

Question Answering for Biomedicine

by

Yifeng Liu

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

University of Alberta

© Yifeng Liu, 2016

ii

Abstract

The field of biomedicine is reeling from “information overload”. Indeed, biomedical researchers

find it almost impossible to stay current with published literature due to the vast amounts of data

being generated and published. As a result, they are turning to text mining. Over the past two

decades the field of biomedical text mining has experienced significant advances, such as the

development of high quality biomedical knowledge bases and ontologies, the construction of

biomedical search engines and the development of biomedical relationship mining tools.

However, users still have to manually examine the retrieved documents and connect snippets of

information from various databases to find answers to their queries. Ideally what is needed is a

“wise” question answering (QA) system. With the advances in QA systems, including the

triumph of IBM Watson on Jeopardy!, many biomedical researchers, including myself, believe

that now is the time to further advance biomedical text mining by developing a biomedical

question answering system. Such a system would be able to answer questions regarding

biomedical entities and help researchers better digest existing knowledge and formulate new

hypothesis. The task of biomedical question answering is faced with two central challenges: 1)

retrieving relevant information from heterogeneous data sources (structured databases and free-

text collections), and 2) formulating natural language answers from retrieved concepts and

snippets. My research focuses on developing an association mining tool (PolySearch2) and a

web-based biomedical question answering system (BioQA), that would provide precise answers

with encyclopedia-like commentary to a wide range of biomedical questions. In particular,

PolySearch2 mines concept associations from free-text collections based on co-occurrence

statistics. BioQA uses PolySearch2 and other tools to decode natural language questions and

formulate natural language answers for both descriptive and associative queries. Both

iii

PolySearch2 and BioQA offer public web interface to answer questions posed by biomedical

researchers, physicians, students and the inquisitive public. PolySearch2 and BioQA represent an

integrated solution to the core challenges in biomedical question answering.

iv

Preface

This thesis is an original work prepared by Yifeng Liu. It arose from ideas suggested by

Professor David Wishart at the University of Alberta. The PolySearch2 system referred to in

Chapter 3 and the BioQA system referred to in Chapter 4 were designed and implemented by

Yifeng Liu, with the assistance of Professor David Wishart. Yifeng Liu was also responsible for

conducting the data analysis required to evaluate both systems. Yongjie Liang assisted with the

implementation of the PolySearch2 web server. Michael Wilson assisted with setting up and

running the ElasticSearch server. Anchi Guo helped with data collection for the biomedical

thesaurus. The Chemical Ontology described in Chapter 3 and Chapter 4 is an original work by

Yannick Djoumbou. David Arndt and Tanvir Sajed assisted with the administration and

maintenance of PolySearch2 and BioQA public web server. The introduction in Chapter 1, the

literature reviews in Chapter 2, the algorithms in Chapter 5, and the concluding analysis in

Chapter 6 are all original works by Yifeng Liu.

Certain parts of this thesis have been previously published. Chapter 3 expands on the materials

published in the journal: Nucleic Acids Research under the reference of “Liu, Y., Liang, Y.,

Wishart, D. (2015) PolySearch2: a significantly improved text-mining system for discovering

associations between human diseases, genes, drugs, metabolites, toxins and more. Nucleic Acids

Research. 2015 Jul 1;43(W1):W535-42. doi: 10.1093/nar/gkv383.” on April 29, 2015. Yifeng

Liu was responsible for the design, implementation, and evaluation of PolySearch2, as well as

the manuscript composition. Yongjie Liang assisted with the implementation of PolySearch2

web server. Professor David Wishart was the supervisory author and was involved with concept

formation and manuscript composition.

v

Acknowledgements

I would like to thank my supervisor Dr. David Wishart for taking me on this fascinating research

journey and providing immense help, insightful guidance, and encouragement throughout this

journey. Special thanks goes to members of my supervisory and examination committee: Dr.

Russell Greiner, Dr. Paul Lu, Dr. Osmar Zaiane, Dr. Duane Szafron, Dr. Warren Gallin, and Dr.

Paul Pavlidis for their guidance and assistance.

I would like to express my gratitude to members and staff of the Bioinformatics Research Lab

and the Wishart Research Lab, especially Michael Wilson, Yongjie Liang, An Chi Guo, Yannick

Djoumbou, Craig Knox, Beomsoo Han, David Arndt, Tanvir Sajed, and Mark Berjanskii for

being my source of inspiration over the years. Thanks also goes to my fellow graduate students

at the Departments of Computing Science and Biological Science: Jianguo Xia, You Zhou, Noor

Hafsa, Fatemeh Miri, He Hua, Zhaochen Guo, Ying Xu, and Hsiu-Chin Lin for countless

insightful discussions.

Last but not least I would like to thank my parents, family and friends, who made my life and

these studies possible. I want to thank my parents Guoxian Liu and Cuifang Zhan for bringing

me into this world and showing me how to be a good person. To my wife Haier and daughter

Zoey for lighting up my life with love and joy. I want to thank my extended family, Shu Lun Yu,

Yu Mei Yu, Haiyan Yu, and Wenjie Zhong for their love and support. I would also like to thank

Dr. Charles Chan Kwok Keung, Dr. Larry Wang, Dr. Jennifer Jay, and Johnson Yeung who have

supported and helped me in countless ways.

Funding for this project was provided by the Natural Sciences and Engineering Research Council

of Canada (NSERC), Canadian Institutes for Health Research (CIHR), Alberta Innovates Health

Solutions, Genome Alberta and Genome Canada.

vi

Table of Contents

Abstract .. ii

Preface ... iv

Acknowledgements ... v

Table of Contents ... vi

List of Tables .. ix

List of Figures .. xii

List of Abbreviations .. xv

List of My Related Publications.. xvi

1. Introduction ... 1

1.1 Introduction to biomedical question answering ... 1

1.2 Challenges .. 4

1.3 Thesis Statement ... 9

1.4 Thesis Outline .. 10

2. Background and Related Works ... 12

2.1 Text Mining Overview .. 12

2.1.1 Natural Language Processing .. 12

2.1.2 Machine Learning .. 18

2.1.3 Information Retrieval ... 19

2.1.4 Information Extraction ... 22

2.1.5 Evaluation Metrics ... 24

2.2 Related Work .. 28

2.2.1 Biomedical Thesaurus, Lexicons, and Ontologies ... 28

2.2.2 Document Retrieval ... 29

2.2.3 Named Entity Recognition ... 30

2.2.4 Ontology Matching .. 31

2.2.5 Relationship Extraction .. 32

2.2.6 Question Answering... 33

3. PolySerach2: A Text Mining Framework... 38

3.1 Introduction ... 38

vii

3.2 The PolySearch algorithm .. 40

3.3 Improvements and Enhancements in PolySearch2 ... 43

3.3.1 Algorithmic Improvements .. 43

3.3.2 Graphical Interface and Web Implementation ... 45

3.3.3 Database and Text Search Enhancements .. 54

3.3.4 Improved Synonym Collections .. 56

3.3.5 Caching and Auto-Updating .. 58

3.4 Performance Evaluation ... 58

3.5 Limitations ... 62

3.6 Conclusion ... 63

4. BioQA: An Automated Biomedical Question Answering System 64

4.1 Introduction ... 64

4.2 BioQA’s User Interface .. 67

4.3 BioQA’s Knowledge base ... 78

4.4 BioQA’s Algorithms.. 85

4.5 Performance Evaluations ... 98

4.5.1 Question Analysis Evaluation .. 98

4.5.2 Answer Synthesis Evaluation .. 104

4.6 Limitations and Future Plans .. 110

4.7 Conclusion ... 112

5. BioQA’s Algorithmic Framework ... 113

5.1 Named Entity Recognition ... 114

5.2 Question Analysis .. 116

5.3 Concepts and Snippets Retrieval ... 118

5.4 Description Generator .. 120

5.5 Answer Synthesis .. 121

5.6 Paraphrasing Module ... 127

5.7 Conclusion ... 128

6. Concluding Remarks .. 129

Bibliography .. 132

Appendices ... 142

viii

Appendix A: Description Templates for Drugbank Entries ... 142

A.1 Example DrugBank Description Templates .. 142

A.2 Example DrugBank Generated Descriptions ... 148

Appendix B: Automated Paraphrasing Rules .. 154

B.1 Simple Substitution Rules .. 154

B.2 Word Sense Substitution Rules .. 155

B.3 Enumeration Rules ... 157

B.4 Rearrangement Rules ... 157

B.5 Conversion Rules ... 157

B.6 Other Rules ... 158

Appendix C: Other Information Extraction Techniques in BioQA 159

C.1 Chemical Term Recognition .. 159

C.2 Attribute Extraction .. 160

ix

List of Tables

Table 1: Confusion Matrix showing the evaluation metric for prediction results. TP denotes the

number of True-Positives, FP denotes the number of False-Positives and FN denotes the number

of False-Negatives. ... 25

Table 2: Database and Text Collection Statistics for PolySearch2. PolySearch 2.0 significantly

expanded the number of text corpora and databases (by >80%) to include a total of 6 free-text

corpora and 14 bioinformatics databases. The latest server searches against over 43 million

articles covering Medline abstracts, PubMed Central full-text, Wikipedia articles, US Patent

abstracts, and open access textbooks. ... 55

Table 3: PolySearch2 Thesaurus Statistics. PolySearch 2.0 significantly expanded custom

thesauri from 9 to 20 categories, and from just 3000 to over 1.13 million term entries. In

particular, we have expanded the thesauri to include toxins, food metabolites, biological

taxonomies, pathways, as well as Gene Ontology, MeSH terms, and ICD-10 codes. The thesauri

also feature many manually curated terms and synonyms for health effects, drug effects, adverse

effects, and chemical taxonomies. This table summarizes the number of term entries and

synonyms for each thesaurus. ... 57

Table 4: Performance evaluation of PolySearch2 vs. PolySearch. P stands for Precision, R stands

for Recall, F stands for F-measure, and Accu. Stands for accuracy. .. 61

Table 5: Performance evaluation and feature comparison of PolySearch2 vs. PolySearch. 62

Table 6: Statistics for BioKBs biomedical thesauri collections. This table shows the name of the

individual thesaurus, number of terms and synonyms, as well as the primary source. BioKB’s

thesauri includes terms and synonyms for 20 different types of biomedical entities, including

genes, proteins, protein families, diseases, human metabolites, drugs and drug metabolites,

biological pathways, tissues, organs, sub-cellular organelles, toxins, food constituents, biological

taxonomies, ICD-10 medical codes, positive and adverse health effects, drug effects, and

chemical taxonomies. .. 79

x

Table 7: Statistics for BioKB’s free-text document collections. This table shows the name of

document collections, the number of entries in each document collection, as well as the storage

size. ... 82

Table 8: Statistics for BioKB’s structured database collections. This table shows the name of the

database and the number of entries in each database. ... 82

Table 9: Statistics for BioKB’s knowledge graph. This table shows the name of each knowledge

node, the number of node entries, the number of node attribute fields, the number of internal

links (between nodes of same types), and external links (between nodes of different types). 83

Table 10: Example Question Analysis results for the question “What is aspirin?”. 88

Table 11: Example BioTagger result for the input question “What is aspirin?”. 90

Table 12: Description Generator results for the question “What is aspirin?”............................... 91

Table 13: Example of a Concept Graph Generator output on the input question “What is

aspirin?”. A subset of 10 edges in the concept graph (51 nodes, 44 edges) are shown in this table.

This table shows the concept ID, node type, and node name for source and target nodes for

selected edges.. 92

Table 14: Summarization engine output for the question “What is aspirin?”. 93

Table 15: Example Paraphrasing Engine output for synthesized answers with input question

“What is aspirin?”. .. 94

Table 16: Performance statistics of BioQA’s question type prediction algorithm (prefix rule) in

comparison with K-nearest neighbor (KNN), Support Vector Machine (SVM), and Random

Forest classifiers on the BioASQ training dataset with 600 questions with question type labels.

... 100

Table 17: BioASQ Challenge Task B Exact answer formation. This table shows the performance

statistics for BioQA v1.1 in Task1b, and BioQA v1.2 in Task 2b. Stric Acc. and Lenient Acc.

stands for Strict Accuracy, and Lenient Accuracy respectively. MRR stands for mean reciprocal

xi

rank. Official ranking measures for each answer category are marked with asterisks. Those

measures for which BioQA’s overall performance was significantly better than the best among

other participants are shown in bold. .. 106

Table 18: BioASQ Challenge Task B Ideal answer formation. This table shows performance

statistics for BioQA v1.1 in Task1b, and BioQA v1.2 in Task 2b. Manual scores for Task 2 were

not available. Those measures for which BioQA’s overall performance scores were significantly

better than the best among other participants are shown in bold. .. 107

Table 19: Example sentence templates in a group and generated description for a DrugBank

entry DB00680 Moricizine. .. 119

Table 20: Percent (%) coverage for selected data fields in the prokaryotic phenotype database in

BacMap and MetaGenAssist. The phenotype database contains a total of 38 data fields (14

shown here) for 10,835 prokaryote species, subspecies and strains. .. 161

Table 21: An example of potential health effects extracted from MEDLINE abstracts for

curcumin, a phytochemical found in the popular Indian spice turmeric. This table lists examples

of potential health effect (extracted using the in-house attribute extractor), their scores in co-

occurrence analysis, and supporting evidence from reference publications. 162

xii

List of Figures

Figure 1: Number of indexed PubMed (Medline) articles by year. .. 2

Figure 2: Schema of biocuration workflows and the application of text mining. 3

Figure 3: Search engine (Google) results for questions “What is the cause of beri-beri?” and

“What diseases are caused by E-cadherin mutations?”. ... 5

Figure 4: Search engine (Bing) results for questions “What is the cause of beri-beri?” and “What

diseases are caused by E-cadherin mutations?”. ... 6

Figure 5: Knowledge engine (Wolfram Alpha) results for questions “What is the cause of beri-

beri?” and “What diseases are caused by E-cadherin mutations?”. .. 7

Figure 6: flow chart diagram showing steps in processing a text collection with various Natural

Language Processing techniques. ... 13

Figure 7: Example of a syntactic parse tree with POS tags, a dependency tree, and semantic role

labels for an example sentence “ATP synthase converts ADP to ATP.” Tag abbreviations: S

(sentence), NP (noun phrase), VP (verb phrase), PP (prepositional phrase). NNP (singular proper

noun), VBZ (verb), IN (preposition). .. 17

Figure 8: Illustration of the similarity measure between to document vectors in a vector space

model... 21

Figure 9: General architecture of a QA system. This figure is based on a figure found in

“Athenikos, S.J., and Han, H. (2010) Biomedical question answering: A survey. Computer

Methods and Programs in Biomedicine, 99(1):1-24, July 2010.” .. 34

Figure 10: A screenshot of PolySearch2's query interface showing the PolySearch2 query

submission form. ... 46

Figure 11: A screenshot of PolySearch2's query interface showing the advanced option page for

further query refinement. .. 47

xiii

Figure 12: A screenshot of PolySearch2's result display showing the PolySearch2 result

overview table. .. 48

Figure 13: A screenshot of PolySearch2's result display showing the detailed result page with

supporting evidence for a single association (Bisphenol A – Breast Neoplasm). 49

Figure 14: A screenshot of PolySearch2's result display showing result details with the full

MEDLINE abstract in highlighted and hyperlinked text. ... 50

Figure 15: PolySearch2's system overview showing the architecture of the PolySearch2 web

server, its API, and the underlying search engine. PolySearch2 uses the Model-View-Controller

(MVC) design: 1) the PolySearch2 Search Engine with ElasticSearch (Model layer) organizes

document collections. 2) the PolySearch2 API (Controller layer) implements the core

PolySearch2 algorithms and queries the model layer for search results. 3) the PolySearch2 web

server (View layer) is a thin layer of graphical user interface that passes user queries to the

PolySearch2 API and formats search results. ... 53

Figure 16: BioQA’s Query submission page (the Question is: “What is the cause of beri-beri?”).

