dollars

available for bank 1 equityholders to consume, which lower their
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Figure C.2.1.3: ψ (f1, ω1), the sum
of time t = 0 and t = 1 utilities
of an average bank’s equityholders
in scenario ω1, for 175.43 < f1 ≤
180.26

Figure C.2.1.4: ψ (f1, ω1), the sum
of time t = 0 and t = 1 utilities
of an average bank’s equityholders
in scenario ω1, for 180.26 < f1 ≤
181.17

utility (and that of an average bank) at time t = 0. From Figure

C.2.1.3, the combination of the two effects will increase ψ when

175.43 < f1 ≤ 176 and decrease ψ when 176 < f1 ≤ 180.26 for our

example.

Note that since w1
1 (f1, ω1) < 0 in this region of f1, the time t = 1

utility of bank 1’s equityholders (and those of the average bank) is

unaffected because u
(
w1

11[w1
1>0]

)
= u (0).

• We have just seen that ψ will decrease in f1 when f1 > 176. Recall

that bank 1 is bankrupt in this region of f1. Now, when 180.26 <

f1 ≤ 181.17, bank 1 is bankrupt and there is a systemic crisis for

ω1 ∈ Ω. As per the discussion of Section 3.2.1, (I), (iii), an increase

in f1 will further increase taxes for the average bank, reducing its

time t = 0 utility and thus ψ. Therefore, ψ will decrease in f1 for

103



the example here, a shown in Figure C.2.1.4.

Again, since bank 1 is bankrupt (w1
1 < 0) in this region of f1, the

time t = 1 utility of its equityholders (and those of an average bank)

are unaffected.

2. Function ψ (f1, ω2)

The time t = 1 equity for bank 1 is w1
1 (f1, ω2) = 704−exp (f1 − 704)−f1,

and f̃ 2
1 ≈ 703.5 is such that w1

1

(
f̃ 2
1 , ω2

)
= 0.

The time t = 1 aggregate level of bank equity in excess of the undercapi-

talization threshold is W1 (f1, ω2)−zA = 341
5
−exp (−2)−exp (f1 − 704)−

f1 and ˜̃f 2
1 ≈ 68.5 is such that W1

(
˜̃f 2
1 , ω2

)
− zA = 0.

This situation
(
f̃ 2
1 >

˜̃f 2
1

)
coincides with that in (II) under the discus-

sion of Section 3.2.1. Again, since w1
1 (f1, ω2) and W1 (f1, ω2) − zA are

decreasing and concave in f1, with restriction to f1 ∈ D (f1), ψ (f1, ω2)

is as follows, with the corresponding plot in Figure C.2.1.5. Notice that

for f1 > 68.5, the system is in crisis (W1 < zA), and for f1 > 703.5 bank

1 is bankrupt (w1
1 < 0) in scenario ω2 ∈ Ω.
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Figure C.2.1.5: ψ (f1, ω2), the sum
of time t = 0 and t = 1 utilities of
an average bank’s equityholders in
scenario ω2, for f1 ∈ D (f1)

ψ (f1, ω2) =



7
20
f1 − 1

2
exp {exp (−2)− 2} − 1

2
exp (−2)

−1
2

exp {exp (f1 − 704) + f1 − 704} − 1
2

exp (f1 − 704)

+3931
10

;

if 0 ≤ f1 ≤ 68.5

1
4
f1 − 1

2
exp {exp (−2)− 2} − 3

5
exp (−2)

−1
2

exp {exp (f1 − 704) + f1 − 704} − 3
5

exp (f1 − 704)

+9998
25

;

if 68.5 < f1 ≤ 181.17

• When 0 ≤ f1 ≤ 68.5, bank 1 is not bankrupt and there is no

systemic crisis for ω2 ∈ Ω. The behaviour of ψ then depends on

bank 1’s tradeoff between increased debt funding at time t = 0 and

reduced equity at time t = 1, when f1 increases. This is explained

in the discussion of Section 3.2.1, (II), (i). As shown in Figure

C.2.1.6, ψ is increasing. This means that the utility benefit to

equityholders of bank 1 due to increased debt funding outweighs

the loss in utility due to reduced time t = 1 equity w1
1, for all
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Figure C.2.1.6: ψ (f1, ω2), the sum
of time t = 0 and t = 1 utilities of
an average bank’s equityholders in
scenario ω2, for 0 ≤ f1 ≤ 68.5

Figure C.2.1.7: ψ (f1, ω2), the sum
of time t = 0 and t = 1 utilities of
an average bank’s equityholders in
scenario ω2, for 68.5 < f1 ≤ 181.17

0 ≤ f1 ≤ 68.5. Therefore, the same can be said for the utility of an

average bank’s equityholders, as captured by ψ.

• For 68.5 < f1 ≤ 181.17, bank 1 is not bankrupt, but there is a

systemic crisis for ω2 ∈ Ω. Similar to the case when 0 ≤ f1 ≤ 68.5,

when f1 increases, more debt funding for bank 1 will be a bene-

fit, but a reduced w1
1 will be a cost to the utility of an average

bank. However, since the system is undercapitalized (W1 < zA),

and W1 (f1, ω2) − zA decreases in f1, an average bank will expe-

rience a higher tax bill as f1 increases. This translates into an

additional utility cost as well. These explanations are provided in

the discussion of Section 3.2.1, (II), (ii). By Figure C.2.1.7, ψ is in-

creasing for all 68.5 < f1 ≤ 181.17, so the benefit due to increased

debt funding for bank 1 outweighs both costs for f1 in this region.
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Finally, the objective function of problem (2.17), Ψ (f1) = E [ψ]

= 0.5ψ (f1, ω1) + 0.5ψ (f1, ω2), is:

Ψ (f1) =



7
20
f1 − 1

4
exp {exp (−2)− 2} − 1

4
exp {exp (−713)− 713}

−1
4

exp (−2)− 1
4

exp (−713)− 1
4

exp {exp (f1 − 176) + f1 − 176}

−1
4

exp {exp (f1 − 704) + f1 − 704} − 1
4

exp (f1 − 176)

−1
4

exp (f1 − 704) + 8777
20

;

if 0 ≤ f1 ≤ 68.5

3
10
f1 − 1

4
exp {exp (−2)− 2} − 1

4
exp {exp (−713)− 713}

− 3
10

exp (−2)− 1
4

exp (−713)− 1
4

exp {exp (f1 − 176) + f1 − 176}

−1
4

exp {exp (f1 − 704) + f1 − 704} − 1
4

exp (f1 − 176)

− 3
10

exp (f1 − 704) + 22113
50

;

if 68.5 < f1 ≤ 175.43

17
50
f1 − 1

4
exp {exp (−2)− 2} − 1

4
exp {exp (−713)− 713}

− 3
10

exp (−2)− 1
4

exp (−713)− 1
4

exp {exp (f1 − 704) + f1 − 704}

− 21
100

exp (f1 − 176)− 3
10

exp (f1 − 704) + 43497
100

;

if 175.43 < f1 ≤ 180.26

29
100
f1 − 1

4
exp {exp (−2)− 2} − 1

4
exp {exp (−713)− 713}

− 3
10

exp (−2)− 3
10

exp (−713)

−1
4

exp {exp (f1 − 704) + f1 − 704}

−13
50

exp (f1 − 176)− 3
10

exp (f1 − 704) + 44753
100

;

if 180.26 < f1 ≤ 181.17

,
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Figure C.2.1.8: Ψ (f1), the sum of
time t = 0 utility and t = 1 ex-
pected utility of an average bank’s
equityholders, for f1 ∈ D (f1)

with the corresponding plot in Figure C.2.1.8.

