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Abstract

It has been well known that turbulent motions are ubiquitous in the in-

terstellar medium. These motions are very important in governing various

astrophysical processes like star formation. Both observational and numerical

studies are important to understand turbulent motions, and a gap between

these two studies exists. To bridge this gap, various statistical techniques have

been developed. These techniques so far have assumed isotropy and homogene-

ity in space. While this assumption is good in the absence of magnetic fields,

isotropy is broken in the presence of magnetic field as the direction of mag-

netic field breaks the symmetry in space. In this thesis, we have developed an

extension to current statistical techniques, which use intensity maps, such as

velocity channel analysis and velocity centroids, to study turbulence anisotropy,

and have discussed how statistical anisotropy of intensity maps can be used to

study media magnetization, and separate different fundamental MHD modes:

Alfvén, fast and slow modes.
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Preface

This thesis is original work by Dinesh Kandel in collaboration with Prof.

Alex Lazarian and Prof. Dmitri Pogosyan. The details and results presented

in this thesis are published in Kandel et al. (2016a) and Kandel et al. (2016b).
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“Big whirls have little whirls that feed on their velocity,

and little whirls have lesser whirls and so on to viscosity. ”

Lewis F. Richardson

iv



Acknowledgements

First and foremost, I want to thank my advisor Prof. Dmitri Pogosyan.

It has been an honour to be his Masters student. He has truly inspired and

taught me on carrying out theoretical physics research. I appreciate all the time

he has given for productive and stimulating discussions, and the opportunities

he has given me to attend research internship in Paris, and a conference in

Germany. His support and encouragement have enormously helped me during

any difficult moments I faced.

I would also like to thank my collaborator Prof. Alex Lazarian for providing

me with interesting, and challenging research problems, and for hosting me in

Madison for research collaboration. It was truly an honour to work with a

brilliant scientist like him.

Finally, I would like to thank my family for all their love and encouragement.

For my parents who curiously listened to what I do, despite having lack of

any scientific background. And most of all for my loving, supportive, and

encouraging girl friend Pratikshya who constantly cheered me up and supported

me, especially, during the final stages of my Masters program. Thank you.

v



Contents

1 Introduction 1

2 Turbulence basics 7

2.1 Velocity correlation tensor for MHD turbulence . . . . . . . . . 9

2.2 Representing MHD Turbulence Modes . . . . . . . . . . . . . . 11

2.2.1 Alfvén mode . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Fast mode . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 Slow mode . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Radiative transfer 23

3.1 Radiative transfer equation . . . . . . . . . . . . . . . . . . . . . 23

3.2 Intensity and centroid statistics . . . . . . . . . . . . . . . . . . 26

3.2.1 Intensity statistics . . . . . . . . . . . . . . . . . . . . . 26

3.2.2 Centroid statistics . . . . . . . . . . . . . . . . . . . . . 27

4 Anisotropy of Intensity Statistics 32

4.1 Anisotropic statistics of PPV velocity slices . . . . . . . . . . . . 32

4.1.1 Intensity statistics in a thin slice regime . . . . . . . . . 33

4.1.2 Intensity statistics in a thick slice regime . . . . . . . . . 36

4.1.3 VCA and interferometric studies . . . . . . . . . . . . . . 39

4.1.4 Effects of spatial and spectroscopic resolution . . . . . . 41

4.2 Anisotropic statistics of intensity fluctuations for MHD turbulence 43

vi



4.2.1 Effect of Velocity Fluctuations induced by each MHD

modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.2 Comparison with Esquivel et al. (2015) . . . . . . . . . . 52

4.2.3 Study of Density Effects . . . . . . . . . . . . . . . . . . 52

4.2.4 Effects of Self-Absorption . . . . . . . . . . . . . . . . . 54

5 Centroid anisotropy 59

5.1 General formalism . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Centroids for different MHD modes . . . . . . . . . . . . . . . . 62

5.2.1 Alfvén mode . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.2 Slow mode . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.3 Fast mode . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.4 Mixture of modes . . . . . . . . . . . . . . . . . . . . . . 67

5.2.5 Density effects . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.6 Comparisons with earlier numerical works . . . . . . . . 70

6 Discussion 72

6.1 Foundations of the technique . . . . . . . . . . . . . . . . . . . . 72

6.2 New Power of VCA and centroids . . . . . . . . . . . . . . . . . 73

6.3 Model assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.4 Comparison between VCA, Centroids and VCS . . . . . . . . . 74

6.5 Spectroscopic and synchrotron studies of magnetic turbulence . 76

6.6 Synergy with other techniques . . . . . . . . . . . . . . . . . . . 78

6.7 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7 Summary 82

A Turbulence Statistics in PPV Space 97

B General Approach To Find Velocity Correlation In Real Space

102

vii



C Velocity Correlation Tensor For Different Turbulent Modes 105

C.1 Alfvén mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

C.2 Fast modes high-β . . . . . . . . . . . . . . . . . . . . . . . . . 109

C.3 Fast modes low-β . . . . . . . . . . . . . . . . . . . . . . . . . . 110

C.4 Slow modes high-β . . . . . . . . . . . . . . . . . . . . . . . . . 111

C.5 Slow modes low-β . . . . . . . . . . . . . . . . . . . . . . . . . . 115

C.6 Strong turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . 116

D Approximate Expression For The z− Projection Of The Veloc-

ity Structure Function 120

E Evaluating ϕ Integral for Pure Velocity Term 124

F Evaluating z Integral for Pure Velocity Term 126

viii



List of Tables

2.1 Summary of mode structure . . . . . . . . . . . . . . . . . . . . 20

3.1 Different types of centroids . . . . . . . . . . . . . . . . . . . . . 28

C.1 Mode structure of Alfvén modes for λ̂ = ẑ . . . . . . . . . . . . 106
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Chapter 1

Introduction

The interstellar medium (ISM) is turbulent on scales ranging from AU to kilo-

parsecs (kpc). The Big Power Law in the sky obtained with electron scattering

and scintillations (Armstrong et al., 1995) and extended with Wisconsin Hα

Mapper data in Chepurnov and Lazarian (2010) points towards the presence

of astrophysical turbulence. Other numerous examples include non-thermal

Doppler broadening of spectral lines, for e.g. 21 cm H I line, fluctuations of

density and synchrotron emission (see Elmegreen and Scalo 2004; Mac Low

and Klessen 2004; McKee and Ostriker 2007).

Observations show that our ISM is magnetised, suggesting that in such en-

vironment turbulence is magnetohydrodynamic (MHD). This MHD turbulence

is accepted to be of key importance for fundamental astrophysical processes,

e.g. star formation (see, e.g., McKee and Ostriker 2007), propagation and ac-

celeration of cosmic rays (see Brandenburg and Lazarian 2013 and references

therein).

How to study astrophysical turbulence? In recent years, there have been

significant observational data sets available for study of turbulence. These

include high resolution mapping of 21 cm H I line (Miville-Deschênes et al.,

2003), H I absorption (Deshpande et al., 2000), map of dust emission (Miville-

Deschênes et al., 2010), as well as 12CO and 13CO spectral line maps (Bensch
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et al., 2001). At the same time, numerical simulations have demonstrated

that they can produce synthetic data sets that resemble observations (see e.g.

Federrath 2013) in terms of structures and scaling laws. However, because

of their limited dynamical range, the range of turbulence scales obtained in

simulations is rather limited.

Statistical studies represent the best hope of understanding observations,

and bridging the gap between simulations and observations. Statistical descrip-

tions are nearly indispensable strategy when dealing with turbulence, which is

a stochastic and random process. The big advantage of statistical techniques

is that they extract underlying regularities of the flow and reject incidental de-

tails. One of the main statistical measure of turbulence is the power spectrum,

which can be used to compare observations with both numerical simulations

and theoretical predictions. The energy spectrum E(k)dk of turbulence char-

acterizes how much energy resides at the interval of wavenumbers k, k+dk. On

one hand, at large scales l(∼ 1/k) which correspond to small k, one expects to

observe features reflecting energy injection, while at small scales one should see

the scales corresponding to dissipation of kinetic energy. On the other hand,

the spectrum at intermediate scales, called inertial range, is determined by a

complex process of energy transfer, which often leads to power-law spectra. For

example, in the Kolmogorov description of unmagnetized incompressible turbu-

lence, difference in velocities at different points in turbulent fluid increases on

average with the separation between points as a cubic root of the separation,

i.e. |δv| ∼ l1/3, which corresponds to the energy spectrum of E(k) ∼ k−5/3

in the inertial range. Thus, observational studies of the turbulence spectrum

can determine sinks, sources and energy transfer mechanisms of astrophysical

turbulence.

Beside the traditional power spectrum, there are many techniques that have

been developed to study and parametrize observational magnetic turbulence.

These include higher order spectra, such as the bispectrum (Burkhart et al.,
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2009), higher order statistical moments (Kowal et al. 2007; Burkhart et al.

2009), density/column-density PDF analyses (Federrath et al. 2008; Burkhart

and Lazarian 2012), topological techniques (such as genus, see Chepurnov et al.

2008), clump and hierarchical structure algorithms (such as dendrograms, see

Rosolowsky et al. 2008; Burkhart et al. 2013), Delta variance analysis (Stutzki

et al. 1998; Ossenkopf et al. 2008), principal component analysis (PCA; Heyer

and Schloerb 1997; Heyer et al. 2008; Roman-Duval et al. 2011; Correia et al.

2016), Tsallis function studies for ISM turbulence (Esquivel and Lazarian 2010;

Tofflemire et al. 2011), velocity channel analysis and velocity coordinate spec-

trum (Lazarian and Pogosyan 2004, 2006, 2008), structure/correlation func-

tions as tests of intermittency and anisotropy (Cho and Lazarian 2003; Esquivel

and Lazarian 2005; Kowal and Lazarian 2010; see also Federrath et al. 2009;

Federrath et al. 2010; Konstandin et al. 2012), analysis of turbulence phase

information (Burkhart and Lazarian, 2015), and also recent work on filament

detection (see Smith et al. 2014; Federrath 2016) that links the structure and

formation of filaments in the ISM to the statistics of turbulence.

There have been many attempts to obtain the turbulence spectra (see

Münch and Wheelon 1958; Kleiner and Dickman 1985; O’dell and Castaneda

1987; Miesch et al. 1999) using intensity of emission lines. The fluctuations of

intensity reflect the fluctuations of density of emitters as well as the velocity of

their motion. Understanding these two effects, and separating their contribu-

tion motivated the study in Lazarian and Pogosyan (2000, 2004) (henceforth

LP00 and LP04, respectively), which resulted in the analytical description of

the statistical properties of intensity of Doppler-shifted emission lines in the

position-position-velocity (PPV) space. In those papers, the observed statis-

tics of intensity was related to the underlying 3D spectra of velocity and density,

respectively, in the astrophysical turbulent volume. In LP00 the volume was

considered transparent, but later in LP04, the treatment was generalized for

the volume with self-absorption.
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LP00 and LP04 proposed to analyse the intensity of velocity slices of PPV

data cubes by gradually changing their thickness in order to find the underlying

spectra of velocity and density of astrophysical turbulent motions. The tech-

nique was termed Velocity Channel Analysis (VCA), and has been successfully

tested in a number of subsequent papers (Lazarian et al. 2001; Chepurnov and

Lazarian 2009; Koch et al. 2017) and was successfully applied to a number of

observations (see an incomplete list in Lazarian 2009).

Sky maps of velocity centroids (VC), which are intensity weighted mean

velocities along V direction of PPV data cube, are another important technique

to study ISM turbulence. The correlation of VC is shown to reflect the statistics

of density and velocity field of turbulent media. Numerical study in Esquivel

et al. (2007) shows that VC are not suitable for studies of supersonic turbulence,

such as what is found in molecular clouds and diffuse cold ISM. However, they

are particularly useful in studying velocity statistics of turbulent regions which

are subsonic, for e.g. H II regions.

Previous VCA and VC techniques were developed in approximation of

isotropic turbulence, which masked the magnetized nature of the medium.

However, MHD turbulence is known to have anisotropic properties with mag-

netic field defining the preferred direction (Montgomery and Turner 1981; She-

balin et al. 1983; Higdon 1984). For the first time, the possibility of studying

magnetic field with observational data was discussed in Lazarian et al. (2002).

The numerical research that followed (see Esquivel and Lazarian 2005; Heyer

et al. 2008; Burkhart et al. 2015) proved the utility of the studying anisotropies

to obtain Alfvén Mach number of turbulence MA ≡ VL/VA, where VL and VA

are the injection and Alfvén velocities, respectively. Importantly, MA deter-

mines magnetization of turbulence, and this determines crucial properties of

turbulent fluid including diffusion of cosmic rays (see Yan and Lazarian 2002,

2004, 2008), heat (Narayan and Medvedev 2001; Lazarian 2006), as well as

reconnection diffusion (Lazarian 2005; Santos-Lima et al. 2010, 2014; Lazarian
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et al. 2012; Leão et al. 2013; González-Casanova et al. 2016; see Lazarian 2014

for a review), which has been identified as a crucial process for star formation

(see Li et al. 2015).

In a recent study by Esquivel et al. (2015), the dependence of anisotropy of

intensity fluctuations in velocity slices of PPV data cubes has been quantified

using synthetic observations obtained from 3D MHD simulations. It confirmed

that the anisotropy of the correlations of intensity in the velocity slice reflects

the magnetic field direction and provided the empirical dependence of the ob-

served anisotropy on the Alfvén Mach number MA. This work motivates our

present analytical study aimed at the analytical description of the anisotropies

in the velocity slices of PPV data cubes.

In this thesis, we have developed theory of VCA and VC for fully anisotropic

MHD turbulence. We use the modern representation of MHD turbulence as

the combination of three cascades, i.e. the Alfvén, fast and slow modes (see

Goldreich and Sridhar 1995; Lithwick and Goldreich 2001; Cho and Lazarian

2002, 2003; Kowal and Lazarian 2010). For the purpose of observational studies,

we describe magnetic fluctuations in the frame of the mean magnetic field,

which is different from the local magnetic field of reference used in the theory

of turbulence (see Cho and Lazarian 2003). Similar approach was adopted in

Lazarian and Pogosyan (2012, 2016) (henceforth, LP12 and LP16 respectively)

to study anisotropy of synchrotron fluctuations, and their polarizations. We

have shown that the anisotropies produced by different MHD modes to be

different which opens a way to separate the contributions from these different

modes, allowing us to potentially separate incompressible and compressible

turbulence. We have also shown the dependence of anisotropy of correlation of

channel maps intensity as well as correlation of VC in Alfvén Mach number.

VCA and VC provide a way of studying astrophysical turbulence by mak-

ing use of extensive spectroscopic surveys, in particular H I and CO data.

The present study significantly enhances their value and abilities by extending
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these techniques to account for anisotropy of turbulent media. Such study of

turbulence anisotropies will help determine various magnetic properties of a

turbulent gas cloud.
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Chapter 2

Basic statistics of turbulence

Turbulence is highly non-linear and random phenomenon, and therefore physi-

cally important quantities like velocity v, pressure p, magnetic field B, density

ρ are random functions of position x. Two important statistical descriptors of

a random quantity A are the correlation function

ξ(x1,x2) = ⟨A(x1)A(x2)⟩ , (2.1)

and the structure function

d(x1,x2) =
⟨
(A(x1)−A(x2))

2⟩ . (2.2)

We assume turbulence to be homogeneous, in which case the correlation and

structure function is a function of radial separation, i.e. ξ(x1,x2) = ξ(x1−x2) =

ξ(r) and the same for structure function. In addition, if turbulence is assumed

to be isotropic, correlation and structure functions are purely dependent on

scalar separation, i.e. ξ(x1,x2) = ξ(r), and so on. The assumption of isotropy

is not suitable for a magnetised media, however.

Scaling of power distribution of random fields are of two types: steep and

shallow. For a steep field, power of fluctuations is dominated by moderate to

large scale fluctuations, while for shallow field, power is dominated by small
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scale fluctuations. Depending upon whether fluctuations are steep or shallow,

it is appropriate to either use structure function or use correlation function,

respectively. A major difference between correlation function and structure

function is that, while structure function at scale r is determined by the inte-

grated power of fluctuations over scales smaller than r, correlation function is

determined by the integral of the power over scales larger than r.

Observations show that velocity spectra in the ISM is steep, while density

can be either steep or shallow. Scaling properties of turbulence typically lead

to power-law spectra in the inertial range between injection-scale and dissipa-

tion scale. Leaving discussion of angular dependence of velocity and density

statistics to further relevant sections, we thus take the LOS velocity structure

function as

Dz(r) = Dz(S)
( r
S

)ν
, r < S (2.3)

where ν > 0. In the above equation, S is the injection scale of turbulence, and

for isolated clouds, we assume that S is comparable to the size of the cloud.

Modelling of the structure function outside the inertial range r > S requires

modelling of the injection process. The correlation length of velocity field is

comparable to the energy injection scale.

Similarly, the structure function of steep density field is taken to be

Dρ(r) ≈ 2σ2
ρ

(rc
r

)−νρ
, νρ < 0 , r < rc , (2.4)

while for shallow density spectrum, the density correlation is modelled as

ξρ(r) ≈ ρ20 + σ2
ρ

(rc
r

)νρ
, νρ > 0 , r > rc , (2.5)

where ρ0 is the mean density, σρ the density dispersion, and rc the correlation

length of the density field. In the case steep density field, rc is comparable to

the size of injection scale, i.e. rc ∼ S, and the power law scaling regime lies
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at r < rc, while for shallow density, rc is small, and the power law scaling is

exhibited at r > rc. In the subsequent parts of this thesis, we use Eq. (2.4)

when νρ < 0 and Eq. (2.5) when νρ > 0.

2.1 Velocity correlation tensor for MHD tur-

bulence

To describe turbulence in ISM, one should account for the magnetization of

the media. In MHD turbulence, there exists a preferred direction pointing to-

wards the direction of mean magnetic field; therefore, the concept of isotropy

applicable to hydrodynamic Kolmogorov turbulence breaks down, and the tur-

bulent statistics are anisotropic. Here we adopt the same representation of the

anisotropic MHD turbulence using axisymmetric tensors, as the one developed

in LP12 in the framework of studies of anisotropies of synchrotron intensities

(see more justification in LP12).

In what follows, we are describing the statistics of anisotropic velocity field,

which has many similarities with the statistics of anisotropic turbulent mag-

netic field described in LP12. We would like to stress that the description of

MHD turbulence deeply entrenched in the literature is based on a model having

mean magnetic field plus isotropic fluctuations, which contradicts theoretical,

numerical and observational studies of magnetized turbulence and therefore

should be discarded1. Indeed, MHD turbulence is neither isotropic nor can it

be represented by mean field with isotropic fluctuations. The correct descrip-

tion of MHD turbulence involves the combination of three different cascades

with different degree of fluctuation anisotropies, and this is the description we

use in the present work.

Following the notation of Chandrasekhar (1950), the velocity correlation

1We note that the present day models of the cosmic microwave background foreground
still use this erroneous model for representing magnetic fields.
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tensor of axisymmetric turbulence is

⟨vi(x1)vj(x2)⟩ = Ar̂ir̂j +Bδij + Cλ̂iλ̂j +D
(
λ̂ir̂j + λ̂ir̂j

)
, (2.6)

where λ̂ unit vector specifies the preferred direction 2, and the coefficients

A,B,C and D are functions of r and µ = r̂ · λ̂. For isotropic turbulence,

the coefficients C and D of the velocity correlation tensor are zero. At zero

separation, r → 0, the correlation function gives the variance tensor

⟨vi(x1)vj(x1)⟩ = B(0)δij + C(0)λ̂iλ̂j. (2.7)

Similarly, we can define the structure function tensor for the velocity field

Dij(r) ≡ ⟨(vi(x1)− vi(x2)) (vj(x1)− vj(x2))⟩ . (2.8)

The main quantity that will appear in our analysis is the z- projection of the

velocity structure function

Dz(r) = Dij ẑiẑj = 2[(B(0)−B(r, µ)) + (C(0)− C(r, µ)) cos2 γ

−A(r, µ) cos2 θ − 2D(r, µ) cos θ cos γ] . (2.9)

There are four angles that we keep track of. First, we have θ and ϕ which are

spherical coordinates of the separation vector in the frame where the z-axis is

aligned with the LOS and the x-axis is aligned with projection of the symmetry

axis on the plane of the sky. Dependence of the observed intensity correlation

on ϕ is the main focus of the thesis, while θ get integrated along the LOS.

Angle γ is a fixed parameter of the problem that describes the direction of the

mean magnetic field with respect to the z-axis. Lastly, µ is angle between the

separation vector and the symmetry axis. The local axisymmetric properties of

2All results are invariant under replacement of λ̂ by −λ̂ that specify the same axis.
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the turbulence models depend explicitly on µ only. Between these four angles

there is a relation

µ(γ, θ, ϕ) = sin γ sin θ cosϕ+ cos γ cos θ. (2.10)

Eq. (2.9) is the general form of (2.3) for the case of anisotropic MHD tur-

bulence. The power-law behaviour is shown by the coefficients B(0)−B(r, µ),

etc.

2.2 Representing MHD Turbulence Modes

Before we proceed with the formal mathematical description, a few statements

about the properties of MHD turbulence are due (see a more detailed discussion

in Brandenburg and Lazarian 2013). It is natural to accept that the proper-

ties of MHD turbulence depend on the degree of magnetization. Those can

be characterized by the Alfvén Mach number MA = VL/VA, where VL is the

injection velocity at the scale S and VA is the Alfvén velocity. It is intuitively

clear that for MA ≫ 1 magnetic forces should not be important in the vicinity

of injection scale. This is the limiting case of super-Alfvénic turbulence. The

case of MA = 1 is termed trans-Alfvénic and the case of MA < 1 sub-Alfvénic

turbulence. Naturally, MA ≪ 1 should correspond to magnetic field with only

marginally perturbed field direction, since in this case strong magnetic field

resists motion of gas.

The modern theory of MHD turbulence started with the seminal paper by

Goldreich and Sridhar (1995), (henceforth GS95). They suggested the theory

of turbulence of Alfvénic waves or Alfvénic modes, as in turbulence non-linear

interactions modify wave properties significantly. For instance, in GS95 theory

Alfvénic perturbations cascade to a smaller scale in just about one period

(≡ l/vl, l being the eddy size), which is definitely not a type of linear wave

behaviour. The GS95 was formulated for trans-Alfvénic turbulence, e.g. for
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MA = 1. The generalization of GS95 for MA < 1 and MA > 1 can be found in

Lazarian and Vishniac (1999) (henceforth LV99).