... 71

Figure 17: BioQA’s Answer Synopsis page with links to the full answer with references, relevant

concepts, the results download, and various knowledge graph visualizations (the Question is:

“What is the cause of beri-beri?”). .. 72

Figure 18: BioQA’s full answer page (the Question is: “What is the cause of beri-beri?”). 73

Figure 19: BioQA’s full answer page (the Question is: “What diseases are caused by E-cadherin

mutations?”). ... 74

Figure 20: BioQA’s relevant concept view for the input question “What diseases are caused by

E-cadherin mutations?”. .. 75

Figure 21: BioQA’s Co-occurrence network visualization. (The question is: “What diseases are

caused by E-cadherin mutations?”) .. 76

xiv

Figure 22: A close-up view on BioQA’s Co-occurrence network visualization. (The question is:

“What diseases are caused by E-cadherin mutations?”) ... 77

Figure 23: BioQA's knowledge and algorithmic components. ... 86

Figure 24: BioASQ Question Similarity Scatter plots: Yes/No questions versus Associative

questions. .. 101

Figure 25: BioASQ Question Similarity Scatter plots: Yes/No questions versus Descriptive

questions. .. 102

Figure 26: BioASQ Question Similarity Scatter plots: Associative question versus Descriptive

questions. .. 103

Figure 27: A flow chart showing BioQA's algorithms and the data flow through the system. .. 113

Figure 28: An example MEDLINE abstract tagged by BioTagger. Surface text tokens recognized

as biomedical entities are tagged, color coded, and hyperlinked to corresponding database

records. .. 115

Figure 29: BioQA's algorithm on summarization via the co-occurrence concept graph. 122

Figure 30: The Build-Concept-Graph algorithm builds concept graphs from relevant text

snippets. .. 123

Figure 31: BioQA’s summarization algorithm using document matrix and Latent Semantic

Indexing techniques. ... 124

Figure 32: BioQA's automatic summarization algorithm for building a vector space model from

retrieved text snippets. .. 125

xv

List of Abbreviations

CRF Conditional Random Field

ECMDB E. coli Metabolome Database

GO Gene Ontology

HMDB Human Metabolome Database

HMM Hidden Markov Model

HPRD Human Protein Reference Database

IE Information Extraction

IR Information Retrieval

IUPAC International Union of Pure and Applied Chemistry

Jochem The joint chemical dictionary

KEGG Kyoto Encyclopedia of Genes and Genomes

LSI Latent Semantic Index

MeSH Medical Subject Headings

NCBI National Center for Biotechnology Information

NE Named Entity

NER Named Entity Recognition

NLP Natural Language Processing

OMIM Online Mendelian Inheritance in Man

PAS Predicate Argument Structure

POS Part-of-Speech

PPI Protein Protein Interaction

QA Question Answering

SNOMED-CT Systematized Nomenclature of Medicine (Clinical Terms)

SRL Semantic Role Labelling

SVM Support Vector Machine

UMLS United Medical Language System

OOV Out-of-vocabulary

xvi

List of My Related Publications

[1] Liu, Y., Liang, Y., Wishart, D. (2015) PolySearch2: a significantly improved text-mining

system for discovering associations between human diseases, genes, drugs, metabolites,

toxins and more. Nucleic Acids Research. Jul 1;43(W1):W535-42.

[2] Wishart, D., Arndt, D., Pon, A., Sajed, T., Guo, A.C., Djoumbou, Y., Knox, C., Wilson,

M., Liang, Y., Grant, J. et al. (2015) T3DB: the toxic exposome database. Nucleic Acids

Research, 43, D928-934.

[3] Law, V., Knox, C., Djoumbou, Y., Jewison, T., Guo, A.C., Liu, Y., Maciejewski, A.,

Arndt, D., Wilson, M., Neveu, V. et al. (2014) DrugBank 4.0: shedding new light on drug

metabolism. Nucleic Acids Research, 42, D1091-1097.

[4] Jewison, T., Su, Y., Disfany, F.M., Liang, Y., Knox, C., Maciejewski, A., Poelzer, J.,

Huynh, J., Zhou, Y., Arndt, D., Djoumbou, Y., Liu, Y., Deng, L., Guo, A.C., Han, B.,

Pon, A., Wilson, M., Rafatnia, S., Liu, P., Wishart, D.S. (2014) SMPDB 2.0: big

improvements to the Small Molecule Pathway Database. Nucleic Acids Research.

Jan;42(Database issue):D478-84.

[5] Wishart, D.S., Jewison, T., Guo, A.C., Wilson, M., Knox, C., Liu, Y., Djoumbou, Y.,

Mandal, R., Aziat, F., Dong, E. et al. (2013) HMDB 3.0--The Human Metabolome

Database in 2013. Nucleic Acids Research, 41, D801-807.

[6] Guo, A.C., Jewison, T., Wilson, M., Liu, Y., Knox, C., Djoumbou, Y., Lo, P., Mandal, R.,

Krishnamurthy, R. and Wishart, D.S. (2013) ECMDB: the E. coli Metabolome Database.

Nucleic Acids Research, 41, D625-630.

[7] Arndt, D., Xia, J., Liu, Y., Zhou, Y., Guo, A.C., Cruz, J.A., Sinelnikov, I., Budwill, K.,

Nesbo, C.L., Wishart, D.S. (2012) METAGENassist: a comprehensive web server for

comparative metagenomics. Nucleic Acids Research. Jul;40(Web Server issue):W88-95.

[8] Cruz, J., Liu, Y., Liang, Y., Zhou, Y., Wilson, M., Dennis, J.J., Stothard, P., Van

Domselaar G., Wishart, D.S. (2012) BacMap: an up-to-date electronic atlas of annotated

bacterial genomes. Nucleic Acids Research. Jan;40(Database issue):D599-604.

1

1. Introduction

This chapter introduces the concept of biomedical question answering, presents the thesis

statement and outlines the rest of this thesis regarding my approach to accomplish the task of

biomedical question answering.

1.1 Introduction to biomedical question answering

Biomedical researchers are now finding it almost impossible to stay current with today’s

research due to the vast amount of data being generated and published. Consider these facts: 1)

there are more than 60,000 scientific journals published today; 2) nearly 500,000 biomedical

articles are published each year; 3) there are more than 22,000,000 abstracts in PubMed

published from 20,000 journals; and 4) there have been more than 50,000,000 scientific articles

published since 1660. According to a study by Baasiri et al. [9] a researcher would have to scan

130 different journals and read 27 papers per day to follow a single disease, such as breast

cancer. A more recent study by Lu et al. [54], showed that the total number of citations in

MEDLINE, a central repository for scientific articles in the biomedical domain, is growing at

more than 4% each year, and that more than 3,000 new articles are being added each day. Figure

1 shows the number of indexed articles in MEDLINE and the accelerating growth rate of the

PubMed database [19]. In addition to the rapid growth in published biomedical literature,

biomedical databases are growing too. GenBank [18], which contains most of the world’s gene

sequencing information, has grown from just 600 annotated DNA sequences in 1982 to nearly

200 million annotated DNA sequences today. The Protein Data Bank [69], which houses most of

the world’s protein structure data, grew from 13 structures in 1976 to more than 120,000

structures by 2015. ArrayExpress [70], which contains data on gene expression experiments,

grew from just 1,200 data sets in 2006 to nearly 70,000 today. Adding to the challenge of

exponential information growth, is the proliferation of domain-specific databases. For instance,

the total number of biomolecular databases ever described in the annual Nucleic Acids Research

(NAR) Database Issue has grown from 90 in 1998 to nearly 1,700 today [80]. These data show

that it is increasingly difficult for biomedical researchers to keep up with current research, let

alone learn from past research results. It is also evident that a considerable amount of useful

biological knowledge is buried in the form of free text, waiting to be transformed into more

2

accessible formats. Swanson referred to such phenomena as “undiscovered public knowledge”

[13].

Figure 1: Number of indexed PubMed (Medline) articles by year.

To alleviate the problem of information overload, teams of biocurators are increasingly

being employed to convert paper-bound text into electronically accessible information through

the construction of biomedical databases. These databases are frequently serving as the backbone

of the field’s working knowledge. Biocuration [40] aims at organizing and annotating

discoveries disseminated by biological researchers. An important aspect of biocuration is that

useful knowledge in published (i.e. paper) articles is assembled and deposited into electronic

biomedical knowledge bases that are accessible over the internet. However, biocuration is a

time-consuming and labor-intensive process that requires the effort of many high-priced domain

experts.

 -

 200,000

 400,000

 600,000

 800,000

 1,000,000

 1,200,000

 1,400,000

1 9 5 0 1 9 6 0 1 9 7 0 1 9 8 0 1 9 9 0 2 0 0 0 2 0 1 0

N
U

M
B

ER
 O

F
IN

D
EX

 A
R

TI
C

LE
S

YEAR

PUBMED GROWTH RATE

3

Computer-aided text mining can serve as an important means of reducing the biocuration

bottleneck as it enables biomedical researchers to rapidly and automatically retrieve existing

knowledge or discover hidden knowledge in the literature. To date, text mining approaches in

biomedicine have focused on such tasks as: 1) retrieving relevant documents, 2) extracting

mentioned biomedical entries and predicting their association (e.g. Protein-Protein Interactions),

3) learning or enriching biomedical ontologies from text, and most recently, 4) providing salient

answers for clinical questions [7].

Figure 2: Schema of biocuration workflows and the application of text mining.

Figure 2 illustrates an example of a typical biomedical discovery workflow. In this

workflow a biomedical scientist first formulates a hypothesis, then they conduct a literature

search to find any prior (published) knowledge that may help test the hypothesis or enhance their

understanding on the subject matter. They then conduct their own experiments to test the

hypothesis and report their discoveries in a peer reviewed scientific publication. In addition to

the traditional route of journal publication, a growing number of scientific journals require that

researchers deposit their experimental data into publicly accessible databases prior to

4

publication. However, snippets of scientific discoveries (such as concentrations of a newly

discovered metabolite in body fluids) are often buried in the free text of the published article and

not in an easily accessible abstract. Such knowledge could be extracted manually or semi-

automatically by biocurators and finally deposited into dedicated databases. Text mining

facilitates scientific discovery and biocuration by first providing a means of retrieving relevant

articles for literature review and hypothesis formulation, then suggesting hidden associations that

may have been previously overlooked by researchers (or biocurators). To illustrate the potential

of text mining in biomedical research, Swanson [13], a mathematician, conducted keyword

searches on MEDLINE and examined shared terms to formulate hypotheses for previously

overlooked relations between seemingly disconnected topics, such as magnesium and migraine,

fish oil and Raynaud's syndrome, and somatomedin C and arginine. These novel, text-mined

relationships were later supported by biological experiments or clinical trials [13].

1.2 Challenges

Recent attention towards biomedical text mining has focused on developing improved

search engines and providing easier ways to navigate biomedical publications. These engines use

ontologies to recognize biomedical named entities (NEs) from text, extract explicit relations

between entities, construct domain specific lexicons to support other text mining tasks, and

curate datasets for evaluating text mining techniques. Despite continuing advances and

improvements in biomedical text mining, a publicly accessible, domain-specific question

answering (QA) system is still not available. The central idea behind a biomedical QA system is

to offer structured, precise and salient answers to natural language biomedical questions posed

by researchers and biocurators. Such a QA system would benefit biomedical researchers,

physicians, students, and the inquisitive public. Over the past decade we have witnessed huge

advances in text mining applications including the rise of search engines like Google [68], Bing

[60], and knowledge engines like Wolfram Alpha [99]. In February 2011, the IBM-developed

QA system called Watson [28] defeated highly skilled human players on the open-domain

question answering Jeopardy! challenge.

5

Figure 3: Search engine (Google) results for questions “What is the cause of beri-beri?” and

“What diseases are caused by E-cadherin mutations?”.

6

Figure 4: Search engine (Bing) results for questions “What is the cause of beri-beri?” and “What

diseases are caused by E-cadherin mutations?”.

7

Figure 5: Knowledge engine (Wolfram Alpha) results for questions “What is the cause of beri-

beri?” and “What diseases are caused by E-cadherin mutations?”.

8

The success of Watson has motivated text mining researchers to start thinking about

developing question-answering systems for biomedicine [100]. However, biomedical QA is

challenging as it is a highly specialized domain. It is somewhat different from open domain QA,

and the supporting evidence is often stored in heterogeneous sources in various formats that

cannot yet be searched like web pages on a traditional search engine without explicit

consolidation and curation. To illustrate the challenge in Biomedical QA, we posed the following

questions “What is the cause of beri-beri?” and “What diseases are caused by E-cadherin

mutations?” to Google [68], Bing [60], and Wolfram Alpha [99]. The results are shown in

Figure 3, Figure 4, and Figure 5. With the first question “What is the cause of beri-beri?”,

Google [68] is able to return a text snippet (extracted from the top hit) identifying beri-beri as a

disease caused by thiamine deficiency. Bing [60] is able to return the cause as being thiamine

deficiency and lists different causes for thiamine deficiency. Wolfram Alpha [99], a knowledge

engine, is not able to identify beri-beri as a disease but instead assumes it is a language and

presents regions and number of speakers for the assumed language. With the second question

“What diseases are caused by E-cadherin mutations?”, both Google and Bing interpret the

question as a search query and return web pages containing information on E-cadherin and the

CDH1 gene. The third hit from Google and second hit from Bing indicate a connection between

E-cadherin and Gastric Cancer but no further information is provided for the potential

association. Top hits from both search engines now include biomedical publications, but no

answer snippets or other pieces of evidence are extracted from these publications. Wolfram

Alpha [99] is capable of mapping E-cadherin to a mouse gene (CDH1) and provides the name

and genetic sequence for this gene. However, no disease with potential associations to E-

cadherin are shown in Wolfram Alpha’s results. For this question, none of these systems are

capable of providing descriptions for the concept of “E-cadherin”, and none of them is able to

provide natural language answers to this question. This little QA experiment illustrates the need

to develop a specialized biomedical question answering system, capable of accepting questions

in natural language sentences, and providing natural language answers for the individual posing

the question.

9

1.3 Thesis Statement

Over the past two decades a number of keyword-query document retrieval systems (i.e.

PubMed) have been developed to help alleviate the problems associated with biomedical

question-answering. However, users still have to manually examine the retrieved documents to

find answers to their queries. Ideally what is needed is a “wise” question answering (QA) system

that uses natural language and figures out what the questioner is really asking and composes

natural language answers.

My thesis research focuses on developing a biomedical question answering system

(called BioQA) that would provide precise, natural language answers with encyclopedia-like

commentary to a wide range of natural language biomedical questions. In particular, this

biomedical question answering system should be able to handle both descriptive (“What is

Aspirin?”) and associative queries (“What is the cause of beri-beri?”). Descriptive queries are

particularly useful for automatically creating annotations of genes/proteins for newly sequenced

organisms while associative queries are useful for discovering relations between biomedical

entities. This QA system should also be able to summarize relevant documents and text passages

using natural language and generate supporting evidence for the returned answers. The design of

BioQA focuses on answering biomedical questions posed by researchers, physicians, students

and the inquisitive public.

In this thesis, I hypothesize that building a biomedical question answering system is

feasible and I propose the BioQA framework with a prototype implementation to demonstrate the

feasibility and usability of a QA system in biomedicine. Through the implementation of BioQA, I

learned that 1) a comprehensive biomedical thesaurus is essential for almost all steps of

biomedical question answering, and 2) effective summarization algorithms are the key to derive

natural language answers from relevant concepts and snippets.

10

1.4 Thesis Outline

In this thesis, I present a framework for building a practical biomedical question

answering system. To illustrate the feasibility of such framework, I developed a prototype QA

system, called BioQA. To demonstrate its usability in answering biomedical questions and to

serve the general public I also created a publicly accessible web interface for BioQA and one of

its search engines (PolySearch2). The rest of this dissertation is organized as follows:

Chapter 2 provides an overview on text mining techniques relating to question

answering. This chapter serves as a brief review and introduces related concepts in natural

language processing, machine learning, information retrieval and information extraction, as well

as various evaluation metrics. This chapter also discusses related works in biomedical question

answering, including biomedical thesauri and ontology curation. It also describes recent

developments in document retrieval, named entity recognition, ontology matching, relation

extraction, and automated question answering.

Chapter 3 presents PolySearch2 [52], a biomedical association extraction system and

biomedical domain-specific search engine. PolySearch2 is designed to identify latent

relationships between biomedical entities as well as mining reference snippets as evidence for

discovered associations. This chapter also introduces PolySearch2's public web interface, its

enhancements over the legacy PolySearch [16, 17] system, its underlying methodologies and its

performance evaluation. PolySearch2 served as a precursor to the development of BioQA.

Chapter 4 presents BioQA, an automated biomedical question answering system. In this

chapter I propose a biomedical question-answering framework (the BioQA framework) and

describe how BioQA was assembled and tested. In this chapter, I describe BioQA's public web

interface, its underlying knowledgebase BioKB, the collection of algorithms for transforming

input questions with retrieved knowledge to natural language answer summaries, and discuss its

performance evaluations results.

Chapter 5 provides further details on the BioQA’s algorithmic framework for named

entity recognition, question analysis, concept and snippet retrieval, description generation,

answer synthesis, and automated paraphrasing.

11

Chapter 6 concludes this thesis by reviewing the research contributions of PolySearch2

and BioQA, as well as the future directions for further research in biomedical question

answering.

This thesis is accompanied with three appendices. In these appendices, automated

description generation (Appendix A), automated paraphrasing (Appendix B), and other

information extraction techniques used in the BioQA question answering framework (Appendix

C) are described in detail.

12

2. Background and Related Works

In this chapter, I briefly review a number of text-mining techniques related to question

answering (QA). I also introduce related concepts in natural language processing, machine

learning, information retrieval and extraction, as well as various evaluation metrics. I also survey

a number of related works associated with question answering, specific to the biomedical

domain. This includes biomedical thesauri, ontologies, biomedical information retrieval and

extraction, and prior studies and reports on automated question answering.

2.1 Text Mining Overview

Text mining utilizes various techniques in natural language processing (NLP), supervised

machine learning, unsupervised data mining, information retrieval (IR), and information

extraction (IE) to extract useful information from free text and format it into a well-defined data

structure. This section provides a brief overview of the key methodologies and applications used

in text mining.

