
Approximation Algorithms for Group Coverage and Vehicle
Routing Problems

by

Christopher Stuart Martin

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c© Christopher Stuart Martin, 2016

Abstract

In this thesis, we present approximation algorithms for various NP-hard vehicle routing

problems, as well as for a related maximum group coverage problem. Our main contribu-

tion is a framework to build good constant-factor approximation algorithms for variants of

the multi-depot k-travelling repairmen problem (sometimes referred to as the multi-depot

minimum latency problem), which has been studied previously [12, 28]. We use our frame-

work to create approximations for several capacitated variants of the problem, for which only

heuristic solutions exist currently. Our framework can also be used to approximate the (un-

capacitated) multi-depot k-travelling repairmen problem; interestingly, the approximation

ratio we obtain matches the current-best result for the problem.

To achieve these results, we develop a Linear Programming (LP) based approximation

algorithm to the maximum coverage with groups problem (or MCG), which is used as a

subroutine in our framework. This problem has not received much attention in the literature,

as it is mostly used as a subroutine for bigger problems. We use the linear programming

relaxation of an integer program, which we first solve using a suitable (approximate) oracle,

and then show how to deterministically round the solution to an integer solution without

losing too much over the optimal. This also shows the integrality gap of the LP we consider.

We finally consider the orienteering problem with time-windows, and a special case called

the deadline orienteering problem. Both of these problems have been well-studied, and cur-

rently no constant approximation is known for either problem; finding a constant approx-

imation for either one is a big open problem. We present a constant-approximation for a

fairly general special case of the deadline orienteering problem that runs in sub-exponential

time (which can also be extended to the time-windows version); this gives a strong indica-

tion that constant approximations for these problems exist. We also give approximations

for various problems related to the deadline orienteering problem, in the hope that they

might give more insight into the problem.

ii

To my parents.

iii

Acknowledgements

There are many people I want to thank for both supporting me through my degree as

well as for their help with this thesis. First and foremost, I want to thank my supervisor,

Mohammad R. Salavatipour. You have been a great teacher, mentor, and role-model who

has pushed me to become a better student and researcher. While I have had my fair share

of failures and stumbles along the way, you have shown me how much more I can achieve,

and how much further I can still grow as a researcher.

I also want to thank Zachary Friggstad for not only providing insightful and constructive

comments on this thesis, but for being a great colleague. You have been an inspiration to

me, and I have valued your guidance, especially during the more difficult times over the

past two years.

I especially want to thank Lorna Stewart for her very insightful questions and comments

on this thesis. Your feedback has not only given me avenues to improve on as a researcher,

but has also significantly strengthened the results of this thesis.

My involvement with the ACM International Collegiate Programming Contest in my

undergrad was a very formative experience for me, and I want to thank my former coach

Howard Cheng and teammates Darcy Best, Hugh Ramp, and Farshad Barahimi for making

it such an amazing experience. I especially want to thank Howard Cheng and Darcy Best

for inspiring me to pursue graduate studies and explore my full potential.

This research would not have been possible without the support of NSERC, Alberta

Innovates Technology Futures, and the University of Alberta Department of Computing

Science. I am also incredibly grateful to my friends and family for supporting me throughout

my graduate degree. You have been such a blessing to me, it is beyond words.

iv

Table of Contents

1 Introduction 1
1.1 Preliminaries . 2

1.1.1 Graphs and Metrics . 2
1.1.2 Optimization Problems and Approximation Algorithms 3
1.1.3 Linear Programming . 6
1.1.4 Pipage Rounding . 8

1.2 Problems Considered . 10
1.3 Prior Work . 12
1.4 New Results . 14

2 Approximating Maximum Coverage with Group Budget Constraints 16
2.1 Problem Overview . 16

2.1.1 Our Results . 17
2.2 A Linear Programming Relaxation for MCG 17

2.3 A Randomized
(

e1/ρ

e1/ρ−1

)
-Approximation . 20

2.4 Derandomization . 21

3 Approximating Capacitated Latency Problems 23
3.1 Problem Overview . 23

3.1.1 Our Results . 25
3.2 A Constant Approximation . 26

3.2.1 Algorithm . 26
3.2.2 Analysis . 27

3.3 Oracles . 29
3.3.1 An Oracle for MD-kTRP . 30
3.3.2 Oracles for Unit-Demand and Unsplit-Delivery Versions 30

3.4 Extensions . 33

4 Towards a Better Approximation for Deadline Orienteering 35
4.1 Problem Overview . 35

4.1.1 Our Results . 36
4.2 An (8 + ε)-Approximation for Max-Average-RVRP 37
4.3 A (2.542, 4)-Approximation for Max-Bounded-RVRP 38
4.4 Solving Deadline Orienteering on a DAG . 40
4.5 An O(1)-Approximation for Deadline Orienteering 40

4.5.1 Preliminaries . 41
4.5.2 A Simple O(log n)-Approximation . 42
4.5.3 Improving to an O(1)-Approximation 44

5 Conclusions and Future Work 47

Bibliography 49

v

List of Figures

3.1 Examples illustrating different walk types used. For the capacitated exam-
ples, numbers above vertices are demands, and Q = 20. 24

3.2 Unit-demand example (Q = 4) of converting a tour into a flower, by breaking
the tour into strips, shortcutting past ri, and adding edges back to ri. 33

4.1 Plots of OPT on the deadline-time plane illustrate key concepts used. 42

vi

Chapter 1

Introduction

Many problems that arise in industrial and consumer applications can be viewed as the

problem of routing a vehicle (or vehicles) along a road network to provide a service at

different locations. Depending on the application, the objective and constraints can vary, so

we collectively refer to these problems as vehicle routing problems. Some well-known vehicle

routing problems include:

• The travelling salesman problem (TSP): find the shortest route that reaches every

location,

• The orienteering problem: find a route of bounded length that reaches as many loca-

tions as possible,

• The travelling repairman problem (TRP): find a route that reaches every location,

minimizing the average wait time,

• The school bus problem: find the smallest number of routes so that every location is

visited within a given time.

For example, the travelling salesman problem appears in manufacturing applications, where

we wish to minimize the amount of time a tool spends moving between its required posi-

tions. The school bus problem, as the name suggests, commonly appears when creating

public transportation routes. The orienteering problem and travelling repairman problems

commonly appear in scheduling package deliveries.

All of the problems given above are NP-hard in general: it is widely believed that there

is no time-efficient1 way for a computer to solve these problems exactly for an arbitrarily

large input. In this thesis, we consider efficient algorithms that produce an approximate

solution; that is, the returned solution is at most α times worse than the exact (optimal)

value. For example, there is an efficient algorithm for the standard travelling salesman

1We call an algorithm “time-efficient” if it runs in polynomial time, or O(nc) for some fixed constant
c > 0 and n being the size of the input instance.

1

problem that returns a route of length at most 1.5 times the length of the optimal route

[13].

We investigate some interesting vehicle routing problems that are NP-hard, and give

approximation algorithms for them. We also look at a maximum coverage style problem,

which is used as a subroutine in our algorithms. We first begin with an introduction to the

terminology and concepts used in this thesis, and then given an overview of the problems

we consider. We will then discuss prior work in the literature, and the results we obtain.

1.1 Preliminaries

We begin by formalizing the terminology we will use throughout this thesis. The definitions

given here are adapted from [34], [33], [35], and [14].

1.1.1 Graphs and Metrics

Graphs. We only consider simple graphs in this thesis, and use the term graph in this

thesis to mean an undirected graph. Such a graph G is defined by its edge set E(G) =

{e1, e2, . . . , em} and vertex set V (G) = {v1, v2, . . . , vn}, where each edge e ∈ E(G) is an

unordered pair of vertices in V (G). To simplify notation, we may drop the parameters of V

and E when the graph is clear from context, and instead denote G as the pair (V,E). We

also consider directed graphs; in a directed graph G, each edge e ∈ E(G) is an ordered pair

of vertices. We use the same notation as for undirected graphs.

For each edge e = uv ∈ E(G), we say u and v are adjacent and e is incident to u and

v. The neighbours of a vertex v is the set of vertices u such that u and v are adjacent; we

denote this set as NG(v), or simply N(v) when G is clear from context.

A subgraph of a graph G is a graph H, where H is obtained from G by deleting some

edges and/or some vertices (and their incident edges) from G. We notate this relation as

H ⊆ G, and may simply say that G contains H or H is in G. A subgraph H ⊆ G is

spanning if V (H) = V (G).

A path is a graph whose vertices can be ordered such that u and v appear consecutively

in the ordering if and only if the edge uv is in the graph. A cycle is a graph with an equal

number of edges and vertices, where the vertices can be placed around a circle and u and

v appear consecutively if and only if the edge uv is in the graph. A walk in a graph G is

a sequence of (not necessarily distinct) vertices v0, v1, . . . , vk such that for all 1 ≤ i ≤ k,

vi−1vi ∈ E(G).

A complete graph is a graph whose vertices are pairwise-adjacent. An acyclic graph is a

graph that does not contain any cycle. A connected graph is a graph G where for every pair

of vertices u, v ∈ V (G), there is a path in G from u to v. A tree is an acyclic, connected

2

graph.

An independant set in a graph is a collection of vertices that are pairwise non-adjacent.

A graph G is bipartite if its vertex set can be partitioned into two independent sets. Other

interesting graph types that appear in this thesis include spanning trees (a subgraph of some

graph G that is both a tree and spanning in G) and directed acyclic graphs (DAGs).

Weighted graphs and metrics. A weighted graph is a graph with numerical edge labels.

We will assume throughout this thesis that these labels are non-negative, and refer to them

as edge costs, denoted ce or cuv.

Given edge costs, we define the cost of a graph G as
∑
e∈E(G) ce. A minimum spanning

tree (MST) is a spanning tree of a weighted graph that has minimum cost. A k-minimum

spanning tree (k-MST) of G is the cheapest MST over all subgraphs of G that contain

exactly k vertices. We define the distance dG(u, v) between two vertices u and v in a graph

G as the minimum cost of a u−v path in G; if no such path exists, the distance is undefined.

A metric (V, d) over a set of vertices V gives a distance d(u, v) ≥ 0 for each vertex pair

u, v ∈ V such that the following properties hold: (1) for any u, v ∈ V , d(u, v) = d(v, u),

and (2) for any u, v, w ∈ V , d(u, v) ≤ d(u,w) + d(w, v).2 This latter property is called the

triangle inequality. We refer to such a metric as a symmetric metric; if our distance function

violates property (1), then we refer to the metric as an asymmetric metric. In the case where

the vertex set is clear from context, we will denote a metric simply by its distance function

d.

Metrics can equivalently be defined as a complete weighted graph whose edge costs

satisfy the triangle inequality. Any metric (V, d) can be converted into such a graph G by

letting V (G) = V , and cuv = d(u, v). Further, given any simple connected weighted graph

G, we can define the shortest-path metric corresponding to G as (V (G), dG). We use these

conversion methods at various points in this thesis.

1.1.2 Optimization Problems and Approximation Algorithms

Decision problems and NP. A decision problem is a problem that can be answered with

either “yes” or “no”. We view decision problems as languages over the binary alphabet

{0, 1}∗; the language L corresponding to some decision problem is the set of all strings that

encode “yes” instances to the problem.

A language L ∈ NP if there are polynomials p, q and a Turing machine M (called

a verifier) such that for each string x ∈ {0, 1}∗, the following holds. If x ∈ L, then a

certificate string y of length at most p(|x|) must exist such that M(x, y) accepts in at most

2This is also sometimes called a semimetric, to differentiate it from a metric where the following additional
property holds: for any u, v ∈ V , d(u, v) = 0 if and only if u = v.

3

q(|x|) steps. Otherwise, for all strings y of length at most p(|x|), M(x, y) rejects in at most

q(|x|) steps. NP is therefore the class of all languages for which there are short and quickly

verifiable yes-certificates.

Let L1 and L2 be two languages in NP. A language L1 reduces to L2 if there is a Turing

machine that, given the string x ∈ {0, 1}∗, outputs a string y such that y ∈ L2 if and only

if x ∈ L1, and does so in poly(|x|) steps. A language L is NP-hard if for every language

L′ ∈ NP, L′ reduces to L. A language L is NP-complete if it is both NP-hard and L ∈ NP.

Optimization problems. An NP-optimization problem Π consists of:

• A set of valid instances DΠ, where we can determine if some instance I ∈ DΠ in time

polynomial in |I|. We assume all instances I ∈ DΠ can be expressed as finite binary

strings; this implies that all numeric values must be integer or rational. The size of

an instance I, written |I|, is the number of bits needed to describe it.

• A set of feasible solutions SΠ(I) for each instance I ∈ DΠ, where we can determine if

s ∈ SΠ(I) in time polynomial in |I|. The length of each solution must be polynomially

bounded in the size of I.

• An objective function objΠ that assigns each instance-solution pair (I, s) a non-negative

value, computable in time polynomial in |I|.

We also specify whether Π is a minimization problem or a maximization problem. For a mini-

mization/maximization problem Π and instance I ∈ DΠ, an optimal solution is a feasible so-

lution s ∈ SΠ(I) that minimizes/maximizes the value of objΠ; that is, argmins∈SΠ
objΠ(I, s)

or argmaxs∈SΠ
objΠ(I, s), respectively. We denote such a solution as OPTΠ(I), or simply

OPT if the problem and instance are clear from context. We slightly abuse this notation

by using OPT to also refer to the objective value of the optimum solution, when the type

of OPT is clear from context.

An NP optimization problem Π gives rise to a class of NP decision problems, by ask-

ing if a feasible solution of at most/at least some objective value exists (for minimiza-

tion/maximization problems, respectively). A polynomial time algorithm that solves Π can

thus be used to answer the decision problem, while proving a hardness for a decision version

shows that Π is at least as hard.

For the optimization problems we consider in this thesis, the decision versions have been

shown to be NP-hard, and so we say the optimization problems are also NP-hard. Ideally

we would like to find exact, polynomial time algorithms for these problems. However, unless

P = NP, there is no time-efficient algorithm that can solve an NP-hard problem exactly,

so we need a different strategy. One approach is to find an exact algorithm for the problem

that runs fast enough for most inputs, but may run in exponential time in the worst case.

4

Another approach is to find a time-efficient algorithm that returns a solution that is very

close to the exact solution for most inputs, but could be very far off in the worst case; these

are called heuristic algorithms. The third approach, which we focus on in this thesis, is to

find a time-efficient algorithm that returns a solution that is never more than a given factor

worse than the exact solution. We call these approximation algorithms.

Approximation algorithms. Let Π be a minimization (maximization) problem, and let

α : Z+ → Q+ be a function such that α ≥ 1 for all inputs. An algorithm A is an α-

approximation for Π if, for all instances I, A returns a feasible solution s ∈ SΠ(I) such that

objΠ(I, s) ≤ α(|I|) ·OPTΠ(I) (objΠ(I, s) ≥ OPTΠ(I)
α(|I|)),3 and the running time is bounded by

poly(|I|). The function α is called the approximation ratio of A.

