
SEPARATING-PLANE FACTORIZATION MODELS: SCALABLE

RECOMMENDATION FROM ONE-CLASS IMPLICIT FEEDBACK

by

Haolan Chen

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Software Engineering & Intelligent Systems

Department of Electrical and Computer Engineering
University of Alberta

© Haolan Chen, 2016

Abstract

We study the large-scale video recommendation problem based on user viewing

logs instead of explicit ratings. As viewing records are implicitly positive sam-

ples, existing matrix factorization methods fail to generate discriminative recom-

mendations based on such one-class data. We propose a scalable approach called

separating-plane matrix factorization (SPMF) to make effective recommendations

based on one-class implicit feedback, with a learning complexity only comparable

to matrix factorization. With extensive offline evaluation in Tencent Data Ware-

house (TDW) based on big data, we show that our approach outperforms a wide

range of state-of-the-art methods. We also deployed our system online to test with

real users in Tencent QQ Browser mobile app. Results show that our approach can

increase the video click through rate by 23% over implicit-feedback collaborative

filtering (IFCF), a scheme implemented in Spark’s MLlib.

ii

Acknowledgments

I would like to thank all the people who contributed in some way to the work de-

scribed in this thesis. First and foremost, I am deeply indebted to my academic

advisors, Dr. Di Niu and Dr. Masoud Ardakani. Their guidance and supervision

help me to learn how to be a good researcher and pursue an academic career. Their

willingness to discussion helped me through two important years of my life. Ad-

ditionally, I would like to thank my committee members Dr. Scott Dick and Dr.

Linglong Kong for their interest in my work.

I would also like to thank Dr. Kunfeng Lai. He is one of the cooperator in my

research work on video recommendation. Thanks for the discussions and advices

during the project, and I learned a lot through this research work and I greatly

benefited from his keen scientific insight and creativity.

Finally, I would like to acknowledge friends and family who supported me dur-

ing my time here. First and foremost I would like to thank my father and mother

and other family members for their constant love and support. Additionally, I am

lucky to have met lots of good friends here and have a happy life. Thanks for their

friendship and unyielding support!

iii

Table of Contents

1 Introduction 1

2 Preliminaries and Background 4

2.1 Collaborative Filtering . 5

2.2 Matrix Factorization . 5

2.3 Implicit Feedback and One-Class Problem 7

2.3.1 Imputation-based Matrix Factorization 8

2.3.2 BPR and Pairwise Methods 10

2.4 Restricted Boltzmann Machine . 11

3 Separating-Plane Factorization Model 14

3.1 Separating-Plane Matrix Factorization 15

3.2 Insights and Discussions . 18

3.3 Separating-Plane Factorization Machine 20

4 Implementation 22

4.1 Practical Performance Optimizations 22

4.1.1 Empirical Preference Measures 22

4.1.2 Weighted SPMF and SPFM 24

4.1.3 Time-Decayed Confidence Levels 26

4.2 Implementation and Deployment . 26

5 Performance Evaluation 32

5.1 Single-Machine Tests . 33

iv

5.2 Offline Tests on Distributed Clusters 36

5.3 Online A/B Tests . 39

6 Concluding Remarks 47

References 48

v

List of Tables

5.1 MPR for Tencent small dataset and Movielens dataset in single-

machine tests. 33

5.2 Recall@20 of algorithms using factorization with 20 and 40 fea-

tures on Movielens dataset in single-machine tests. 35

5.3 Effect of different empirical preference measures in large-scale of-

fline evaluation with SPFM, the dataset contains about 400,000,000

video viewing records of the form (3.1) collected from Tencent in

40 days, involving more than 12,500,000 users and 100,000 videos. 38

5.4 Results of Online A/B Tests, the training dataset is collected in

the past 40 days, containing 400 million viewing records, involv-

ing about 12,500,000 users and 100,000 videos, and the A/B Tests

are run on 50865 actual users. 39

5.5 Analysis of variance (ANOVA) of the 4 methods in Online A/B

Tests, the training dataset is collected in the past 40 days, containing

400 million viewing records, involving about 12,500,000 users and

100,000 videos, and the A/B Tests are run on 50865 actual users. . . 45

5.6 Tukey’s multiple comparison test for the Online A/B Tests. The

training dataset is collected in the past 40 days, containing 400 mil-

lion viewing records, involving about 12,500,000 users and 100,000

videos, and the A/B Tests are run on 50865 actual users. 46

vii

5.7 The results of Online A/B Tests, the training dataset is collected in

the past 40 days, containing 400 million viewing records, involving

about 12,500,000 users and 100,000 videos, and the A/B Tests are

run on 50865 actual users. 46

viii

List of Figures

2.1 Restricted Boltzmann Machine: a stochastic neural network 11

3.1 Traditional matrix factorization: p̂ui (and pui for training samples)

vs. vi for a certain user u.
∑n

i=1 vi 6= 0. 18

3.2 SPMF: p̂ui (and pui for training samples) vs. v′
i for a certain user u.

Zero hyperplane enlarges the range of p̂ui.
∑n

i=1 v
′
i = 0. 20

4.1 Average watching times of videos in the sampled dataset from Ten-

cent, containing 165724 users and 46578 videos. 23

4.2 Average tuiwatch/t
i
total vs. titotal in the sampled dataset from Tencent,

containing 165724 users and 46578 videos. 23

4.3 CDF of video watching ratio in the sampled dataset from Tencent,

containing 165724 users and 46578 videos. 24

4.4 Total numbers of clicks of different videos in the small dataset col-

lected from Tencent, containing 165,724 users and 46,578 videos. . 25

4.5 Estimated preference nodes receive messages from connected fea-

ture nodes and calculate residual errors by comparing with sample

rating nodes in parallel. 28

4.6 Feature nodes receive residual errors from connected estimated pref-

erence nodes and update the weights in parallel. 29

4.7 Workflow of our recommender system running on TDW platform. . 30

4.8 Density of known samples in the small dataset collected from Ten-

cent, containing 165,724 users and 46,578 videos. 30

ix

5.1 Receiver operating characteristic (ROC) curve for MovieLens data

in single-machine tests, the publicly available MovieLens dataset

contains explicit ratings (from 0.5 to 5) between 668 users and

10325 videos. 35

5.2 MPR of different optimization options as the dimension of feature

vector v varies @ Tencent’s small dataset, The Tencent dataset con-

tains 2604572 watching behavior records of the form (3.1) collected

in 40 days, involving 165724 users and 46578 videos. 36

5.3 Large-scale offline test: MPR vs. the dimension of latent factor vec-

tors, the dataset contains about 400,000,000 video viewing records

of the form (3.1) collected from Tencent in 40 days, involving more

than 12,500,000 users and 100,000 videos. 37

5.4 Large-scale offline test: MPR vs. the number of training iterations,

the dataset contains about 400,000,000 video viewing records of the

form (3.1) collected from Tencent in 40 days, involving more than

12,500,000 users and 100,000 videos. 37

5.5 Effect of different empirical preference measures in large-scale of-

fline evaluation with SPFM, the dataset contains about 400,000,000

video viewing records of the form (3.1) collected from Tencent in

40 days, involving more than 12,500,000 users and 100,000 videos. 38

5.6 Effect of different Time-Decayed Confidence Level measures in

large-scale offline evaluation with SPFM, the dataset contains about

400,000,000 video viewing records of the form (3.1) collected from

Tencent in 40 days, involving more than 12,500,000 users and 100,000

videos. 39

5.7 The total number of clicks on Sunday in online A/B tests. The

training dataset is collected in the past 40 days, containing 400 mil-

lion viewing records, involving about 12,500,000 users and 100,000

videos, and the A/B Tests are run on 50865 actual users. 40

x

5.8 The total number of clicks on Monday in online A/B tests. The

training dataset is collected in the past 40 days, containing 400 mil-

lion viewing records, involving about 12,500,000 users and 100,000

videos, and the A/B Tests are run on 50865 actual users. 40

5.9 Number of clicks on the recommended videos on Sunday in online

A/B tests, the training dataset is collected in the past 40 days, con-

taining 400 million viewing records, involving about 12,500,000

users and 100,000 videos, and the A/B Tests are run on 50865 ac-

tual users. 42

5.10 The number of clicks on the recommended videos on Monday in

online A/B tests, the training dataset is collected in the past 40 days,

containing 400 million viewing records, involving about 12,500,000

users and 100,000 videos, and the A/B Tests are run on 50865 ac-

tual users. 42

5.11 The number of clicks on the recommended videos in online A/B

tests, the training dataset is collected in the past 40 days, containing

400 million viewing records, involving about 12,500,000 users and

100,000 videos, and the A/B Tests are run on 50865 actual users. . . 43

5.12 The number of users with different numbers of clicks on Sunday

in online A/B tests. The training dataset is collected in the past

40 days, containing 400 million viewing records, involving about

12,500,000 users and 100,000 videos, and the A/B Tests are run on

50865 actual users. 43

5.13 Number of users with different numbers of clicks on Monday in on-

line A/B tests, the training dataset is collected in the past 40 days,

containing 400 million viewing records, involving about 12,500,000

users and 100,000 videos, and the A/B Tests are run on 50865 ac-

tual users. 44

xi

5.14 Reflectance (numbers of clicks per hour) of 4 groups in online A/B

tests and the corresponding boxplot. The training dataset is col-

lected in the past 40 days, containing 400 million viewing records,

involving about 12,500,000 users and 100,000 videos, and the A/B

Tests are run on 50865 actual users. 45

xii

List of Abbreviations

Acronyms Definition

ALS Alternative Least Square

AMAN All Missing As Negative

AMAU All Missing As Unknown

BPR Bayesian Personalized Ranking

CF Collaborative Filtering

CTR Click-Through Rate

FM Factorizing Machines

IBCF Item-Based Collaborative Filtering

IFCF Implicit-Feedback Collaborative Filtering

MCMC Markov Chain Monte Carlo

MF Matrix Factorization

MPR Mean Percentile Ranking

MSE Mean Squared Error

ROC Receiver Operating Characteristic

SGD Stochastic Gradient Descent

SPFM Separating-Plane Factorization Machine

SPMF Separating-Plane Matrix Factorization

TDW Tencent distributed Data Warehouse

xiii

Chapter 1

Introduction

Collaborative filtering (CF) [1]–[3] has become the de facto standard in video rec-

ommendation. While collaborative filtering techniques are designed to handle ex-

plicit ratings, in reality, applications of recommendations made from explicit feed-

back are limited due to several reasons.