2.1.1 Natural Language Processing

Text mining can be viewed as a specific application of natural language processing

(NLP) techniques [46, 56], which together with other machine learning and data mining

methods, can be used to discover useful information hidden in raw text. NLP provides the basic

tools for analyzing the semantics (or meaning) of a sentence. Processing results from various

NLP algorithms provide additional information for downstream, supervised machine learning or

unsupervised data mining. Text mining uses NLP techniques in almost all levels, including but

not limited to, language modelling, Part-of-Speech (POS) tagging, syntactic parsing, semantic

role labelling, and summarization. Figure 6 shows some of the steps typically used to process

documents in preparation for further processing with various natural language processing

algorithms. These terms and processes are explained in more detail below.

13

Figure 6: flow chart diagram showing steps in processing a text collection with various Natural

Language Processing techniques.

As can be seen in Figure 6, language modeling plays an important role in NLP. A

language model is a probability distribution of terms occurring across all documents in a text

collection. Each text document consists of one or more tokens; each token is a delimited

sequence of characters. For example, in the sentence “virus contains DNA.”, we have three

tokens “virus”, “contains”, “DNA”, each of which is delimited by white space. Language

modelling calculates N-gram (N consecutive tokens) frequencies or skip N-gram (N subsequence

of tokens that need not be consecutive) frequencies from a given body of text (or sequence of

terms). N-gram language models can be used to provide probability estimates for multiple word

terms (N-gram) in a given sentence, and assess its relative importance in a text collection. N-

gram frequency calculation is done by counting the occurrence of each unique N-gram in a

tokenized text collection, and dividing that count by the total number of tokens in that text

collection. For example, in a text collection with two sentences: [“virus contains DNA”, “plants

also contain DNA.”], we have six unique tokens [“virus”, “contains”, “contain”, “DNA”,

“plants”, “also”]. Each token occurs exactly once, but “DNA” occurs twice, so the probability

14

that the token “DNA” occurs in the text collection is estimated to be 2/7, or 0.2857. Notice that

tokens “contain” and “contains” are same word in different forms, but are counted as different

tokens. We can convert different forms of the same word to a unique base form using stemming.

Stemming is a word transformation technique that trims off the suffix of a word so it is

reverted back to its common base form (stem). For example, the tokens “trim”, “trims”,

“trimming”, and “trimmed” are converted to the same base form “trim” via word stemming.

Quite often we calculate N-gram frequency on a stemmed collection of tokens to take into

account the fact that words can occur in various forms. For example, after stemming, our

example text collection now contains only five tokens [“virus”, “contain”, “DNA”, “plant”,

“also”], and both “DNA” and “contain” now occur twice.

In building language models, we also need to filter out stop words from a sentence. Stop

words are words that commonly occur in almost every sentence with little significance in

probability estimation or language modelling. Some examples of stop words are “is”, “are”,

“also”, “will”, “does”, “do”, “as”, “were”, “has”. In our example, after removing the stop word

“also” we have a list of four unique tokens [“virus”, “contain”, “DNA”, “plant”], with “DNA”

occurring twice and “virus” occurring once. The occurrence probability for “DNA” and “virus”,

adjusted after removing the stop words, is therefore 2/6 or 0.3333, and 1/6 or 0.1667,

respectively. Language modelling also estimates the occurrence frequency for terms that are

missing from the corpus (“out-of-vocabulary” or OOV terms) using various “smoothing”

techniques. For example, we can assume a word that does not occur in the base text collection

will likely occur with a fixed low probability. For example, the word “animal” does not occur in

our example text collection and therefore by smoothing we assign it a low occurrence probability

of, say, 0.00001.

We can calculate the occurrence probability of a sentence by calculating the cumulative

probability of each token in the sentence. Smoothing is needed to ensure the cumulative

probability does not reduce to zero due to an OOV word occurring in the sentence. Language

modelling techniques are used widely in NLP applications like document retrieval and text

clustering. For example, Google uses N-gram language models in its web page retrieval

15

algorithms. The Google N-gram data [33] provides frequency counts for more than 1.1 billion 5-

gram (five consecutive word sequences) calculated from indexed web pages.

Part-of-Speech (POS) tagging assigns POS tags (e.g. nouns, verbs, adjectives, adverbs

etc.) to each word in a given sentence. The Penn Treebank Project [58] provides a standardized

collection of POS tags that are widely used in NLP. There are both rule-based POS tagging and

probabilistic POS tagging approaches. Rule-based approaches attempt to assign a POS tag to a

word based on its dictionary entry or via context words in a given sentence. Probabilistic POS

tagging trains a probabilistic machine learning model to predict a word's most probable POS tags

using probability estimations from a labelled training dataset (prior probability) and the observed

sequence of words in the input. For example, the Viterbi algorithm [30] implements a Hidden

Markov Model (HMM) to perform POS tagging for a sentence by predicting the most probable

sequence of hidden states (POS tags) from a given sequence of observations (words in a given

sentence).

Syntactic parsing converts a given sentence into a syntactic parsed tree, which identifies

syntactic constituents like noun phrases, verb phrases and prepositional phrases. Semantic role

labelling (SRL) identifies arguments of predicates (or verbs) in a given sentence. For example,

the semantic roles in the sentence “ATP synthase converts ADP to ATP.” are:

[ATP synthase (A0/Subject)] [converts (Verb)] [ADP (A1/Object)] to

[ATP (A2/Indirect Object)].

Figure 7 shows an example of a POS-tagged sentence that includes a syntactically parsed tree,

the dependency relationships between words, as well as the semantic roles for each constituent.

As illustrated in Figure 7, this sentence about ATP synthase (the root) consists of a noun phrase

(NP) and a verb phrase (VP). The NP consists of two proper nouns “ATP” and “synthase'', and

the VP consists of the main verb “converts'' and another NP. The NP consists of a proper noun

“ADP'' and a prepositional phrase (PP) “to ATP”. The syntactically parsed tree can therefore be

converted into a dependency tree illustrating the dependencies between words. In this case, the

sentence root depends on the main verb “converts”, and the verb is dependent on both the subject

“ATP synthase” and the objects (“ADP'' and “to ATP'') of the sentence.

16

Semantic role labelling is an important step needed to understand the semantics or

meaning of a sentence. This process provides a higher level of abstraction than a simple syntax

tree. This is because semantic role labeling can be used to convert sentences with the same

semantics but different syntactic variations into the same canonical Predicate Argument

Structure (PAS) [56]. For example, the following sentence can be written in many forms with

different syntactic variations: “ADP is converted to ATP by ATP synthase.”, “ATP is converted

from ADP by ATP synthase.'', “By ATP synthase, ADP is converted to ATP''. However, the

underlying canonical PAS for all three sentence variants “convert([ADP], [ATP], [ATP

synthase])'' would be identical.

17

Figure 7: Example of a syntactic parse tree with POS tags, a dependency tree, and semantic role

labels for an example sentence “ATP synthase converts ADP to ATP.” Tag abbreviations: S

(sentence), NP (noun phrase), VP (verb phrase), PP (prepositional phrase). NNP (singular proper

noun), VBZ (verb), IN (preposition).

18

2.1.2 Machine Learning

Machine Learning (ML) is a subfield of computing science that focuses on building

mathematical models from example training data and uses those models to assign new input data

instances (supervised machine learning) or explore characteristics in data without class labels

(unsupervised machine learning). Supervised machine learning is capable of empirically learning

classification or regression models from labelled training data (a training set) using statistical

methods. Once properly trained, machine learning models can predict class labels (classification)

or values (regression) on novel or unseen data (testing set) based on the learning models. Both

classification and regression tasks are supervised, as they require the input of labelled training

data. Classifications, in particular, are commonly used in many information retrieval,

information extraction, and natural language processing applications. These include part-of-

speech tagging, named entity recognition, sentence chunking, syntactic parsing and semantic role

labelling. Some of the more popular supervised machine learning approaches used in text mining

include Support Vector Machines (SVMs), Hidden Markov Models (HMMs), Naive Bayes

Classifiers, and Conditional Random Fields (CRF) [56].

While classification and regression require labelled training data, unsupervised machine

learning or data mining [85] does not require such labelled training data. Data mining techniques,

such as cluster analysis and association analysis, are capable of discovering useful patterns from

unlabeled data. Cluster analysis assigns data objects to groups called clusters, based on data

object attributes and a defined measure of their similarity or difference. Popular clustering

methods include K-means clustering, agglomerative hierarchical clustering, and density-based

clustering [85]. For example, clustering analysis can be used to organize sentences in a paragraph

into groups based on the terms in each sentence. Association analysis discovers interesting

relationships hidden in large data sets. The discovered relationships take the form of association

rules, which map a set of data objects to another associated data object with a certain degree of

support and confidence. An advantage of data mining over supervised machine learning is that

data mining is capable of making data-driven inferences without requiring labelled training data.

Data mining has many applications in text mining, including document categorization, term

mapping to concepts in a target ontology, and discovering implicit connections between

concepts.

19

2.1.3 Information Retrieval

Information retrieval (IR) fetches relevant documents from a document collection in

response to user queries expressed in the form of search keywords. Google, a widely used web

search engine, can be considered an IR system that retrieves relevant web pages (documents)

from all indexed web pages on the World Wide Web (a very large document collection).

PubMed, a biomedical article search engine, is yet another example of an IR system that

retrieves relevant articles among published biomedical articles using Boolean keyword queries

[66, 67]. Document indices are used in IR systems to ensure rapid and effective retrieval.

IR systems typically organize documents in a document collection using an inverted

index. An inverted index is a lookup table mapping a keyword in a document collection to the

list of documents containing that keyword. IR systems select relevant documents based on user-

defined search keywords by fetching documents with index keywords that either match the

search keywords or which achieve a certain heuristic matching/relevancy score. IR systems score

and rank the retrieved document list according to predefined criteria, and return to the user a

ranked list of relevant documents (hits). The criteria for ranking retrieved documents are

application specific and can vary from one application to another. For example, Google ranks

web pages found using search keywords through link structures in the web using its PageRank

[8] algorithm. On the other hand, Google Scholar ranks retrieved publications by citation

frequency, and PubMed ranks MEDLINE entries by publication date. IR systems often transform

and represent documents in a Vector Space Model [46] for more efficient and accurate document

retrieval. A document can be represented as a “bag of words” with certain word frequency

counts. This representation transforms a free-text document to a numerical vector, with each

element in the vector corresponding to occurrence frequency for a word (or N-Gram) in a given

document. The collection of unique words (or N-Grams) occurring in all documents defines the

vocabulary. In this model, each word represents a dimension in the Vector Space Model, while

the size of the vocabulary dictates length of document vector. This is because each document

vector must contain the same number of elements as the vocabulary. A Vector Space Model can

have very high dimensionality, quite often on the order of tens or hundreds of thousands of

dimensions. This is because each dimension implicitly represents a topic (a key phrase, or word

sequence), while each document represents a vector in this space spanning by the topics

20

(dimensions) it discusses. We use the phrase term frequency (TF) as an occurrence frequency

measure in a document vector. Weighting terms based solely on term frequency tends to

emphasize highly popular terms and understate rare terms in a document. However, documents

can be better distinguished on rare terms that characterize each document. So we also need to

consider Inverse Document Frequency (IDF), which measures the rareness and importance of a

term according to the number of documents containing such a term. The intuition is that a term

occurring in many documents is less discriminative than another term occurring in only a few

documents. Term Frequency - Inverse Document Frequency (TF-IDF) weighting balances term

weighting by combining both Term Frequency measure and Inverse Document Frequency,

tf-idft,d = tft,d × idft

In the above formula, tft,d is the occurrence frequency of term t in document d, and idft is

inverse document frequency of term t, which is defined as:

idft = log
N

|{d ∈ D ∶ t ∈ d}|

where N is the number of documents in the collection, and |{d ∈ D ∶ t ∈ d}| is the number of

documents d containing the term t.

Representing documents through a Vector Space Model enables us to perform vector

calculations for documents. For example, we can calculate the similarity between two documents

using the Cosine similarity measure. Since each document is a vector in the Vector Space Model,

we can define a similarity measure between two documents according to the Cosine value of the

angle formed by their corresponding document vectors:

similarity(A, B) = cos(θ) =
∑ AiBi

n
i=1

√∑ Ai
2n

i=1 √∑ Bi
2n

i=1

In the above formula, A and B are document vectors, and θ is the angle between A and B.

Cos(θ) represents the similarity between documents A and B. Ai and Bi are occurrence

frequency measures (e.g. TF-IDF) for word i (in the vocabulary of size n) in vector A and B,

respectively. Figure 8 shows a conceptual illustration for the angles between two document

21

vectors in a vector space models. The angle θ between the two documents defines their

similarity. Cosine similarity is bounded by the interval [0, 1]. Therefore cos(θ) = 1 when two

document vectors are identical or very highly similar, and cos(θ) = 0 when two document

vectors are completely opposite or maximally dissimilar to each other.

Figure 8: Illustration of the similarity measure between to document vectors in a vector space

model.

Information retrieval serves as a basic building block for many text mining systems, so

there is a clear need for an effective IR system in any practical text mining project. Recently, the

Apache Software Foundation provided developers with an open source IR engine through the

Apache Lucene project [38]. Lucene utilizes an efficient data structure (the Lucene index) to

index and organize gigabytes of text documents onto a hard disk. ElasticSearch [71], an

enterprise search engine built on top of Lucene, improves scalability and reliability of document

retrieval by using a collection of distributed shards (Lucene indices) with the ability to

22

dynamically duplicate and shuffle documents between shards for higher reliability and

efficiency. Each shard (Lucene index) is a structured collection of documents (JSON objects)

formatted and indexed for fast retrieval from disk. An ElasticSearch server is essentially a

collection of machines (nodes), each maintaining one or more shards. ElasticSearch dynamically

duplicate documents between shards to improve reliability, and it also dynamically shuffles

documents to recently requested shards to improve document retrieval efficiency. Lucene and

ElasticSearch [71] are just two among many open source IR systems that are making document

retrieval much easier and more scalable for open source projects that require efficient retrieval of

documents from enormous flat file document collections.

2.1.4 Information Extraction

Information extraction focuses on extracting Named Entities (NEs) and their relationships

from surface text. Surface text, which is also known as raw text, are expressions that are actually

used in a sentence, and are implicitly used in mapping concepts in a knowledge domain. The task

of Named Entity Recognition is the explicit mapping between expressions (surface text) and

their semantic meanings (concepts) they represent. In the open domain, information extraction

focuses on the extraction of NEs such as names of companies, people, and places. A naive

method for named entity recognition (NER) is to use simple dictionary matching. However,

dictionary-based term matching is often insufficient to extract all NEs, as one typically does not

have the complete knowledge of all entity names, their synonyms, and their various surface

forms in written text. Therefore, linguistic or statistical methods, such as rule-based or machine

learning-based methods, are used for more precise information extraction. Rule-based systems

require the curation of extraction rules, which are derived by domain experts. Alternately, these

rules can be generated automatically through machine learning methods followed by manual

curation. Machine learning-based approaches require the curation of labelled training data and

the choice of classification features and classification models. Both approaches benefit from

open domain resources (e.g. WordNet [62]) or domain specific lexicons. Rule-based information

extraction systems are usually high in precision but low in recall, while machine learning-based

systems are usually high in recall but low in precision. Due to their complementary strengths and

23

weaknesses, rule-based and machine learning-based methods can be combined to form better

performing hybrid approaches for NER. NER tasks are non-trivial as they require considerable

amount of time and effort by domain experts, either by creating hand-crafted rules or creating

labelled training data.

Once NEs are recognized from raw text, the next step is mapping them to a target

ontology. The English language is inherently ambiguous, as the same word can often refer to

different concepts in different contexts. The situation is worse in biomedicine as there is an

unusually large number of potentially ambiguous or even conflicting synonyms, acronyms,

hypernyms and hyponyms. For example, the medical disorder autism can be referred to as

autistic disorder, Kanner’s Syndrome, autistic spectrum disorder, ASD or Asperger’s syndrome.

However, the acronym ASD in biomedicine can also refer to acute stress disorder (another

medical disorder), anti-seizure drug (a medication), Aspartate-semialdehyde dehydrogenase (an

enzyme), atrial septal defect (a medical condition), and possibly many other concepts in specific

subdomains. Therefore, extracted NEs need to be normalized, converting from a surface form to

a canonical form, and disambiguated if there is more than one matching concept in a reference

ontology.

The next step in information extraction is determining the relationships between pairs of

named entities. In situations where reference ontologies exist and the relationships between

concepts in the ontology are well-defined, then the relationships between NEs can be easily

derived from the relationships between concepts in the ontology. In cases where there are no

reference ontologies, relationships can be predicted from concept co-occurrence within the text

and their syntactic dependencies, semantic roles, or frequency of co-occurring terms. Extracted

NEs and their relationships represent assertions, facts or knowledge distilled from text. This kind

of knowledge can be represented using the Predicate Argument Structure (PAS), which defines

the basic semantic unit of actions. For example, knowledge extracted from the sentence “ATP

synthase converts ADP to ATP.'' can be represented as “convert([ADP], [ATP], [ATP

synthase])'' in PAS using the predefined structure “action([source], [product], [enzyme])''.

Knowledge represented in PAS can be used for further inference and in generating candidate

answers for question answering. In the open domain, the FrameNet project [11] represents each

24

event using a semantic frame. This approach captures the type of the event, the entities

participating in the event and their relationships to each other.