It is sometimes difficult to obtain an algorithm that meets this definition exactly. We

might need to relax the running time constraint, for example to a quasi-polynomial fac-

tor. Or, the algorithm makes random choices, and so the approximation ratio only holds

in expectation over all random choices. We still loosely refer to these as approximation

algorithms, although we will state such relaxations explicitly.

An algorithm A is an approximation scheme for the minimization (maximization) prob-

lem Π if for the valid instance I and error parameter ε > 0, it returns a feasible solution

s such that objΠ(I, s) ≤ (1 + ε) · OPTΠ(I) (objΠ(I, s) ≥ (1 − ε) · OPTΠ(I)). We call A

a polynomial time approximation scheme (PTAS) if its running time is poly(|I|) for each

fixed ε. We call A a fully polynomial time approximation scheme (FPTAS) if its running

time is poly(|I|, 1/ε) for each fixed ε.

The problem Π is said to be in the class PTAS or FPTAS if it admits the respec-

tive approximation scheme. It is said to be in the class APX if it admits any constant

approximation.

Let Π and Π′ be two optimization problems. Π PTAS-reduces to Π′ if there exists an

algorithm A and function c : R+ → R+, where for each valid instance I of Π and each fixed

ε > 0,

• Algorithm A returns an instance I ′ = A(I, ε) of Π′ in time poly(|I|), such that if I is

feasible then I ′ is feasible, and

• Given any feasible solution s′ ∈ SΠ′(I
′), there exists a feasible solution s ∈ SΠ(I) such

that if objΠ′(I
′, s′) ≤ (1 + c(ε)) ·OPTΠ′(I

′), then objΠ(I, s) ≤ (1 + ε) ·OPTΠ(I).4

An optimization problem Π is said to be APX-hard if for every other problem Π′ ∈

APX, Π′ PTAS-reduces to Π. If in addition Π ∈ APX, then Π is said to be APX-complete.

3The function α for maximization problems is sometimes defined as the reciprocal instead, i.e. α ∈ (0, 1]
for all inputs and objΠ(I, s) ≥ α(|I|) ·OPTΠ(I).

4If either problem is a maximization problem, substitute ≥ (1− c(ε)) and ≥ (1− ε) as appropriate.

5

Let L be a language in NP, and Π be a minimization (maximization) problem. Let

g : {0, 1}∗ → DΠ be a function computable in polynomial time that maps yes- and no-

instances of L into instances of Π. We say g is a gap-introducing reduction from L to Π if a

polynomial-time computable function h : DΠ → R+ and constant α exist where

• If x is a yes-instance of L, then OPTΠ(g(x)) ≤ h(g(x)) (OPTΠ(g(x)) ≥ h(g(x))), and

• If x is a no-instance of L, then OPTΠ(g(x)) > αh(g(x)) (OPTΠ(g(x)) < h(g(x))/α).

The constant α is called the gap size.

Hardness of approximation. A hardness proof shows that a certain optimization problem

cannot be approximated better than some threshold assuming certain complexity assump-

tions. As an extreme example, it was shown in [36] that the maximum independent set

problem cannot be approximated better than O(n1−ε) for any constant ε > 0 assuming

P 6= NP, ruling out all but the most trivial approximations. A less extreme example,

implied by the PCP theorem, is that approximating Max-3SAT better than (1 + ε) for

some ε > 0 is NP-hard, ruling out a PTAS assuming P 6= NP [33]. Since this problem is

also APX-complete, a consequence of this hardness is that for any APX-hard optimization

problem Π, Π /∈ PTAS unless P = NP.

In this thesis, we give a hardness result that relies on a complexity assumption called

the Exponential Time Hypothesis (ETH). Consider the k-SAT decision problem:

Definition 1.1 (k-SAT). Given a boolean formula f in conjunctive normal form, where

each clause contains at most k literals, is there a satisfying truth assignment for f?

Definition 1.2 (Exponential Time Hypothesis [22]). There is no algorithm to solve k-SAT

for k ≥ 3 in time 2o(n) unless P = NP.

We use this hypothesis in Chapter 4 to show that a restricted version of deadline orien-

teering is not super-constant hard.

1.1.3 Linear Programming

Many problems in NP can be formulated as an integer program that describes the problem.

Let c ∈ Qn, b ∈ Qm be vectors, and A = (aij) ∈ Qm×n be a matrix. Let · denote the

dot-product of two vectors. The integer programming problem is to find a binary vector

x ∈ {0, 1}n minimizing the value c · x, satisfying:

Ax ≥ b.

Note that we can use this definition to define maximization problems as well (i.e. by

minimizing −c · x), and allow for ≤ and = constraints.

6

Finding such a binary vector, or determining if such a vector even exists, is itself an

NP-hard problem in general (otherwise, we could use integer programming to solve other

NP-hard problems). Instead, suppose we relax this problem: instead of trying to find a

binary vector x, we try to find a satisfying x ∈ Qn. This yields a linear program:

minimize c · x (LP)

subject to Ax ≥ b,

x ≥ 0.

It is usually more convenient to explicitly write out the constraints and the objective

function rather than specifying A, b, c directly, as in the following (equivalent) LP:

minimize
n∑
j=1

cjxj (LP)

subject to

n∑
j=1

aijxj ≥ bi, i = 1, . . . ,m,

xj ≥ 0, j = 1, . . . , n.

We say that we “solve” a linear program if we either determine no solution x exists, the

value c · x is unbounded, or return a solution minimizing the objective c · x. Unlike integer

programs, linear programs can be solved in time polynomial in n,m, and the number of

bits ∆ required to write the rational entries of A, b, and c; one such approach is the interior

point method (see, for example, [23]). We can remove the running-time dependence on m

if we are instead given an oracle function, which determines if a given vector x satisfies all

constraints, or if not will return a violated constraint. The ellipsoid method can be used to

solve linear programs of this form [20].

Duality. We say the following linear program is the dual of (LP) (which we call the primal):

maximize b · y (DP)

subject to AT y ≤ c,

y ≥ 0.

There are some fundamental relations between a primal linear program and its dual.

Note that since we can rewrite a maximization linear program in a minimization form and

vise versa, (DP) also has a dual, namely (LP). Some other useful properties include:

Theorem 1.3 (Weak Duality). If x is a feasible solution to the primal (LP) and y is a

feasible solution to the dual (DP), then c · x ≥ b · y.

In fact, we can strengthen this when x and y are optimal solutions:

7

Theorem 1.4 (Strong Duality). If x∗ is an optimal solution to the primal (LP) and y∗ is

an optimal solution to the dual (DP), then c · x∗ = b · y∗.

Let x, y be feasible solutions to (LP) and (DP) respectively. We say x and y obey the

complementary slackness conditions if for each xj > 0,
∑m
i=1 aijyi = cj and for each yi > 0,∑n

j=1 aijxj = bi. An interesting consequence of Strong Duality is the following:

Theorem 1.5 (Complementary Slackness). The complementary slackness conditions for

the feasible solutions x, y hold if and only if x and y are both optimal solutions to their

respective linear programs.

Using duality, we can sometimes solve linear programs that have exponentially many

variables, which would otherwise be unsolvable. The dual for such a program has expo-

nentially many constraints, which can be solved using the ellipsoid method given a suitable

separation oracle. By complementary slackness, all variables xj in the primal must be 0 if

their corresponding dual constraint are not tight. We can further form a basis of the tight

dual constraints; the primal variables corresponding to any remaining tight constraints can

also be set to 0. These zeroed variables can be deleted from the primal, leaving a polynomial

size linear program that can be solved.

Usefulness in approximations. Linear programming is a useful tool to build approxima-

tion algorithms with. The general procedure is to write the (relaxed) integer program, solve

it, and try to round the fractional result to an integer solution in polynomial time, without

either violating constraints or increasing the objective value significantly. If we can do this

while only increasing the objective value by a factor of f(n), where n = |x|, then we will

have an f(n)-approximation to the original integer program.

We say a linear program has an integrality gap of f(n) if for an optimum solution x∗ and

optimum solution x̄ for the corresponding integer program, c·x∗
c·x̄ ≤ f(n). Proving such a

gap gives a strong indication that an efficient approximation algorithm with a similar ratio

should exist, and the proof typically does yield an efficient algorithm. However, this is not

always the case.

1.1.4 Pipage Rounding

There are many ways to round a solution to a linear program; pipage rounding is one

technique first introduced by Ageev and Sviridenko [1]. This is a general rounding scheme

that works with linear programs of a specific form. We will use this approach in Chapter 2

to round a linear program.

In the pipage rounding scheme, we wish to approximately solve a generalized version of

the following bipartite matching problem. We are given a bipartite graph H = (U ∪W,E),

vertex capacities pv, and a poly-time computable function F (x) defined over the vectors

8

x = (xe : e ∈ E), xe ∈ [0, 1]. We wish to pick a collection of edges from E such that each

vertex v has at most pv edges incident with it, maximizing the value of F (x); if we pick

edge e for our collection, then we set xe = 1, and xe = 0 otherwise. Note that with pv = 1

for all v and F (x) =
∑
e∈E xe, this becomes the maximum bipartite matching problem.

This general problem can be expressed as an integer program. The relaxed version,

where a solution may be a rational vector, is given below:

max F (x) (PIPE-LP)

s.t.
∑

e∈N(v)

xe ≤ pv ∀v ∈ (U ∪W) (1.1)

x ∈ [0, 1].

Note that F (x) may not be a linear function, so as written this may not be a linear program

and so may not be solvable using standard techniques. For our purposes however, will

assume that some fractional solution x has been provided.

Let F ∗ be the value of an optimal integer solution to (PIPE-LP), and x a fractional

solution to (PIPE-LP). The pipage rounding algorithm transforms the solution x into

an integral solution x̄ which, given some conditions on F , will have the property that

F (x̄) ≥ F (x). If, for an optimal fractional solution x̌, we also had F (x̌) ≥ F ∗/α, then we

would have an α-approximate solution to the original problem.

The algorithm. The pipage rounding algorithm is an iterative procedure, where in each

step we convert a fractional solution x to a new solution x′ with at least one less fractional

component. The algorithm terminates when x = x̄ is integral.

In each step, if we do not terminate, then x has some non-integral entry. Consider the

bipartite subgraph Hx of H, where edge e ∈ E is in Hx if and only if xe is non-integral.

Let R be a cycle in Hx, or, if no cycle exists, a path whose endpoints have degree 1 in Hx.

In either case, since Hx is bipartite the cycle/path R can be represented as the union of

two matchings M1 and M2. We will compute a new solution x(ε, R) using these matchings;

if e ∈ M1, then xe(ε, R) = xe + ε; otherwise if e ∈ M2, then xe(ε, R) = xe − ε; otherwise

xe(ε, R) = xe.

Let ε1 be the smallest ε we can subtract such that some e ∈ M1 becomes 0 or e ∈ M2

becomes 1, and let ε2 be the smallest ε we can add such that some e ∈ M1 becomes 1 or

e ∈ M2 becomes 0. Let x1 = x(−ε1, R), and x2 = x(ε2, R). Set x′ = x1 if F (x1) > F (x2),

and x′ = x2 otherwise. This concludes one iteration of the algorithm.

In order for a solution returned by this algorithm to have the property that F (x̄) ≥ F (x),

we require that in each step F (x′) ≥ F (x). This latter inequality holds when F (x(ε, R)),

for ε ∈ [−ε1, ε2], is maximized at either endpoint of the interval. We call this the ε-convexity

9

condition.5

Definition 1.6. The function F is ε-convex if, for any step of the pipage rounding algorithm

and for ε ∈ [−ε1, ε2], F (x(ε, R)) is maximized at either −ε1 or ε2.

Bounding the integrality gap. To bound the integrality gap of (PIPE-LP) for an ar-

bitrary F , we can use the following technique. Suppose we are given a second poly-time

computable function L(x), defined over the same set of vectors x as F , and where the

following conditions hold:

Condition 1.7. For binary x, L(x) = F (x).

Condition 1.8. For any optimal fractional solution x̌, F (x̌) ≥ L(x̌)/α.

These are called the F/L lower bound conditions. If (PIPE-LP) is poly-time solvable

when the objective is to maximize L(x) instead of F (x), then since L(x̌) ≥ F ∗ (by condition

1.7), by condition 1.8 we would then have F (x̌) ≥ F ∗/α, as desired. The trick is then to

choose functions F and L satisfying these conditions, in addition to the ε-convexity condition

on F .

1.2 Problems Considered

The problems we consider in this thesis are the following.

Capacitated travelling repairmen problems. We consider extensions of the multi-depot

k-travelling repairmen problem (MD-kTRP). In this problem, we are given a collection of

clients C = {c1, c2, . . . , cn} that need to be served by a vehicle, and a collection of k identical

vehicles stationed at given depots (roots) R = {r1, r2, . . . , rk}. The objective of the problem

is to find a routing of the vehicles over the symmetric metric (R ∪ C, d), such that every

client’s demand is satisfied, minimizing the average time required to service all clients.

We extend this problem to include capacities in the following sense: suppose each client

additionally has a positive demand which needs to be satisfied, given as the function w :

C → Z+, and the vehicles have a fixed positive capacity Q. The routing we compute must

now obey the following additional constraints:

1. All clients must be completely served in a single trip (called unsplit delivery), and

2. A vehicle can serve a total of at most Q demand between visits to its depot (the visits

to the depot are called resupplies).

5Note that any F that is a linear function of x satisfies this condition.

10

We call this problem the multi-depot capacitated k-travelling repairmen problem (MD-CkTRP).

This generalization of the TRP nicely models many scenarios in package delivery manage-

ment, where clients require packages of certain sizes to be delivered by vehicles with limited

carrying capacity. We can further generalize the model to the cases where vehicles have

different carrying capacities, or where clients have a service delay δ(c) (the delay is added

to the latency of client c and all clients visited by the vehicle after c), or both. Note that

if vehicles had infinite capacity (Q =∞), then the problem is equivalent to the MD-kTRP.

In Chapter 3, we will give approximation algorithms for all of these problems.

The deadline orienteering problem. In this problem, we are given a symmetric metric

d(u, v), non-negative deadlines D(v) for each vertex v, and a source-sink pair r, s. The goal

is to find a path P from r to s of length at most D(s), containing as many vertices as

possible, such that for each vertex v along the path, the distance from r to v along the path

P is at most D(v) (notated as dP (r, v) ≤ D(v)). A more general but more difficult version of

the problem is called orienteering with time-windows; in this version, each vertex also has a

release timeR(v), and a vertex v may only be included in a path P ifR(v) ≤ dP (r, v) ≤ D(v).

Both of these problems are difficult to approximate well. We primarily focus our efforts

on approximating restricted versions of the deadline orienteering problem, although our

results carry over to the corresponding time-window version without much extra effort. We

consider these problems in Chapter 4.

Regret orienteering problems. We consider a few orienteering style problems that are

closely related to deadline orienteering: instead of vertices having a fixed deadline D(v),

each vertex v experiences regret along path P (denoted RegP (v)) if it is visited by P at

time d(r, v) + RegP (v), where d(r, v) is the metric distance from r to v. Our objective

is to find a path P visiting as many vertices as possible, with a constraint on the regret

experienced by a vertex.

