

Utilizing Context for Novel Point of Interest Recommendation

by

Jason Matthew Morawski

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Software Engineering and Intelligent Systems

Department of Electrical and Computer Engineering

University of Alberta

© Jason Matthew Morawski, 2017

ii

Abstract

Recommender systems are a modern solution for suggesting new items to users. One

of their uses is for novel point of interest recommendation, recommending locations to

a user which they have not visited. This can be applied to a location-based social

network, which contains information about their users' travel history and social

connections. Within this context, there are various challenges, such as data sparsity,

that limit recommendation effectiveness. We propose an algorithm for personalized

novel point of interest recommendation to overcome these challenges. Our solution

leverages social, temporal, and spatial context, together with collaborative filtering

and a classification algorithm.

iii

Preface

Chapter 3 of this thesis has been submitted to ACM Transactions on Interactive

Intelligent Systems as Jason Morawski, Torin Stepan, Scott Dick and James Miller,

2017. Novel Point of Interest Recommendation with Location-Based Social Networks.

Portions of chapters 1 and 2 were also present it that paper. For the paper, I have

conducted all of the research and experimentation. The contributions of Torin Stepan

relate to his initial development of experimentation software which the current work

has expanded upon. My supervisors, Scott Dick and James Miller provided editorial

feedback and guidance for this work.

iv

Acknowledgements

I would like to thank my supervisors, Scott Dick and James Miller for their efforts in

guiding me through my graduate program. I would also like to thank my graduate

course professors, including Petr Musilek, Witold Pedrycz, and Lukasz Kurgan.

I would also like to thank my friends and family. It is only through your support that

I was able to proceed to graduate studies. Most of all I would like to thank Katherine

for her continued support during my academic endeavours. Thank you.

v

Table of Contents

1. Introduction .. 1

1.1 Motivation ... 1

1.2 Contributions ... 2

1.3 Thesis Organization .. 3

2. Recommender Systems .. 4

2.1 Definitions ... 4

2.2 Practical Application .. 5

2.3 Collaborative Filtering .. 7

2.4 Incorporating Context ... 10

2.5 Geospatial Prediction .. 13

3. Collaborative Context Recommender .. 15

3.1 Related Work ... 15

3.2 Analysis .. 17

3.2.1 Implicit Feedback .. 17

3.2.2 Sparsity and Imbalanced Data ... 18

3.2.3 Small disjuncts .. 21

3.2.4 Cold-Start .. 21

3.2.5 Scalability and Complexity ... 22

3.2.6 Short-Term Effect .. 23

3.3 Designing the Collaborative Context Recommender .. 24

3.3.1 Temporal Component ... 25

3.3.2 Spatial Component ... 26

3.3.3 Social Component .. 29

3.3.4 Collaborative Component ... 30

3.3.5 Classification Algorithm ... 33

3.3.6 Classification Sampling .. 36

3.3.7 Classification Parameters .. 37

3.3.8 Classification Prediction ... 39

3.4 Experimental Methodology ... 39

3.4.1 Datasets .. 39

3.4.2 Performance Measures ... 43

vi

3.4.3 Experimental Design .. 47

3.5 Experimental Results .. 48

3.5.1 Individual Components... 48

3.5.2 Parameter Exploration .. 52

3.5.3 Comparison ... 56

3.6 Conclusions ... 66

4. Summary and Future Work .. 67

References .. 69

vii

List of Tables

Table I: Classification Training Attributes ... 34

Table II: Classification Algorithm Comparison .. 35

Table III. Classification Attributes .. 36

Table IV. Random Forest Performance .. 38

Table V. Dataset Statistics .. 40

Table VI: Temporal Performance .. 48

Table VII: Spatial Recommendation .. 49

Table VIII: Social Recommendation .. 50

Table IX: Collaborative Recommendation ... 50

Table X. Classification Component - Removing Time Input .. 51

Table XI. Correctly Predicted items based on Time Window (Days) .. 52

Table XII: Parameter Exploration of Social Constant .. 53

Table XIII. Exploration of Neighborhood Size ... 54

Table XIV. Random Forest Attributes Performance .. 55

Table XV. Classification Location Set Size Exploration .. 56

Table XVI. LFBCA Gowalla Accuracy Comparison ... 60

Table XVII. LFBCA Gowalla Coverage Comparison ... 61

Table XVIII. LFBCA Gowalla Statistics .. 61

Table XIX. LURA GSCorr Comparison .. 63

Table XX. LURA GSCorr Statistics .. 63

Table XXI. LURA Gowalla Comparison ... 64

Table XXII. LURA Gowalla Statistics ... 64

Table XXIII. LRT GSCorr Subset Comparison .. 65

Table XXIV. LRT GSCorr Statistics ... 66

viii

List of Figures

Figure I: Recommender Design ... 24

Figure II: LFBCA Gowalla User Activity .. 58

Figure III: LFBCA Gowalla F-Measure Comparison .. 59

ix

List of Abbreviations

CF - Collaborative Filtering

KNN - K-Nearest Neighbours

LBSN - Location-based Social Network

LFBCA - Location-Friendship Bookmark Coloring Algorithm

LURA - Learn-Update-Recommend-Aggregate

LRT - Location Recommendation framework with Temporal effects

POI - Point of Interest

1

1. Introduction

1.1 Motivation

More people than ever are using social networking services that link them to the

locations they visit. Facebook, a popular social network, saw over 1 billion active users

daily in 2016 (Facebook, Inc, 2016), and its users have used the Facebook Places service

to check-in millions of times at just a handful of airports (socialbakers, 2016). More

than 87 million people used Google Maps each month in 2015, and these numbers are

increasing (The Nielsen Company, 2015). Foursquare claims to have more than 50

million users active each month, and tracks the location of 65 million businesses.

(Glueck, 2016). Foursquare also claims to have more than 8 million check-ins each day

via their Swarm app, and exceed 9 billion total check-ins world-wide (Foursquare,

2016b). AlterGeo, a primarily Russian location-based social network claims to have

more than 100 million daily users. Their company sells ads targeted to users based

upon their current location (Altergeo, 2016). All of this points to the growing impact of

Location-Based Social Networks (LSBNs). LBSNs function in part as a traditional

social network, providing communication between affiliated users in a social graph.

Additionally, they track check-ins – locations a user visits and declares to the LSBN

at that time via their mobile device. As an LBSN is theoretically unlimited by

geographic distance, it can record a user’s check-ins throughout a city or region. This

in turn means that the LBSN can aid users in discovering new places to go, based on

their own history of check-ins and the histories of other users. This is the novel point-

of-interest recommendation problem (Yu & Chen, 2015), and a value-added service

that may help increase participation in the LBSN, forming a virtuous circle that allows

even more targeted and accurate recommendations to be made.

2

Novel Point-Of-Interest (POI) recommendation seeks to provide new locations which

will interest a user at the moment they are made (Yu & Chen, 2015); this problem

cannot be effectively solved solely with a collaborative filter due to some of the inherent

challenges (Adomavicius & Tuzhilin, 2005). A user’s location and interests (Ye, Yin,

Lee, & Lee, 2011), even the time of day (Yuan, Cong, Ma, Sun, & Thalmann, 2013),

profoundly influence what points of interest a user can be interested in visiting. Even

with historical user location data from a location-based social network, it is difficult to

provide effective POI recommendations due to issues such as data sparsity and the

cold-start problem (Burke, 2002), (Ye, Yin, Lee, & Lee, 2011).

1.2 Contributions

Our solution is to use a hybrid recommender which leverages multiple components to

provide the best recommendations. We propose the Collaborative Context (CoCo)

algorithm for novel POI recommendation. Our algorithm uses a hybrid design to

incorporate social, temporal and spatial components, unifying them with a

collaborative filter via a random-forest meta-classifier. The final result is a set of

locations that are expected to be of greatest interest to the current user at that moment

in time.

The primary contributions of this thesis can be summarized as follows:

 We introduce the CoCo algorithm, which provides a novel solution to the novel

POI recommendation problem. Specifically, the use of a random forest meta-

3

classifier to unify multiple contextual components for the novel POI

recommendation.

 We outperform existing novel POI recommender algorithms on all of the

benchmark datasets available, and demonstrate that our algorithm’s

effectiveness is not dependent upon a particular dataset or experimental setup.

1.3 Thesis Organization

The remainder of this thesis is organized as follows.

Chapter 2 covers background concepts and relevant definitions for recommendation

algorithms. We give additional information on methods of collaborative filtering. It

concludes with how other works have incorporated context into recommenders, and

the use of recommenders for geospatial prediction.

Chapter 3 showcases our solution for novel POI recommendation for a LBSN, and

compares against related works. This includes analysis of the challenges for novel POI

recommendation. We provide the details and rationale of our design. We detail our

experimental methodology, and provide a comparison against existing algorithms.

Chapter 4 contains a summary of the paper and provides pointers to potential future

work.

4

2. Recommender Systems

2.1 Definitions

Novel POI recommendation is essentially a question of where would users like to go.

All that is known is a set of users, U, locations, L, check-ins, C, and the set of all

friendship connections, F. These terms are common throughout works on location

recommendation (Cheng, Yang, King, & Lyu, 2012), (Cho, Myers, & Leskovec, 2011),

(Gao, Tang, & Liu, 2012), (Wang, Terrovitis, & Mamoulis, 2013). Within this context,

the following definitions are important.

Check-in: A timestamped user-location pair. This indicates the user was at the location

at the given time. (Cramer, Rost, & Holmquist, 2011)

Co-visit: When two users check-in to the same location at roughly the same time. This

may also be referred to as a co-occurrence. (Crandall, et al., 2010)

Sparsity: The fraction of a matrix for which elements have a value of zero. (Duff, 1977)

Check-in sparsity: The overall sparsity for the user-location matrix, as shown in

Equation (1). This is comparable to sparsity based on ratings with basic recommender

systems. (Anand & Bharadwaj, 2011)

𝐶ℎ𝑒𝑐𝑘𝑖𝑛 𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦 =

|𝑈| ∗ |𝐿| − |𝐶|

|𝑈| ∗ |𝐿|

(1)

5

Friendship sparsity: The sparsity of the friendship network. This can also be described

as the ratio of user pairs without a friendship connection to the total number of possible

user-user pairs. (Ugander, Karrer, Backstrom, & Marlow, 2011) This sparsity is

derived from the user-user matrix, as shown in Equation (2).

𝐹𝑟𝑖𝑒𝑛𝑑𝑠ℎ𝑖𝑝 𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦 =

|𝑈| ∗ |𝑈| − |𝑈| − 2 ∗ |𝐹|

|𝑈| ∗ |𝑈| − |𝑈|

(2)

Top-n list: The set of n items recommended for a specific user by a recommender. With

novel POI recommendation the items are locations which the user has not previously

visited. This is typically an ordered list of the items which are expected to be of the

greatest interest (Deshpande & Karypis, 2004).

Rating: A value assigned to a user-item pair indicating the user’s preference for the

item, typically on a scale with a defined maximum. (Nichols, 1998).

Explicit Rating: The rating value a user has assigned to an item manually. (Hu, Koren,

& Volinsky, 2008)

 Implicit Rating: A rating which is inferred for a user-item pair based upon the user’s

behaviour. (Oard & Kim, 1998)

2.2 Practical Application

Recommender systems are discovery services, which are now used in a great many

different industries. A bewildering array of possible selections for their customers is a

hallmark of industries deploying recommenders; an automated discovery service thus

6

becomes essential. The challenge for a recommender is to discover and suggest items

that the user actually becomes interested in. A recommender system is given

information about user preferences, and uses this to determine how much a user would

prefer other items in the catalogue; the ones expected to be preferred the most are then

suggested to the user (Adomavicius & Tuzhilin, 2005).

Various methods exist for implementing recommender systems. Collaborative methods

are based upon comparing the current user to others previously encountered. The

items the most similar users preferred are then suggested to the current user. A less

personalized method is demographic recommendation, in which the user is matched to

a demographic profile, and the recommendations are based upon the profile. Content-

based methods make use of attributes associated with individual items, and use this

to recommend items that are similar to those the user likes. Utility-based

recommenders also make use of item attributes, but typically require the user to

indicate their own preferences for each attribute. These preferences are used to

construct a personalized utility function, which is used to make recommendations.

Knowledge-based methods join item attributes with domain-specific knowledge

involving user needs, and a model of how items satisfy a particular need (Burke, 2002),

(Bobadilla, Ortega, Hernando, & Gutiérrez, 2013).

The specific design of a recommender system is going to be dependent upon the domain

in which it operates. Netflix famously offered a million-dollar prize for creating a more

accurate movie recommendation algorithm. However, they chose not to make use of

the winning design, in part due to a change in their recommendation goals. This

includes placing importance upon having diversity among the recommended items

7

(Amatriain & Basilico, 2012). Online retailer Amazon indicated its primary concerns

were dealing with a large item catalog, and allowing for fast response times. Amazon

found that it was most effective for them to compute the similarity of items in advance,

and store the results in a similar-items table. When they need to recommend items to

a specific user, they can just lookup that user’s purchases in the similar-items table

(Linden, Smith, & York, 2003).

2.3 Collaborative Filtering

We begin with the assumption that users that historically favor many of the same

items (i.e. similar users) will continue to do so in the future. If this is accurate, then

items that users similar to the current one have favored, but which the current one

has not viewed, are more likely to be interesting than ones simply chosen at random.

Collaborative filtering algorithms operationalize this idea by forming a user-item

matrix, which records the rating each registered user assigns to each possible item (if

it exists; the user-item matrix is typically very sparse). This information is used to

predict unknown ratings, and by extension, which items are of interest to a specific

user. Collaborative filtering algorithms can be broadly separated into three categories,

memory-based, model-based, and hybrids (Su & Khoshgoftaar, 2009).

A memory-based algorithm directly uses the user-item matrix to make predictions.

These algorithms can be classified as either item-based or user-based. With user-based

collaborative filtering, the intent is to make predictions based upon the actions of the

most similar users. For this method, a formula for similarity between users must be

defined. Then, for a specific user, the k nearest neighbours (most similar users) are

determined. The specific predictions will vary based upon the specific similarity

8

function, as well as the value being used for k (Jannach, Zanker, Felfernig, & Friedrich,

2010). The general form for prediction based on user-based collaborative filtering is

shown in Equation (3):

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 (𝑢𝑗, 𝑖𝑘) = �̅�(𝑢𝑗 , 𝐼𝑗) +

∑ 𝑠𝑖𝑚𝑢𝑙 ∈𝑈𝑗
 (𝑢𝑗, 𝑢𝑙) ∗ (𝑟(𝑢𝑙, 𝑖𝑘) − �̅�(𝑢𝑙 , 𝐼𝑙))

∑ 𝑠𝑖𝑚𝑢𝑙 ∈𝑈𝑗
 (𝑢𝑗 , 𝑢𝑙)

(3)

where uj is user j, ik is item k, r(uj, ik) denotes the rating user j gave item k, Ik is the set

of all items rated by user k, sim(uj, ul) is the similarity value between users j and l.