2.1.5 Evaluation Metrics

 In machine learning, we use a special scoring structure called a Confusion Matrix to

evaluate prediction results. A Confusion matrix assigns predictions to various categories, based

on the actual label and the predicted label generated from a prediction algorithm.

Table 1 shows a confusion matrix defining True Positives (TP), False Positives (FP), False

Negatives (FN), and True Negatives (TN). In machine learning, 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 is often used to

measure the fraction of correct predictions among all predictions:

Accuracy =
TP + TN

TP + FP + TN + FN

Accuracy places equal importance on True-Positives and True-Negatives, so a system with high

accuracy can be accurate in making True-Positives predictions, True-Negative prediction, or

both.

25

 Predicted Label

Positive Negative

Instance

Label

Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

Table 1: Confusion Matrix showing the evaluation metric for prediction results. TP denotes the

number of True-Positives, FP denotes the number of False-Positives and FN denotes the number

of False-Negatives.

To measure the quality of positive predictions a system predicts, we can use Precision

(P), Recall (R), and F-measure (F). Precision, recall, and F-measure are often used as evaluation

metrics in machine learning and text mining, but they may have different meanings in different

contexts. In Information retrieval, precision is the fraction of retrieved documents that are

relevant, and recall is the fraction of relevant documents that are actually retrieved. In supervised

classification, precision is the fraction of data objects with correctly predicted labels, and recall is

the fraction of data objects predicted with a certain class label among all data objects labelled

with that same class label. F-measure combines precision and recall into a single score and

reflects a system's overall performance. Precision, recall, and F-measures [37] are defined as

follows:

Precision (P) =
TP

TP + FP

Recall (R) =
TP

TP + FN

F − measure (F) =
2 × P × R

P + R

where P stands for precision, R for recall, F for F-measure.

26

When evaluating a system's performance in multiple runs of classifications or retrieval

results for multiple queries, we use the notion of Average Precision (AP), Average Recall (AR),

and Average F-measure (AF) by simply taking the arithmetic means of precision, recall, and F-

measure values across multiple classification or query retrieval runs.

Average Precision (AP) =
1

n
∑ Pi

n

i

Average Recall (AR) =
1

n
∑ Ri

n

i

Average F-measure (AF) =
1

n
∑ Fi

n

i

Where 𝑛 is the number of classification or query retrieval runs.

In information retrieval, we need to further discriminate systems based on both the

content and the order of the retrieval results. This is because information retrieval systems, like

search engines, need to rank retrieved documents in an ordered list. For example, two search

engines returning the same collection of documents in a different order would show the same

accuracy, precision, recall, and F-measure. However, the search engine that ranks more relevant

documents higher in its results is superior to the one that shows more irrelevant documents at the

top of its list. Therefore, we need to introduce the notion of Non-Interpolated Average Precision

(NAP), Mean Average Precision (MAP) and Geometric Mean Average Precision (GMAP) [88,

89].

Noninterpolated Average Precision (NAP) =
∑ P(r) × rel(r)

‖L‖
r=1

‖LR‖

Non-interpolated Average Precision considers both the content and the order of retrieved results.

‖L‖ is the number of retrieved documents, and ‖LR‖ is the number of relevant documents in

27

‖L‖. Pris the precision of the first r retrieved documents (fraction of relevant documents among

the first r retrieved documents), and rel(r) is a boolean function which equals to 1 if the r

document is relevant and 0 otherwise. In this definition, NAP weights each relevant retrieved

document by its ranking in the ordered list of results.

To evaluate the performance of a system over multiple runs or retrieval queries, we can

average over all non-interpolated averaged precision values using either an arithmetic mean or a

geometric mean as follows.

Mean Averaged Precision (MAP) =
1

n
∑ NAPi

n

i=1

Geometric Mean Average Precision (GMAP) = √∏(APi + ϵ)

n

i=1

n

In the definition of MAP and GMAP, n is the number of documents in the retrieved list

and ϵ is a small value that adds to NAPi to avoid zeroing the product of NAPi on queries

retrieving entirely irrelevant results. As we can see in these definitions, GMAP places more

emphasis on retrieval results with low average precision and an information retrieval system's

overall performance.

28

2.2 Related Work

Building a biomedical question answering system requires solutions to following

challenges: 1) Document Retrieval, the retrieval of relevant documents in a large document

collection; 2) Named Entity Recognition, the recognition and normalization of biomedical

entities mentioned in raw text; 3) Ontology Mapping, mapping named entities to a target

ontology; 4) Relation Extraction, the extraction of entity relations; and finally 5) Question

Answering engines, which analyze question types, generating, scoring, and ranking candidate

answers, and synthesizing the final natural language answers. This section discusses a number of

related works or previously published examples for each of the aforementioned challenges.

2.2.1 Biomedical Thesaurus, Lexicons, and Ontologies

Over the past decade, much effort has been directed at curating domain specific

thesauruses (or thesauri), lexicons and ontologies for biomedicine. Thesauruses typically provide

names of biomedical entities, their synonyms and acronyms. Lexicons provide word senses and

categorize terms into a hierarchy. Ontologies specify entities, their attributes and relationships

with other entities in the same or different domains of interest. Many biomedical thesauri,

lexicons, and ontologies exist, each of them serving different purposes. Here I will describe a

few ontologies, thesauri and lexicons that are most relevant to this research, including Gene

Ontology, MeSH, UMLS, and BioLexicon.

Gene Ontology (GO) [6] is one example of an ontology that provides a controlled

vocabulary to describe gene product characteristics. The three major taxonomies in GO are

cellular components, molecular functions, and biological process. Medical Subject Headings

(MeSH) [81] is another example of an ontology that provides a controlled vocabulary to index

biomedical publications for effective retrieval in the PubMed search engine. Unified Medical

Language System (UMLS) [14] is a meta-thesaurus combining medical terminologies from

SNOMED CT, MeSH, Gene Ontology, OMIM, and several other databases, for use in clinical

text mining applications. The PolySearch thesauri [16, 17] are a collection of thesauri that

contains comprehensive dictionaries of gene, protein, organ, tissue, subcellular compartments,

29

diseases, drugs, and metabolites extracted from various high quality knowledge bases and

ontologies. The joint chemical dictionary (Jochem) [39] is a dictionary of chemical names for the

identification of drugs and metabolites in text. BioLexicon [87] is a biological lexicon that

provides a dictionary of terminologies extracted from large public bioinformatics data resources,

along with their surface form variations and frequency counts calculated from MEDLINE

abstracts. As essentially all biomedical literature is written in English text, open domain

linguistic resources such as WordNet [62], VerbNet [83] can also be used to mine biomedical

text. WordNet [62] is a lexical database of the English language. WordNet contains nouns, verbs,

adjectives, and adverbs organized in collection of cognitive units (synsets). Each synset contains

a set of synonyms (interlinked by their semantic relations) expressing a distinct concept. VerbNet

[83] is a similar lexical database to WordNet, but it focuses on verbs and their semantic relations

found in the English dictionary.

2.2.2 Document Retrieval

Document retrieval has many applications in QA. For instance, document retrieval can be

used to retrieve relevant MEDLINE abstracts among millions of raw text documents, or it can be

used to retrieve relevant data in a knowledgebase (e.g. UniProtKB), or relevant concepts in an

ontology. PubMed is the primary tool for document retrieval for biomedical literature [66, 67]. It

is part of NCBI’s Entrez retrieval system and it provides efficient search interface to more than

20 million MEDLINE publications. As PubMed provides a public API, numerous other

document retrieval systems have been developed based on PubMed to facilitate better result

ranking, easier document navigation, and improved information digestion.

Here I will highlight three online MEDLINE/document retrieval systems: PolySearch,

GOPubMed and EBIMed. PolySearch [16, 17] supports queries of the form: “given X, find all

Ys”, where X and Y could be diseases, tissues, cell compartments, gene/protein names, SNPs,

mutations, drugs and metabolites. Results are ranked by biomedical entities, and supporting

evidence are scored by the frequency of concept co-occurrence. PolySearch provides an efficient

way to formulate hypothesis for discovering hidden relations between biomedical entities.

GOPubMed [22] is a knowledge-based search engine for MEDLINE citations. GOPubMed

30

recognizes Gene Ontology (GO) terms mentioned in MEDLINE abstracts and labels text sections

with GO terms. By indexing MEDLINE using GO terms, GOPubMed users can navigate

MEDLINE through GO or UMLS concepts, instead of generic MeSH indexing. EBIMed [79]

searches MEDLINE through user defined Boolean queries and digests the returned abstracts by

recognizing gene/protein names, GO annotations, drugs, and species names. EBIMed then

extracts entity relationships from the search results. Many other interesting document retrieval

systems exist and many of these are described in more detail in a recent survey by Lu et al. [54].

Many structured biomedical databases provide application programming interfaces, or

APIs, that allow text mining programs to access database content over the Internet. As

information about a single biomedical entity may be scattered in many databases, there is a need

for effective data capture and consolidation from multiple databases. BioSpider [49] is an

example of a program that was developed to address this issue. Given a search query term,

BioSpider crawls multiple biomedical databases, then fetches useful information regarding single

biomedical entities. Similar to PolySearch, BioSpider also retrieves entity relations. However, in

contrast to PolySearch, BioSpider only retrieves existing relations as they are specified in a

reference database. DataWrangler [45] is a recently developed program for automated

aggregation of chemical compounds, proteins, reactions, and pathway annotations across

multiple database. In contrast to PolySearch, DataWrangler focuses on finding annotations for a

compound by searching protein, reaction, and pathway annotation databases.

2.2.3 Named Entity Recognition

Named entity recognition (NER) involves the extraction of terms denoting real world

entities, such as the names of people and places from raw text. The major approaches used in

NER are lexicon-based, rule-based, and statistics-based. Lexicon-based methods rely on term

dictionaries and thesauruses for exact or approximate term matching. Rule-based method

exploits hand-crafted or machine-learned rules, usually expressed in the form of regular

expressions, to identify specific text string patterns that extract the terms of interest. Statistical

methods learn classification rules by training on a dataset through statistical machine learning

techniques; these methods then classify novel terms to their categories. Because different NER

31

methods have different strengths and weaknesses, there are now several NER systems that

combine all three types of NER approaches to improve performance.

In the biomedical domain, NER tasks typically involve the recognition of genes, proteins,

diseases, drugs, and chemicals from raw text. In the category of lexicon-based methods, Gerner

et al. described LINNAEUS [32], a species name identification system using the species names

from the NCBI taxonomy database as their base name dictionary. LINNAEUS exploits hand-

crafted rules to resolve name variants and abbreviations. As an example of a rule-based NER

method, Narayanaswamy et al. [65] presented a method to recognize gene/protein and chemical

names using a set of hand-crafted rules, and then categorized the extracted named entities based

on surrounding keywords. Both lexicon-based and rule-based approaches obtain high precision

but low recall if a novel term is not captured in the lexicon or expressions containing the key

term do not fit any matching rules. On the other hand, statistical methods are capable of

recognizing novel terms with machine-learned classifiers. For example, Akella et al. presented

NetiNeti [1], a statistical NER system to recognize novel species names and species name

misspellings using machine-learned classifiers. Given a paragraph of text, NetiNeti generates

trigrams, bigrams, and unigrams as species name candidates, and then classifies each N-gram as

being a species name (or not) using a Naive Bayes classifier.

2.2.4 Ontology Matching

In many text mining scenarios, extracted NEs need to be mapped to concepts in a target

ontology. This concept mapping step effectively disambiguates the extracted concept, connecting

an entity name to a concept in an ontology. This defines its meaning and relationship to other

entities in the same ontology. Concept mapping can be formulated as a document retrieval

problem, where the extracted NE is treated as a search query and the target ontology as a

document (concept) collection. For example, Kim et al. [48] showed how it was possible to map

sentences to UMLS concepts using an unsupervised information retrieval model and clustering.

They retrieved concepts in UMLS as relevant documents to a given sentence (the search query)

and selected representative concepts from concept clusters. Concept mapping can also be

formulated as an information extraction problem, where entities are matched to concepts having

32

the highest degree of lexical or semantic similarity. For example, GOPubMed [22] recognizes

terms in MEDLINE corresponding to concepts in the Gene Ontology (GO) collection. Noting

that GO terms, if mentioned in the text, seldom occur as they appear in the Gene Ontology,

GoPubMed maps different English expressions to GO terms using approximate string matching.

In particular, the most general text token in a given expression is used to retrieve relevant GO

terms, and these GO terms are progressively refined using more specific terms in the expression

[22].

Mapping extracted NEs to a target ontology is a data integration task that is associated

with a certain degree of uncertainty. In particular, the data sources where NEs are extracted may

not be perfect, and the mappings between extracted NEs and the target ontology may not be

certain. Dong et al. [23] address this “data integration with uncertainty” problem by introducing

a probabilistic schema-mapping framework, which attaches probabilities to each named entity to

concept mapping tuple. With a probability attached to each mapping tuple, the top K answer

tuples are retrieved to answer an input query. Dong et al. shows that this probabilistic schema

mapping framework is able to handle uncertainty in multiple levels including underlying data for

extracting NEs, mapping schema between NEs and target ontology, and also input queries.

Once terms are mapped to a target ontology, it is possible to assess the semantic

similarities between terms using the relationships between their corresponding concepts.

Ontology-based semantic similarity can be edge-based or node-based. Edge-based semantic

similarity counts the number of edges between two concepts in an ontology, and node-based

semantic similarity examines ancestors and children of both concepts and then calculates the

similarity based on the information content (IC) of these nodes [74].

2.2.5 Relationship Extraction

It is possible to extract or predict relationships between pairs of named entities co-located

in raw text from their textual context. Relationship extraction is usually built on top of the results

of shallow syntactic parsing and semantic role labeling. More specifically, extraction and

conversion rules are used to convert the parsed sentence into “relation tuples” or predicates.

33

Machine learning methods can be used to score and select the final set of extracted tuples. In the

biomedical domain, there has been a great deal of attention focused on extracting protein-protein

interactions (PPI), as highlighted by the BioCreative challenges [50]. The BioCreative challenges

were competitions designed motivate researchers to improve extraction accuracy on PPI. This

led to many publications on mining PPI from text [102]. Recently, the research community has

turned their attention to extracting and predicting other relation types, such as disease-drug, and

food-disease relations [101]. Relation extraction for biomedical entities will likely remain as one

of the most active topics in biomedical text mining for the next few years.

2.2.6 Question Answering

All of the aforementioned techniques are necessary to create and curate suitable

knowledgebases for question answering. However, developing an effective question answering

engine is equally important, as specific question answering techniques are needed to generate

sensible answers for questions typically posed by users. Even though methodologies and

applications for different QA systems may vary, the underlying architecture is generally quite

similar. Figure 9 shows the general architecture of a stereotypical QA system, as described by

Athenikos et al. [7]. In the question processing phase, a QA system first identifies the question

type and the answer type (question analysis) from the question posed by users. It then converts

the posed question into a well-formatted search query (query formulation). The converted query

is then searched against a knowledge base or document collection for relevant documents,

passages, or database entries (document retrieval). The QA system then generates candidate

answers based on the search results (candidate generation). It also gathers evidence for each

candidate through further searches and then scores and ranks them (candidate scoring and

ranking). Finally, the most probable answer candidate is chosen based on ranking and other

filtering criteria, and used to synthesize the final answer with evidence (answer synthesis).

34

Figure 9: General architecture of a QA system. This figure is based on a figure found in

“Athenikos, S.J., and Han, H. (2010) Biomedical question answering: A survey. Computer

Methods and Programs in Biomedicine, 99(1):1-24, July 2010.”

Athenikos et al. categorized open domain QA systems into three categories: 1) semantic-

based; 2) inference-based, and 3) logic-based systems. Semantic-based QA systems exploit

lexicon-semantic information extracted from documents. Inference-based QA systems make use

of inference rules to make inferences based on question clues and existing assertions. Logic-

based QA systems employ explicit logic formulations and theorem-proving techniques to answer

questions usually posed as logical statements that can be proved or disproved [7]. In recent years,

many different QA systems have emerged to answer practical questions in both open and

specialized domains. IBM’s Watson program, with its QA engine called DeepQA, defeated

human contestants in the famous quiz show Jeopardy! [36]. DeepQA is mostly a semantic-based

QA system, but it is also capable of generating answer candidates using inference and logic.

DeepQA relies on the PRISMATIC knowledge base, which contains a set of semantic units

called “frames'' capturing entities and their relations extracted from a free text corpus like the

35

Wikipedia [24]. DeepQA determines the type of answer, or Lexical answer types (LATs), from

the given question. DeepQA then uses multiple approaches to generate candidate answers

through its extensive knowledgebase, its database, and various web searches. The supporting

evidence retrieval unit of DeepQA then retrieves text passages containing a candidate answer

and relates them back to the original question. Candidate answers with evidence passages that

are more relevant to the original question receive a higher score and a better ranking. In addition

to its exceptional question answering capabilities, DeepQA also has a module that determines

when to bet, which question to bet on, and how much to bet in order to maximize its final game

score. I will not go into the details here as the betting module is irrelevant to correctly answering

a question that has been posed, and thus not particularly relevant to the proposed research.