The plot of Ψ shows that the maximum is obtained at around f1 = 176,

which coincides with that of the optimal solution in Section C.1.

C.2.2 Relationship between Ψ and f2

Consider Ψ as a function of f2 only, with other variables taking values of the

optimal solution in Section C.1.

Following the steps of Section 3.1.1, the domain of f2 is D (f2) = [0, 711].

As in Section C.2.1, we shall consider ψ (f2, ω1) and ψ (f2, ω2) in order to

understand how Ψ = E [ψ] depends on f2.

Using results of Section 3.2.1, the explanations for the behaviour of ψ (f2, ω1)

and ψ (f2, ω2) can be done similarly as for ψ (f1, ω) in Section C.2.1. There-

fore, only the plots and expressions of ψ (f2, ω1), ψ (f2, ω2), and Ψ (f2) will be

provided below.

One can observe that Ψ (f2) reaches a maximum at about f2 = 709, which

is that of the optimal solution.

1. Function ψ (f2, ω1)

The time t = 1 equity for bank 2 is w2
1 (f2, ω1) = 1422−exp (f2 − 1422)−

f2, and f̃ 1
2 ≈ 1421.5 is such that w2

1

(
f̃ 1
2 , ω1

)
= 0.
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Figure C.2.2.1: ψ (f2, ω1), the sum
of time t = 0 and t = 1 utilities of
an average bank’s equityholders in
scenario ω1, for f2 ∈ D (f2)

Moreover, the time t = 1 aggregate bank equity in excess of the under-

capitalization threshold is W1 (f2, ω1)−zA = 3916
5
−exp (f2 − 1422)−f2,

and ˜̃f 1
2 ≈ 783.2 is such that W1

(
˜̃f 1
2 , ω1

)
− zA = 0.

This situation
(
f̃ 1
2 >

˜̃f 1
2

)
coincides with that in (II) under the discus-

sion of Section 3.2.1. However, when attention is restricted to D (f2) =

[0, 711], ψ (f2, ω1) can only take the following form, because f̃ 1
2 ,

˜̃f 1
2 /∈

D (f2) (i.e. bank 2 is not bankrupt and there is no systemic crisis

in ω1 ∈ Ω, for all f2 ∈ D (f2)), and both functions w2
1 (f2, ω1) and

W1 (f2, ω1) − zA are decreasing and concave. The plot of ψ (f2, ω1) is

provided in Figure C.2.2.1.

ψ (f2, ω1) =
7

20
f2 −

1

2
exp {exp (f2 − 1422) + f2 − 1422}

− 1

2
exp (f2 − 1422) +

29713

100

2. Function ψ (f2, ω2)

The time t = 1 equity for bank 2 is w2
1 (f2, ω2) = 711−exp (f2 − 711)−f2,

and f̃ 2
2 ≈ 710.5 is such that w2

1

(
f̃ 2
2 , ω2

)
= 0.

The time t = 1 aggregate bank equity in excess of the undercapitalization
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Figure C.2.2.2: ψ (f2, ω2), the sum
of time t = 0 and t = 1 utilities of
an average bank’s equityholders in
scenario ω2, for f2 ∈ D (f2)

threshold is W1 (f2, ω2)− zA = 3006
5
− exp (−528)− exp (f2 − 711)− f2,

and ˜̃f 2
2 ≈ 601 is such that W1

(
˜̃f 2
2 , ω2

)
− zA = 0.

This situation
(

˜̃f 2
2 < f̃ 2

2

)
coincides with that of (II) under the discussion

of Section 3.2.1.

Since w2
1 (f2, ω2) and W1 (f2, ω2) − zA are decreasing and concave, for

f2 ∈ D (f2), ψ (f2, ω2) is as follows, with the corresponding plot in Fig-

ure C.2.2.2. Moreover, for f2 > 601, the system is undercapitalized

(W1 < zA) and for f2 > 710.5, bank 2 is bankrupt (w2
1 < 0) in ω2 ∈ Ω.
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ψ (f2, ω2) =



7
20
f2 − 1

2
exp {exp (−528)− 528} − 1

2
exp (−528)

−1
2

exp {exp (f2 − 711) + f2 − 711} − 1
2

exp (f2 − 711)

+4131
20

;

if 0 ≤ f2 ≤ 601

1
4
f2 − 1

2
exp {exp (−528)− 528} − 3

5
exp (−528)

−1
2

exp {exp (f2 − 711) + f2 − 711} − 3
5

exp (f2 − 711)

+26667
100

;

if 601 < f2 ≤ 710.5

33
100
f2 − 1

2
exp {exp (−528)− 528} − 3

5
exp (−528)

−13
25

exp (f2 − 711) + 20929
100

;

if 710.5 < f1 ≤ 711

Finally, the objective function of problem (2.17), Ψ (f2) = E [ψ]

= 0.5ψ (f2, ω1) + 0.5ψ (f2, ω2), is as follows, with the corresponding plot in

Figure C.2.2.3.
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Figure C.2.2.3: Ψ (f2), the sum of
time t = 0 utility and t = 1 ex-
pected utility of an average bank’s
equityholders, for f2 ∈ D (f2)

Ψ (f2) =



7
20
f2 − 1

4
exp {exp (−528)− 528} − 1

4
exp (−528)

−1
4

exp {exp (f2 − 711) + f2 − 711}

−1
4

exp {exp (f2 − 1422) + f2 − 1422} − 1
4

exp (f2 − 711)

−1
4

exp (f2 − 1422) + 6296
25

;

if 0 ≤ f2 ≤ 601

3
10
f2 − 1

4
exp {exp (−528)− 528} − 3

10
exp (−528)

−1
4

exp {exp (f2 − 711) + f2 − 711}

−1
4

exp {exp (f2 − 1422) + f2 − 1422} − 3
10

exp (f2 − 711)

−1
4

exp (f2 − 1422) + 2819
10

;

if 601 < f2 ≤ 710.5

17
50
f2 − 1

4
exp {exp (−528)− 528} − 3

10
exp (−528)

−1
4

exp {exp (f2 − 1422) + f2 − 1422} − 13
50

exp (f2 − 711)

−1
4

exp (f2 − 1422) + 25321
100

;

if 710.5 < f1 ≤ 711
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C.2.3 Relationship between Ψ and x12

Consider Ψ as a function of x12 (quantity of dollars invested by bank 1 in asset

2) only, with other variables taking values of the optimal solution in Section

C.1.