The previous equation is based upon having ratings for items. Traditionally these

would be explicit ratings, where a user assigns a value based upon how they feel about

the item. Again, in order to use the equation in an environment where there are no

explicit ratings, such as a LBSN dataset, then implicit ratings based upon user

behaviour are necessary (Konstan, et al., 1997). An item-based algorithm follows a

similar design, requiring an item-item similarity measure to determine each item’s k

nearest neighbours. Prediction for a user-item pair depends upon the ratings that a

user has given that item’s neighbours (Sarwar, Karypis, Konstan, & Riedl, 2001),

(Koenigstein & Koren, 2013). (Huang & Gartner, 2014) compares the results of using

various similarity measures for novel POI recommendation. In their work, the least

effective method for collaborative filtering was using a simple user similarity measure,

which did not utilize any information regarding check-in frequency. Their results

improve upon constructing a more complex definition for similarity. Ultimately their

best results occurred by adding spatio-temporal context to their calculations.

9

A model-based algorithm makes predictions from a model, which is learned from the

dataset. The model is trained on some fraction of the data with the intent of learning

the patterns which can be used to make predictions. As a result many of the techniques

can ultimately be described as taking a probabilistic approach to prediction. A general

model-based prediction formula has been suggested in (Breese, Heckerman, & Kadie,

1998) or (Hernando, Bobadilla, & Ortega, 2016), and is shown in Equation (4):

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 (𝑢𝑗 , 𝑖𝑘) = ∑ 𝑃𝑟 (𝑟(𝑢𝑗 , 𝑖𝑘) = 𝑛 |𝑟(𝑢𝑗, 𝑖𝑝), 𝑝 ∈ 𝐼𝑗) ∗ 𝑛

𝑚

𝑛=0

(4)

where uj is user j, ik is item k, m is the maximum rating for an item, Ij is the set of all

items rated by user j, and Pr is a probability function based on the model. Essentially

the prediction for a user-item pair is the summation of the probability of each possible

rating multiplied by the respective rating.

A number of machine-learning algorithms have been employed to construct model-

based collaborative filters. These include Bayesian networks, neural networks, and

clustering models. A Bayesian network is an acyclic graph with nodes representing

variables, and the edges representing the probabilistic dependencies of the variables

(Korb & Nicholson, 2010). Bayesian algorithms are often augmented with decision

trees or logistic regression to deal with multi-class variables and missing data (Su &

Khoshgoftaar, 2009). Neural networks are a connected graph of simple processing

nodes, designed to simulate the functioning of biological neurons; the specific topology

and algorithms used vary. A variety of neural network architectures have been

proposed, which can be roughly divided into feed-forward and recurrent networks (i.e.

10

with or without feedback connections). Feed-forward neural networks for collaborative

filtering were examined in e.g. (Billsus & Pazzani, 1998), (Mannan, Sarwar, & Elahi,

2014). Clustering models identify groupings of objects based on their feature-space

representations. In the context of a recommender the objects could be either users or

items. To make a prediction for a specific user-item pair, the model looks at the relative

membership of the user to each cluster, and the predicted rating of each cluster for

that item (Nilashi, Jannach, bin Ibrahim, & Ithnin, 2015).

A hybrid recommender system combines multiple recommendation algorithms. A

number of approaches for combining the individual outputs into a consensus exist

(Burke, 2002), (Bobadilla, Ortega, Hernando, & Gutiérrez, 2013). Simple approaches

include weighted sums, or simple selection of one of the components. More complex

approaches include fusing the component outputs; combining distinct feature sets from

different components into a single feature vector; cascades where the output of one

component is the input to another in series; the more general feature augmentation,

where component outputs are a subset of the features to the next recommender; and

meta-recommenders that take the model learned by a component as an input. A hybrid

recommender system may use multiple combination methods to incorporate multiple

recommendation algorithms.

2.4 Incorporating Context

Recommenders that incorporate context are often hybrid algorithms; such designs

been utilized in many kinds of recommenders such as search applications and music

recommendation (Adomavicius & Tuzhilin, 2011). Approaches for incorporating

context vary by domain, as the availability and utility of different pieces of information

11

is often significantly different. For example, in an anonymized medical dataset you

would be unable to directly use external data specific to individuals. For novel POI

recommendation in an LBSN, we believe the most relevant contextual information

would be the user’s location, temporal patterns in their movements, and social

influences. We defer a discussion of location to Section 2.5, and discuss temporal and

social context in the current section.

Various works focus on improving upon using collaborative filtering for location

prediction. (Ye, Yin, Lee, & Lee, 2011) show various ways of using collaborative

filtering for novel POI recommendation. Their results have a comparison of

performance for several methods of using collaborative filtering on two datasets. A

notable result is that the plain user-based collaborative filtering generally outperforms

friend-based collaborative filtering. They improve performance by tuning linear

combinations of the components. Their best result is the linear combination of user-

based collaborative filtering, friend-based collaborative filtering, and a geographic

distance value.

Temporal context in the present work refers to the date and time associated with

events from the user’s history. One method of incorporating temporal data in

recommendations is using it to reweight the ratings we input to a collaborative filter.

This method has been used to improve the performance of an item based collaborative

filter in (Ding & Li, 2005). However, their results showed that time weighting was

most effective when the weighting algorithm parameters were learned and adjusted

for each user, adding computational complexity. Another approach is to focus on the

periodic aspects of temporal information. This has been done in works such as (Yuan,

12

Cong, Ma, Sun, & Thalmann, 2013). In their paper, they split the day into hour-length

slots and examined how the hour of the day impacts individual user behaviour as well

as the popularity of each location. They found that handling time in this manner

improved the performance of the algorithm. A similar approach was employed in (Cho,

Myers, & Leskovec, 2011), with a focus on the day of the week rather than the hour of

the day. A final approach for using temporal data is to look at the sequence in which

events occur; the specific times of events are ignored in favor of their ordering. Markov

chains have been used to build recommenders using this concept in e.g. (Rendle,

Freudenthaler, & Schmidt-Thieme, 2010). This technique is inherently useful when

limited temporal information is available. However, if a dataset has accurate time

records such a technique essentially ignores a valid variable and its predictive value.

Works such as (Liu, Liu, Liu, Qu, & Xiong, 2016) have explored other methods of

sequential pattern learning, which outperformed Markov chains in POI

recommendation. The LRT algorithm (Gao, Tang, Hu, & Liu, 2013) is another take on

leveraging temporal data. They divide the user-location matrix into multiple sub-

matrices corresponding to specific time intervals. They then make use of matrix

factorization to establish the top-N recommendations for each sub-matrix. Finally,

temporal aggregation combines sub-matrix preferences into a final preference model;

experimental investigation showed that a voting method was the most effective. The

top-N items finally recommended to the user are the N items occurring most frequently

among the sub-matrix recommendations.

Various authors have explored social context for recommendations. This usually

means that items that have drawn the interest of the current users’ contacts in a social

graph (“friends”) will be treated as more relevant than ones from other users. In (Ye,

Yin, & Lee, 2010) a collaborative filter was restricted to just the user’s friends. The

13

recommendation quality remained roughly the same, but the method was

computationally faster as only a much smaller subset of the user-item matrix was

processed. Other works have found that social context enhances accuracy. One

example is the use of social relationships to determine latent social factors influencing

individual behaviour (Shen & Jin, 2012). Their algorithm utilizes the mixed

membership stochastic block model (Airoldi & David M. Blei, 2008). The block model

is used to factorize the social network, and associate each user with multiple groups,

which are used as latent social factors. This is combined with other latent factors

derived from a matrix factorization over the user-item matrix. They show an

improvement in accuracy over other models, such as item-based collaborative filtering

and a matrix factorization model. Social context has been implemented to improve

other matrix factorization based recommendation algorithms, as in (Yang, Zhang, Yu,

& Wang, 2013). Their work builds upon probabilistic matrix factorization, which does

not make use of social information. Their results show that the performance is

improved by incorporating the social influence from friends, essentially assuming that

a user is similar to their friends. Furthermore, they demonstrate additional

performance improvement by weighting the social influence of friends by a similarity

measure, rather than treating all friends equally. They specifically found an

improvement when using the Pearson Correlation Coefficient as a similarity measure.

2.5 Geospatial Prediction

An active LBSN will see check-ins across multiple cities, countries, and even

continents. A number of studies including (Cho, Myers, & Leskovec, 2011) and (Noulas,

Scellato, Lathia, & Mascolo, 2012) have observed that users are more likely to visit

locations that are geographically close. This suggests that the locations of a user’s past

14

check-ins can be useful for predicting a future location. The novel POI recommendation

problem is one application of this finding; the related location prediction problem is to

predict a user’s movements over a period of time (Leca, Nicolaescu, & Rîncu, 2015). In

particular, repeated visits to specific locations form the majority of location predictions,

whereas a novel POI is by definition a location that has not been previously visited

(Wang, et al., 2015).

Various approaches for incorporating geographic data have been explored; the simplest

method is to simply make predictions based upon geographic proximity, ignoring all

other factors which may indicate user behaviour. Another option might be to look at

consecutive check-ins and estimate the user’s “trajectory” as a basis for location

prediction; however that solution has been found to be ineffective in (Ye, Zhu, & Cheng,

2013). When other methods of predicting location are available, then a weighted

combination of them is another possibility. In a non-personalized approach, an

‘average’ profile could be constructed from available training data. The average profile

can be used to construct a fitted curve which captures the probability that a user would

travel a specific distance. The probability curve can then be applied as a weight when

predicting travel to any new location. A problem with this technique is that different

users may have different travel patterns. It can be enhanced by tailoring the

weightings based upon a user’s specific travel patterns. Papers such as (Cheng, Yang,

Lyu, & King, 2013) and (Monreale, Pinelli, Trasarti, & Giannotti, 2009) focus on

mining user location history to predict the next location, but make no use of available

social information. Some works for novel POI recommendation make significant use of

spatial data, in the form of GPS data returned from a PDA or mobile phone, such as

(Park, Hong, & Cho, 2007). They discuss other similar designs which make use of real-

15

time spatial data. The viability of such techniques is obviously dependent upon the

recommender having access to real-time data.

3. Collaborative Context Recommender

3.1 Related Work

The LURA algorithm (Lu, Wang, Mamoulis, Tu, & Cheung, 2015) aggregates multiple

recommender systems to form its predictions. The component recommenders cover

social, spatial, and temporal data and many use collaborative filtering. In total, LURA

has 11 component recommenders. They have various user-based collaborative filtering

components, starting with a basic user-based collaborative filter. They also have a

friend-based collaborative filter, which computes similarity based upon common

friends. This is built upon for the friend-location collaborative filter, which also

considers the how the users visit the same locations. Their geo-distance collaborative

filter calculates similarity between users based upon their geographic distance. The

final user-based collaborative filter they call category based. It considers some

additional metadata about locations, their category, and calculates similarity between

users based upon their category history. There are two item-based collaborative filters,

the first is just item-based, and the second is augmented to be time weighted. They

have three probabilistic components, including a power-law model, kernel density

model, and spatial kernel density model. The final component recommender is based

upon implicit matrix factorization. Based upon their results, their strongest component

is user-based collaborative filtering. They ultimately have two sets of results which use

different aggregation strategies. The two strategies are score-based aggregation and

rank-based aggregation. When looking at both strategies, they show that they can

16

outperform simple collaborative filtering by roughly 11.8% on a Foursquare dataset,

and 8.5% on their Gowalla dataset. However, their best aggregation method depends

upon the dataset. Rank-based aggregation was more effective on Foursquare, while

score-based was more effective with Gowalla. Using their rank-based aggregation on

Gowalla only shows, on average, 3% higher recall and 4% higher precision than user-

based collaborative filtering. Ultimately they use a different algorithm for each dataset,

suggesting less overall robustness.

The LFBCA algorithm (Wang, Terrovitis, & Mamoulis, 2013) looks at friendship

connections as well as establishing similarity between users who have visited the same

location. They also utilize a distance measure to omit distant locations. Their method

is based on a ‘bookmark’ graph coloring algorithm. Their algorithm is based on

constructing and then augmenting a graph of users via graph coloring. For a given

user, the graph is a union of their friends and any users who have visited the same

locations. Weights are assigned to both the edges occurring from friendship

connections, as well as the location based similarity edges. They combine the two types

of edges such that they have a single transition probability value associated between

a pair of users. They appear to have some performance issues on a rapidly growing

dataset, where there is a significantly larger amount of new information occurring.

This can be seen by looking at their results on Gowalla, where there is drop across

multiple performance metrics before an eventual recovery. This seems to correspond

to the portion of the dataset where the number of check-ins in the training data is

significantly lower than the number of check-ins in the testing data. Their results

demonstrate perfect coverage, indicating they are able to make a recommendation for

all users in their tests. However, this does not mean that recommendations are useful,

17

as by their own utility metric, for each snapshot, less than one quarter of users had

any correct recommendations. They compare their results against several alternative

algorithms, including user-based and location-based collaborative filters. They

consistently have higher precision and recall than most of the algorithms, although

there are a few instances where a random walk with restart algorithm has better

results for these metrics. The bookmark coloring algorithm is based on work in

(Berkhin, 2006). The bookmark coloring algorithm is a model for ‘coloring’ a graph.

When a node receives a ‘color’, it keeps a percentage, and distributes the remainder

equally to neighboring nodes, such that a node can receive ‘color’ from several

neighbours at once. This process repeats until only an arbitrarily small amount of ‘free’

color is left to distribute. The algorithm results in ‘color’ propagating through the graph,

outward from the first colored node. More importantly, it causes nodes to have more

‘color’ when they are fewer edges away from the first node, and when they have more

paths to it. Once completed, the amount of color on each node is essentially a measure

of how close it is to the original node. This is used to quickly evaluate random walks

traversing the graph, as long as they start at the first node. This is because the amount

of ‘color’ on a node directly corresponds to the probability of a random walk ending on

that node.

3.2 Analysis

3.2.1 Implicit Feedback

For many recommenders, users provide their ratings, indicating their preference for

or against an item. However, currently-available LBSN datasets include only implicit

ratings. This means that we only know that a user has visited a location. This is

18

different than having an explicit rating made by users for the locations which they

visit. Implicit feedback is less common within recommendation research (Jawaheer,

Weller, & Kostkova, 2014). This is likely because an implicit rating is expected to be of

lesser value than an explicit rating (Nichols, 1998). Within the context of

recommenders this presents significant challenges. Compared to explicit ratings,

implicit ones are more subject to noise, and we cannot reliably separate missing

feedback from negative feedback (Hu, Koren, & Volinsky, 2008). There are various

solutions for dealing with implicit ratings from an LBSN. This includes having a binary

rating based upon whether the user has visited the location, or using a frequency based

approach where the rating is based upon the number of check-ins a user has at the

location (Zheng, Xie, & Ma, 2010).