Building on the success of Jeopardy!, IBM is currently adapting DeepQA as a clinical

support system to assist health care providers in making treatment decisions [10]. Over the past

decade, another company called SRI international conducted yet another large-scale question

answering project: Project Halo [25]. This project aims at creating a “digital Aristotle'' that

assists students to learn and scientists to perform their daily research. In contrast to DeepQA,

project Halo takes an inference-based QA approach. Project Halo employs dozens of trained

knowledge engineers and domain experts to encode textbook knowledge from textbooks as

machine readable ontologies and inference rules, which would enable intricate inference and

answer explanation. Project Halo has been reported to be able to answer questions at the

Advanced Placement test level. Project Halo continues to advance towards the goal of answering

college level and advanced research level questions. Despite their success in answering open

domain questions, both DeepQA and Project Halo are not yet publicly available. In contrast,

True Knowledge [91] and Wolfram Alpha [99], two commercial open domain QA systems, are

available over the Internet. True Knowledge is a semantic-based QA system and it uses a similar

approach as DeepQA. Methodologies and implementation details of Wolfram Alpha are unclear

due to the limited number of publications for this commercial system.

In the biomedical domain, QA systems can be classified roughly into two categories:

clinical QA systems and biological QA systems. Many recent biomedical QA systems focus on

providing support to disease diagnosis and clinical decision making; therefore, they fall into the

clinical QA category. Biological QA systems, on the other hand, are more focused on answering

36

broad questions posed in biological research that are also interesting to the medical community.

To the best of our knowledge, very few biological QA systems exist and none of them are

publicly available or web accessible. Takahashi et al. [84] proposed to build a semantic-based

biomedical QA system in 2004, but no implementation details are provided. Gu et al. [34] built

BioSquash, a QA-oriented multi-document summarization system, which summarizes relevant

documents for a given question and presents the summarization as an answer. The source code

for BioSquash is available upon request but no web interface is provided for the public. Anwar et

al. [2] proposed a framework called BioPathQA that specialized in answering user queries about

biological pathways. BioPathQA uses Petri Nets to encode biological pathways and it also

supports pathway simulations. BioPathQA requires that the user compose queries in

BioPathQA's specialized logical query language, and does not support natural language queries

or provide textual answers. BioPathQA has been proposed as a framework and no public server

or API is available to serve the general public.

With the emergence of several publicly accessible biomedical QA systems there is now a

growing need to provide a common platform for evaluating biomedical QA systems. This need is

what has motivated the series of BioASQ challenge. BioASQ (http://bioasq.org) is a semantic

question answering competition with two well-defined shared tasks. Task A challenges

participants to automatically index novel MEDLINE abstracts with MeSH tags; Task B

challenges participants to annotate given natural language questions with relevant articles, text

snippets, and RDF triples from designated document and concept repositories (Phase A), and

eventually return an “exact” and “ideal” answer in natural language (Phase B). Participants are

allowed to process a challenge question set and submit answers within 24 hours. Submission

results are evaluated both automatically and manually by a panel of biomedical experts. Much

more detail about the BioASQ challenge is provided in Tsatsaronis et al. [88, 89].

In this thesis, I will present both a framework and a prototype, web-based biomedical QA

system called BioQA. BioQA falls into the semantic based category of biological QA systems.

This is because BioQA relies on information extracted from databases and text snippets from

relevant sentences to synthesize its answers. As a biological QA system, BioQA focuses on

answering general questions that arise in the biological and biomedical domains, and not clinical

questions specific to medicine. I developed BioQA to answer biomedical questions posed by

37

medical researchers, life scientists, life science students and the general public. Over the next

two chapters I will describe PolySearch2, a core building block in BioQA, as well as BioQA

itself.

38

3. PolySerach2: A Text Mining Framework

A critical task in biomedical question answering and biomedical text mining is the

discovery of potential associations between various types of biomedical entities or subjects. This

chapter introduces PolySearch21 (http://polysearch.ca), an online text-mining system for

identifying relationships between biomedical entities such as human diseases, genes, SNPs,

proteins, drugs, metabolites, toxins, metabolic pathways, organs, tissues, subcellular organelles,

positive health effects, negative health effects, drug actions, Gene Ontology terms, MeSH terms,

ICD-10 medical codes, biological taxonomies and chemical taxonomies. PolySearch2 supports a

generalized “Given X, find all associated Ys” query, where X and Y can be selected from the

aforementioned biomedical entities. In this chapter, we introduce the PolySearch algorithm, then

we describe the PolySearch2 web server, and its improvements over the original PolySearch

system. Finally, we evaluate the performance of PolySearch2 versus the original PolySearch

system and discuss limitations and future works.

3.1 Introduction

Keeping pace with the rapidly growing body of biomedical literature is proving to be

almost impossible. According to a study by Baasiri et al. [9] a researcher would have to scan 130

different journals and read 27 papers per day to follow a single disease, such as breast cancer. A

more recent study by Lu et al. [54] showed that the total number of references in MEDLINE, a

central repository for scientific articles in the biomedical domain, now exceeds 25 million and is

growing at more than 4% each year. It is also evident that a considerable amount of useful

biological or biomedical knowledge is essentially buried in the form of free text, waiting to be

found and transformed into more accessible formats. Swanson referred to such phenomena as

“undiscovered public knowledge” [13]. The enormous challenges associated with keeping up or

1 Portions of this chapter were published in Nucleic Acids Research under the reference of “Liu,

Y., Liang, Y., Wishart, D. (2015) PolySearch2: a significantly improved text-mining system for

discovering associations between human diseases, genes, drugs, metabolites, toxins and more.

Nucleic Acids Res. 2015 Jul 1;43(W1):W535-42. doi: 10.1093/nar/gkv383. on April 29, 2015.

http://polysearch.ca/

39

digging through this undiscovered public knowledge, especially in the area of biomedical

knowledge, has led to the development of a number of text mining tools aimed at supporting

biomedical text extraction, fact finding and text summarization. Some of the better-known or

more widely used tools include EBIMed [79], CiteXplore [59] and GoPubMed [22]. Their intent

has been to help life science researchers keep pace with the exploding quantity of scientific

literature and to facilitate the discovery or re-discovery of important facts or unexpected

associations. The latter task of “association discovery” is of particular interest and is typified by

queries such as “Find all genes that are associated with a given disease” or “Find all drugs that

target a specific protein” or “Find all toxins that damage a specific tissue”. These are queries that

are either not easily performed or impossible to perform through a regular PubMed search. To

address this task of association discovery we previously developed a relationship or association

mining tool called PolySearch [16, 17]. PolySearch was one of the first web-enabled text mining

tools to support comprehensive and associative text searches of PubMed abstracts. Specifically,

the original version of PolySearch supports 'Given X, find all associated Y's' types of queries,

where X and Y are biomedical terms pertaining to human health and biology. X's can be genes,

SNPs, proteins, diseases, drugs, metabolites, pathways, tissues, organs, and sub-cellular

organelles or structures, or a general text keyword; while Y's can be any or all types mentioned

above. PolySearch's search strategy is based on a critical assumption that the greater the

frequency with which an X and Y association occurs within a collection of sentences or database

records, the more significant the association is likely to be. For example, if Bisphenol A (BPA) is

mentioned 615 times in PubMed as being associated with breast cancer, and only 8 times being

associated with colon cancer, then one is more likely to have higher confidence in the potential

BPA-breast cancer association over the BPA-colon cancer association.

PolySearch has proven to be both popular and effective with >20,000 users and >150

citations. It has also served as an important text-mining and annotation system for the curation of

a number of metabolomics databases including DrugBank [51], HMDB [98], T3DB [97], YMDB

[44], and ECMDB [35]. PolySearch has also been used to assist in disease gene discovery [64]

[29], protein-protein interaction studies [86, 78], microarray data analysis [26], metabolome

annotation [35, 44, 77, 98], biomarker discovery [73], as well as in building and assessing other

biomedical text-mining tools [43, 90]. PolySearch has also been featured in many published

40

biomedical text-mining surveys and tutorials [27, 54, 64]. However, a key limitation with

PolySearch has been the long search times (2-3 minutes), its limited synonym set (thesauri) and

its relatively small number of searchable databases. Indeed, since its introduction in 2008 many

other searchable databases and electronic free-text collections have become available and many

technological improvements in web interface design, text searching and text mining have taken

place. Likewise, many PolySearch users have requested more search options such as MeSH

terms, adverse health effects, animal taxonomies, medical terms, Gene Ontology and chemical

ontology terms. In response to these requests and many ongoing technical developments we have

created a second, much improved version of PolySearch (PolySearch2, available online at

http://polysearch.ca). This faster (up to 25X) and much improved version now has a far more

robust underlying framework. It also includes a much larger collection of databases (20 vs. 7),

search terms pairs (308 vs. 66), thesauri (20 vs. 9), terms (1,131,328 vs. 57,706) and synonyms

(2,848,936 vs. 353,862) as well as a substantially improved and modernized interface and its

underlying search algorithms. We have also upgraded the physical server to further improve its

performance. A complete description of the new, updated PolySearch2 server follows.

3.2 The PolySearch algorithm

PolySearch supports 'Given X, find all associated Y's' types of queries, where X and Y

are biomedical terms pertaining to human health and biology. This section describes the

PolySearch algorithm, which is fundamental to both the original PolySearch [16, 17] and

PolySearch2. In this section, “PolySearch” refers to the PolySearch algorithm and not specific to

the original PolySearch web server.

PolySearch's search strategy is based on an assumption that the greater the frequency

with which an X and Y association occurs within a collection of sentences or database records,

the more significant the association is likely to be. PolySearch uses a text ranking scheme to

score relevant sentences containing the query and other relevant biomedical terms. The text

ranking scheme assigns relevancy scores to pertinent sentences and text paragraphs according to

their “strength” as supporting evidence for potential associations. Given a query term,

PolySearch first retrieves relevant documents from document collections and breaks each

41

document into individual sentences. PolySearch then scans each sentence and tries to find the

query term, the association words, and related thesaurus words derived from the query and

association words. Each relevant sentence, based on the frequency and placement of query,

association, and/or thesaurus terms, is classified into four categories [R1 (best), R2, R3, R4

(worst)], in decreasing order of relevancy to the search query. An R4 sentence only contains one

or more thesaurus terms. Typically, R4 sentences provide baseline statistics of the occurrence

frequency of thesaurus terms in documents relevant to the query term. An R3 sentence contains

at least one thesaurus term as well as the query term. As a general rule, R3 sentences represent

stronger evidence for co-occurrence between the query term and relevant thesaurus terms. An R2

sentence satisfies all the constraints of an R3 sentence, as well as containing at least one of the

association words. R2 sentences represent even stronger evidence for co-occurrence between

query and thesaurus terms. Finally, an R1 sentence is a sentence that it satisfies all constraints of

an R2 sentence, as well as passing specific pattern recognition criteria. R1 sentences represent

the strongest evidence PolySearch can find among relevant documents to support the association

assertion between query and thesaurus terms.

PolySearch identifies R1 sentences for three main types of patterns: 1) “Query Term-

Association Word-Thesaurus Term”, or a QAT pattern. e.g. “A interacts with B”; 2) “Query

Term-Thesaurus Term-Associaition Word”, or a QTA pattern. e.g. “A B interaction”, and 3)

“Association Word-Query Term-Thesaurus Term”, or an AQT pattern. e.g. “Interaction between

A and B”. Each pattern also imposes further rules to limit the number of words (or tokens) within

the sentence fragment matching a pattern, as well as between Association words, Query terms,

and Thesaurus terms. For example, in a compact QAT pattern, the number of tokens matching

the pattern must be less than 10. When overlapping patterns are present, the most compact

pattern will be recognized and recorded. For instance, an R2 sentence matching a specific pattern

is promoted to an R1 sentence. For more implementation details on PolySearch’s pattern

recognition rules, please refer to Cheng et al. [16]. Once relevant sentences are assigned to R1,

R2, R3, and R4 categories they are then scored. Each sentence receives points based on pre-

defined scoring scheme according to the document source. For example, in PolySearch2, an

irrelevant MEDLINE abstract sentence receives 0 points, an R4 sentence receives 1 point, an R3

sentence receives 5 points, an R2 sentence receives 25 points, and an R1 sentence receives 50

42

points. This scoring scheme can be different for different sentences identified from different

document collections and databases. For example, PolySearch2 assigns twice as many points to

relevant sentences in database records than sentences found in free-text articles. In this case, an

R1 sentence receives 2 points, an R3 sentence receives 10 points, an R2 sentence receives 50

points, and an R1 sentence receives 100 points. This scoring algorithm places heavier weights on

database records than free-text documents, to show that more trust is placed on database records

than free-text documents as database records have gone through a curation process and are

therefore more trustworthy as source of supporting evidence. The total score of R1, R2, R3, R4

sentences found in all relevant documents and database entries for a specific Query term and

Thesaurus term pair is the overall PolySearch Relevancy Score for the pair. PolySearch

calculates Relevancy Scores for every Query and Thesaurus term pair and converts the raw

Relevancy Score for each pair to a standardized Z-score statistic. The conversion from the raw

Relevancy Score to a standardized Z-score statistic is necessary, as the raw Relevancy Score

does not consider background probability for a term pair to co-occur in relevant documents by

chance. The Z-score statistic is a measure for relative importance of a particular term pair among

all other relevant term pairs. The formula for converting the Relevancy Score to a Z-score is

shown below:

Zx,y =
Rx,y − R̅

σ

In this formula, Zx,y is the standardized Z-score statistic for the Relevancy Score Rx,y for

term pair (x, y). R̅ is the average Relevancy Score and σ is the standard deviation of the

Relevancy Scores among all term pairs. Finally, each Query-Thesaurus term pair is ranked based

on their standardized Z-score. Term pairs with higher positive Z-scores correspond to stronger

evidence for an association, as the observed co-occurrence is less likely due to chance. Term

pairs with zero or negative Z-scores correspond to weak or no evidence for association, as the

observed co-occurrence is more likely due to chance. Pairs with negative Z-scores are removed

from the final results.

43

3.3 Improvements and Enhancements in PolySearch2

PolySearch2 (http://polysearch.ca) features a number of improvements and enhancements

including: 1) algorithmic improvements; 2) an improved graphical interface and the

implementation of modernized web technology; 3) significant database and text search

enhancements; 4) substantially expanded synonym sets and thesaurus types; and 5) improved

caching and updating. These changes have also lead to substantial performance improvements

relative to the earlier version of PolySearch. Details regarding these changes and improvements

are described below.

3.3.1 Algorithmic Improvements

PolySearch2 incorporates a number of algorithmic improvements aimed at strengthening

the scoring, ranking, and selection of association term candidates. These include: 1) a new

“tightness measure” to further discriminate association patterns, 2) a “weight boost” for database

records to favor explicit database associations over free-text articles, 3) a larger collection of

system filter words, and 4) a filter to remove borderline associations.

PolySearch2 now uses a “tightness measure” to reward more proximal word co-

occurrences and penalize more distant word co-occurrences. Just as in the original version,

PolySearch2 assigns relevant sentences into four categories (R1 [best], R2, R3, and R4 [worst])

based on a relevancy score as derived from the search query and the matched co-occurrence

patterns. However, PolySearch2 now measures the word span between matched co-occurrence

patterns found in a relevant sentence. In particular, it assigns higher relevancy scores to tighter

patterns with fewer words separating the query term and target term(s), and lower relevancy

scores to more relaxed patterns with a larger word span between the query term and the target

term(s). An example of an R1 sentence with a tight co-occurrence pattern could be “Exposure to

bisphenol A (BPA) increases the risk of breast neoplasms”, while an example R1 sentence with

relaxed co-occurrence pattern could be “Bisphenol A may play a role in gene regulation

pathways that are potentially related to the onset and development of breast cancer.” We found

http://polysearch.ca/

44

this tightness measure improves the scoring of co-occurrences and enhances PolySearch2's

ability to distinguish genuine associations from incidental co-occurrences that arise by chance.

Unlike the original version of PolySearch, PolySearch2 now assigns greater weight to

relevant database records than free-text articles. It has been previously shown [16, 17] that

including database records in the search process consistently improves association accuracy.

Generally, database records contain high quality, well-structured and carefully curated

knowledge whereas free-text articles generally contain more ambiguous, implicit knowledge.

Therefore, it stands to reason that database records should be assigned higher credibility than text

articles. However, given the sheer volume of biomedical publications and the relatively small

number of high quality biomedical databases, one is more likely to find relevant free-text articles

than database records. To counter this bias, PolySearch2 applies an empirically determined

“weight boost” to the information it finds in database records and assigns greater relevancy

scores to relevant database records than free-text articles. The “weight boost” reflects the

difference in credibility associated with database records compared to sentences in free-text

articles.

PolySearch2 also incorporates a more extensive collection of “system filter” words than

the original version of the program (29,718 filter words vs. 7,011 filter words). In particular,

PolySearch2 now recognizes co-occurrence patterns more consistently thanks to this larger, more

extensive collection of filter words. System filter words are essentially words that signify a

strong association. For example, the word “catalyzes” in “Enzyme X catalyzes reaction Y”

indicates a strong association between Enzyme X and reaction Y. The new and improved set of

filter words were initially mined from the entire collection of MEDLINE abstracts using Natural

Language Processing techniques. In creating PolySearch2's list of system filter words, we tagged

the occurrence of all biomedical entities in the current collection of MEDLINE abstracts,

extracted text flanking each pair of co-occurrence entities, and classified the flanking text

according to the co-occurring entity types. We then built N-gram models for common verbs,

adjectives, adverbs and phrases present in the flanking text for each pair of co-occurrence entity

types. The list was carefully assessed and manually curated to produce the final filter word set.