Following the steps of Section 3.1.2, the domain of x12 is D (x12) =

[341.7183,∞).

Recall from Section 3.2.2 the function ψ (x12, ωk), which is the time t = 0

plus t = 1 utilities of an average bank’s equityholders, if ωk ∈ Ω occurs with

certainty. The following discussion will consider ψ (x12, ω1) and ψ (x12, ω2) in

order to understand the relationship between Ψ = E [ψ] and x12.

1. Function ψ (x12, ω1)

The time t = 1 equity of bank 1 is w1
1 (x12, ω1) = 1

2
x12−exp

(
−1

2
x12 + 176

)
−

176 and x̃12 (1) ≈ 353 is such that w1
1 (x̃12 (1) , ω1) = 0.

∂w1
1

∂x12
= 1

2
+

1
2

exp
(
−1

2
x12 + 176

)
> 0 implies that w1

1 (x12, ω1) is increasing. Hence,

for x12 < 353, bank 1 is bankrupt (w1
1 < 0) in ω1 ∈ Ω.

The time t = 1 aggregate level of bank equity in excess of the under-

capitalization threshold is W1 (x12, ω1) − zA (x12) = 552
5
− exp (−713) −

exp
(
−1

2
x12 + 176

)
− 1

10
x12 with derivative ∂[W1−zA]

∂x12
= 1

2
exp

(
−1

2
x12 + 176

)
−

1
10

, which is positive for x12 < 355.22 and is negative for x12 > 355.22.

That is, W1 (x12, ω1)−zA (x12) increases for x12 < 355.22 and decreases for

x12 > 355.22. Moreover, ˜̃x12 (1, 1) ≈ 343.35 and ˜̃x12 (1, 2) ≈ 1100 are values

of x12 such that W1

(
˜̃x12 (1, 1) , ω1

)
− zA

(
˜̃x12 (1, 1)

)
= W1

(
˜̃x12 (1, 2) , ω1

)
−

zA
(
˜̃x12 (1, 2)

)
= 0. Therefore, for x12 ∈ [0, 343.35)∪(1100,∞], the system

is in crisis (W1 < zA) in ω1 ∈ Ω.
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Restricting to D (x12) = [341.7183,∞), ψ (x12, ω1) is as follows, with the

corresponding plot in Figure C.2.3.1

ψ
(
x12, ω1

)
=



39101
50
− 1

2
exp {exp (−713)− 713}

−3
5

exp (−713)− 13
25

exp
(
176− 1

2
x12
)
− 13

20
x12;

if 341.7183 ≤ x12 < 343.35

38549
50
− 1

2
exp {exp (−713)− 713}

−1
2

exp (−713)− 21
50

exp
(
176− 1

2
x12
)
− 16

25
x12;

if 343.35 ≤ x12 < 353

3787
5
− 1

2
exp {exp (−713)− 713} − 1

2
exp (−713)

−1
2

exp
{

176− 1
2
x12 + exp

(
176− 1

2
x12
)}

−1
2

exp
(
176− 1

2
x12
)
− 3

5
x12;

if 353 ≤ x12 ≤ 1100

19211
25
− 1

2
exp {exp (−713)− 713} − 3

5
exp (−713)

−1
2

exp
{

176− 1
2
x12 + exp

(
176− 1

2
x12
)}

−3
5

exp
(
176− 1

2
x12
)
− 61

100
x12;

if 1100 < x12 <∞

• For 341.7183 ≤ x12 < 343.35, bank 1 is bankrupt (w1
1 < 0) and the

system is undercapitalized (W1 < zA). That is, x12 ∈ X4 (x12, ω1) ∩

D (x12), where X4 (x12, ω1) is described in (IV) of the discussion in

Section 3.2.2.
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Figure C.2.3.1: ψ (x12, ω1), the sum
of time t = 0 and t = 1 utilities of
an average bank’s equityholders in
scenario ω1, for x12 ∈ D (x12)

Recall from Section C.1 that at the optimal solution, bank 2’s equity

for scenario ω1 ∈ Ω is positive (w2
1 (ω1) > 0). Therefore, its debt

funding at time t = 0 is α2f2 + (1− α2) min (f2, w
2
1 (ω1) + f2) = f2.

Since both w1
1 (x12, ω1) and W1 (x12, ω1) − zA (x12) are increasing for

341.7183 ≤ x12 < 343.35, the taxes paid by the average bank,

−1
2

(
α1g
c
w1

1 (x12, ω1) + α2g
c
w2

1 (ω1) 1[w2
1<0]

)
− e

2c
(W1 (x12, ω1)− zA (x12))

= −α1g
2c
w1

1 (x12, ω1)− e
2c

(W1 (x12, ω1)− zA (x12)), decreases in x12.

Furthermore, since bank 1 is bankrupt, its debtholders will receive

w1
1 (x12, ω1) + f1−α1w

1
1 (x12, ω1) dollars at time t = 1. When ω1 ∈ Ω

is considered in isolation, this is also the funding they provide bank

1 at time t = 0. It follows that the funding for the average bank,

1
2

(w1
1 (x12, ω1) + f1 − α1w

1
1 (x12, ω1) + f2) will increase with respect

to x12.

The dollars of consumption for the average bank’s equityholders at

time t = 0 is 1
2

(w1
0 + w2

0)− 1
2

(x11 + x12 + x21 + x22)

+1
2

(w1
1 (x12, ω1) + f1 − α1w

1
1 (x12, ω1) + f2) + α1g

2c
w1

1 (x12, ω1)

+ e
2c

(W1 (x12, ω1)− zA (x12)). From the plot of ψ (Figure C.2.3.2),

one can deduce that this consumption (equivalently, utility) in-

crease when bank 1’s investment in asset 2 increase within the region
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Figure C.2.3.2: ψ (x12, ω1), the sum
of time t = 0 and t = 1 utilities of
an average bank’s equityholders in
scenario ω1, for 341.7183 ≤ x12 <
343.35

341.7183 ≤ x12 < 343.35.