The original GS95 theory was also augmented by the concept of local system

of reference (LV99; Cho and Vishniac 2000; Maron and Goldreich 2001; Cho

et al. 2002) that specifies that the turbulent motions should be viewed not in the

system of reference of the mean magnetic field, but in the system of reference of

magnetic field comparable with the size of the eddies. From the point of view

of the observational study that we deal with in this thesis, the local system of

reference is not available. Therefore, we should view Alfvénic turbulence in the

global system of reference which for sub-Alfvénic turbulence is related to the

mean magnetic field (see the discussions in Cho and Lazarian 2002; Esquivel

and Lazarian 2005; LP12). In this system of reference, the observed statistics

of turbulence is somewhat different. While in GS95 there are two different

energy spectra, namely, the parallel and perpendicular, in the global system

of reference the perpendicular fluctuations dominate which allows us to use a

single spectral index for the two directions in our treatment. Similarly, if in

the local system of reference, the anisotropy is increasing with the decrease of

size of the eddies, it stays constant in the global system of reference. It is this

property that allows the theoretical description for axisymmetric turbulence by

Chandrasekhar (1950) in order to describe observed turbulent fluctuations.

For super-Alfvénic turbulence, the turbulent motions are essentially hydro-

dynamic up to the scale of lA = LM−3
A and after that scale they follow along

the GS95 cascade. If we observe Alfvénic turbulence at scales larger than lA,

we will not see anisotropy. However, if our tracers are clustered on scales less

than lA, we will see the anisotropy corresponding to the size of largest eddy.

For instance, for a turbulent molecular cloud, scales less than lA will show

anisotropy.

For sub-Alfvénic turbulence, the original cascade is weak with parallel scale

of perturbations of magnetic field not changing, while the perpendicular scale
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getting smaller and smaller as the turbulence cascades (see LV99). However,

at scale ltrans ∼ LM2
A the turbulence gets strong in terms of its non-linear

interactions, with the modified GS95 scalings (see LV99) being applicable.

To obtain the full description of MHD turbulence, the motions in an isother-

mal turbulent plasma can be decomposed into three types of MHD modes

—Alfvén, fast and slow modes. While the entrenched notion in literatures

is that for compressible turbulence Alfvén, slow and fast modes are strongly

coupled and therefore cannot be considered separately, the numerical study in

Cho and Lazarian (2003) provided a decomposition of the modes and proved

that they form cascades of their own (see a bit more sophisticated method of

decomposition employed in Kowal and Lazarian 2010). This was used in LP12

to provide the representation of these modes for the observational studies of

magnetic field. In what follows, we discuss the turbulent velocity field, which

entails some modifications compared to LP12.

The power law scaling of modes is defined by the theory but exact spectral

index of each mode may depend on the turbulent environment. Therefore,

following the tradition of VCA development (LP00) and our synchrotron studies

(LP00; LP16), for the purpose of our observational study, we keep the indices

of velocity and density as parameters that can be established by observations.

This is intended to provide a test using the VCA of the modern MHD theory

and induce its further development.

In this thesis, our focus is to understand how turbulence anisotropies trans-

fer into the anisotropy of the statistics of intensity fluctuations within PPV

slices and how the latter statistics changes with the thickness of the slices.

As was shown in LP00, the statistics of intensity fluctuations within a PPV

slice can be affected by both the velocity statistics and density statistics, and

there are regimes when only velocity fluctuations determine the fluctuations of

intensity within a thin slice. In this section we shall discuss correlation ten-

sors of velocity fields ⟨vi(x1)vj(x1 + r)⟩ generated by each MHD modes. In
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contrast to the magnetic field, velocity field is not necessarily divergence free,

since turbulence can be compressible.

The details of the velocity correlation tensor of each mode depend on the

allowed displacement of plasma ξ̂ in the mode and the distribution of power

among different wavelengths. We start our consideration in Fourier space.

In general, the Fourier component of velocity in a mode is given by v(k) =

akξ̂(k̂, λ̂), where k is the wavevector, ak is the random complex amplitude of

a mode and ξ̂ is the direction of allowed displacement. Therefore, the velocity

correlation is given in Fourier space by

⟨vi(k)v∗j (k′)⟩ = ⟨aka∗k′⟩
(
ξ̂k ⊗ ξ̂∗k′

)
ij
≡ A(k, k̂ · λ̂)

(
ξ̂k ⊗ ξ̂∗k

)
ij
δ(k− k′),

(2.11)

where A(k, k̂ · λ̂) = ⟨âkâ∗k⟩ is the power spectrum which in our case depends on

the angle µk ≡ k̂ · λ̂. Fourier transform of Eq. (2.11) gives velocity correlation

tensor in the real space

⟨vi(x1)vj(x1 + r)⟩ =
∫

dk k2 dΩk e
ik·rA(k, k̂ · λ̂)

(
ξ̂k ⊗ ξ̂∗k

)
ij
. (2.12)

The power spectrum can be decomposed into spherical harmonics as

A(k, k̂ · λ̂) =
∑
ℓ1m1

4π

2ℓ1 + 1
Aℓ1(k)Yℓ1m1(k̂)Y

∗
ℓ1m1

(λ̂), (2.13)

and similarly (
ξ̂k ⊗ ξ̂∗k

)
ij
=
∑
ℓ2m2

cijℓ2m2
(λ̂)Yℓ2m2(k̂) , (2.14)

where cijℓ2m2
coefficients depend on the mode structure, and are tabulated fur-

ther in this section for each mode. With these definitions, Eq. (2.12) can be
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expressed as

⟨vivj⟩ =
∑
ℓm

4πiℓY ∗
ℓm(r̂)

∑
ℓ1m1

4π

2ℓ1 + 1
Y ∗
ℓ1m1

(λ̂)
∑
ℓ2m2

cijℓ2m2
(λ̂)Tℓℓ1(r)Ψℓm,ℓ1m1,ℓ2m2 ,

(2.15)

where we have defined

Tℓℓ1(r) ≡
∫

dk k2jℓ(kr)Aℓ1(k), (2.16)

and Ψ is a shorthand notation for the combination of Wigner 3-j symbols given

in detail in Appendix B. On the other hand, the velocity structure tensor is

given by Eq.(2.6), and therefore, the above equations can be used to find the

coefficients A,B,C and D. The procedure that we use to obtain them is also

described in Appendix B.

The intensity statistics of a turbulent field is also affected by the density

fluctuations. In a turbulent field, if density fluctuations are weak, it is easy

to understand density correlation for different modes from linear treatment of

continuity equation. Assuming that the density is given by ρ→ ρo+ δρ, where

ρ0 is the mean density of the turbulent medium and δρ is the overdensity such

that |δρ| ≪ ρ0, the continuity equation

∂ρ

∂t
+∇ · (ρv) = 0, (2.17)

gives (in Fourier space) δρk/ρ0 ∼ â(k̂·ξ̂), using which we obtain the over-density

power spectrum

⟨δρkδρ∗k⟩ = ρ20A(k, k̂ · λ̂)|k̂ · ξ̂|2. (2.18)

In real space, the overdensity correlation is given by

⟨δρ(x1)δρ(x1 + r)⟩ = ρ20

∫
dk k2 dΩk e

ik·rA(k, k̂ · λ̂)|k̂ · ξ̂|2. (2.19)
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These equations for density correlation are only valid when density pertur-

bations are weak. Linear approximation is not appropriate for high sonic Mach

number turbulence, as in this case density perturbations are caused by shocks,

and these perturbations are comparable to the density itself (Beresnyak et al.

2005; Kowal et al. 2007).

To understand the effects of non-linear density fluctuations in the intensity

statistics, we propose the following ansatz for the density correlation function

ξ(r, µ). This ansatz is based on the results of Jain and Kumar (1961) where

density statistics is presented as a infinite series over spherical harmonics. We

take only up to the second harmonics and in the case of shallow spectrum:

ξ(r, µ) = ⟨ρ⟩2
[
1 +

(rc
r

)νρ
(1 + cρP2(µ))

]
, νρ > 0, (2.20)

whereas in the case of steep spectrum for r ≪ rc:

ξρ(r, µ) = ⟨ρ⟩2
[
1−

(rc
r

)νρ
(1 + cρP2(µ))

]
, νρ < 0, (2.21)

where rc denotes a cut-off scale, and cρ is a parameter, which depends on the

details of the turbulent mode. An important criterion that the two ansatz

presented above should satisfy in order to be called a ‘correlation function’ is

that their Fourier transform should be positive definite. It can be shown that

this condition is true only when the following condition is satisfied:

cρ >
2νρ

3− νρ
, (2.22)

for steep spectra whereas for shallow spectra the condition is

cρ <
2νρ

3− νρ
. (2.23)

Our representation above captures several essential features. First, the
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above correlation can be immediately broken into two parts: a constant and

a part with spatial and angular dependence. With this it is natural to talk

about pure velocity and pure density effects, and equations (3.8) and (A.9)

become applicable. Second important feature of the above correlation is that

it carries information about anisotropy. In an axisymmetric turbulence, only

even harmonics survive due to symmetry and therefore, P2(µ) is the dominant

term which carries information on the anisotropy3.

Now we describe the properties of individual MHD modes. For compress-

ible modes, these properties vary depending on the magnetization of the media,

which are determined by the parameter β, which is the ratio of thermal plasma

energy density to the energy density of magnetic field. Thus this ratio, in ad-

dition to MA should be considered. To describe correlation tensors of these

modes we use their dispersion relations. Our treatment of MHD modes below

is analogous to the one in LP12. Below we treat velocity fluctuations associ-

ated with MHD modes, while LP12 dealt with magnetic fluctuations. A brief

summary of mode structures is also presented in Table 2.1.

2.2.1 Alfvén mode

Alfvén modes are essentially incompressible modes where displacement of plasma

in an Alfvén wave is orthogonal to the plane spanned by the magnetic field and

wavevector, so that

vA ∝ ξ̂k =
k̂× λ̂√

1− (k̂ · λ̂)2
. (2.24)

The corresponding tensor structure for Alfvén mode is then

(ξ̂k ⊗ ξ̂∗k)ij = (δij − k̂ik̂j)−
(k̂ · λ̂)2k̂ik̂j − (k̂ · λ̂)(λ̂ik̂j + λ̂j k̂i) + λ̂iλ̂j

1− (k̂ · λ̂)2
, (2.25)

3For a highly anisotropic density fluctuation, higher order harmonics also contribute. We
are, however, only concerned with the mild density anisotropy.
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In the above equation, the part in the first parentheses is referred to as E-

type correlation, and the second part is referred to as F -type correlation. The

E-type correlation has been studied in detail in LP12.

In the case of Alfvén mode, the power spectrum in the global system of

reference is given by

A(k, µk) = E(k, µk) ∝ k−11/3 exp

[
−M−4/3

A

|µk|
(1− µ2

k)
2/3

]
, (2.26)

where µk = k̂ · λ̂.

The correlation tensor of Alfvén mode in real space is calculated in Ap-

pendix C.1. The coefficients A,B,C and D are given by Eqs. (C.5), (C.9),

(C.11) and (C.10), respectively.

As Alfvén modes are incompressible, to the first-order approximation, they

do not create any density fluctuations. Indeed, for Alfvén waves, ξ̂ is orthogonal

to wavevector, and therefore the overdensity correlation must be zero (cf. Eq.

(2.19)).

2.2.2 Fast mode

Fast modes are compressible type of modes. In high-β (≡ Pgas/Pmag) plasma,

they behave like acoustic waves, while in low-β plasma they propagate with

Alfvén speed irrespective of the magnetic field strength (Cho and Lazarian,

2005). The power spectrum of this mode is isotropic and is given by

A(k, µk) ∝ k−7/2. (2.27)

In this subsection, we will present the velocity correlation tensor as well as

over-density correlation for fast modes in two regimes: high and low β.

18



High-β regime

In the high-β regime, displacement in fast modes is parallel to wavevector

k̂, and the velocity is v ∝ k̂. These are essentially sound waves compressing

magnetic field. This mode is purely compressional type, and its tensor structure

in Fourier space is given by

(
ξ̂k ⊗ ξ̂∗k

)
ij
= k̂ik̂j. (2.28)

The correlation tensor structure of fast modes in real space is presented

in Appendix C.2. It has been shown that C and D parameters of this mode

vanish, while A and B are given by Eqs. (C.14) and (C.16), respectively.

In the case when density perturbations are weak, the over-density correla-

tion in fast modes in high-β regime is (cf. Eq.(2.19))

⟨δρ(x1)δρ(r+ x1)⟩ =
∫

d3keik.rk−7/2 = 4π

∫
dk k−3/2j0(kr). (2.29)

Note that the above correlation represents steep density spectra for which struc-

ture function should be used for appropriate analysis to avoid divergence issues.

Low β regime

In the low-β regime, velocity is orthogonal to the direction of symmetry λ̂, and

therefore, the velocity is

v ∝ ξ̂k =
(λ̂× k̂)× λ̂√
1− (k̂ · λ̂)2

. (2.30)

This mode can be associated with compression of magnetic field. Using the

above equation, we have

(
ξ̂k ⊗ ξ̂∗k

)
ij
∝ k̂ik̂j − (k̂ · λ̂)(k̂iλ̂j + k̂jλ̂i) + (k̂ · λ̂)2λ̂iλ̂j

1− (k̂ · λ̂)2
. (2.31)
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Table 2.1: Summary of mode structure

Mode Power spectrum Type Equation
Alfvén Anisotropic Solenoidal 2.25, 2.26
Fast (high β) Isotropic Potential 2.28, 2.27
Fast (low β) Isotropic Compressible 2.31, 2.27
Slow (high β) Anisotropic Solenoidal 2.34, 2.26
Slow (low β) Anisotropic Compressible 2.34, 2.26
Strong Anisotropic Solenoidal C.33

The velocity correlation function in real space for the above tensor is presented

in the Appendix C.3. Because the power spectrum for this mode is isotropic,

the correlation tensor is heavily simplified. The parameters A,B,C and D for

this mode are presented in Eqs. (C.18), (C.19), (C.20) and (C.21).

In the case when density perturbations are weak, the over-density correla-

tion in fast modes in low β regime is (cf. Eq.(2.19))

⟨δρ(x1)δρ(r+ x1)⟩ =
∫

d3keik.rk−7/2(1− (k̂ · λ̂)2)

=
4π

3

∫
dk k−3/2j0(kr) +

8π

3

∫
dk k−3/2j2(kr)P2(µ). (2.32)

2.2.3 Slow mode

Slow modes in high-β plasma are similar to pseudo-Alfvén modes in incom-

pressible regime, while at low-β they are density perturbations propagating

with sonic speed parallel to magnetic field (see Cho and Lazarian 2003). The

power spectrum of this mode is the same as that of Alfvén mode (cf equation

2.26).

In this section, we will present the velocity correlation and over-density

correlation of this mode in low- and high-β regime.
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High-β

In the high-β regime, displacement is perpendicular to the wavevector k̂, and

therefore,

v ∝ (k̂× λ̂)× k̂ . (2.33)

Therefore, this gives us a full tensor structure is

(
ξ̂k ⊗ ξ̂∗k

)
ij
=

(k̂ · λ̂)2k̂ik̂j − (k̂ · λ̂)2(λ̂ik̂j + λ̂j k̂i) + λ̂iλ̂j

1− (k̂ · λ̂)2
. (2.34)

Slow modes are essentially incompressible types of mode in this regime. The

above tensor structure is pure F -type, and the F -type correlation tensor in real

space is derived in Appendix C.4. The correlation parameters A,B,C and D

are presented in Eqs. (C.24), (C.26), (C.30) and (C.28).

Slow modes in high-β regime have zero density fluctuations in a turbulent

field where density perturbations are sufficiently weak (cf. Eq. (2.19)).

Low β

In this case, the displacement is parallel to the symmetry axis λ̂, and therefore,

the correlation tensor is ⟨vivj⟩ ∝ λ̂iλ̂j. The real space correlation function of

these modes is derived in Appendix C.5, and the result (Eq. (C.32))

⟨vi(x1)vj(x1 + r)⟩ =
∑
ℓ

4πiℓTℓℓ(r)Pℓ(µ)λ̂iλ̂j, (2.35)

where Tℓℓ(r) is defined in Eq.(B.7), and is related to the power spectrum of the

mode. Although the tensor structure of this mode is isotropic, the structure

function is nevertheless anisotropic due to anisotropic power spectrum.

In the case when density perturbations are weak, the over-density correla-
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tion in slow modes in low-β regime is (cf. Eq.(2.19))

⟨δρ(x1)δρ(r+ x1)⟩ =
∫

d3keik.rk−11/3(k̂ · λ̂)2

=
4π

3

∫
dk k−5/3j0(kr)−

8π

3

∫
dk k−5/3j2(kr)P2(µ). (2.36)
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Chapter 3

Intensity statistics of emission

lines

3.1 Radiative transfer equation

The point-wise measurements of intensity in XYZ space, and therefore the

direct informations of the statistics of magnetized turbulence, are not available

with spectroscopic measurements. Instead, the measurements of intensity of

emission lines are defined in PPV space (see the right-hand panel of Fig. 3.1).

PP corresponds to the sky position of the observation, and V to the velocity

of emitters along the LOS, which we assume to be aligned along the z-axis.

Doppler shifts are affected only by the line of sight component of turbulence

velocities, which to simplify our notations we denote as v.

The theory of PPV space was pioneered in LP00 and was later extended for

special cases in LP04, LP06, LP08. The main expressions of the theory that

we are going to use within our study are summarized in Appendix A. These

expressions describe the non-linear velocity mapping of turbulence irrespective

of the degree of turbulence anisotropy.

In this thesis, we are studying how intensity statistics reflects the anisotropic

nature of the velocity and density fields in magnetized turbulence. The intensity

23



Figure 3.1: Left: an illustration of the mapping from the real space to the PPV
space. In the real ‘PPP’ space, the three eddies have the same size, the same
density of emitting material, but different velocities. They are being mapped
to the PPV space and there they have the same PP dimensions, but a different
v-size. The larger the velocity of eddies, the larger the v-extent of the eddies,
which in turn implies less density of emitting atoms over the image of the eddy.
Therefore, in terms of the intensity of fluctuations in the velocity channel ∆v,
the largest contribution comes from the eddy with the least velocity dispersion,
i.e. eddy 1, while the eddy with the largest velocity dispersion, i.e. eddy 3,
produces the faintest PPV image. Right: PPV data cube. Illustration of the
concepts of the thick and thin velocity slices. The slices are thin for the PPV
images of the large eddies, and thick for the images of small eddies. From
Lazarian (2009).

.
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from an emitting medium in PPV space is dependent on density of emitters

and their velocity distribution in PPV space. For negligible dust absorption,

the standard equation of radiative transfer is (Spitzer Jr, 2008)

dIν = −gνIνdz + jνdz . (3.1)

In the case of self-absorbing emission in spectral lines that is proportional to

first power of density

gν = αρ(z)Φν(z) , (3.2)

jν = ϵρ(z)Φν(z) , (3.3)

where ρ is the density of emitting gas, and Φν(z) is the observed frequency

distribution of emitters at position z on LOS. The solution to the Eq. (3.1)

takes the following form

Iv1(X) =
ϵ

α

[
1− e−αρs(X,v1)

]
, (3.4)

where ρs is the density of emitters in PPV space, and is given by

ρs(X, v1) =

∫ S

0

dz ρ(x)Φv1(x) . (3.5)

In writing the above equations, we have used that fact that the Doppler-shifted

frequency information can be used to deduct LOS velocity of the emitters, and

hence all frequency dependence in radiative transfer equation can be equiv-

alently designated as velocity dependence ν → v. The local LOS velocity v

is given by overall motion of the volume element at a point which is sum of

thermal velocity, coherent velocity vc, and turbulent velocity u. In Eq. (3.4),
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Φv(x) is the thermal distribution around the mean value given by u(x)+vc(x):

Φv(x) =
1√
2πβ

exp

[
−(v − u(x)− vc(x))

2

2β

]
, (3.6)

where u(x) is the LOS component of turbulent velocity and vc(x) is the LOS

component of coherent velocity that is not part of turbulent cascade. In this

thesis, we assume that vc(x) is small, else it has to be modelled independently.

In the case when self-absorption is negligible, i.e. α → 0, Eq. (3.4) reduces

to

Iv1(X) = ϵρs(X, v1) = ϵ

∫ S

0

dz ρ(x)Φv1(x) , (3.7)

Unless explicitly mentioned, we carry out further analysis for spectral lines

with negligible self-absorption, and negligible dust absorption.

3.2 Intensity and centroid statistics

3.2.1 Intensity statistics

In this section, the framework of studying ISM turbulence using intensity maps

of optically thin lines will be developed. The observed intensity correlation

function ξI(R) ≡ ⟨I(X1)I(X1 + R)⟩ for a turbulent field is related to the

underlying statistics of density and velocity as (LP04):

ξI(R, ϕ,∆v) ∝
ϵ2ρ̄2

2π

∫ S

−S
dz[1 + ξ̃ρ(R, ϕ)] [Dz(r) + 2βT]

−1/2

∫ ∆v/2

−∆v/2

dv exp

[
− v2

2(Dz(r) + 2βT)

]
, (3.8)

where r = x1−x2 is the spatial separation of two turbulent points, R = X1−X2

is their separation in two dimensional sky, ϕ is the angle that R makes with sky-

projected magnetic field, Dz is the z-projection of velocity structure function,

ξ̃ρ is the over-density correlation, and βT ≡ kBT/m is the thermal broadening.
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Observations of intensity is done in velocity channels of width ∆v, and study

of dependence of statistics in ∆v is the central ingredient of VCA. Note that

in Eq. (3.8), the coherent velocity of the turbulent cloud is ignored.

From Eq.(3.8), one can observe that because of the presence of the factor

1 + ξ̃ρ(R, ϕ), the integral can be separated into two parts such that one part

contains only the contribution from velocity effects, and is present even when

density is uniform, whereas other part contains the contribution from density

effects as well. Formally, we can write

ξI(R, ϕ,∆v) = ξvI (R, ϕ,∆v) + ξρI (R, ϕ,∆v), (3.9)

where the superscripts v and ρ are to remind ourselves which effects these term

comprise of. Naturally, in the absence of any density fluctuations, only the first

term in the above equation survives. The usefulness of the above expression

comes from the fact that at various regions of interest, one or the other term

becomes unimportant, as we shall see this in more detail in this thesis.