3.2.2 Sparsity and Imbalanced Data

Novel POI recommendation suffers from both sparsity and imbalanced data. An LBSN

is typical used by at least tens of thousands of users, and contains an order of

magnitude more locations. When working with a real dataset, the number of user-

location pairs where a check-in has occurred will be dwarfed by the number of pairings

where there has never been a check-in. This results in a user-location matrix with a

very high level of sparsity. There is also imbalance among the actual check-ins, as some

users and locations will have a disproportionately larger amount of check-ins than the

others.

Dealing with heavily imbalanced data is inherently challenging. Naïve methods which

work in other situations may be ineffective. The typical example of this would be an

overall accuracy maximization solution. If a user visits one of one hundred locations,

19

then 99% accuracy can be achieved in predicting they visit no locations. This result is

plainly not useful, despite demonstrating ‘high accuracy’. This well-known issue has

been demonstrated in works such as (Monard & Batista, 2002).

Sampling techniques are one approach to mitigating imbalanced data. Oversampling

approaches reduce the class imbalance by increasing the samples of the minority class.

The simplest method is to perform random sampling with replacement over the

minority class. This would be as simple as recounting check-ins at random. The

problem is that this is believed to cause overfitting (Kotsiantis, Kanellopoulos, &

Pintelas, 2006). An alternative would be use some form of weighted algorithm,

adjusting the resampling rate for specific users or locations. A more complex solution

is to use the Synthetic Minority Over-sampling Technique (SMOTE) (Chawla, Bowyer,

Hall, & Kegelmeyer, 2002), or its variants. With SMOTE, artificial data points are

created for the minority class. The new data points are created at a random point on

the line connecting neighboring minority data points. Plainly, SMOTE was designed

for feature spaces where each (orthogonal) dimension forms at least an interval scale.

It is difficult to construct synthetic data points for context based location prediction.

Checking in to two locations does not necessarily indicate that a user has interest in

checking in to a location between them (it might, for example, be an empty field!) Each

user has their own behaviour, which is in part characterized by the order of locations

for check-ins, as well as the time between successive check-ins. The use of synthetic

check-ins inherently alters aspects of the observable user behaviour. Other factors

such as the frequency of users’ co-visits with friends add additional complexity.

20

In contrast, undersampling balances the class frequencies by removing elements from

the majority class. Undersampling of the majority class has been used effectively to

deal with severe class imbalance (Drummond & Holte, 2003).The simplest option is to

randomly select which majority points are included. This has the advantage of being

fast and not inherently introducing a bias. The alternative is to make an informed

decision about which instances of the majority class are included. One option would be

to ensure that instances of the majority class are well-distributed amongst the feature

space. For a LBSN this could mean only including the instances which are a specific

geographic distance away from the existing instances. Another option would be to

remove instances of the majority class which are nearest to instances of the minority

class. This has been done using Tomek Links (Tomek, 1976) with the intent of reducing

noise and borderline instances (Kubat & Matwin, 1997). In order to intelligently

remove instances of the majority class, the topology of the feature space needs to be

considered. This would mean accounting for the urban clustering of check-ins within

an LBSN (Bawa-Cavia, 2011).

The other major approach to correcting imbalanced data is cost-sensitive classification.

With a basic classification algorithm, the goal is to simply minimize the number of

classification errors. No particular importance is placed upon the types of errors

occurring. However, false-negative and false-positive errors can have drastically

different consequences in some applications (Glas, Lijmer, Prins, Bonsel, & Bossuyt,

2003), leading us to specify different costs to each (Ling & Sheng, 2011). Cost sensitive

classification refers to training an algorithm to minimize the total error cost rather

than the number of errors. While this can be accomplished by modifying individual

algorithms, the well-known MetaCost algorithm retrofits cost-sensitive classification

21

onto existing classifiers (Domingos, 1999). Note however, that the misclassification

costs usually need to be specified a priori; and there is usually little guidance on what

those costs should be, or an appropriate ratio between them.

3.2.3 Small disjuncts

The existence of imbalanced data has been associated with another problem, small

disjuncts. Small disjuncts are regions in feature space which only cover a small number

of training examples (Holte, Acker, & Porter, 1989). Small disjuncts emerge when

performing classification of data. The classifier can easily learn large homogenous

regions of the feature space, which is likely to occur in where the majority class is

dominant. However, in regions where the minority class is common, there may still be

many instances of the majority class, even if it is just noise. This results in a classifier

producing multiple small, disjunct regions (He & Garcia, 2009). The work in (Jo &

Japkowicz, 2004) suggests that poor performance on an imbalanced dataset may be

caused more by the existence of a small disjuncts problem when dealing with multi-

dimensional data. Their suggestions for dealing with small disjuncts are either

pruning away sufficiently small regions from the classifier, or performing cluster based

oversampling. However, as we have already discussed, oversampling is inherently

challenging within the context of novel POI recommendation.

3.2.4 Cold-Start

As with other recommenders, the cold-start problem also afflicts novel POI

recommendation for a LBSNs. A new user by definition has not checked-in at many

distinct locations, and this makes it difficult to accurately determine their preferred

next destination. This is closely related to the problem of imbalanced data, as a user

22

with few ratings is contributing a mostly empty row to the user-item matrix. The cold-

start problem is known to be particularly problematic for collaborative filtering.

Numerous solutions have been proposed to alleviate this problem. With typical

recommender systems, there is a suggestion to switch from a user-based collaborative

filter to an item-based collaborative filter (Sarwar, Karypis, Konstan, & Riedl, 2001).

This solution was proposed to deal with datasets where there was a large number of

users. Obviously, this solution is less effective on datasets with a large number of items.

Looking at various sample LBSN datasets, the number of locations may be an order of

magnitude larger than the number of users, negating the usefulness of this method.

The use of additional context is another way to handle the cold-start. The addition of

both social and geographic factors have been shown to help with the cold-start problem

with collaborative filtering (Ye, Yin, Lee, & Lee, 2011). Another option is to utilize a

different kind of algorithm for recommendation, one which is less susceptible to the

cold-start problem (such as a content filter or a hybrid content-collaborative filter, e.g.

(Morawski, Stepan, Dick, & Miller, 2017)).

3.2.5 Scalability and Complexity

Novel POI recommendation on an LBSN may encounter another issue faced by

recommender systems dealing with a large or even expanding dataset. Scalability has

been identified as a significant issue in several works, including (Sarwar, Karypis,

Konstan, & Riedl, 2000) (Papagelis, Rousidis, Plexousakis, & Theoharopoulos, 2005).

Again, for generic recommender systems, switching from a user-based collaborative

filter to an item-based collaborative filter has been proposed to mitigate scalability

problems (Sarwar, Karypis, Konstan, & Riedl, 2001). The usefulness of that method is

dependent upon the user-item balance of the dataset being evaluated. Another solution

23

is to reduce the dimensionality of the user-item matrix, such as through singular value

decomposition (Sarwar, Karypis, Konstan, & Riedl, 2000). The use of singular value

decomposition has been criticized for efficiency concerns, and alternatives such as the

use of an incremental approach to collaborative filtering have been suggested

(Papagelis, Rousidis, Plexousakis, & Theoharopoulos, 2005). Some approaches pre-

filter user-item data to reduce its size. One such method is to restrict similarity in

collaborative filtering to only be between friends, not all users (Ye, Yin, & Lee, 2010).

This method inherently sacrifices potentially useful data, and is particularly

problematic for users with few connections in that particular social graph.

3.2.6 Short-Term Effect

There is evidence that in a LBSN, check-ins have a ‘short-term’ effect, meaning that

the older a user’s check-in, the less impact it has upon their next location (Gao, Tang,

& Liu, 2012). This may be caused by user preferences and behaviour changing over

time as has been seen with the Netflix data (Koren, 2010). For these reasons, it will

likely be useful, when analyzing a user’s check-in history, to apply a weighting to

check-ins based upon their absolute or relative age, as in (Ding & Li, 2005). One

approach might be to apply weighting based solely upon on the order of the check-ins,

rather than the actual times. Such a method would not differentiate between

subsequent check-ins occurring with significant temporal separation and check-ins

made in rapid succession. This could be an issue as it ignores some knowledge

embedded within the system. An alternative is to consider the amount of time

occurring between each check-in in a user’s history. In both cases, an adaptive

weighting is expected to be the most accurate, but also the most computationally

intensive.

24

3.3 Designing the Collaborative Context Recommender

In order to overcome issues discussed in Section 3.2, our recommendation system

consists of multiple components. This includes relatively simple spatial, temporal and

social components, as well as the more complex collaborative filter and classification

components. The former are used to provide the additional context necessary to

overcome the challenges. These intermediate results are passed to the collaborative

and classification components. The final recommendations are generated by the

classification component. The overall design can be seen in Figure I.

Figure I: Recommender Design

Sections 3.3.1, 3.3.2, and 3.3.3 discuss the detailed design of the Temporal, Spatial and

Social components, respectively, while Section 3.3.4 discusses the Collaborative Filter.

The final classifier is discussed in Sections 4.5 (selection of the classifier), Section 4.6

(sampling an LBSN dataset), Section 4.7 (parameter exploration) and Section 4.8

(novel POI recommendation with this design).

25

3.3.1 Temporal Component

From the literature, a solely temporal approach is plainly not going to be an effective

novel POI recommendation system. However, a temporal component can provide

useful information about a user’s behaviour. Specifically, this component is intended

to account for the ‘short-term’ effect that is described in (Gao, Tang, & Liu, 2012).

The temporal component is used to reweight locations based upon how recently they

were visited. It is expected that if a user’s friend visited two different restaurants a

year apart, they would find the more recent restaurant a more relevant

recommendation (Cho, Myers, & Leskovec, 2011). For simplicity, we use a linear

weighting starting from the start of the dataset, as shown in Equation (5). Such an

equation meets the requirements of monotonicity as suggested in (Ding & Li, 2005).

With this equation, it is not necessary to learn additional parameters which may be

specific to an individual dataset. For each user, a total check-in weight value is

calculated as the summation of the temporal weights for all locations the user has

visited as per Equation (6).

𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑊𝑒𝑖𝑔ℎ𝑡 (𝑢𝑖 , 𝑙𝑘) =

𝐶ℎ𝑒𝑐𝑘𝑖𝑛𝑇𝑖𝑚𝑒(𝑢𝑖 , 𝑙𝑘) − 𝑆𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒

𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒 − 𝑆𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒

(5)

𝑇𝑜𝑡𝑎𝑙𝑊𝑒𝑖𝑔ℎ𝑡 (𝑢𝑖) = ∑ 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑊𝑒𝑖𝑔ℎ𝑡 (𝑢𝑖 , 𝑙𝑘)

𝑛

𝑘=1

(6)

26

The total weight is relevant for handling users of differing activity levels. If two users

visited a location at the same time last week, they would both receive the same

temporal weight for the location. However, that location’s relevance may be different

if the users vary in the number of locations they visit. If a user has been to hundred

different places, a location is less significant than if they only have ten distinct

locations, because it accounts for smaller fraction of their recent check-ins.

3.3.2 Spatial Component

The spatial component is used to reweight locations based upon their physical

proximity to the user’s last known location. Spatial weighting is important because it

is expected that users are less likely to visit more distant to locations (Cheng, Yang,

King, & Lyu, 2012), (Cho, Myers, & Leskovec, 2011). All other things being held equal,

you are more likely to visit the coffee shop down the street than across the country. In

some applications such spatial relationships could be gathered using real-time GPS

data (Park, Hong, & Cho, 2007). Unfortunately, we do not have access to a user’s real-

time location in any of the public LBSN datasets; the only positional data available is

the user’s check-ins. We therefore use the user’s last check-in location as a proxy for

current location. For each user 𝑢𝑖, we calculate the average distance 𝐷𝑎𝑙𝑙, between their

check-in locations 𝑙𝑘 as per Equation (7). The average distance is used to capture an

individual user’s preferred travel distance. For instance, someone who walks through

the downtown would likely not travel as far within their own city as a person that is

regularly driving. As there is no additional data on each user’s methods of travel, we

must depend upon the recorded check-ins for predicting their behaviour. The average

distance is used in a Gaussian function to calculate a weight for a given distance,

following (Cho, Myers, & Leskovec, 2011). The Gaussian function returns a value

27

between zero and one for spatial weighting, as shown in Equation (8). The function is

then used whenever a spatial weighting is required for a new location, by passing in

the distance from the user’s last known location. If a user does not have enough

historical check-ins to calculate 𝐷𝑎𝑙𝑙, the mean of 𝐷𝑎𝑙𝑙 across all users is used as the

default.

𝐷𝑎𝑙𝑙 =

∑ (𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑙𝑘 , 𝑙𝑘+1))𝑛−1
𝑘=1

𝑛 − 1

(7)

𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝑊𝑒𝑖𝑔ℎ𝑡(𝑢𝑖 , 𝑙𝑘) = 𝑒

−
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑙𝑎𝑠𝑡𝐶ℎ𝑒𝑐𝑘𝑖𝑛(𝑢𝑖),𝑙𝑘)

2∗(0.5∗𝐷𝑎𝑙𝑙)2

(8)

The entire process is also repeated with a special subset of the user’s visited locations.

Instead of looking at all consecutive check-ins, the subset is restricted to pairs which

have occurred on the same day. This provides additional information based on the

user’s behavioural pattern which can be exploited to recommend more spatially

relevant locations. This second set of weights is also available to later components for

additional context.

As the locations in a LBSN have their position recorded with respect to latitude and

longitude on the Earth, we use the haversine formula (Robusto, 1957) to determine the

actual distance between two locations on a sphere.

28

ℎ𝑎𝑣(

𝑑

𝑟
) = ℎ𝑎𝑣(𝑙𝑎𝑡𝑘 − 𝑙𝑎𝑡𝑗) + cos(𝑙𝑎𝑡𝑗) cos(𝑙𝑎𝑡𝑘) ℎ𝑎𝑣(𝑙𝑜𝑛𝑔𝑘 − 𝑙𝑜𝑛𝑔𝑗)

(9)

In this equation 𝑙𝑎𝑡𝑖 and 𝑙𝑜𝑛𝑔𝑖 correspond to the latitude and longitude, respectively,

for location i. The distance between the points is denoted by d, and the radius of the

sphere is r. Note that ℎ𝑎𝑣(𝜃) denotes the haversine function, which is shown in

Equation (10).

ℎ𝑎𝑣(𝜃) = 𝑠𝑖𝑛2 (

𝜃

2
)

(10)

This equation is rearranged for actual distance in Equation (11). Note that we must

substitute a value for r. We use the value of 6371.009 km, corresponding to Earth’s

mean radius (Moritz, 1980). This value is roughly 7 km smaller than the Earth’s

equatorial radius (Williams D. R., 2016).