Note that the time t = 1 utility for equityholders of bank 1, and

those of an average bank, are unaffected since w1
1 < 0 in this region

of x12, and u
(
w1

11[w1
1>0]

)
= u (0).

• For 343.35 ≤ x12 < 353, bank 1 is bankrupt (w1
1 < 0) and the system

is not in crisis (W1 ≥ zA). That is, x12 ∈ X3 (x12, ω1)∩D (x12), where

X3 (x12, ω1) is described in (III) of the discussion in Section 3.2.2.

In this region of x12, bank 1’s dollars of tax payment is−α1g
c
w1

1 (x12, ω1)

and debt raised is w1
1 (x12, ω1) + f1−α1w

1
1 (x12, ω1). Since w1

1 (x12, ω1)

is increasing, the dollars of debt funding will increase and the tax

bill will decrease. However, the dollars of consumption, and hence

utility, for bank 1’s equityholders at time t = 0, w1
0 − (x11 + x12) +

f1 + (1− α1)w
1
1 (x12, ω1) + α1g

c
w1

1 (x12, ω1), may increase or decrease.

Therefore, the average bank’s equityholders may experience an in-

crease or decrease in time t = 0 utility if x12 increase.

As exhibited by the plot in Figure C.2.3.3, ψ increases for 343.35 ≤

x12 < 349.7713. This means that if bank 1 increases investment in

asset 2, its equityholders (thus those of an average bank) will have

more money to consume at time t = 0, after considering benefits of
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Figure C.2.3.3: ψ (x12, ω1), the sum
of time t = 0 and t = 1 utilities of
an average bank’s equityholders in
scenario ω1, for 343.35 ≤ x12 < 353

increased debt funding and reduced taxes.

When 349.7713 < x12 < 353, however, investing more in asset 2

would require bank 1 equityholders to contribute additional dol-

lars, even though debt funding increased and taxes decreased. This

means they will have a lower consumption, and thus utility at time

t = 0. Then, the same can be said about an average bank, as

shown in the decreasing behaviour of ψ for x12 in this region (Figure

C.2.3.3).

Again, the time t = 1 utility of bank 1’s equityholders, and those

of an average bank, is unaffected for 343.35 ≤ x12 < 353, because

bank 1 will be bankrupt (w1
1 < 0) and u

(
w1

11[w1
1>0]

)
= u (0).

• For 353 ≤ x12 ≤ 1100, bank 1 is not bankrupt (w1
1 ≥ 0) and the

system is well-capitalized (W1 ≥ zA). That is, x12 ∈ X1 (x12, ω1) ∩

D (x12), where X1 (x12, ω1) is described in (I) of the discussion in

Section 3.2.2.

In this case, the dollars of debt raised by bank 1 would equal f1,

which is not affected by changes in x12. So, any increase in invest-

ment in asset 2 will be fully funded by its equityholders, who will

then experience a decline in time t = 0 utility. However, their util-
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Figure C.2.3.4: ψ (x12, ω1), the sum
of time t = 0 and t = 1 utilities of
an average bank’s equityholders in
scenario ω1, for 353 ≤ x12 ≤ 1100

ity at time t = 1 will increase since equity w1
1 will be higher at that

time.

From the plot in Figure C.2.3.4, ψ is decreaseing for all 353 ≤ x12 ≤

1100, which means that if bank 1 increase its investment in asset

2, the time t = 0 utility of an average bank will reduce more than

the amount that its time t = 1 utility increase by. Equivalently,

for bank 1, the utility cost of decreased consumption at time t = 0

outweighs the benefit of increase equity at time t = 1.

• For 1100 < x12 < ∞, bank 1 is not bankrupt (w1
1 ≥ 0) but the

system is in crisis (W1 < zA). That is, x12 ∈ X2 (x12, ω1) ∩ D (x12),

where X2 (x12, ω1) is described in (II) of the discussion in Section

3.2.2.

Again, recall that w2
1 (ω1) > 0 at the optimal solution, which implies

that debt funding for bank 2 at time t = 0 is equal to f2. The debt

funding for the average bank, 1
2

(f1 + f2) is thus unaffected by x12,

but the time t = 1 utility 1
2

(u (w1
1 (x12, ω1)) + u (w2

1 (ω1))) increases

in x12.

However, since W1 (x12, ω1)− zA (x12) is decreasing for 1100 < x12 <

∞, the dollars of taxes payable by an average bank,
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Figure C.2.3.5: ψ (x12, ω1), the sum
of time t = 0 and t = 1 utilities of
an average bank’s equityholders in
scenario ω1, for 1100 < x12 <∞

− e
2c

(W1 (x12, ω1)− zA (x12)), increases.

The sum of time t = 0 and t = 1 utilities for the average bank,

c
2

(w1
0 + w2

0 − (x11 + x12 + x21 + x22) + f1 + f2)

+ e
2

(W1 (x12, ω1)− zA (x12)) + 1
2

(u (w1
1 (x12, ω1)) + u (w2

1 (ω1))), is de-

creasing for 1100 < x12 < ∞, as shown by the plot of ψ in Figure

C.2.3.5.

This means that if bank 1 increases its investment in asset 2, the

utility cost for the average bank’s equityholders due to decreased

consumption at time t = 0 (resulting from their complete funding

of the investment increase and payment of higher taxes) outweighs

the benefit of increased equity value at time t = 1.

2. Function ψ (x12, ω2)

The time t = 1 equity of bank 1 is w1
1 (x12, ω2) = 2x12−exp (−2x12 + 176)−

176 and x̃12 (2) ≈ 88.4 is such that w1
1 (x̃12 (2) , ω2) = 0. w1

1 (x12, ω2) in-

creases in x12 because
∂w1

1

∂x12
= 2 + 2 exp (−2x12 + 176) > 0. Therefore, for

x12 ≥ 88.4, bank 1 is not bankrupt (w1
1 ≥ 0) in ω2 ∈ Ω

The time t = 1 aggregate bank equity in excess of the undercapitalization

threshold is W1 (x12, ω2)−zA (x12) = 7
5
x12−exp (−2)−exp (−2x12 + 176)−
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Figure C.2.3.6: ψ (x12, ω2), the sum
of time t = 0 and t = 1 utilities of
an average bank’s equityholders in
scenario ω2, for x12 ∈ D (x12)

3003
5

, with derivative ∂[W1−zA]
∂x12

= 7
5

+ 2 exp (−2x12 + 176) > 0. That is,

W1 (x12, ω2)− zA (x12) increases with respect to x12. Also, ˜̃x12 (2) ≈ 429 is

such that W1

(
˜̃x12 (2) , ω2

)
− zA

(
˜̃x12 (2)

)
= 0. Hence, for x12 < 429, the

system is in crisis (W1 < zA) in ω2 ∈ Ω.