First, although many systems allow users to rate videos in a 0-5 scale, yet the

rating data are often extremely sparse, simply because users are reluctant to take

further actions to rate videos they have watched. The videos that users have rated

are typically those for which users had a strong positive or negative feeling. And

for an average video, users may not even bother to give any feedback. This fact

implies that there is a survivor bias in the explicit rating data and it is hard to collect

non-extreme feedbacks. Second, sometimes explicit ratings cannot reflect a user’s

true preference. The assumption that human users know themselves perfectly is

not always true. During an interview in 2013, an algorithm scientist at Netflix has

pointed out [4] that their users tend to give high ratings to movies of good quality,

while in daily life, they are more likely to watch an average popcorn movie. In

other words, there is a gap between true preferences and feedback collected from

the artificially designed yet overly simplified 0-5 rating system.

To overcome the limitation of explicit ratings, we can leverage a much larger

amount of implicit data for recommendation, such as viewing history, recording

each video that a user has watched, for how long it was watched, the time that

1

the action took place, as well as other context information. Such implicit data are

usually largely available in system logs, and collecting them does not require any

further actions from users.

However, recommendation based on implicit feedback has led to the one-class

problem [5]–[8], since each viewing record represents a positive sample of some

kind. The reason is that a watching action itself implies some degree of preference

by the user over other videos that are available to her. Therefore, all the implicit

feedback records collected are biased towards positive samples. When applying

collaborative filtering to such one-class data, the predictions will concentrate in

the range defined by positive samples and thus have no discriminative power. In

addition, unlike numerical rating scores which are used to indicate different levels

of preferences, implicit feedback data is less clean and often ill-shaped, i.e., there is

no direct correspondence between a watching record and the empirical measure of

preference. For example, watching a video for a longer period of time than another

video does not necessarily imply a preference of the first video.

Existing methods for collaborative filtering based on one-class implicit data are

either based on imputation [5], [6], [8] or Bayesian Personalized Ranking (BPR)

[7]. However, imputation-based methods rely on selecting some unknown samples

to impute with negative values, and thus may introduce artificial errors. On the

other hand, BPR relies on minimizing a pairwise preference loss function, whose

complexity could be n times the complexity of the original matrix factorization, n

being the number of videos in the system. This prevents BPR from being deployed

at a large scale involving a large number of videos.

In this thesis, we propose a novel model called Separating-Plane Matrix Fac-

torization (SPMF) to approach the recommendation problem with implicit positive

feedback at a large scale, with several unique strengths. First, SPMF does not rely

on imputation to generate negative samples. Yet its discriminative power automat-

ically comes from a separating hyperplane that we have introduced into the matrix

factorization model. Second, we propose a simple yet effective projected stochas-

tic gradient descent (SGD) algorithm to solve SPMF, which has a similar learning

2

complexity as the original matrix factorization [2]. Thus, SPMF is scalable to the

huge problem sizes in reality. Third, SPMF can easily be extended to incorporate

context information, confidence levels and any other optimizing utilities that are

applicable to matrix factorization.

We implemented SPMF in Spark GraphX and deployed the system on Ten-

cent distributed Data Warehouse (TDW) (Tencent’s big data processing platform)

at a large scale with various performance optimizations. Our recommender system

is tested in the Tencent QQ Browser mobile app, which provides a video content

search and aggregation service in its app front page. We performed large-scale of-

fline evaluation in comparison to a number of state-of-the-art algorithms, based on

the video viewing logs collected from the video aggregation service of QQ Browser

mobile app with user consent in a 40-day period, involving 12.5 million users and

100, 000 videos. To show the discriminative power of our method on one-class

data, we have also conducted fair comparisons to existing methods based on a pub-

lic dataset, the MovieLens data, retaining only positive ratings. In all cases, SPMF

and its extension Separating-Plane Factorization Machine (SPFM) incorporating

context information significantly outperform both imputation-based methods and

BPR while incurring a low computation cost.

We also performed online A/B tests on more than 50, 000 real users of Tencent

QQ Browser mobile app, split into 4 groups, each receiving recommendations made

from SPMF, SPFM, item-based CF [9] or implicit-feedback CF [5] (an imputation-

based matrix factorization scheme). The results reveal that our models lead to a

higher number of clicks, click-through rate (CTR) and recommendation precision

in the real-world scenario.

3

Chapter 2

Preliminaries and Background

Collaborative filtering (CF) infers a user’s preference for each item based on ob-

served interactions including explicit ratings and implicit feedback, e.g., views,

purchases, etc. CF has become the state of the art in recommendation systems

[3], since it learns from past user-item interactions and can address data aspects

that are often hard to model via explicit profiles and content filtering.

We introduce some preliminaries to formally define the collaborative filtering

problem and will use them throughout the thesis. Suppose there are m users and

n items. Let P ∈ R
m×n denote the preference matrix between all the users and

items, where pui represents the preference of user u for item i. Let Ω denote the

observed set, which contains all (u, i) pairs that have interacted and thus have an

observed empirical preference value pui, which may be determined in a number of

ways. For example, if explicit ratings are available, the observed pui is indicated by

the numerical rating of user u on item i; if only implicit feedback is available, the

observed pui can be indirectly measured from user behavior logs, e.g., the time that

user u has spent watching video i, the number of clicks user u has made on an item

i, etc. The collaborative filtering (CF) problem is to infer all unobserved preference

values pui based on the training samples {pui|(u, i) ∈ Ω}. Recommendations can

then be made to each user u based on the estimated p̂ui.

4

2.1 Collaborative Filtering

Collaborative filtering can be divided into two classes, the memory-based CF and

model-based CF [3], [10]. Memory-based CF techniques such as item-based CF

[9] and user-based CF [11] are based on the idea that similar entities share simi-

lar behavior models and thus users or items can be grouped by checking the past

interactions among users and items. Item-based CF, for example, simply makes

recommendation based on the similarity between consumed items and candidate

items. Such a similarity is measured by the number of users that have consumed

both items. And the same applies to other memory-based algorithms, such as user-

based CF and content-based CF [3].

For example, consider the movie Saving Private Ryan. Its neighbors might

include war movies, Spielberg movies, and Tom Hanks movies, among others. To

predict a particular user’s rating for Saving Private Ryan, we would look for its

neighbors, namely, other movies that are similar to Saving Private Ryan and that this

user has ever rated. Then the user’s rating for Saving Private Ryan is predicted as a

weighted sum of the user’s ratings for its neighboring movies. Likewise, the user-

oriented approach identifies like-minded users who can complement each other’s

ratings.

On other hand, model-based CF techniques mainly include matrix factorization

[2] and other higher-order factorization models, which are also the state-of-the-art

techniques to solve collaborative filtering problems. We will describe factorization

models in detail in the following.

2.2 Matrix Factorization

Matrix Factorization attempts to characterize both items and users via vectors of

latent factors, which can not only measure obvious dimensions such as genre of a

movie, but can also capture hidden and even uninterpretable attributes [3]. In fact,

MF has become a dominant methodology for collaborative filtering. Experience

5

with the highly visible Netflix Prize data has shown that MF models deliver higher

accuracy than earlier neighborhood methods [12], such as item-based CF [9] and

user-based CF [13], which make recommendations based on the preferences of sim-

ilar items or users. For example, the winning team of Netflix Prize used hundreds of

different predictor sets, the majority of which were variants of matrix factorization

models [14].

MF estimates the preference of user u for item i as [2]

p̂ui = b+ wu + wi + u
T

uvi (2.1)

where uu ∈ R
k and vi ∈ R

k are k-dimensional vectors of user and item latent

factors, respectively. The term b is a global bias, while wu represents the user

bias and wi represents the item bias. The inner product uT

uvi measures the match

between the latent factors of user u and item i.

MF minimizes the mean squared error (MSE) of the estimation from (2.1) over

the observed set, i.e.,

minimize
{uu},{vi}

∑

(u,i)∈Ω

(pui − u
T

uvi)
2 + λ

(

∑

u

‖uu‖
2 +

∑

i

‖vi‖
2

)

, (2.2)

where the bias terms are omitted for brevity. The MF problem (2.2) can be conve-

niently solved by stochastic gradient descent (SGD) [2] or alternating least squares

(ALS) [2]. Many efforts have been made on the further development of matrix

factorization algorithms to improve performance, e.g., Markov chain Monte Carlo

(MCMC) methods [15], as well as to incorporate more context information from

diverse data sources [13].

Factorization Machine (FM) [16] has moved one step further by allowing the

factorization of n-way interactions, e.g., between user and item, user and time,

and item and time. Moreover, FM could be solved with a complexity of O(k|Ω|l)

instead of O(k|Ω|l2), in which k is the length of latent factor vectors and l is the

number of features used (e.g., user, video and time) [16]. FM also performed well

6

in competitions like KDD Cup [17], [18].

2.3 Implicit Feedback and One-Class Problem

Although MF-based recommenders yield good performance for explicit ratings in

a number of real-world systems and competitions, explicit numerical ratings are

often unavailable in reality [5], [19], either because users are reluctant to take ac-

tions to rate products, or because the setup of the system has not enabled collection

of explicit feedback. In these cases, the system can still leverage vast amounts of

implicit user behavior logs for recommendation, such as views, clicks, purchases,

likes, shares etc. For example, in the video aggregation service of Tencent QQ

Browser mobile app, most users seldom rate any video they have watched. But we

may still make recommendations based on user watching history through collabo-

rative filtering.

However, a major challenge with implicit feedback is that nearly all types of

user actions performed on an item indicate a symbol of preference; if a user has

watched a video, it means she/he has at least shown some kind of interest or curios-

ity in it, since otherwise she/he would have never clicked that video at all. In other

words, the implicit feedback data is most likely one-class and contains positive sam-

ples only. If the MF model above were applied with only positive training samples,

the estimated preference matrix would be filled with positive values in the range of

training samples, and recommendations made this way do not have discriminative

power.

Another challenge posed by implicit feedback is that unlike explicit ratings,

the numerical values of implicit feedback, e.g., the time length a user has viewed a

video, the number of clicks on a product by a user, etc., do not directly translate into

preference values pui [5]. And a direct comparison of such values across different

items or different users is usually meaningless.

Existing methods that can handle implicit feedback mainly fall into two cate-

gories, i.e., imputation-based methods and bayesian personalized ranking (BPR).

7

2.3.1 Imputation-based Matrix Factorization

The main idea of imputation is to convert the one-class data to a balanced dataset

by artificially assigning values to some unobserved preferences. In [6], two ex-

treme cases of imputation strategies are described, namely, all missing as nega-

tive (AMAN) and all missing as unknown (AMAU), followed by other imputation

strategies [8], [20] proposed subsequently.