We consider two different constraints on the regret: (1) we are given a parameter γ,

and wish to ensure that the average regret for each visited vertex is at most γ, and (2) we

are given per-vertex regret bounds B(v), and must ensure that RegP (v) ≤ B(v). We call

these problems Max-Average-RVRP and Max-Bounded-RVRP, respectively. Deadline

orienteering is captured by Max-Bounded-RVRP, by letting B(v) = D(v) − d(r, v), but

our approximation algorithm will violate the regret bounds by a small constant. Since the

regret bounds are typically much smaller than the corresponding deadline, this might be a

more interesting result. We consider these problems in Chapter 4.

The maximum coverage problem with groups (MCG). This is not a vehicle routing

problem, but it arises as a sub-problem in our approximation algorithms. We are given a

11

set of items I = {e1, e2, . . . , en}, a collection S = {S1, S2, . . . , Sm} of subsets of I, and a

partition G1, G2, . . . , Gk of S (we call the sets Gi groups). Our goal is to choose a single

subset from each Gi to maximize the total number of items covered. For our applications

m may be exponentially larger than n - in this case the set S is not given explicitly, but

implicitly with an oracle function (that may itself be an NP-hard problem to solve), such

that the instance size becomes polynomial in n. We consider this in Chapter 2.

1.3 Prior Work

We now review the prior work done on the problems we consider in this thesis.

Capacitated travelling repairmen problems. The original travelling repairman prob-

lem (TRP) is the following: we are given a collection of clients and a root node r distributed

over a metric and are asked to find an r-rooted tour covering all clients, such that the av-

erage distance along the tour from r to any client c is minimized. This problem was first

considered in more restricted settings (esp. when the metric is a tree) by the Operations

Research and Network Research communities [26, 24, 4], before the first true approximation

for the general case was found by Blum et al. [5].

Currently, the best approximation known for the TRP on an arbitrary, symmetric metric

is the 3.59-approximation by Chaudhuri et al. [10], although a PTAS was recently found

by Sitters for the case where the metric is the shortest-path completion metric of an edge-

weighted tree [31]. In the case of an asymmetric metric, a O(n1/2+ε)-approximation was

first found by Nagarajan and Ravi [27], which was later improved to O(log n) by Friggstad,

Salavatipour and Svitkina [18]. All of these problems are known to be NP-hard [30], and

on a general metric the TRP is known to also be APX-hard [5].

A well-studied generalization of the problem is the case where we must find k rooted

tours instead of just one; we require that all clients are covered by some tour, and try to

minimize the average distance among all tours from the roots to the clients. For the case

where all tours must be rooted at a single root, an 8.497-approximation was first given by

Fakcharoenphol et al. [16] for symmetric metrics, and this was recently improved to 7.183

by Post and Swamy [28].

For the case where the roots may differ (referred to as the multi-depot k-travelling

repairmen problem), a 24-approximation6 was given by Chekuri and Kumar [12]; this was

also recently improved by Post and Swamy to 8.497 [28]. We study the capacitated version

of this problem in Chapter 3, where we add client demands and each vehicle must (1) satisfy

a client’s entire demand in a single trip, and (2) serve at most Q client demand between

visits to its depot.

6The authors initially stated their algorithm was a 12-approximation, but a minor bug was later found
in their analysis.

12

Our problem has been studied previously in the Operations Research community, where

it is also referred to as the multiple depot cumulative capacitated vehicle routing problem

with multiple trips. Heuristic approaches to solve the problem have been examined recently,

for example by Lysgaard and Wohlk [25] and Rivera et al. [29]. Since our problem is a

superset of the TRP problem, we can trivially see that MD-CkTRP is both NP-hard and

APX-hard on general metrics. However, no approximation guarantee is currently known.

The deadline orienteering problem. Both the deadline orienteering problem and orien-

teering problem with time-window have been studied extensively in the Operations Research

community (see [15] for a survey), and many different approaches have been studied for solv-

ing these problem exactly.

Both problems have also been studied from an approximation perspective. Bansal et

al. [3] presented the first true, polynomial time O(log n)-approximation to the deadline

orienteering problem on a symmetric metric, and they then showed a simple technique

that allows certain α-approximations to deadline orienteering to be converted into an α2-

approximation to the time-windows version, yielding approximations to both problems.

They also gave a bi-criteria approximation for the deadline problem that violates deadlines

by a (1 + ε)-factor to obtain a better approximation ratio of O(log 1
ε). Chekuri and Kumar

[12] gave simpler, constant approximations to both problems that run in time polynomial

in (n∆)k, where k is the number of distinct deadlines and ∆ = maxu,v d(u, v). Thus, their

approximations are not polynomial time in general settings.

More recently, an O(max{log n, log Lmax
Lmin

})-approximation was discovered for the time-

window problem (where Lmax/Lmin are the longest/shortest time windows, respectively);

this was due to Chekuri, Korula, and Pál [11]. They also gave approximations for the asym-

metric versions of the orienteering, deadline orienteering and orienteering-with-time-window

problems, losing a O(log2 n) factor over the symmetric versions. All of these orienteering

problems, both symmetric and asymmetric, are known to be APX-hard [6].

Regret orienteering problems. The school-bus problem has been well-studied; Bock

et al. [7] gave an O(log n) approximation for the problem, which was later improved by

Friggstad and Swamy [19] to a constant approximation. The versions we consider have not,

to the best of our knowledge, been studied previously.

The maximum coverage problem with groups. This problem (and its variations) was

first studied by Chekuri and Kumar [12], who used it as a subroutine to obtain the first

constant-factor approximation for the multiple depot k-travelling repairmen problem. Their

initial approximations to the MCG problem have not been improved since their original

paper.

13

1.4 New Results

The main contributions of this thesis are the following.

The maximum coverage problem with groups. In Chapter 2, we use LP techniques to

improve the approximation of Chekuri and Kumar [12] to the MCG. Given a ρ-approximate

oracle, we show how to improve their (ρ+ 1) approximation to a
(

e1/ρ

e1/ρ−1

)
approximation.

Our approximation additionally bounds the integrality gap of the LP we use, and the ap-

proximation ratio we obtain matches that achievable with pipage rounding when the oracle

is exactly solvable.

Capacitated travelling repairmen problems. In Chapter 3, we present an algorithm

framework for capacitated travelling repairmen problems, and use it to show the following:

Theorem 1.9. There is a 25.49-approximation to the unit-demand MD-CkTRP (i.e. w(c) =

1 for all c ∈ C).

Theorem 1.10. There is a 42.49-approximation to the unsplit-delivery MD-CkTRP.

Our algorithm can be extended to solve the problem when we have non-uniform vehicle

capacities with no additional loss. We can further extend the problem to include client

service delays δ(c), with an additional +0.5 factor loss in approximation. We also obtain an

8.497-approximation when vehicles have infinite capacity, matching the current-best result

by Post and Swamy [28].

Deadline orienteering and regret orienteering problems. In Chapter 4, we present

a few different results that provide further insight into the deadline and time-window ori-

enteering problems.

Recall that in the Max-Average-RVRP, we wish to cover as many vertices as possible

ensuring that the average regret for each visited vertex is bounded by a constant γ. In the

Max-Bounded-RVRP we also wish to cover as many vertices as possible, but must ensure

each visited vertex v does not have regret more than B(v). We obtain the following results

for these problems:

Theorem 1.11. There is an (8 + ε)-approximation to the Max-Average-RVRP, which

finds a path covering at least a 1
8+ε fraction of the optimal number of vertices.

Theorem 1.12. There is a (2.542, 4)-approximation to the Max-Bounded-RVRP running

in quasi-polynomial time when regrets B(v) are poly-bounded, which finds a path covering at

least a 1
2.542+ε fraction of the optimal number of vertices and violating regret bounds B(v)

by at most a factor of 4.

For the deadline orienteering problem, we first show the following result:

14

Theorem 1.13. There is a polynomial-time algorithm to solve deadline orienteering and

orienteering with time-windows when the input graph is a DAG.

We then restrict our focus to a slightly more restricted version of the problem: we assume

that the input graph/metric has poly-bounded edge lengths. This allows us to obtain the

following:

Theorem 1.14. There is an O(1)-approximation to deadline orienteering on a general

metric with poly-bounded edge lengths running in sub-exponential time.

Our final corollary follows from the previous theorem:

Corollary 1.15. No ω(1)-hardness result for the deadline orienteering problem with poly-

bounded edge lengths is possible under the assumption P 6= NP, unless the Exponential

Time Hypothesis is false.

This gives a strong (although not definitive) indication that a sub-logarithmic approxi-

mation can be found for the original deadline orienteering and orienteering with time-window

problems.7

We conclude this thesis by discussing future research directions in Chapter 5.

7It is still possible that a weaker hardness result exists if, for example, we assume NP 6= QP. This is
not excluded by our result, but it seems unlikely.

15

Chapter 2

Approximating Maximum
Coverage with Group Budget
Constraints

We first consider the maximum coverage problem with group budget constraints (shortened

to max coverage with groups, or simply the MCG problem). This problem appears as a

key subroutine in our latency approximations, which we will develop in a later chapter. To

improve those results, we focus on developing an approximation algorithm that uses linear

programming techniques.

2.1 Problem Overview

The version of the MCG problem we are interested in can be described as follows. We

are given a set of items I = {e1, e2, . . . , en}, a collection S = {S1, S2, . . . , Sm} of subsets

of I, and a partition G1, G2, . . . , Gk of S (we call the sets Gi groups). Our goal is to

choose a single subset from each Gi to maximize the total number of items covered. An

α-approximation to this problem will find such a collection of subsets that covers at least a

1/α-fraction of the optimal number of elements.

This problem is in fact a special case of submodular function maximization subject to

a matroid constraint: the instance can be represented by the combination of a monotone

submodular function f(S) denoting the number of elements covered by the set S, and a

partition matroidM over the sets in S that defines the groups. Călinescu et al. [8] showed

how to obtain a
(

e
e−1

)
-approximation for this problem with running time polynomial in |S|

and |I|.

More direct techniques can also be used if |S| is polynomially bounded. For example,

the pipage rounding technique of Ageev and Sviridenko [1] can be directly applied, yielding

a deterministic
(

e
e−1

)
-approximation [12]. A randomized algorithm with the same ratio can

be achieved using the probabilistic rounding techniques of Srinivasan [32].

16

We are interested in the case where S might be exponentially large with respect to |I|.

In this case, we cannot explicitly describe S or the groups Gi, since the size of the problem

instance is no longer polynomially bounded in |I|. Suppose we were given a polynomial-time

oracle A(i, w) that takes as input a group index i and a weight function w : I → {0, 1}. If

this oracle can return a set S ∈ Gi such that w(S) =
∑
e∈S w(e) is maximized, then we can

approximately solve the corresponding MCG instance with a factor 2 loss [12].

Typically the oracle A is itself an NP-hard problem. Suppose we were instead given a

ρ-approximation for A; that is, A will always return a set S with w(S) ≥ 1
ρ maxS′∈Gi w(S′).

We call this a ρ-approximate oracle. Chekuri and Kumar showed that a simple greedy

algorithm yields a (ρ + 1)-approximation to the MCG instance the oracle A describes,

which we restate as Theorem 2.1.

Theorem 2.1 ([12]). There is a polynomial-time (ρ + 1)-approximation algorithm for the

MCG problem that covers a 1
ρ+1 -fraction of the optimal number of elements, given a ρ-

approximate oracle.

2.1.1 Our Results

Using LP techniques, we will show how to improve this (ρ+ 1) approximation to
(

e1/ρ

e1/ρ−1

)
,

where e is Euler’s number, given that we have a weighted version of A; that is, the function

w provided to A returns any non-negative rational value instead of the binary values {0, 1}.

Most oracles can be converted to this form with a small loss in approximation - we cover

the details of this transformation later in the chapter. Our approximation will additionally

bound the integrality gap of the LP we use.

Note that the approximation ratio we obtain will match that achievable with pipage

rounding when A is exactly solvable. This is no accident; we will eventually show how to

integrate the oracle into the pipage rounding scheme, leveraging both to achieve our final

approximation. We first describe a simple randomized LP-rounding algorithm to solve the

MCG problem in sections 2.2 and 2.3. We then show in section 2.4 how to use pipage

rounding to derive a deterministic algorithm with the same approximation ratio.

2.2 A Linear Programming Relaxation for MCG

We first start with an integer programming formulation of the MCG problem, and show how

to (approximately) solve its linear relaxation using the weighted version of A. For item e

and group Gi, let xie be a binary variable that indicates whether item e is being covered by

a set from group Gi or not. For a set S ∈ S, let zS be a binary variable indicating whether

set S is chosen to form a part of the solution. Using the problem definition, we can express

the MCG problem as the following integer program (IP):

17

max
∑
e,i

xie (IP)

s.t.
∑
i

xie ≤ 1 ∀e (2.1)∑
S∈Gi

zS ≤ 1 ∀i (2.2)

∑
S∈Gi:S3e

zS ≥ xie ∀e, i (2.3)

x, z ∈ {0, 1}.

The constraints (2.1) prevent a solution from counting an item more than once, and

similarly constraints (2.2) prevent a solution from choosing more than one set from any

group. Constraints (2.3) enforce that an item can be covered only if a set containing it is

chosen.

Solving an integer program is NP-hard; we therefore consider the linear relaxation of

(IP), where the x and z variables may be any non-negative rational number at most 1. This

relaxation is given as (LP). We will also require the corresponding dual program, given as

(DP) (the dual variables are listed alongside the corresponding primal constraints).

max
∑
e,i

xie (LP)

s.t.
∑
i

xie ≤ 1 ∀e (αe) (2.4)∑
S∈Gi

zS ≤ 1 ∀i (βi) (2.5)

∑
S∈Gi:S3e

zS ≥ xie ∀e, i (θie) (2.6)

x, z ≥ 0.

min
∑
e

αe +
∑
i

βi (DP)

s.t. αe + θie ≥ 1 ∀e, i (2.7)∑
e∈S

θie ≤ βi ∀i, S ∈ Gi (2.8)

α, β, θ ≥ 0.

Let OPTLP be the optimal objective value of (LP); by strong duality this is also the

optimal objective value of (DP). In the case where |S| is exponentially large, note that

(LP) contains exponentially many variables, with a polynomial number of constraints. Sim-

ilarly, the dual (DP) contains a polynomial number of variables with exponentially many

constraints. While we cannot directly solve the primal, we can solve the dual using the ellip-

soid method given a suitable separation oracle. The separation oracle must, in polynomial

time, determine whether a particular dual solution (α, β, θ) violates any dual constraints -

such a collection of violated constraints defines a separating hyperplane, which is used by

the ellipsoid algorithm to constrain the possible values of the optimum dual solution.

Separating the dual. Determining whether any of constraints (2.7) are violated can be

18

done trivially in polynomial time. Determining if any of constraints (2.8) are violated is

more difficult - we cannot check all of them. We can instead solve the following problem,

using our (weighted) oracle A: given a group Gi and item rewards θie, we must determine

whether a set S ∈ Gi that collects more than βi reward exists. Define the weight w(e) of

item e as the value θie. If running A on inputs i and w will always return an optimal set

S, then some constraint (2.8) for i is violated if and only if w(S) > βi. Using this, we can

then separate and exactly solve the dual, which yields an optimal solution to the primal by

strong duality.