 𝑑 = 2 ∗ 6371.009

∗ 𝑎𝑟𝑐𝑠𝑖𝑛√𝑠𝑖𝑛2 (
𝑙𝑎𝑡𝑘 − 𝑙𝑎𝑡𝑗

2
) + cos(𝑙𝑎𝑡𝑗) cos(𝑙𝑎𝑡𝑘) 𝑠𝑖𝑛2 (

𝑙𝑜𝑛𝑔𝑘 − 𝑙𝑜𝑛𝑔𝑗

2
)

(11)

29

There are some methods which could be used to produce a more accurate measure of

distance. In urban environments a user will rarely be able to travel along a direct line

to their destination. Road topology will limit the paths available to user. This will be a

factor for both pedestrians walking on sidewalks, as well as motorists on the streets.

Accounting for the physical limitations would allow a more accurate calculation of a

user’s effective proximity to locations. This could be further enhanced with

considerations regarding speed limits, road conditions, or public transportation routes

(Chen, Lu, & Gu, 2009). As it stands, existing LBSN datasets do not contain this

information.

3.3.3 Social Component

The social component is used to reweight locations to account for social context. It is

expected that users will preferentially visit locations which have been visited by their

friends. In an experiment, it has been shown that “… the user’s friends consistently

provided better recommendations than RS [Recommender Systems]” (Sinha &

Swearingen, 2001). More recent literature has also argued the relevance of opinions

from users with friendship connections. Such user pairs are more likely than average

to share locations among their check-ins (Cheng, Yang, King, & Lyu, 2012). It has also

been shown in various LBSNs that a user’s first check-in to a location is

disproportionately likely to be preceded by a check-in from the user’s friendship

community (Wang, Terrovitis, & Mamoulis, 2013). Work in (Cho, Myers, & Leskovec,

2011) showed that users are particularly impacted by their friends’ check-ins when

visiting more distant locations. However, a user is unlikely to be influenced by all of

their friends equally. It follows that for each user, the “strength” of their friendships

must be determined. We define the strength of the friendship based upon their check-

30

in history following (Crandall, et al., 2010), which shows a correlation between

friendship connections and co-visits. For this reason, we use a similarity measure

based upon co-visits. This is calculated between the user, 𝑢𝑖, and their friend, 𝑢𝑓, as

the number of co-visits divided by the user’s total number of check-ins, as shown in

Equation (12).

𝐹𝑟𝑖𝑒𝑛𝑑𝑠ℎ𝑖𝑝(𝑢𝑖 , 𝑢𝑓) =

𝐶𝑜𝑣𝑖𝑠𝑖𝑡𝑠(𝑢𝑖 , 𝑢𝑓)

𝑇𝑜𝑡𝑎𝑙 𝐶ℎ𝑒𝑐𝑘𝑖𝑛𝑠 (𝑢𝑖)

(12)

Ideally, the LBSN dataset would track whether two users visit a location together. In

practice, only individual check-in times are recorded, which does not tell whether a

user has just arrived, is in the middle of a visit, or is just about to leave. Some services

even allow the user to retrospectively record a check-in for a previous day (Foursquare,

2016c). For these reasons, the time window for declaring a co-visit is set to a full day.

Note that the friendship weighting is not symmetric; if two users have a different

number of total check-ins, their friendship values towards each other will not be equal.

The asymmetry of friendships allows for a leader-follower dynamic between users,

where recommendations between the users may effectively only be one-way, following

(Eagle, Pentland, & Lazer, 2009).

3.3.4 Collaborative Component

The basic idea of collaborative filtering is that similar users like similar items. You can

therefore recommend new items to a user based on what similar users liked. With user

based collaborative filtering a common method is to use a nearest neighbour algorithm.

31

The algorithm looks at the N most similar users and uses their preference for an item

to determine the target user's preference for it. Each user is effectively weighted by

their similarity to the target (Schafer, Frankowski, Herlocker, & Sen, 2007).The

collaborative component takes input from the context components. Ultimately, we

want to recommend locations visited by the neighbourhood of most similar users. This

requires determining the similarity between users. The first part of this is to calculate

the similarity of the check-in history. We calculate the check-in overlap for two users

as the summation of the product of their respective temporal location weights for each

location they have visited. This is described in Equation (13). This equation is used

because it places the strongest weight on locations which both users visited recently.

By taking the product, more importance is placed upon visits which occur near the

same time. This is useful as check-ins with close enough check-in times are co-visits,

which are a good indicator of similarity between users (Pham, Hu, & Shahabi, 2011).

Another effect is there is significantly less weighting applied to the oldest check-ins.

This is useful because of evidence that in a location based social network, the check-

ins have a short-term effect, as discussed in Section 3.2.6. This is used to calculate the

check-in similarity as per Equation (14).

 𝐶ℎ𝑒𝑐𝑘𝑖𝑛 𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝑢𝑖, 𝑢𝑗)

= ∑ 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑊𝑒𝑖𝑔ℎ𝑡 (𝑢𝑖 , 𝑙𝑘) ∗ 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑊𝑒𝑖𝑔ℎ𝑡 (𝑢𝑗 , 𝑙𝑘)

𝑛

𝑘=1

(13)

32

 𝐶ℎ𝑒𝑐𝑘𝑖𝑛 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑢𝑖 , 𝑢𝑗)

=
𝐶ℎ𝑒𝑐𝑘𝑖𝑛 𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝑢𝑖 , 𝑢𝑗)

𝑇𝑜𝑡𝑎𝑙𝑊𝑒𝑖𝑔ℎ𝑡 (𝑢𝑖) + 𝑇𝑜𝑡𝑎𝑙𝑊𝑒𝑖𝑔ℎ𝑡 (𝑢𝑗) − 𝐶ℎ𝑒𝑐𝑘𝑖𝑛 𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝑢𝑖 , 𝑢𝑗)

(14)

Location based social networks provide users with more information about what their

friends are doing rather than arbitrary non-friend users. For this reason, we weight

friends and non-friends differently for similarity. We calculate a social similarity

measure between users, based upon their associated friendship value, as shown in

Equation (15). It uses a social constant, 𝑆𝐶, to allow for similarity between users who

are not friends. This constant determines the weighting applied to the friendship

strength. As non-friends have a friendship value of zero, their social similarity will be

equal to 𝑆𝐶. We restrict the constant to the range [0, 1]. If 𝑆𝐶 is set to zero, then the

collaborative filter will only consider users who are friends when calculating similarity,

similar to the design in (Ye, Yin, & Lee, 2010). This equation places more importance

upon users who are friends when 𝑆𝐶 is less than one.

 𝑆𝑜𝑐𝑖𝑎𝑙𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑢𝑖 , 𝑢𝑗) = 𝑆𝐶 + (1 − 𝑆𝐶) ∗ 𝐹𝑟𝑖𝑒𝑛𝑑𝑠ℎ𝑖𝑝(𝑢𝑖 , 𝑢𝑗) (15)

The similarity between two users is shown in Equation (16) as the product of their

check-in similarity and their social similarity. The highest similarity occurs when both

of the components are large. By taking the product, there is no similarity if either

component is zero. This equation for similarity is used so that the collaborative filter

can leverage both the temporal and social components.

 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑢𝑖, 𝑢𝑗) = 𝐶ℎ𝑒𝑐𝑘𝑖𝑛𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑢𝑖 , 𝑢𝑗) ∗ 𝑆𝑜𝑐𝑖𝑎𝑙𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑢𝑖 , 𝑢𝑗) (16)

33

The similarity values are used to determine the user’s neighborhood, 𝑈𝑁𝑖 . The

neighbourhood, 𝑈𝑁𝑖 is the set of the most similar users to user 𝑢𝑖. We consider a top

subset of the similar users in a k-Nearest Neighbour design. The exploration of k, our

neighbourhood size, is shown in Section 3.5.2. We use the check-in history of location

𝑙𝑘 to establish a set visitors, 𝑉𝑘, for that location. The intersection of 𝑈𝑁𝑖 and 𝑉𝑘 is used

to determine the prediction value for user 𝑢𝑖 visiting location 𝑙𝑘 . This means only

neighbours who have been to a location contribute weightings for subsequent

calculations recommending that location. The final value for each location the target

user has not visited is the sum of the similarities to all of the neighbours that have

visited the location.

𝐶𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑖𝑣𝑒(𝑢𝑖 , 𝑙𝑘) = ∑ 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑢𝑖, 𝑢𝑗), 𝑢𝑗 ∈ 𝑉𝑘 ⋂ 𝑈𝑁𝑖
(17)

The collaborative component can be used to make a prediction for every user-location

pair, however it predicts zero for locations that have not been visited by any members

of the neighborhood. The set of top locations, 𝐿𝑖, can be used on its own for location

recommendation, but can also be passed to another component. The collaborative

component can be classified as feature combination hybrid algorithm (Burke, 2002)

due to the manner in which it incorporates the earlier components.

3.3.5 Classification Algorithm

The last stage of our algorithm is a meta-classifier that accepts the outputs of the four

prior components, as well as a few features directly drawn from the dataset, and

produces our final predicted ratings; the top-N highest rated locations are then

recommended to the user. This allows us to take advantage of the known effectiveness

34

of collaborative filtering, while also mitigating its weaknesses against cold starts and

sparsity (Adomavicius & Tuzhilin, 2005), (Lu, Wang, Mamoulis, Tu, & Cheung, 2015).

Plainly, our first step in building the meta-classifier is to select a classification

algorithm from the many options available. In order to do so, we evaluate several well-

known algorithms on a subset of one of the LBSN datasets. The classification task is

to determine novelty: is a particular check-in at a novel location for that user? The

feature set provided to the classifiers is presented in Table I. The original Brightkite

dataset is filtered down to only include the 1000 most active users and locations,

leaving roughly half a million check-ins. The algorithms were trained on the first half

of the dataset and tested against the second half, with the division made

chronologically. As shown in Table II, the random forest algorithm is the most effective

with respect to both time and accuracy.

Table I: Classification Training Attributes

Attributes Type

User Identification Number Integer

Location Identification Number Integer

Time Integer

Time from last Novel Check-in Integer

Latitude Real

Longitude Real

Novelty Class (Target)

35

Table II: Classification Algorithm Comparison

Random Forest JRip SMO RBFClassifier

Running Time (s) 25.79 45.05 7433.48 55.68

Accuracy (%) 95.4019 95.3639 95.3798 95.3781

It is an implementation of a Random Forest (Breiman, 2001). Similar algorithms have

famously seen practical application in the motion tracking Kinect accessory for

Microsoft’s Xbox 360 and Xbox One gaming consoles (Shotton, et al., 2013). They have

also been applied to modeling gene selection in bioinformatics (Díaz-Uriarte & De

Andres, 2006), and chemical compound classification (Svetnik, et al., 2003). The basic

concept is that an ensemble of decision trees is created and trained on the training

data. Each tree will have a random set of attributes or features to work with at each

node. The training causes the tree to create branching decision points based on the

value of an attribute. A completed tree makes future predictions by comparing new

data to the existing tree structure. For the forest to make a prediction, each tree

contributes a vote towards the final result. The implementation we use is the Weka

(Hall, et al., 2009) random forest classifier.

The random forest handles many features. This includes user identification number,

number of friends, number of different locations visited, distance from the user’s

previous check-in, and the total number of distinct visitors for the location. The outputs

of the collaborative and context components are also features. The classification target

is visitation. In training, this has a value of one if the user has had any check-ins at

the location and zero if they did not check-in. The classifier attempts to predict the

visitation value when receiving new data. Unlike the binary novelty class target we

36

used when comparing the different classification algorithms, the visitation value is a

real number. This means the predicted visitation can either be rounded, or the

fractional value can be used. This was done because having a fractional value is useful

for determining a ranking among the predictions of this classifier.

Table III. Classification Attributes

Attributes Type

User Identification Number Integer

Number of Friends Integer

Number of distinct locations visited by user Integer

Number of distinct visitors for location Integer

Haversine distance from user's last location Real

Social Prediction Real

Spatial Near Prediction Real

Spatial Far Prediction Real

Temporal Prediction Real

Collaborative Prediction Real

Visitation Real (Target)

3.3.6 Classification Sampling

In addition to check-ins, the classifier needs some examples of locations which the user

is not inclined to visit. This requires using user-location pairs for which no check-in

has occurred. The naïve solution is to use a full user-location matrix and train on every

single user-location combination. A small dataset such as gScorr, with roughly 2.2

37

million check-ins, would have over 1 billion entries in this matrix. This large number

of pairs is costly with respect to both time and memory. Instead, we use a form of

stratified undersampling (Cochran, 1953). Note that the work in (Jo & Japkowicz, 2004)

suggests that poor performance on an imbalanced dataset may be caused more by the

small disjuncts problem when dealing with multi-dimensional data. Our use of

stratified undersampling is supported by recommendations in this situation that

sampling should focus on removing the majority class (Weiss, 2004). Specifically, for

each actual check-in made by a user, a random location is selected which has not

visited by the user. This user-location pair is used to construct a “negative” check-in,

which will have a zero visitation value. These negative check-ins can then be included

in the training data. By using random selection we are not inherently introducing bias

with our selection. In addition, random selection is fast and does not need to be tuned

to a specific dataset; implying also that as the dataset evolves over time, there will be

no need to modify the sampling technique.

3.3.7 Classification Parameters

There are various parameters which can be adjusted when setting up a random forest.

The significant parameters are the number of trees in the forest, and the number of

attributes considered at each node. The default Weka parameters have a forest which

is constructed with 100 trees, which may grow to an unlimited depth. By default each

tree will use 4 random features at each node. Increasing the number of trees appears

to increase the algorithm’s performance, but is overshadowed by an increase in

memory usage and execution time. The results for varying the number of trees for the

random forest is shown in Table IV. Random Forest Performance.

38

Table IV. Random Forest Performance

Number of Trees 10 50 100 1000

Execution Time (minutes) 1.991833 10.70833 21.196 196.5752

Accuracy (%) 76.1036 77.3278 77.6423 77.8704

The results in Table IV come from a training dataset with the attributes in Table I.

Like Table II, the class variable for predictions is novelty. Again the dataset is based

upon the Brightkite LBSN check-ins. However, the method selecting the check-ins is

different. Only check-ins which occurred during the first year of the dataset are

included. This means that there are approximately 1.2 million check-ins available to

the experiment. Again these check-ins are divided evenly into training and test data

chronologically. Note that increasing the number of trees causes a roughly linear

increase in execution time, but there are diminishing returns for accuracy. Based on

these results we set the number of trees in our random forest to 100, as we find it to

be an adequate compromise between execution time and accuracy. We include the

results of varying the number of features per node during parameter exploration in

Section 3.5.2.

A final adjustment was made to the classification component. Both users and the

LBSN as whole can change their behaviour over time. This is closely related to the

short-term effect discussed in Section 3.2.6. It was suspected that the simple temporal

component was not enough to account for this. An experiment was done with the

application of a time window during the training of the classification component. With

the time window, check-ins are only used for training if they occurred within a specified

amount of time from the current time. We include the results of varying the size of the

39

time window in Section 3.5.1. Other components, such as the collaborative filter, are

not restricted to looking at only the most recent check-ins.