Furthermore, the notion of confidence levels has been introduced in [5] to strike

a balance between AMAN and AMAU, which brings additional benefits. We will

call this method [5] implicit-feedback collaborative filtering (IFCF). Specifically, in

IFCF [5], for all observed pairs (u, i) ∈ Ω where user u has ever watched video i,

pui = 1, while all unobserved pui are regarded as negative samples with an imputed

value pui = 0. Then, the following regression is applied onto the entire imputed

dataset:

minimize
{uu},{vi}

∑

(u,i)

cui(pui − u
T

uvi)
2 + λ

(

∑

u

‖uu‖
2 +

∑

i

‖vi‖
2

)

(2.3)

where a weight cui > 0 is used to measure the confidence we have in both observed

and imputed pui. For example, cui may be determined from the number of times

user u has watched video i; the lower the frequency, the lower the confidence cui.

Naturally, the observed positive samples are given a relatively high confidence cui,

whereas the unknown imputed entries (that are only suspected to be negative) are

given a low confidence cui. In fact, IFCF [5] has been highly cited and implemented

in the official Spark MLlib [21].

Various other imputation-based methods similar to [5] have been proposed for

recommendation systems based on implicit feedback and have been applied in dif-

ferent applications. The imputation-based method [5] has been applied to cross-

platform news and event recommendation in [22]. The same method to impute

pui and to set confidence levels cui as that in [5] has been adopted in [23], except

that [23] applies this factorization method to different user actions, e.g., watching,

8

clicks, etc., separately to improve the performance. The personality attributes of

users are incorporated into the original user latent factors in [24], where the recom-

mendation problem based on implicit feedback is solved with the same imputation-

based method as in [5].

Instead of incorporating the confidence level as a multiplicative term, [25] de-

fines a standalone additive term to model the confidence level that evaluates the

confidence of labeling an unknown sample as a truly negative sample, while the

specific values of the confidence levels are set according to the domain knowledge

of operators. Furthermore, in [26], [27], the authors have defined a set of more com-

plex weighting schemes to measure the confidence levels of different types of user

actions. And [28] proposes a hybrid model combining user-item interactions with

other user and item attributes including geographical neighborhood characteristics,

and performs location recommendation also based on the imputation-based meth-

ods. Moreover, the GeoMF model is proposed in [29] to incorporate geographical

influence into the imputation-based matrix factorization model for point-of-interest

recommendation.

However, imputation suffers from some fundamental drawbacks. First, artifi-

cially assigning an unobserved (u, i) pair a fixed preference value (e.g., pui = 0)

may introduce errors. Although an action of user u on item i indicates preference,

yet not taking any action on an item does not necessarily imply dislike; for ex-

ample, the user might not even be aware of the existence of the item [5] simply

because there are so many items in the service. Artificially assigning a low pui to

an unobserved (u, i) pair may introduce errors. Even though there is an adjustable

confidence parameter cui, it still cannot completely offset the negative impact of

artificial imputation. Second, it is also hard to fine-tune the large amount of hyper-

parameters in imputation models, e.g., the setup of cui and pui, and which data to

impute.

9

2.3.2 BPR and Pairwise Methods

Bayesian Personalized Ranking (BPR) [30] utilizes Bayesian inference to train a

pairwise ranking model from only positive feedback. This method is based on

the assumption that any observed action of a user u on an item i is a symbol of

preference and that user u should prefer item i to any other item j on which she/he

has not performed an action. Thus, for each user u, BPR creates binary pairwise

samples pu,i,j to indicate if user u prefers item i to item j or not, forming a training

set involving both positive and negative entries. This idea leads to the minimization

of the aggregate estimation loss of pairwise preferences over all triples (u, i, j) in

the training set, to discriminate between a small set of preferred items and a large set

of remaining items. Leveraging the pairwise relationships between known samples

and unknown samples, BPR introduces less imputation errors and has inspired a

number of continued studies that use similar pairwise methods [7], [31]–[35].

However, a major drawback of any pairwise methods including BPR is its com-

putational complexity. For example, assume there are m users, n videos, and |Ω|

observed user-video interactions (i.e., with a known preference value pui), where

each user has watched ω = |Ω|/m videos on average. In traditional MF that min-

imizes the MSE, the learning complexity is O(|Ω|) [36] (assuming the dimension

k of latent factors is a constant), whereas the complexity of a pairwise method is

O(mω(n − ω)) = O(|Ω|(n − ω)) on average. In our video recommendation task

at Tencent, the number of videos watched by each user on average, ω, is typically

no more than 10, while the total number of videos n is typically around 100, 000.

Thus, the computational time of BPR will be 100, 000 times that of MF on average.

In fact, theoretically speaking, as a pairwise objective sums over all triples

(u, i, j) in the training set, its worst-case complexity is O(|Ω|2) [36], which is much

larger than the worst-case complexity O(|Ω|) of MF [36]. Due to the overwhelm-

ing complexity, learning algorithms for pairwise methods usually rely on sampling,

which may lead to slow convergence [7]. Therefore, even if big data parallel com-

puting clusters are used, as the numbers of users and videos scale up to billions and

10

factor0 factor1

video0 video1 video2 video3 video4

bias

Hidden Layer

Visible Layer

Fig. 2.1. Restricted Boltzmann Machine: a stochastic neural network

millions in a large-scale Internet media service, it is very hard if not infeasible to

adopt BPR or other pairwise methods at scale.

2.4 Restricted Boltzmann Machine

A Restricted Boltzmann Machine (RBM) is a stochastic neural network which can

also be used to solve collaborative filtering problems. RBM was used by one of

the winning teams in Netflix Prize Competition [14], and can also handle implicit

feedback, which we will show in the evaluation.

An RBM characterizes users and videos with a set of vectors of latent factors.

For example, videos such as Harry Potter and Lord of the Rings are very likely to

have strong associations with a latent fantasy factor and magic factor, and users who

enjoy Madagascar and Kungfu Panda series will probably have associations with a

latent animation factor.

11

As shown in Fig. 2.1, an RBM neural network consists of:

• One layer of visible nodes, which stand for videos ever rated by the users

under consideration;

• One layer of hidden nodes, which stand for latent factors that can be learnt

from the training dataset;

• Weights between the visible layer and the hidden layer, which stand for the

relationship among videos and latent factors;

• A bias node, which stands for the bias of movie popularity.

RBM is technically a binary version of factor analysis. RBM regards hidden

nodes as latent factors of interests. By learning from each user’s ratings to the

videos she has watched, the RBM will obtain a set of weights between videos and

latent factors to fit the choices of users. Each pair of a visible node and a hidden

node are connected by a corresponding weight. Besides, the bias node is connected

to all the visible nodes and hidden nodes to represent the inherent bias of users and

videos. For example, even though a user may not be interested in feature films,

he/she is very likely to take a look at The Shawshank Redemption, as it is simply

too popular. Moreover, giving a rating of 4 out of 5 doesn’t necessarily imply a

positive attitude of the user, if the user tends to give high ratings to all watched

videos.

In general, an RBM works in the way that a user’s watched video nodes activate

connected hidden nodes which stand for interests. The activated hidden nodes then

activate other video nodes in return. In order to illustrate the details, we here assume

the neural network has been trained already and show how the nodes are activated

for a particular user:

• For each hidden node i, we sum up activation energy collected from all visible

nodes (videos) j that node i is connected to to obtain ai =
∑

j wijxj , where

xj is the status of visible nodes. Intuitively speaking, as all the connected

12

nodes j vote to the hidden node i, we sum up their votes and decide whether

or not to activate the hidden node i following the procedure shown below.

• We then use a logistic function ρi =
1

1+e−x to calculate the probability ρi that

this user has shown interest in hidden node i.

• Next, we update the status of hidden node i based on the computed probability

ρi, and turn it on with probability ρi while turning it off with probability 1−ρi.

• Finally, we activate the visible nodes in return in the same way. The activated

visible nodes (videos) represent the videos that the user might be interested

in.

In the training procedure, we iterate through the watching/rating records of each

user one by one and train the weights with Contrastive Divergence (CD) Gradient

learning [37]. It is worth mentioning that there are many variants of RBM, such as

multi-categorical RBM [38] and multi-layer RBM [39]. Moreover, instead of train-

ing merely the item-wise RBM network, [40], [41] propose to train the item-wise

RBM, user-wise RBM and other neighborhood-based RBM networks, combining

them to generate recommendations. Furthermore, [42] proposes the Linked RBM

for social network link prediction, which is an extended RBM model to learn the

preferences of users from both implicit user behavior data and social network data.

In [43], the author employs both Deep Bayesian Network (DBN) and RBM to con-

struct a collective DBN which is able to model user preferences in groups. Besides,

[44] introduces Social-RBM (SRBM), which incorporates a historical layer into the

original visible and hidden layers of the RMB, to learn the correlations between an

individual’s historical and current features.

There are also other literature about making recommendations with neural net-

works. A deep neural network is proposed in [45] to extract hidden representations

of music and to find similarity among different songs for music recommendation.

Similarly, deep factorization models have been used to obtain hidden representa-

tions of videos [46]. Moreover, a collaborative topic regression model based on

deep neural networks is also used in news recommender systems [47].

13

Chapter 3

Separating-Plane Factorization

Model

In this section, we describe our video recommendation task at Tencent based only

on user viewing history, and present our separating-plane factorization models which

enable scalable recommendations made from positive implicit feedback. Our model

has a similar complexity as the traditional matrix factorization and does not need to

resort to artificial negative sample imputation.

In our video recommender, each record in the collected logs represents a click-

and-watch action of a user u for a video i, in the form of

Rui = (u, i, tuiwatch, t
i
total, day, time, . . .), (3.1)

where tuiwatch is the time length (seconds) for which user u watched video i, titotal is

the total length of video i, and “day” stands for day of the week when the Rui was

collected. Other context information like hour of the day, devices used, video types,

can also be easily incorporated into the record.

Recall that pui is a quantitative preference value we want to estimate between

user u and video i, and the observed set of (u, i) pairs is Ω. Note that with explicit

feedback, pui for an observed interaction (u, i) ∈ Ω is directly given by the nu-

merical rating of user u on video i. However, with implicit data such as a viewing

14

record in (3.1), to generate a training sample, we need to empirically convert the

record into a quantitative measure of preference pui. For example, for simplicity,

we can let pui = tuiwatch/t
i
total for each observed record (3.1), which represents the

fraction of the video i that user u has watched. A similar empirical measure has

been used in IFCF [5] for a TV program recommendation task. In Sec. 4.1, we

will present a better empirical measure of pui to generate training samples from

observed logs, leading to better recommendation performance in experiments.

Given all the training samples {pui|(u, i) ∈ Ω} empirically derived from the

collected records, our objective is to estimate all pui, where an interaction between

(u, i) has never been observed yet. As has been mentioned in Sec. ??, if we directly

apply MF to this problem, the estimated preferences p̂ui will all be similar to the

training samples (which are all positive since tuiwatch > 0), and thus the recommen-

dation made this way will have no discriminative power.