To describe intensity statistics at small scales, it is more convenient to use

the intensity structure function,

D(R, ϕ,∆v) = 2 [ξI(R = 0,∆v = 0)− ξI(R, ϕ,∆v)] . (3.10)

The above two equations are the main equations that we will use for our sub-

sequent analysis.

3.2.2 Centroid statistics

In this section we develop a framework to study ISM turbulence using velocity

centroids (VC) maps. We work in PPV space to study how the VC reflect

velocity spectra as well as anisotropic nature of the velocity and density statis-

tics in magnetized turbulence. For that we first derive the VC correlation as
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Table 3.1: Different types of centroids

Type of centroids Definition Structure function

Normalised centroid CN(X) =
∫
dv1 v1Iv1(X)∫
dv1 Iv1(X)

Not used in this thesis

Unnormalised centroid C(X) =
∫
dv1 v1Iv1(X) Eq. (3.20)

Modified centroids only structure function is defined Eq. (5.24)

well as structure function through PPV space. The description of VC through

PPV space formalism turns out to be valuable to understand the effects of

self-absorption on VC.

The VC, which are intensity weighted mean velocities along V direction of

PPV data cube, are defined as (see Miesch and Bally 1994)

CN(X) =

∫
dv1 v1Iv1(X)∫
dv1 Iv1(X)

, (3.11)

where Iv1 is the spectral intensity and v1 is the line of sight velocity. The

spectral intensity in the presence of self-absorption is given by Eq. (3.4), where

as for optically thin emission line, it is given by Eq. (3.7).

Due to presence of denominator term in the definition of VC in Eq. (3.11),

CM(X) is non-linear function of I, which complicates relation between statistics

of VC and intensity. To remedy this difficulty, LE03 introduced ‘unnormalised’

VC (UVC) defined as

C(X) =

∫
dv1 v1Iv1(X) . (3.12)

The geometric construction of UVC is presented in right-hand side panel of

Fig. 3.2.

A summary of different types of VC that appear in literatures is presented

in Table 3.1. In all the subsequent sections, we carry out analysis with unnor-

malised VC.

We first review unnormalised VC in the case when self-absorption is negli-
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Figure 3.2: Schematic showing geometrical differences between construction
of VCA and of VC. Left-hand panel: Construction of thin-slice VCA. Only
channels of thin total velocity width δv needs to be used to find the intensity.
Central panel: Construction of thick-slice VCA. Effectively, integration over
the entire line width is carried out to find intensity. Right-hand panel: Con-
struction of velocity VC. Velocity weighted moment of intensity is constructed
and integrated over entire line width.

gible. In this case, Eq. (3.12) together with Eq. (3.7) give

C(X) = ϵ

∫
dv vρs(X, v) . (3.13)

The usual approach in the study of VC is to work in position-position-position

space rather than PPV space. This can be achieved by writing Eq. (3.13) as

C(X) = ϵ

∫
dv v

∫
dz ρ(x)Φ(v − u(x)) = ϵ

∫
dz u(x)ρ(x) , (3.14)

where ρ(x) is the real space density and u(x) is the z-component of the turbu-

lent velocity.

However, in order to make a smooth connection between the optically thin

case to the optically thick case, we derive VC correlation function by working

in the PPV space. This is straightforwardly achieved by utilising the theory of

fluctuations of PPV space density ρs(X) developed in LP00 and LP04. Using

Eq. (3.12), the correlation of VC can be written as

ξ(R) =

∫ S

−S
dz1

∫ S

−S
dz2 ξρ(r)

∫ ∞

−∞
dv1 v1∫ ∞

−∞
dv2 v2⟨Φ(v1 − u(x1))Φ(v2 − u(x2))⟩ , (3.15)
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where R = X1 −X2, r ≡ (R, z) = x1 − x2 and ξρ(r) is the density correlation

function. In Eq. (3.15), ⟨..⟩ denotes the averaging over turbulent velocity u(x)

as a random quantity. The main assumption in writing Eq. (3.15) is that the

density and velocity fields are uncorrelated. This assumption has been tested

in the past papers (eg. Esquivel et al. 2007), and seems to be sufficiently

accurate for subsonic turbulence with density dispersion less than the mean

density of a turbulent cloud. Introducing change of variables v+ = (v1 + v2)/2

and v− = (v1 − v2), and assuming that the turbulent velocity is a Gaussian

random vector, Eq. (3.15) reduces to

ξ(R) =
1

2π

∫ S

−S
dz

(
1− |z|

2S

)∫ ∞

−∞
dv−

∫ ∞

−∞
dv+

(
v2+ −

v2−
4

)
ξρ(r)√

Dz(r) + 2βT

exp

[
−

v2−
2(Dz(r) + 2βT)

]√
2

D+(S, r)
exp

[
−

v2+
D+(S, r)

]
,

(3.16)

where

D+(S, r) ≡ βT +Dz(S)−Dz(r)/2 , (3.17)

and Dz(r) is the z-projected velocity structure function, βT ≡ kBT/m is the

thermal broadening, m being the mass of atoms, T being the temperature and

kB being the Boltzmann constant. After performing the integration over v and

v+, we finally obtain

ξ(R) =
1

2

∫ S

−S
dz

(
1− |z|

2S

)
ξρ(r)(Dz(S)−Dz(r)) . (3.18)

Notice that our formalism cleanly shows how thermal effects drop out in VC

upon carrying out the integral in Eq. (3.16) to obtain Eq. (3.18). This shows

that turbulence velocity spectrum can be recovered with VC regardless of the

temperature1, which is distinct from other techniques (e.g. VCA).

1For very hot plasmas, noise levels can distort VC statistics.
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The VC structure function is defined as

D(R) =
⟨
[C(X1 +R)− C(X1)]

2⟩ . (3.19)

Utilising Eqs. (3.18) and (3.19), we obtain the VC structure function

D(R) ≈
∫ S

−S
dz {Dz(S) (ξρ(0, z)− ξρ(r)) + [ξρ(r)Dz(r)− ξρ(0, z)Dz(0, z)]} .

(3.20)

With the assumption of zero correlation between density and velocity, the

above result for optically thin line is identical to that obtained in LE03, where

the same result was obtained by directly utilising Eq. (3.14). However, working

from first principles in the PPV space, as is done in this thesis, is especially

useful to deal with VC in the presence of self-absorption.

For a constant density field, with Dz(r) given by Eq. (2.3), and at R ≪ S,

the VC structure function scales as

D(R) ∝ R1+ν . (3.21)

We will refer to this scaling further in this thesis.
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Chapter 4

Anisotropy of Intensity

Statistics

4.1 Anisotropic statistics of PPV velocity slices

In the previous sections, we have defined the tools that are required for our

achieving our goal, i.e. describing the anisotropy of the PPV. In this section,

we develop the analytical framework for the study of anisotropic turbulence

through the intensity statistics of the PPV velocity slices. The scale ∆v in

Eq. (3.8) is the slice thickness, and by comparing this slice thickness with the

variance of velocity, we develop notion of thin and thick slice. If ∆v is smaller

than the velocity dispersion at the scale of study, it is a thin channel, whereas

if ∆v is much larger than the velocity dispersion, it is called a thick channel.

Anisotropy in intensity statistics is seen in the ϕ dependence of intensity

structure function. To study this angular dependence, we will carry out a

multipole expansion of the structure function in circular harmonics. Such an

expansion is useful as these multipoles can be studied observationally. In par-

ticular, for an isotropic turbulence, only monopole moment survives.
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4.1.1 Intensity statistics in a thin slice regime

We first study intensity fluctuations in the thin slice limit. In the case of thin

velocity channel, which is the case when ∆v < Dz(S) + 2β, utilising equations

(3.8), the intensity structure function can be expressed as

D(R, ϕ) ∝ 2ϵ2

2π

∫ S

−S
dz

[
1 + ξ̃ρ(0, z)√
Dz(0, z)

− 1 + ξ̃ρ(R, z, ϕ)√
Dz(R, z, ϕ)

]
, (4.1)

where we have ignored the thermal effects. This can be justified by taking

thermal effect as a part of slice thickness (LP00). From Eq. (3.9), the above

equation can be broken into pure velocity and density terms. Let us consider

the pure velocity contribution which is often dominant in the case of thin

velocity width. In this case, the structure function is

Dv(R, ϕ) ∝
2ϵ2

2π

∫ S

−S
dz

[
1√

Dz(0, z)
− 1√

Dz(R, z, ϕ)

]
. (4.2)

To extract the non-trivial ϕ dependence from the above expression, we use

multipole decomposition of the structure function in circular harmonics, and

write the structure function as a series of sum of multipoles

Dv(R, ϕ, 0) =
∑
m

d̃m(R)e
imϕ, (4.3)

where the multipole moments d̃m, in the case of constant density, are given by

d̃m(R) =
ρ̄2

2π

[
2πδm0

∫ S

−S
dz

1√
Dz(0, z)

−
∫ 2π

0

dϕe−imϕ
∫ S

−S
dz

1√
Dz(R, z, ϕ)

]
. (4.4)

In writing the above equation, we have considered the fact that the integral of

1/
√
Dz(0, z) over ϕ for non-zero m vanishes.
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We also introduce a parameter called degree of Isotropy which is defined as

Isotropy Degree =
D(R, ϕ = 0,∆v)

D(R, ϕ = π/2,∆v)
, (4.5)

where D is the intensity structure function. This parameter is particularly

useful later to make comparisons with the numerical studies that have been

carried out on anisotropic turbulence. It will be later shown that the isotropy

degree has an interesting dependence on the thickness of velocity slice, which

will be shown to be very useful in the study of intensity anisotropy.

We now proceed to find the multipole moments of intensity structure func-

tion in the thin slice limit at constant density. The most general form of

velocity structure function projected along LOS is given by equation (2.9).

The coefficients A,B,C and D in this projected structure function are in gen-

eral a function of µ, and can be expressed through a multipole expansion over

Legendre polynomials Pn(µ) as discussed in Appendix D. Although, projected

structure function in general contains sum up to infinite order in multipole

expansion, to obtain analytical results, we take the terms up to second order

from the infinite sum for An, Bn,
. . . and ignore the higher order terms. This

approximation is justified due to two reasons. First, these coefficients all be-

come exceedingly small for higher orders in the region of our interest, which

is small r. Secondly, upon carrying out integral over the LOS, the effects of

the higher order coefficients get diminished1. With this approximation, the

z-projection of velocity structure function can be shown to be (c.f Eq.(2.9))

Dz(r) = f1
(
1− f2 cosϕ− f3 cos

2 ϕ
)
, (4.6)

where f1, f2 and f3 are some other functions of r, γ, θ and are independent of

ϕ. The details about f1, f2 and f3 are provided in Appendix D.

1This was tested numerically, and this statement is good as long as the power spectrum
is not highly anisotropic.
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To evaluate Eq. (4.4), it is usually convenient to carry out ϕ-integral first

and z-integral later. This has been done in Appendix E and F. Utilizing equa-

tions (E.4), (F.6) and (F.8) and Table D.1, we arrive at the following form of

the intensity structure function

Dv(R, ϕ, 0) ∝
∞∑
m,2

Wm(sin γ)
meimϕ, (4.7)

where Wm is defined to be weightage function. However, we are only interested

in the monopole and quadrupole coefficients. Although Eq. (E.4) has sum that

extends to infinity, for most of our purposes, it is enough to just take first few

terms. Therefore, for monopole we take first two terms and for quadrupole

term we only take the leading-order term in the sum. Note that the factors

f1, f2 and f3 in Eq. (4.6) are further written in terms of other factors q1, q2, . . .

which are dependent on mode composition of turbulence. The details of these

factors are presented in Appendix D and Table D.1. Keeping this in mind, we

have the monopole weightage function as

W0 ≈ −

{√
π

q1 + q2

(
Γ
(
ν
4
− 1

2

)
Γ
(
ν
4

) − q2
2(q1 + q2)

Γ
(
ν
4
+ 1

2

)
Γ
(
ν
4
+ 1
))

−
√
π

4q
3/2
1

(
Γ
(
ν
4
+ 1

2

)
Γ
(
ν
4
+ 1
) − 3

4

q2
q1

Γ
(
ν
4
+ 3

2

)
Γ
(
ν
4
+ 2
))u1 sin2 γ

}
R1−ν/2. (4.8)

Similarly, the quadrupole weightage function is given by

W2 ≈ −R1−ν/2
√
π

4q
3/2
1

(
Γ
(
ν
4
+ 1

2

)
Γ
(
ν
4
+ 1
) − 3

4

q2
q1

Γ
(
ν
4
+ 3

2

)
Γ
(
ν
4
+ 2
))u1. (4.9)

Eqs. (4.8) and (4.9) are only approximate and should be used with caution. In

particular, equation (4.8) is good only when (q1+q2) > q2, while equation (4.9)

is good when q1 > q2. However, even in the regime where these conditions do

not hold, these equations are robust enough to predict approximate numerics
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Figure 4.1: The ratio of Wm obtained from analytical expressions (equations
4.8 and 4.9) to the one obtained from numerical calculations for Alfvén mode
at MA = 0.7. Note that the velocity structure function is truncated to the
same multipole for both numerical and analytical calculations.

that are not too far from the exact result. The ratio of weightage function Wm,

obtained from equations (4.8) and (4.9), to that obtained numerically has been

plotted in Fig. (4.1). As shown in the figure, the analytical results are close to

the numerical results.

It is interesting to note that the isocontours of intensity structure function

can be elongated towards the direction parallel to the projection of magnetic

field or perpendicular to it depending on the sign of u1. For u1 > 0, the

isocontours should be aligned towards the parallel direction, while for u1 < 0,

they should be aligned towards the perpendicular direction.

It is usually useful to obtain expressions for quadrupole-to-monopole ratio,

as this is the one which gives the measure of anisotropy. In our case, we have

d̃2

d̃0
=

W2 sin
2 γ

W0

. (4.10)

It is clear from the above equation that at γ = 0, the anisotropy vanishes.

4.1.2 Intensity statistics in a thick slice regime

LP00 showed that density effects are dominant if the velocity slice is ‘very

thick’. In this limit, velocity effects get washed away in an optically thin
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medium. In this section, we derive expressions for intensity statistics in the

case of very thick velocity slice. Using the results of LP04, we have the intensity

correlation

ξI(R, ϕ) ∝
∫ S

−S
dz

ξρ(r)√
Dz(r) + 2βT∫ ∞

−∞
dv exp

[
− v2

2(Dz(r) + 2βT

]
, (4.11)

which upon carrying out the integration over v gives

ξI(R, ϕ) ∝
∫ S

−S
dz ξρ(r). (4.12)

This expression clearly shows that at thick slice, all the velocity information

is erased, and density effects play a primary role in intensity statistics. Eq.

(4.12) allows us to obtain the intensity structure function as

D(R, ϕ) ∝
∫ S

−S
dz [ξρ(z)− ξρ(r)] . (4.13)

Using a general model of density correlation defined in Eq. (2.20) and

(2.21), it can be shown that

D(R, ϕ) ∝ ±(1 + cρP2(cos γ))

∫ S

−S
dz

(
(z2 +R2)−νρ/2

−|z|−νρ/2
)
± 3

2
cρ(sin

2 γ cos2 ϕ− cos2 γ)R2

∫ S

−S
dz(z2 + (R)2)−νρ/2−1, (4.14)

where + sign is for steep density spectra whereas − sign is for shallow density

spectra. The above expression can be evaluated analytically and yields
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D(R, ϕ) ∝ ±(1 + cρP2(cos γ))

(
R−νρ

2F1

(
1

2
,
νρ
2
;
3

2
;−S2

R2

)

+
S−νρ

νρ − 1

)
± 3

2
cρ(sin

2 γ cos2 ϕ− cos2 γ)R−νρ

2F1

(
1

2
,
νρ + 2

2
;
3

2
;−S2

R2

)
, (4.15)

for −1 < νρ < 1. Note that for νρ < −1, intensity correlation function should

be used. We are interested in small separation asymptote, i.e. R/S ≪ 1, given

by

D(R, ϕ) ∝ ±

√
πΓ
(
νρ−1

2

)
Γ
(νρ

2

) [
(1 + cρP2(cos γ))

+
3

2
cρ
νρ − 1

νρ
(sin2 γ cos2 ϕ− cos2 γ)

]
R1−νρ . (4.16)

The above equation gives some important qualitative features. First, the

anisotropy vanishes at γ = 0, which is again consistent with the fact that

if the magnetic field is aligned along the LOS, then the statistics reduces to the

isotropic statistics. Secondly, cρ primarily determines the degree of anisotropy.

Next, the iso-correlation contour is aligned towards the direction parallel to

the sky-projected magnetic field if cρ < 0 and towards direction orthogonal to

the sky-projected magnetic field if cρ > 0. It is expected that the fluctuations

are elongated along the direction of magnetic field, and this would mean that

for a steep spectrum, cρ < 0, while for a shallow spectrum, it can be similarly

shown that cρ > 0. It has been shown that the density effects are isotropic at

large sonic Mach number Ms (Kowal et al. 2007). Therefore, we expect cρ to

approach 0 asMs goes large. Density anisotropy depend on Alfvén Mach num-

ber MA as well, although the dependence of anisotropy on sonic Mach number

is more pronounced (Kowal et al. 2007). Therefore, cρ should be a function of
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Ms and MA, and observational results might allow us in future to obtain good

functional form of cρ.

4.1.3 VCA and interferometric studies

Interferometric studies provide yet another way of studying turbulence. The

2D spectra of fluctuations of intensities in velocity slice are easy to obtain

as these 2D spectra can be measured by interferometers. Therefore, using

interferometers one does not need to first create intensity maps, but can use

the raw interferometric data. This gives a significant advantage for studying

turbulence in extragalactic objects as well as for poorly resolved clouds in Milky

Way. For obtaining the spectrum, just a few measurements corresponding to

different baselines, i.e. for different |K|, of an interferometer are sufficient2.

For the anisotropy studies, one can also use raw interferometric data with

missing frequencies, but it is important to sample the fluctuations for differ-

ent direction of the two-dimensional vector K. This provides more stringent

requirements to the interferometric data compared to just studying of velocity

and density spectra with the VCA, but still it is much easier than restoring the

full spatial distribution of intensity fluctuations.

A simple estimate of the degree of anisotropy of the interferometric sig-

nal can be obtained by taking the Fourier transform of the monopole and

quadrupole part of the expansion in Eq. (4.3). With this, we have the

quadrupole power spectrum

P (K) =
∑
m

Pm(K) cos(mϕK)

=
∑
m

∫
d2R eiK.Rd̃m(R) cos(mϕ), (4.17)

where cosϕk = K̂ · Λ̂ and Pm(K) is the quadrupole moment in Fourier space.

2The procedures are also discussed in LP16 for synchrotron polarization data.
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After expanding the two-dimensional plane wave as

eiKR cos θ =
∞∑

n=−∞

inJn(KR)e
inθ, (4.18)

where Jn(z) is the Bessel function of first kind, the angular part of the integral

in Eq. (4.17) gives

Pm(K) =

∫
dRRd̃m(R)Jm(KR). (4.19)

The above equation provides important information that the anisotropy in real

space manifests as anisotropy in Fourier space, and each multipole in real space

has one-to-one correspondence with the multipoles in Fourier space.

The asymptotic form of Pm(K) for large K can be obtained analytically

and the result in the case of pure velocity contribution is

Pm(K) =
22−

ν
2Γ
(
1
4
(2m− ν + 6)

)
Γ
(
1
4
(2m+ ν − 2)

) d̃m(KS)
3−ν/2 (4.20)

where d̃m is the real space intensity moment after R dependence being explicitly

factored out. With this the ratio of quadrupole to monopole moment is

d̃2K

d̃0K
= −6− ν

2− ν

d̃2

d̃0
. (4.21)

Note that the sign of quadrupole moment changes in Fourier space when com-

pared to real space. Moreover, the ratio of quadrupole to monopole is enhanced

by a factor of (6−ν)/(2−ν) which for ν = 2/3 is 4. Therefore, the anisotropy is

much more apparent in Fourier space. This provides a unique way to study tur-

bulence with interferometric signal as we can utilize both the isotropic part and

the anisotropic parts (like quadrupole moment) to study turbulence spectra.
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4.1.4 Effects of spatial and spectroscopic resolution

The effects of telescope resolution for the VCA ability to get the spectra were

considered in LP04. Naturally, the finite resolution of telescopes introduced

the uncertainty of the order of δK which is inversely proportional to δθ that

characterize the resolution of telescopes. For the analysis of anisotropies in this

thesis, the requirement is that we study anisotropies at the separation ≫ δθ.

Anisotropies can be studied at large separations, even in the absence of good

spectroscopic resolution, as the slices are effectively thin in this scale.

While the studies of velocity spectra critically depend on the thickness of

velocity slices, the velocity resolution is not so critical for studies of the media

magnetization. Indeed, even with the limited velocity resolution, it is possible

to observe the anisotropy of fluctuations within the velocity slice. This opens

ways of using instruments with limited velocity resolution to study magnetic

fields.

On the other hand, in the presence of various velocity slice thicknesses, we

have more statistical information that can be studied. Thin velocity slices can

be used to study turbulence spectra at small separation, intermediate slices can

be used for intermediate scale and thick velocity slices can be used to study

spectra at large separation.

To study effects of finite resolution on intensity anisotropy, we start with

some of the equations presented in LP06. The intensity measured by a telescope

is
∫
dXB(X−X0)I(X, v), where B(X) is the beam of the instrument centred

at X = X0. With some analysis, the intensity structure function is given by

(LP06)

D(R0, v) ≈
∫

d2RB2(R−R0)[ds(R, v)− ds(0, v)] . (4.22)

We take Gaussian beam

B2(R−R0) =
1

πθ0
e
− |R−R0|

2

θ20 , (4.23)
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where θ0 is the diagram of the instrument, relating to the resolution. θ0 should

be compared with the separation R0 between LOS at which the correlation is

measured. If θ0 ≫ R0, the resolution is poor, and the correlation scale is not

resolved. If θ0 ≪ R0, B
2(R) → δ(R −R0), the and resolution is increasingly

good, and we return to the VCA regime.

With decreasing resolution, it is expected that the anisotropy decreases.