3.3.8 Classification Prediction

The classification component is ultimately a random forest. Once the forest has been

trained it can output predictions, given a set of inputs. Ideally, a prediction could be

every user-location pair to determine the top locations. However, with the size of a

LBSN this could require millions of locations to be evaluated for each user. And each

earlier component must provide its feedback for that user-location pair. This is

incredibly costly in terms of execution time. Instead, for prediction, a set of probable

locations is constructed. This set starts with the top predictions of the collaborative

component. It is expanded by adding the top locations of the user’s friends, as

determined by the social component. This is done due to the effectiveness of the social

component on its own. The forest then evaluates the set of locations, making its own

predictions for each location. The number of locations requested from these

components we call set size, and is a constant which we will denote as 𝑍𝐶 . The final

predictions allow for the set of probable locations to be sorted, and the top N can then

be given as recommendations. Typically this is done with N = 10, but this can be varied

to allow for better comparison with other algorithms.

3.4 Experimental Methodology

3.4.1 Datasets

We use four datasets for our experiments; general dataset statistics are shown in Table

V. All datasets contain a list of time stamped check-ins. Each check-in therefore

40

denotes a particular user that has been to a particular latitude-longitude at a specific

time. The datasets also include users’ social network connections. A connection

between users indicates that they are to be considered friends. The friendship

connections are undirected. This means that if user 𝑢1 is friends with user 𝑢2, then

user 𝑢2 must be friends with user 𝑢1. The datasets covered all feature a high level of

check-in sparsity, as well as friendship sparsity. Check-in sparsity means that most

users have not visited most locations. Friendship sparsity indicates that most users

have few friends, relative to the total number of users.

Table V. Dataset Statistics

Dataset Start date End date Users Locations Check-ins Social

links

GSCorr (Foursquare)

January 1,

2011

December

31, 2011

11 326 96 002 2 199 782 94 328

GSCorr subset

(Foursquare)

January 1,

2011

March 31,

2011

5 269 26 381 288 079 10 208

Gowalla

February 4,

2009

October

23, 2010

196 591 1 280 969 6 442 890 950 327

Gowalla subset

February 4,

2009

October

23, 2010

74 725 767 936 5 829 873 950 327

Brightkite

March 21,

2008

October

18, 2010

58 228 772 966 4 491 143 214 078

The datasets we use have been collected by other researchers. Most data was originally

collected directly from the corresponding LBSN, via the application program interface,

or API. In cases where the original researchers found the direct access to the LBSN

inadequate, the datasets were augmented from an additional source, such as Twitter.

41

The twitter API allows software to programmatically access twitter data online, using

specialized commands (Twitter, Inc, 2016).

The GSCorr dataset is from the Foursquare LBSN. Foursquare is a social networking

system currently split over multiple apps (Foursquare, 2016d). As a social network it

allows users to connect to each other, marking other users as friends. Users can check-

in on their phone when they visit known locations. Foursquare also allows users to

search for places to go, showing how many check-ins the locations have received.

Typically, the check-in information is only visible to the user and their friends, but

check-ins can be shared over Twitter or Facebook, rendering them more public

(Foursquare, 2016a). The check-in records were gathered from Twitter with the public

API by (Gao & Liu, 2014). The social links were collected directly from Foursquare.

Users average roughly 194 check-ins and locations receive an average of 22.9 check-

ins. The user-location matrix has close to 99.80% sparsity. The sparsity of social links

is just over 99.85%. The GSCorr subset is a temporal subset of the GSCorr dataset.

Users make about 54.7 check-ins on average, and the average location is visited 10.9

times. The generally check-in sparsity is close to the large GSCorr dataset, again just

below 99.80%. The friendship sparsity is increased, just under 99.93%.

The Gowalla dataset is from the former LBSN, Gowalla. Gowalla was a LBSN

accessible through a website or mobile app (Crunchbase, 2016). Gowalla had many

features relating to travel, such as virtual passports to track the places you visit. It

allowed users to plan and share trips, which were a set of specific locations to visit

(Gowalla Incorporated, 2011). Ultimately Gowalla was acquired by Facebook (Williams

J. , 2011). The Gowalla datasets were originally collected by (Cho, Myers, & Leskovec,

42

2011). The Gowalla dataset was collected from the Gowalla LBSN using their public

API. The LFBCA version of the Gowalla dataset is somewhat larger. The average user

makes fewer than 32.8 check-ins, and on average locations are visited just over 5 times.

The check-in sparsity is under 99.997%. The social map demonstrates more than

99.995% sparsity across users. The Gowalla subset, used by LURA, is filtered to only

have users which made at least 10 check-ins, and locations which were visited at least

twice. In this dataset, the average user makes 78.0 check-ins on average and locations

receive 5.8 visits on average. The user location check-in matrix sparsity is

approximately 99.99%, and friendship connections exhibit roughly 99.97% sparsity.

The Brightkite dataset was also collected by (Cho, Myers, & Leskovec, 2011). It was

collected from the Brightkite LBSN via the public API. Like other LBSNs, it allowed

users to check-in to locations via mobile apps, and included the ability to connect with

friends. Brightkite was active from 2007 until April 2009, when it was acquired by

Limbo (Crunchbase, 2015). In this dataset, the average user makes 77.1 check-ins on

average and locations receive 5.8 visits on average. The user location check-in matrix

has sparsity above 99.99%. The friendship connections demonstrate over 99.98%

sparsity. In order to keep the other datasets entirely as test data, this dataset is the

dataset exclusively used for parameter exploration. Work in (Cho, Myers, & Leskovec,

2011) and (Scellato, Noulas, Lambiotte, & Mascolo, 2011) demonstrates that user

behaviour and other patterns are similar across multiple LBSN datasets, meaning that

the parameter exploration results should be usable for other LBSN datasets.

43

3.4.2 Performance Measures

We use multiple measures of performance for evaluating our algorithm. Precision and

recall are commonly used by many sources (Herlocker, Konstan, Terveen, & Riedl,

2004). We use standard definitions for recall and precision. Recall, 𝑅, corresponds to

the fraction of correctly predicted locations, 𝐿𝐶, out of the total number of actual visits

in the test set, 𝐿𝑉. This is shown in the following equation:

𝑅 =
𝐿𝐶

𝐿𝑉

(18)

Precision 𝑃, is the fraction of correct location predictions, 𝐿𝐶, out of the total predictions

made, 𝐿𝑃. This corresponds to the following equation:

𝑃 =
𝐿𝐶

𝐿𝑃

(19)

An important derived metric is the 𝐹1 metric or F measure. This metric uses both

precision and recall to give a single value. It is useful because it can act as a summary

of performance, and can be calculated from previously published results.

𝐹1 =
2 ∗ 𝑃 ∗ 𝑅

𝑃 + 𝑅

(20)

Another metric is Mean Average Precision (MAP) (Kaggle.com, 2015). This metric

depends on the order of the items being recommended to users. MAP is calculated by

taking the arithmetic mean of the average precision for each user being evaluated.

Average precision is given by the following equation:

𝐴𝑃(𝑛) =
∑ 𝑃(𝑘)𝑛

𝑘=1

𝑛

(21)

This looks at the top-n items recommended, where n indicates the number of

recommendations being made for the user, and P(k) is the precision for the kth item.

44

This means that MAP takes the relative ranking of the recommended locations into

consideration. All other factors held constant, a correct prediction in the second

position will receive a higher score than one in the third.

We have included Utility from the LFBCA paper (Wang, Terrovitis, & Mamoulis, 2013).

It measures the fraction of users for which one of the recommendations is correct. This

is equivalent to the fraction of users for which precision is above zero, and is shown in

Equation (22). This metric is not common in the existing literature, having been

defined in the LFBCA paper. We include it for completeness of comparison, and

because it provides insight into how many users find the recommendations helpful.

𝑈𝑡𝑖𝑙𝑖𝑡𝑦 =
∑ |𝑃(𝑢𝑖) > 0|𝑛

𝑖=1

𝑛

(22)

We include a metric for coverage. The use of coverage is based on considering which

fraction of users for which any recommendation can be made. (Note that Coverage and

Utility each measure a different level of usefulness to the end user.) We calculate

prediction coverage on a test set as the fraction of locations visited, 𝐿𝑉, for which we

have a non-zero prediction for the test user-location pair, as shown in the following

equation:

𝑈𝑠𝑒𝑟 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
∑ |𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠(𝑢𝑖) > 0|𝑛

𝑘=1

𝑛

(23)

For comparison of performance measures, we make use of the Wilcoxon Signed-Rank

Test for statistical significance. We use this test because the results are paired over

the datasets. As has been stated in (Demšar, 2006), the Wilcoxon test is preferable to

45

a paired t-test because it does not assume the data is normally distributed and should

be less impacted by outliers. The test provides us with p-values which indicate

statistical significance. We will use the traditional value of p<0.05 as the type I error

rate (Shani & Gunawardana, 2011).

Following is a summary of the mechanics of the Wilcoxon Signed Rank Test. Note that

a paired set of values for comparison are required. First, we calculate the difference

between each pair of values.

𝑥𝐷𝑖 = 𝑥𝐴𝑖 − 𝑥𝐵𝑖 (24)

We rank the differences by their absolute magnitude, assigning 1 to the smallest

difference, and iterating through all of the pairs. The rank at index i is multiplied by

the sign of 𝑥𝐷𝑖. This means that the rank is negative whenever 𝑥𝐵𝑖 > 𝑥𝐴𝑖. The ranks are

then denoted by 𝑅𝑖. Two intermediate statistics are calculated, 𝑊+ and 𝑊−. These are

the sum of the ranks with the matching sign.

𝑊+ = ∑ 𝑅𝑖 , [𝑅𝑖 > 0] (25)

𝑊− = − ∑ 𝑅𝑖 , [𝑅𝑖 < 0] (26)

The real test statistic is 𝑊, calculated as shown in Equation (27).

𝑊 = min (𝑊+, 𝑊−) (27)

This test statistic can be checked against a table of critical values to determine

statistical significance. (Zaiontz, 2016) However, when there is a small number of

comparisons, the p-value can be calculated exactly. This requires enumerating through

46

the possible sets of ranks. The p value is calculated by counting the number rank

combinations that result in an equal or smaller test statistic, and dividing by all

possible combinations. If we take N to be the total number of paired samples, there are

2𝑁 possible combinations.

𝑝 =
∑ |𝑊(𝑅𝑖) ≤ 𝑊|

2𝑁

(28)

For effect size, we make use of Cliff’s delta, d (Cliff, 1996). This measures the

magnitude of the performance difference between two groups. As shown in Equation

(29), this is the probability that a measure in set A is superior to a measure in set B,

minus the probability that the reverse is true. Empirically this is calculated over all of

the measures in each set.

𝑑 = P(𝑥𝐴𝑖 > 𝑥𝐵𝑗) − 𝑃(𝑥𝐴𝑖 < 𝑥𝐵𝑗) (29)

We also include a paired Cliff’s delta, 𝑑𝑝, shown in Equation (30). The paired version

only compares the results which are paired due to the experimental setup.

𝑑𝑝 = P(𝑥𝐴𝑖 > 𝑥𝐵𝑖) − P(𝑥𝐴𝑖 < 𝑥𝐵𝑖) (30)

The values for Cliff’s delta range from 1 to -1. The extremes indicate total superiority

of the first and second set respectively.

We make use of the R software environment for calculating the previously mentioned

statistical measures. For the Wilcoxon-Signed Rank test we use ‘wilcox.test’ in the core

‘stats’ package (R Core Team, 2015). For calculating the Cliff’s delta values for effect

size, we use ‘dmes’ in the package ‘orddom’ (Rogmann, 2013).

47

3.4.3 Experimental Design

For developing our algorithm and performing parameter exploration we make use of

the Brightkite training dataset described in Section 3.4.1. We make use of a training

methodology similar to the one demonstrated in (Wang, Terrovitis, & Mamoulis, 2013).

The dataset is divided into temporal snapshots, identified by a number of days elapsed

from the start of the dataset. Check-ins prior to the specified day are training data,

and novel check-ins over the next sixty days are used as test data. This method of

dividing the data is used for multiple reasons. First, it maintains the sequential order

of each user's check-ins, which maintains any inherent behaviour of the users. Dividing

the dataset into snapshots allows for multiple points of reference to evaluate how the

algorithm handles the dataset as it evolves over time. The users who make novel check-

ins during the test period are used for evaluating recommender performance. Unless

otherwise stated, performance is based upon making a top-10 recommendation for each

of the test users. As this training dataset is the only dataset originating from the

Brightkite LBSN, we ensure that our parameter exploration is completely independent

from the data used when making comparisons to other algorithms. As a result, we have

not tuned our parameters individually for each testing dataset.

For comparison against existing algorithms, we recreate their experimental setup.

This includes using the same dataset, as well as any necessary filtering. Consequently,

the algorithm will still undergo a comparable training phase to learn the behaviours

of the datasets specific users. The only change is that to reduce the variance which

may be caused by the random nature of the classification component, our performance

results are averaged over ten independent trials. In addition to including the same

performance metrics as the existing algorithms, we provide measures for statistical

significance and effect size.

48

3.5 Experimental Results

3.5.1 Individual Components

In this subsection, we cover the performance of the individual components on the

training dataset. The performance is evaluated across multiple snapshots of the

dataset. As discussed in Section 3.4.3, the evaluation is based upon the components

ability to make a top-10 recommendation for each user who made a novel check-in

during the subsequent sixty day testing period.

For the temporal component, purely temporal recommendation consists of

recommending only the most recently visited items across all users. Table VI:

Temporal Performance shows this temporal recommender is completely ineffective for

a majority of the experiment, and does not demonstrate high precision or recall when

it can make recommendations.

Table VI: Temporal Performance

Day Precision Recall

90 6.59848E-05 6.63328E-05

120 2.82646E-05 3.09224E-05

150 0 0

180 0 0

210 0 0

240 0 0

270 0 0

300 0 0

The spatial component recommends the locations closest to the user’s previous check-

in. The results of using solely spatial recommendation are shown in Table VII: Spatial

49

Recommendation. The performance of the spatial component is significantly better

than the temporal method. The performance metrics are higher and at no point was

the component unable to provide recommendations.

Table VII: Spatial Recommendation

Day Precision Recall

90 0.006631475 0.006666446

120 0.004494064 0.004916664

150 0.003570408 0.00392773

180 0.00234287 0.002752488

210 0.002899126 0.002875374

240 0.003741801 0.003475107

270 0.003553438 0.003427086

300 0.00343018 0.003534641

For the social component, we perform collaborative filtering with the set of nearest

neighbours restricted to the current user’s friends. This is similar to the design in (Ye,

Yin, & Lee, 2010). The results of this method are shown in Table VIII: Social

Recommendation. The performance metrics remain consistently higher than the

earlier alternatives.