3.1 Separating-Plane Matrix Factorization

Unlike traditional MF which factorizes the preference p̂ui as uT

uvi, in our separating-

plane matrix factorization (SPMF), we model each pui by

p̂ui = u
T

u (vi − v), (3.2)

where v = 1
n

∑n

i=1 vi is the average of all item latent factors. Accordingly, we can

learn all the latent factors by solving

minimize
{uu},{vi}

∑

(u,i)∈Ω

(pui − u
T

u (vi − v))2

+ λ

(

∑

u

‖uu‖
2 +

∑

i

‖vi − v‖2
)

.

(3.3)

The rationale of model (3.2) is the following. We assume there is a hidden abso-

lute interest value Iui of user u toward video i that is factorized as the inner product

between user and item latent factors, i.e., Îui = u
T

uvi. However, such absolute in-

15

terests are better captured by explicit ratings, which are not available in our implicit

data of watching history, which only contains watching time information. The key

assumption in SPMF is that the observed watching time of a user u on video i can

predict her relative interest in video i. That is, pui = twatch/ttotal is not directly

linked to the absolute interest. Rather, it corresponds to the preference of user u for

video i relative to an average video. Therefore, having learned all the latent factors

{uu} and {vi}, we can estimate any missing preference value pui as

p̂ui = Îui −
1

n

n
∑

i=1

Îui = u
T

uvi −
1

n

n
∑

i=1

u
T

uvi = u
T

u (vi − v),

which is exactly (3.2), with bias terms omitted for brevity.

Although a user may rate many videos positively (thus with a positive Iui), our

assumption is that she will only watch those videos that are better than average for

her, just because there are too many videos out there in the system (e.g., 100,000 in

our training data). For example, for an average video i with latent factors vi = v,

SPMF generates a preference value p̂ui = 0 according to (3.2), which actually

predicts that the user will never spend time on this video.

However, applying the stochastic gradient descent (SGD) algorithm directly to

problem (3.3) would incur excessive computational complexity. Recall that k is the

dimension of latent factor vectors uu and vi. Then, in each iteration, the complexity

of SGD is O(k|Ω|n) [48] in general, since there is a summation of n inner products

in the objective function of (3.3) due to the term v. As n is the number of all videos

and could be around 100,000 in our problem at Tencent, solving (3.3) directly with

SGD will introduce tremendous complexity.

We now convert problem (3.3) into an equivalent formulation which we will

solve efficiently. Let v′
i = vi−v. Substituting v

′
i into (3.3), we obtain the so-called

16

SPMF problem:

minimize
{uu},{v′

i}

∑

(u,i)∈Ω

(pui − u
T

uv
′
i)
2 + λ

(

∑

u

‖uu‖
2 +

∑

i

‖v′
i‖

2

)

subject to

n
∑

i=1

v
′
i = 0.

(3.4)

Note that problem (3.4) is almost the same as the original matrix factorization prob-

lem (2.2), except for the additional constraint
∑n

i=1 v
′
i = 0.

Algorithm 3.1 Projected SGD Algorithm for Problem (3.4)

1: Input: The observed set {pui|(u, i) ∈ Ω}.
2: Output: {uu}, {v

′
i} as an approximate solution to (3.4).

3: Initially, {uu}, {v
′
i} are randomly assigned.

4: for k = 1 to maxIter do

5: for all observed (u, i) ∈ Ω do

6: eui ← pui − u
T

uv
′
i

7: uu ← uu + η(euiv
′
i + λuu)

8: v
′
i ← v

′
i + η(euiuu + λv′

i)
9: Mapping Phase:

10: v
′ ←

n
∑

i=1

v
′
i / n

11: for all i = 1, . . . , n do

12: v
′
i ← v

′
i − v

′

We propose a variant of the projected SGD algorithm, as shown in Algorithm 3.1,

to solve problem (3.4) efficiently. The only addition to the original SGD are steps

11-14, which map the computed v
′
i in each iteration back to the zero hyperplane

∑n

i=1 v
′
i = 0. To do this, we subtract the average of all v′

i from each v
′
i in each

iteration, which incurs an additional complexity of O(kn) to calculate the average.

Therefore, Algorithm 3.1 has a complexity of O(k(|Ω|+ n)), which is much lower

than applying SGD directly to problem (3.3). Algorithm 3.1 is similar to the pro-

jected SGD in [49] which tries to solve a different problem of nonnegative matrix

factorization. The difference here is that the projection phase is replaced by mean

subtraction.

Solving SPMF has a low complexity O(|Ω|+ n) (when the latent factor dimen-

sion k is fixed), which is comparable to the complexity of traditional MF O(|Ω|)

17

0
1

2

1

p
u
i
(p̂

u
i)

0.5

Dimension 2 of vi

4

0

Dimension 1 of vi

0
-0.5

-1 -1

Training samples
Predicted samples

Fig. 3.1. Traditional matrix factorization: p̂ui (and pui for training samples) vs. vi for a certain

user u.
∑n

i=1
vi 6= 0.

[36]. Note that n is usually no more than |Ω|, which means SPMF at most dou-

bles the complexity of MF. This fact makes SPMF suitable for big dataset such as

the video watching history data at Tencent involving a large number of users and

videos. In contrast, as has been described in Chapter 2, BPR and pairwise methods

suffer from an overly high complexity O(|Ω|(n − ω)), and thus are not scalable to

the problem size at Tencent.

3.2 Insights and Discussions

We provide some insights on why SPMF has a discriminative power for one-class

data (containing all positive training samples pui = tuiwatch/t
i
total).

Unlike implicit-feedback CF [5], we do not perform any artificial imputation in

SPMF to create negative samples to be used in training, since the imputed values

are hard to decide, e.g., we cannot say pui is zero or negative just because user u

has never watched video i. Furthermore, mistakenly choosing an unwatched (yet

favourite) video as a negative training sample for a user will prevent the video from

appearing in the recommendation list.

18

Rather, the discriminative power of SPMF automatically comes from modelling

pui as relative interests, which finally leads to a zero-hyperplane constraint in (3.4).

We illustrate this point in an toy example in Fig. 3.1 and Fig. 3.2. Fig. 3.1 plots the

relationship between predicted p̂ui (pui for training samples) and video latent factors

vi for a certain user u, in original MF. For simplicity, only the first two dimensions

of vi are plotted. Similarly, Fig. 3.2 plots p̂ui (pui for training samples) versus v
′
i

for a certain user u in SPMF.

First, SPMF will generate p̂ui in a larger range than MF. In MF, without im-

putation, all the training samples have a pui > 0, and thus after obtaining latent

factors {uu}, {vi} from (2.2), the predicted p̂ui = u
T

uvi will roughly fall in the

same range as training samples pui do, as shown in Fig. 3.1. In contrast, in SPMF,

with constraint
∑n

i=1 v
′
i = 0, we have

∑

(u,i)

p̂ui =
m
∑

u=1

n
∑

i=1

u
T

uv
′
i =

m
∑

u=1

u
T

u

n
∑

i=1

v
′
i = 0,

which means the predicted p̂ui will have both positive and negative values, even

if only positive training samples are available. In order to enforce the zero-plane

constraint, this means p̂ui will be distributed in a much wider range than training

samples pui. As a result, videos that are very different from those in the training set

will be pushed to have a low negative p̂ui, making the truly preferred videos stand

out.

Second, SPMF always ensures that the training samples pui and predicted p̂ui

for similar videos are all above average, i.e., the videos ever watched by a user

indicate some preference from that user. In contrast, in MF, since predictions p̂ui

and training samples pui are distributed roughly in the same range, a video i with the

smallest pui in the training set is almost the least preferred video of user u. Suppose

another video j is similar to video i. Then the predicted p̂uj will also be close to pui

and thus video j is also among the least preferred. However, this is apparently not

true, because the fact that user u has ever watched video i (i.e., pui > 0) means that

video i has at least attracted user u’s attention, while most other videos have not.

19

-5
1

1

0

p
u
i
(p̂

u
i)

0.5

0

Dimension 2 of v′

i

0

Dimension 1 of v′

i

0

5

-0.5
-1 -1

Training samples
Predicted samples

Fig. 3.2. SPMF: p̂ui (and pui for training samples) vs. v
′

i for a certain user u. Zero hyperplane

enlarges the range of p̂ui.
∑n

i=1
v
′

i = 0.

3.3 Separating-Plane Factorization Machine

Context information can be used to extend user-video matrix factorization to multi-

way factorizations, in a model called the factorization machine (FM) [16]. Specifi-

cally, we have incorporated the day of the week information available in each record

to improve recommendation. The pairwise interactions between the latent factors

of users, videos, and day of the week, could all be useful. Just like the user-video

interaction reflects the interest of each user in a video, the user-day interaction indi-

cates how likely a user will watch videos on a certain day of the week: some users

prefer to watch videos on Friday while others tend to watch more videos on Sunday,

depending on individual schedules. Moreover, the video-day interaction models the

possibility that a video is watched on a certain day of the week: some videos are

uploaded in weekends regularly, while others could be popular in weekdays.

We assume there is a latent factor vector sd ∈ R
k for each day of the week d =

1, . . . , 7. We also generate each training sample puid = tuidwatch/t
i
total for each (u, i, d)

triple in the observed set Ω. Incorporating the three-way interactions among uu, vi,

and sd, we can extend SPMF (3.4) into the following separating-plane factorization

20

machine (SPFM) model:

minimize
∑

(u,i,d)∈Ω

(

puid − (b+ w(1)
u + w

(2)
i + w

(3)
d

+ u
T

uvi + v
T

i sd + u
T

usd)
)2

+ Λ
(

b, {w(1)
u }, {w

(2)
i }, {w

(3)
d }, {uu}, {vi}, {sd}

)

subject to

m
∑

u=1

uu = 0,
m
∑

u=1

w(1)
u = 0,

n
∑

i=1

vi = 0,
n

∑

i=1

w
(2)
i = 0,

7
∑

d=1

sd = 0,
7

∑

d=1

w
(3)
d = 0,

(3.5)

where Λ(·) is the regularization term. And the biases for each user, video and day

of the week, and the global bias are taken into account. For example, the user bias

w
(1)
u is related to the average preference value of a user u, the video bias w

(2)
i is

associated with the average preference value of a video i, and the time bias w
(3)
d

models how likely people will watch videos in a certain day of the week d.

If there were no constraint in Problem (3.5), it could be solved using SGD with

a complexity of O(3k|Ω|) = O(k|Ω|) in each iteration, since the objective function

involves three-way interactions only. With the zero-hyperplane constraints added,

we can extend our projected SGD in Algorithm 3.1 to the case of SPFM, such that

in the mapping phase, we let each uu subtract the mean
∑m

u=1 uu/m, let each vi

subtract the mean
∑n

i=1 vi/n, and let each sd subtract the mean
∑7

d=1 sd/7. And

the number of additional operations for the mapping phase is k(m+n+7), leading

to an overall complexity of O(k(3|Ω| +m + n + 7)) = O(k|Ω|) in each iteration,

since |Ω| ≥ m,n.