To understand this effect, we consider the multipole expansion of the intensity

structure function. Contribution to its mth multipole moment with account

for a finite resolution is

Dm(R0, v) =
1

πθ0

∫
d2R e

− |R−R0|
2

θ20 d̃m(R) cos(mϕ)

=
2e−R

2
0/θ

2
0

θ0
cos(mϕ0)

∫
dRRe−R

2/θ20Im

(
2RR0

θ20

)
d̃m(R), (4.24)

where Im(x) is the hyperbolic Bessel function of the first kind. This factor

Im(2RR0/θ
2
0) acts as a suppressing factor for increasingm. This has been shown

in the left-hand panel of Fig. 4.2, where I2(x) < I0(x) for all x. Therefore,

we should expect quadrupole to vanish for θ0 ≫ R0. The change of isotropy

with changing diagram has been illustrated in the central panel of Fig. 4.2. At

θ0/R0 ∼ 0, we have a finite anisotropy which corresponds to the previous VCA

results. With the increasing diagram θ0, the statistics become more isotropic

and for θ0 > R0, information on anisotropy is completely lost. As a function

of R0 (right-hand panel), we see that practically as soon as we start measuring

correlations at resolved scales R0 > θ0, the anisotropy can be recovered.
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Figure 4.2: Left: hyperbolic Bessel function of the first kind. Center: isotropy
degree for varying diagram θ0 and fixed R0. Right: same for varying lag R0

and fixed θ0.

4.2 Anisotropic statistics of intensity fluctua-

tions for MHD turbulence

In previous sections, we formulated measures of intensity fluctuations for a

general form of the velocity and density turbulent fields. In what follows, we

use the model of compressible MHD turbulence, which comprises of Alfvén,

fast and slow modes. Each mode has a specific structure of velocity, and thus

gives a distinct fluctuation of intensity. However, unless amplitude of density

fluctuations are small in comparison to the mean density, the anisotropic model

of density for each mode is still uncertain. Thus, we still treat density with a

general anisotropic model given by Eqs. (2.20) and (2.21), such that the free

parameters can be established observationally.

4.2.1 Effect of Velocity Fluctuations induced by each

MHD modes

First we consider pure velocity effects due to each MHD modes, treating den-

sity to be constant. The effects of fluctuating density will be considered in a

subsequent section in this chapter.
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Alfvén mode

For Alfvén modes, the component of velocity along the direction of the sym-

metry axis is zero and therefore D = −Aµ, and C = Aµ2 −B, or equivalently

C̃ = −Aµ2− B̃, where C̃ ≡ C(0)−C(r). Therefore, the projection of structure

function along the LOS is given by

Dz(r) = 2[B̃+C̃ cos2 γ − A cos2 θ − 2D cos θ cos γ]

= 2
[
B̃(r) sin2 γ − A(r)(µ cos γ − cos θ)2

]
. (4.25)

It is clear that the above structure function vanishes at γ = 0. In the limit

when γ → 0, (µ cos γ−cos θ)2 → sin2 γ sin2 θ cos2 ϕ and µ→ cos θ and therefore

Dz(r) = 2 sin2 γ
[
B̃ − A0 cos

2 θ cos2 ϕ
]
, γ → 0 . (4.26)

However, at γ = 0, all the emitters have the same LOS velocity vz = 0. This

implies that at this angle we are always in the thick slice regime 3. With this

observation, it is expected that the thin slice approximation will not work when-

ever γ is less than some critical angle γc. The criterion for a slice to be thick is

∆v >
√
Dz(R), where R is the separation between the two LOS. Therefore, we

are in the thick slice regime whenever sin γc ≲ ∆v/(2B̃). However, this only

applies if the turbulent motions consist of only Alfvén modes. This situation

is nevertheless quite rare because slow modes are also of solenoidal type and

usually come along with Alfvén modes. Since slow modes have non-vanishing

structure function at γ = 0, thin slice approximation would still be valid if

we consider the contribution of both slow and Alfvén modes, as at small γ

velocity structure function is dominated by slow modes. In a thin slice regime,

3In a thick slice regime, the intensity structure has a divergence of S2, where S is the
size of an emitting region. However, in a thin slice regime, the divergence is S. The fact
that 1/ sin γ introduces an additional divergence is clear to explain that at γ ∼ 0, thin slice
approximation does not work.
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Figure 4.3: Alfvén mode. From left to right: monopole, quadrupole and
isotropy degree. Monopole and quadrupole are as a function of angle between
LOS and magnetic field, γ. Isotropy degree as a function of ∆v is at γ = π/2.
From top to bottom: top is at MA = 0.4, bottom at MA = 0.7

calculating monopole and quadrupole terms primarily requires the knowledge

of q1, q2, q3 and u1 (cf. equations 4.8 and 4.9), which for the Alfvén modes are

q1 =
(
2B̃0 +B2

)
sin2 γ, u1 = −2A0 cos

2 γ − 3B2 sin
2 γ

q2 = −
(
3B2 cos

2 γ + 2A0 sin
2 γ
)
sin2 γ, q3 = 0. (4.27)

Fig. 4.3 shows the monopole and quadrupole contributions as well as

isotropy degree of intensity correlation from Alfvén modes. We highlight sev-

eral important properties. First, both monopole and quadrupole components

are decreasing with the increase in Alfvén Mach number, MA. Secondly, the

anisotropic feature decreases with the increase in Alfvén Mach number, which is

expected as higher Alfvén Mach number corresponds to higher isotropy. More-

over, both monopole and quadrupole are insensitive to γ for γ ≳ π/4, which

can be a useful feature to determine Alfvén Mach number MA. In addition to

that, it is clear from the figure that isotropy degree for Alfvén mode is less than

1. This implies that iso-correlation contours are elongated along the direction

of sky projection of mean magnetic field. For Alfvén modes, this corresponds

to the spectral suppression towards the direction parallel to the projected field.

This effect is due to the structure of power spectrum of Alfvén modes. If this

power spectrum was isotropic, the isocontours of this mode would be elongated

along the direction orthogonal to the sky projection of mean-magnetic field (see
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Figure 4.4: Alfvén mode. Left: The degree of anisotropy assuming an isotropic
power spectrum A(k, µk) (cf. Eq. 2.26). The observed anisotropy in this
case comes purely from the anisotropic tensor structure (cf. Eq 2.25). Right:
quadrupole and monopole at MA = 0.7. Both are normalised by their highest
value.

the left-hand panel of Fig. 4.4). Note that both the monopole and quadrupole

are increasing with the decrease in γ, which might look counter-intuitive. This

increase is because of the fact that the structure function Dz ∝ sin2 γ, and

therefore, the intensity structure function D ∝ sin−1 γ which reflects that more

and more emitters are occupying the same velocity channel vz = 0.

By looking at the left-hand panel of Fig. [4.4], one can observe the decrease

of isotropy degree for increasing slice thickness 4, ∆v. This decrease can be

understood in the following sense: at small slice thickness, all emitters have

similar LOS velocities and anisotropies are suppressed. But with the increase in

slice thickness, the correlations of velocity are better sampled, thus increasing

the anisotropy. The change of anisotropy with slice thickness is an important

result of this thesis. This can be a useful tool in the study of MHD turbulence.

It is however important to note that although the anisotropy increases with

increasing ∆v, the quadrupole and monopole individually approach to zero with

increasing ∆v. This is illustrated in the right-hand panel of Fig. 4.4, which

clearly shows that both the monopole and quadrupole are clearly approaching

zero as ∆v approaches unity.

4Whenever we talk about slice thickness ∆v, unless explicitly mentioned otherwise, we
talk about slice thickness normalized by velocity dispersion.
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Figure 4.5: Fast mode low-β. From left to right, monopole and quadrupole and
degree of isotropy. The curves in left-hand and central panels represent from
top to bottom: ∆v = 0.1,∆v = 0.3 and ∆v = 0.5. The isotropy degree is at
γ = π/2. All angles are in degrees.

Fast mode

Fast modes in high-β plasma correspond to sound waves, which are isotropic

(see GS95; Cho and Lazarian 2003) .

Fast modes in low-β plasma have anisotropy in-built in the tensor structure,

although their power spectrum is isotropic. For fast modes in low-β regime,

the component of velocity along the direction of symmetry axis is zero, and

therefore, the projection of structure function along the LOS takes the same

form as that for the Alfvén mode,

Dz(r) = 2
[
B̃(r) sin2 γ − A(r)(µ cos γ − cos θ)2

]
. (4.28)

The above structure function also vanishes at γ = 0; therefore, the discussion

about thin and thick slice applies to this mode as well. To find monopole and

quadrupole terms, the coefficients q1, q2, q3 and u1 for this mode are given by

equation (4.27).

Fig. 4.5 shows monopole, quadrupole and degree of anisotropy of low-β fast

modes. Of particularly interesting pattern is the degree of isotropy which is

greater than 1, unlike Alfvén modes which had this isotropy degree less than

1. This clearly implies that intensity structure iso-contours of fast modes are

elongated along the direction perpendicular to magnetic field projection in the

2-D plane. This in fact validates our previous assertion that for an isotropic

47



power spectrum, the iso-contours should be elongated towards the direction

perpendicular to sky-projected magnetic field. It is also interesting to note

that even at γ = π/2 (which is the most anisotropic case), these modes are not

so anisotropic. Therefore, observation of strong anisotropy signal could allow us

to infer that fast modes are possibly important (this cannot totally eliminate

fast modes, because a mixture of fast and Alfvén modes can, for example,

produce strong anisotropy as long as fast modes are subdominant ). Fig. [4.5]

shows while monopole decreases rapidly with increasing slice thickness, the

quadrupole is relatively less affected with the changing slice thickness; therefore,

this increases the quadrupole-to-monopole ratio with increasing slice thickness.

Slow mode

Slow modes are anisotropic in both high and low-β. The detailed mode struc-

ture of this mode is studied in Appendix C.4. The structure function of low β

slow mode is given is

Dz(r) = 2(C(0)− C(r)) cos2 γ. (4.29)

Analytical calculation of the monopole and quadrupole contribution to the

intensity structure function requires knowledge of various parameters as shown

in equations (4.8) and (4.9), and these parameters are summarized in Table

D.1.

Fig. 4.6 shows that slow modes in low β are highly anisotropic at low

Alfvén Mach number MA. However, they become more isotropic at large MA,

which shows that the observed anisotropy of intensity fluctuations from these

modes is primarily due to the anisotropy in power spectrum. The anisotropy is

pronounced for γ ≳ π/4. Moreover, the iso-correlation contours in this limit are

always elongated towards the direction of sky-projected magnetic field, which

is similar to the Alfvén mode. Comparing Figs. 4.3 and 4.6], it is easy to see
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Figure 4.6: Slow mode low-β. From left to right, monopole and quadrupole
and degree of isotropy at MA = 0.2 and 0.7, at ∆v = 0.1. The isotropy degree
is calculated at γ = π/3.
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Figure 4.7: SlowMode high β. Monopole and quadrupole and degree of isotropy
for slow mode at high β. Left-hand and central panels are at ∆v = 0.1. The
isotropy degree is calculated at γ = π/3.

that in the regime γ ≳ π/3, slow modes in low β are more anisotropic than

Alfvén modes for same MA.

Slow modes in high β regime show more interesting properties as shown in

Fig. 4.7. The iso-correlation contours of this mode are aligned towards the

direction parallel to the sky-projected magnetic field. The anisotropy comes

from the anisotropy in-built in the tensor structure of this mode as well as from

the power spectrum (cf. equation 2.26) of this mode. Similar to Alfvén mode,

the iso-correlation contours of this mode are aligned towards the direction per-

pendicular to the sky-projected magnetic field.

However, our method of analysing the anisotropy by truncating the series of

structure function (cf. Sec. 4.1.1) does not work well for very small MA. One

reason is that the power spectrum in the regime of small MA becomes more or

less like δ(k̂.λ̂), and therefore all An are important. Note that at small MA,

the intensity structure function, and hence the anisotropy, of high β and low β
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Figure 4.8: Alfvén + fast modes at low-β at MA = 0.7. Left and centre:
monopole and quadrupole for various percentage of mixture. Right: isotropy
degree at γ = π/2. The solid curve is for 95% Alfvén and 5% fast, dotted curve
is for 90% Alvén and 10% fast and the dashed curve is for 80% Alvén and 20%
fast.

slow modes should behave in a similar way. This is because the power spectrum

(cf. equation 2.26) of high β slow mode behaves like δ(k̂ · λ̂) at low MA, and

therefore, the tensor structure of slow modes at high β (cf. equation 2.34)

should reduce to the same form as that of low β slow modes, i.e. Dz(r) ∝ λ̂iλ̂j

for both modes.

Mixture of Different Modes

In this section, we show effects of mixing of modes in the isotropy degree.

Mixing effects are interesting as real world MHD turbulences have different

modes and our observations are the result of the combined effects of these

modes.

We consider the mixture of Alfvén modes and fast modes, as well as mixture

of Alfvén and slow modes. Fig. 4.8 shows that the mixture of Alfvén and fast

mode in low-β increases the isotropy (cf. Fig. 4.3) when compared with pure

Alfvén isotropy. This effect is caused by two factors: first, fast modes are

less anisotropic than Alfvén and therefore, we expect their combination to be

more isotropic than Alfvén alone. More important is the second factor: the

quadrupole anisotropies of fast (in low-β) and Alfvén modes are opposite in

sign. This means the anisotropy effects of the two modes act against each

other. Therefore, even a small percentage of fast modes in the mixture can

50



� �� �� �� ��

���

���

���

���

� �� �� �� ��

-����

-����

-����

-����

-����

����

��� ��� ��� ��� ��� ���

����

����

����

����

����

����

Figure 4.9: Alvén + low-β slow modes atMA = 0.7. Left and center: monopole
and quadrupole for various percentage of mixture. Right: isotropy degree at
γ = π/4. The solid curve is for 85% Alfvén and 15% slow, dotted curve is for
70% Alvén and 30% slow and the dashed curve is for 50% Alvén and 50% slow.

cause a significant difference in the anisotropy level. This has been confirmed

in the left-hand and central panels of Fig. 4.8, which shows that while the

monopole is relatively unaffected by the composition of mixture, the quadrupole

is significantly affected with larger composition of fast modes. Note that we

usually expect fast mode to be marginal in the mixture. Fast modes in high

β, however, are isotropic. Therefore, we again expect the mixture of high-β

fast and Alfvén mode to be more isotropic than Alfvén alone. However, unlike

low-β fast mode , this mode at high-β does not have any quadrupole anisotropy

to act against the Alfvén anisotropy. Therefore, the mixture of Alfvén and high

β fast mode should be more anisotropic than the mixture of Afvén and low-β

fast mode.

Another interesting mix is Alvén and slow modes in low-β plasma. We have

shown that both of these modes have negative quadrupole moment. Moreover,

these modes are different domains of dominance. At γ ∼ 0, slow modes dom-

inate while at γ ∼ π/2, Alfvén modes dominate. Therefore, we expect the

anisotropy level of their mixture to be not too different from the anisotropy

level of each individual mode in the region of their dominance. This is shown

in Fig. [4.9]. Note that in that figure, changing percentage of composition

has relatively unaffected the level of anisotropy. This result shows that the

anisotropy effects come primarily from the power spectra rather than the exact

local structure of the spectral tensor (LP12).
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It is important to note that for the case of mix between Alfvén and slow

mode in low β, the anisotropy level is unaffected at γ ∼ π/2 when compared

with Alfvén mode. This is because of the fact that for low-β slow mode, the

motions are along the direction of magnetic field, and therefore these motions

should not affect the statistics in the direction perpendicular to them. Similarly,

at smaller γ, the mix of Alfvén and low-β slow mode should produce anisotropy

level similar to that of the slow mode alone. This effect is again primarily

because of the anisotropy from power spectra.

4.2.2 Comparison with Esquivel et al. (2015)

One of the most interesting and important findings of our study is the decrease

of isotropy degree with increasing slice thickness. This matches exactly with the

findings of Esquivel et al. (2015). We compare our result with their results. In

their study, for MA = 0.7 and MS = 2.2, most of the contribution comes from

Alfvén mode. Comparing our results for pure Alfvén effects and their result

at constant density should be reasonable. In our case, at MA = 0.7, isotropy

degree at thin slice regime is ∼ 0.65, while their result shows an isotropy degree

of ∼ 0.6, which is close to our result. At MA = 0.4, however, our result shows

an isotropy of 0.59, while they predicted much less isotropy degree of ∼ 0.3.

However, the overall trend of decreasing isotropy with increasing slice thickness

matches well with our results.

4.2.3 Study of Density Effects

Besides velocity, density statistics also provide important contribution to in-

tensity statistics. In LP00, the issue of separating density contribution from

velocity contribution to the intensity statistics was addressed. For steep spec-

tra, it was mentioned in LP04 that density effects are important at large lag

R and velocity effects are important at small lags, but this was invalidated in
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Figure 4.10: Steep density: normalized monopole (left) and normalized
quadrupole (centre) for Alfvén mode at γ = π/2 and cρ = −0.6. The solid
curve is for pure velocity contribution while the dotted curve is with steep
density of Kolmogorov index. Right: Isotropy degree as a function of velocity
slice thickness ∆v for various R/rc, all the parameters are the same as in the
left-hand and central panels.

LP06, where it was clarified that velocity statistics are dominant in thin slice

regime no matter what the scale R is. In the case of shallow spectra, however,

density effects are important even in the thin velocity slice regime. With this,

it is natural to expect that for steep spectra, anisotropy in intensity statis-

tics should be primarily dominated by velocity effects in the thin slice regime,

while for shallow spectra, anisotropy is affected by density effects as well in this

regime. In the thick slice regime, only density effects are important.

We tested the effects of density anisotropy at different scales for both steep

and shallow spectra. Fig. 4.10 shows some of the key features shown by den-

sity effects. Both quadrupole and monopole for the combination of velocity

and density effects are similar to velocity effects alone at R < rc for a steep

spectrum. This is consistent with the fact that for steep density spectra, the

intensity correlation function is dominated by velocity effects at R < rc. Inter-

estingly, the quadrupole moment is affected by density effects, while monopole

remains relatively unaffected. The relative importance of density effects in

quadrupole moment depends on the degree of density anisotropy, cρ. For, suffi-

ciently small cρ, we can not see any significant deviation from the pure velocity

contributions. Therefore, studying monopole moment at small R should give

us information on velocity statistics, while quadrupole moment will give infor-
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Figure 4.11: Shallow density: normalized monopole (left) and normalized
quadrupole (right) for Alfvén mode at γ = π/2 and cρ = 0.3. The solid curve
is for pure velocity contribution while the dotted curve is for shallow density of
index νρ = 1/3. Right: Isotropy degree as a function of velocity slice thickness
∆v for various R/rc, all the parameters are the same as in the left and central
panels.

mation about the presence of density effects. Note that at thick velocity slice,

the intensity statistics is dominated by density effects alone.

If the density spectrum is shallow, the density effects become important

at small scales. Therefore, we expect significant deviation from pure velocity

effects in the case of shallow density spectrum. This is confirmed from Fig.

[4.11], as the degree of isotropy changes significantly from the pure velocity

effects.

4.2.4 Effects of Self-Absorption

In the previous sections, we studied anisotropy of channel maps in optically

thin medium. However, knowledge of absorption effects can be important to

understand the intensity statistics in various interstellar environments, for in-

stance in molecular clouds. The effects of absorption in the intensity statistics

were studied in LP04. Their study suggests that power-law behaviour of inten-

sity statistics is distorted in the presence of absorption, and the velocity effects
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are more prominent in this case.

In this section, we make use of the results of LP04 to study the effect of

absorption in the degree of isotropy (cf. equation 4.5). In the presence of

absorption, the intensity structure function is given by (LP04)

D(R, ϕ,∆v) ∝
∫ ∆v

−∆v

dv W̃ (v)e−
α2

2
d̃s(0,v) [ds(R, v)− ds(0, v)] , (4.30)

where W̃ (v) is the window which defines how integration over velocity is carried

out, α is the absorption coefficient, and is zero in the case when absorption

effect is absent. The most important feature shown by the above equation

is the presence of an exponential factor. Due to the presence of this factor,

velocity effects do not get washed out even if we enter thick slice regime, unlike

the optically thin case when this factor was absent. Analysis presented in LP04

shows that in the case of Alfvén mode (which has a power law index 2/3),

d̃s(0, v) ∝ −v2 log v, (4.31)

which is valid for small argument v. With this, for Alfvén modes Eq. (4.30)

can be written as

D(R, ϕ) ∝
∫

dv W̃ (v)e
α2
eff
2
v2 log v [ds(R, v)− ds(0, v)] , (4.32)

where αeff is the effective absorption constant, which takes into account the

proportionality constant of equation (4.31).

To study the effects of absorption on the anisotropy of channel maps, we

performed numerical evaluation for the degree of anisotropy as a function of

velocity width which results are shown in Fig. 4.12. These plots show that

with absorption effect included, the intensity statistics become more isotropic.

Fig. [4.12] shows that the deviation of isotropy degree of optically thick case

from optically thin case occurs at a critical velocity thickness ∆vc roughly
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Figure 4.12: From left to right: isotropy degree for Alfvén (at MA = 0.7,
γ = π/2), slow (low β at MA = 0.7, γ = π/3) and fast (low β at γ = π/2) in
the presence of different degrees of absorptions.

given by the relation −α2
eff(∆vc)

2 log(∆vc) = α2ds(0, v) ∼ 1, which in the case

of αeff = 5 gives ∆vc ∼ 0.1, consistent with Fig. [4.12]. This is the cut-off

beyond which non-linear effects become important while studying the effects

of absorption (LP04). Therefore, this implies that although absorption affects

the intensity statistics, the degree of isotropy however remains unaffected as

long as we are in a regime where absorption is moderate.

In the regime where absorption is strong, the degree of isotropy decreases

less rapidly in comparison to the case where absorption is absent. This can be

understood in the following way: with stronger absorption effects, the thin slice

statistics hold for larger range of velocity width and therefore, the degree of

isotropy tends to flatten. This is shown by Fig. [4.12], where the flattening of

this curve is shown in a gradual manner as we increase the absorption coefficient

for αeff = 0 to 5.

The fact that degree of isotropy for optically thick medium is similar to the

degree of isotropy for the optically thin medium in the case when absorption

is strong has important consequences that need to be addressed. LP04 showed

that for optically thick case, at some intermediate scale R, a new asymptotic

regime is seen. In this regime, the intensity statistics get independent of the
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Figure 4.13: From left to right: monopole and quadrupole as a function of R
for slow modes at low β at αeff = 5 at MA = 0.4 and γ = π/3 and ∆v = 1.
Only pure velocity contribution is considered.

spectrum of the underlying velocity and density field by exhibiting a scaling

∼ R. This can also be seen in Fig. 4.13, where at large R, the scalings for both

monopole and quadrupole terms of the intensity structure function vary like

∼ R. However, what is important is that even though the new intermediate

asymptote is established, the imprint of anisotropy is left, which implies that

some valuable information about the underlying turbulent field is still left in this

regime. In fact, as we discussed earlier, the isotropy degree at this intermediate

regime is still around the same as the isotropy degree in the case of thin slice.