50

Table VIII: Social Recommendation

Day Precision Recall

90 0.017024084 0.01711386

120 0.015065008 0.016481648

150 0.01179663 0.012977219

180 0.007929714 0.009316113

210 0.009769658 0.009689617

240 0.011642815 0.010812981

270 0.011980939 0.011554925

300 0.012287214 0.0126614

The collaborative filter component incorporates the earlier components, as discussed

in Section 3.3.4. The results of this component are shown in Table IX: Collaborative

Recommendation. Once again the performance of this method exceeds that of the

previous methods.

Table IX: Collaborative Recommendation

Day Precision Recall

90 0.019465523 0.019568174

120 0.018456755 0.020192337

150 0.01459583 0.016056559

180 0.010610498 0.012465594

210 0.011914218 0.011816606

240 0.013565891 0.012598992

270 0.014717495 0.014194175

300 0.014411878 0.014850767

51

The low performance of the temporal component on its own suggested the performance

results of the classification component could be improved by adjusting its use. The

results of removing the temporal component input as is shown in Table X.

Classification Component - Removing Time Input. This corresponds to removing

“Temporal Prediction” from the Classification Attributes listed in Table III. Removing

this input is completely detrimental and was not done in the remaining experiments.

The results suggests it is beneficial for the classification component to use temporal

information.

Table X. Classification Component - Removing Time Input

Day Original No Time

90 626 538

120 537 402

150 399 278

180 333 212

210 459 299

240 706 451

270 730 446

300 791 475

As discussed at the end of Section 3.3.7, we develop the concept of a time window for

the classification component. The results of using various sizes of windows are shown

in Table XI. Again, with this design rather than training the classification component

on all of the check-in data, only check-ins which have occurred within a specified

amount of time are used. The table shows the performance increasing as the window

gets smaller, peaking at a single day. Decreasing the size of the time window to half a

day demonstrated a significant drop in performance. Because of these results, the

classification component makes use of the time window with the length of one day.

52

Table XI. Correctly Predicted items based on Time Window (Days)

Day 0.5 1 2 3 7 14 21 28 Full

90 516 728 719 703 679 659 667 627 626

120 533 718 628 658 651 643 615 562 537

150 413 572 553 541 525 500 451 448 399

180 352 523 501 478 486 445 457 446 333

210 492 704 696 664 652 594 583 626 459

240 781 1104 1008 1038 959 943 919 840 706

270 857 1195 1117 1110 1093 1053 998 904 730

300 921 1318 1253 1242 1187 1112 1169 980 791

3.5.2 Parameter Exploration

This section covers the parameter exploration performed on our training dataset. The

experimental methodology again follows the design outlined in Section 3.4.3. For

expedience, parameter exploration was performed on the snapshot with 300 training

days. The parameter exploration is performed sequentially as presented.

We use parameter exploration to determine the ideal value for 𝑆𝐶 . Parameter

exploration was performed by taking the results of the collaborative component, and

the final results of the classification component. The results of the parameter

exploration are shown in Table XII. The collaborative component does not appear to be

very sensitive to changes in the value of 𝑆𝐶, so long as it is above zero. Based on the

results, the best value for 𝑆𝐶 is 0.40, based upon the final predictions. As such we only

use 𝑆𝐶 = 0.40 for our algorithm for all subsequent testing. Note that all parameter

53

exploration is done on the Training dataset to preserve out-of-sample testing for the

remaining datasets.

Table XII: Parameter Exploration of Social Constant

 Collaborative Final

 𝑆𝐶 Precision Recall F measure Precision Recall F measure

0 0.0036 0.0037 0.0037 0.0087 0.0090 0.0089

0.05 0.0142 0.0146 0.0144 0.0167 0.0173 0.0170

0.1 0.0143 0.0147 0.0145 0.0166 0.0171 0.0169

0.15 0.0143 0.0147 0.0145 0.0167 0.0172 0.0169

0.2 0.0144 0.0148 0.0146 0.0168 0.0173 0.0171

0.25 0.0144 0.0148 0.0146 0.0166 0.0171 0.0169

0.3 0.0144 0.0149 0.0147 0.0167 0.0172 0.0170

0.35 0.0145 0.0149 0.0147 0.0169 0.0174 0.0171

0.4 0.0145 0.0149 0.0147 0.0171 0.0176 0.0174

0.45 0.0145 0.0149 0.0147 0.0163 0.0168 0.0166

0.5 0.0145 0.0149 0.0147 0.0167 0.0172 0.0170

0.55 0.0145 0.0149 0.0147 0.0165 0.0170 0.0167

0.6 0.0145 0.0149 0.0147 0.0165 0.0170 0.0168

0.65 0.0145 0.0149 0.0147 0.0166 0.0172 0.0169

0.7 0.0145 0.0149 0.0147 0.0163 0.0168 0.0165

0.75 0.0145 0.0149 0.0147 0.0164 0.0169 0.0166

0.8 0.0145 0.0149 0.0147 0.0164 0.0169 0.0167

0.85 0.0144 0.0149 0.0146 0.0165 0.0170 0.0168

0.9 0.0144 0.0149 0.0146 0.0168 0.0173 0.0170

0.95 0.0144 0.0148 0.0146 0.0168 0.0173 0.0171

Exploration of the neighborhood size, k, for the collaborative component is shown in

Table XIII. The best results occur when k = 125. Only for small neighborhood size is

54

there a significant change in performance. The values for the final predictions do not

smoothly decrease from this maximum, and a smaller local maximum exists at k = 40.

Table XIII. Exploration of Neighborhood Size

 Collaborative Final

k Precision Recall F-Measure Precision Recall F-Measure

10 0.011593 0.011946 0.011767 0.014924 0.015378 0.015148

20 0.013599 0.014013 0.013803 0.015525 0.015998 0.015758

30 0.014399 0.014838 0.014615 0.016741 0.017251 0.016992

40 0.014847 0.015299 0.01507 0.017138 0.01766 0.017395

50 0.015186 0.015649 0.015414 0.016485 0.016987 0.016733

75 0.01549 0.015962 0.015722 0.017151 0.017673 0.017408

100 0.015528 0.016002 0.015761 0.017471 0.018003 0.017733

125 0.015647 0.016124 0.015882 0.017509 0.018042 0.017772

150 0.015596 0.016071 0.01583 0.017484 0.018016 0.017746

200 0.015535 0.016008 0.015768 0.017304 0.017831 0.017564

250 0.015394 0.015863 0.015625 0.017061 0.017581 0.017317

300 0.015369 0.015837 0.015599 0.017228 0.017752 0.017486

The results for varying the number attributes for each node in the random Forest’s

trees is shown in Table XIV. Based on the data, using a single attribute gives the best

results. There is a smaller local maximum which occurs when using seven attributes,

but the performance is lower across all metrics than when using one or two attributes.

55

Table XIV. Random Forest Attributes Performance

Attributes Precision Recall MAP

1 0.017471 0.018003 0.067234

2 0.017362 0.017891 0.064443

3 0.016658 0.017165 0.060731

4 0.016831 0.017343 0.060949

5 0.016402 0.016902 0.057328

6 0.016255 0.01675 0.05867

7 0.016703 0.017212 0.056591

8 0.01564 0.016117 0.053465

9 0.015704 0.016183 0.052646

10 0.01564 0.016117 0.053066

The results of exploring set size, 𝑍𝐶 , the number of locations passed from the

collaborative and social components for consideration by the classification component,

is shown in Table XV. The best results occur when the size is set to 30. The next highest

values for precision and recall occur with a size of 70, while the second highest MAP is

with a size of 10. Overall there is not an obvious correlation to set size and the variation

in performance is relatively small.

56

Table XV. Classification Location Set Size Exploration

Size Precision Recall MAP

10 0.017348 0.017876 0.062741

15 0.017284 0.017810 0.061186

20 0.017349 0.017878 0.062125

25 0.017325 0.017853 0.061955

30 0.017410 0.017940 0.062825

40 0.017295 0.017822 0.061194

50 0.017368 0.017897 0.061490

75 0.017407 0.017937 0.062597

100 0.017352 0.017881 0.062100

3.5.3 Comparison

In this section, the CoCo recommendation algorithm we created is compared against

other existing novel POI recommenders. We will illustrate why the algorithms we

compare against represent the state-of-the-art competitors. To do this we will explain

why various alternative novel POI recommenders are not included in the detailed

comparison. Many potential competitors use datasets which we were unable to

replicate often due to gathering the dataset independently. An example of this is the

FMFMGM algorithm suggested by (Cheng, Yang, King, & Lyu, 2012), which uses a

variant the Gowalla dataset, that we could not reproduce, with fewer users and

locations. Their dataset covers 50% more time and the division of training data is made

randomly, not chronologically.

Many recommenders only look at subsets of the existing LBSN datasets. One example

is (Yang, Zhang, Yu, & Wang, 2013), which covers two datasets derived from the

57

Foursquare LBSN. Their datasets are each geographically limited to a single city, and

the larger of the two has only 2601 users and 2392 locations. Another example is in

(Yuan, Cong, Ma, Sun, & Thalmann, 2013) which uses Gowalla and Foursquare

datasets limited to specific geographic regions and consequently are an order of

magnitude smaller than the datasets we use, with respect to the number of users,

locations and check-ins. Again the selection of training and testing data is made

randomly and may not preserve the inherent temporal behaviour of the dataset. That

being said, when comparing we have higher precision and lower recall. Our lower recall

would likely be caused by their filtering of the dataset.

Some other papers may not strongly establish their performance results. In (Liu, Fu,

Yao, & Xiong, 2013) they use a Foursquare dataset with roughly half the number of

locations and one third as many check-ins as our full Foursquare dataset. They initially

report comparable precision but significantly lower recall than our own results. Their

final results are relative performance against a random recommender. Their results

show an almost 19 times improvement over their random recommender, when

recommending 10 items. By their definition, a random top-10 recommender on our

Foursquare dataset has a recall and precision of 0.0001 and 0.344 respectively.

Following their equations we have more than 648 times relative improvement.

We found that the LFBCA algorithm demonstrated comprehensive performance

results for their algorithm (Wang, Terrovitis, & Mamoulis, 2013). They use a large

LSBN dataset and make use of multiple performance metrics to show their superiority

of existing algorithms. Comparison against LFBCA is done on a Gowalla dataset. This

dataset is selected as we were able acquire the same dataset described in their paper,

58

in order to directly compare results. They also have results on a Brightkite dataset.

We do not compare against the algorithm on the Brightkite dataset as we were unable

to acquire or reproduce a Brightkite dataset with similar totals of user, locations and

check-ins. Their results come from treating all entries before a specific day as training

data, and using the next 60 days as test data. In addition, during the test period,

predictions are only made for users who made at least one new check-in. We have

recreated the same process using our algorithm. Figure II illustrates some relevant

characteristics of the dataset over the time. The data for Figure II comes from the 60

day test period following each snapshot. It is worth noting that both the number of

active users, and the number of novel check-ins are monotonically increasing across

all snapshots of the dataset.

Figure II: LFBCA Gowalla User Activity

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

90 120 150 180 210 240 270 300 330 360 390 420 450 480 510

N
o

ve
l C

h
ec

k-
in

s

A
ct

iv
e

U
se

rs

Gowalla User Activity

Active Users

Novel Check-ins

59

Figure III: LFBCA Gowalla F-Measure Comparison

Figure III compares our performance to the LFBCA algorithm. Based on the results,

our algorithm is outperformed on the first snapshot, with only 90 days of training data.

After the initial result, our design outperforms LFBCA with respect to the F-measure.

Full comparison of performance metrics by day are shown in Table XVI and Table XVII.

Results of statistical tests for significance and effect size estimation are in Table XVIII.

It is worth noting the characteristics of the first snapshot, when 90 days have elapsed.

Comparing with Figure III it can be observed that this occurs when the dataset is the

least active. At this time there are 54 active users, and together they will make 436

novel check-ins. Based on the difference in recall, the LFBCA was able to correctly

predict roughly 15 more locations than CoCo at this time. Due to this being the first

snapshot, and the low number of active users, this would appear to be our algorithm

suffering more from the cold-start problem.

0

0.01

0.02

0.03

0.04

0.05

0.06

90 120 150 180 210 240 270 300 330 360 390 420 450 480 510

Gowalla F-Measure

CoCo

LFBCA

60

Table XVI. LFBCA Gowalla Accuracy Comparison

CoCo LFBCA

Day Precision Recall F measure Precision Recall F measure

90 0.00617 0.00765 0.00683 0.037 0.042 0.039342

120 0.04627 0.04936 0.04777 0.023 0.028 0.025255

150 0.03253 0.02452 0.02796 0.022 0.022 0.022

180 0.03003 0.02151 0.02506 0.011 0.013 0.011917

210 0.02698 0.00971 0.01428 0.007 0.005 0.005833

240 0.04811 0.01385 0.02151 0.019 0.012 0.01471

270 0.04804 0.01495 0.02280 0.021 0.013 0.016059

300 0.04620 0.01657 0.02439 0.025 0.014 0.017949

330 0.03901 0.01715 0.02382 0.03 0.017 0.021702

360 0.03731 0.01768 0.02399 0.029 0.018 0.022213

390 0.03750 0.01809 0.02441 0.029 0.018 0.022213

420 0.03310 0.01887 0.02403 0.028 0.019 0.022638

450 0.03282 0.01956 0.02451 0.028 0.019 0.022638

480 0.03428 0.01913 0.02456 0.028 0.017 0.021156

510 0.03778 0.01974 0.02593 0.029 0.017 0.021435

Our method shows a statistical improvement over LFBCA on the Gowalla dataset.

Using the Wilcoxon signed-rank test, we have a significant p-value of 0.008362 for both

precision and f-measure. The change in recall is also significant with a p-value of

0.02557. Across all snapshots, our precision and recall are an average 71.1% and 16.3%

higher respectively. Our F measure is on average 32.8% higher.

61

Table XVII. LFBCA Gowalla Coverage Comparison

CoCo LFBCA

Day MAP Utility User Coverage Utility User Coverage

90 0.005489418 0.030864198 0.6851852 0.16 1.0

120 0.112377285 0.1840796 0.7761194 0.13 1.0

150 0.08681671 0.16064257 0.8313253 0.12 1.0

180 0.10521704 0.162849867 0.8244275 0.08 1.0

210 0.08380374 0.153439153 0.8042328 0.05 1.0

240 0.13959388 0.244663383 0.84400654 0.10 1.0

270 0.13589366 0.27385024 0.89737743 0.13 1.0

300 0.131132777 0.274752053 0.93292993 0.16 1.0

330 0.112407722 0.25403924 0.96410006 0.19 1.0

360 0.11000608 0.2472066 0.9739539 0.19 1.0

390 0.110951857 0.255324 0.9812058 0.20 1.0

420 0.099323978 0.233099013 0.9865083 0.20 1.0

450 0.09709301 0.233450783 0.9927595 0.20 1.0

480 0.100383928 0.239068407 0.99379414 0.20 1.0

510 0.114454813 0.262711143 0.99466777 0.22 1.0

Table XVIII. LFBCA Gowalla Statistics

Precision Recall F measure Utility Coverage

p-value 0.008362 0.02557 0.008362 0.0053711 0.00006104

d 0.7511 0.1378 0.5111 0.6 -1

𝑑𝑝 0.8667 0.6 0.8667 0.8667 -1

With the exception of the first snapshot, our method’s utility remains higher than

LFBCA, with an average improvement of 53%. The associated p-value is 0.0053711.