This collection of system filter words helps PolySearch2 recognize strong associations from

45

mere co-occurrences. It also allows it to perform consistently better at recognizing term

associations than the original version of PolySearch.

The final algorithmic enhancement to PolySearch2 involved the application of a more

stringent cut-off to boost precision at the cost of sacrificing a small degree of recall (i.e. the

precision-recall trade-off). Associations discovered in PolySearch2 are ranked and sorted using

Z-scores calculated from PolySearch2's raw relevancy score (See [16, 17]). Associations with

average relevancy scores are assigned zero Z-scores, as they represent borderline or marginal

associations derived from a particular search. PolySearch2 now removes associations with zero

Z-scores to boost its precision. This is done at the risk of removing a small number of possible

genuine associations. For users concerned about the emphasis of recall over precision in their

results, PolySearch2 also provides an option to include borderline cases (or 'zero Z-score'

associations).

3.3.2 Graphical Interface and Web Implementation

PolySearch2 (http://polysearch.ca) features a completely re-designed web interface.

Figure 10 to Figure 14 show screenshots of various pages from PolySearch2's new web interface.

Figure 10 shows the query submission page where users can initialize a search query. As with

the original PolySearch, PolySearch2 still supports a 'Given X find all associated Y's' type of

query. Users can initialize a search by selecting the desired type of X (query term) and Y (target

term) from pull-down menus and enter a search query keyword. At this point user can submit a

"Quick Search" request (Figure 10) or further configure the search using "Advanced Options"

(Figure 11). Both of these features are new to PolySearch2. The Quick Search option will direct

PolySearch2 to search previously computed cache results or to mine associations from the top

2000 relevant articles or database records across all text collections and databases. In the Quick

Search, PolySearch2 automatically generates a synonym list (from the PolySearch2 thesauri) and

proceeds with its regular searching, sorting, scoring, annotation and display (described in detail

in [17]). "Advanced Options" (Figure 11) offers a greater degree of customizability to the search.

For instance, users can edit the automatically generated synonym list (from the PolySearch2

thesaurus), edit custom filter words for identifying association patterns, provide custom negation

46

words for filtering out sentences with negative associations, provide custom target terms to

search, select or de-select source text collections and databases, indicate the number of

documents to search, permit the inclusion or exclusion of hits with zero Z-scores (for higher

recall), and/or provide an E-mail address for notifications.

Figure 10: A screenshot of PolySearch2's query interface showing the PolySearch2 query

submission form.

47

Figure 11: A screenshot of PolySearch2's query interface showing the advanced option page for

further query refinement.

48

Figure 12: A screenshot of PolySearch2's result display showing the PolySearch2 result

overview table.

49

Figure 13: A screenshot of PolySearch2's result display showing the detailed result page with

supporting evidence for a single association (Bisphenol A – Breast Neoplasm).

50

Figure 14: A screenshot of PolySearch2's result display showing result details with the full

MEDLINE abstract in highlighted and hyperlinked text.

51

Once a search query is submitted, the user will be redirected to a progress page where the user

can bookmark the page for later visits. When a search is completed, the user will be redirected to

a results overview page (Figure 12) showing the associated entities of the selected target

category (or all categories if the search is against ALL target categories). In Figure 12, a

screenshot listing the diseases found to be associated with the toxin Bisphenol A is shown. The

resulting overview table is sorted by Z-scores in descending order, and can be sorted according

to values in a certain column by clicking on the column header. The overview table lists the Z-

score and PolySearch Relevancy Score (R-score) as well as the name and synonyms for each

associated entity. Users can review query settings, browse through full tables in a printable

format or download their results in JSON format by clicking the appropriate links on this page.

Clicking on the "Details" button on each row takes users to a detailed result page (Figure 13)

showing the supporting evidence in color-coded and hyperlinked sentences from each relevant

article in each text collection or biomedical database. For results with MEDLINE abstracts or

PubMed Central articles, there is an additional "Details" button for each row. Clicking on this

specific "Details" button takes user to view the full MEDLINE abstract in highlighted and

hyperlinked text (Figure 14). A result navigation bar with light grey background just below the

headers of all result pages (Figure 12, Figure 13, and Figure 14) is provided for users to quickly

review and navigate within the result hierarchy. These features are described in more detail on

PolySearch2's Documentation web page.

In addition to the substantially modified and updated graphical user interface,

PolySearch2 also underwent a complete upgrade and re-implementation of the web front-end

using the latest web technology standards (HTML5 & Twitter Bootstrap). We have also

upgraded the underlying physical server to further improve its performance. PolySearch2's back-

end API and front-end web server are deployed on a dedicated tower server machine with 8 cores

operating at 1.4GHz and multiple Solid-State Drives to facilitate rapid document retrieval and

analysis. A PolySearch2 API for bulk text mining is also available upon request (with certain

limitations). The architecture of PolySearch2 (see Figure 15) also allows it to easily scale up its

computation across multiple machines on a computer cluster or cloud platform should further

upgrades be needed. PolySearch2 uses the Model-View-Controller (MVC) design pattern: 1) the

PolySearch2 Search Engine with ElasticSearch (Model layer) organizes document collections. 2)

52

the PolySearch2 API (Controller layer) implements the core PolySearch2 algorithms and queries

the model layer for search results. 3) the PolySearch2 web server (View layer) is a thin layer of

graphical user interface that passes user queries to the PolySearch2 API and formats search

results. Implementing the MVC design allowed us to decouple the logic for maintaining

document collections, performing searches, and presenting results to users. As a result, we can

update an individual layer without affecting other layers. PolySearch2 has been tested on a

variety of platforms and is compatible with most common modern browsers (FireFox, Safari,

Internet Explorer, Edge, and Chrome) on both computer workstations and mobile devices (tablets

and smart phones). PolySearch2's analytical algorithm was implemented in Python and it uses

ElasticSearch (see Figure 15) to manage the document repository and cache results.

53

Figure 15: PolySearch2's system overview showing the architecture of the PolySearch2 web

server, its API, and the underlying search engine. PolySearch2 uses the Model-View-Controller

(MVC) design: 1) the PolySearch2 Search Engine with ElasticSearch (Model layer) organizes

document collections. 2) the PolySearch2 API (Controller layer) implements the core

PolySearch2 algorithms and queries the model layer for search results. 3) the PolySearch2 web

server (View layer) is a thin layer of graphical user interface that passes user queries to the

PolySearch2 API and formats search results.

54

3.3.3 Database and Text Search Enhancements

In PolySearch2 (http://polysearch.ca), we completely re-implemented the underlying text-

mining framework based on the latest search engine technology (ElasticSearch,

http://www.elasticsearch.org/) (See Figure 15). The utilization of ElasticSearch allowed us to

internally host all text collections and databases (totalling 165 Gigabytes) across an

ElasticSearch cluster running multiple nodes, and efficiently retrieve relevant documents. This

has led to the ability to search against all thesaurus types simultaneously leading to a significant

performance improvement and a nearly 25X acceleration in search speed.

In PolySearch2 we significantly expanded the number of text collections and databases

(by more than 80%) to include a total of 6 free-text collections and 14 popular, text-rich

bioinformatics databases. Table 2 shows the statistics for PolySearch2’s database and document

collection statistics. The latest release of PolySearch2 searches against over 43 million articles

covering MEDLINE abstracts, PubMed Central full-text articles, Wikipedia full-text articles, US

Patent abstracts, open access textbooks from NCBI and MedlinePlus articles. We believe these

free-text collections cover a wide range of human knowledge from general information

(Wikipedia, textbooks and MedlinePlus), to more specific biomedical knowledge (MEDLINE

and PubMed Central), to technical innovations (US Patent applications).

While free-text collections represent a body of implicit knowledge, biomedical databases

represent more specific or more quantitative, high quality curated knowledge. As illustrated in

the original PolySearch paper [17], incorporating relevant database records into the search

greatly enhances the resulting accuracy. To further improve on the performance of PolySearch2,

we incorporated DrugBank (a popular drug and drug metabolite database) [51], HMDB (a human

metabolite database) [98], T3DB (a toxin and toxin-target database) [97], YMDB (a yeast

metabolome database) [44], ECMDB (an E. coli metabolome database) [35], OMIM (Online

Mendelian Inheritance in Man) [36], the UniProt database [92], the Human Protein Reference

Database [63], DailyMed (FDA-approved drug listing information database) [66, 67], KEGG

reactions and pathways [47], and the MetaCyc [15] metabolic pathway database. For more

information on PolySearch2's text collections and databases sources, please consult

PolySearch2's Documentation web pages.

55

Data Source Database Descriptions Number of

indexed Records

OMIM Online Mendelian Inheritance in Man 23,219

T3DB Toxin and toxin target database 3,713

HMDB Human Metabolome Database 41,513

MEDLINE PubMed Abstracts 27,208,664

Wikipedia Wikipedia abstracts 7,619,689

USPTO US patent application abstracts 7,996,999

FooDB Food Metabolite Database 27,509

KEGG Reactions Kyoto Encyclopedia of Genes and Genomes 9,538

GO Gene Ontology 40,535

DailyMed FDA label information on marketed drugs 2,745

KEGG Pathways Kyoto Encyclopedia of Genes and Genomes 456

NCBI Books Full-text textbooks on NCBI bookshelf 19,066

MedlinePlus Medical encyclopedia and dictionary 1,901

PMC PubMed Central full-text articles 704,539

UniProtKB UniProt Protein Knowledgebase 541,561

MetaCyc Metabolic database for pathways, enzymes,

metabolites, and reactions.

3,810

GAD Genetic Association Database 167,298

HPRD Human Protein Reference Database 18,863

DrugBank Drug and drug metabolite database 6,825

Table 2: Database and Text Collection Statistics for PolySearch2. PolySearch 2.0 significantly

expanded the number of text corpora and databases (by >80%) to include a total of 6 free-text

corpora and 14 bioinformatics databases. The latest server searches against over 43 million

articles covering Medline abstracts, PubMed Central full-text, Wikipedia articles, US Patent

abstracts, and open access textbooks.

56

3.3.4 Improved Synonym Collections

PolySearch2's custom thesauri or synonym collections are critical for the detection of

biomedical terms mentioned in its databases and text collections. The original version of

PolySearch had a thesaurus that consisted of 9 categories with 57,706 terms, including names

and/or synonyms for genes/proteins, gene families, diseases, drugs, metabolites, pathways,

tissues, organs, and sub-cellular organelles or structures. In PolySearch2, we have significantly

expanded the number of thesauri from 9 to 20 categories, and from just 57,706 terms to over 1.13

million term entries with more than 2.84 million synonyms.

PolySearch2's thesaurus collection now includes terms and synonyms for toxins [97],

food metabolites [96], biological taxonomies [66, 67], Gene Ontology terms [6], MeSH terms

and MeSH compounds [81], along with ICD-10 (International Classification of Disease) medical

codes [8]. Table 3 shows PolySearch2’s thesaurus statistics. PolySearch2's gene/protein

thesaurus and gene family thesaurus were compiled from the latest release of UniProt [25],

Entrez Gene [27], the Human Genome Organisation Gene Nomenclature Committee [75], and

the Human Protein Reference Database (HPRD) [63]. The disease thesaurus was compiled from

the Online Mendelian Inheritance in Man (OMIM) and the Unified Medical Language System

(UMLS) [42]. PolySearch2's drug and metabolite thesauri were compiled from the latest version

of DrugBank [51] and the Human Metabolome Database (HMDB) [98], respectively.

PolySearch2's pathway thesaurus was derived from names used for KEGG pathways [47] while

PolySearch2's tissue thesaurus and organ thesaurus were created manually and the sub-cellular

localization thesaurus was derived from the HPRD [63]. PolySearch2's toxin thesaurus and food

metabolite thesaurus were compiled from the latest version of the Toxic Exposome Database

(T3DB) [97], and FooDB (http://foodb.ca/) [96] respectively. The biological taxonomy thesaurus

was derived from NCBI's taxonomy archive [66, 67]. PolySearch2's thesauri also feature many

manually curated terms and synonyms for positive health effects, adverse health effects, drug

actions, drug effects, and chemical taxonomies. All of these thesauri may be searched via

PolySearch2's Thesaurus page, and all may be downloaded via PolySearch2's Download page.

http://foodb.ca/

57

Thesaurus Name Number of Terms Number of

Synonyms

Gene Families 404 948

Adverse Health Effects 135 711

Health Effects 161 507

Gene Ontology 40,535 110,477

Toxins 3,713 39,095

Biological Taxonomy 607,031 775,728

Drugs 7,670 37,331

ICD-10 Codes 91,737 155,331

Chemical Ontology 4,017 10,098

Tissues 954 984

MeSH Terms 26,956 215,327

Food Metabolites 27,509 39,278

Genes and Proteins 27,994 287,827

Drug Effects 424 590

Metabolic Pathways 456 456

MeSH Compounds 221,986 716,676

Human Metabolites 41,793 381,195

Organs 104 201

Subcellular Locations 74 175

Diseases 27,658 76,001

Total 1,131,328 2,848,936

Table 3: PolySearch2 Thesaurus Statistics. PolySearch 2.0 significantly expanded custom

thesauri from 9 to 20 categories, and from just 3000 to over 1.13 million term entries. In

particular, we have expanded the thesauri to include toxins, food metabolites, biological

taxonomies, pathways, as well as Gene Ontology, MeSH terms, and ICD-10 codes. The thesauri

also feature many manually curated terms and synonyms for health effects, drug effects, adverse

effects, and chemical taxonomies. This table summarizes the number of term entries and

synonyms for each thesaurus.

58

3.3.5 Caching and Auto-Updating

PolySearch2 features significantly expanded support for results caching and automated

updating over the original version of PolySearch. Caching allows PolySearch2 to archive the

results of common queries made by users so that if the same query is made by another user, then

only a trivial update (if any) needs to be performed over the previously cached material. This

leads to nearly instantaneous (1-2 sec) results for many common associative queries.

PolySearch2 also regularly queries itself with thesaurus terms to increase its cache coverage far

beyond what users may commonly generate.

The original version of PolySearch accessed the content of all (or nearly all) of its

databases via the web. This ensured absolute data currency for all its databases, but it slowed the

operation down substantially as all queries were subject to problems due to heavy website traffic

loads, intermittent internet outages, varying data download speeds and the extra time needed to

download large data sets over the web. Because PolySearch2 searches locally maintained

databases on a (very large) local disk, none of these download or web access issues are

encountered. However, moving to local databases meant that the data currency problem had to be

addressed. Consequently, a number of custom scripts and “Cron” jobs were developed so that

new documents and new database updates are automatically retrieved on a daily basis and

indexed to ensure that PolySearch2's text collections always contain the documents or data that

are no more than 24 hours old.

3.4 Performance Evaluation

To assess the performance of PolySearch2, we conducted a speed test comparing only the

speed of the original PolySearch with PolySearch2 on various queries with equivalent

parameters. We then performed four evaluations on PolySearch and PolySearch2 to compare

their accuracy. Finally, four additional evaluations were conducted to assess the performance of

PolySearch2 on several novel search tasks. Performance statistics including Precision, Recall, F-

measure, and Accuracy are presented in Table 4 for all 8 evaluations. Evaluation No. 1 assesses

PolySearch2's ability to identify disease-gene association. Evaluation No. 2 evaluates

59

PolySearch2's ability to identify drug-gene/protein associations. Evaluation No. 3 assesses

PolySearch2's ability to identify protein-protein interactions. Evaluation No. 4 evaluates

PolySearch2's metabolite-gene associations. Evaluation No. 5 assesses PolySearch2's ability to

identify drugs with significant adverse effects, or dangerous drugs". Evaluation No. 6 evaluates

PolySearch2's ability to identify toxin-disease association. Evaluation No. 7 assesses

PolySearch2's ability to identify toxin-adverse effect associations. Finally, Evaluation No. 8

evaluates PolySearch2's ability to identify associations to diseases given natural language

question queries. All 8 evaluation datasets are available on the “Download” page on the

PolySearch2 website.

We first evaluated PolySearch2's performance on four gold standard datasets (Table 4,

Evaluations 1-4). Specifically, we evaluated PolySearch2's performance in mining: 1) disease-

gene associations, 2) drug-gene associations, 3) protein-protein interactions, and 4) metabolite-

gene associations. PolySearch2's F-measures in these tasks were 88.95, 89.75, 93.79, 90.74,

respectively. Compared to the original PolySearch system, PolySearch2 achieved a 3-12%

improvement in its association accuracy.

Next, we evaluated PolySearch2's performance on three new gold standard datasets

(Table 4, Evaluations 5-7). These tests were designed to identify 5) adverse drug effect

associations for identifying 'dangerous drugs', 6) toxin-disease associations, and 7) toxin-adverse

effect associations. Performance statistics for the legacy PolySearch are not available for these

datasets due to the novel search types and the size of the testing dataset. PolySearch2's F-

measures on these tests were 85.85, 84.17, and 76.89 respectively.