Therefore, isotropy degree can be an important tool to analyse turbulence in

optically thick medium.

We analyse the relative importance of velocity and density anisotropy when

both velocity and density effects are important. In the absence of absorption,

LP00 showed that at small scales, velocity effects are important for thin channel

thickness, while density effects become important for thick channels. Naturally,

we expect anisotropy to be dominated by velocity effects for thin channels and

by density effects for thick channel. Interestingly, in the presence of absorption,

this is not true any more. Looking at Fig. 4.14, we see that in the presence

of absorption, the degree of anisotropy is almost the same for both thin and

thick channels even when the density effects are present. Note that we have

considered a strong anisotropy cρ = −0.6 for density, and even this anisotropy

does not affect much of the isotropy degree in the case of thick slice ∆v = 1.
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Figure 4.14: Left: isotropy degree for the combination of Alfvén modes with
steep density of Kolmogorov index νρ = −2/3 and cρ = −0.6 at R = 0.1,
rc = 10, MA = 0.7 and γ = π/2. Right: isotropy degree for the anisotropic
density field but isotropic velocity field for the same spectral index as the left
figure. LOS angle γ = π/2, but all other parameters are also the same as
in left-hand panel. In both panels, the solid curve is in the absence of the
absorption while the dotted one is in the presence of absorption at αeff = 0.5.

Therefore, what we can say is that in the presence of absorption, the anisotropy

due to velocity effects is important at small scales even for the thick slice

thickness where spectral resolution is absent.

In the case of isotropic velocity field and anisotropic density field, our pre-

vious discussion applies again for both shallow and steep density spectra. Due

to the presence of strong absorption, the window e−α
2d̃s(0,v)/2 in Eq. (4.30)

suppresses any non-zero v and therefore in the case of strong absorption, it

effectively acts like a delta function δ(v). This explains why even in the opti-

cally thick regime ∆v = 1, we still have the anisotropy similar to optically thin

regime.
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Chapter 5

Centroid anisotropy

5.1 General formalism

In this section, the study of VC will be carried out keeping in mind that the

ISM is magnetized and therefore there exists a preferred direction, which in the

global frame of reference is the direction of the mean magnetic field. Due to the

presence of this preferred direction, turbulence is anisotropic; to be more pre-

cise, axisymmetric. This anisotropy is built in the general tensors representing

velocity, density and magnetic field correlations. The study of magnetic cor-

relation was carried out in LP12 , and the study of velocity correlation and

its application to study intensity anisotropies was carried out in Chapter 4. In

this chapter, we present another way of studying anisotropies, which is through

the study of anisotropy of VC correlation. The main focus of this section is to

develop a general formalism to study VC anisotropy for constant density field.

The velocity correlation in Fourier space ⟨vi(k)v∗j (k′)⟩ is given by Eq. (2.11),

and its representation in the real space ⟨vi(x1)vj(x1 + r)⟩ is given by Eq. (2.12).

Since the VC structure function in the case of constant density for an optically

thin medium is given by (cf. Eq. (3.20))

D(R) ∝
∫

dz(Dz(R, z)−Dz(0, z)) , (5.1)

59



one needs to evaluate integral of the type
∫
dz⟨vivj⟩ in order to evaluate the

above integral. This can effectively be obtained by noting that the integration

over the entire line of sight is equivalent to setting kz = 0 in the spectral domain

(LP12) . Therefore, we can use Eq. (2.12) to obtain

∫
dz⟨vivj⟩ =

1

(2π)2

∫
d2K eiK·RA(K, K̂ · Λ̂)

(
ξ̂K ⊗ ξ̂∗K

)
ij
. (5.2)

We use the plane wave expansion

eiK·R = eiKR cos ζR =
∞∑

n=−∞

inJn(KR)e
inζR , (5.3)

where cos ζR = K̂ · R̂. Similarly, decomposing the two dimensional power

spectra into series of harmonics

A(K, K̂ · Λ̂) =
∞∑

p=−∞

K−3−νÂpe
ipζΛ , (5.4)

where cos ζΛ = K̂ · Λ̂, we obtain

∫
dz⟨vivj⟩ =

1

(2π)2

∫
dKK−2−ν

∞∑
n=−∞

ineinϕJn(KR)

∞∑
p=−∞

Âpe
−i(n−p)ψ

(
ξ̂K ⊗ ξ̂∗K

)
ij
, (5.5)

where cosψ = K̂ · Λ̂. Due to the axisymmetric nature of the turbulence, only

even p is allowed in Eq. (5.4). With this, we finally obtain the following form

of VC structure function

D(R) =
1

(2π)2

∫
dKK−2−ν

∞∑
n=−∞

ineinϕ(Jn(0)δn0

−Jn(KR))
∞∑

p=−∞

Âpe
−i(n−p)ψ

(
ξ̂K ⊗ ξ̂∗K

)
zz
, (5.6)
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where n is even due to the fact that p is even. To study anisotropy of the

structure function, it is convenient to expand the structure function in series

of two dimensional circular harmonics

D(R, ϕ) =
∞∑

n=−∞

Dn(R)e
inϕ , (5.7)

where Dn(R) is the multipole moment of the VC structure function given by

(cf. Eq. (5.6))

Dn(R) = Cn(ν)
∞∑

p=−∞

ÂpWn−pR
1+ν , (5.8)

and Wp is the spectral weight function, which is the integral of the tensor

structure of a specific mode over the two dimensional angle ψ, given by

Wp =
1

2π

∫ 2π

0

dψ e−ipψ
(
ξ̂K ⊗ ξ̂∗K

)
zz
, (5.9)

and

Cn(ν) = in
∫

dKK−2−ν(Jn(0)δn0 − Jn(K)) = −
inΓ
[
1
2
(|n| − ν − 1)

]
22+νΓ

[
1
2
(|n|+ ν + 3)

] .
(5.10)

Eqs. (5.7) and (5.8) are the main equations that will be used subsequently to

obtain VC structure function of each MHD modes. An useful parameter for

comparison with past numerical work is the isotropy degree, defined as

Isotropy Degree =
D(R, ϕ = 0)

D(R, ϕ = π/2)
. (5.11)
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5.2 Centroids for different MHD modes

With this general formalism introduced in Sec. 5.1, we are ready to proceed

to study VC anisotropy in detail for each MHD modes. We will use the tensor

structures obtained Sec. 2.2 in order to study anisotropy due to each MHD

mode.

5.2.1 Alfvén mode

Making use of Eq. (2.25), we obtain

(
ξ̂K ⊗ ξ̂∗K

)
zz

= 1− λ̂zλ̂z

1− (K̂ · Λ̂)2
= sin2 γ

sin2 ψ

1− sin2 γ cos2 ψ
, (5.12)

where cos γ = r̂ · λ̂, and 0 ≤ γ ≤ π/2. Note that correlation given by Eq.

(5.12) vanishes at γ = 0, which is expected as motions are perpendicular to the

magnetic field. Making use of Eqs. (5.8) and (5.12), the multipole moments of

VC structure function for Alfvén mode can be written as

Dn(R) = Cn(2/3)
∞∑

p=−∞

ÂpWA
n−pR

5/3 , (5.13)

where Âp is the coefficient of two dimensional harmonic expansion of power

spectrum, and, as suggested in (Cho and Lazarian, 2002), is given by

Âp =
1

2π

∫ 2π

0

dψ e−ipψ exp

[
−M−4/3

A

| cosψ| sin γ
(1− cos2 ψ sin2 γ)2/3

]
, (5.14)

and WA
n−p spectral weight defined as

WA
n−p =

1

2π

∫ 2π

0

dψ e−i(n−p)ψ sin2 γ sin2 ψ

1− sin2 γ cos2 ψ
. (5.15)
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Figure 5.1: From left-hand to right-hand: spectral function of Alfvén mode
WA
p (γ) (left-hand), low-β fast mode W F

p (γ) (center) and high-β slow mode
W S
p (γ) (right-hand) for various index p (which is n− p in Eq. (5.8).

An analytical form of this spectral weight exists and is given by

WA
n−p = δp,n − cos γ

(
1− cos γ

sin γ

)|n−p|

. (5.16)

It is clear from Eqs. (5.13) and (5.15) that the VC structure function of Alfvén

mode vanishes at γ = 0, which reflects that there is no LOS component of

the Alfvén velocity when magnetic field is along the LOS. In the opposite case

γ = π/2 when magnetic field is perpendicular to the LOS, WA
n−p = δpn, and

multipole moments of the VC structure function Dn(R) ∝ An. It can be clearly

seen from the left hand panel of Fig. 5.1. For general γ, it is also clear from

the figure that the magnitude of the function WA
n−p decays rapidly as |n − p|

increases. This means that for our practical purposes, it is enough to just take

few terms near p ≈ n in the sum presented in Eq. (5.13).

Fig. 5.2 shows some important properties of Alfvén mode. Firstly, looking

at this figure one can clearly see that this mode looks more isotropic with

increasing Alfvén Mach numberMA, as characterised by the decreasing level of

quadrupole to monopole and octupole to monopole ratio and increasing level

of isotropy degree with increasing MA. It is also quite clear from the left-hand

and central panel of the figure that this mode becomes highly anisotropic at

γ = π/2, which is expected. Note that the finite quadrupole to monopole ratio

at γ = 0 is misleading in a sense that both quadrupole and monopole vanish

at γ = 0. In the case when one considers the mixture of modes, this problem is
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Figure 5.2: Alfvén mode. Left-hand and center: quadrupole to monopole and
octupole to monopole ratio for various γ. Solid line is for MA = 0.1, dotted
line for MA = 0.4 and dashed line for MA = 0.7. Right-hand: isotropy degree
for various MA at γ = π/2.

remedied as slow modes and high-β fast modes have non-vanishing monopole

at γ = 0.

5.2.2 Slow mode

Using Eq. (2.34), we can write

(
ξ̂K ⊗ ξ̂∗K

)
zz

=
λ̂zλ̂z

1− (K̂ · Λ̂)2
=

cos2 γ

1− sin2 γ cos2 ψ
. (5.17)

Using Eqs. (5.8) and (5.17), one can obtain the multipole moments of the VC

structure function as

Dn(R) = Cn(2/3)
∞∑

p=−∞

ÂpWS
n−pR

5/3 , (5.18)

where the spectral weight function WS
p is given by

WS
n−p =

1

2π

∫ 2π

0

dψ e−i(n−p)ψ cos2 γ

1− cos2 ψ sin2 γ

= cos γ

(
1− cos γ

sin γ

)|n−p|

. (5.19)

The spectral weight function of slow modes, given by Eq. (5.19), is plotted in

the left-hand panel of Fig. 5.1. It is clear from Fig. 5.1 that WS
n−p vanishes

at γ = π/2 for all n− p, and therefore, the structure function vanishes at this
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Figure 5.3: High-β slow mode. Left-hand and center: quadrupole to monopole
and octupole to monopole ratio for various γ. Solid line is forMA = 0.1, dotted
line for MA = 0.4 and dashed line for MA = 0.7. Right-hand: isotropy degree
for various MA at γ = π/3.
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Figure 5.4: Low-β slow mode. Left-hand and center: quadrupole to monopole
and octupole to monopole ratio for various γ. Solid line is forMA = 0.1, dotted
line for MA = 0.4 and dashed line for MA = 0.7. Right-hand: isotropy degree
for various MA at γ = π/3.

angle. In the opposite case, γ = 0, WS
n−p vanishes for all non-zero n − p and

equal to 1 for n = p, but Âp = 0 for p > 0; therefore, no anisotropy is present.

For general γ, WS
n−p decays very rapidly with increasing |n− p|, which implies

that for practical purposes, it is enough to just few terms near p ≈ n in the

sum presented in Eq. (5.18).

Slow modes in low-β have their correlation function as ⟨vivj⟩ ∝ λ̂iλ̂j and

therefore, it can be straightforwardly shown that

Dn(R) = Cn(2/3) cos
2 γÂnR

5/3 . (5.20)

Slow modes in both high- and low-β plasma are highly anisotropic at small

MA and become more isotropic with increasing MA. This is clearly shown in

Figs. 5.3 and 5.4. Moreover, the anisotropy level of both high- and low-β

slow modes are similar. This is because the dominant term in Eq.(5.18) is the
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diagonal term n = p, while the cos2 γ term in Eq. (5.20) cancels upon taking

ratio of multipole moments, thus the ratio of multipole moments in both cases

yield similar results. It is important to note that the anisotropy of slow modes

at γ = π/2 cannot be measured as both quadrupole and monopole vanish at

γ = π/2.

5.2.3 Fast mode

Fast modes in high-β are purely compressible modes with a velocity tensor

structure given by Eq. (2.28). The power spectrum of fast modes is isotropic,

and therefore the velocity correlation tensor is isotropic as well.

On the other hand, low-β fast mode is anisotropic with the anisotropy built

in its tensor structure (see Eq. (2.31)). Making use of Eq. (2.31), we obtain

(
ξ̂K ⊗ ξ̂∗K

)
zz

=
(sin γ cos γ)2 cos2 ψ

1− sin2 γ cos2 ψ
. (5.21)

Keeping in mind that fast modes have isotropic power spectrum so that only

Â0 in non-vanishing, we have

Dn(R) = Cn(1/2)A0WF
n R

3/2 , (5.22)

where the spectral weight function W F
n is defined as

WF
n =

1

2π

∫ 2π

0

dψe−inψ (sin γ cos γ)
2 cos2 ψ

1− sin2 γ cos2 ψ

= − cos2 γδn0 + cos γ

(
1− cos γ

sin γ

)|n|

. (5.23)

This spectral weight function of fast mode is plotted in the central panel of

Fig. 5.1, which shows that this function vanishes both at γ = 0 and γ = π/2.

The left-hand panel of Fig. 5.5 shows that the quadrupole to monopole ratio

of low-β fast mode is ∼ 0.3 through out the entire range of γ. The quadrupole

66



� �� �� �� ��

����

����

����

����

� �� �� �� ��

-�����

-�����

-�����

-�����

-�����

-�����

-�����

�����

� �� �� �� ��
�

�

��

��

��

Figure 5.5: Low-β fast mode. Left-hand to right-hand: quadrupole to
monopole, octupole to monopole ratio and isotropy degree for various γ.

to monopole ratio somewhat increases with increasing γ to its maximum value

≈ 0.4 at γ = π/2, however, the amplitude of both monopole and quadrupole is

∼ 0 at γ ∼ π/2. In fact, the optimal signal is obtained at γ ∼ π/3.

Note that since C2(1/2) > 0, the quadrupole moment of fast mode is posi-

tive, which is also distinct from Alfvén mode. We found that this is due to the

fact that anisotropy of fast mode comes from its anisotropic tensor structure

and not from its power spectrum.

5.2.4 Mixture of modes

Real world setting of MHD turbulence involves superposition of the differ-

ent MHD modes. Therefore, we consider the effect of mixtures of different

MHD modes in the observed VC anisotropy. In the case of mixture between

Alfvén and slow modes, Fig. 5.6 clearly shows that the observed anisotropy

is unaffected by this mixture in different regimes. For instance, the observed

anisotropy of the mixture at γ ≳ π/4 is the same as that of Alfvén mode alone

while at γ ≲ π/4, the anisotropy level is similar to that of slow modes alone.

This is again due to the fact that at γ ≈ π/2 signal from Alfvén mode is dom-

inant while at γ ≈ 0 signal from slow mode is dominant. On the other hand,

we expect the mixture of fast mode with other two modes to decrease the level

of anisotropy. This is because the quadrupole moment (which is the measure

of anisotropy) of fast mode is opposite in sign than that of other modes.
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Figure 5.6: Mixture of modes. Left-hand: quadrupole to monopole ratio for a
mixture of 85% Alfvén and 15% high-β slow modes. Right-hand: same for a
mixture of 50% Alfvén and 50% low-β slow modes. Solid line is for MA = 0.1,
dotted line for MA = 0.4 and dashed line for MA = 0.7.

5.2.5 Density effects

The main aim of using velocity VC is to obtain information about velocity

spectrum. Looking at Eq. (3.20), one can see that the VC structure function

contains not only the contribution from velocity effects but also from density

effects. In this regard, separating velocity contribution from density contribu-

tion is not always possible. In particular, if the density spectrum is shallow, as

is the case for super-sonic turbulence, one might not be able obtain the velocity

spectra from the VC. On the other hand, for a steep density spectra the veloc-

ity spectra can be extracted if the density dispersion in a turbulent field is less

than the mean density (Esquivel et al., 2007). This has been clearly illustrated

in the left-hand panel of the Fig. 5.7, where the VC structure function is plot-

ted for various ratios of σρ/ρ0. It is clearly shown in the figure that the velocity

spectra can be obtained when σρ/ρ0 < 1, while the spectra is corrupted by the

density-velocity cross-term when σρ/ρ0 > 1.

As explained in Lazarian and Esquivel (2003, henceforth LE03), VC can

trace the velocity spectrum if the VC structure function is much larger than

the first term of Eq. (3.20). If this condition is not fulfilled, the velocity

spectrum can be obtained by subtracting the first term (product of velocity

dispersion and density correlation) of Eq. (3.20) as long as the density corre-
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lation can be measured independently1 and density-velocity correlation is not

strong. A potential challenge is the determination of velocity dispersion in

the case when thermal broadening is large. However, one can circumvent this

by using emission lines of heavier species. In this regard, LE03 introduced a

notion of ‘modified’ velocity VC (MVC), where the first term of Eq. (3.20)

was subtracted. Formally, the structure function of MVC in the absence of

density-velocity correlation is

DMVC(R) ≈
∫ S

−S
dz[ξρ(r)Dz(r)− ξρ(0, z)Dz(0, z)] . (5.24)

It was explained in LE06 that MVCs can trace the velocity spectrum better

than the ‘unnormalised’ VC (UVC) if the lag R under study be smaller than

the saturation scale of the velocity structure function as well as the line of

sight extent S of the turbulent cloud. We find that the MVC is able to trace

the velocity spectra even for a shallow spectrum, as illustrated in Fig. 5.7.

In fact, Fig. 5.8 clearly show that modified VC work better than UVC at

smaller lags R. Note that for shallow density field, density-velocity cross-term

yields a scaling R1+νρ+ν , while pure velocity term yields R1+ν , and since νρ < 0

for a shallow density spectra, this cross-term scaling can dominate the MVC

scaling is extremely small scale. Although, we see that MVCs work well even

for shallow density spectra, there are two important points to make. First,

we require σρ/ρ0 < 1 to obtain velocity spectra correctly, otherwise density-

velocity correlation (which we ignored) becomes important (Esquivel et al.

2007). However, shallow density often does not fulfil this criteria. Second,

shallow density is often associated with high sonic Mach number Ms where

non-Gaussian features are often prominent, significantly affecting the statistics.

To sum up, one needs to know σρ/ρ0 to conclude if MVCs work for shallow

1Note that one can obtain this contribution from the density term observationally by
measuring intensity fluctuations. For instance, in the language of VCA this term can be
obtained through intensity statistics in the ‘thick slice’ limit (see LP00 for more details).
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Figure 5.7: First panel: MVC structure function for various σρ/ρ0 for steep
velocity field of Kolmogorov index 2/3 and density fields of index νρ = 1/2.
The solid line is expected power law of R5/3, the dotted line is for σρ/ρ0 = 0.5
and the dashed line for σρ/ρ0 = 1. One can see some deviation from the power
law behaviour already at σρ/ρ0 = 1. This deviation is expected to be stronger
with increasing σρ/ρ0. Second panel: The same but for shallow density with
νρ = −1/2. The dotted line is for σρ/ρ0 = 0.5 and dashed line is for σρ/ρ0 = 1.
Solid line is the power law R5/3 from pure velocity effects.

spectra.

Our study of anisotropy was for constant density field. In the case when

density field is anisotropic, one should also account for the anisotropy due to

density effects as well. For MVC the anisotropy is dominated by velocity effects

as long as the density dispersion is less than the mean density. On the other

hand, both density and velocity effects contribute to the UVC anisotropy.

5.2.6 Comparisons with earlier numerical works

The numerical study of anisotropies with VC has been carried out in the past in

LE06, Esquivel and Lazarian (2011, hereafter EL11) and Burkhart et al. (2014,

hereafter BX14). Here we compare our findings with the findings of EL11 and

BX14. EL11 studied anisotropies at γ = π/2, while BX14 studied anisotropy

at varying γ as well. Both of these studies found out a clear dependence of

anisotropy with Alfvén Mach number MA. They reported that the anisotropy

increases with decreasing MA, which coincides with our result. As an example,

at MA = 0.7 and Ms = 2.3, the degree of isotropy in both the papers was

reported to be ∼ 0.3, while our results show that in the case when Alfvén and

slow modes are dominant, the isotropy degree at MA = 0.7 is around ∼ 0.25,
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Figure 5.8: Plot showing comparison of MVC with UVC at σρ/ρ0 = 0.5 at short
scales R < S. The dashed line in both the panels are for MVC, dotted line is
for UVC and solid line shows the power law R5/3 from pure velocity effects. In
both figures a steep velocity spectrum of Kolmogorov index is assumed, whereas
density spectrum is assumed to be steep (with νρ = 1/2) in the first panel and
shallow (with νρ = −1/2) in the second. It is clear that MVC works well for
both steep and shallow spectra.

which is close to their results. Our finding that the degree of anisotropy is

highest at γ = π/2 matches with the findings in BX14, where it was stated

that at γ = π/2 the anisotropy is highest regardless of the sonic Mach number

Ms. It is clear from our finding that the isotropy degree of VC is clearly

dependent on MA. However, it was discussed in EL11 and BX14 that besides

a dependence of isotropy degree of MA, there exists a weak dependence on Ms

as well. Although there is no direct role of Ms in determining the degree of

isotropy in our formalism, this weak dependence can be explained by noting

that with an increasingMs, there is an increasing contribution from fast mode,

thus decreasing the level of anisotropy. This is consistent with the results in

EL11 and BX14.
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Chapter 6

Discussion

6.1 Foundations of the technique

This thesis continues the work of quantitative study of the PPV space that

was initiated in LP00 for the case of optically thin turbulent medium and

later extended in LP04 for the absorbing media. These advances produced the

machinery for describing the PPV space that our present study is based upon.

The next significant advancement is related to the present-day understand-

ing of MHD turbulence theory (see Beresnyak and Lazarian 2015 for a review).