Other discrete features such as hour of the day, user’s device type, etc., can

easily be incorporated into the SPFM model. In fact, there is some trick in training

FM models [16] such that the computational cost of an SPFM with l features is only

l times that of SPMF with only user and video features.

21

Chapter 4

Implementation

In this section, we describe the implementation of the proposed models in Ten-

cent data warehouse (TDW) to handle big data with various performance optimiza-

tions. The measurement figures in this section are plotted based on a small sampled

dataset collected from Tencent, containing 165724 users and 46578 videos.

4.1 Practical Performance Optimizations

4.1.1 Empirical Preference Measures

To generate training samples from viewing logs, in Chapter 3, we have empirically

set pui = tuiwatch/t
i
total for each observed record (3.1) in the observed set Ω. We do not

use tuiwatch directly, because the watching times (as well as the lengths) of different

videos are highly skewed, as shown in Fig. 4.1. Yet, setting pui = tuiwatch/t
i
total for

(u, i) ∈ Ω is still heavily biased and tends to yield a higher preference value for

shorter videos, as shown in Fig. 4.2. Intuitively speaking, it is much easier to finish

watching a short video than a long movie. To overcome this bias toward shorter

videos, we could set pui = tuiwatch / t
i
avg, where tiavg is the average time that this video

in the record is watched by all users.

However, as shown in Fig. 4.3, the distribution of tuiwatch / tiavg is still heavy-

tailed. In order to normalize pui down to [0, 1] and reduce the impact of outliers

22

1000 2000 3000 4000

Video index (sorted)

10
0

10
2

10
4

t a
v
g
(s
ec
)

Fig. 4.1. Average watching times of videos in the sampled dataset from Tencent, containing 165724

users and 46578 videos.

0 0.5 1 1.5 2

Video length ttotal (sec) ×10
4

0

0.5

1

t w
a
tc
h
/t

to
ta
l

Fig. 4.2. Average tuiwatch/t
i
total vs. titotal in the sampled dataset from Tencent, containing 165724 users

and 46578 videos.

23

0 2 4 6

CDF of twatch/tavg

0

0.5

1
P
ro
b
a
b
il
it
y

Empirical CDF

Fig. 4.3. CDF of video watching ratio in the sampled dataset from Tencent, containing 165724

users and 46578 videos.

with an extremely high watching time (as compared to the average watching time),

we use the following empirical measure of pui for each observed record in our

implementation:

pui = 0.5tanh((tuiwatch/t
i
avg − 1)π) + 0.5, (4.1)

We use a hyperbolic tangent function to do the normalization, because the tanh is

almost linear near the mean, and thus can differentiate tuiwatch around tiavg, and weaken

the differences in extreme cases, e.g., we cannot say a user who has watched a

movie for 10 times likes the more more than a user who watched it for 5 times. And

it does achieve better performance in our evaluation at Tencent on big data to be

presented in Chapter 5.

4.1.2 Weighted SPMF and SPFM

Recall that in SPMF, p̂ui is estimated by the relative interest of user u for video i as

compared to an average video, i.e., p̂ui = u
T

u (vi−v), where v := 1
n

∑n

i=1 vi. How-

ever, in reality, not all the videos play an equal role in defining the so-called “aver-

age video.” In fact, as shown in Fig. 4.4, the video popularity is highly skewed. For

24

0 1000 2000 3000 4000 5000
Ranking of videos

10
1

10
2

10
3

10
4

10
5

N
u

m
b

e
r

o
f

c
lic

k
s

Fig. 4.4. Total numbers of clicks of different videos in the small dataset collected from Tencent,

containing 165,724 users and 46,578 videos.

example, in the sampled data from Tencent, 1% of all the videos each receive more

than 3600 clicks, whereas 95% of the videos each receives fewer than 800 clicks.

Intuitively speaking, popular videos should contribute more in terms of defining

the “average video.” On the other hand, a cold video seldom viewed by users

should only plays a trivial part in the defining v. Therefore, we adopt weighted

SPMF/SPFM in our implementation, by redefining v as follows:

v :=

∑n

i=1 h(ci)vi
∑n

i=1 h(ci)
, (4.2)

where h(ci) is the hotness of video i, depending on the number of clicks ci video

i has received. We have tried various types of weights h(ci) and found that ex-

ponential weights h(ci) = αci (with α greater than yet close to 1) yield the best

performance. The idea is that the “average video” can be better defined by a small

number of extremely hot videos that are highly visible to everyone, appearing in the

front page of QQ Browser mobile app or its push notifications.

In weighted SPFM (SPMF), we replace the constraint
∑n

i=1 vi = 0 by v = 0,

with v defined by (4.2). Then, in each iteration of the projected SGD algorithm,

25

we just need to subtract the newly defined v from each vi in the mapping phase. A

similar weighting procedure is applied to the video bias terms w
(2)
i as well.

4.1.3 Time-Decayed Confidence Levels

Since user interests may change, records collected in recent days can better predict

user interests at the present. Let τui be the number of days between the time when

the record Rui was collected and the present. We further introduce a confidence

parameter c(τ) to weight the loss function as follows:

minimize
{uu},{vi}

∑

(u,i)∈Ω

c(τui)(pui − u
T

uvi)
2 + Λ

(

{uu}, {vi}
)

subject to v = 0,

(4.3)

where Λ(·) is the regularizer, and c(τ) = β−τ , in which β controls the speed at

which c(τ) decays as τ increases. We find that a mix of β depending on video types

leads to the best performance. It is natural that user preferences for short videos are

more inclined to vary over time, while their tastes for movies may last longer.

The use of c(τ) is similar to Weighted Regularized Matrix Factorization (WRMF)

[5], [6]. The difference is that WRMF tries to lower the impact of (imputed) neg-

ative samples. Since SPMF has already addressed the implicit feedback issue via

a separating hyperplane, here c(τ) is used to emphasize the impact of more recent

feedback.

4.2 Implementation and Deployment

In the video recommender system we implemented at Tencent, the feedback data

(up to hundreds of GB) contains the user watching history in the past 40 days,

involving more than 12,500,000 users and more than 100,000 videos. To scale up

to such a huge problem size, we have implemented our algorithms in Spark to run

in a parallel manner on clusters. Since SPMF is a special case of SPFM, we have

implemented the projected SGD algorithm for SPFM using GraphX (Spark’s API

26

for graph-parallel computation) by extending distributed SGD [50] for factorization

machines to include the mapping phase.

In particular, we construct a bipartite graph as shown in Fig. 4.5 and Fig. 4.6,

where nodes in the leftmost column are called feature nodes representing all latent

factor vectors including {uu}, {vi} and {sd}, while nodes in the middle column are

called estimated preference nodes representing p̂uid and nodes in the rightmost are

called sample nodes representing puid. Edges connecting both sides stand for the re-

lationship between features and samples. As shown in Fig. 4.5, a forward-backward

procedure is used in training. In the forward phase, feature nodes concurrently cal-

culate the estimated values and forward to their connected estimated preference

nodes. By comparing with sample nodes, we can obtain the residual error. In the

backward phase, as shown in Fig. 4.6, sample nodes concurrently compare their

labeled values with received estimated values and obtain the residual errors, then

back-propagate the errors to feature nodes for updating.

We have deployed our Spark-based program on Tencent distributed Data Ware-

house (TDW), an open-source big data processing platform developed by Tencent.

TDW is used to store data, manage computation resources and perform data mining

jobs at Tencent [51]. Specifically, as shown in Fig. 4.7, we execute the follow-

ing tasks sequentially on TDW: 1) fetch all the view logs of the past 40 days from

the data store in TDW, distribute data to a computing cluster in TDW (consisting

of 100-300 virtual instances each with 5 GB memory and a 2.2 GHz single core)

and preprocess data in parallel; 2) train the SPFM model with the developed Spark

program based on all the observed records, and store parameters; 3) roughly select

candidate videos to be recommended to each user, based on a combination of item-

based CF and video popularity, to avoid the overly high complexity to calculate p̂ui

for all (u, i) pairs; 4) calculate preference values p̂ui between each user u and the

selected candidate videos i for user u, and pick the videos with top p̂ui values to be

recommended to user u; 5) fetch the recommendation results and present them to

users via the online backend server; 6) record user behavior and store the logs in

TDW to be used in tasks 1)-5) again.

27

User1

Video3

Video2

Video1

User2

Latent factor vectors Estimated

preference

Sample

preference

p̂
1,1

p̂
1,2

p̂
2,1

p̂
2,3

p
2,3

p
2,1

p
1,2

p
1,1

Fig. 4.5. Estimated preference nodes receive messages from connected feature nodes and calculate

residual errors by comparing with sample rating nodes in parallel.

28

User1

Video3

Video2

Video1

User2

Latent factor vectors Estimated

preference

Sample

preference

p̂
1,1

p̂
1,2

p̂
2,1

p̂
2,3

p
2,3

p
2,1

p
1,2

p
1,1

Fig. 4.6. Feature nodes receive residual errors from connected estimated preference nodes and

update the weights in parallel.

29

Fetch&distribute data

Clean&process data

Train&store

model parameters

Select candidate

Make recommendation

Record&store

users’ behavior

Present recommendation

to users

Fetch recommendation

results

Offline procedure Online procedure

Fig. 4.7. Workflow of our recommender system running on TDW platform.

< 1%

100%

Known samples
Unknown samples

Fig. 4.8. Density of known samples in the small dataset collected from Tencent, containing 165,724

users and 46,578 videos.

30

In model training in task 2), as shown in Fig. 4.8, only 0.034% of all (u, i)

pairs are observed. Thus, the training cost is affordable on a cluster of 100–300

instances. But it is impossible to calculate p̂ui for all (u, i), even if we have obtained

all {uu} and {vi}, simply because there are more than 1013 such (u, i) pairs in total.

Therefore, task 3) is performed to find popular videos or videos similar to those

previously watched by each user via item-based CF to serve as the candidate set for

that user. Then, p̂ui is only computed for the videos in the candidate set of each

user. Since the number of candidate videos could still be large, which may cause

out-of-memory issues in Spark, we serialize the candidate sets of all the users into

batches, for which predictions are made sequentially.

31

Chapter 5

Performance Evaluation

We conduct performance evaluation of our new models in comparison to state-of-

the-art recommender schemes that can handle implicit feedback in three scenar-

ios: 1) offline single-machine tests based on two small datasets from Tencent and

Movielens, repsectively, 2) offline tests on Tencent data warehouse (TDW) on big

data from Tencent, 3) online A/B tests, with training conducted in TDW based on

big data and testing on real users.