Restricting to D (x12) = [341.7183,∞),

ψ
(
x12, ω2

)
=



29
100
x12 − 1

2
exp {exp (−2)− 2} − 3

5
exp (−2)

−1
2

exp {exp (−2x12 + 176)− 2x12 + 176}

−3
5

exp (−2x12 + 176) + 8546
25

;

if 341.7183 ≤ x12 < 429

3
20
x12 − 1

2
exp {exp (−2)− 2} − 1

2
exp (−2)

−1
2

exp {exp (−2x12 + 176)− 2x12 + 176}

−1
2

exp (−2x12 + 176) + 4019
10

;

if 429 ≤ x12 <∞

,

with the corresponding plot in Figure C.2.3.6.

• When 341.7183 ≤ x12 < 429, bank 1 is not bankrupt (w1
1 ≥ 0) but

the system is in crisis (W1 < zA) for ω2 ∈ Ω. This situation is
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Figure C.2.3.7: ψ (x12, ω2), the sum
of time t = 0 and t = 1 utilities of
an average bank’s equityholders in
scenario ω2, for 341.7183 ≤ x12 <
429

described in (II) of the discussion in Section 3.2.2

(i.e. x12 ∈ X2 (x12, ω2) ∩D (x12)).

At the optimal solution in Section C.1, bank 2’s time t = 1 equity

is w2
1 (ω2) = 1.8647 > 0, which implies that bank 2’s debt funding

at time t = 0 is f2 (equals to its debtholders’ payoff at time t = 1

since ω2 ∈ Ω is considered in isolation).

Then, the debt funding for the average bank at time t = 0, 1
2

(f1 + f2)

does not depend on x12, but the time t = 1 utility,

1
2

(u (w1
1 (x12, ω2)) + u (w2

1 (ω2))) is increasing in that variable. More-

over, since W1 (x12, ω2)− zA (x12) increases in x12, an average bank’s

tax bill in dollars, − e
2c

(W1 (x12, ω2)− zA (x12)), is decreasing.

From the plot of ψ in Figure C.2.3.7, the time t = 0 plus t = 1 utili-

ties of an average bank, c
2

(w1
0 + w2

0 − (x11 + x12 + x21 + x22) + f1 + f2)

+ e
2

(W1 (x12, ω2)− zA (x12)) + 1
2

(u (w1
1 (x12, ω2)) + u (w2

1 (ω2))), is in-

creasing.

Therefore, if bank 1 increases its investment in asset 2, the utility

benefit for the average bank’s equityholders due to reduced taxes

and increased time t = 1 equity value outweighs the cost of con-

tributing money for funding the additional investment at time t = 0.
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Figure C.2.3.8: ψ (x12, ω2), the sum
of time t = 0 and t = 1 utilities of
an average bank’s equityholders in
scenario ω2, for 429 ≤ x12 <∞

• For 429 ≤ x12 <∞, bank 1 is not bankrupt (w1
1 ≥ 0) and the system

is well-capitalized (W1 ≥ zA). This situation is described in (I) of

the discussion under Section 3.2.2 (i.e. x12 ∈ X1 (x12, ω2) ∩D (x12)).

In this situation, bank 1 debtholders’ payoff at time t = 1 (equiva-

lently, the funding they provide at time t = 0) is f1, which does not

depend on x12. Therefore, if bank 1 increases investment in asset

2, its equityholders will completely pay for it, and their dollars of

consumption (hence utility) will decline at time t = 0. However,

their time t = 1 utility will increase as a response to higher equity

value w1
1 at that time.

The plot of ψ in Figure C.2.3.8 is increasing, which shows that this

latter benefit to utility at time t = 1 outweighs the cost of reduced

consumption at time t = 0 for the average bank, or equivalently,

for bank 1.

Finally, Ψ (x12) = E [ψ] = 0.5ψ (x12, ω1) + 0.5ψ (x12, ω2), the objective func-
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tion to (2.17) is as follows.

Ψ
(
x12
)

=



56193
100
− 1

4
exp {exp (−2)− 2} − 1

4
exp {exp (−713)− 713}

− 3
10

exp (−2)− 3
10

exp (−713)

−1
4

exp {exp (−2x12 + 176)− 2x12 + 176}

− 3
10

exp (−2x12 + 176)− 13
50

exp
(
−1

2
x12 + 176

)
− 9

50
x12;

if 341.7183 ≤ x12 < 343.35

55641
100
− 1

4
exp {exp (−2)− 2} − 1

4
exp {exp (−713)− 713}

− 3
10

exp (−2)− 1
4

exp (−713)

−1
4

exp {exp (−2x12 + 176)− 2x12 + 176}

− 3
10

exp (−2x12 + 176)− 21
100

exp
(
−1

2
x12 + 176

)
− 7

40
x12;

if 343.35 ≤ x12 < 353

27481
50
− 1

4
exp {exp (−2)− 2} − 1

4
exp {exp (−713)− 713}

− 3
10

exp (−2)− 1
4

exp (−713)

−1
4

exp {exp (−2x12 + 176)− 2x12 + 176}

−1
4

exp
{

exp
(
−1

2
x12 + 176

)
− 1

2
x12 + 176

}
− 3

10
exp (−2x12 + 176)

−1
4

exp
(
−1

2
x12 + 176

)
− 31

200
x12;

if 353 ≤ x12 < 429
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Figure C.2.3.9: Ψ (x12), the sum of
time t = 0 utility and t = 1 ex-
pected utility of an average bank’s
equityholders, for x12 ∈ D (x12)

Ψ
(
x12
)

Continued



11593
20
− 1

4
exp {exp (−2)− 2}

−1
4

exp {exp (−713)− 713}

−1
4

exp (−2)− 1
4

exp (−713)

−1
4

exp {exp (−2x12 + 176)− 2x12 + 176}

−1
4

exp
{

exp
(
−1

2
x12 + 176

)
− 1

2
x12 + 176

}
−1

4
exp (−2x12 + 176)− 1

4
exp

(
−1

2
x12 + 176

)
− 9

40
x12;

if 429 ≤ x12 ≤ 1100

58517
100
− 1

4
exp {exp (−2)− 2}

−1
4

exp {exp (−713)− 713}

−1
4

exp (−2)− 3
10

exp (−713)

−1
4

exp {exp (−2x12 + 176)− 2x12 + 176}

−1
4

exp
{

exp
(
−1

2
x12 + 176

)
− 1

2
x12 + 176

}
−1

4
exp (−2x12 + 176)− 3

10
exp

(
−1

2
x12 + 176

)
− 23

100
x12;

if 1100 < x12 <∞

.