Theoretical and numerical research (GS95, Lithwick and Goldreich 2001; Cho

and Lazarian 2002, 2003; Kowal and Lazarian 2010) have shown that the MHD

turbulence can be viewed as a superposition of the cascades of Alfvén, slow and

fast modes. The representation of the statistical properties of these cascades

in the global frame of reference was obtained in LP12, where the anisotropy

analysis of synchrotron fluctuations was quantified. We particularly stress the

importance of the observational frame, as this frame is related to the mean

magnetic field, and the statistics of fluctuations in this frame is different from

the statistics in the local magnetic field frame in which the Alfvénic turbulence

is formulated (Cho and Vishniac 2000; LV00; Maron and Goldreich 2001; Cho

et al. 2002).
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6.2 New Power of VCA and centroids

The present study significantly extends the ability of the VCA and VC tech-

niques by augmenting their ability to study turbulence magnetization and to

determine the magnetic field direction in a turbulent cloud. It also outlines

possible ways for separating contribution of Alfvén, slow and fast modes. The

latter is important due to the fact that different modes have different impact for

astrophysical processes. For instance, Alfvénic modes are essential for magnetic

field reconnection (LV99; see also Lazarian et al. 2015 and references therein),

superdiffusion of cosmic rays perpendicular to the mean magnetic field direc-

tion (Lazarian and Yan 2014), while fast modes dominate resonance scattering

of cosmic rays (Yan and Lazarian 2002). The potential ability of VCA and

VC to determine the relative contribution of these different modes for spectro-

scopic data complements this ability for the technique in LP12 and LP16 for

synchrotron data. This has the potential of bringing observational quantitative

studies of turbulence to a new level.

6.3 Model assumptions

Our analytical studies require adopting different assumptions. First is that the

fluctuations are Gaussian. This assumption is satisfied to an appreciable degree

by the turbulent velocity field (see Monin et al. 1975), but is not necessarily a

good assumption for the description of density fluctuations, especially at high

sonic Mach number. Fortunately, the VCA is mostly focused on studying veloc-

ity statistics and for some regimes, e.g. steep density, the density fluctuations

do not affect statistics of thin slices. It was also shown in LP00 that the VCA

formulae stay valid even for the lognormal distribution of density. Thus, we do

not believe that our Gaussianity assumption is a serious shortcoming.

The independence of velocity and density fluctuations is another assump-

tion employed in the derivation of the basic equations of the VCA. The effect
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of this assumption was analysed in LP00, where it was shown that even in

the case of the maximal possible velocity-density cross-correlation that follows

from general Cauchy-Schwarz inequality (see Mathews and Walker 1970), the

expressions for the thin slices stay the same for the steep velocity (see more

discussion in appendix D of LP00). The measures of anisotropy are expected

to be more robust compared to the spectrum. Thus, we expect the VCA not

to be affected by this assumption.

The decomposition of MHD turbulence into Alfvén, slow and fast modes

is also an approximation based on the assumption of small coupling between

these different modes. The degree of coupling of the modes was quantified in

Cho and Lazarian (2002), and it was shown to be very moderate unless the

sonic Mach number of the media is very high. The exact spectral slope of fast

modes may change for high sonic Mach number, but this should not change

significantly the anisotropy analysis in this thesis.

In terms of the turbulent media to be studied by the techniques we have

studied in our work, it is assumed that the media are isothermal. This is

an excellent assumption for molecular clouds. The effects of the variations

of temperature within atomic hydrogen were discussed in LP00, where it was

shown that temperature variations make the contributions of hotter gas sub-

dominant compared to the colder gas.

6.4 Comparison between VCA, Centroids and

VCS

The VCA introduced in LP00 provided a new foundation for studying velocity

and density turbulence by studying the changes of spectral slope of intensity

fluctuations within velocity slices of PPV cubes. It was shown in LP00 that

by choosing a sufficiently thin slice, one might be able recover the velocity

spectrum, whereas for sufficiently thick slice the velocity effects get washed
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away and only density spectrum can be recovered. The VCA was later extended

in LP04 to account for the effects of self-absorption of emission lines. The

results of LP04 suggests that in the presence of self-absorption, one might not

be able to recover velocity spectrum, especially if the absorption is strong or

the thermal broadening βT is larger than the dispersion of the velocity field. In

fact, it was shown in LP04 that at some intermediate wavenumberK, one might

observe a universal spectrum P (K) ∼ K−3, a spectrum measured in a number

of studies (see examples in Lazarian 2009). The original formulation of VCA

dealt only with power spectra, and this technique was further extended in this

thesis to study the anisotropies induced by magnetic field in a turbulent plasma.

This study shows how the anisotropy of an underlying turbulent field maps to

anisotropy of intensity fluctuations, and shows how the level of anisotropy

depends on the Alfvén Mach number as well as the angle between LOS and

mean magnetic field.

VC is another powerful technique to study turbulence. We believe that our

extension of VC to study turbulence anisotropies significantly improves the

value and power of this technique. The geometrical construction of VCA and

UVC is presented in Fig. 3.2.

Although both VCA and VC can be used to study turbulence properties,

there are several differences between the two techniques. The first important

difference between the VCA and VC is how thermal broadening βT affects them.

While VCA cannot recover velocity spectrum at scales R where Dz(R) < βT,

VC still work in this regime. This means that VCA does not work well for sub-

sonic turbulence unless we use emission lines from sub-dominant slow massive

species. VC, on the other hand, are not reliable for supersonic turbulence (see

Esquivel et al. 2007). This is in contrast with VCA, which works well in this

regime.

Besides VCA and VC, VCS is another useful technique to study turbulence.

Unlike VCA and VC, VCS exclusively uses data along the velocity coordinate
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(in particular in the Fourier space), and one does not need to spatially resolve

the scale of turbulence under study. A major advantage of VCS is that only

few independent measurements are enough to obtain information about the

underlying velocity field (Chepurnov & Lazarian 2008). It is important to note,

however, that VCS does not deal with anisotropies, but only with spectrum.

We stress the importance of using different techniques like VCA, VCS and

VC when studying multi-phase ISM, e.g. H I and H α. While VCA and VCS

do not work well for gas components with large thermal broadening βT due to

thermal dampening of the fluctuations1, VC work well for both hot and cold

components at least as long as the turbulence is subsonic. Therefore, synergy

of different techniques is advantageous, given that different techniques work

well at different regimes.

6.5 Spectroscopic and synchrotron studies of

magnetic turbulence

For synchrotron polarization studies, the analogue of PPV cube is the position-

position-frequency (PPF) cube. In LP16, a number of techniques were sug-

gested aimed at obtaining the information about magnetic field and the den-

sity of cosmic electrons using these cubes. In terms of anisotropy studies, it

was suggested there to make use of the analysis of synchrotron intensity fluc-

tuations in order to determine the same parameters that we focused in this

study, namely the mean magnetic field direction, the degree of magnetization

of the media and the contribution of Alfvén, slow and fast modes. This sug-

gests that studies of turbulence using synchrotron and spectroscopic data can

be very much complementary. Indeed, for the understanding of dynamics of

the ISM as well as for processes of the transport of heat and cosmic rays, it is

1One strategy to use VCA and VCS in a hot medium is to use emission lines from heavy
species like Fe.
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essential to understand the properties of turbulent cascade in different inter-

stellar phases. Synchrotron emission samples turbulence mostly in the diffuse

hot and warm media (see Draine 2010 for the table of the interstellar phases),

while the turbulence in H I and molecular gas is well sampled via spectroscopic

measurements2. The correspondence of the properties of magnetic turbulence

in different interstellar phases would testify about the single turbulent cascade

on the galactic scale, which can be a discovery with important consequences

for different branches of astrophysical research, e.g. for cosmic ray physics (see

Schlickeiser 2002).

While the properties of turbulent fluctuations of magnetic field and veloc-

ity are closely related, there are differences. In particular, magnetic field is

solenoidal, while velocity in MHD turbulence can have a potential component.

Therefore, the treatments of anisotropy of magnetic turbulence and velocity

turbulence in this work and in LP12 are similar, but not completely identical.

Potentially, the VCA technique provides way to study compressible motions in

a more adequate way.

The generalization of the anisotropy study from pure synchrotron inten-

sity in LP12 to synchrotron polarization in LP15 opened up ways to study

anisotropies of MHD statistics in the PPF space. It is also interesting to com-

pare the statistics of the PPV and the PPF. The PPV statistics is homogeneous

along the v-axis, while the one of PPF is inhomogeneous. As a result, due to the

effect of Faraday depolarization, for different frequencies one can sample turbu-

lence at different distances from the observer, which allows study of the spatial

distribution of turbulence. Such an effect is not present for the PPV studies.

However, the homogeneity of the PPV in the v-direction allows one to better

separate the contribution of the Alfvén, fast and slow modes by varying the

slice thickness. Therefore, the statistical information in PPV is complimentary

2Future X-ray spectroscopy (similar to Astro-H (Mitsuda et al., 2014)) should provide a
way to study hot plasma turbulence using spectroscopic techniques as well.
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to the statistics that can be obtained from PPF.

6.6 Synergy with other techniques

In this thesis, we studied anisotropies of intensity fluctuations and VC fluc-

tuations by extensively making use of PPV space formalism. We have also

discussed and compared VC with the VCA and VCS, the techniques that were

developed also by using PPV space formalism. Another technique called prin-

cipal component analysis (PCA, see Brunt and Heyer 2002) can also be used to

study turbulence anisotropies. However, unlike the VC and VCA, it is not easy

to quantify PCA using PPV data. Nevertheless, recent studies have shown the

sensitivity of PCA to the phase information (Correia et al. 2016), although the

trend is not yet clear.

Another important technique to study turbulence using velocity slice of

PPV space is the spectral correlation function (SCF, see Rosolowsky et al.

1999). The SCF is very similar to VCA if one removes the adjustable param-

eters from SCF. In fact, both SCF and VCA measure correlations of intensity

in velocity slices of PPV, but the SCF treats outcomes empirically. There also

exist numerous techniques identifying and analyzing clumps and shells in PPV

(see Houlahan and Scalo 1992; Williams et al. 1994; Stutzki and Guesten 1990;

Pineda et al. 2006; Ikeda et al. 2007).

Besides the VCA and VC, there are also some other techniques to study

sonic and Alfvén Mach numbers. Some of these techniques include so called

Tsallis statistics (see Esquivel and Lazarian 2010; Tofflemire et al. 2011), bi-

spectrum (see Burkhart et al. 2009), and genus analysis (see Chepurnov et al.

2008). Using different available techniques allows one to obtain a comprehen-

sive picture of MHD turbulence.

One of the parameters that influence the VCA is the density statistics, which

includes both its spectrum and anisotropy. This statistics can be obtained
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through the analysis of different data sets, e.g. dust emission or absorption.

This should increase the accuracy of the VCA in determining the statistics of

velocity.

Combining the present technique with the synchrotron studies for indepen-

dently obtaining the magnetization and decomposition of turbulence into the

fundamental MHD modes is very advantageous. The intriguing opportunity

of obtaining the angle between the mean magnetic field and the LOS on the

basis of synchrotron polarization data that were discussed in LP16 allows one

to remove the degeneracy between this angle and the Mach number that exists

otherwise.

6.7 Future work

All the studies of turbulence that were mentioned above do not account for the

absorption by dust, however. This is acceptable for studies of turbulence using

radio lines, e.g. 21 cm H I line, CO lines. However, dust absorption affects

optical and UV lines. In fact, this was a problem that the earlier researchers

were aware of (see Münch 1958). Thus, a natural extension of the important

techniques, such as VCA, VCS and VC, that are used to study ISM turbulence

would be to take into account the effects of dust absorption. This has already

been achieved in our recent work Kandel et al. (2017a), where the effects of

dust absorption on spectroscopic study of turbulence was studied. Physically,

emission from optical depth larger than unity are absorbed by dust. However,

in the presence of dust density fluctuations, the physical depth along the line

of sight at which the optical depth reaches unity also fluctuates. Thus, the

aim of the paper was to answer the following question: in the presence of dust

absorption, can velocity and density spectra characterising turbulence still be

obtained using emission lines? Our work shows that while velocity spectra can

be obtained even in the presence of dust absorption, one might not be able to
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obtain gas density spectra, as dust saturates different statistical measures.

As a next step, we are interested in using dust polarization maps to study

ISM turbulence. Dusts are important foregrounds that need to be subtracted

for the study of CMB polarization. However, they are also valuable in the

study of ISM turbulence. Polarization maps can be decomposed into purely

solenoidal E modes and purely compressible B modes. Recent Planck measure-

ments of dust polarization at 353 GHz shows that the power of E mode is twice

that of power in B mode (Adam et al., 2016). This result was surprising, as

previous expectation was an equal power in these polarization modes. Cald-

well et al. (2017) attempted to explain this surprising result using the model

of MHD turbulence as a superposition of three MHD waves: Alfvén, fast and

slow. Based on their result, they concluded that at large scale turbulence could

be unimportant, as there is a very narrow range of parameters in the theoretical

model that could possibly mimic the Planck result. This result perturbed the

community as it questions the generally accepted notion of turbulent origin of

dust-polarization fluctuations. To address the issue raised by Caldwell et al.

(2017), we are revisiting the problem in Kandel et al. (2017b) and are arguing

that with realistic interstellar medium (ISM) conditions, the range of theoret-

ical parameters that mimics the Planck result does not contradict to what we

know about the ISM at high galactic latitudes. In fact, we showed that the

Planck result can be explained in the context of MHD turbulence if the Alfvén

Mach number in the high Galactic latitude is less than 0.5 (see Fig. 6.1). The

latter number is in agreement with the existing expectations (see Beck 2016).

Our ongoing work (in prep) has also raised some interesting and exciting pos-

sibilities of using temperature-E mode (TE) cross-correlation to study extent

of density-magnetic field correlation, compressibility of the turbulent media.

We also plan to carry out similar analysis using Planck result of synchrotron

polarization.
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Figure 6.1: Ratio of E to B power for dust polarization for an equal mix of
Alfvén, fast and slow modes. Three curves at β = 0.1, β = 2 and β = 10 are
shown. The dotted line is the Planck expectation of 2. One can clearly see
that at low MA, the ratio of 2 can be easily achieved.
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Chapter 7

Summary

In this thesis, we have extended the VCA and VC technique based on the anal-

ysis of fluctuation statistics in the velocity slices of the PPV space (i.e. velocity

channel maps). Unlike the earlier study in LP00 and LP04, we accounted for

the anisotropy of turbulence and provided expressions for the anisotropies in

the velocity channel maps and VC maps that arise from Alfvén, slow and fast

modes of MHD turbulence. We calculated how these anisotropies change with

the thickness of the velocity channel maps and compared our results with the

numerical study in ELP15.

Our study main results are as follows.

• Analytical expressions for the measure of anisotropy of intensity fluctua-

tions in slices of PPV space, as well as for the VC were obtained.

• The procedures of separating contributions to anisotropy arising from

density fluctuations and velocity fluctuations were studied, and the tech-

nique of establishing the anisotropies of density and velocity underlying

turbulent field was formulated.

• The separation of the contributions from Alfvén, slow and fast modes

was investigated for the thin slice regime of VCA, as well as for VC,

and the ratio of the anisotropic to isotropic part of the slice intensity
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fluctuations, as well as VC fluctuations were identified as a measure for

fluid magnetization and compressibility.

• We showed the complementary nature of turbulence studies with VC

and the Velocity Channel Analysis (VCA). Both techniques can measure

turbulence spectra and anisotropy. While VC are reliable for study of

subsonic turbulence statistics, one has to use only heavier species, e.g.

metals in hydrogen gas, to study subsonic turbulence using VCA.

• Analytical expression of UVC structure function and anisotropy level

for sub-Alfvénic turbulence are derived. These expressions are used to

study the anisotropy arising from three MHD modes: Alfvén, fast and

slow. It is shown that the quadrupole to monopole ratio of fast mode is

positive, while it is negative for Alfvén and slow mode. In other words,

iso-correlation contours are elongated along sky-projected magnetic field

direction for Alfvén and slow modes, and orthogonal to it for fast modes,

which is same as what VCA predicts.
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Measuring the alfvénic nature of the interstellar medium: Velocity anisotropy

revisited. ApJ, 790(2):130, 2014.

Blakesley Burkhart, A Lazarian, D Balsara, C Meyer, and J Cho. Alfvénic
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Appendix A

Turbulence Statistics in PPV

Space

Below we present the main expressions of the theory that we are going to use

within our study.

The transformation between real space and PPV space is of the form (X, z) →

(X, v) where v is the LOS velocity of the gas element. The PPV density ρs(X, v)

is dependent on both density of the gas in the real space and its velocity, and

is written as (LP04)

ρs(X, v) =

∫ S

0

dzρ(x)Φv(v,x), (A.1)

where S is spatial extent of the turbulent cloud and Φv is the Maxwell distri-

bution of the thermal component of the turbulent particles defined by

Φv(v,x) =
1√
2πβT

exp

[
−(v − u(x))2

2βT

]
, (A.2)

where u(x) is the non-thermal velocity of a particle at position x which consists

of the contribution of turbulent velocity as coherent velocity with the gas cloud.

If the gas is isolated, and coherent motions are negligible, as we adopt in
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this paper, u is the LOS component of the turbulent motion, and βT is the

temperature parameter.

Intensity of radiation in an optically thin line is proportional to the ‘density

of emitters’ of PPV space. This density is the result of the velocity mapping

of emitters from XYZ to XYV space and is, in general, significantly different

from the real space density. To describe statistical properties of PPV density,

we use the correlation

ξs(R, ϕ, v1, v2) ≡ ⟨ρs(X1, v1)ρs(X2, v2)⟩, (A.3)

or structure

ds(R, ϕ, v1, v2) =
⟨
(ρs(X1, v1)− ρs(X2, v2))

2⟩ , (A.4)

functions, where, in contrast to LP00 we take into account the dependence of

the correlations on the angle ϕ of the separation vector R = X1−X2. between

the two LOS,

The averaging is performed over realizations of two random fields turbulent

velocity u and real space density ρ of the emitters. Statistical properties of

these quantities reflect the properties of the magnetized turbulent processes.

The turbulent velocity field is assumed to be described by the Gaussian two

point probability distribution function (LP00)

P (u1, u2) =
1

π
√

2Dz(∞)−Dz(r)
√
Dz(r)

exp

[
− u2

2Dz(r)

]
exp

[
−

u2+
Dz(∞)−Dz(r)/2

]
, (A.5)

where u1 = uz(r1), . . . and u = u1 − u2, u+ = (u1 + u2)/2.

No assumptions about Gaussianity of the density inhomogeneities of the

sources are made. We introduce density correlation function ξ(r) ≡ ⟨ρ(x1)ρ(x2)⟩
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whose properties are to be determined or modelled. Splitting the density

into the mean value and fluctuations, ρ = ⟨ρ⟩ + δρ, we have ξ(r) = ⟨ρ⟩2 +

⟨δρ(x1)δρ(x2)⟩ = ⟨ρ⟩2 + ξ̃(r). For specific calculations, we consider two dis-

tinct cases. If density perturbations have a shallow power spectrum, ⟨δρ2k⟩ ∝

k−3+νρ , νρ > 0, the correlation function is modelled as

ξ(r) = ⟨ρ⟩2 + ⟨δρ2⟩ r
νρ
c

r
νρ
c + rνρ

≈⟨ρ⟩2 + ⟨δρ2⟩ (rc/r)νρ , r > rc (A.6)

while if the power spectrum is steep, νρ < 0, the density correlation function is

ξ(r) = ⟨ρ⟩2 + ⟨δρ2⟩ r
−νρ
c

r
−νρ
c + r−νρ

≈ ⟨ρ⟩2 + ⟨δρ2⟩ − ⟨δρ2⟩ (r/rc)−νρ , (A.7)

for r < rc. The difference between the two cases is that for shallow density, the

scaling range lies at separations exceeding the correlation length, r > rc, with rc

associated with short scale damping, while for steep density it lies at separations

shorter than the correlation length, r < rc, which is now associated with the

largest energy injection scale. Eq. [A.7] shows that for the steep spectrum,

scale dependent part of the correlation function is always subdominant to the

constant ⟨ρ⟩2 + ⟨δρ2⟩ = ⟨ρ2⟩.

Using Eq. (A.1) and Eq. (A.5), it can be shown that (see LP04)

ξs(r,v1, v2) ≈
S√

Dz(∞) + βT
exp

[
−

v2+
Dz(∞) + βT

]
∫ S

−S
dz

(
1− |z|

S

)
⟨ρ⟩2 + ξ̃(r)√
Dz(r) + 2βT

exp

[
− v2

2(Dz(r) + 2βT)

]
. (A.8)

under the assumption that density fluctuations are uncorrelated with the tur-

bulent velocities. The arguments can be found in LP00, but importantly this

assumption has been checked in numerical MHD simulations (Esquivel et al.,

2003) and has been found to hold with sufficient accuracy.

The first exponential term reflects the amplitude of correlation depending
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on the value of the central velocity v+ relative to the variance of the turbu-

lent velocities D(∞)/2. The LOS integral term reflects the statistics of the

turbulence at different separation scales R and velocity differences v.

Since density correlation function has a constant term, there are non-trivial

correlations in PPV cube even for uniform density of emitters. They arise from

different velocities of the emitters. Thus in our discussion we split the PPV

correlations into velocity and density contributions

ξ̃s(R, ϕ, v) = ξ̃v(R, ϕ, v) + ξ̃ρ(R, ϕ, v), (A.9)

where

ξ̃v(R, ϕ, v) ∝
∫ S

−S
dz

ρ̄2(r)√
Dz(r)

exp

[
− v2

2Dz(r)

]
, (A.10)

and

ξ̃ρ(R, ϕ, v) ∝
∫ S

−S
dz

ξ̃(r)√
Dz(r)

exp

[
− v2

2Dz(r)

]
. (A.11)

In these expressions we have omitted for brevity the thermal effects and the

finite cloud size effects. We should stress that although density correlation

contribution is zero when the gas density is uniform, it depends on both density

and velocity fluctuations when gas distribution is inhomogeneous.

This theory for PPV correlations allows for angular dependence of the cor-

relation functions ξ and Dz. Consequently, after the integration over z the

anisotropic dependence on polar angle ϕ is still allowed. This allows us, in

what follows, to use whole machinery developed in our earlier works to deal

with the anisotropic turbulence.