Our method shows statistically lower coverage with a p-value of 0.000061. Note that

62

although a simple average for our coverage is 89.9%, when the values are weighted by

the number of active users, this rises to 98.4%. The disparity between utility and user

coverage suggests that despite our method not being able to recommend locations to

every single user, more users would find our recommendations useful. The effect size

values for coverage indicate maximum preference for the LFBCA results. For other

metrics, using just Cliff’s delta shows a small effect size in our favor for recall, with

larger values for precision, f-measure and utility. With the paired Cliff’s delta, 𝑑𝑝, the

effect size values are larger, and the value for recall is again lower than the other

measures.

We found the LURA algorithm to be another excellent algorithm for comparison (Lu,

Wang, Mamoulis, Tu, & Cheung, 2015). They provide performance comparison against

several other existing methods to show the effectiveness of their method. For

comparison they cover two of the most common performance metrics, precision and

recall. Comparison against LURA is performed on the GSCorr–LURA and Gowalla-

LURA datasets, described in Section 3.4.1. The comparison is made over these datasets

as these are the datasets for which they published results, and we have been able to

acquire. We follow their test design, using all data before a specified date for training,

and the following 60 days for testing. Their results are based on finding the recall and

precision when recommending a varying number of locations, N.

63

Table XIX. LURA GSCorr Comparison

CoCo LURA

N Precision Recall F measure MAP Precision Recall F measure

5 0.06482 0.04237 0.05125 0.06714 0.06 0.04 0.048

10 0.04923 0.06437 0.05579 0.05222 0.046 0.06 0.05207547

15 0.04126 0.08092 0.05465 0.04445 0.04 0.08 0.05333333

20 0.03655 0.09558 0.05288 0.03945 0.035 0.09 0.0504

25 0.03337 0.10908 0.05111 0.03511 0.03 0.1 0.0461538

Table XX. LURA GSCorr Statistics

Precision Recall F measure

p-value 0.0625 0.0625 0.0625

d 0.2 0.2 0.76

𝑑𝑝 1 0.6 1

The comparison on GSCorr occurs with training ending on day 300. The Wilcoxon p-

value for precision, recall and F-measure are consistent at 0.0625. Although this is not

a significant p-value, it is the smallest p-value value possible with the number of data

points. Overall we have 13.2% higher precision, 12.4% higher recall, and 12.9% higher

F measure. Our algorithm also delivers 100% user coverage on this dataset. Cliff’s

delta, or the unpaired effect size, is lower for precision and recall than f-measure.

Looking at the paired effect size, value for recall is lower than both precision and f-

measure, which achieved the maximum value of 1.

64

Table XXI. LURA Gowalla Comparison

CoCo LURA

N Precision Recall F measure MAP Precision Recall F measure

5 0.04444 0.01209 0.01901 0.09996 0.04 0.011 0.01725490

10 0.03901 0.02122 0.02749 0.11252 0.033 0.02 0.02490566

15 0.03559 0.02905 0.03199 0.11862 0.029 0.025 0.02685185

20 0.03278 0.03567 0.03416 0.11977 0.026 0.03 0.02785714

25 0.03067 0.04171 0.03535 0.12159 0.025 0.035 0.02916667

Table XXII. LURA Gowalla Statistics

Precision Recall F measure

p-value 0.0625 0.0625 0.0625

d 0.52 0.28 0.52

𝑑𝑝 1 1 1

The comparison on Gowalla occurs with training ending on day 420. The p-value for

precision, recall, and F-measure are all 0.0625. The results show that we perform

better than LURA on all measures. Our precision is always at least 11.1% higher, and

recall is at least 6.12% higher. Our F measure is similarly at least 10.1% greater. On

average we have 20.1% higher precision, 14.1% higher recall, and 16.7% higher F

measure. Additionally, our method demonstrates 99.7% user coverage on this dataset.

With regards to effect size, with the paired Cliff’s delta, 𝑑𝑝 , we show complete

superiority with a value of 1 for all performance measures. With the unpaired Cliff’s

delta the effect size is larger for precision and f-measure than for recall.

65

A final comparison is made against LRT (Gao, Tang, Hu, & Liu, 2013). Their results

showed superiority over collaborative filtering and matrix factorization methods. We

use their algorithm for comparison to help demonstrate robustness as their

experimental methodology differs significantly from other novel POI algorithms. The

comparison against LRT is only possible on a single dataset, GSCorr Subset. We follow

their evaluation format. Each row in Table XXIII has a testing percentage, T%, and a

recommendation size, N. The testing percentage indicates the fraction of locations for

each user to be included in the test set. Performance values for each row are averaged

over 5 separate runs due to the randomized format of the data. We only include the

results of the LRT Voting strategy as it has their highest results for both precision and

recall. Our results show superiority versus their algorithm. Our algorithm had an

average user coverage of 99.9%. The results for statistical significance and effect size

are shown in Table XXIV. Note that although the p-value is not significant, it is the

smallest possible p-value for this number of examples. It is worth noting that here we

consistently achieve the maximum possible value for effect size, 1.

Table XXIII. LRT GSCorr Subset Comparison

CoCo LRT

T% N Precision Recall F measure MAP Precision Recall F measure

20 5 0.09976 0.07337 0.08455 0.2840 0.0147 0.0171 0.0158094

20 10 0.06834 0.10060 0.08139 0.2923 0.0134 0.0311 0.0187299

40 5 0.16121 0.06230 0.08987 0.4226 0.032 0.0179 0.0229579

40 10 0.11049 0.08547 0.09638 0.4254 0.03 0.0335 0.0316535

66

Table XXIV. LRT GSCorr Statistics

Precision Recall F measure

p-value 0.125 0.125 0.125

d 1 1 1

𝑑𝑝 1 1 1

3.6 Conclusions

In this chapter, we discuss the CoCo algorithm for novel point of interest

recommendation. Our method utilizes social, temporal and spatial analysis to provide

context within a location based social network. Temporal data is used to apply greater

weighting to the more recent, more relevant locations. Spatial data is used to weight

locations by their geographical proximity to the user. Social data is used to provide

additional weighting to the locations visited by a user’s friends. This information is fed

to both collaborative filtering and classification components. The classification

component trains a random forest on the output of the other components to generate a

final result. The classification component’s final predictions are ordered by rank to

produce a top-N list. We utilize sampling techniques to improve performance on the

heavily imbalanced LBSN datasets.

Against existing alternatives on identical datasets, our algorithm shows statistically

significant improvements in precision and recall when there are enough points to have

statistical significance. We have the lowest possible p-values in cases when it is not

statistically possible to have significant results. We have large, and often maximum,

67

effect size in paired comparison across multiple metrics. Our design demonstrates high

coverage across the sparse datasets. We include several metrics to demonstrate the

effectiveness of our design.

4. Summary and Future Work

In this thesis, we have discussed recommendation algorithms for the purpose of novel

point-of-interest recommendation on location-based social networks. Various

challenges exist that inhibit the performance of recommenders in this domain. We

propose a design for mitigating the problems. Our algorithm considers social, spatial

and temporal contextual data, which are utilized by both a collaborative filter and

classification algorithm. Experimentally, we have an overall increase in predictive

accuracy, compared to existing recommendation algorithms on the same datasets.

Future work in this area could include working with location tags or categorization

which can indicate similarity between locations. If the data is being pulled from a

source such as Twitter, where users leave public messages, their messages could be

analyzed to construct an additional preference vector. Such preferences could be

mapped to location tags. Additional work could be done to allow for datasets that make

use of explicit user ratings. Spatial prediction could be enhanced by referencing street

maps to more accurately determine effective distance of locations. This could be further

enhanced by including related factors such as historical traffic data, road conditions,

and construction work. Within certain domains, social friendship may be augmented

by looking at the communication between users, such as retweets, mentions, and

replies on Twitter. The use of temporal context could be expanded in several ways.

68

This would include focusing on specific temporal factors that relate to human

behaviour such as time of day and day of the week. Additional weather-based context

could be added, to see how temperature, precipitation, and wind affect user behaviour.

Exploration of alternate algorithms or parameters for the classification component

could also be used to enhance performance.

69

References

Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender

systems: a survey of the state-of-the-art and possible extensions. IEEE

Transactions on Knowledge and Data Engineering, 17(6), 734-749.

Adomavicius, G., & Tuzhilin, A. (2011). Context-aware recommender systems. In

Recommender systems handbook (pp. 217-253). Springer.

Airoldi, E. M., & David M. Blei, S. E. (2008). Mixed membership stochastic blockmodels.

" Journal of Machine Learning Research, 9(Sep), 1981-2014.

Altergeo. (2016, September 7). Products. Retrieved from Altergeo:

http://platform.altergeo.ru/index.php

Amatriain, X., & Basilico, J. (2012, April 6). Netflix Recommendations: Beyond the 5

stars (Part 1). Retrieved from The Netflix Tech Blog:

http://techblog.netflix.com/2012/04/netflix-recommendations-beyond-5-

stars.html

Anand, D., & Bharadwaj, K. K. (2011). Utilizing various sparsity measures for

enhancing accuracy of collaborative recommender systems based on local and

global similarities. Expert systems with applications, 38(5), 5101-5109.

Bawa-Cavia, A. (2011). Sensing the urban: using location-based social network data in

urban analysis . Pervasive PURBA Workshop.

Berkhin, P. (2006). Bookmark-coloring algorithm for personalized pagerank computing.

Internet Mathematics, 3(1), 41-62.

Billsus, D., & Pazzani, M. J. (1998). Learning Collaborative Information Filters. Icml,

98, pp. 46-54.

Bobadilla, J., Ortega, F., Hernando, A., & Gutiérrez, A. (2013). Recommender systems

survey. Knowledge-based systems. 46, pp. 109-132. Elsevier.

70

Breese, J. S., Heckerman, D., & Kadie, C. (1998). Empirical analysis of predictive

algorithms for collaborative filtering. Proceedings of the Fourteenth conference

on Uncertainty in artificial intelligence (pp. 43-52). Morgan Kaufmann

Publishers Inc.

Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32.

Burke, R. (2002). Hybrid recommender systems: Survey and experiments. User

modeling and user-adapted interaction, 12(4), 331-370.

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE:

synthetic minority over-sampling technique. Journal of artificial intelligence

research 16, 321-357.

Chen, P., Lu, Z., & Gu, J. (2009). Vehicle travel time prediction algorithm based on

historical data and shared location. 2009 Fifth International Joint Conference

on INC, IMS and IDC (pp. 1632-1637). IEEE.

Cheng, C., Yang, H., King, I., & Lyu, M. R. (2012, July). Fused Matrix Factorization

with Geographical and Social Influence in Location-Based Social Networks.

Aaai, 12, 17-23.

Cheng, C., Yang, H., Lyu, M. R., & King, I. (2013). Where You Like to Go Next:

Successive Point-of-Interest Recommendation. IJCAI, 13, pp. 2605-2611.

Cho, E., Myers, S. A., & Leskovec, J. (2011). Friendship and mobility: user movement

in location-based social networks. Proceedings of the 17th ACM SIGKDD

international conference on Knowledge discovery and data mining (KDD ’11)

(pp. 1082-1090). New York, NY: ACM.

doi:http://dx.doi.org/10.1145/2020408.2020579

71

Cliff, N. (1996). Answering Ordinal Questions with Ordinal Data Using Ordinal

Statistics. In Multivariate Behavioral Research (pp. 331-350). Routledge.

doi:10.1207/s15327906mbr3103_4

Cochran, W. G. (1953). Sampling techniques. John Wiley & Sons.

Cramer, H., Rost, M., & Holmquist, L. E. (2011). Performing a check-in: emerging

practices, norms and'conflicts' in location-sharing using foursquare.

Proceedings of the 13th international conference on human computer

interaction with mobile (pp. 57-66). ACM.

Crandall, D. J., Backstrom, L., Cosley, D., Suri, S., Huttenlocher, D., & Kleinberg, J.

(2010). Inferring social ties from geographic coincidences. Proceedings of the

National Academy of Sciences, 107(52), 22436-22441.

Crunchbase. (2015, September 1). Organization Brightkite: Overview. Retrieved from

Crunchbase: https://www.crunchbase.com/organization/brightkite#/entity

Crunchbase. (2016, August 11). Organization Gowalla: Overview. Retrieved from

CrunchBase: https://www.crunchbase.com/organization/gowalla#/entity

Demšar, J. (2006). Statistical Comparisons of Classifiers over Multiple Data Sets. The

Journal of Machine Learning Research, 7, 1-30.

Deshpande, M., & Karypis, G. (2004). Item-based top-n recommendation algorithms.".

ACM Transactions on Information Systems (TOIS), 22(1), 143-177.

Díaz-Uriarte, R., & De Andres, S. A. (2006). Gene selection and classification of

microarray data using random forest. BMC bioinformatics, 7, 1.

Ding, Y., & Li, X. (2005). Time weight collaborative filtering. Proceedings of the 14th

ACM international conference on Information and knowledge management (pp.

485-492). ACM.

72

Domingos, P. (1999). Metacost: A general method for making classifiers cost-sensitive.

Proceedings of the fifth ACM SIGKDD international conference on Knowledge

discovery and data mining (pp. 155-164). ACM.

Drummond, C., & Holte, R. C. (2003). C4. 5, class imbalance, and cost sensitivity: why

under-sampling beats over-sampling. Workshop on learning from imbalanced

datasets II, 11.

Duff, I. S. (1977). A survey of sparse matrix research. Proceedings of the IEEE, 65(4),

500-535.

Eagle, N., Pentland, A. S., & Lazer, D. (2009). Inferring friendship network structure

by using mobile phone data. Proceedings of the national academy of sciences,

106(36), 15274-15278.

Facebook, Inc. (2016, July 27). Facebook Reports Second Quarter 2016 Results.

Retrieved from Facebook Investor Relations: https://investor.fb.com/investor-

news/press-release-details/2016/Facebook-Reports-Second-Quarter-2016-

Results/default.aspx

Foursquare. (2016a, April 11). Privacy 101. Retrieved from foursquare.com:

https://foursquare.com/privacy

Foursquare. (2016b, April 16). Since Foursquare launched in 2009. Retrieved from The

Foursquare Blog: http://blog.foursquare.com/post/142900756695/since-

foursquare-launched-in-2009-there-have-been

Foursquare. (2016c, September 6). What if I forgot to or couldn’t check in somewhere?

Retrieved from support.foursquare.com: https://support.foursquare.com/hc/en-

us/articles/211542067-What-if-I-forgot-to-or-couldn-t-check-in-somewhere-

73

Foursquare. (2016d, June 20). Why are Foursquare and Swarm separate apps?