In the case where A may only return an approximate solution, we can instead apply a

technique originally proposed by Carr and Vampala [9] to approximately solve (DP) and

(LP). Here we adapt the more recent presentation of this technique by Friggstad and Swamy

[19] to suit our more complex LP. Define the following polytope:

P(υ, a) = {(α, β, θ) : (2.7), (2.8),
∑
e

αe + a
∑
i

βi ≤ υ}.

Note that P(OPTLP , 1) defines the collection of optimum solutions for (DP), and so OPTLP

is the largest υ such that P(υ, 1) 6= ∅.

Using our ρ-approximate oracle A, given some υ and point (α, β, θ), we can certify

that either (α, ρβ, θ) ∈ P(υ, 1), or give a hyperplane certifying that (α, β, θ) /∈ P(υ, ρ),

as follows. If (α, β, θ) violates some constraint (2.7) or the constraint
∑
e αe + ρ

∑
i βi ≤

υ, then we return the constraint as a separating hyperplane. Otherwise, for each i, we

run A with element weights θie. If the returned set S has weight w(S) > βi, then since

w(S) ≥ (1/ρ) maxS′∈Gi w(S′), we can return the constraint (2.8) corresponding to i, S as

the separating hyperplane. Otherwise, we must have that for all S ∈ Gi, w(S) ≤ ρβi, and

so (α, ρβ, θ) ∈ P(υ, 1).

Using this approximate separation, the ellipsoid algorithm will certify in polynomial time

that either P(υ, ρ) = ∅, or give a point (α, ρβ, θ) ∈ P(υ, 1). We can then use binary search

to find the smallest value υ∗ such that P(υ∗, 1) is non-empty, and so υ∗ ≥ OPTLP .

Obtaining a good solution to (LP). Suppose we run the ellipsoid algorithm with input

υ∗ − ε for any ε > 0; this must necessarily produce a certificate showing P(υ∗ − ε, ρ) = ∅.

This certificate will consist of the polynomially-many separating hyperplanes provided by

the oracle during the run, including the inequality
∑
e αe + ρ

∑
i βi ≤ υ∗ − ε. Consider the

following polytope, which is the dual of P(υ, a):

Q(υ, a) = {(x, z) : (2.4),
∑
S∈Gi

zS ≥ a, (2.6),
∑
e,i

xie ≥ υ}.

By duality, the certificate we obtained corresponds to a point (x, z) ∈ Q(υ∗ − ε, ρ) with

polynomially-many non-zero variables.1 Note that the point (x/ρ, z/ρ) is a feasible solution

1We can obtain such a point by setting all variables xie and zS that are not in our certificate to zero

19

to (LP) with objective value (υ∗ − ε)/ρ ≥ (OPTLP − ε)/ρ; we thus have an approximate

solution to (LP). Further, the point (x, z) is almost a feasible solution to (LP) that only

violates (2.5); this latter solution has objective value υ∗ − ε ≥ OPTLP − ε.2 This property

will be crucial to our rounding scheme.

2.3 A Randomized
(

e1/ρ

e1/ρ−1

)
-Approximation

Given a feasible solution (x/ρ, z/ρ) to (LP), where the solution (x, z) still satisfies constraints

(2.4) and (2.6), we now show how to (randomly) round it to a feasible integer solution

with expected objective value at least e1/ρ−1
e1/ρ

· OPTLP . The algorithm presented here will

additionally provide an integrality gap proof for (LP).

Without loss of generality, we can assume that constraints (2.5) are tight for the feasible

solution - that is,
∑
S∈Gi zS/ρ = 1 for all i. If this is not the case for some i, then since the

groups Gi define a partition, we can safely raise z values within that group without violating

any other constraint. Given this assumption, the rounding algorithm is straight-forward:

for each group i, sample a set randomly from the distribution given by {zS/ρ}S∈Gi . Only

a polynomial number of z values can be non-zero, so this sampling algorithm will run in

polynomial time.

Theorem 2.2. Randomized rounding is a
(

e1/ρ

e1/ρ−1

)
-approximation to the MCG problem,

given a ρ-approximate oracle. Furthermore, the integrality gap of (LP) is at most e
e−1 .

Proof. We proceed by first bounding the probability that an arbitrary item ē is not covered

by the collection of sets we pick. We then show that the expected contribution of ē to our

solution is at least a constant fraction of its contribution to OPTLP ; since OPTLP is at least

the integer optimum, this implies that we cover a constant fraction of the optimal number

of items in expectation.

Let nē be the number of sets that contain ē, and let aie =
∑
S∈Gi:S3e zS/ρ. Note that

the probability that ē is not covered by any set we picked is at most
∏
i(1 − aiē). By the

arithmetic-geometric mean inequality, we have∏
i

(1− aiē) ≤

(
1− 1

nē

∑
i

aiē

)nē
≤

(
1− 1

ρnē
min(1,

∑
S3ē

zS)

)nē
.

Thus, the probability that ē is covered by our solution is at least

1−

(
1− 1

ρnē
min(1,

∑
S3ē

zS)

)nē
. (2.9)

Let the value xē =
∑
i x

i
ē be the total contribution of ē to the LP objective value of the

(infeasible) solution (x, z); we noted before that this solution has total objective value at

(or alternatively, deleting them altogether), and solving the newly obtained linear program, which is now
polynomially-large.

2We omit the ε for the remainder of this discussion for clarity.

20

least OPTLP . If
∑
S3ē zS ≥ 1, then we must have xē = 1 by constraints (2.4) and (2.6);

otherwise we could raise some xiē value without violating any constraints to create a better

solution. Alternatively, if
∑
S3ē zS < 1, then by similar reasoning constraints (2.6) involving

ē must be tight, so xē =
∑
S3ē zS . Thus, xē = min(1,

∑
S3ē zS).

Substituting this into (2.9), note that the function 1−(1−xē/(ρnē))nē is concave for xē ∈

[0, 1] and ρ ≥ 1; further, for xē = 0 and xē = 1 we obtain the values 0 and 1−(1−1/(ρnē))
nē ,

respectively. Thus, using properties of the exponential function we have

1−
(

1− xē
ρnē

)nē
≥ 1− xē

(
1− 1

ρnē

)nē
≥ xē(1− e−1/ρ).

In expectation then our integer solution collects at least (1 − e−1/ρ) · OPTLP items,

yielding a randomized
(

e1/ρ

e1/ρ−1

)
-approximation. This further shows that the integrality gap

of (LP) is e
e−1 .

2.4 Derandomization

To derandomize our rounding scheme, we make use of the pipage rounding technique, as

described by Ageev and Sviridenko [1]. The rounding algorithm we present will match the

result we obtained in Theorem 2.2, but is completely deterministic.

Our approach to solve the MCG problem follows the ideas used by Ageev and Sviren-

denko [1] to prove a similar integrality gap for the standard Maximum Coverage problem.

First note that (LP) is equivalent to the following program:

max
∑
e

min

(
1,
∑
S3e

zS

)
(LP2)

s.t.
∑
S∈Gi

zS ≤ 1 ∀i (2.10)

zS ∈ [0, 1].

Here, we have rewritten constraints (2.4) and (2.6) as the minimum in the objective. Since

this program is equivalent to (LP), given a fractional solution (x/ρ, z/ρ) to (LP), we can

obtain a solution z/ρ to (LP2) of equal objective value (that is, OPTLP /ρ), in polynomial

time. (LP2) is now in pipage rounding form - the bipartite graph (U ∪W,E) has vertices

ui ∈ U for each group Gi, vertices wS ∈W for each set S ∈ S, and edges uiwS ∈ E for each

group Gi and set S ∈ Gi.

Since (LP2) can be approximately solved in poly-time, we would like to round it to an

integral solution using the pipage rounding algorithm and the input z/ρ; note that since

only a polynomial number of z values are non-zero, the rounding algorithm will terminate

in a polynomial number of steps, and each step can be performed in poly-time. This would

give an integer solution z̄, which we then wish to show is at most a factor of (1 − e−1/ρ)

away from the optimal solution to (LP2).

21

Let L(z) =
∑
e min(1,

∑
S3e zS). We will define a “nice” function F (z) that is both ε-

convex on the input z/ρ and satisfies a (modified) version of the F/L lower bound condition

- instead of condition 1.8, we would like to show something stronger. Suppose that, for an

optimal solution ž, our sub-optimal solution z/ρ has the property that F (z/ρ) ≥ L(ž)/α

for some α. If L and F are coincident on binary inputs, then L(ž) ≥ F ∗, and so this new

condition would imply we have an α-approximation after pipage rounding.

We first claim that the function F (z) =
∑
e(1−

∏
S3e(1− zS)) satisfies these conditions.

Claim 2.3. F (z) satisfies the modified F/L lower bound conditions.

Proof. First note that for binary z, L(z) = F (z). We now need to show some α exists such

that for any optimal solution ž, F (z/ρ) ≥ L(ž)/α.

Let ne be the number of sets in S which contain e. We can use similar arguments as in

the proof of Theorem 2.2 to show that, for our sub-optimal solution z/ρ,

1−
∏
S3e

(1− zS/ρ) ≥ 1−

(
1− 1

ρne
min(1,

∑
S3e

zS)

)ne
≥ 1−

(
1− 1

ρnē

)nē
min(1,

∑
S3e

zS)

≥ (1− e−1/ρ) min(1,
∑
S3e

zS).

Thus, F (z/ρ) ≥ (1 − e−1/ρ)L(z). But since L(z) ≥ OPTLP (see the arguments made in

Theorem 2.2), then L(z) ≥ L(ž), and so F (z/ρ) ≥ (1− e−1/ρ)L(ž).

Claim 2.4. F (z/ρ) is ε-convex.

Proof. Since the groups Gi define a partition over S, the bipartite graph used during the

rounding must be a forest, with each tree having height 1. This implies that in each step of

the pipage rounding algorithm, the chosen R must be a path of length at most 2. Rewriting

F ((z/ρ)(ε, R)) as a function of ε, we then have either a linear or quadratic function. Since

for all e, ze/ρ ∈ [0, 1], then this quadratic will have a non-negative main term, and so F (z/ρ)

is ε-convex.

Given this, we can now apply pipage rounding on the fractional solution z/ρ and using

the function F to guide the algorithm. This yields a deterministic
(

e1/ρ

e1/ρ−1

)
-approximation

to the MCG problem.

22

Chapter 3

Approximating Capacitated
Latency Problems

In this chapter we consider a collection of vehicle routing problems, showing how to ap-

proximate them within a constant factor of the optimum. We focus specifically on some

capacitated variants of the minimum latency problem, where the objective is to minimize

the average waiting time of a client; this is in contrast to travelling salesman-type problems,

where the objective is to minimize the distance the vehicle travels. The idea of latency nicely

models the real-world concept of response time, which in many situations is a much more

important metric than the distance a vehicle travels, including emergency response manage-

ment, routing delivery vehicles and school buses, routing repairmen, etc. These problems

are therefore also commonly known as travelling repairmen problems (TRP).

We specifically consider capacitated variants of the Multi-Depot k-Travelling Repairmen

Problem (abbreviated to MD-kTRP). While the uncapacitated problem has been studied

previously, the capacitated variants we consider have only been looked at from a heuristics

perspective, making the results we present here the first true approximations for these

problems. The approach we take is modular, which allows us to approximate more than one

problem with the same basic algorithm. This in fact allows us to match the previous best

result for uncapacitated MD-kTRP, with a different technique. We make use of the MCG

approximations developed previously to achieve our results.

3.1 Problem Overview

We study a generalization of the previously studied latency problems, which has been

recently considered by the Operations Research community. In the Multi-Depot Capaci-

tated k-Travelling Repairmen Problem (MD-CkTRP), we are given a collection of clients

C = {c1, c2, . . . , cn} that need to be served by some vehicle, and a collection of k identical

vehicles stationed at given depots (roots) R = {r1, r2, . . . , rk}. Each client additionally has

a positive demand which needs to be satisfied, given as the function w : C → Z+, and the

23

r

(a) An r-rooted flower

15

3

10

6

14

6

8
s

r

(b) An r → s capacitated
walk

r

9

108
8

4

15

8

8

(c) An r-rooted capacitated
flower

Figure 3.1: Examples illustrating different walk types used. For the capacitated examples,
numbers above vertices are demands, and Q = 20.

vehicles have a fixed positive capacity Q. The objective is to find a routing of the vehicles

over the symmetric metric (R∪C, d), such that every client’s demand is satisfied, minimizing

the average time required to service all clients, while obeying the following constraints:

1. All clients must be completely served in a single trip (called unsplit delivery), and

2. A vehicle can serve a total of at most Q demand between visits to its depot (the visits

to the depot are called resupplies).

In order to discuss the problem itself and our algorithm, we first need to clarify our

terminology. We will use these terms throughout our discussion to clarify the structure

of the vehicle routes we will be computing; they are more clearly illustrated in figure 3.1.

Unless otherwise stated, we refer to any v ∈ R ∪ C as a vertex.

Definition 3.1. A flower is an ordered sequence of tours, which share a single common

vertex r; the tours that make up the flower are called the petals. See figure 3.1a.

Definition 3.2. A capacitated walk is an ordered sequence of 0 or more tours rooted at a

single common vertex r, followed by an additional path starting at r, where each tour/path

Wi covers clients with total demand at most Q (i.e. Q ≥
∑
c∈Wi

w(c)). Similarly, a capac-

itated flower is a flower in which each petal covers clients with total demand at most Q.

See figures 3.1b and 3.1c.

Let W be any (potentially capacitated) walk; define dW (u, v) to be the distance between

vertices u, v ∈W along the walk W .

Definition 3.3. Given a walk W rooted at a vertex r, the latency of a vertex v along W

is given by latv = dW (r, v). The total latency of a (potentially capacitated) walk W is given

by latW =
∑
c∈W latc.

24

A feasible solution to the MD-CkTRP is a collection of ri-rooted capacitated walks Fi

(1 ≤ i ≤ k), such that every client belongs to exactly one such walk. Our objective is to

minimize the sum
∑
Fi
latFi , or the cumulative latency of all vertices; this is equivalent to

minimizing the average service time.

3.1.1 Our Results

In order to approximate MD-CkTRP, we build on and extend the techniques used previously

for approximating MD-kTRP and other capacitated vehicle routing problems. Our approach

is modular in a sense; our main algorithm uses an oracle as a subroutine which must conform

to a specific specification, and queries this oracle to generate pieces of the vehicle routes.

The main algorithm then stitches these together carefully, producing a good solution that is

feasible for the original problem. With a good collection of oracles, this allows us to obtain

O(1)-approximation algorithms for the problems we consider. We obtain the following

results:

Theorem 3.4. There is a 25.49-approximation to the unit-demand MD-CkTRP (i.e. w(c) =

1 for all c ∈ C).