Let us turn to the quantity that can be measured in the observations. The

measured intensity of radiation in a velocity channel of width ∆v, centred at

velocty vi is given by the integral

I(R, vi) = ϵ

∫ vi+∆v/2

vi−∆v/2

dv1ρs(R, v1). (A.12)
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With this, it can be shown that the intensity correlation function is (LP04)

ξI(R,∆v) ∝
ϵ2ρ̄2

2π

∫ S

−S
dz

1 + ξ̃s(r)

D
1/2
z (r)∫ ∞

−∞
dvWi(v,∆v, βT) exp

[
− v2

2Dz(r)

]
, (A.13)

where Wi(v,∆v, β) is a composite window of channel i. Its properties are such

that for zero temperature βT = 0 its width is bounded by ∆v, but for high

temperature βT > ∆v2 it is given by the thermal width βT. Thus, thermal

broadening sets the minimal effective channel width. In LP00 we have shown

the importance of distinction between thin and thick channels. The criterion is

set by comparison of characteristic velocity difference at the scale of separation

between the LOS,
√
D(R) and the channel width ∆v. In thin channels such

difference is resolved ∆v <
√
Dz(R), while in thick it is not, ∆v >

√
Dz(R).

Thus in a thin channel velocity differences along the LOS within the channel

can be neglected, v = 0 leaving intensity correlations to be sensitive both to

density and velocity differences between the LOS,

ξI(R,∆v) ∝
ϵ2ρ̄2

2π

∫ S

−S
dz

1 + ξ̃s(r)

D
1/2
z (r)

. (A.14)

In contrast, in thick channels, velocities are integrated over, leaving only density

inhomogeneities as the source of intensity fluctuations

ξI(R,∆v) ∝
ϵ2ρ̄2

2π

∫ S

−S
dz
[
1 + ξ̃s(r)

]
. (A.15)

We note that thick slicing can be obtained synthetically, by adding intensities

(before computing the correlations) for adjacent thinner channels. Our ability

to have thin velocity channels is limited by the instrument spectral resolution

and the thermal broadening.
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Appendix B

General Approach To Find

Velocity Correlation In Real

Space

The velocity correlation tensor in the axisymmetric case in Fourier space is

⟨vi(k)v∗j (k′)⟩ = A(k, k̂ · λ̂)
(
ξ̂k ⊗ ξ̂∗k

)
ij
, (B.1)

where A(k, k̂ · λ̂) is the power spectrum and
(
ξ̂k ⊗ ξ̂∗k

)
ij
is a λ̂-dependent ten-

sor build from the displacement direction characteristic for the given mode.

Correspondingly, in real space the velocity correlation function can be written

as

⟨vi(x1)vj(x1 + r)⟩ =
∫

dk k2 dΩk e
ik·rA(k, k̂ · λ̂)

(
ξ̂k ⊗ ξ̂∗k

)
ij
. (B.2)

The power spectrum can be represented in terms of spherical harmonics as

A(k, k̂ · λ̂) =
∑
ℓ1m1

4π

2ℓ1 + 1
Aℓ1(k)Yℓ1m1(k̂)Y

∗
ℓ1m1

(λ̂), (B.3)
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and similarly (
ξ̂k ⊗ ξ̂∗k

)
ij
=
∑
ℓ2m2

cijℓ2m2
(λ̂)Yℓ2m2(k̂) , (B.4)

Using well-known representation for the plane wave

eik.r = 4π
∑
ℓm

iℓjℓ(kr)Yℓm(k̂)Y
∗
ℓm(r̂). (B.5)

we obtain

⟨vivj⟩ =
∑
ℓm

4πiℓY ∗
ℓm(r̂)

∑
ℓ1m1

4π

2ℓ1 + 1
Y ∗
ℓ1m1

(λ̂)
∑
ℓ2m2

cijℓ2m2
(λ̂)∫

dk k2 dΩk jℓ(kr)Aℓ1(k)Yℓm(k̂)Yℓ1m1(k̂)Yℓ2m2(k̂) (B.6)

Defining

Tℓℓ1(r) =
∫

dk k2jℓ(kr)Aℓ1(k) (B.7)

and the symbol Ψ that can be represented in terms of Wigner-3j symbols

Ψℓm,ℓ1m1,ℓ2m2 =

∫
dΩkYℓm(θk, ϕk)Yℓ1m1(θk, ϕk)Yℓ2m2(θk, ϕk) (B.8)

Ψℓm,ℓ1m1,ℓ2m2 =

√
(2ℓ+ 1)(2ℓ1 + 1)(2ℓ2 + 1)

4π

⎛⎝ℓ ℓ1 ℓ2

0 0 0

⎞⎠
⎛⎝ ℓ ℓ1 ℓ2

m m1 m2

⎞⎠ (B.9)

we arrive at a suitable for further analysis form for the correlation tensor

⟨vivj⟩ =
∑
ℓm

4πiℓY ∗
ℓm(r̂)

∑
ℓ1m1

4π

2ℓ1 + 1
Y ∗
ℓ1m1

(λ̂)

∑
ℓ2m2

cijℓ2m2
(λ̂)Tℓℓ1(r)Ψℓm,ℓ1m1,ℓ2m2 . (B.10)
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For this expression, we will derive Aξ, Bξ, Cξ and Dξ (cf. Eq.(2.6)). We

develop the following procedure to find these coefficients. Using the fact that

Aξ, Bξ, Cξ and Dξ are invariant under rotation of coordinate frame, as these

coefficients depend only on µ ≡ r̂ · λ̂, we shall work in λ̂ = ẑ frame. In this

frame, Eq. (B.10) is simplified to

⟨vivj⟩ =
∑
ℓm

4πiℓ(−1)mYℓm(r̂)
∑
ℓ1

√
4π

2ℓ1 + 1

∑
ℓ2

cijℓ2m(ẑ)

Tℓℓ1(r)Ψℓ(−m),ℓ10,ℓ2m . (B.11)

where we have used the fact that Wigner-3j symbols vanish form+m1+m2 ̸= 0

and the relation Y ∗
ℓ(−m)(r̂) = (−1)mYℓm(r̂). We also note that cijℓ2m(ẑ) are non-

zero only for |m| ≤ 2 (since they are the multipole expansion of a direct square

of a vector, we shall see this in explicit calculations further on). For an isotropic

power spectrum, only ℓ1 = 0 survives and therefore Eq.(B.11) becomes

⟨vivj⟩ =
∑
ℓm

4πiℓYℓm(r̂)c
ij
ℓm(ẑ)Tℓ0(r). (B.12)

As the first step of calculations, we take ⟨v1v2⟩ which in λ̂ = ẑ frame has

simple form ⟨v1v2⟩ = A(r, cos θ)r̂1r̂2 = A(r, cos θ) sin2 θ cosϕ sinϕ, and use this

to find A(r, cos θ). Since the expression obtained for A should be valid in all

frames, we replace cos θ → µ to arrive to the frame-independent A(r, µ). Next,

we take ⟨v1v1⟩ = Ar̂1r̂1+B, and repeat the procedure selecting factor A as what

is proportional to sin2 θ cos2 ϕ, with the remainder being B. After that, we take

⟨v1v2⟩ = Ar̂1r̂3+Dr̂1 and repeat the procedure by factoring out sin θ cos θ cosϕ

component and looking for the remainder, which is D sin θ cosϕ. Finally, we

take ⟨v3v3⟩ = Ar̂3r̂3 +B + C + 2Dr̂3 and use the previously found coefficients

A, B and D to obtain C. This technique is applied in the subsequent sections.

104



Appendix C

Velocity Correlation Tensor For

Different Turbulent Modes

With the technique developed in Appendix [B], it is straightforward exercise

to obtain the coefficients A,B,C and D of the velocity correlation function

provided that we have information about the tensor structure of a turbulent

mode. In this section, we will apply the technique developed in the previ-

ous section to find these coefficients for Alfvén mode, fast mode, slow mode

and strong turbulence. During our calculation, we use the knowledge about

anisotropy of power spectrum of each particular mode. The power spectrum

of Alfvén mode, slow mode and strong turbulence is anisotropic, while that of

fast mode is isotropic (Cho and Lazarian, 2003), and this fact will be used in

our subsequent calculations.
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Table C.1: Mode structure of Alfvén modes for λ̂ = ẑ

cijℓm Equation (for even ℓ)

c11ℓm
√
πδℓ0δm0 −Θ(ℓ− 2)

√
π(2ℓ+1)(ℓ−2)!

(ℓ+2)!
(δm2 + δm,−2)

c22ℓm
√
πδℓ0δm0 +Θ(ℓ− 2)

√
π(2ℓ+1)(ℓ−2)!

(ℓ+2)!
(δm2 + δm,−2)

c12ℓm Θ(ℓ− 2)i
√

π(2ℓ+1)(ℓ−2)!
(ℓ+2)!

(δm2 − δm,−2)

ci3ℓm 0, i ∈ (1, 2, 3)

C.1 Alfvén mode

The tensor structure for Alfvén mode is

(
ξ̂k ⊗ ξ̂∗k

)
ij
=(δij − k̂ik̂j)

− (k̂ · λ̂)2k̂ik̂j − (k̂ · λ̂)(λ̂ik̂j + λ̂j k̂i) + λ̂iλ̂j

1− (k̂ · λ̂)2
. (C.1)

LP12 labelled the first term of the above tensor structure as E-type, and the

second term as F -type. Therefore, the correlation tensor is E − F type1.

The coefficients cijℓm which we shall use for the derivation of coefficients

A,B,C and D are presented in Table [C.1] for λ̂ = ẑ. It is important to note

that cijℓm is zero when ℓ is odd.

1LP12 obtained correlation of magnetic field, while here we are talking about correlation
of velocity field. In the case of Alfvén mode, these correlations are the same, but this is in
general not the case. This is because magnetic field are solenoidal, while velocity fields can
be potential as well.
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As a first step of our calculations, we compute

⟨v1v2⟩ = 4π
∑
ℓℓ1ℓ2

il
√
π(2ℓ+ 1)(2ℓ2 + 1)

√
(ℓ2 − 2)!

(ℓ2 + 2)!
Tℓℓ1(i)⎛⎝ℓ ℓ1 ℓ2

0 0 0

⎞⎠⎛⎝ ℓ ℓ1 ℓ2

−2 0 2

⎞⎠(Y 2
ℓ (r̂)− Y −2

ℓ (r̂)
)

(C.2)

To separate r1r2 = sin2 θ cosϕ sinϕ factor we use the following identities of the

spherical harmonics

Y 2
ℓ (r̂)− Y −2

ℓ (r̂) = 4i

√
(2ℓ+ 1)(ℓ− 2)!

4π(ℓ+ 2)!

P 2
ℓ (cos θ)

sin2 θ

sin2 θ cosϕ sinϕ, (C.3)

and
P 2
ℓ (cos θ)

sin2 θ
=
∂2Pℓ(cos θ)

∂(cos θ)2
, (C.4)

thus finding

A = −8π
∑
ℓℓ1ℓ2

il(2ℓ+ 1)(2ℓ2 + 1)

√
(ℓ− 2)!(ℓ2 − 2)!

(ℓ+ 2)!(ℓ2 + 2)!
Tℓℓ1⎛⎝ℓ ℓ1 ℓ2

0 0 0

⎞⎠⎛⎝ ℓ ℓ1 ℓ2

−2 0 2

⎞⎠ ∂2Pℓ(µ)

∂µ2
. (C.5)

after generalization to an arbitrary frame by replacing cos θ → µ.
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Next step of calculation involves finding B, and for that we take

⟨v1v1⟩ = 4π
∑
ℓℓ1

il
√

(2ℓ+ 1)
√
π

⎛⎝ℓ ℓ1 0

0 0 0

⎞⎠⎛⎝ℓ ℓ1 0

0 0 0

⎞⎠
Tℓℓ1Y 0

ℓ (r̂)− 4π
∑
ℓℓ1ℓ2

il
√
π(2ℓ+ 1)(2ℓ2 + 1)

√
(ℓ2 − 2)!

(ℓ2 + 2)!⎛⎝ℓ ℓ1 ℓ2

0 0 0

⎞⎠⎛⎝ ℓ ℓ1 ℓ2

−2 0 2

⎞⎠ Tℓℓ1
(
Y 2
ℓ (r̂) + Y −2

ℓ (r̂)
)
. (C.6)

The above expression can be simplified by considering the following identities

of spherical harmonics

Y 2
ℓ (r̂) + Y −2

ℓ (r̂) = 2

√
(2ℓ+ 1)(ℓ− 2)!

4π(ℓ+ 2)!
P 2
ℓ (cos θ)(2 cos

2 ϕ− 1), (C.7)

and

Y 0
ℓ (r̂) =

√
2l + 1

4π
Pℓ(cos θ). (C.8)

The second term in Eq.(C.6) contains contribution from A term that is pro-

portional to cos2 ϕ. Taking that into account, we have

B = 2π
∑
ℓ=0,2

iℓTℓℓPℓ(µ) + 4π
∑
ℓℓ1ℓ2

il(2ℓ+ 1)(2ℓ2 + 1)

√
(ℓ− 2)!(ℓ2 − 2)!

(ℓ+ 2)!(ℓ2 + 2)!

⎛⎝ℓ ℓ1 ℓ2

0 0 0

⎞⎠⎛⎝ ℓ ℓ1 ℓ2

−2 0 2

⎞⎠ Tℓℓ1P 2
ℓ (µ). (C.9)

To find D, we note that ⟨v1v3⟩ = 0, and therefore, in our choice of frame
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D = −A cos θ. Therefore, in general

D = 8π
∑
ℓℓ1ℓ2

il(2ℓ+ 1)(2ℓ2 + 1)

√
(ℓ− 2)!(ℓ2 − 2)!

(ℓ+ 2)!(ℓ2 + 2)!⎛⎝ℓ ℓ1 ℓ2

0 0 0

⎞⎠⎛⎝ ℓ ℓ1 ℓ2

−2 0 2

⎞⎠ Tℓℓ1µ
∂2Pℓ(µ)

∂µ2
(C.10)

Similarly, we note that ⟨v3v3⟩ = 0, and therefore, C = −A cos2 θ − B −

2D cos θ = A cos2 θ −B which gives

C = −2π
∑
ℓ=0,2

iℓTℓℓPℓ(µ)− 4π
∑
ℓℓ1ℓ2

il(2ℓ+ 1)(2ℓ2 + 1)

√
(ℓ− 2)!(ℓ2 − 2)!

(ℓ+ 2)!(ℓ2 + 2)!

⎛⎝ℓ ℓ1 ℓ2

0 0 0

⎞⎠⎛⎝ ℓ ℓ1 ℓ2

−2 0 2

⎞⎠
Tℓℓ1

(
2µ2∂

2Pℓ(µ)

∂µ2
+ P 2

ℓ (µ)

)
. (C.11)

C.2 Fast modes high-β

Fast modes in high β regime are purely compressional type of modes, and their

tensor structure is (
ξ̂k ⊗ ξ̂∗k

)
ij
= k̂ik̂j. (C.12)

The power spectrum of this mode is isotropic, and therefore we utilise Eq.

(B.12) for our calculations. Our first step involves computation of

⟨v1v2⟩ = 4πi2(−i)
√

2π

15
T20(r)

(
Y 2
2 (r̂)− Y −2

2 (r̂)
)
, (C.13)

which yields an isotropic form for A

A = −4πT20. (C.14)
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Table C.2: Mode structure of fast Modes in low-β For λ̂ = ẑ.

cijℓm Equation(for even ℓ)

c11ℓm
√
πδℓ0δm0 +Θ(ℓ− 2)

√
π(2ℓ+1)(ℓ−2)!

(ℓ+2)!
(δm2 + δm,−2)

c22ℓm
√
πδℓ0δm0 −Θ(ℓ− 2)

√
π(2ℓ+1)(ℓ−2)!

(ℓ+2)!
(δm2 + δm,−2)

c12ℓm −iΘ(ℓ− 2)
√

π(2ℓ+1)(ℓ−2)!
(ℓ+2)!

(δm2 − δm,−2)

ci3ℓm 0, i ∈ (1, 2, 3)

The next step is to compute

⟨v1v1⟩ = 4π
2
√
π

3
T00Y

0
0 (r̂) + 4πT20

2

3

√
π

5
Y 0
2 (r̂)

+ 4πi2
√

2π

15
T20(r)

(
Y 2
2 (r̂) + Y −2

2 (r̂)
)
, (C.15)

which after subtracting A sin2 θ cos2 ϕ contribution gives

B =
4π

3
T00(r) +

4π

3
T20(r). (C.16)

It is easy to check that C = D = 0 for this mode. This is expected because

both tensor structure as well as power spectrum are isotropic.

C.3 Fast modes low-β

For fast Modes in low β regime, the tensor structure of velocity field in Fourier

space is

(
ξ̂k ⊗ ξ̂∗k

)
ij
=
k̂ik̂j − (k̂ · λ̂)(k̂iλ̂j + k̂jλ̂i) + (k̂ · λ̂)2λ̂iλ̂j

1− (k̂ · λ̂)2
. (C.17)

The power spectrum of this mode is isotropic. To find the coefficients
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A,B,C andD, our starting point is to utilise the table presented above. Noting

the similarity of Table [C.2] with Table [C.1], it is easy to derive these coeffi-

cients just by considering the previous results. Similar to the previous section,

the velocity has no component along the symmetry axis, so that D = −Aµ,

and C = Aµ2−B. Due to the fact that the power spectrum is isotropic in this

case, the results heavily simplify, and we have the final result for the correlation

coefficients as

A = 8π
∑
ℓ

il(2ℓ+ 1)
(ℓ− 2)!

(ℓ+ 2)!
Tℓ0

∂2Pℓ(µ)

∂µ2
(C.18)

B = 2πT00 + 4π
∞∑

n=2,2

in(2n+ 1)
n!

(n+ 2)!
Tn0Pn(µ)

− 8π
∑
n=0,2

(2n+ 1)Pn(µ)
∞∑

l=n+2,2

il(2ℓ+ 1)
(ℓ− 2)!

(ℓ+ 2)!
Tℓ0 (C.19)

C = −2πT00 + 4π
∑
ℓ

il(2ℓ+ 1)
(ℓ− 2)!

(ℓ+ 2)!
Tℓ0

(
P 2
ℓ (µ)

+ 2µ2∂
2Pℓ(µ)

∂µ2

)
(C.20)

D = −8π
∑
ℓ

il(2ℓ+ 1)
(ℓ− 2)!

(ℓ+ 2)!
Tℓ0µ

∂2Pℓ(µ)

∂µ2
. (C.21)

C.4 Slow modes high-β

The velocity correlation tensor in Fourier Space for slow Modes in high β is

(
ξ̂k ⊗ ξ̂∗k

)
ij
=

(
(k̂ · λ̂)2k̂ik̂j + λ̂iλ̂j − (k̂ · λ̂)(k̂iλ̂j + k̂jλ̂i)

1− (k̂ · λ̂)2

)
. (C.22)

This was identified to be F -type in LP12. Besides the tensor structure, the

power spectrum of slow modes is also anisotropic, and is the same as for Alfvén
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Table C.3: Mode structure of slow modes in high-β For λ̂ = ẑ.

cijℓm Equation(for even ℓ)

c11ℓm
√
π
3
δℓ0δm0 +

2
3

√
π
5
δℓ2δm0 +

(
1
2

√
π
30
δℓ2 +Θ(ℓ− 4)

√
π(2ℓ2+1)(ℓ2−2)!

(ℓ2+2)!

)
(δm2 + δm,−2).

c22ℓm
√
π
3
δℓ0δm0 +

2
3

√
π
5
δℓ2δm0 −

(
1
2

√
π
30
δℓ2 +Θ(ℓ− 4)

√
π(2ℓ2+1)(ℓ2−2)!

(ℓ2+2)!

)
(δm2 + δm,−2).

c33ℓm
4
√
π

3

(
δℓ0 − 1√

5
δℓ2

)
δm0

c12ℓm −i
(

1
2

√
π
30
δℓ2 +Θ(ℓ− 4)

√
π(2ℓ+1)(ℓ−2)!

(ℓ+2)!

)
(δm2 − δm,−2)

c13ℓm

√
2π
15
δℓ2(δm1 − δm,−1)

c23ℓm −i
√

2π
15
δℓ2(δm1 + δm,−1)

mode.

All the coefficients cijℓm relevant for our calculations for this mode are sum-

marised in Table C.3. The first step as usual is to compute the following

element

⟨v1v2⟩ = 4π
∑
ℓℓ1

il
√
π(2ℓ+ 1)

(√
1

24

⎛⎝ℓ ℓ1 2

0 0 0

⎞⎠⎛⎝ ℓ ℓ1 2

−2 0 2

⎞⎠
+

∞∑
ℓ2=4,2

(2ℓ2 + 1)

√
(ℓ2 − 2)!

(ℓ2 + 2)!

⎛⎝ℓ ℓ1 ℓ2

0 0 0

⎞⎠⎛⎝ ℓ ℓ1 ℓ2

−2 0 2

⎞⎠)

Tℓℓ1(−i)
(
Y 2
ℓ (r̂)− Y −2

ℓ (r̂)
)

(C.23)

Using the relations for spherical harmonics Eq. (C.3) and Eq. (C.4), we arrive
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to the general form

A = 8π
∑
ℓℓ1

il(2ℓ+ 1)

√
(ℓ− 2)!

(ℓ+ 2)!

(√
1

24

⎛⎝ℓ ℓ1 2

0 0 0

⎞⎠⎛⎝ ℓ ℓ1 2

−2 0 2

⎞⎠
+

∞∑
ℓ2=4,2

(2ℓ2 + 1)

√
(ℓ2 − 2)!

(ℓ2 + 2)!

⎛⎝ℓ ℓ1 ℓ2

0 0 0

⎞⎠⎛⎝ ℓ ℓ1 ℓ2

−2 0 2

⎞⎠)

Tℓℓ1
∂2Pℓ(µ)

∂µ2
, (C.24)

As a next step, we compute

⟨v1v1⟩ = 4π
∑
ℓℓ1

iℓ
√

(2ℓ+ 1)

(√
π

3

⎛⎝ℓ ℓ1 0

0 0 0

⎞⎠2

+
2

3

√
π

⎛⎝ℓ ℓ1 2

0 0 0

⎞⎠2)
Tℓℓ1Y 0

ℓ (r̂) + 4π
∑
ℓℓ1

il
√
π(2ℓ+ 1)

(√
1

24

⎛⎝ℓ ℓ1 2

0 0 0

⎞⎠⎛⎝ ℓ ℓ1 2

−2 0 2

⎞⎠+
∞∑

ℓ2=4,2

(2ℓ2 + 1)

√
(ℓ2 − 2)!