From the plot of Ψ (x12) in Figure C.2.3.9, the maximum is reached at

around x12 = 352, coinciding with that of the optimal solution in Section C.1.
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C.2.4 Relationship between Ψ and x11

Consider Ψ as a function of x11 (dollars invested by bank 1 in asset 1) only,

with other variables taking values of the optimal solution in Section C.1.

Using the procedure in Section 3.1.2, the domain of x11 is D (x11) = [0,∞).

Similar to Section C.2.3, we shall consider ψ (x11, ω1) and ψ (x11, ω2) to de-

termine how Ψ = E [ψ] relates with x11.

The explanations about the behaviour of ψ (x11, ω1) and ψ (x11, ω2) are done

similarly as in Section C.2.3, so only their plots and expressions will be pro-

vided.

The maximum of Ψ (x11) is reached at x11 = 0, which coincides with that of

the optimal solution in Section C.1.

1. Function ψ (x11, ω1)

The time t = 1 equity for bank 1 is w1
1 (x11, ω1) = x11 − exp (−x11) and

x̃11 (1) ≈ 0.5 is such that w1
1 (x̃11 (1) , ω1) = 0. w1

1 (x11, ω1) is increasing,

because
∂w1

1

∂x11
= 1 + exp (−x11) > 0. Therefore, in scenario ω1 ∈ Ω, bank 1

is bankrupt for x11 < 0.5.

The time t = 1 aggregate bank equity in excess of the undercapitalization

threshold is W1 (x11, ω1)− zA (x11) = 2
5
x11 − exp (−713)− exp (−x11) + 376

5

with derivative ∂[W1−zA]
∂x11

= 2
5
+exp (−x11) > 0. Moreover, ˜̃x11 (1) ≈ −4.3 is

such that W1

(
˜̃x11 (1) , ω1

)
− zA

(
˜̃x11 (1)

)
= 0. Since W1 (x11, ω1)− zA (x11)

is increasing, the system is well-capitalized (W1 ≥ zA, no crisis) for x11 ≥

−4.3, in ω1 ∈ Ω.

Restricting to D (x11) = [0,∞), ψ (x11, ω1) is as follows, with the corre-
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Figure C.2.4.1: ψ (x11, ω1), the sum
of time t = 0 and t = 1 utilities of
an average bank’s equityholders in
scenario ω1, for x11 ∈ D (x11)

sponding plot in Figure C.2.4.1.

ψ
(
x11, ω1

)
=



5457
10
− 1

2
exp {exp (−713)− 713} − 1

2
exp (−713)

−21
50

exp (−x11)− 43
100
x11;

if 0 ≤ x11 < 0.5

2731
5
− 1

2
exp {exp (−713)− 713} − 1

2
exp (−713)

−1
2

exp {exp (−x11)− x11} − 1
2

exp (−x11)

− 7
20
x11;

if 0.5 ≤ x11 <∞

Using the notations of Section 3.2.2, D (x11) ∩X3 (x11, ω1) = [0, 0.5) and

D (x11)∩X1 (x11, ω1) = [0.5,∞). Therefore, the system is well-capitalized

for all x11 ∈ D (x11) = [0,∞) and bank 1 is bankrupt for 0 ≤ x11 < 0.5.

2. Function ψ (x11, ω2)

The time t = 1 equity for bank 1 is w1
1 (x11, ω2) = x11− exp (−x11 − 528) +

528 and x̃11 (2) ≈ −527.5 is such that w1
1 (x̃11 (2) , ω2) = 0. w1

1 (x11, ω2) is

increasing, because
∂w1

1

∂x11
= 1+exp (−x11 − 528) > 0. Hence, bank 1 is not

bankrupt in scenario ω2 ∈ Ω, if x11 ≥ −527.5.
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Figure C.2.4.2: ψ (x11, ω2), the sum
of time t = 0 and t = 1 utilities of
an average bank’s equityholders in
scenario ω2, for x11 ∈ D (x11)

The time t = 1 aggregate level of bank equity in excess of the under-

capitalization threshold is W1 (x11, ω2) − zA (x11) = 2
5
x11 − exp (−2) −

exp (−x11 − 528)− 539
5

with derivative ∂[W1−zA]
∂x11

= 2
5
+exp (−x11 − 528) > 0.

Furthermore, W1 (x11, ω2) − zA (x11) = 0 for x11 = ˜̃x11 (2) ≈ 270. Because

W1 (x11, ω2)− zA (x11) is increasing, the system is in crisis (W1 < zA) for

x11 < 270, in ω2 ∈ Ω.

With restriction to D (x11) = [0,∞), ψ (x11, ω2) is the following, and its

plot is in Figure C.2.4.2.

ψ
(
x11, ω2

)
=



11098
25
− 1

2
exp {exp (−2)− 2} − 3

5
exp (−2)

−1
2

exp {exp (−x11 − 528)− x11 − 528}

−3
5

exp (−x11 − 528)− 31
100
x11;

if 0 ≤ x11 < 270

4547
10
− 1

2
exp {exp (−2)− 2} − 1

2
exp (−2)

−1
2

exp {exp (−x11 − 528)− x11 − 528}

−1
2

exp (−x11 − 528)− 7
20
x11;

if 270 ≤ x11 <∞

Again, using notations of Section 3.2.2, D (x11) ∩ X2 (x11, ω2) = [0, 270)
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and D (x11) ∩X1 (x11, ω2) = [270,∞).

That is, for all x11 ∈ D (x11) = [0,∞), bank 1 is not bankrupt, and the

system is in crisis for 0 ≤ x11 < 270.

Altogether, Ψ (x11) = E [ψ] = 0.5ψ (x11, ω1) + 0.5ψ (x11, ω2) is as follows, and

its plot is provided in Figure C.2.4.3.