Theorem 3.5. There is a 42.49-approximation to the unsplit-delivery MD-CkTRP.

Our algorithm can be extended to solve the problem when we have non-uniform vehicle

capacities with no additional loss. We can further extend the problem to include client

service delays δ(c), with an additional +0.5 factor loss in approximation. We also obtain an

8.497-approximation when vehicles have infinite capacity, matching the current-best result

by Post and Swamy [28].

Our approach requires an oracle that can approximate the following problem. Suppose

we are given a set of clients C, a budget B, and a collection of ri-rooted walks Wi; we say

these are the feasible walks for vehicle i. TheWi-restricted orienteering problem is to choose

a collection of walks Wj ∈ Wi that contains as many clients in C as possible, such that the

sum of the lengths of Wjs is at most B. We define an approximation to this problem as

follows:

Definition 3.6. A (ρ, γ)-approximation to the Wi-restricted orienteering problem is an

algorithm that finds a collection of walks of cost at most γB covering at least a 1/ρ-fraction

of the number of clients in an optimal collection of walks.

If we create an approximation algorithm to this problem that is guaranteed to always

return a flower, but whose ratio is still bounded against the optimal collection of walks,

then we call this a flower-approximation. We use the collection Wi to generalize the notion

of capacitated walks and simplify the discussion. For our purposes, we will define the

25

collections Wi with enough structure so that we can always find a flower corresponding to

any collection of walks in Wi; this makes the notion of a flower-approximation well defined.

With such an oracle available for a given definition of Wi, we can state our main result

as follows:

Theorem 3.7. Let Wi be the set of all feasible ri-rooted walks for vehicle i, and let A be a

(ρ, γ) flower-approximation to theWi-restricted orienteering problem for ρ, γ both constants.

Then there is an O(1)-approximation to the Wi-restricted multi-depot k-TRP.

Choosing Wi to be the collection of all ri-rooted paths, the problem we solve with

Theorem 3.7 becomes the MD-kTRP. Similarly, by choosing Wi to be the collection of

ri-rooted walks/tours containing at most Q clients (or client-demand), the problem them

becomes the unit-demand (or unsplit-delivery) MD-CkTRP. For different choices of Wi,

approximations for other variants of TRP can be obtained (with a corresponding oracle).

We first prove Theorem 3.7 in Section 3.2, and then proceed to define oracles that yield

algorithms for our various problems. We present a simple oracle for the uncapacitated

problem, yielding an 8.497-approximation for MD-kTRP, in Section 3.3.1. We then give

more complex oracles to prove Theorems 3.4 and 3.5 in Section 3.3.2.

3.2 A Constant Approximation

We present a combinatorial algorithm that satisfies Theorem 3.7. This result builds on

the combinatorial techniques of Chekuri and Kumar for approximating the uncapactiated

MD-kTRP [12]. Our approach is in fact equivalent to the LP rounding technique of Post

and Swamy [28] for the uncapacitated problem they consider; the combination of our greedy

algorithm and MCG LP yields the time-indexed LP they use. Our approach in a sense unifies

the results of [12] and [28], and by separating the MCG LP from our greedy algorithm, our

results become more easily adaptable to problems beyond latency.

3.2.1 Algorithm

The algorithm breaks the computation into several rounds, where for each round, we are

given a budget (i.e. time limit) with which to use all the vehicles to cover as many new

clients as possible. We can then bound the latency of the clients we covered by the sum

of the budget for the round plus the budgets for all previous rounds. If we ensure that

all vehicles return to the depot after each round, then the tours found for a round will be

(capacitated) flowers, which we can easily stitch together with the flowers from other rounds

to form the final solution.

Recall that we are given as part of the input an oracle A, which is a (ρ, γ) flower-

approximation to the Wi-restricted orienteering problem. Let τ > 1, U ∈ [0, 1), and b = τU

26

be global constants; we will pick a good value for τ later (based on ρ and γ), and choose U

uniform-randomly. Let j ≥ 1 be the index of the current round, and let Cuj be the set of

uncovered clients at the start of round j.

We will require a subroutine C that can solve the following multi-depot group orienteering

problem (MD-GOP). Suppose we are given a subset C ′ of clients (that still need to be

visited), vehicle depots R = {r1, r2, . . . , rk}, a hard budget B, and the collections of paths

Wi. We wish to find an ri-rooted Wi-restricted walk of length at most B for each vehicle

i, such that the collection of clients in C ′ that are covered by these walks is as large as

possible. We will call C a (ρ, γ) flower-approximation if it finds a collection of Wi-restricted

flowers, one per vehicle, that are each at most γB in length and collectively cover at least

a 1/ρ-fraction of the optimal number of clients.

We can construct such a subroutine C as follows. Let SW be the set of vertices in C ′ ∪R

contained in the walk W , and let WB
i be the subset of Wi containing only walks of length

at most B. Let Gi = {SW : W ∈ WB
i } be the group of all Wi-restricted walks of length at

most B. This defines a valid MCG instance; note that the groups Gi must be disjoint since

every SW ∈ Gi must contain the root ri, which is a vertex unique to that group. Solving this

instance optimally yields a collection ofWi-restricted walks, one per vertex and of length at

most B, that collectively cover as many vertices in C ′ as possible. We obtain a (e1/ρ

e1/ρ−1
, γ)

flower-approximation by combining our improved MCG approximation in Chapter 2 with

the oracle A.

With our algorithm C, we can now state the algorithm for round j:

function Do-Round(j)

Run C(Cuj , bτ j ,A) with clients Cuj , budget bτ j , and using the oracle A.

Traverse the returned flower for each ri in either direction, chosen uniformly at random.

Cuj+1 ← all remaining uncovered clients from Cuj .

end function

The overall algorithm is then to run Do-Round for j = 1, 2, 3, . . . until Cuj becomes

empty for some j, stitching the returned flowers together to build the final solution. Since the

budget per round increases geometrically, the number of rounds required to cover everything

will be polynomial in the instance size, and the solution will be feasible since every vehicle’s

route will be composed of a collection of Wi-restricted flowers, which can only be stitched

together at the root ri.

3.2.2 Analysis

We now show that this algorithm is an O(1)-approximation, satisfying Theorem 3.7. Let

OPT be some fixed optimal solution, and let Oj be the set of clients with latency at most

bτ j in OPT . Let Cvj be the clients our algorithm has chosen to visit up to the end of round

27

j (with Oj and Cvj being the empty sets for j ≤ 0). Recall that Cuj is the set of clients that

are still unvisited at the start of round j.

Lemma 3.8. |Cvj − Cvj−1| ≥ e1/ρ−1
e1/ρ

|Oj − Cvj−1|.

Proof. Let Rj = Oj − Cvj−1; these are clients that OPT could cover with latency at most

bτ j that we have not covered yet. There must therefore be a Wi-restricted walk for each

vehicle i of length at most bτ j collectively covering the clients in Rj . This implies that our

algorithm C can find walks covering at least e1/ρ−1
e1/ρ

|Rj | new clients, giving the lemma.

Let nOPTj = |C − Oj | and nj = |C − Cvj |; these are the number of clients in OPT

with latency more than bτ j and the number of clients our algorithm covers after round j,

respectively. Let Bj be the budget for round j; for j ≥ 1 this is bτ j and for j ≤ 0 we define

it to be 0. Let ∆j = Bj −Bj−1 be the increase to the budget for round j.

Lemma 3.9. For all j, we have nj ≤ 1
e1/ρ

(nj−1 + (e1/ρ − 1)nOPTj).

Proof. From Lemma 3.8, we can see that nj ≤ nj−1 − e1/ρ−1
e1/ρ

|Oj − Cvj−1|. We obtain the

lemma by observing that |Oj | = n− nOPTj and |Cvj−1| = n− nj−1.

Lemma 3.10. In expectation over all choices of U , the latency of our solution is at most

γ(τ+1)
2(τ−1)

∑
j≥1 nj−1∆j.

Proof. For a client c covered in round j by vehicle i, its latency in our solution is at most the

sum of the lengths of all flowers chosen for vehicle i in rounds 1 ≤ j′ ≤ j. Note however that

the last flower is traversed in a random direction, so in expectation the additional latency

c incurs in round j is 1/2 the total length of the flower picked in round j. This implies the

expected latency of c is at most

γbτ j

2
+

j−1∑
j′=1

γbτ j
′
≤ γ(τ + 1)

2(τ − 1)
bτ j .

We can now upper-bound the total expected latency of all clients in our solution by

γ(τ + 1)

2(τ − 1)

∑
j≥1

Bj(nj−1 − nj) =
γ(τ + 1)

2(τ − 1)

∑
j≥1

nj−1∆j . (OUR-UB)

We obtain the right-hand side by re-arranging the summation, noting that ∆1 = B1 and

n0 = n.

Lemma 3.11. In expectation over all choices of U , the latency of OPT is at least ln τ
τ−1

∑
j≥1 n

OPT
j−1 ∆j.

Proof. Since nOPTj is the number of clients with latency > bτ j , we can initially lower-bound

the total latency of OPT with∑
j≥0

bτ j(nOPTj − nOPTj+1) =
1

τ

∑
j≥1

nOPTj−1 ∆j . (3.1)

28

The left-hand side is derived by rounding the latency of each client down to the nearest

bτ j .1 The right-hand side is obtained by rearranging the summation.

We can improve this bound using the random value b = τU : suppose client c is visited in

OPT with latency latOPTc = dτ j , where 1 ≤ d < τ . If we choose U such that b ≤ d, then c’s

latency will be rounded on the left-hand side of (OPT-LB) down to bτ j . Otherwise, b > d,

so the latency of c will be rounded down to bτ j−1. Over all uniform-random choices of U ,

the expected latency of c using this rounding is∫ logτ d

0

bτ jdU +

∫ 1

logτ d

bτ j−1dU = τ j−1

(
τ

∫ logτ d

0

τUdU +

∫ 1

logτ d

τUdU

)

= dτ j−1

(
τ − 1

ln τ

)
= latOPTc · τ − 1

τ ln τ
.

In expectation then, our rounding in (3.1) is a factor τ ln τ
τ−1 away from OPT . Our lower-bound

can therefore be improved to
ln τ

τ − 1

∑
j≥1

nOPTj−1 ∆j . (OPT-LB)

By summing Lemma 3.9 over all j, and carefully rearranging summations, we can now

see that

∑
j≥1

∆jnj−1 ≤
1

e1/ρ

∑
j≥1

∆jnj−2 + (e1/ρ − 1)
∑
j≥1

∆jn
OPT
j−1

=

τ

e1/ρ

∑
j≥1

∆jnj−2 +
(1− e−1/ρ)(τ − 1)

ln τ

ln τ

τ − 1

∑
j≥1

∆jn
OPT
j−1

=⇒
∑
j≥1

∆jnj−1 ≤
(τ − 1)(1− e−1/ρ)

ln(τ)(1− τe−1/ρ)
(OPT-LB)

=⇒ (OUR-UB) ≤ γ(τ + 1)(1− e−1/ρ)

2 ln(τ)(1− τe−1/ρ)
(OPT-LB), (3.2)

which allows us to complete the proof of Theorem 3.7.

Proof of Theorem 3.7. By (3.2), our algorithm from Section 3.2.1 is a γ(τ+1)(1−e−1/ρ)
2 ln(τ)(1−τe−1/ρ)

-

approximation for any constant 1 < τ < e1/ρ, satisfying the requirements of the theo-

rem.

3.3 Oracles

Theorem 3.7 gives us a general framework with which to solve the capacitated problems

we are interested in, but we require good oracles. We present three in this section: one

1There is an annoying detail hidden here - this lower bound only holds if no client has latency less than
b in OPT . However, by scaling distances we can ensure this is always the case.

29

for the uncapacitated MD-kTRP, one for the unit-demand MD-CkTRP, and one for the

unsplit-delivery MD-CkTRP.

Recall that we want to find a (ρ, γ)-flower approximation to theWi-restricted orienteering

problem. This algorithm should find an ri-rooted flower of cost at most γB covering at least

a 1/ρ-fraction of the number of clients in an optimal walk.

3.3.1 An Oracle for MD-kTRP

To start, we give a simple (1, 2 + ε)-approximate oracle for the uncapacitated MD-kTRP

problem, whereWi is all ri-rooted walks. This oracle was originally described by Chaudhuri

et al. [10] in the context of the single-vehicle travelling repairman problem, and was later

used in the multi-vehicle and multi-depot settings [16, 12].

Consider the k-stroll problem: we are asked to find the shortest r, s walk that contains

at least k vertices. If this optimal walk has length B, then Chaudhuri et al. [10] showed

that a k-MST of cost at most B + ε can be found in polynomial time that contains both r

and s. So, assume the optimal walk for our subproblem covers `OPT clients; such a walk is

an `OPT -stroll of cost at most B. By using the algorithm from [10], we can find an ri-rooted

`OPT -MST that has cost at most B+ ε. By doubling and short-cutting this tree, we obtain

a flower of cost at most 2B + ε′ covering `OPT clients, yielding a (1, 2 + ε′)-approximation.

Combining this oracle with Theorem 3.7, we obtain the following, which matches the

current-best result obtained by Post and Swamy [28].

Corollary 3.12. There is an 8.497-approximation to the uncapacitated MD-kTRP, for

τ ≈ 1.616.

3.3.2 Oracles for Unit-Demand and Unsplit-Delivery Versions

We now look at the capacitated problems; our algorithms for each will be similar, so we

describe both simultaneously. For these problems, Wi is the set of all ri-rooted capacitated

walks, where vehicle i is only allowed to sequentially serve at most Q client demand before

it must return to ri to resupply. It must further serve a client’s entire demand at once; a

client may not be served over multiple trips or by more than one vehicle. We wish to find

a flower that has this property; if we find one then it must also be in Wi.

In this section we will show how to build a (1, 10 + ε)-flower approximation algorithm

for the unsplit-delivery version, and a (1, 6+ ε)-flower approximation algorithm for the unit-

demand version. If the optimal capacitated walk covers `OPT clients, then our algorithms

will find a flower covering `OPT clients, respecting the capacity constraint, with cost at most

(10 + ε)B and (6 + ε)B, respectively.

Preliminaries. Note that any capacitated walk of cost B can be converted into a flower

30

of cost at most 2B by doubling each edge in the final path section of the walk and short-

cutting, so with a factor-2 loss we simply focus on finding such a flower. We utilize two key

inequalities, which are classic results in capacitated vehicle routing.

Let WOPT be some optimal ri-rooted capacitated walk for the relevant problem, span-

ning clients COPT (where |COPT | = `OPT), of cost at most B. Let FOPT be the correspond-

ing flower of cost at most 2B. Let TSPOPT be an optimal ri-rooted TSP tour covering the

clients in COPT . For convenience, define d(W) to be the metric cost of the walk/tour/flower

W .

Lemma 3.13. The following inequalities hold for w(c) ∈ Z+:

d(TSPOPT) ≤ d(FOPT) ≤ 2B (3.3)

2

Q

∑
c∈COPT

d(c, ri)w(c) ≤ d(FOPT) ≤ 2B. (3.4)

Proof. (3.3) holds trivially, since any optimal capacitated walk can be no cheaper than an

optimal uncapacitated walk that visits the same clients.