(ℓ2 + 2)!⎛⎝ℓ ℓ1 ℓ2

0 0 0

⎞⎠⎛⎝ ℓ ℓ1 ℓ2

−2 0 2

⎞⎠)Tℓℓ1 (Y 2
ℓ (r̂) + Y −2

ℓ (r̂)
)
. (C.25)

Upon using the identities for spherical harmonics Eq.(C.7), it is easy to see

that the second term in the above equation partially contains A contribution.

Therefore, after some manipulations, we obtain an expression for B valid in a
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general frame:

B =
2π

3

∑
ℓ=0,2

iℓTℓℓPℓ(µ) +
4π

3

∑
ℓℓ1

iℓ(2ℓ+ 1)

⎛⎝ℓ ℓ1 2

0 0 0

⎞⎠2

Tℓℓ1Pℓ(µ)− 4π
∑
ℓℓ1

il(2ℓ+ 1)

√
(ℓ− 2)!

(ℓ+ 2)!

(√
1

24

⎛⎝ℓ ℓ1 2

0 0 0

⎞⎠
⎛⎝ ℓ ℓ1 2

−2 0 2

⎞⎠+
∞∑

ℓ2=4,2

(2ℓ2 + 1)

√
(ℓ2 − 2)!

(ℓ2 + 2)!

⎛⎝ℓ ℓ1 ℓ2

0 0 0

⎞⎠
⎛⎝ ℓ ℓ1 ℓ2

−2 0 2

⎞⎠)Tℓℓ1P 2
ℓ (µ). (C.26)

Next, to find out D, we compute

⟨v1v3⟩ = 4π
∑
ℓℓ1

iℓ
√

2π

15

√
5(2ℓ+ 1)

⎛⎝ℓ ℓ1 ℓ2

0 0 0

⎞⎠
⎛⎝ ℓ ℓ1 ℓ2

−1 0 1

⎞⎠ Tℓℓ1(−1)
(
Y 1
ℓ (r̂) + Y −1

ℓ (r̂)
)
. (C.27)

With some simplifications, and following the general procedure of subtract-

ing the contribution from A, we finally obtain

D = 4π
∑
ℓℓ1

iℓ(2ℓ+ 1)

√
2(ℓ− 1)!

3(ℓ+ 1)!

⎛⎝ℓ ℓ1 2

0 0 0

⎞⎠⎛⎝ ℓ ℓ1 2

−1 0 1

⎞⎠
Tℓℓ1

∂Pℓ(µ)

∂µ
− 8π

∑
ℓℓ1

il(2ℓ+ 1)

√
(ℓ− 2)!

(ℓ+ 2)!

(√
1

24

⎛⎝ℓ ℓ1 2

0 0 0

⎞⎠
⎛⎝ ℓ ℓ1 2

−2 0 2

⎞⎠+
∞∑

ℓ2=4,2

(2ℓ2 + 1)

√
(ℓ2 − 2)!

(ℓ2 + 2)!

⎛⎝ℓ ℓ1 ℓ2

0 0 0

⎞⎠
⎛⎝ ℓ ℓ1 ℓ2

−2 0 2

⎞⎠)Tℓℓ1µ∂2Pℓ(µ)∂µ2
. (C.28)
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Final set of calculation involves computing

⟨v3v3⟩ = 4π
∑
ℓℓ1

iℓ
4
√

(2ℓ+ 1)

3

√
π

⎛⎝ℓ ℓ1 0

0 0 0

⎞⎠2

Tℓℓ1Y 0
ℓ (r̂)

−4π
∑
ℓℓ1

iℓ
4
√

(2ℓ+ 1)

3

√
π

⎛⎝ℓ ℓ1 2

0 0 0

⎞⎠2

Tℓℓ1Y 0
ℓ (r̂), (C.29)

which after considering possible contribution from all other coefficients, we

finally arrive to an expression for C valid at all frames:

C = 2π
∑
ℓ

iℓTℓℓPℓ(µ)− 4π
∑
ℓℓ1

iℓ(2ℓ+ 1)

⎛⎝ℓ ℓ1 2

0 0 0

⎞⎠2

Tℓℓ1Pℓ(µ)

− 8π
∑
ℓℓ1

iℓ(2ℓ+ 1)

√
2(ℓ− 1)!

3(ℓ+ 1)!

⎛⎝ℓ ℓ1 2

0 0 0

⎞⎠⎛⎝ ℓ ℓ1 2

−1 0 1

⎞⎠ Tℓℓ1

µ
∂Pℓ(µ)

∂µ
+ 4π

∑
ℓℓ1

il(2ℓ+ 1)

√
(ℓ− 2)!

(ℓ+ 2)!

(√
1

24

⎛⎝ℓ ℓ1 2

0 0 0

⎞⎠
⎛⎝ ℓ ℓ1 2

−2 0 2

⎞⎠+
∞∑

ℓ2=4,2

(2ℓ2 + 1)

√
(ℓ2 − 2)!

(ℓ2 + 2)!

⎛⎝ℓ ℓ1 ℓ2

0 0 0

⎞⎠
⎛⎝ ℓ ℓ1 ℓ2

−2 0 2

⎞⎠)Tℓℓ1 (P 2
ℓ (µ) + 2µ2∂

2Pℓ(µ)

∂µ2

)
. (C.30)

C.5 Slow modes low-β

Slow modes in low β have the tensor structure

(
ξ̂k ⊗ ξ̂∗k

)
ij
∝ λ̂iλ̂j. (C.31)

It is clear from the above tensor structure that cijℓ2m2
is only non-zero for ℓ2 =

m2 = 0. This heavily simplifies Eq.B.11, and subsequent calculation allows us
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Table C.4: Mode structure of strong turbulence

cijℓm Equation

c11ℓm

(
4
√
π

3
δl0 +

2
√
π

3
√
5
δl2

)
δm0 −

√
2π
15
δl2(δm2 + δm,−2)

c22ℓm

(
4
√
π

3
δl0 +

2
√
π

3
√
5
δl2

)
δm0 +

√
2π
15
δl2(δm2 + δm,−2)

c33ℓm

(
4
√
π

3
δl0 − 4

√
π

3
√
5
δl2

)
δm0

c12ℓm i
√

2π
15
δl2(δm2 − δm,−2)

c13ℓm

√
2π
15
δl2(δm1 − δm,−1)

c23ℓm −i
√

2π
15
δl2(δm1 + δm,−1)

to compute C and arrive to a general form

C =
∑
ℓ

4πiℓTℓℓPℓ(µ). (C.32)

All other coefficients vanish in this mode.

C.6 Strong turbulence

In a strong turbulence with the uncorrelated mix of equal power Alfvén and

slow modes, we expect pure E-type correlation, which has a Fourier component

(
ξ̂k ⊗ ξ̂∗k

)
ij
= (δij − k̂ik̂j). (C.33)

The real space correlation function has been already derived in LP12 using

Chandrashekhar’s notations, but here we derive it using the formalism we de-

veloped in the previous section. We will use Table C.4 in the subsequent

calculations in this section. To find the coefficients A,B,C and D, we follow
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the procedure described in Appendix B. Consider

⟨v1v2⟩ = 4π
∑
ℓ

iℓ
∑
ℓ1

√
2π

3

√
(2ℓ+ 1)Tℓℓ1

⎛⎝ℓ ℓ1 2

0 0 0

⎞⎠
⎛⎝ ℓ ℓ1 2

−2 0 2

⎞⎠ i(Y 2
ℓ (r̂)− Y −2

ℓ (r̂)). (C.34)

In the frame we are dealing with, only r̂1r̂2 contributes, and therefore upon

simplification, we obtain (after considering that A should only depend on µ =

r̂.λ̂),

A = −8π
∑
ℓ

iℓ
∑
ℓ1

(2ℓ+ 1)

√
2(ℓ− 2)!

3(ℓ+ 2)!
Tℓℓ1

⎛⎝ℓ ℓ1 2

0 0 0

⎞⎠
⎛⎝ ℓ ℓ1 2

−2 0 2

⎞⎠ ∂2Pℓ(µ)

∂µ2
. (C.35)

Similarly, we compute

⟨v1v1⟩ =
8π

3

∑
ℓ

iℓTℓℓPℓ(cos θ) +
4π

3

∑
ℓℓ1

iℓ(2ℓ+ 1)Tℓℓ1⎛⎝ℓ ℓ1 2

0 0 0

⎞⎠2

Pℓ(cos θ)− 4π
∑
ℓℓ1

iℓ
√

2π

3

√
(2ℓ+ 1)Tℓℓ1⎛⎝ℓ ℓ1 2

0 0 0

⎞⎠⎛⎝ ℓ ℓ1 2

−2 0 2

⎞⎠ (Y 2
ℓ (r̂) + Y −2

ℓ (r̂)). (C.36)

In our choice of co-ordinates, ⟨v1v∗1⟩ is contributed by A and B. Therefore to

find B, we need to subtract the contribution of A. This subtraction affects the
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last factor in the above equation, and we are left with

B =
8π

3

∑
ℓ

iℓTℓℓPℓ(µ) +
4π

3

∑
ℓℓ1

iℓ(2ℓ+ 1)Tℓℓ1

⎛⎝ℓ ℓ1 2

0 0 0

⎞⎠2

Pℓ(µ) + 4π
∑
ℓℓ1

iℓ(2ℓ+ 1)

√
2(ℓ− 2)!

3(ℓ+ 2)!
Tℓℓ1

⎛⎝ℓ ℓ1 2

0 0 0

⎞⎠
⎛⎝ ℓ ℓ1 2

−2 0 2

⎞⎠P 2
ℓ (µ). (C.37)

Next, we compute

⟨v1v3⟩ = 4π
∑
ℓℓ1

iℓ
√

2π

3

√
(2ℓ+ 1)Tℓℓ1

⎛⎝ℓ ℓ1 2

0 0 0

⎞⎠
⎛⎝ ℓ ℓ1 2

−1 0 1

⎞⎠ (−1)(Y 1
ℓ (r̂) + Y ∗1

ℓ (r̂)). (C.38)

Using the fact that the above correlation is contributed by A and D, and

subtracting the contribution of A, we finally obtain

D = 4π
∑
ℓℓ1

iℓ(2ℓ+ 1)

√
2(ℓ− 1)!

3(ℓ+ 1)!
Tℓℓ1

⎛⎝ℓ ℓ1 2

0 0 0

⎞⎠
⎛⎝ ℓ ℓ1 2

−1 0 1

⎞⎠ ∂Pℓ(µ)

∂µ
+ 8π

∑
ℓℓ1

iℓ(2ℓ+ 1)

√
2(ℓ− 2)!

3(ℓ+ 2)!
Tℓℓ1⎛⎝ℓ ℓ1 2

0 0 0

⎞⎠⎛⎝ ℓ ℓ1 2

−2 0 2

⎞⎠µ
∂2Pℓ(µ)

∂µ2
. (C.39)
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Finally, to obtain C we compute

⟨v3v3⟩ =
8π

3

∑
ℓ

iℓTℓℓPℓ(cos θ)−
8π

3

∑
ℓℓ1

iℓ(2ℓ+ 1)Tℓℓ1⎛⎝ℓ ℓ1 2

0 0 0

⎞⎠2

Pℓ(cos θ) (C.40)

The above correlation comes from the contribution of A, B, C and D. There-

fore, to find C, we subtract all other contributions to obtain

C = −4π
∑
ℓℓ1

iℓ(2ℓ+ 1)Tℓℓ1

⎛⎝ℓ ℓ1 2

0 0 0

⎞⎠2

Pℓ(µ)− 8π

∑
ℓℓ1

iℓ(2ℓ+ 1)

√
2(ℓ− 1)!

3(ℓ+ 1)!
Tℓℓ1

⎛⎝ℓ ℓ1 2

0 0 0

⎞⎠⎛⎝ ℓ ℓ1 2

−1 0 1

⎞⎠
µ
∂Pℓ(µ)

∂µ
− 4π

∑
ℓℓ1

iℓ(2ℓ+ 1)

√
2(ℓ− 2)!

3(ℓ+ 2)!
Tℓℓ1

⎛⎝ℓ ℓ1 2

0 0 0

⎞⎠
⎛⎝ ℓ ℓ1 2

−2 0 2

⎞⎠(P 2
ℓ (µ) + 2µ2∂

2Pℓ(µ)

∂µ2

)
(C.41)
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Appendix D

Approximate Expression For

The z− Projection Of The

Velocity Structure Function

To study intensity maps analytically, we require knowledge of the z− projec-

tion of velocity structure function. An anisotropic velocity structure function

manifests in the anisotropy of intensity channel maps. Therefore, for our ana-

lytical calculation, we first study how anisotropy is built in the z− projection

of the velocity structure function. The projection structure function is given

Dz(r) = 2[(B(0)−B) + (C(0)− C) cos2 γ − A cos2 θ

−2D cos θ cos γ] , (D.1)

where A,B,C andD depend on the particular mode of turbulence and has been

derived in Appendix [C] for different modes of turbulence. For the analysis we

carry out, it is particularly useful to do the multipole decomposition of these

coefficients in Legendre polynomials, so that

A =
∑
n

An(r)Pn(µ) , (D.2)

120



and so on, where An(r) can be easily obtained with the knowledge of A. The

expression above is particularly useful to obtain approximate expression for

Dz(r, µ), as the coefficients An(r) are usually a decreasing function of n. This

motivates us to write Dz(r, µ) by considering the coefficients only upto second

order in n, i.e. A = A0+A2P2(µ) and so on. We define that the power spectrum

Aℓ1 ∝ k−m (cf. Eq. (2.13)). Keeping this in mind, it can be shown that each

regularised coefficients A,B(0)−B,C(0)−C,D are proportional to rm−3 ≡ rν .

Since A,B, .. are functions of r in the same fashion, we explicitly factor out rν

from them, so that in the following analysis, it is to be understood that any

rν factor comes from these coefficients, and An, .. are simply some numerical

constants. With these approximations and definitions, Eq. (D.1) can be written

as

Dz(r) ≈ 2[(B0(0)−B0(r)−B2(r)P2(µ)) + (C0(0)− C0(r)

−C2(r)P2(µ)) cos
2 γ − (A0(r) + A2(r)P2(µ)) cos

2 θ

−2D1(r)µ cos θ cos γ] (D.3)

To obtain the explicit dependence of Dz on ϕ, we use the relation for µ in-terms

of different angles involved in our setup

µ = sin γ sin θ cosϕ+ cos γ cos θ, (D.4)

which when used in Eq. (D.3) shows that Dz is related to ϕ only upto cos2 ϕ:

Dz(r) ≈ c1 − c2 cosϕ− c3 cos
2 ϕ. (D.5)

The detailed relations involving parameters c1, c2 and c3 are presented in the

Table [D.1]. For the sake of clarity, these parameters are themselves broken

into different pieces. As we will show later, this representation will be useful

when carrying out the z− integral to find the intensity structure function.
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Table D.1: Different parameters in the approximate Dz

Parameters Equation

c1 (q1 + q2 cos
2 θ + q3 cos

4 θ)rν

c2 (s1 + s2 cos
2 θ)rν sin θ cos θ sin γ cos γ

c3 (u1 + u2 cos
2 θ)rν sin2 θ sin2 γ

q1 2(B0(0)−B0) + 2(C0(0)− C0) cos
2 γ +B2 + C2 cos

2 γ.

q2 −2A0 + A2 − 4D1 cos γ − 3(B2 + C2 cos
2 γ) cos2 γ

q3 −3A2 cos
2 γ

s1 6(B2 + C2 cos
2 γ) + 4D1

s2 6A2

u1 3(B2 + C2 cos
2 γ)

u2 3A2
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For the sake of convenience for further analysis, we write Eq. (D.5) as

Dz(r) ≈ f1(1− f2 cosϕ− f3 cos
2 ϕ), (D.6)

where,

f1 = c1, f2 =
c2
c1
, f3 =

c3
c1
. (D.7)
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Appendix E

Evaluating ϕ Integral for Pure

Velocity Term

In order to fully obtain multipole moments of intensity structure function (cf.

4.4), we need to evaluate the integral of the form

∫ 2π

0

dϕ
e−imϕ√

f1(1− f2 cosϕ− f3 cos2 ϕ)
.

To evaluate this integral, we will use generalised Gegenbauer polynomial ex-

pansion (Plunkett and Jain, 1975) defined as

1

(1− ρx− ζx2)α
=

∞∑
n=0

C(α)
n (ρ, ζ)xn, (E.1)

where, ρ+ ζ < 1, and

C(α)
n (ρ, ζ) =

ρnΓ[α + n− 1]

Γ[α]n!

2F1

(
−n
2
,
−n+ 1

2
;−α− n+ 2;

−4ζ

ρ2

)
(E.2)
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or equivalently

C(α)
n (ρ) =

⌊n/2⌋∑
j=0

Γ(n− j + α)

Γ(α)j!Γ[n− 2j + 1]
ζjρn−2j. (E.3)

Using the above equations we can write

∫ 2π

0

dϕ
e−imϕ√

f1(1− f2 cosϕ− f3 cos2 ϕ)

=
∞∑
n=0

C
(1/2)
n (f2, f3)√

f1

∫ 2π

0

dϕe−imϕ cosn ϕ

=
∞∑

n=m,2

2−nC
(1/2)
n (f2, f3)√
f1

2πΓ[n+ 1]

Γ
[
n−m
2

+ 1
]
Γ
[
n+m
2

+ 1
] , (E.4)

where the sum in n starts at m and proceeds at a step of 2, which implies that

m and n should have the same parity. This parity information is particularly

useful later to arrive to the conclusion that only even multipoles survive. For

any n < m, the integral is zero, therefore, these terms have no contribution.

Upon using definition of C
(1/2)
n , and considering the fact that n is positive to

write Γ[n+ 1] = n!, we have

∫ 2π

0

dϕ
e−imϕ√

f1(1− f2 cosϕ− f3 cos2 ϕ)

=
∞∑

n=m,2

2
√
π√
f1

2−n sinn γΓ [n+ 1]

Γ
[
n−m
2

+ 1
]
Γ
[
n+m
2

+ 1
] ⌊n/2⌋∑

j=0

Γ
[
n− j + 1

2

]
j!Γ[n− 2j + 1]

(cos γ)n−2jf j3f
n−2j
2 . (E.5)
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Appendix F

Evaluating z Integral for Pure

Velocity Term

To obtain multipole moments of the intensity structure function, we now carry

out the z− integral (cf. Eq. 4.4)

∫ ∞

−∞
dz

1√
f1
f j3f

n−2j
2 =

∫ ∞

−∞
dz c

−n+j−1/2
1 cn−2j

2 cj3

=

∫ ∞

−∞
dz cosn−2j θ(q1 + q2 cos

2 θ + q3 cos
4 θ)−n+j−1/2

(s1 + s2 cos
2 θ)n−2j(u1 + u2 cos

2 θ)j sinn θr−ν/2. (F.1)

Using sin θ = R/r, and cos θ = z/r, we have

∫ ∞

−∞
dz

1√
f1
f j3f

n−2j
2 =

∫ ∞

−∞
dz r−ν/2−2(n−j)Rnzn−2j

(q1 + q2r
−2z2 + q3r

−4z4)−n+j−1/2

(s1 + s2r
−2z2)n−2j(u1 + u2r

−2z2)j. (F.2)

One of the most important points to note at this stage is that for odd n, the

above integral vanishes, since for odd n, zn−2j is an odd function in z, while

all other functions involved in this problem are even. This implies that the
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multipole contribution, which is the weight of e−imϕ, comes only from even m,

which is consistent with the symmetry of our problem.

Note that the above is valid only when n ≥ 2, for ν > 0. When n = 0, we

have to consider regularization of the integral (cf. Eq. (4.4)). The integral we

are interested at, when n = 0, is

I0 =

∫ ∞

−∞
dz

[
1√

q1 + q2 + q3zν/2
− 1√

q1 + q2 cos2 θ + q3 cos4 θrν/2

]
(F.3)

which after change of variable z = R cot θ can also be written as

I0 = R1−ν/2
∫ π

0

dθ
1

sin2 θ

[
(tan θ)ν/2√
q1 + q2 + q3

− (sin θ)ν/2√
q1 + q2 cos2 θ + q3 cos4 θ

]
. (F.4)

An approximate form of (F.3) can be obtained by method of series expan-

sion. For that we write the integrand as

1√
q1 + q2 + q3zν/2

− 1√
q1 + q2 cos2 θ + q3 cos4 θrν/2

≈ 1√
q1 + q2zν/2

− 1√
q1 + q2

z2

R2+z2
rν/2

≈
[

1√
q1 + q2zν/2

− 1√
q1 + q2rν/2

]
+

q2R
2

2(q1 + q2)3/2r2+ν/2
, (F.5)

where in the first step, we used the fact that q3 contribution is negligible1.

The above approximation is fairly good as long as q1 + q2 > q2. With this

1We verified this numerically. Analytically this can be understood by noting that q1 and
q2 consists of monopole contribution while q3 consists of only quadrupole contribution (cf.
Table. D.1).
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approximation, we finally arrive to

I0 ≈ −R1−ν/2
√

π

q1 + q2

[
Γ
(
ν
4
− 1

2

)
Γ
(
ν
4

) − q2
2(q1 + q2)

Γ
(
ν
4
+ 1

2

)
Γ
(
ν
4
+ 1
)] . (F.6)

To evaluate Eq.(F.2) we first note the the following: due to the presence of

a factor zn−2j, which is a suppressing factor for small z, and for n ̸= 2j, the

integral in Eq. (F.2) gives significantly small value when n ̸= 2j in comparison

to the case when n = 2j. Therefore, we will only consider the case when n = 2j.

To make further simplifications, we approximate the integrand as

r−ν/2−nRn(q1 + q2r
−2z2 + q3r

−4z4)−n/2−1/2(u1 + u2r
−2z2)n/2

≈ r−ν/2−nRn(q1 + q2r
−2z2)−n/2−1/2u

n/2
1

≈ r−ν/2−nRnq
−n/2−1/2
1 u

n/2
1

(
1− n+ 1

2

q2
q1

z2

r2

)
, (F.7)

where we have carried out expansion valid for q1 > q2. Therefore, we finally

have

I ≈ R1−ν/2
√
π

q
(n+1)/2
1

(
Γ
(
ν
4
+ n−1

2

)
Γ
(
ν
4
+ n

2

) − (n+ 1)

4

q2
q1

Γ
(
ν
4
+ n+1

2

)
Γ
(
ν
4
+ n

2
+ 1
))un/21 . (F.8)

Eqs. (F.6, F.8) allow us to obtain multipole moment of any even order.
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