We evaluate the following algorithms and have individually fine-tuned the per-

formance of all of them for a fair comparison:

• Popularity based recommendation (POP): always recommend the most pop-

ular videos;

• Item-based collaborative filtering (IBCF) [9];

• Traditional matrix factorization (MF) (2.2) [2];

• Implicit-feedback collaborative filtering (IFCF) (2.3) [5];

• Restricted Boltzmann Machine (RBM) [38];

• Separating-Plane Matrix Factorization (SPMF) (3.4);

• Separating-Plane Factorization Machine (SPFM) (3.5), with the day of the

week feature incorporated;

32

TABLE 5.1

MPR FOR TENCENT SMALL DATASET AND MOVIELENS DATASET IN SINGLE-MACHINE TESTS.

Model MF IFCF BPR SPMF

MPR (Tencent’s small dataset) 17.5% 15.4% 14.9% 14.6%

MPR (MovieLens dataset) 20.1% 28.4% 18.5% 13.1%

• Variations of SPFM with practical optimizations in Sec 4.1.

The algorithms are compared in terms of precision and click through rate (CTR)

in online A/B tests, and in terms of Mean Percentile Ranking (MPR) and ROC

curves in offline evaluation. Percentile ranking was introduced in [5] and [52] to

evaluate how close a test video is to the top of the ranked list, which is independent

of the lengths of recommendation lists.

Formally, MPR is defined as follows. Denote by rankui the percentile ranking of

video i within the ordered list of all videos for user u (sorted by predicted preference

values), such that rankui = 0% if video i is predicted to be the most preferred by

user u, thus placed at the top of the list, while rankui = 100% if video i is predicted

to be the least preferred for user u, thus placed at the end of the list. Then, we

define mean percentile ranking (MPR) as the mean value of rankui for all (u, i)

∈ Φ, where Φ is a test set of actually watched videos. A lower MPR is desirable, as

it indicates that the actually watched videos in the test set are closer to the top of the

ranked video lists. Note that with random predictions for a large number of users,

MPR is 50%, i.e., each test video for a user is ranked in the middle of the sorted list

for the user on average.

5.1 Single-Machine Tests

We first present results from single-machine test based on two small datasets from

Tencent and MovieLens, respectively. The Tencent dataset contains 2604572 watch-

ing behavior records of the form (3.1) collected in 40 days, involving 165724 users

and 46578 videos. The test samples consist of the last watched video of each user,

33

and the rest of the records serve as training samples. On the other hand, the publicly

available MovieLens dataset contains explicit ratings (from 0.5 to 5) between 668

users and 10325 videos. To evaluate the scenario of one-class feedback, we only

keep the ratings that are above 3, and remove all the ratings no more than 3. With-

out any time information of ratings, for each user, we choose the rightmost video in

the video list that she has positively rated (> 3) to serve as the test sample and the

rest as training data.

For both datasets, we generate all p̂ui from training data, sort the preferred video

list for each user based on p̂ui and calculate the MPR of testing samples. From

Table. 5.1 we can see SPMF outperforms other algorithms and has a lower MPR

for both the Tencent data and MovieLens data.

For MovieLens data, we also compare different models in terms of receiver

operating characteristic (ROC) curve in Fig. 5.1. The testing samples are actual

positive samples and the other unwatched videos are actual negative samples. Let

x be a threshold, such that the predicted positive samples for each user u are top-x

videos in the ranked list for user u, and the rest in the list are predicted negative

samples for user u. Then, we can move x from 1 to n, the total number of videos,

and obtain an ROC curve in Fig. 5.1, which shows that SPMF outperforms all other

algorithms in terms of area under the curve (AUC). SPMF also significantly outper-

forms BPR, although BPR is a more complex pairwise model.

Moreover, we compare our SPMF with iTALS time bands [53], which also used

the MovieLens dataset to evaluate the recommendation performance assuming only

positive feedback is available. For a fair comparison, we follow the same experi-

mental setup as in [53]: we use all the 5-star ratings as training samples, based on

which top 20 movies are selected for each user by SPMF and iTALS time bands,

respectively. Then, following the same evaluation criterion as in [53], we report

Recall@20, which is defined as the ratio of the selected top 20 movies for each user

falling in the movies rated 4.5 or higher by this user. Recall@20 is an important

metric as in practice, users usually view the top 20 items. The movies rated 4.5 or

higher by each user are deemed in [53] as the movies truly preferred by the user,

34

TABLE 5.2

RECALL@20 OF ALGORITHMS USING FACTORIZATION WITH 20 AND 40 FEATURES ON

MOVIELENS DATASET IN SINGLE-MACHINE TESTS.

Model iALS iCA time bands iTALS time bands SPMF

Movielens(20) 0.0494 0.0553 0.0896 0.0910

Movielens(40) 0.0535 0.0494 0.0937 0.0984

0 0.2 0.4 0.6 0.8 1
False positive rate

0

0.2

0.4

0.6

0.8

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

MF
IFCF
BPR
RBM
SPMF

Fig. 5.1. Receiver operating characteristic (ROC) curve for MovieLens data in single-machine

tests, the publicly available MovieLens dataset contains explicit ratings (from 0.5 to 5) between 668

users and 10325 videos.

according to some empirical measurements.

Both algorithms are run with the same number of features (the same dimension

of latent factor vectors) and the same number of iterations. We set the number of

features to 20 and 40, which is used in [53] and commonly used in literature [52],

[54]. We report the results in Table. 5.2, where the results of iTALS time bands

together with two other baseline schemes that appeared in [53] are authentic values

reported by [53], while the results of SPMF are generated from our experiments fol-

lowing the same setup. We can observe that the performance of SPMF outperforms

the other algorithms in the same metric adopted in [53].

We then evaluate the performance of SPFM (with day-of-the-week feature) and

35

20 40 60 80 100
Dimension of latent factor vectors

13

13.5

14

14.5

15

15.5

16

16.5

M
e

a
n

 P
e

rc
e

n
ti
le

 R
a

n
k
in

g
 (

%
)

SPMF (basic)
SPMF (time decayed)
weighted SPMF
SPFM (basic)
SPFM (with all optimizations)

Fig. 5.2. MPR of different optimization options as the dimension of feature vector v varies @

Tencent’s small dataset, The Tencent dataset contains 2604572 watching behavior records of the

form (3.1) collected in 40 days, involving 165724 users and 46578 videos.

the effect of practical optimizations described in Sec. 4.1 on Tencent data. As shown

in Fig. 5.2, we make comparisons among basic SPMF, SPMF with time-decayed

confidence levels (Sec. 4.1.3), weighted SPMF (Sec. 4.1.2), basic SPFM (3.5), and

SPFM with all the optimizations implemented. From Fig. 5.2, we can see that as

the dimension of latent factor vectors varies, models with optimizations can always

achieve lower MPRs than their original versions. Moreover, SPFM with optimiza-

tions achieves the best performance among all algorithms.

5.2 Offline Tests on Distributed Clusters

We now present results from offline evaluation based on a big dataset containing

about 400,000,000 video viewing records of the form (3.1) collected from Tencent

in 40 days, involving more than 12,500,000 users and 100,000 videos. To scale

up to such big data, we implemented all the compared algorithms in Spark (see

Chapter 4.2 for implementation details of our scheme) and run the programs in

TDW.

Similarly, we take the last watched video of each user as the testing sample.

36

10 20 30 40 50 60 70 80 90
Dimension of latent factor vectors

10

15

20

25

30

M
e

a
n

 P
e

rc
e

n
ti
le

 R
a

n
k
in

g
 (

%
)

POP
IBCF
MF
IFCF
SPMF
SPFM

Fig. 5.3. Large-scale offline test: MPR vs. the dimension of latent factor vectors, the dataset

contains about 400,000,000 video viewing records of the form (3.1) collected from Tencent in 40

days, involving more than 12,500,000 users and 100,000 videos.

10 20 30 40 50 60 70 80 90
Number of training iterations

10

15

20

25

30

M
e

a
n

 P
e

rc
e

n
ti
le

 R
a

n
k
in

g
 (

%
)

POP
IBCF
MF
SPMF
SPFM

Fig. 5.4. Large-scale offline test: MPR vs. the number of training iterations, the dataset con-

tains about 400,000,000 video viewing records of the form (3.1) collected from Tencent in 40 days,

involving more than 12,500,000 users and 100,000 videos.

37

TABLE 5.3

EFFECT OF DIFFERENT EMPIRICAL PREFERENCE MEASURES IN LARGE-SCALE OFFLINE

EVALUATION WITH SPFM, THE DATASET CONTAINS ABOUT 400,000,000 VIDEO VIEWING

RECORDS OF THE FORM (3.1) COLLECTED FROM TENCENT IN 40 DAYS, INVOLVING MORE

THAN 12,500,000 USERS AND 100,000 VIDEOS.

Empirical pui 1.0 twatch/ttotal twatch/tavg tanh

MPR (%) 14.3 13.9 12.0 11.8

1.0 t
watch

 / t
total

t
watch

 / t
avg

tanh

Rating kernel functions

11

12

13

14

15

M
e

a
n

 P
e

rc
e

n
ti
le

 R
a

n
k
in

g
 (

%
)

Fig. 5.5. Effect of different empirical preference measures in large-scale offline evaluation with

SPFM, the dataset contains about 400,000,000 video viewing records of the form (3.1) collected

from Tencent in 40 days, involving more than 12,500,000 users and 100,000 videos.

And the rest are training samples. From Fig. 5.3 and Fig. 5.4, we can see that

SPMF and SPFM (both with practical optimizations) outperform other state-of-the-

art algorithms in terms of MPR. Fig. 5.4 further shows that as more iterations are

used in the projected SGD algorithm, the benefit of our methods over traditional

MF becomes more significant.

We compare different empirical measures of preference values in Table. 5.3,

while keeping other parameter settings unchanged in SPFM. Table. 5.3 and Fig. 5.5

show that setting the preference value pui for each observed record according to

(4.1) outperforms all other variants. Similarly, we kept other parameter settings and

changed the time decay parameter β in (4.3). As shown in Fig. 5.6, a blend of β

38

1.0 1.5 2.2 3.0 blend
β

11

11.5

12

12.5

13

M
e

a
n

 P
e

rc
e

n
ti
le

 R
a

n
k
in

g
 (

%
)

Fig. 5.6. Effect of different Time-Decayed Confidence Level measures in large-scale offline eval-

uation with SPFM, the dataset contains about 400,000,000 video viewing records of the form (3.1)

collected from Tencent in 40 days, involving more than 12,500,000 users and 100,000 videos.

TABLE 5.4

RESULTS OF ONLINE A/B TESTS, THE TRAINING DATASET IS COLLECTED IN THE PAST 40

DAYS, CONTAINING 400 MILLION VIEWING RECORDS, INVOLVING ABOUT 12,500,000 USERS

AND 100,000 VIDEOS, AND THE A/B TESTS ARE RUN ON 50865 ACTUAL USERS.