To show (3.4), we first prove the following weaker version holds, and then refine the

argument:
2

Q

∑
c∈COPT

d(c, ri) ≤ d(FOPT) ≤ 2B (3.5)

This inequality was first shown by Haimovich and Rinnooy Kan [21]. Let Cj denote the

clients covered by the jth petal in FOPT . It follows that

d(Cj) ≥ 2 max
c∈Cj

d(c, ri) ≥ 2

∑
c∈Cj d(c, ri)

|Cj |
≥ 2

Q

∑
c∈Cj

d(c, ri).

This implies the inequality, since

d(FOPT) =
∑
j

d(Cj) ≥
2

Q

∑
c∈COPT

d(c, ri).

We can now show (3.4) holds, by mimicking the arguments of Altinkemer and Gavish

[2]. Consider a new unit-demand instance containing the vertices ri and w(c) copies of each

client c ∈ COPT . Let Ωc be the set of the w(c) copies of c in G′. We will define a new

metric d′ as follows: for any v ∈ Ωc, d
′(ri, v) = d(ri, c); for any u, v ∈ Ωc, d

′(u, v) = 0; and

for any u ∈ Ωc, v ∈ Ωc′ , d
′(u, v) = d(c, c′).

We can covert FOPT into a feasible flower of no greater cost in this new unit-demand

instance that covers
∑
c∈COPT w(c) vertices, by simply following the original flower’s route

and visiting all copies of client c when that client is visited in the original flower. Applying

inequality (3.5) and collapsing the summation yields (3.4).

Algorithm. Our algorithm in essence finds an `OPT -MST, converts it into a tour, and then

sub-divides this tour carefully to create the petals of a flower; we then return this flower. To

31

determine the approximation ratio however, we first need to transform the optimal solution

into a “nice” form, which then allows us to bound the cost of the solution we compute.

Consider the input metric as an undirected graph G. For any given set of clients C ′,

define LB(C ′) = 1
Q

∑
c∈C′ d(ri, c)w(c); then by inequality (3.4), LB(COPT) ≤ B. For all

clients c, add a new client ct to the graph (we call these terminals), and an edge (c, ct) of

cost 1
Qd(ri, c)w(c) for the unit-demand problem, or 2

Qd(ri, c)w(c) for the unsplit-delivery

problem. We call this modified graph G′.

Note that the walk WOPT can be converted into a walk on G′ that visits both COPT and

the corresponding terminal clients; the cost of such a walk is at most B+2LB(COPT) ≤ 3B

for the unit-demand problem, or B + 4LB(COPT) ≤ 5B for the unsplit-delivery problem.

Further, by skipping over the clients in COPT we can obtain a walk of no greater cost that

only covers `OPT terminals. Take the shortest-path metric completion of G′, and remove

the non-terminal clients - we can now use the `-MST algorithm of Chaudhuri et at [10] to

find a tree covering `OPT terminals with cost at most 3B + ε for the unit-demand problem,

or 5B + ε for the unsplit-delivery problem.2

Double this tree and shortcut to produce a tour T . Note that this tour is also a valid tour

inG′ that still visits `OPT clients, and further note that if we shortcut past all terminals, then

this tour will have cost at most 6B−2LB(T) for the unit-demand problem, or 10B−4LB(T)

for the unsplit-delivery problem. Thus, we have an upper bound on the cost of this tour in

the original metric d.

We now sub-divide this tour and build a capacitated flower, without increasing the cost

too much. For the unit-demand problem, number the vertices of T in the order they are

visited. Pick a random offset R ∈ ZQ. Walk along the tour starting at vertex R, shortcutting

past ri, and cut away a strip of the tour every Q vertices. For each strip, add an edge back

to ri at each end - these form the petals of our flower. The expected cost of these extra

ri-edges is 2LB(T), so some offset R exists such that we pay at most this extra amount. We

can therefore always divide T into petals, where each petal covers at most Q demand, with

total cost at most 6B. This flower is a feasible solution to the unit-demand problem, giving

a (1, 6 + ε)-approximation. See figure 3.2a and 3.2b for an illustration of this procedure.

For the unsplit-delivery problem, we need to perform some extra steps. Like in the

proof of inequality (3.4), consider building the unit-demand graph G′′, where a client c is

duplicated w(c) times. The tour T can be mapped to an equivalent tour in G′′ that covers∑
c ∈ Tw(c) clients. As before, number these vertices, pick R randomly, and split this tour

into petals. Each petal covers at most Q demand, however a client may be served over more

than one petal - we need to convert this solution back into an unsplit-delivery solution.

Since we focus on unsplit-delivery, we can assume that w(c) ≤ Q - this implies a client

2We temporarily ignore the ε for clarity.

32

ri
v1 v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

(a) Initial tour, before splitting into petals (b) After subdivision and conversion into a
flower, strips are in blue (R = 3)

Figure 3.2: Unit-demand example (Q = 4) of converting a tour into a flower, by breaking
the tour into strips, shortcutting past ri, and adding edges back to ri.

c can only be served in at most 2 consecutive petals. If this is the case, we can remove

c from both petals and cover it separately in its own petal. The cost of these additional

petals is bounded by 2LB(T), so the total cost of the flower is at most 10B. This flower is

now feasible in the original metric for the problem, giving a (1, 10 + ε)-approximation. Note

that there is a simple poly-time algorithm for splitting T up in this way without explicitly

building G′′ or trying more than `OPT values of R, so our oracles run in poly-time. Results.

Combining the above oracles with Theorem 3.7, we obtain the following proofs to Theorems

3.4 and 3.5.

Proof of Theorem 3.4. Choosing τ ≈ 1.616 and using the (1, 6 + ε)-approximate oracle for

the unit-demand problem, we obtain a 25.49-approximation to the unit-demand MC-CkTRP

using Theorem 3.7.

Proof of Theorem 3.5. Choosing τ ≈ 1.616 and using the (1, 10 + ε)-approximate oracle

for the unsplit-delivery problem, we obtain a 42.49-approximation to the unsplit-delivery

MD-CkTRP using Theorem 3.7.

3.4 Extensions

We can also consider two extensions to our problems - non-uniform vehicle capacities and

service delays. In the first case, suppose instead of vehicle i having capacity Q, it had

capacity Qi. We then adjust the definition of Wi to be all walks requiring capacity at most

Qi. The oracles we presented have the same approximation ratio regardless of the value of

33

Qi, and Theorem 3.7 does not deal with Qi, so we obtain identical results in the non-uniform

capacity case.

For the service-delay problem, suppose each client c has a service time δ(c) ≥ 0 (assume

for the roots, δ(ri) = 0), which adds to the time a vehicle must spend as it delivers its load to

c. The latency of c and all subsequent clients served by the vehicle then increases by δ(c); we

still wish to minimize the cumulative latency of all clients. We modify this problem into an

instance without service delays as follows. Define a new metric d′(u, v) = d(u, v)+ δ(u)+δ(v)
2 ,

and use this metric in place of d. Note that an optimum solution to this instance will have

cumulative latency no more than the optimum solution to the original instance.

Approximately solve this instance, using whichever algorithm is appropriate, and call

the computed flower for vehicle i Fi. Suppose in this solution, client c has latency lat′c =

d′Fi(ri, c). We can map this solution back onto the original metric; ignoring service delays,

client c will then have latency latc = dFi(ri, c) = d′Fi(ri, c)−
∑
c′ visited before c δ(c

′)− δ(c)/2.

Thus, when service delays are included, c will have latency latc = d′Fi(ri, c) + δ(c)/2. Since∑
c δ(c) is a lower bound on the optimum solution cost, with an α-approximat ion to the

problem without service delays, we obtain an (α + 0.5)-approximation when service delays

are added.

34

Chapter 4

Towards a Better
Approximation for Deadline
Orienteering

In this chapter we focus on a different vehicle routing problem known as deadline-TSP, or

more recently, as deadline orienteering. In this problem, we are given two locations r, s that

we wish to travel between, and deadlines D(v) on all vertices. We wish to find an r−s path

that reaches as many vertices as possible at a time before their deadlines.

This problem is a generalization of the standard orienteering problem; in orienteering,

each vertex has a deadline D(v) equal to the overall budget B. The deadline orienteering

problem has been well-studied in the Operations Research community, which has produced

many good heuristic and exact solutions for the problem. However, while we have good

approximation algorithms for orienteering, only O(log n)-approximations are known for the

deadline version [3, 11].

The lack of a sub-logarithmic approximation is surprising, as the problem does not appear

to be significantly more difficult than other undirected vehicle routing problems. Although

we do not find such an approximation in this chapter, we will show more concretely why a

better approximation likely exists, and give approximations for special cases of the problem,

including relevant versions of the related and well-studied school-bus problem.

4.1 Problem Overview

The deadline orienteering problem, more formally stated, is the following. We are given a

symmetric metric d(u, v), non-negative deadlines D(v) for each vertex v, and a source-sink

pair r, s in the metric. Without loss of generality, we assume distances and deadlines are

integral. The goal is to find a simple path P from r to s of length at most D(s), containing

as many vertices as possible, such that for each vertex v along the path, dP (r, v) ≤ D(v)

(recall that dP (u, v) is the distance along the path P from u to v). Another interesting and

35

related variation of the problem is called orienteering with time-windows; in this version,

each vertex also has an (integral) release time R(v), and a vertex v may only be included

in a path P if R(v) ≤ dP (r, v) ≤ D(v).

A similar problem to deadline orienteering which we consider is the regret vehicle routing

problem (RVRP) or school-bus problem: instead of a deadline, a vertex v has regret RegP (v)

along path P if it is visited by P at time d(r, v) +RegP (v). The objective is (typically) to

find a minimal collection of r-rooted paths that visit all vertices such that each vertex has

regret at most a given bound B. We consider maximization versions of the problem that

relate to deadline orienteering: we wish to find a single path that covers as many vertices as

possible, subject to a constraint on the regrets (note that deadline orienteering is a version

of this problem; vertex v must be visited with regret at most D(v)− d(r, v)).

The exact problems we consider can be formally stated as follows. Let |P | be the number

of vertices reached by path P . The first problem, which we call the Max-Average-RVRP,

is to find a path P rooted at r such that |P | is maximized while ensuring
∑
v∈P RegP (v) ≤

γ|P |; i.e. ensure the average regret is within some bound γ. The second problem, which we

call the Max-Bounded-RVRP, is to similarly find a path P rooted at r such that |P | is

maximized, but instead ensure that for each vertex v ∈ P , RegP (v) ≤ B(v) (B(v) being the

regret bound for v). While this second problem is essentially deadline orienteering, we give

an approximation that violates B(v) by a constant factor, which is typically much smaller

than D(v), and so may be a more useful result.

4.1.1 Our Results

We present a few different results in this chapter, that provide further insight into the

deadline and time-window problems. We first consider the Max-Average-RVRP and

Max-Bounded-RVRP, obtaining the following results:

Theorem 4.1. There is an (8 + ε)-approximation to the Max-Average-RVRP, which

finds a path covering at least a 1
8+ε fraction of the optimal number of vertices.

Theorem 4.2. There is a (2.542, 4)-approximation to the Max-Bounded-RVRP running

in quasi-polynomial time when regrets B(v) are poly-bounded, which finds a path covering at

least a 1
2.542+ε fraction of the optimal number of vertices and violating regret bounds B(v)

by at most a factor of 4.

We then consider the deadline orienteering problem itself. We first show the following

result:

Theorem 4.3. There is a polynomial-time algorithm to solve deadline orienteering and

orienteering with time-windows when the input graph is a DAG.

36

For our other results, we work with a slightly more restricted version of the deadline ori-

enteering problem: we assume that the input graph/metric has poly-bounded edge lengths

(and thus, without loss of generality, has poly-bounded deadlines). This restriction is irri-

tating, and it is not obvious how to work around it, but the results we obtain are interesting

nonetheless:

Theorem 4.4. There is an O(1)-approximation to deadline orienteering on a general metric

with poly-bounded edge lengths running in sub-exponential time.

The algorithm presented to prove Theorem 4.4 is impractical, but its existence does

imply the following hardness result:

Corollary 4.5. No ω(1)-hardness result for the deadline orienteering problem with poly-

bounded edge lengths is possible under the assumption P 6= NP, unless the Exponential

Time Hypothesis is false.

This gives a strong indication that a constant approximation can be found for the original

deadline orienteering problem. We give proofs for Theorems 4.1, 4.2, and 4.3 in sections 4.2,

4.3, and 4.4 respectively. In section 4.5, we prove Theorem 4.4 and Corollary 4.5.

4.2 An (8 + ε)-Approximation for Max-Average-RVRP

In this section, we present an (8 + ε)-approximation for the Max-Average-RVRP. Recall

that in this problem, we are given a parameter γ, and must find an r-rooted path P where∑
v∈P RegP (v) ≤ γ|P |. We wish to maximize |P |; our approximation will find a path that

covers at least a 1
8+ε fraction of the optimal number of vertices.

A subroutine. Before we can discuss the algorithm, however, we need to first describe

a key subroutine, which we call the Max-Uniform-RVRP. Suppose that we are given a

single regret bound B for all vertices, and our objective is to find an r-rooted path P where

RegP (v) ≤ B for all v ∈ P . We again wish to maximize |P |. We claim the following:

Lemma 4.6. An α-approximation to the point-to-point orienteering problem yields an α-

approximation to Max-Uniform-RVRP.

To show this, we consider some fundamental facts about regret. Define the regret metric

dReg as dReg(u, v) = d(r, u) + d(u, v) − d(r, v). For notational convenience, let d(e) be the

cost of edge e, and d(P) =
∑
e∈P d(e). The following facts were shown by Friggstad and

Swamy [19]:

Fact 4.7. The value dReg(u, v) is non-negative for any u, v, and dReg satisfies the triangle

inequality: for any u, v, w, dReg(u,w) ≤ dReg(u, v) + dReg(v, w).

37

Fact 4.8. For any u, v path P , dReg(P) =
∑
e∈P d

Reg(e) = d(r, u) + d(P)− d(r, v).

Fact 4.9. For any r-rooted path P , regrets do not decrease when moving away from r.

Using these facts, we can prove Lemma 4.6.

Proof of Lemma 4.6. Assume we know the optimal endpoint s (or guess it). Fact 4.9 implies

that any r− s path we choose that reaches s at time at most d(r, s) +B will reach all other

vertices v along the path at time at most d(r, v) + B. Thus, any r − s orienteering path

of length at most d(r, s) + B is a feasible solution, and since the optimal solution is an

orienteering path, an α-approximate orienteering solution is an α-approximate solution to

Max-Uniform-RVRP.

Note that the point-to-point version of Max-Uniform-RVRP can be solved in the same

way, without the guessing of the endpoint s.

The algorithm. Given this subroutine, the remainder of the algorithm is straight-forward.

Let OPT be an optimal path. There can be at most |OPT |/2 vertices in this path with

regret more than 2γ by an averaging argument, so suppose we shortcut past these vertices

- this does not increase the regret of the remaining vertices. Of what remains, at least half

of the vertices either have regret at most γ, or have regret between γ and 2γ.