Finally, to assess the flexibility of PolySearch2, we conducted an association test using

BioASQ [35], a biomedical semantic Question Answering challenge's gold standard training

dataset (Task 3B Training Set, released March 2015), and assessed PolySearch2's performance in

finding associated disease concepts when presented with free-text sentences. Evaluation 8 (Table

4) shows PolySearch2's performance evaluation using the BioASQ Task 3B (biomedical

semantic QA) gold standard training dataset. The search queries are question sentences from

BioASQ and PolySearch2's disease association results are compared with tagged disease

concepts in the BioASQ 3B gold standard training data set.

60

Table 5 lists some of the key feature differences between PolySearch and PolySearch2.

Compared to PolySearch, PolySearch2 has a significantly expanded thesaurus (2x more

categories, 19x more terms), a much larger collection of filter words (4x increase), more

databases (2x increase) and many more text corpora (6x increase), as well as supporting more

(4x increase) search types. We also compared both systems with regard to their analysis speed.

In the speed test we calculated the speed-up factor by dividing the execution time of the old

PolySearch by the execution time of PolySearch2 on an identical set of 10 search queries. Both

systems were located in the same network and both were accessed over the Internet. The cache

look-up was disabled on both systems. The evaluation was carried out with 10 arbitrary

keywords having more than 10,000 potentially relevant documents. The keywords were "Autism,

Acetaminophen, Influenza, Rheumatoid Arthritis, Escherichia coli, Vitamin, Nucleus, p53, ATP,

cancer". A typical PolySearch2 query with 2,000 or fewer relevant documents was completed in

less than 20 seconds. On the other hand, a typical PolySearch query was completed in 2-5

minutes. We found that the time that both PolySearch and PolySearch2 take for keywords and

search types is quite consistent, so document size is actually the main factor in determining

overall execution time. Based on our data, PolySearch2 achieved a 5x to 25x speedup over

PoySearch, depending on the number of documents (from 500 to 10,000) it analyzed. In general,

the more documents that are analyzed, the greater the speedup, as PolySearch2's initialization

overhead is amortized across a larger number of document analysis. The above result shows that

PolySearch2 is substantially faster, more efficient and somewhat more accurate than the original

PolySearch system. The improvement in computational efficiency is primarily due to the fact

that we internally host all text collections and databases in PolySearch2. In the original

PolySearch, all queries were conducted through web-based APIs (which required querying and

downloading abstracts from NCBI) or screen scraping on-line databases which is inherently

slow. The automated update function in PolySearch2 helps ensures the currency of our document

collections. The improvement in association accuracy can be attributed to the tightness measure

we introduced to further discriminate matched association patterns, the assignment of weight

boosting to database records in contrast to text articles, and the imposition of more stringent cut-

offs to boost precision at the expense of recall (precision-recall trade-off).

61

 PolySearch PolySearch2

Prediction

Accuracy

P R F Acc. P R F Acc.

No. 1

Disease/Gene 0.6533 1.0000 0.7903 0.6533 0.8708 0.9091 0.8895 0.8525

No. 2

Drug/Gene 0.7490 1.0000 0.8565 0.7490 0.9701 0.8351 0.8975 0.8571

No. 3

Protein/Protein 0.8396 1.0000 0.9128 0.8396 0.9432 0.9326 0.9379 0.8962

No. 4

Metabolite/

Gene

0.7834 1.0000 0.8785 0.7834 0.9579 0.8619 0.9074 0.8614

No. 5

Drug/Adverse

Effects

- - - - 0.9233 0.8022 0.8585 0.7737

No. 6

Toxin/Disease - - - - 0.9054 0.7864 0.8417 0.7810

No. 7

Toxin/Adverse

Effects

- - - - 0.8808 0.6822 0.7689 0.7854

No. 8 BioASQ

Question/

Disease

- - - - 0.7284 0.6052 0.6611 0.7212

Table 4: Performance evaluation of PolySearch2 vs. PolySearch. P stands for Precision, R stands

for Recall, F stands for F-measure, and Accu. Stands for accuracy.

62

3.5 Limitations

No text mining system is perfect and certainly PolySearch2 is not without some

limitations. One notable limitation is its inability to progressively or interactively adapt to

specific search needs. High-end search engines such as Google and Yahoo monitor user-

feedback through surreptitious monitoring of user mouse clicks, web-page access and web-page

dwell times. This helps these search engines customize or adapt to user preferences and needs.

Ideally PolySearch2 should be able to adapt to a search task by considering user feedback on the

quality of discovered associations. For example, users may indicate certain associations to be

false positives and in subsequent runs PolySearch2 should ideally learn from these negative

examples and adapt itself to match a user's specific search needs and thereby achieve higher

accuracy. We are currently testing several feedback systems and considering adding a “search

satisfaction” feedback system in future versions of PolySearch2. Another limitation with

PolySearch2 (and for most text mining systems) is its inability to self-assess its results and to

extract specific knowledge on its own. While PolySearch2 performs well at extracting strong

 PolySearch PolySearch2

Thesaurus

categories

9 categories 20 categories

Thesaurus terms 57,706 terms with 353,862

synonyms

1,131,328 terms with 2,848,936

synonyms

Filter words 7011 29,718

Database Numbers 1 free-text collection and 6

databases

6 free-text collections and 14

databases

Num. of Search

Types

66 query combinations 308 query combinations

Analysis Speed 6.5 documents per second 165 documents per second

Mobile Friendly? No Yes

Table 5: Performance evaluation and feature comparison of PolySearch2 vs. PolySearch.

63

associations between biomedical entities it is not yet capable of assessing its discovered

associations or extracted relations. For example, PolySearch2 is able to identify a potential

association between BPA and breast cancer but it is not able to infer a cause-and-effect

relationship from the discovered association. Part of this limitation is due to the lack of training

data to perform assessments and to extract relationships. To address this issue, we are hoping to

use Machine learning (ML) and Natural Language Processing (NLP) techniques to eventually

convert PolySearch2 from a simple association discovery tool to a more general knowledge

extraction tool. We are currently working to incorporate this capability into future releases of

PolySearch2.

3.6 Conclusion

In this chapter we have described PolySearch2 (http://polysearch.ca), a web server

designed to facilitate data mining and the semi-automated discovery of text associations between

a wide range of biomedical entities. PolySearch2 supports “Given X, find all associated Ys” type

of queries with X and Y from more than 20 types of biomedical subject areas including human

diseases, genes, SNPs, proteins, drugs, metabolites, toxins, metabolic pathways, organs, tissues,

subcellular organelles, positive health effects, negative health effects, drug actions, Gene

Ontology terms, MeSH terms, ICD-10 medical codes, biological taxonomies and chemical

taxonomies. Some of the most significant improvements for PolySearch2 include a significant

modernization of its underlying text-mining framework; a complete upgrade and re-

implementation of the web interface using the latest web technology standards; a substantially

improved algorithm for improved scoring and ranking of associations; significantly expanded

custom thesauri and term collections; an expanded number of text collections and databases (by

>80%); along with significantly improved support for caching and automated updating.

PolySearch2 now offers greater speed (up to 25X faster), accuracy (3-12% improvement on f-

measures), customizability (additional configurable options) and usability (modern and mobile-

friendly web interface) than the original version. We believe that with these recent

enhancements, PolySearch2 can better facilitate text-based discovery (and re-discovery) of latent

associations among many types of biomedical entities and topics.

64

4. BioQA: An Automated Biomedical Question Answering System

Biomedical information is growing rapidly thanks to steady advances in both biological

and medical technologies. Most biomedical information is archived in the form of free-text in

peer-reviewed publications, or stored in various electronic databases using a variety of different

text-based formats. Our ability to find relevant biomedical records or articles has been greatly

accelerated by the development of specialized biomedical search engines like NCBI Entrez or

Google Scholar. However, in order to keep pace with a specific biomedical field or to find

answers about specific biomedical questions, researchers still need to construct large numbers of

Boolean queries using a special lexicon of appropriate key words and then manually scan

through dozens of irrelevant articles just to find the one pertinent paper or the one key finding.

This is very inefficient. What is needed is a “wise” biomedical question-answering system to

assist researchers in finding relevant articles or answering specific biomedical questions. Such a

system would eliminate the time consuming task of manual scanning and make the challenges of

finding relevant information or answering specific questions far more efficient. In this paper, we

introduce BioQA, a biomedical question-answering system, as an initial solution to the

biomedical question-answering task. The BioQA framework specifically organizes biomedical

information for fast and precise retrieval, and comprises of various algorithms to transform

natural language questions into natural language answers. BioQA is capable of processing

natural language questions, performing searches across both free-text collections and various

biomedical databases, and automatically summarizing the answers with supporting evidence. We

specifically developed BioQA to handle both descriptive and associative queries. The BioQA

web server is publicly available online at http://bioqa.ca.

4.1 Introduction

Biomedical information is growing at an explosive rate. As a result, it is increasingly

difficult for researchers to keep pace with this rapidly growing body of information [9]. For

example, PubMed, which contains more than 25 million indexed abstracts from more than 5,140

journal titles, is growing at rate of 4% each year, and more than 3,000 new articles each day [54].

http://bioqa.ca/

65

GenBank [18], which contains most of the world’s gene sequencing information, has grown from

just 600 annotated DNA sequences in 1982 to nearly 200 million annotated DNA sequences

today. The Protein Data Bank [69], which houses most of the world’s protein structure data,

grew from 13 structures in 1976 to more than 120,000 structures by 2015. ArrayExpress [70],

which contains data on gene expression experiments, grew from just 1,200 data sets in 2006 to

nearly 70,000 today. Adding to the challenge of exponential information growth, is the

proliferation of domain-specific databases. For instance, the total number of biomolecular

databases ever described in the annual Nucleic Acids Research (NAR) Database Issue has grown

from 90 in 1998 to nearly 1700 today [80]. Each database uses its own schema and therefore

each resource needs to be accessed or searched according to its own specific query system. To

address these growing problems of database proliferation and database size, a number of groups

have started to develop aggregative biomedical search engines or smarter text mining tools.

These include such systems as NCBI Entrez [66, 67], GoPubMed [22], and PolySearch2 [16,

17]. However, even with these powerful software tools, researchers still need to manually scan

through (potentially hundreds of) articles and database records to find answers to simple

questions, or to find the supporting evidence needed to advance an idea. This bottleneck of

manual text scanning has arisen because most biological knowledge, whether it is in papers or in

databases, is buried in the form of free text. This means that queries or questions must be

constructed as primitive Boolean word queries or Boolean word combinations. The results are

typically lists of records with differing levels of text matches and widely varying levels of

relevance.

Ideally what is needed to overcome this “free text bottleneck” are software tools that can

efficiently mine biomedical data and rapidly extract or compose answers from relevant snippets

of information. One approach involves the development of a “wise” biomedical question-

answering (QA) system. Such QA system would ideally accept free text questions and provide

precise free text answers with encyclopedia-like commentary and appropriate references or

attribution. Research on developing computer-based QA systems has become increasingly

popular in recent years, following the success of Watson, an IBM-developed QA system [28].

Watson came to prominence by defeating highly skilled human players on the open-domain

question answering Jeopardy! challenge. The success of Watson has motivated many text mining

66

experts to start developing question answering systems tailored for other applications beyond

general knowledge or game show trivia. One particular area of interest has been the development

of QA systems for enhancing biomedical research. BioASQ [82] is a biomedical semantic

indexing and question answering challenge aimed at accelerating the field of biomedical question

answering through competitive shared tasks. Two shared tasks are available: 1) indexing novel

MEDLINE abstracts using MeSH terms (Task A), and 2) retrieving concepts and snippets to

form natural language answers (Task B). A number of systems have been developed for the

BioASQ,challenges including the BioASQ baseline system, the MCTeam system, a modified

NCBI system and BioQA (described here). The BioASQ team developed a “baseline” system to

compare with participating teams [88, 89]. The baseline system retrieves the top 50 and top 100

concepts and snippets returned from their search system, formulates a final answer using greedy

and Integer Linear Programming algorithms, and further selects candidate answers using Support

Vector Regression [82, 88]. The MCTeam system [103] participated in the BioASQ challenge

and this system used MetaMap [5] to identify concept-related words in input query and

formulated a search query to query a local index of PubMed full-text articles and merge retrieved

results to final answers. The NCBI system [57] used the PubMed search function to retrieve

relevant documents and snippets from MEDLINE abstracts, and a dictionary look-up method to

recognize concepts and resolve concepts to MeSH / Gene Ontology terms using GenNorm [94]

and MetaMap [5]. The NCBI system then used the PubTator tool to generate and rank candidate

answers [93, 95]. These tools have been tested and compared through several shared-task

biomedical QA challenges like BioASQ [82, 88, 89]. Competitions such as BioASQ have

certainly helped to advance the field of biomedical information retrieval and question answering.

However, biomedical QA is still facing two core challenges: 1) biomedical information is stored

in widely dispersed databases in highly heterogeneous formats that make information searching

and consolidation difficult, and 2) a significant portion of biomedical information is represented

in the form of free-text, which needs extensive text processing to extract useful information.

In taking on both challenges, we have developed BioQA. BioQA is a biomedical question

answering system, capable of handling natural language queries and providing comprehensive

natural language answers with supporting evidence. In particular, BioQA is able to handle

descriptive (“What is Aspirin?”) and associative (“What is the cause of beri-beri?”) queries.

67

Descriptive queries are particularly useful for biocurators needing assistance in annotating genes,

proteins, metabolites, and other biomedical entities, while associative queries are useful for

finding latent associations between biomedical entities. BioQA is able to automatically

summarize relevant documents and passages and, in doing so, it is also able to generate

supporting evidence for the returned answers to assist researchers in analyzing the extracted

results. We specifically designed BioQA to focus on answering biomedical questions posed by

researchers, medical practitioners, students, and the inquisitive public. BioQA is available to the

public on http://bioqa.ca.

In this chapter, we described the BioQA public web interface and its underlying question

answering framework. We also discuss, in detail, how BioQA manages and organizes

heterogeneous biomedical knowledge, as well as the system of algorithms enabling BioQA to

process natural language queries and relevant text passages. This includes a discussion of how

BioQA identifies biomedical Named Entities (NEs), how it analyzes free text questions to form

search queries, how it retrieves relevant documents and databases records, how it synthesizes

descriptions and how it summarizes and paraphrases natural language answers. Finally, we

evaluate various components of BioQA with the BioASQ challenge datasets and discuss

BioQA’s limitations and future directions.

4.2 BioQA’s User Interface

BioQA (http://bioqa.ca) features a graphical web interface designed to work on both

computer workstations and mobile devices. Figure 16 to Figure 22 show various pages from

BioQA’s web interface. Figure 16 shows the question submission page where a user can post a

question to BioQA to search for relevant concepts and retrieve BioQA’s answers. Users can post

a question to get a “Quick Answer” or a “Full Answer” from BioQA. A “Quick Answer” query

searches document collections and BioQA’s knowledge base for relevant concepts, descriptions,

and information snippets, while a “Full Answer” query performs an additional query to

PolySearch2 to obtain more relevant concepts and information snippets. Upon submitting a

question, a user will be redirected to an auto-refreshing query processing page while the question

is being analyzed and answers are being acquired in the background. Depending on the query

http://bioqa.ca/

68

type and the number of documents that need to be analyzed, a specific query can take from 30

seconds to a few minutes to process. The BioQA web server caches its results for 7 days and

users can use the assigned search id to look up and retrieve the cached results using the “Check

Result” page (not shown in this figure). Once a query has been completed, the user will be

redirected to an “Answer Synopsis Page” as shown in Figure 17. The synopsis page is a hub with

links to full textual answers (Figure 18 and Figure 19), relevant concepts (Figure 20), and

knowledge graphs (Figure 21 and Figure 22). The synopsis page features a tag cloud generated

via frequently used words from the retrieved snippets to provide a quick visual graphic of the

text answers. The font size of the words in the tag cloud are proportional to frequencies of

occurrence in the relevant text snippets. The synopsis page also shows the original questions and

a short preview of the full answer. A navigation bar with light grey background (Figure 19) is

provided for users to quickly review and navigate within the result hierarchy. BioQA results are

also available in JSON format for download. These features are described in more details on

BioQA’s Documentation web page.

Clicking on the link marked “Full Answer with References” takes the user to the

“Answers with References” page showing the full textual answers to user’s posted question.

Textual answers are formatted into different paragraphs providing information on entity

descriptions as well as their relationships to each other in the context of the posted question. The

answer text is color-coded (according the type of recognized biomedical entities) and

hyperlinked (to relevant external biomedical databases). Moreover, sentences in the answer text

are annotated with references to the original documents in BioQA’s text collections, and these

references are hyperlinked to original articles in the corresponding databases (including PubMed,

PMC, or Wikipedia). For example, Figure 18 shows full BioQA answers to the question “What is

the cause of beri-beri?”. The first paragraph in this answer defines beri-beri as a cluster of

symptoms and it is caused by Vitamin B1 (thiamine) deficiency. The BioQA answer also lists

other related diseases caused by thiamine deficiency, and provides some history on how the

association between beri-beri and thiamine deficiency was discovered. Figure 19 shows full

BioQA answers to the question “What diseases are caused by E-cadherin mutations?”. Similarly,

this answer first defines E-cadherin as a “calcium-dependent cell adhesion molecule”, describes

its molecular function and its association with breast cancer. Checking the relevant diseases

69

concepts provided by BioQA (Figure 20) we can see that E-cadherin is found to be associated

with “malignant tumoral disease”, “gastric cancer”, “breast neoplasm”, “adenocarcinoma”,

“melanoma”, “prostate neoplasms”, and other cancers.