Model IBCF IFCF SPMF SPFM

Clicks (Sunday) 14248 14739 17137 17627

Clicks (Monday) 10273 10531 12825 13421

CTR (%) 14.1 14.5 17.2 17.9

Precision @10 (%) 19.2 20.2 23.3 24.4

values shows better MPR than other fixed values. Similarly we tune the time-decay

parameter β and find a mix of β is the best; it can be big for news videos and variety

shows while small for series and movies.

5.3 Online A/B Tests

We ran online tests of SPMF and SPFM in comparison to IBCF and IFCF, with

training conducted in TDW based on data collected from QQ Browser mobile

app in the past 40 days, containing 400 million viewing records, involving about

39

IBCF IFCF SPMF SPFM

Models

0

0.5

1

1.5

2

N
u

m
b

e
r

o
f

c
li
c
k
s

×10
4

Fig. 5.7. The total number of clicks on Sunday in online A/B tests. The training dataset is collected

in the past 40 days, containing 400 million viewing records, involving about 12,500,000 users and

100,000 videos, and the A/B Tests are run on 50865 actual users.

IBCF IFCF SPMF SPFM

Models

0

0.5

1

1.5

2

N
u

m
b

e
r

o
f

c
li
c
k
s

×10
4

Fig. 5.8. The total number of clicks on Monday in online A/B tests. The training dataset is collected

in the past 40 days, containing 400 million viewing records, involving about 12,500,000 users and

100,000 videos, and the A/B Tests are run on 50865 actual users.

40

12,500,000 users and 100,000 videos. See Chapter 4.2 for deployment details. For

matrix-factorization-based schemes including SPMF, SPFM and IFCF, due to the

complexity to calculate all p̂ui after obtaining all latent factors in the training, we

use POP and IBCF to generate a set of 200 candidate videos for each user, and then

calculate p̂ui only for these candidate videos for each user and recommend the top

10 videos to each user. We have computed recommendations to all users to ver-

ify the system’s capability to produce recommendation results for all the users, in

fact within 2-3 hours for IFCF, SPMF, and SPFM, and about 30 minutes for IBCF.

Therefore, our algorithms are fast enough, since in the production environment at

Tencent, training is only performed daily.

When performing online split tests, the recommendation results are pushed to

50865 real users in QQ Browser mobile app from whom consent has been acquired.

These users are split randomly and evenly into 4 groups, each group taking the

recommendations generated from one of the four schemes. After 2 days (a Sunday

and a Monday), we collect the number of clicks on our recommended videos in

each of the 4 groups.

Table 5.7 shows that SPFM and SPMF attracted a larger number of user clicks

on the recommended videos, with SPFM being the best. Fig. 5.7 and Fig. 5.8 can

also help illustrate the difference of total numbers of clicks which is a direct indi-

cator of their performance in A/B tests. Since users are randomly selected, more

clicks on recommended videos in a group indicate better recommendation results

than other groups. Fig. 5.9, Fig. 5.10 and Fig. 5.11 show how the number of clicks

varies along time, in which SPFM and SPMF obviously outperform the baseline

schemes most of the time. Fig. 5.12 and Fig. 5.13 show how numbers of clicks are

distributed among users, which also shows that SPFM and SPMF outperform the

baseline schemes in most cases.

Furthermore, we design a set of statistical experiments to assess the signifi-

cance of differences among different groups. First, the distribution of the number

of clicks per hour for each of the 4 methods is plotted in Fig. 5.14 as reflectance

and boxplot. Then, we assume the reflectance data (number of clicks per hour) and

41

0 5 10 15 20
Time (hour)

0

500

1000

1500
N

u
m

b
e

r
o

f
c
lic

k
s

IBCF
IFCF
SPMF
SPFM

Fig. 5.9. Number of clicks on the recommended videos on Sunday in online A/B tests, the training

dataset is collected in the past 40 days, containing 400 million viewing records, involving about

12,500,000 users and 100,000 videos, and the A/B Tests are run on 50865 actual users.

0 5 10 15 20
Time (hour)

0

200

400

600

800

1000

N
u

m
b

e
r

o
f

c
lic

k
s

IBCF
IFCF
SPMF
SPFM

Fig. 5.10. The number of clicks on the recommended videos on Monday in online A/B tests, the

training dataset is collected in the past 40 days, containing 400 million viewing records, involving

about 12,500,000 users and 100,000 videos, and the A/B Tests are run on 50865 actual users.

42

0 10 20 30 40
Time (hour)

0

500

1000

1500
N

u
m

b
e

r
o

f
c
lic

k
s

IBCF
IFCF
SPMF
SPFM

Fig. 5.11. The number of clicks on the recommended videos in online A/B tests, the training dataset

is collected in the past 40 days, containing 400 million viewing records, involving about 12,500,000

users and 100,000 videos, and the A/B Tests are run on 50865 actual users.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of clicks

0

1000

2000

3000

4000

5000

N
u

m
b

e
r

o
f

u
s
e

rs

IBCF

IFCF

SPMF

SPFM

Fig. 5.12. The number of users with different numbers of clicks on Sunday in online A/B tests. The

training dataset is collected in the past 40 days, containing 400 million viewing records, involving

about 12,500,000 users and 100,000 videos, and the A/B Tests are run on 50865 actual users.

43

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of clicks

0

1000

2000

3000

4000

N
u

m
b

e
r

o
f

u
s
e

rs

IBCF

IFCF

SPMF

SPFM

Fig. 5.13. Number of users with different numbers of clicks on Monday in online A/B tests, the

training dataset is collected in the past 40 days, containing 400 million viewing records, involving

about 12,500,000 users and 100,000 videos, and the A/B Tests are run on 50865 actual users.

operators (the 4 methods) i = 1, 2, 3, 4 comply with the Random Effects Model:

yij = η + τi + εij , in which η stands for the average reflectance across all the

cases, and τi is a operator-specific random effect, which measures the difference

between the average number of clicks in method i and the average number of clicks

across all the cases. The εij means an individual-specific error, representing the

number of clicks from a specific hour j in method i. As a standard approach, we

apply the zero-sum constraint
∑4

i=1 τi = 0. After running the one-way analysis of

variance (ANOVA), with results shown in Table. 5.5, the F -value is 2.859 and the

p-value Pr(> F) is 0.0383, which is smaller than 0.05 and thus declares a signifi-

cant operator-to-operator difference. This fact means that there do exist sufficiently

significant difference between the experiment groups and control groups. And Ta-

ble. 5.6 shows that according to the p-adj value, the most significant pairwise dif-

ference exists between the SPFM and IFCF, which means our algorithm SPFM is

significantly better than the baseline algorithm IFCF.

We also compare different groups in terms of the click through rate (CTR) and

Precision@10. CTR is the ratio of the number of videos clicked through from our

44

TABLE 5.6

TUKEY’S MULTIPLE COMPARISON TEST FOR THE ONLINE A/B TESTS. THE TRAINING

DATASET IS COLLECTED IN THE PAST 40 DAYS, CONTAINING 400 MILLION VIEWING

RECORDS, INVOLVING ABOUT 12,500,000 USERS AND 100,000 VIDEOS, AND THE A/B TESTS

ARE RUN ON 50865 ACTUAL USERS.

Operator diff lwr upr p adj

IFCF-IBCF -15.60417 -168.48373 137.2754 0.9934966

SPFM-IBCF 122.50000 -30.37957 275.3796 0.1644060

SPMF-IBCF 103.72917 -49.15040 256.6087 0.2965946

SPFM-IFCF 138.10417 -14.77540 290.9837 0.0924009

SPMF-IFCF 119.33333 -33.54623 272.2129 0.1830766

SPMF-SPFM -18.77083 -171.65040 134.1087 0.9888125

TABLE 5.7

THE RESULTS OF ONLINE A/B TESTS, THE TRAINING DATASET IS COLLECTED IN THE PAST

40 DAYS, CONTAINING 400 MILLION VIEWING RECORDS, INVOLVING ABOUT 12,500,000

USERS AND 100,000 VIDEOS, AND THE A/B TESTS ARE RUN ON 50865 ACTUAL USERS.

Model IBCF IFCF SPMF SPFM

Clicks (Sunday) 14248 14739 17137 17627

Clicks (Monday) 10273 10531 12825 13421

CTR (%) 14.1 14.5 17.2 17.9

Precision @10 (%) 19.2 20.2 23.3 24.4

10-video recommendation lists over the total number of videos clicked by users via

all methods, such as via front pages and outside links. Precision@10 is the average

ratio of clicked videos out of the 10 recommended videos for all users. Note that

here CTR and Precision@10 are only calculated for those users who clicked at least

one recommended video. As shown in Table. 5.7, the two groups taking recommen-

dations from SPMF and SPFM have both higher CTR and Precision@10, which

means they are more likely to watch a recommended video. In the meantime, from

all of the above results, we observe that IFCF [5], as a method dedicated to handle

implicit feedback, only slightly outperforms item-based collaborative filtering.

46

Chapter 6

Concluding Remarks

In this thesis, we propose separating-plane factorization models, an scalable ap-

proach to large-scale recommendation problems based on implicit data such as

video viewing history. Our model does not rely on artificial imputation, can gen-

erate discriminative preference predictions in a wider range than traditional matrix

factorization, yet without increasing complexity . We implemented the algorithms

on Tencent’s TDW cluster with various practical optimizations. Offline evaluations

based on training sets involving 12.5 millions users and 100,000 videos show that

our scheme outperform various state-of-the-art methods and can accomplish the

learning task in 2-3 hours. Further online A/B split tests on 50,865 real users in a

2-day period reveal that our scheme increased CTR by 25% over item-based collab-

orative filtering and by 23% over implicit-feedback collaborative filtering (IFCF), a

scheme available in Spark’s MLlib.

47

References

[1] F. Cacheda, V. Carneiro, D. Fernández, and V. Formoso, “Comparison of col-

laborative filtering algorithms: Limitations of current techniques and propos-

als for scalable, high-performance recommender systems,” ACM Transactions

on the Web (TWEB), vol. 5, no. 1, p. 2, 2011.

[2] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for rec-

ommender systems,” Computer, no. 8, pp. 30–37, 2009.

[3] X. Su and T. M. Khoshgoftaar, “A survey of collaborative filtering techniques,”

Advances in artificial intelligence, vol. 2009, p. 4, 2009.

[4] T. Vanderbilt, “The science behind the netflix algorithms that decide what

you will watch next,” http://www.wired.com/2013/08/qq_netflix-algorithm/,

2013.

[5] Y. Hu, Y. Koren, and C. Volinsky, “Collaborative filtering for implicit feed-

back datasets,” in Data Mining, 2008. ICDM’08. Eighth IEEE International

Conference on. Ieee, 2008, pp. 263–272.