In the latter case, since regret is monotonic, let v be the first vertex with regret at least

γ. Note that by shortcutting past all vertices before v, the regret of v will become 0, and the

regret of all vertices following v will thus be reduced by at least γ. In both cases then, we

can use our approximation for the Max-Uniform-RVRP to approximate the optimal path

restricted to these vertices. This implies that any approximate path we find with Lemma

4.6 will cover at least a 4α-fraction of the optimal number of vertices. There is currently

a (2 + ε)-approximation for orienteering due to Chekuri, Korula and Pál [11], yielding an

(8 + ε)-approximation for Max-Average-RVRP. This proves Theorem 4.1.

4.3 A (2.542, 4)-Approximation for Max-Bounded-RVRP

In this section we consider the Max-Bounded-RVRP. Recall that we are given vertex

regret bounds B(v), and wish to find an r-rooted path P where for all vertices v ∈ P ,

RegP (v) ≤ B(v). We wish to maximize |P |. Note that a deadline orienteering instance

can be cast as an instance of this problem (i.e. with B(v) = D(v) − d(r, v)). Let B =

maxv B(v); we will give an algorithm with running time of nO(logB) that is an (α, β) bi-

criteria approximation. That is, our algorithm will find a solution that reaches at least an α

fraction of the optimal number of vertices, and each reached vertex will have regret at most

βB(v). The running time of this algorithm will be quasi-polynomial if B is poly-bounded.

38

Let OPT be an optimal path, and let vi be the last vertex in OPT with regret at most

2i. Suppose we insert a delay into OPT so that vertex vi is visited exactly at time 2i; this

increases the regret of vi and all subsequent vertices in OPT by at most 2i−1. If we do this

for all i, then the vertices between vi and vi+1 will have their regret increased by at most 2i

- since regret is monotonic (fact 4.9), then this implies the regrets of all vertices will increase

by at most a factor of 2.

Using this idea, suppose we knew the vertices vi in OPT ; we will assume vi is visited

exactly at time 2i. Note that the vertices covered by OPT between vi and vi+1 have regret

bounds at least 2i, and are visited with regret at most 2i+1. Suppose we doubled the regret

bounds on these vertices; this subpath of OPT is now a feasible solution to the following

Max-Uniform-RVRP instance: find a vi → vi+1 path over vertices with regret bound at

least 2i+1, where all vertices must have regret at most 2i.

To solve the entire Max-Bounded-RVRP problem, assuming we know the vertices vi

in OPT , we can construct the following MCG instance, which we can approximate using our

algorithm from Chapter 2. Let Pi be a path from vi to vi+1 of length at most d(r, vi+1)−

d(r, vi) + 2i that visits vertices with 2B(v) ≥ 2i, and let SW i be the set of vertices in

this path. Let Gi be the group of all SW i ’s; note that since every Wi must contain both

vi and vi+1, these groups will be disjoint. This is therefore a valid MCG instance, and

can be approximated using our algorithm from Chapter 2 for MCG and our algorithm for

Max-Uniform-RVRP as an oracle.

Our algorithm for Max-Uniform-RVRP will cover at least a 1
2+ε fraction of the optimal

number of vertices for a given sub-instance; combining this with our approximation in

Chapter 2 for MCG yields an algorithm that covers at least a e1/(2+ε)−1
e1/(2+ε) ≥ 1

2.542 fraction

of the optimal number of vertices for the complete MCG instance. The MCG instance we

constructed may violate the original regret bounds of vertices by a factor of 4, since we

ensure vertices are visited at time exactly 2i, and by our definition of the groups. We thus

have a (2.542, 4)-approximation, that runs in polytime.

Since we do not know what the vertices vi in OPT are, we can try all possible com-

binations. We assume the regret bounds B(v) are poly-bounded, so there can be at most

log2B(v) ≤ O(log n) such vertices vi in OPT , and so trying all possible O(nlogn) combina-

tions of O(log n) vertices will for sure find the optimal set. Running our above algorithm with

each vi combination must then find a solution that is a (2.542, 4)-approximation of OPT .

The running time of the entire algorithm is then O(nlogn), which is quasi-polynomial. Im-

proving the running time would require avoiding this guessing step, but it is not obvious

how to do this.

39

4.4 Solving Deadline Orienteering on a DAG

In this section, we present a simple dynamic programming algorithm to solve the deadline

orienteering problem when the input graph is a DAG. Recall that in the r, s deadline orien-

teering problem, we must find a path P from r to s maximizing the number of vertices we

visit by their deadlines (i.e. v ∈ P is only counted as visited if dP (r, v) ≤ D(v)).

Our dynamic program is as follows. Define DP (v, i) to be the minimum cost of an

r → v path if the path must reach at least i clients by their deadlines. Since we are not

working on a metric, this path may visit a client after its deadline (including v); in this

case we do not count that client as being visited by this path. The fact that the graph is a

DAG is important - any r, s path cannot reach the same vertex twice, and so can never be

double-counted. Thus, our DP is valid.

Let N in(v) be the set of vertices v′ where v′ → v is an edge in the DAG, and let d(v′, v)

be the cost of the edge v′v. Define DP (v, i) as follows:

DP (v, i) =

0 if v = r and i ≤ 1,

∞ if (v = r and i > 1) or N in(v) = ∅,
∆(v, i− 1) if ∆(v, i− 1) ≤ D(v),

∆(v, i) otherwise,

where ∆(v, i) = minv′∈Nin(v)DP (v′, i) + d(v′, v). This DP can be extended to handle the

time-windows problem as well, by altering the definition of ∆ to allow for waiting at a vertex

until its release time: ∆tw(v, i) = max{R(v),∆(v, i)}.

The maximum number of vertices that can be visited by their deadlines on a path from

r to s is the largest value of i for which DP (s, i) ≤ ∞; the corresponding path can be

recovered using standard dynamic programming techniques. Computing all entries in the

dynamic programming table requires O(n3)-time, so this algorithm runs in polynomial time.

4.5 An O(1)-Approximation for Deadline Orienteering

We now present a constant approximation to the deadline orienteering problem on a general

metric, which runs in sub-exponential time when the metric distances are poly-bounded. The

algorithm presented here builds upon the deadline orienteering approximations of Bansal et

al. [3] and Chekuri and Kumar [12].

Although impractical, the existence of this approximation yields Corollary 4.5, which is

an interesting hardness result - we show this at the end of this section. A similar result holds

for the time-windows variant, using the reduction of Bansal et al. [3] from orienteering with

time-windows to deadline orienteering. While this does not give similar hardness results for

the general problem, it strongly suggests a better approximation to both problems exist.

40

4.5.1 Preliminaries

Let OPT be some optimal solution to the deadline orienteering instance. We define tOPT (v)

to be the time at which vertex v is visited by OPT . The following concepts were first defined

in [3], which we reuse and extend here. These concepts are more natural if you consider

OPT plotted on a deadline vs. time graph as in figures 4.1a and 4.1b, where each vertex

v ∈ OPT is plotted at the point (D(v), tOPT (v)).

Definition 4.10. A minimal vertex with respect to OPT is a vertex v where for any

other vertex u, tOPT (u) ≤ tOPT (v) or D(u) ≥ D(v).

That is, any vertex that appears in OPT after v must have a deadline at least that of

v (or in figure 4.1a, there can be no vertex above and to the left of v). Let MOPT be the

collection of minimal vertices in OPT .

Definition 4.11. Let u, v, w be minimal vertices. The rectangle R(u, v, w) is the collection

of vertices {v′ ∈ OPT : tOPT (u) ≤ tOPT (v′) ≤ tOPT (v) and D(v) ≤ D(v′) ≤ D(w)}. We

define v to be the corner of this rectangle.

A side-effect of this definition is that every vertex in R(u, v, w) is visited before v and

has deadline after v (in figure 4.1b, every vertex in R(u, v, w) is below and to the right of

v); this implies that if we restrict and shortcut OPT to cover only vertices in R(u, v, w), we

obtain a valid orienteering tour with budget D(v). This property will be very useful later

on.

Definition 4.12. R(u, v, w) and R(u′, v′, w′) are disjoint if tOPT (u′) ≥ tOPT (v), and

tOPT (v′) ≥ tOPT (w) (or vise versa).

Note that if the intersection of two disjoint rectangles is non-empty, any vertex v′′ in

the intersection will have the property that tOPT (v′′) = tOPT (v′) = tOPT (v). Thus, one

rectangle will be a subset of the other. A consequence of this is that if two rectangles

R(u, v, w) and R(u′, v′, w′) are disjoint, then a feasible solution can never visit a vertex in

R(u, v, w), then one in R(u′, v′, w′), and then one in R(u, v, w) again (or vise versa). This

property means that we can consider the two rectangles as separate instances of the problem,

and the solutions can never overlap.

Suppose we knew the collection of minimal vertices MOPT , and further suppose we

could find a collection of disjoint rectangles C = {R1, R2, . . . }, where the union of these

rectangles contains a good fraction of the vertices in OPT . We could then find point-

to-point orienteering paths in each rectangle and join them together, and achieve a good

approximation to the deadline orienteering problem. This is the idea of the original Bansal

et al. algorithm [3]; they first show how to find such a collection C given MOPT , and then

use a dynamic programming routine to try all reasonable sets MOPT . They achieve an

41

OPT

Deadlines →

T
im

e
(t
O
P
T

)
→

MOPT

r

s

(a) The path OPT and corresponding
MOPT , with vertex v placed at point
(D(v), tOPT (v))

Deadlines →

T
im

e
(t
O
P
T

)
→

C3

C2

C1

C1

(b) The family F = {C1, C2, C3} con-
structed using (4.1)

Figure 4.1: Plots of OPT on the deadline-time plane illustrate key concepts used.

O(log n)-approximation in this way, and we will describe this algorithm in more detail in

Section 4.5.2.

We will take things a step further in Section 4.5.3, by relaxing our requirements on C.

Suppose that C can be partitioned into groups of rectangles, where two rectangles may be in

different groups only if they are disjoint from each other. Using the properties of rectangles,

we can show that OPT restricted to any group is also a valid deadline orienteering path

that has a fixed number of distinct deadlines (bounded by the size of the group).

Suppose that the size of each group in C is bounded by f(n). Using the deadline orien-

teering algorithm of Chekuri and Kumar [12], we can obtain a constant approximation of

the optimal orienteering path in each group in time (n∆)f(n), where ∆ is the maximum edge

length in the graph (we will assume this is poly-bounded). We will show how to ensure that

f(n) is small enough such that the running time for each group becomes sub-exponential,

while ensuring C contains a constant fraction of the vertices in OPT . Applying the remain-

der of the Bansal et al. algorithm will then yield a complete constant approximation in

sub-exponential time.

4.5.2 A Simple O(log n)-Approximation

We now present an O(log n)-approximation that is equivalent to the algorithm of Bansal et

al. [3]. Assume for now that we know the set of minimal vertices MOPT . Sort these vertices

by increasing tOPT , and let MOPT (i) denote the ith vertex in this sorted order. Without loss

of generality, we assume that r and s are the first (0-th) and last vertices in this sorted order,

that D(r) = 0, and that all vertices have deadline at most D(s). We will abuse our notation

slightly to simplify things; when clear from the context, we will use an index i to refer to

42

the minimal vertex MOPT (i), and denote the rectangle R(MOPT (i),MOPT (j),MOPT (k))

by R(i, j, k). We will always be using minimal vertices to define our rectangles, so this latter

simplification is not ambiguous.

We first define a family of collections of rectangles F = {C1, . . . , Clogn}. Let

Ci = {R(j · 2i, j · 2i + 2i−1, (j + 1) · 2i) : 0 ≤ j < |MOPT |
2i

}. (4.1)

We claim the groups in each Ci have size 1 (i.e. all rectangles in each collection are pairwise

disjoint), and where all vertices in OPT are contained in some rectangle in some Ci. These

properties can be seen more clearly in figure 4.1b, but we formally prove them here.

Claim 4.13. All rectangles within the collection Ci are pairwise disjoint.

Proof. Suppose two rectangles Rj = R(j · 2i, j · 2i + 2i−1, (j + 1) · 2i) and Rj′ = R(j′ · 2i, j′ ·

2i + 2i−1, (j′ + 1) · 2i) in Ci, j < j′, exist that are not disjoint. Then either tOPT (j′ · 2i) <

tOPT (j · 2i + 2i−1), or tOPT (j′ · 2i + 2i−1) < tOPT ((j + 1) · 2i). In the former case, since we

define the rectangles using minimal vertices, since j < j′, then MOPT (j · 2i + 2i−1) is not a

minimal vertex by definition. Similarly, in the latter case it follows that MOPT ((j + 1) · 2i)

is not a minimal vertex by definition. Thus, we have a contradiction.

Lemma 4.14. Every vertex v /∈ {r, s} covered by OPT is contained in some rectangle in

some collection in F .

Proof. Since r, s are the first/last vertices in MOPT , any vertex v covered by OPT must be

covered in the time range tOPT (r) ≤ tOPT (v) ≤ tOPT (s), and by assumption have deadline

D(r) ≤ D(v) ≤ D(s). This leads to two possible cases:

Case 1: v is a minimal vertex; suppose v = MOPT (k) (since v 6= r, k ≥ 1). Note that any

integer k ≥ 1 can be written as j · 2i + 2i−1 for j ≥ 0, i ≥ 1; let i be the largest integer

at least 1 such that k/2i−1 is an integer, and let j = (k/2i−1 − 1)/2. This is a corner of a

rectangle in Ci by definition, so the lemma holds.

Case 2: v is not a minimal vertex. This implies we can find four minimal vertices in

MOPT with indices k, k + 1, `, ` + 1 such that tOPT (k) ≤ tOPT (v) ≤ tOPT (k + 1) and

D(`) ≤ D(v) ≤ D(` + 1) (this additionally implies that k < `). We claim that an integer

solution i ≥ 1, j ≥ 0 exists to the following set of inequalities:

j · 2i ≤ k (4.2)

j · 2i + 2i−1 ≥ k + 1 (4.3)

j · 2i + 2i−1 ≤ ` (4.4)

(j + 1) · 2i ≥ `+ 1 (4.5)

43

If a solution does exist, then v would be contained in a rectangle in collection Ci by definition,

proving the lemma.

Consider the following algorithm to find i, j. Choose the smallest i such that an integer

j exists where inequalities (4.2) and (4.5) are satisfied. Such an i, j pair will always exist,

since we could choose j = 0 and i such that 2i ≥ ` + 1. Note that if j · 2i + 2i−1 < k + 1,

then we could instead have chosen i− 1, since (2j + 1) · 2i−1 ≤ k and (2j + 2) · 2i−1 ≥ `+ 1.

A similar situation exists if j · 2i + 2i−1 > `, and in both cases we have a contradiction of

how we chose i. Thus, we have a valid solution to the inequalities, proving the lemma.