Ψ
(
x11
)

=



49481
100
− 1

4
exp {exp (−2)− 2} − 1

4
exp {exp (−713)− 713}

− 3
10

exp (−2)− 1
4

exp (−713)

−1
4

exp {exp (−x11 − 528)− x11 − 528}

− 21
100

exp (−x11)− 3
10

exp (−x11 − 528)− 37
100
x11;

if 0 ≤ x11 < 0.5

24753
50
− 1

4
exp {exp (−2)− 2} − 1

4
exp {exp (−713)− 713}

− 3
10

exp (−2)− 1
4

exp (−713)− 1
4

exp {exp (−x11)− x11}

−1
4

exp {exp (−x11 − 528)− x11 − 528}

−1
4

exp (−x11)− 3
10

exp (−x11 − 528)− 33
100
x11;

if 0.5 ≤ x11 < 270

10009
20
− 1

4
exp {exp (−2)− 2} − 1

4
exp {exp (−713)− 713}

−1
4

exp (−2)− 1
4

exp (−713)− 1
4

exp {exp (−x11)− x11}

−1
4

exp {exp (−x11 − 528)− x11 − 528}

−1
4

exp (−x11)− 1
4

exp (−x11 − 528)− 7
20
x11;

if 270 ≤ x11 <∞

128



Figure C.2.4.3: Ψ (x11), the sum of
time t = 0 utility and t = 1 ex-
pected utility of an average bank’s
equityholders, for x11 ∈ D (x11)

C.2.5 Relationship between Ψ and x21

Consider Ψ as a function of x21 (dollars invested by bank 2 in asset 1) only,

with other variables taking values of the optimal solution in Section C.1.

The domain of x21 is D (x21) = [0,∞), as determined using the steps of

Section 3.1.2.

Again, because the explanations for ψ (x21, ω1) and ψ (x21, ω2) are done as

in Section C.2.3, only the plots and expressions will be provided.

The maximum of Ψ (x21) is reached at x21 = 0, which coincides with the

value of x21 of the optimal solution.

1. Function ψ (x21, ω1)

The time t = 1 equity for bank 2 is w2
1 (x21, ω1) = x21− exp (−x21 − 713) +

713 and x̃21 (1) ≈ −712.5 is such that w2
1 (x̃21 (1) , ω1) = 0. w2

1 (x21, ω1) is

increasing, because
∂w2

1

∂x21
= 1+exp (−x21 − 713) > 0. Hence, bank 1 is not

bankrupt in scenario ω1 ∈ Ω for x21 ≥ −712.5.

The aggregate level of bank equity in excess of the undercapitalization

threshold at time t = 1, W1 (x21, ω1)−zA (x21) = 2
5
x21−exp (−x21 − 713)+

371
5

, is increasing because its derivative is ∂[W1−zA]
∂x21

= 2
5

+exp (−x21 − 713)

> 0. At ˜̃x21 (1) ≈ −185, W1

(
˜̃x21 (1) , ω1

)
− zA

(
˜̃x21 (1)

)
= 0. Therefore,
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Figure C.2.5.1: ψ (x21, ω1), the sum
of time t = 0 and t = 1 utilities of
an average bank’s equityholders in
scenario ω1, for x21 ∈ D (x21)

the system is well-capitalized (W1 ≥ zA, not in crisis) for x21 ≥ −185 in

ω1 ∈ Ω.

Using notation from Section 3.2.2, for all x21 ∈ D (x21) = D (x21) ∩

X1 (x21, ω1) = [0,∞), bank 2 is not bankrupt and the system is well-

capitalized, so ψ (x21, ω1) takes the following form, and is plotted in Fig-

ure C.2.5.1.

ψ
(
x21, ω1

)
=

13632

25
− 1

2
exp

{
exp

(
−x21 − 713

)
− x21 − 713

}
− 1

2
exp

(
−x21 − 713

)
− 7

20
x21

2. Function ψ (x21, ω2)

The time t = 1 equity for bank 2 is w2
1 (x21, ω2) = x21− exp (−x21 − 2) + 2,

and x̃21 (2) ≈ −1.5 is such that w2
1 (x̃21 (2) , ω2) = 0. Since

∂w2
1

∂x21
= 1 +

exp (−x21 − 2) > 0, w2
1 (x21, ω2) is increasing. That is, for x21 ≥ −1.5,

bank 2 is not bankrupt in ω2 ∈ Ω.

The banking system’s level of equity in excess of the undercapitalization

threshold at time t = 1 is W1 (x21, ω2) − zA (x21) = 2
5
x21 − exp (−528) −

exp (−x21 − 2) − 539
5

. This function is increasing since ∂[W1−zA]
∂x21

= 2
5

+
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Figure C.2.5.2: ψ (x21, ω2), the sum
of time t = 0 and t = 1 utilities of
an average bank’s equityholders in
scenario ω2, for x21 ∈ D (x21)

exp (−x21 − 2) > 0. Moreover, ˜̃x21 (2) ≈ 270 is such that W1

(
˜̃x21 (2) , ω2

)
−

zA
(
˜̃x21 (2)

)
= 0. It follows that the system is in crisis (W1 < zA) in

scenario ω2 ∈ Ω for x21 < 270.

Therefore, ψ (x21, ω2) is the following, for x21 ∈ D (x21) = [0,∞). The

corresponding plot is provided in Figure C.2.5.2.

ψ
(
x21, ω2

)
=



11098
25
− 1

2
exp {exp (−528)− 528} − 3

5
exp (−528)

−1
2

exp {exp (−x21 − 2)− x21 − 2}

−3
5

exp (−x21 − 2)− 31
100
x21;

if 0 ≤ x21 < 270

4547
10
− 1

2
exp {exp (−528)− 528} − 1

2
exp (−528)

−1
2

exp {exp (−x21 − 2)− x21 − 2}

−1
2

exp (−x21 − 2)− 7
20
x21;

if 270 ≤ x21 <∞

With notations from Section 3.2.2, D (x21) ∩ X2 (x21, ω2) = [0, 270) and

D (x21) ∩ X1 (x21, ω2) = [270,∞). In other words, for all x21 ∈ D (x21) =

[0,∞), bank 2 is not bankrupt and for 0 ≤ x21 < 270, the system is in

crisis for ω2 ∈ Ω.
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Figure C.2.5.3: Ψ (x21), the sum of
time t = 0 utility and t = 1 ex-
pected utility of an average bank’s
equityholders, for x21 ∈ D (x21)

The bank’s group objective Ψ (x21) = E [ψ] = 0.5ψ (x21, ω1) + 0.5ψ (x21, ω2)

is as follows. Its plot is given in Figure C.2.5.3.

Ψ
(
x21
)

=



2473
5
− 1

4
exp {exp (−528)− 528} − 3

10
exp (−528)

−1
4

exp {exp (−x21 − 2)− x21 − 2}

−1
4

exp {exp (−x21 − 713)− x21 − 713}

− 3
10

exp (−x21 − 2)− 1
4

exp (−x21 − 713)

− 33
100
x21; if 0 ≤ x21 < 270

49999
100
− 1

4
exp {exp (−528)− 528} − 1

4
exp (−528)

−1
4

exp {exp (−x21 − 2)− x21 − 2}

−1
4

exp {exp (−x21 − 713)− x21 − 713}

−1
4

exp (−x21 − 2)− 1
4

exp (−x21 − 713)

− 7
20
x21; if 270 ≤ x21 <∞

C.2.6 Relationship between Ψ and x22

Consider Ψ as a function of x22 (dollars invested by bank 2 in asset 2) only,

with other variables taking values of the optimal solution in Section C.1.