[6] R. Pan, Y. Zhou, B. Cao, N. N. Liu, R. Lukose, M. Scholz, and Q. Yang,

“One-class collaborative filtering,” in Data Mining, 2008. ICDM’08. Eighth

IEEE International Conference on. IEEE, 2008, pp. 502–511.

[7] S. Rendle and C. Freudenthaler, “Improving pairwise learning for item recom-

mendation from implicit feedback,” in Proceedings of the 7th ACM interna-

tional conference on Web search and data mining. ACM, 2014, pp. 273–282.

48

[8] H.-F. Yu, M. Bilenko, and C.-J. Lin, “Selection of negative samples for one-

class matrix factorization.”

[9] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collaborative fil-

tering recommendation algorithms,” in Proceedings of the 10th international

conference on World Wide Web. ACM, 2001, pp. 285–295.

[10] C. C. Aggarwal, “Model-based collaborative filtering,” in Recommender Sys-

tems. Springer, 2016, pp. 71–138.

[11] A. Bellogin and J. Parapar, “Using graph partitioning techniques for neigh-

bour selection in user-based collaborative filtering,” in Proceedings of the sixth

ACM conference on Recommender systems. ACM, 2012, pp. 213–216.

[12] J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen, “Collaborative filtering

recommender systems,” in The adaptive web. Springer, 2007, pp. 291–324.

[13] G. Adomavicius and A. Tuzhilin, “Toward the next generation of recom-

mender systems: A survey of the state-of-the-art and possible extensions,”

Knowledge and Data Engineering, IEEE Transactions on, vol. 17, no. 6, pp.

734–749, 2005.

[14] Y. Koren, “The bellkor solution to the netflix grand prize,” Netflix prize docu-

mentation, vol. 81, pp. 1–10, 2009.

[15] R. Salakhutdinov and A. Mnih, “Bayesian probabilistic matrix factorization

using markov chain monte carlo,” in Proceedings of the 25th international

conference on Machine learning. ACM, 2008, pp. 880–887.

[16] S. Rendle, “Factorization machines,” in Data Mining (ICDM), 2010 IEEE

10th International Conference on. IEEE, 2010, pp. 995–1000.

[17] G. Dror, N. Koenigstein, Y. Koren, and M. Weimer, “The yahoo! music dataset

and kdd-cup’11.” in KDD Cup, 2012, pp. 8–18.

49

[18] S. Rendle, “Social network and click-through prediction with factorization

machines,” in KDD-Cup Workshop, 2012.

[19] D. Kelly and J. Teevan, “Implicit feedback for inferring user preference: a

bibliography,” in ACM SIGIR Forum, vol. 37, no. 2. ACM, 2003, pp. 18–28.

[20] D. Lim, J. McAuley, and G. Lanckriet, “Top-n recommendation with missing

implicit feedback,” in Proceedings of the 9th ACM Conference on Recom-

mender Systems. ACM, 2015, pp. 309–312.

[21] “Collaborative filtering - spark.mllib,” http://spark.apache.org/docs/latest/

mllib-collaborative-filtering.htm, 2014.

[22] C.-K. Hsieh, L. Yang, H. Wei, M. Naaman, and D. Estrin, “Immersive recom-

mendation: News and event recommendations using personal digital traces,”

in Proceedings of the 25th International Conference on World Wide Web. In-

ternational World Wide Web Conferences Steering Committee, 2016, pp. 51–

62.

[23] Z. Zhao, Z. Cheng, L. Hong, and E. H. Chi, “Improving user topic interest

profiles by behavior factorization,” in Proceedings of the 24th International

Conference on World Wide Web. ACM, 2015, pp. 1406–1416.

[24] I. Fernández-Tobías, M. Braunhofer, M. Elahi, F. Ricci, and I. Cantador, “Al-

leviating the new user problem in collaborative filtering by exploiting person-

ality information,” User Modeling and User-Adapted Interaction, pp. 1–35,

2015.

[25] X. He, H. Zhang, M.-Y. Kan, and T.-S. Chua, “Fast matrix factorization for

online recommendation with implicit feedback,” in Proc. of SIGIR, vol. 16,

2016.

[26] B. Wang, M. Ester, J. Bu, Y. Zhu, Z. Guan, and D. Cai, “Which to view:

Personalized prioritization for broadcast emails,” in Proceedings of the 25th

50

International Conference on World Wide Web. International World Wide Web

Conferences Steering Committee, 2016, pp. 1181–1190.

[27] C. H. Lin, E. Kamar, and E. Horvitz, “Signals in the silence: Models of im-

plicit feedback in a recommendation system for crowdsourcing.” in AAAI,

2014, pp. 908–915.

[28] Y. Liu, W. Wei, A. Sun, and C. Miao, “Exploiting geographical neighborhood

characteristics for location recommendation,” in Proceedings of the 23rd ACM

International Conference on Conference on Information and Knowledge Man-

agement. ACM, 2014, pp. 739–748.

[29] D. Lian, C. Zhao, X. Xie, G. Sun, E. Chen, and Y. Rui, “Geomf: joint geo-

graphical modeling and matrix factorization for point-of-interest recommen-

dation,” in Proceedings of the 20th ACM SIGKDD international conference

on Knowledge discovery and data mining. ACM, 2014, pp. 831–840.

[30] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “Bpr:

Bayesian personalized ranking from implicit feedback,” in Proceedings of the

twenty-fifth conference on uncertainty in artificial intelligence. AUAI Press,

2009, pp. 452–461.

[31] W.-T. Kuo, Y.-C. Wang, R. T.-H. Tsai, and J. Y.-j. Hsu, “Contextual restaurant

recommendation utilizing implicit feedback,” in Wireless and Optical Com-

munication Conference (WOCC), 2015 24th. IEEE, 2015, pp. 170–174.

[32] W. Pan, H. Zhong, C. Xu, and Z. Ming, “Adaptive bayesian personalized rank-

ing for heterogeneous implicit feedbacks,” Knowledge-Based Systems, vol. 73,

pp. 173–180, 2015.

[33] W. Pan, Z. Liu, Z. Ming, H. Zhong, X. Wang, and C. Xu, “Compressed knowl-

edge transfer via factorization machine for heterogeneous collaborative rec-

ommendation,” Knowledge-Based Systems, vol. 85, pp. 234–244, 2015.

51

[34] X. Yu, X. Ren, Y. Sun, Q. Gu, B. Sturt, U. Khandelwal, B. Norick, and J. Han,

“Personalized entity recommendation: A heterogeneous information network

approach,” in Proceedings of the 7th ACM international conference on Web

search and data mining. ACM, 2014, pp. 283–292.

[35] R. Das, A. Neelakantan, D. Belanger, and A. McCallum, “Chains of reason-

ing over entities, relations, and text using recurrent neural networks,” arXiv

preprint arXiv:1607.01426, 2016.

[36] J. Lee, S. Bengio, S. Kim, G. Lebanon, and Y. Singer, “Local collaborative

ranking,” in Proceedings of the 23rd international conference on World wide

web. ACM, 2014, pp. 85–96.

[37] M. A. Carreira-Perpinan and G. Hinton, “On contrastive divergence learning.”

in AISTATS, vol. 10. Citeseer, 2005, pp. 33–40.

[38] R. Salakhutdinov, A. Mnih, and G. Hinton, “Restricted boltzmann machines

for collaborative filtering,” in Proceedings of the 24th international conference

on Machine learning. ACM, 2007, pp. 791–798.

[39] R. Salakhutdinov and G. E. Hinton, “Deep boltzmann machines.” in AISTATS,

vol. 1, 2009, p. 3.

[40] Y. Liu, Q. Tong, Z. Du, and L. Hu, “Content-boosted restricted boltzmann ma-

chine for recommendation,” in International Conference on Artificial Neural

Networks. Springer, 2014, pp. 773–780.

[41] K. Georgiev and P. Nakov, “A non-iid framework for collaborative filtering

with restricted boltzmann machines.” in ICML (3), 2013, pp. 1148–1156.

[42] K. Li, J. Gao, S. Guo, N. Du, X. Li, and A. Zhang, “Lrbm: A restricted boltz-

mann machine based approach for representation learning on linked data,” in

2014 IEEE International Conference on Data Mining. IEEE, 2014, pp. 300–

309.

52

[43] L. Hu, J. Cao, G. Xu, L. Cao, Z. Gu, and W. Cao, “Deep modeling of group

preferences for group-based recommendation.” in AAAI, 2014, pp. 1861–

1867.

[44] N. Phan, D. Dou, B. Piniewski, and D. Kil, “Social restricted boltzmann

machine: Human behavior prediction in health social networks,” in 2015

IEEE/ACM International Conference on Advances in Social Networks Analy-

sis and Mining (ASONAM). IEEE, 2015, pp. 424–431.

[45] A. Van den Oord, S. Dieleman, and B. Schrauwen, “Deep content-based mu-

sic recommendation,” in Advances in Neural Information Processing Systems,

2013, pp. 2643–2651.

[46] G. Trigeorgis, K. Bousmalis, S. Zafeiriou, and B. Schuller, “A deep semi-nmf

model for learning hidden representations.” in ICML, 2014, pp. 1692–1700.

[47] H. Wang, N. Wang, and D.-Y. Yeung, “Collaborative deep learning for rec-

ommender systems,” in Proceedings of the 21th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining. ACM, 2015, pp.

1235–1244.

[48] H.-F. Yu, C.-J. Hsieh, S. Si, and I. S. Dhillon, “Parallel matrix factorization for

recommender systems,” Knowledge and Information Systems, vol. 41, no. 3,

pp. 793–819, 2014.

[49] C.-J. Lin, “Projected gradient methods for nonnegative matrix factorization,”

Neural computation, vol. 19, no. 10, pp. 2756–2779, 2007.

[50] R. S. Xin, D. Crankshaw, A. Dave, J. E. Gonzalez, M. J. Franklin, and I. Sto-

ica, “Graphx: Unifying data-parallel and graph-parallel analytics,” February

2014.

[51] “Tdw: Tencent open source distributed data warehouse,” http://prog3.com/

article/1970-01-01/2819892, 2014.

53

[52] Y. Koren, “Factorization meets the neighborhood: a multifaceted collabora-

tive filtering model,” in Proceedings of the 14th ACM SIGKDD international

conference on Knowledge discovery and data mining. ACM, 2008, pp. 426–

434.

[53] B. Hidasi and D. Tikk, “Fast als-based tensor factorization for context-aware

recommendation from implicit feedback,” in Joint European Conference on

Machine Learning and Knowledge Discovery in Databases. Springer, 2012,

pp. 67–82.

[54] I. Pilászy and D. Tikk, “Recommending new movies: even a few ratings are

more valuable than metadata,” in Proceedings of the third ACM conference on

Recommender systems. ACM, 2009, pp. 93–100.

54