To obtain an O(log n)-approximation given MOPT , we can do the following. Pick a

collection Ci ∈ F that covers at least a 1
logn -fraction of the vertices in OPT ; one must exist

by the above arguments. For each rectangle R(u, v, w) ∈ Ci, note that v is visited last by

OPT at time tOPT (v) ≤ D(v), and has the smallest deadline of all vertices in R(u, v, w), so

if we assign all vertices in R(u, v, w) deadline D(v), OPT is still a feasible solution. Further,

the u − v subpath of OPT restricted to this rectangle forms a valid orienteering tour of

length at most tOPT (v)− tOPT (u). Using the last vertex m visited in the previous rectangle

in Ci as the starting point, we can therefore find an m − v orienteering path with budget

tOPT (v) − tOPT (m). One must exist that covers at least as many vertices as OPT does

between m and v. Once we have these paths for each rectangle in Ci, we can stitch the paths

together to obtain a complete deadline orienteering path.

We can use dynamic programming to determine MOPT (and associated tOPT values) on

the fly. Note that the vertices in MOPT are sorted by time and deadline. We can therefore

build a DP table with entries (m, tm, v, tv), where m is the previous minimal vertex (reached

at time tm ≤ D(m)), and v is the next minimal vertex for the rectangle (reached at time

tv ≤ D(v)). Each entry will store an approximate m−v orienteering path covering as many

vertices u as possible such that D(u) ≥ D(v). Note that MOPT defines a valid walk though

this table, so we obtain an O(log n)-approximation by walking through the table and picking

the best path. Since deadlines are assumed to be poly-bounded, this approximation will run

in polynomial time.1

4.5.3 Improving to an O(1)-Approximation

To improve our approximation, we will define a new family F ′ with groups of bounded size,

where paths in each group can be found easily. Let q be an integer parameter, to be chosen

later. Let C′i = Ciq ∪ Ciq+1 ∪ · · · ∪ C(i+1)q−1, and let F ′ = {C′1, C′2, . . . , C′n/q−1}. Note that

F ′ contains the same set of rectangles as F , just distributed differently between collections.

Thus, lemma 4.14 still holds.

1With some tricks, it is possible to reduce the number of computed DP table entries down to n2 log2 D(s),
and so deadlines do not actually need to be poly-bounded; see Bansal et al. [3] for details.

44

We claim that the size of the groups in each collection is bounded by 2q − 1. Recall that

groups define a partitioning of C′i, where two rectangles may be in different groups only if

they are disjoint. We will assume that groups are computed so that the number of groups

is maximized; this partitioning can be found as follows. Represent each rectangle with a

vertex, and draw an edge between two rectangles if they are not disjoint. The groups will

be the connected components in this graph.

Lemma 4.15. The number of rectangles in each group in C′i is bounded by 2q − 1.

Proof. Consider any minimal vertex mj = MOPT (j · 2(i+1)q), for some integral j ≥ 0. Note

that this vertex cannot be the corner of any rectangle in C′i, since no integer j′ exists such

that j · 2(i+1)q = j′ · 2iq+k for any 0 ≤ k < q. To bound the size of a group, we will show

that no rectangle R(u, v, w) ∈ C′i can have tOPT (u) < tOPT (mj) and D(w) > D(mj). This

implies that any rectangle with D(w) ≤ D(mj) will be disjoint from any other rectangle with

tOPT (u) ≥ tOPT (mj). The minimal vertices m0,m1, . . . ,mj , . . . therefore define separation

points between groups. The size of each group is then bounded by the number of rectangles

with corners between mj and mj+1, of which there can be at most 2q − 1.

Suppose for some integral j′ ≥ 0, 0 ≤ k < q, a rectangle R(j′ · 2iq+k, j′ · 2iq+k +

2iq+k−1, (j′+1)·2iq+k) ∈ C′i existed with tOPT (j′ ·2iq+k) < tOPT (mj) and D((j′+1)·2iq+k) >

D(mj). We therefore must have the following (by how the minimal vertices are ordered):

j′ · 2iq+k < j · 2(i+1)q < (j′ + 1) · 2iq+k,

which cannot be true for any integral j, j′ ≥ 0. Thus, no such rectangle can exist, which

completes the lemma.

We now wish to show that for any collection C′i, we can solve the deadline orienteering

problem over that collection. Within each group, we have 2q − 1 rectangles where each

vertex v′ within rectangle R(u, v, w) is visited by OPT at time tOPT (v′) ≤ tOPT (v) ≤ D(v).

Thus, each vertex contained in the group can have its deadline rounded down to the closest

D(v), and OPT restricted to this group is still a feasible solution with these new deadlines.

Since there at most 2q − 1 rectangles in each group, the number of distinct deadlines in this

group is therefore also bounded by 2q − 1. So, for each group, a deadline orienteering path

with a bounded number of deadlines exists that covers at least as many vertices as OPT .

We now make use of the constant approximation of Chekuri and Kumar [12] for the dead-

line orienteering problem. Recall that their algorithm runs in time polynomial in (n∆)k,

where k is the number of distinct deadlines and ∆ = maxu,v d(u, v). Using this, we can find

a deadline orienteering path through the group given start and end points in time nO(2q).

Following the stitching idea from the O(log n)-approximation we developed previously, we

can use this subroutine to build a complete deadline orienteering path over the entire col-

lection C′i, covering a O(q
logn) fraction of the vertices of OPT . We complete the algorithm

45

by defining a DP for computing MOPT . This is in fact identical to the previous DP, ex-

cept that each entry has the form (m, tm, v1, tv1
, v2, tv2

, . . . , v2q−1, tv2q−1
) - we need to guess

all minimal vertices in each group, not just the last one. This table has nO(2q) entries if

deadlines are poly-bounded, bringing the running time of the entire algorithm to nO(2q).

We can now prove Theorem 4.4 and Corollary 4.5.

Proof of Theorem 4.4. To obtain a constant approximation, we choose q = log(nε) for some

0 < ε < 1. This gives an approximation ratio of O(logn
log(nε))) = O(1/ε). The running time

of this algorithm will be nO(nε) = 2logn·O(nε) = 2O(nε logn), which is sub-exponential with

ε < 1.2

Proof of Corollary 4.5. Suppose a hardness result of the following form exists: unless P =

NP, there is no α-approximation for deadline orienteering with poly-bounded edge lengths,

for some α = ω(1). Such a hardness result will necessarily provide a polynomial-time

gap-introducing reduction algorithm A from some NP-hard decision problem to the dead-

line orienteering problem. The gap size of this reduction must be at least α, since an

α-approximation for deadline orienteering is sufficient to decide the problem.

Assuming P 6= NP, the existence of A would disprove the Exponential Time Hypothesis

for the following reason. A allows us to reduce in polynomial time an instance of k-SAT

of size n to an instance of our deadline orienteering problem of size O(nc), for some fixed

c > 0. Choose some fixed ε such that ε/c < 1. Use our O(1/ε)-approximation for deadline

orienteering to approximate the instance; for a sufficiently large instance, this approximation

ratio will be less than the gap size α since α = ω(1). This is therefore sufficient to decide the

k-SAT instance by the properties of A, and requires 2o(n) time by Theorem 4.4, disproving

the Exponential Time Hypothesis.

2Alternatively, by choosing q = log logn, we obtain an O(logn/ log logn)-approximation in O(nlog n)
time.

46

Chapter 5

Conclusions and Future Work

In this thesis, we presented new approximation algorithms for a number of vehicle routing

problems, including capacitated travelling repairmen problems, deadline orienteering vari-

ants, and regret orienteering variants. The subexponential time constant approximation

algorithm we presented for deadline orienteering also suggests that a poly-time constant

approximation for the deadline orienteering problem should exist.

We also presented an improved approximation algorithm for the maximum coverage

problem with groups, which was a crucial component in some of our algorithms. This

improved approximation allowed our more general algorithm for the capacitated travelling

repairmen problems we consider to match the current-best result for the uncapacitated

version, but unlike the current-best result, our presented algorithm is (almost) completely

de-randomized.

Other problems were considered during the course of this research that we did not find

reasonable solutions for, and even some of the results we presented have limitations that are

irritating. We leave these problems to a future work:

• For the MD-CkTRP, can we still find a constant approximation when deliveries to a

client can be split over multiple trips? In this case, we say the client c has latency

latc if its entire delivery has been received by time latc. The oracle we present for the

unsplit-delivery case can be modified to give an approximation for the split-delivery

case when the demand of each client is at most Q. However, when the demand is more

than Q, the approximation ratio of our algorithm becomes unbounded. This seems to

be a fundamental issue inherent to the tour-splitting approach we use.

• The O(1)-approximation we give for deadline orienteering relies on the fact that edge-

distances and deadlines are poly-bounded; this allows us to use a time-indexed ap-

proach to solve the problem. A similar issue was encountered by Bansal et al. [3] in

their O(log n)-approximation to the problem. In their paper, they work around it by

pre-computing the relevant paths, and using binary search to guess the times. With

47

our approach however, pre-computing the paths still requires guessing arrival times, so

we cannot easily avoid this time-dependence. Finding a true polynomial-time constant

approximation, even for the case of poly-bounded edge lengths and deadlines, remains

a big open problem.

• The algorithm we give for Max-Bounded-RVRP is only quasi-polynomial time, be-

cause of the guessing we need to do. Finding a way to either reduce the number

of guesses needed or avoid them entirely would be very nice, although avoiding the

guessing entirely is probably not possible while still reducing the problem to MCG.

• Improving on the 8.497 approximation of Post and Swamy [28] for MD-kTRP is a big

open problem. While we were able to show that a more combinatorial approach can

achieve the same result, we still use the same basic algorithm idea, which is likely why

we were not able to improve on their result.

48

Bibliography

[1] A. Ageev and M. Sviridenko. Pipage rounding: A new method of constructing algo-
rithms with proven performance guarantee. Journal of Combinatorial Optimization,
8(3):307–328, 2004.

[2] K. Altinkemer and B. Gavish. Heursitics for unequal weight delivery problems with a
fixed error guarantee. Operations Research Letters, 6(4):149–158, 1987.

[3] N. Bansal, A. Blum, S. Chalwa, and A. Meyerson. Approximation algorithms for
deadline-tsp and vehicle routing with time-windows. In Proceedings of STOC, 2004.

[4] L. Bianco, A. Mingozzi, and S. Ricciardelli. The travelling salesman problem with
cumulative costs. Networks, 23(2):81–91, 1993.

[5] A. Blum, P. Chalasani, B. Coppersmith, B. Pulleyblank, P. Raghavan, and M. Sudan.
The minimum latency problem. In Proceedings of STOC, pages 163–171, 1994.

[6] A. Blum, S. Chalwa, D. Karger, T. Lane, A. Meyerson, and M. Minkoff. Approximation
algorithms for orienteering and discounted-reward tsp. In Proceedings of FOCS, 2003.

[7] A. Bock, E. Grant, J. Könemann, and L. Sanità. The school bus problem on trees. In
Proceedings of ISAAC, pages 10–19, 2011.

[8] Gruia Călinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a
monotone submodular function subject to a matroid constraint. SIAM J. Comput.,
40(6):1740–1766, 2011.

[9] B. Carr and S. Vempala. Randomized meta-rounding. In Proceedings of STOC, 2000.

[10] K. Chaudhuri, G. Brighten, S. Rao, and K. Talwar. Paths, trees, and minimum latency
tours. In Proceedings of FOCS, pages 36–45, 2003.

[11] C. Chekuri, N. Korula, and M. Pál. Improved algorithms for orienteering and related
problems. In Proceedings of TALG, 8(3), 2012.

[12] C. Chekuri and A. Kumar. Maximum coverage problem with group budget constraints
and applications. In Proceedings of APPROX, pages 72–83, 2004.

[13] N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman
problem. Technical Report 338, Graduate School of Industrial Administration, Carnegie
Mellon University, 1976.

[14] P. Crescenzi and L. Trevisan. On approximation scheme preserving reductibility and
its applications. In Proceedings of FSTTCS, pages 330–341, 1994.

[15] M. Desrochers, J. Lenstra, M. Savelsbergh, and F. Soumis. Vehicle routing with time
windows: optimization and approximation. Vehicle Routing: Methods and Studies,
pages 65–84, 1988.

[16] J. Fakcharoenphol, C. Harrelson, and S. Rao. The k-traveling repairman problem. In
Proceedings of SODA, pages 655–664, 2003.

[17] Z. Friggstad. Approximation techniques for unsplittable flow and travelling salesman
problems. PhD thesis, University of Alberta, 2011.

[18] Z. Friggstad, M. Salavatipour, and Z. Svitkina. Asymmetric traveling salesman path
and directed latency problems. SIAM Journal on Computing, 42(4):1596–1619, 2013.

49

[19] Z. Friggstad and C. Swamy. Approximation algorithms for regret-bounded vehicle
routing and applications to distance-constrained vehicle routing. In Proceedings of
STOC, pages 744–753, 2014.

[20] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences
in combinatorics and optimization. Combinatorica, 1:169–197, 1981.

[21] M. Haimovich and A. H. G Rinnooy Kan. Bounds and heuristics for capacitated routing
problems. Mathematics of Operations Research, 10(4):527–542, 1985.

[22] R. Impagliazzo and R. Paturi. On the complexity of k-SAT. Journal of Computer and
System Sciences, 62:367–375, 2001.

[23] N. Karmarkar. A new polynomial time algorithm for linear programming. Combina-
torica, 4(4):373–395, 1984.

[24] A. Lucena. Time-dependant travelling salesman problem - the deliveryman case. Net-
works, 20(6):753–763, 1990.

[25] J. Lysgaard and S. Wohlk. A branch-and-cut-and-price algorithm for the cumula-
tive capacitated vehicle routing problem. European Journal of Operational Research,
236(3):800–810, 2014.

[26] E. Minieka. The delivery man problem on a tree network. Annals of Operations Re-
search, 18(1–4):261–266, 1989.

[27] V. Nagarajan and R. Ravi. The directed minimum latency problem. In Proceedings of
APPROX, 2008.

[28] I. Post and C. Swamy. Linear-programming based approximation algorithms for multi-
vehicle minimum latency problems. In Proceedings of SODA, pages 512–531, 2015.

[29] J. C. Rivera, H. M. Afsar, and C. Prins. A multistart iterated local search for the
multitrip cumulative capacitated vehicle routing problem. Computational Optimization
and Applications, 61(1):159–187, 2015.

[30] R. Sitters. The minimum latency problem is NP-hard for weighted trees. In Proceedings
of IPCO, 2337:230–239, 2002.

[31] R. Sitters. Polynomial time approximation schemes for the travelling repairman and
other minimum latency problems. In Proceedings of SODA, 2014.

[32] A. Srinivasan. Distributions on level-sets with applications to approximation algo-
rithms. In Proceedings of FOCS, 2001.

[33] V. Vazirani. Approximation Algorithms. Springer, 2003.

[34] D. West. Introduction to Graph Theory. Prentice-Hall, 2001.

[35] D. Williamson and D. Shmoys. The design of approximation algorithms. Cambridge
University Press, 2011.

[36] D. Zuckerman. Linear degree extractors and the inapproximability of max clique and
chromatic number. Theory of Computing, 3:103–128, 2007.

50