Retrieved from support.foursquare.com: https://support.foursquare.com/hc/en-

us/articles/202630254-Why-are-Foursquare-and-Swarm-separate-apps-

Gao, H., & Liu, H. (2014). Location-Based Social Network Data Repository. Retrieved

from http://www.public.asu.edu/~hgao16/dataset.html

Gao, H., Tang, J., & Liu, H. (2012). Exploring Social-Historical Ties on Location-Based

Social Networks. ICWSM.

Gao, H., Tang, J., Hu, X., & Liu, H. (2013). Exploring temporal effects for location

recommendation on location-based social networks. Proceedings of the 7th

ACM conference on Recommender systems (RecSys’13) (pp. 93-100). New York,

NY: ACM. doi:http://dx.doi.org/10.1145/2507157.2507182

Glas, A. S., Lijmer, J. G., Prins, M. H., Bonsel, G. J., & Bossuyt, P. M. (2003). The

diagnostic odds ratio: a single indicator of test performance. Journal of clinical

epidemiology, 56(11), 1129-1135.

Glueck, J. (2016, January 14). Foursquare Direct: Foursquare Ushers In A New Era.

Retrieved from Medium: https://medium.com/foursquare-direct/foursquare-

ushers-in-a-new-era-f52edb39af6#.7rc896u3n

Gowalla Incorporated. (2011, February 1). Gowalla. Retrieved from Gowalla:

http://gowalla.com/

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, a. H. (2009).

The WEKA Data Mining Software: An Update. SIGKDD Explorations, 11(1).

He, H., & Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions on

knowledge and data engineering, 21(9), 1263-1284.

74

Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. (2004). Evaluating

collaborative filtering recommender systems. ACM Transactions on

Information Systems (TOIS), 31(3), 5-53. doi:10.1207/s15327906mbr3103_4

Hernando, A., Bobadilla, J., & Ortega, F. (2016). A non negative matrix factorization

for collaborative filtering recommender systems based on a Bayesian

probabilistic model. Knowledge-Based Systems, 97, 188-202.

Holte, R. C., Acker, L., & Porter, B. W. (1989). Concept Learning and the Problem of

Small Disjuncts. IJCAI, 89, pp. 813-818.

Hu, Y., Koren, Y., & Volinsky, C. (2008). Collaborative filtering for implicit feedback

datasets. Data Mining, 2008. ICDM'08. Eighth IEEE International Conference

on (pp. 263-272). Ieee.

Huang, H., & Gartner, G. (2014). Using trajectories for collaborative filtering-based

POI recommendation. International Journal of Data Mining, Modelling and

Management, 6(4), 333-346.

Jannach, D., Zanker, M., Felfernig, A., & Friedrich, G. (2010). Recommender systems:

an introduction. Cambridge University Press.

Jawaheer, G., Weller, P., & Kostkova, P. (2014). Modeling User Preferences in

Recommender Systems: A Classification Framework for Explicit and Implicit

User Feedback. ACM Trans. Interact. Intell. Syst., 4(2), 8:1-8:26.

doi:http://dx.doi.org/10.1145/2512208

Jo, T., & Japkowicz, N. (2004). Class imbalances versus small disjuncts. ACM Sigkdd

Explorations Newsletter, 6(1), 40-49.

Kaggle.com. (2015, December 3). Mean Average Precision. Retrieved from Kaggle.com:

https://www.kaggle.com/wiki/MeanAveragePrecision

75

Koenigstein, N., & Koren, Y. (2013). Towards scalable and accurate item-oriented

recommendations. Proceedings of the 7th ACM conference on Recommender

systems (pp. 419-422). ACM.

Konstan, J. A., Miller, B. N., Maltz, D., Herlocker, J. L., Gordon, L. R., & Riedl, J.

(1997). GroupLens: applying collaborative filtering to Usenet news.

Communications of the ACM, 40(3), 77-87.

Korb, K. B., & Nicholson, A. E. (2010). Bayesian artificial intelligence. CRC press.

Koren, Y. (2010). Collaborative filtering with temporal dynamics. Communications of

the ACM, 53(4), 89-97.

Kotsiantis, S., Kanellopoulos, D., & Pintelas, P. (2006). Handling imbalanced datasets:

A review. GESTS International Transactions on Computer Science and

Engineering , 30(1), 25-36.

Kubat, M., & Matwin, S. (1997). Addressing the curse of imbalanced training sets: one-

sided selection. ICML, 97, pp. 179-186.

Leca, C.-L., Nicolaescu, I., & Rîncu, C.-I. (2015). Significant Location Detection &

Prediction in Cellular Networks using Artificial Neural Networks. Computer

Science and Information Technology, 3(3), 81-89.

Linden, G., Smith, B., & York, J. (2003). Amazon. com recommendations: Item-to-item

collaborative filtering. IEEE Internet computing, 7(1), 76-80.

Ling, C. X., & Sheng, V. S. (2011). Cost-sensitive learning. In Encyclopedia of Machine

Learning (pp. 231-235). Springer.

Liu, B., Fu, Y., Yao, Z., & Xiong, H. (2013). Learning geographical preferences for point-

of-interest recommendation. Proceedings of the 19th ACM SIGKDD

international conference on Knowledge discovery and data mining (pp. 1043-

1051). ACM.

76

Liu, Y., Liu, C., Liu, B., Qu, M., & Xiong, H. (2016). Unified Point-of-Interest

Recommendation with Temporal Interval Assessment. Proceedings of the 22nd

ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining (pp. 1015-1024). San Francisco, California, USA: ACM.

Lu, Z., Wang, H., Mamoulis, N., Tu, W., & Cheung, D. W. (2015). Personalized location

recommendation by aggregating multiple recommenders in diversity.

Proceedings of the Workshop on Location-Aware Recommendations

(LocalRec2015) co-located with the 9th ACM Conference on Recommender

Systems, (RecSys 2015) (pp. 28-35). New York, NY: ACM.

Mannan, N. B., Sarwar, S. M., & Elahi, N. (2014). A new user similarity computation

method for collaborative filtering using artificial neural network. International

Conference on Engineering Applications of Neural Networks (pp. 145-154).

Springer.

Monard, M. C., & Batista, G. E. (2002). Learning with Skewed Class Distrihutions.

Advances in Logic, Artificial Intelligence, and Robotics: LAPTEC 2002 , 85,

173-182.

Monreale, A., Pinelli, F., Trasarti, R., & Giannotti, F. (2009). Wherenext: a location

predictor on trajectory pattern mining. Proceedings of the 15th ACM SIGKDD

international conference on Knowledge discovery and data mining (pp. 637-646).

ACM.

Morawski, J., Stepan, T., Dick, S., & Miller, J. (2017). A Fuzzy Recommender System

for Public Library Catalogs. International Journal of Intelligent Systems.

Moritz, H. (1980). Geodetic reference system 1980. Journal of Geodesy, 54(3), 395-405.

77

Nichols, D. (1998). Implicit rating and filtering. Proceedings of the Fifth DELOS

Workshop on Filtering and Collaborative Filtering (pp. 31-36.). Budapest:

ERCIM.

Nilashi, M., Jannach, D., bin Ibrahim, O., & Ithnin, N. (2015). Clustering-and

regression-based multi-criteria collaborative filtering with incremental

updates. Information Sciences, 293, 235-250.

Noulas, A., Scellato, S., Lathia, N., & Mascolo, C. (2012). Mining user mobility features

for next place prediction in location-based services. 2012 IEEE 12th

International Conference on Data Mining (pp. 1038-1043). IEEE.

Oard, D. W., & Kim, J. (1998). Implicit feedback for recommender systems. Proceedings

of the AAAI workshop on recommender system, (pp. 81-83).

Papagelis, M., Rousidis, I., Plexousakis, D., & Theoharopoulos, E. (2005). Incremental

collaborative filtering for highly-scalable recommendation algorithms.

International Symposium on Methodologies for Intelligent Systems (pp. 553-

561). Springer .

Park, M.-H., Hong, J.-H., & Cho, S.-B. (2007). Location-based recommendation system

using bayesian user’s preference model in mobile devices. International

Conference on Ubiquitous Intelligence and Computing (pp. 1130-1139).

Springer .

Pham, H., Hu, L., & Shahabi, C. (2011). GEOSO-a geo-social model: from real-world

co-occurrences to social connections. International Workshop on Databases in

Networked Information Systems (pp. 203-222). Springer .

R Core Team. (2015). R: A language and environment for statistical computing. Vienna,

Austria. Retrieved from https://www.R-project.org/

78

Rendle, S., Freudenthaler, C., & Schmidt-Thieme, L. (2010). Factorizing personalized

markov chains for next-basket recommendation. Proceedings of the 19th

international conference on World wide web (pp. 811-820). ACM.

Robusto, C. C. (1957). The cosine-haversine formula. The American Mathematical

Monthly, 64(1), 38-40.

Rogmann, J. J. (2013). orddom: Ordinal Dominance Statistics. University of Hamburg,

Department of Psychology, Germany. Retrieved from https://CRAN.R-

project.org/package=orddom

Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2000). Application of dimensionality

reduction in recommender system-a case study. DTIC Document, Minnesota

University, Department of Computer Science, Minneapolis.

Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative

filtering recommendation algorithms. Proceedings of the 10th international

conference on World Wide Web (pp. 285-295). ACM.

Scellato, S., Noulas, A., Lambiotte, R., & Mascolo, C. (2011). Socio-Spatial Properties

of Online Location-Based Social Networks. Proceeding of the 5th International

AAAI Conference on Weblogs and Social Media.

Schafer, J. B., Frankowski, D., Herlocker, J., & Sen, S. (2007). Collaborative Filtering

Recommender Systems. In The Adaptive Web (pp. 291-324). Springer.

Schein, A. I., Popescul, A., Ungar, L. H., & Pennock, D. M. (2002). Methods and metrics

for cold-start recommendations. Proceedings of the 25th annual international

ACM SIGIR conference on Researchand development in information retrieval

(pp. 253-260). ACM.

Shani, G., & Gunawardana, A. (2011). Evaluating recommendation systems. In

Recommender systems handbook (pp. 257-291). Springer US.

79

Shen, Y., & Jin, R. (2012). Learning personal+ social latent factor model for social

recommendation. Proceedings of the 18th ACM SIGKDD international

conference on Knowledge discovery and data mining (pp. 1303-1311). ACM.

Shotton, J., Sharp, T., Kipman, A., Fitzgibbon, A., Finocchio, M., Blake, A., . . . Moore,

R. (2013). Real-time human pose recognition in parts from single depth images.

Communications of the ACM, 56, 116-124.

Sinha, R. R., & Swearingen, K. (2001). Comparing Recommendations Made by Online

Systems and Friends. DELOS workshop: personalisation and recommender

systems in digital libraries, 106.

socialbakers. (2016, August 5). 10 Most Checked-In Facebook Places. Retrieved from

socialbakers: https://www.socialbakers.com/blog/479-10-most-checked-in-

facebook-places

Su, X., & Khoshgoftaar, T. M. (2009). A survey of collaborative filtering techniques.

Advances in artificial intelligence 2009, 4.

Svetnik, V., Liaw, A., Tong, C., Culberson, J. C., Sheridan, R. P., & Feuston, B. P.

(2003). Random forest: a classification and regression tool for compound

classification and QSAR modeling. Journal of chemical information and

computer sciences, 43(6), 1947-1958.

The Nielsen Company. (2015, December 17). Tops of 2015: Digital. Retrieved from

Nielsen: http://www.nielsen.com/us/en/insights/news/2015/tops-of-2015-

digital.html

Tomek, I. (1976). Two modifications of CNN. IEEE Trans. Systems, Man and

Cybernetics, 6, 769-772.

Twitter, Inc. (2016, August 18). REST APIs. Retrieved from Twitter Developer:

https://dev.twitter.com/overview/documentation

80

Ugander, J., Karrer, B., Backstrom, L., & Marlow, C. (2011). The anatomy of the

facebook social graph. arXiv preprint arXiv:1111.4503.

Wang, H., Terrovitis, M., & Mamoulis, N. (2013). Location Recommendation in

Location-based Social Networks using User Check-in Data. Proceedings of the

21st ACM SIGSPATIAL International Conference on Advances in Geographic

Information Systems (ACM SIGSPATIAL GIS 2013) (pp. 374-383). New York,

NY: ACM. doi:http://dx.doi.org/10.1145/2525314.2525357

Wang, Y., Yuan, N. J., Lian, D., Xu, L., Xie, X., Chen, E., & Rui, Y. (2015). Regularity

and conformity: Location prediction using heterogeneous mobility data.

Proceedings of the 21th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (pp. 1275-1284). ACM.

Weiss, G. M. (2004). Mining with rarity: a unifying framework. ACM SIGKDD

Explorations Newsletter, 6(1), 7-19.

Williams, D. R. (2016, May 19). Earth Fact Sheet. Retrieved from NASA Space Science

Data Coordinated Archive:

http://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html

Williams, J. (2011, December 5). Going to Facebook. Retrieved from Gowalla Blog:

http://blog.gowalla.com/post/13782997303/gowalla-going-to-facebook

Yang, D., Zhang, D., Yu, Z., & Wang, Z. (2013). A sentiment-enhanced personalized

location recommendation system. Proceedings of the 24th ACM Conference on

Hypertext and Social Media (pp. 119-128). ACM.

Ye, J., Zhu, Z., & Cheng, H. (2013). What’s your next move: User activity prediction in

location-based social networks. Proceedings of the SIAM International

Conference on Data Mining. SIAM.

81

Ye, M., Yin, P., & Lee, W.-C. (2010). Location recommendation for location-based social

networks. Proceedings of the 18th SIGSPATIAL international conference on

advances in geographic information systems (pp. 458-461). ACM.

Ye, M., Yin, P., Lee, W.-C., & Lee, D.-L. (2011). Exploiting geographical influence for

collaborative point-of-interest recommendation. Proceedings of the 34th

international ACM SIGIR conference on Research and development in

Information Retrieval (pp. 325-334). ACM.

Yu, Y., & Chen, X. (2015). A survey of point-of-interest recommendation in location-

based social networks. Workshops at the Twenty-Ninth AAAI Conference on

Artificial Intelligence.

Yuan, Q., Cong, G., Ma, Z., Sun, A., & Thalmann, N. M. (2013). Time-aware point-of-

interest recommendation. Proceedings of the 36th international ACM SIGIR

conference on Research and development in information retrieval (pp. 363-372).

ACM.

Zaiontz, C. (2016, August 7). Wilcoxon Signed-Ranks Table. Retrieved from Real

Statistics Using Excel: http://www.real-statistics.com/statistics-

tables/wilcoxon-signed-ranks-table/

Zheng, Y., Xie, X., & Ma, W.-Y. (2010). GeoLife: A Collaborative Social Networking

Service among User, Location and Trajectory. IEEE Data Eng. Bull., 33(2), 32-

39.