By the steps of Section 3.1.2, the domain of x22 is D (x22) = [709,∞).
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Figure C.2.6.1: ψ (x22, ω1), the sum
of time t = 0 and t = 1 utilities of
an average bank’s equityholders in
scenario ω1, for x22 ∈ D (x22)

The explanations about ψ (x22, ω1) and ψ (x22, ω2), which determines how

Ψ = E [ψ] relates with x22, are done similarly as in Section C.2.3. Therefore,

only the plots and functional expressions will be provided here.

The maximum of Ψ (x22) is reached at x22 = 711, which is the same as that

of the optimal solution.

1. Function ψ (x22, ω1)

The time t = 1 equity for bank 2 is w2
1 (x22, ω1) = 2x22−exp (−2x22 + 709)−

709 and x̃22 (1) ≈ 354.7 is such that w2
1 (x̃22 (1) , ω1) = 0. Since

∂w2
1

∂x22
=

2 + 2 exp (−2x22 + 709) > 0, w2
1 (x22, ω1) is increasing. Therefore, for x22 ≥

354.7, bank 2 is not bankrupt in scenario ω1 ∈ Ω.

The banking system’s equity level in excess of the undercapitalization

threshold at time t = 1 isW1 (x22, ω1)−zA (x22) = 7
5
x22−exp (−2x22 + 709)−

4606
5

, with derivative ∂[W1−zA]
∂x22

= 7
5

+ 2 exp (−2x22 + 709) > 0. At ˜̃x22 (1) ≈

658.3, W1

(
˜̃x22 (1) , ω1

)
− zA (x22) = 0. Therefore, the system is not in

crisis (W1 ≥ zA) for x22 ≥ 658.3 in ω1 ∈ Ω.

One can observe that for all x22 ∈ D (x22) = [709,∞), bank 2 is not

bankrupt, and there is no systemic crisis. Then, using the notation of

Section 3.2.2, for all x22 ∈ D (x22) ∩X1 (x22, ω1) = D (x22),
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ψ
(
x22, ω1

)
=

3

20
x22 −

1

2
exp

{
exp

(
−2x22 + 709

)
− 2x22 − 709

}
− 1

2
exp

(
−2x22 + 709

)
+

43863

100
.

The corresponding plot is in Figure C.2.6.1.

2. Function ψ (x22, ω2)

The time t = 1 equity for bank 2 is w2
1 (x22, ω2) = x22− exp (−x22 + 709)−

709 and x̃22 (2) ≈ 709.3 is such that w2
1 (x̃22 (2) , ω2) = 0. Since

∂w2
1

∂x22
=

1 + exp (−x22 + 709) > 0, w2
1 (x22, ω2) is increasing. It follows that bank 2

is bankrupt in ω2 ∈ Ω for x22 < 709.3.

The time t = 1 level of aggregate bank equity in excess of the under-

capitalization thershold is W1 (x22, ω2) − zA (x22) = 2
5
x22 − exp (−528) −

exp (−x22 + 709)− 1961
5

with derivative ∂[W1−zA]
∂x22

= 2
5

+ exp (−x22 + 709) >

0. Moreover, at ˜̃x22 (2) ≈ 981, W1

(
˜̃x22 (2) , ω2

)
− zA

(
˜̃x22 (2)

)
= 0. There-

fore, the system is in crisis (W1 < zA) in ω2 ∈ Ω for x22 < 981.

Restricting to the domain D (x22) = [709,∞), ψ (x22, ω2) is the following,

and its plot is given in Figure C.2.6.2.
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Figure C.2.6.2: ψ (x22, ω2), the sum
of time t = 0 and t = 1 utilities of
an average bank’s equityholders in
scenario ω2, for x22 ∈ D (x22)

ψ
(
x22, ω2

)
=



14411
20
− 1

2
exp {exp (−528)− 528} − 3

5
exp (−528)

−13
25

exp (−x22 + 709)− 39
100
x22;

if 709 ≤ x22 < 709.3

66433
100
− 1

2
exp {exp (−528)− 528} − 3

5
exp (−528)

−1
2

exp {exp (−x22 + 709)− x22 + 709}

−3
5

exp (−x22 + 709)− 31
100
x22;

if 709.3 ≤ x22 < 981

14071
20
− 1

2
exp {exp (−528)− 528} − 1

2
exp (−528)

−1
2

exp {exp (−x22 + 709)− x22 + 709}

−1
2

exp (−x22 + 709)− 7
20
x22;

if 981 ≤ x22 <∞

From the notations of Section 3.2.2, D (x22) ∩ X4 (x22, ω2) = [709, 709.3)

(bank 2 is bankrupt and the system is in crisis), D (x22) ∩X2 (x22, ω2) =

[709.3, 981) (bank 2 is not bankrupt but the system is in crisis), and

D (x22) ∩X1 (x22, ω2) = [981,∞) (bank 2 is not bankrupt and the system
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is not in crisis).

Then, the banks’ group objective Ψ (x22) = E [ψ] = 0.5ψ (x22, ω1)

+0.5ψ (x22, ω2) is

Ψ
(
x22
)

=



57959
100
− 1

4
exp {exp (−528)− 528} − 3

10
exp (−528)

−1
4

exp {exp (−2x22 + 709)− 2x22 + 709}

−13
50

exp (−x22 + 709)− 1
4

exp (−2x22 + 709)− 3
25
x22;

if 709 ≤ x22 < 709.3

13787
25
− 1

4
exp {exp (−528)− 528} − 3

10
exp (−528)

−1
4

exp {exp (−x22 + 709)− x22 + 709}

−1
4

exp {exp (−2x22 + 709)− 2x22 + 709}

− 3
10

exp (−x22 + 709)− 1
4

exp (−2x22 + 709)− 2
25
x22;

if 709.3 ≤ x22 < 981

57109
100
− 1

4
exp {exp (−528)− 528} − 1

4
exp (−528)

−1
4

exp {exp (−x22 + 709)− x22 + 709}

−1
4

exp {exp (−2x22 + 709)− 2x22 + 709}

−1
4

exp (−x22 + 709)− 1
4

exp (−2x22 + 709)− 1
10
x22;

if 981 ≤ x22 <∞

.

The plot of Ψ (x22) is in Figure C.2.6.3.
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Figure C.2.6.3: Ψ (x22), the sum of
time t = 0 utility and t = 1 ex-
pected utility of an average bank’s
equityholders, for x22 ∈ D (x22)
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