BioQA features an automated paraphrasing function (Figure 18) to automatically

paraphrase sentences (derived from previously published or copyrighted works) in text answers.

This may be used by users wishing to avoid copyright/plagiarism issues and to help them better

integrate text snippets into their own work. Clicking on the “Paraphrase Answer Text” link will

initialize a paraphrasing operation on the initial BioQA answers and, upon completion, the

paraphrased answer will be displayed again on the same “Answers with References” page with

the original references. It is worth noting that this automated paraphrasing operation randomizes

paraphrasing results, so clicking on “Paraphrase Answer Text” again will generate a different set

of paraphrasing results. (Please refer to Chapter 5 for algorithmic and implementation details on

BioQA’s paraphrasing function.) BioQA also supplements the generated textual answer with list

of relevant concepts and a concept network graph for visualization. Clicking on the “View

Relevant Concepts” (Figure 17) button takes user to the “Relevant Concepts” page (Figure 20)

which shows the associated entities retrieved by PolySearch2 [52]. The full list of relevant

categories includes human diseases, genes, SNPs, proteins, drugs, metabolites, toxins, metabolic

pathways, organs, tissues, subcellular organelles, positive health effects, negative health effects,

drug actions, Gene Ontology terms, MeSH terms, ICD-10 medical codes, biological taxonomies,

and chemical taxonomies. Relevant concepts in this page are organized by their categories and

clicking on each category tab (marked with number of found relevant entities) displays a relevant

concept table for that particular category. Each relevant concepts table is sorted by the Z-scores

in descending order, and each list can be sorted by clicking on the column header. The relevant

concept table lists the Z-score and PolySearch2 Relevancy score (R-score) as well as the name,

synonyms, and number of supporting text snippets for each associated entity. Each entry is

hyperlinked to external database records. Users can also download the relevant concepts results

in JSON format to get further details on the supporting text snippets (hits).

In addition to textual answers and tables for relevant concepts, BioQA also provides

another form of answer representation: concept graphs. Concept graphs allow one to easily

visualize relevant biomedical concepts and their relationships. These can include relationships

70

such as being co-mentioned in relevant text snippets (a co-mentioned graph), or relationships

derived by being referenced across biomedical databases (a knowledge graph). Figure 21 and

Figure 22 show screenshots of BioQA’s concept network graphs. On the Answer Synopsis Page

(Figure 17), users can choose the format for the graph layout (grid, circle, breadth-first, etc.)

from the drop-down list, and click “Visualize co-mention graph” or “Visualize knowledge

graph” to view and interact with a concept graph image. In any concept graph layout (Figure 21),

users can use their mouse or track pad to zoom in/out, re-position the whole graph, reorganize

individual nodes to achieve better viewing angles or further inspect interesting clusters of nodes

or edges. Figure 22 shows a zoomed-in view of an example concept network component. Nodes

in a concept graph represents a biomedical concept or entity. Nodes are color-coded based on

concept or entity types and are hyper-linked to corresponding database records. Edges in the

concept graph represent relationships among concepts. These relationships may include being

frequently co-mentioned in sentences among relevant text snippets in co-mentioned graphs, or

being cross-referenced in annotation entries across different biomedical databases. By reviewing

the relationships among the concepts in a concept graph, users may discover hidden relationships

between two biomedical entities that are connected via some other biomedical entities. Such

long-range relationships may not be easily detected using text-mining analysis (e.g.

PolySearch2), which tend to focus on entities co-mentioned within a sentence. Users can review

concepts in concept graphs in concept tables by clicking on “View Co-mentioned Graph Nodes”

or “View Knowledge Graph Nodes” buttons. A concept table shows concept types, the concept

ID, the concept name (hyperlinked), and synonyms for concepts represented on the

corresponding concept graphs. Both co-mentioned graphs and knowledge graphs are available

for download in JSON format. Under the hood, BioQA uses generated concept graphs to

discover relationships between entities for the posted question and to generate appropriate textual

answers. For more information on how BioQA generates its concept graphs and how BioQA’s

graph-based summarization algorithms work, please refer to the Algorithms section in this paper

or BioQA’s documentation page. Also see Chapter 5 for implementation details.

71

Figure 16: BioQA’s Query submission page (the Question is: “What is the cause of beri-beri?”).

72

Figure 17: BioQA’s Answer Synopsis page with links to the full answer with references, relevant

concepts, the results download, and various knowledge graph visualizations (the Question is:

“What is the cause of beri-beri?”).

73

Figure 18: BioQA’s full answer page (the Question is: “What is the cause of beri-beri?”).

74

Figure 19: BioQA’s full answer page (the Question is: “What diseases are caused by E-cadherin

mutations?”).

75

Figure 20: BioQA’s relevant concept view for the input question “What diseases are caused by

E-cadherin mutations?”.

76

Figure 21: BioQA’s Co-occurrence network visualization. (The question is: “What diseases are

caused by E-cadherin mutations?”)

77

Figure 22: A close-up view on BioQA’s Co-occurrence network visualization. (The question is:

“What diseases are caused by E-cadherin mutations?”)

Besides providing a public web interface to serve the general public, BioQA also offers

certain underlying datasets as general resources for the biomedical community. These can be

used by individuals to build their own text-mining or question answering systems. These datasets

are fundamental building blocks to BioQA and we believe that by releasing them to the public it

will help advance the field of biomedical question answering. In particular, BioQA uses

PolySearch2’s thesauri for its entity recognition module. The PolySearch2 thesauri contain 1.13+

million biomedical terms with 2.85+ million synonyms. The complete set of terms are available

for download on the PolySearch2 web server (http://polysearch.ca). BioQA also uses an in-house

Medline N-gram dataset for question analysis. BioQA’s Medline N-gram dataset calculates the

observed frequency of unigrams, bigrams (two consecutive words), trigrams (three words), 4-

grams, and 5-grams from 23+ million Medline titles and abstracts (Medline 2015 Baseline +

Update). Each N-gram dataset contains 7 to 74 million N-gram entries. BioQA’s Medline N-

gram dataset offers finer granularity than the NLM Lexical System Group’s Medline N-gram

78

dataset [53]. This is because BioQA’s N-gram dataset is created without character length

restriction and it only filters out singletons (terms that occur only once across the entire dataset).

Finally, the graphical structure (nodes and edges) in BioQA’s knowledge base (BioKB), which

was built by aggregating entries and cross-references across 20+ biomedical databases, is also

available for download in YAML format. All aforementioned datasets, along with BioQA’s

evaluation datasets, are available for download on the web server’s “Download” pages.

4.3 BioQA’s Knowledge base

Key to BioQA’s operations and success are its knowledge base and algorithmic

components. BioQA encapsulates “knowledge” in various representations through a knowledge

base called BioKB which consists of numerous biomedical databases, text collections,

knowledge graphs and thesauri. In particular, BioKB consists of three components: 1) a

comprehensive collection of biomedical thesauri, 2) a large collection of free-text documents, 3)

an interconnected knowledge graph capturing relationships between biomedical concepts

annotated with concept description and attributes.

79

Thesaurus Name No. of Terms No. of Synonyms Data Sources

Genes and Proteins 27994 287,827

UniProt, Entrez Gene,

HGNC, HPRD, JoChem

Gene Families 404 948 UniProt, Entrez Gene,

HGNC, HPRD

Diseases 27,658 76,001 OMIM, UMLS, SNOMED

CT

Drugs 7670 37,331 DrugBank

Human Metabolites 41,793 381,195 HMDB

Metabolic Pathways 456 456 KEGG

Tissues 954 984 Manual curation

Organs 104 201 Manual curation

Subcellular structures 74 175 HPRD

Toxins 3,713 39,095 T3DB

Food Metabolites 27509 39,278 FooDB

Biological Taxonomy 607,031 775,728 NCBI Taxonomy and

Integr8

Gene Ontology 40,535 110,477 Gene Ontology

MeSH terms 26956 215,327 MeSH

MeSH Compounds 221,986 716,676 MeSH

ICD-10 Medical Codes 91,737 155,331 ICD-10 Codes

Positive Health Effects 161 507 Manual curation

Adverse Health Effects 135 711 Manual curation

Drug Effects 424 590 Manual curation

Chemical Ontology 4,017 10,098 Manual curation

Total 1,131,328 2,848,936 All

Table 6: Statistics for BioKBs biomedical thesauri collections. This table shows the name of the

individual thesaurus, number of terms and synonyms, as well as the primary source. BioKB’s

thesauri includes terms and synonyms for 20 different types of biomedical entities, including

genes, proteins, protein families, diseases, human metabolites, drugs and drug metabolites,

biological pathways, tissues, organs, sub-cellular organelles, toxins, food constituents, biological

taxonomies, ICD-10 medical codes, positive and adverse health effects, drug effects, and

chemical taxonomies.

80

BioKB’s biomedical thesauri are the foundation of other high level functionalities like

biomedical term recognition, term tagging, sentence weighting, and summarization. BioKB

contains a collection of 20 comprehensive biomedical thesauri with over 1.13 million terms and

2.84 million synonyms. BioKB’s thesauri collection include terms and synonyms for genes,

proteins [92], gene families [92], diseases [36], human metabolites [96], drug and drug

metabolite [51], biological pathways [47], tissues [52], organs [52], sub-cellular organelles or

structures [52], toxins [97], food metabolites [96], biological taxonomies [76], Gene Ontology

terms [6], MeSH terms and MeSH compounds [81], ICD-10 (International Classification of

Disease) medical codes [8], and SNOMED CT (Systematized Nomenclature of Medicine –

Clinical Terms) [61], as well as positive health effects [52], adverse health effects [52], drug

actions [52], drug effects [52] and chemical taxonomies. All of these thesaurus terms have been

checked and curated manually by ourselves and others. BioKB’s thesauri overlap significantly

with PolySearch2’s thesauri but they also include many important enhancements. Table 6

summarizes each of BioKB’s thesauri and the number of terms and synonyms in each thesaurus.

BioKB’s gene, protein, and gene family thesauri were compiled from the latest release of

UniProt [92], Entrez Gene [18], the Human Genome Organisation Gene Nomenclature

Committee (HGNC) [75], and the Human Protein Reference Database (HPRD) [63].

Furthermore, BioKB’s thesauri also incorporate dictionary terms and synonyms curated by the

Joint Chemical Dictionary (JOCHEM) [39] to further improve BioQA’s term recognition

capability. The disease thesaurus was compiled from Online Mendelian Inheritance in Man

(OMIM) [36], the Unified Medical Language System (UMLS) [14], and SNOMED CT [61]. The

drug and metabolite thesauri were compiled from the latest version of DrugBank [51] and

HMDB [96], respectively. The biological pathway thesaurus was derived from names used for

KEGG pathways [47]. The tissue thesaurus and organ thesaurus were created manually and the

sub-cellular localization thesaurus was derived from the HPRD [63]. BioKB’s toxin thesaurus

and food metabolite thesaurus were compiled from the latest version of the Toxic Exposome

Database (T3DB) [97], and FooDB [96] respectively. The biological taxonomy thesaurus was

derived from NCBI’s taxonomy archive and the Integr8 database [76]. BioKB’s thesauri also

feature many manually curated terms and synonyms for positive health effects, adverse health

effects, drug actions, drug effects and chemical taxonomies.

81

BioKB also contains a large collection of free-text documents. This free-text document

collection is the source of all text snippets for BioQA’s document retrieval process. To enhance

BioQA’s processing speed, all of BioKB’s free-text document collections are hosted internally

and consist of more than 43 million free-text documents (totaling 65 Gigabytes in storage size).

This avoids delays caused by posting queries over the internet to external databases. BioQA

extracts relevant documents and snippets from this document collection to support downstream

query processing and answer synthesis. BioQA accesses all of BioKB’s free-text collections

using an ElasticSearch cluster running multiple nodes [3]. Apache ElasticSearch is an open

source information retrieval system that allows BioQA to efficiently retrieve relevant documents

from BioKB’s text collection and databases. Prior to being added to the text collection, each

free-text document is analyzed, parsed, and indexed using BioKB’s thesauri for rapid search and

retrieval. The incorporation of the latest search engine technologies enables BioQA to search the

entire BioKB document collection rapidly and to find documents relevant to a BioQA search

query in just a few seconds. BioKB’s document collections covers a wide spectrum of human

knowledge in the form of free-text articles, ranging from general knowledge text to biomedical

specific text. This document collection includes latest release of the MEDLINE abstracts,

PubMed Central full-text articles, Wikipedia full-text articles, US Patent abstracts, open access

textbooks from NCBI and MedlinePlus articles. Table 7 lists each free-text document collection,

along with number of records and storage size requirement. The MEDLINE abstract document

collection is updated automatically to retrieve latest MEDLINE abstracts online to ensure

BioKB’s MEDLINE abstracts collection stays current. Other document collections are updated

when new releases become available. Table 8 lists each structured database, along with number

of records indexed in BioKB. The cross reference portion of these databases are used to populate

concept connections in the knowledge graph, while the free text portion of these database are

indexed in ElasticSearch for mining concept associations.

82

Free-text collection Number of Records Storage Size

MEDLINE (PubMed) 27,208,664 33.20 GB

PubMed Central (PMC) 704,539 11.50 GB

Wikipedia 7,619,689 21.80 GB

USPTO Patent abstracts 7,996,999 7.60 GB

NCBI DailyMed 2,745 112 MB

NCBI Books 19,066 256 MB

Total 43,551,702 74.45 GB

Table 7: Statistics for BioKB’s free-text document collections. This table shows the name of

document collections, the number of entries in each document collection, as well as the storage

size.

Structured Database Number of Records

OMIM 23,219

T3DB 3,713

HMDB 41,513

FooDB 27,509

KEGG Reactions 9,538

KEGG Pathways 456

Gene Ontology 40,535

UniProtKB 541,561

MetaCyc 3,810

GAD 167,298

HPRD 18,863

DrugBank 6,825

Total 884,840

Table 8: Statistics for BioKB’s structured database collections. This table shows the name of the

database and the number of entries in each database.

83

Node Type No. Nodes No.

Attributes

No. Internal

Links

No. External

Links

Genes/Proteins 400,303 17 372,394 350,459

Drugs 7,740 55 4,250 19,689

Drug Metabolites 1,321 27 876 1,221

Human Metabolites 41,514 64 0 1,882,510

Human Enzymes 5,688 33 0 992,105

Yeast Metabolites 2,027 54 0 22,637

Yeast Enzymes 5,158 33 0 18,328

Food Metabolites 21,239 57 0 121,210

Biological Pathways 465 15 123,656 34,007

Human Diseases 23,748 40 0 0

Toxins 4040 72 0 42,825

Toxin Targets 1,802 40 0 28,851

Biological

Taxonomies

187,547 30 176,505 2,316,239

E. coli Metabolites 1594 46 0 19,667

E. coli Enzymes 6481 37 0 22,452

MeSH Terms 27,455 7 0 0

Gene Ontology

Terms

41,841 8 67,478 0

Chemical Ontology

Terms

4017 8 4,015 5,539

Total 783,980 643 749,174 5,877,739

Table 9: Statistics for BioKB’s knowledge graph. This table shows the name of each knowledge

node, the number of node entries, the number of node attribute fields, the number of internal

links (between nodes of same types), and external links (between nodes of different types).

84

In addition to its biomedical thesauri and document collection, BioKB also consists of an

extensive biomedical knowledge graph. This knowledge graph contains more than 783,000

nodes in 18 categories with 749,000 internal links and more than 5.8 million external links. This

knowledge graph is built by extracting concepts from BioKB’s annotated databases or

knowledgebases. More specifically, the knowledge graph’s nodes are extracted from UniProt

[92] (genes/proteins), DrugBank [51] (drugs and drug metabolites), HMDB [98] (human

metabolites and human enzymes), YMDB [44] (yeast metabolites and enzymes), FooDB (food

metabolites)[96], KEGG [47] (biological pathways), OMIM [36] (human diseases), T3DB [97]

(toxins and toxin targets), Integr8 [76] (biological taxonomies), ECMDB [35] (E. coli

metabolites and enyzmes), MeSH [81] (MeSH terms), GeneOntology [6] (GeneOntology terms),

and other in-house databases (such as ChemOnt for chemical ontology terms). Table 9 shows

some of the statistics for BioKB’s knowledge graph with the number of nodes and attributes as

well as internal and external links regarding knowledge graph concepts.

BioKB regularly builds and updates its knowledge graph from its own large collection of

high quality databases. This is done by first extracting the core concepts, synonyms, descriptions,

and attributes from these databases and then identifying connecting concepts either within the

same database or across different databases. BioKB downloads each source database in a flat-file

text format, and then parses each database with custom parser programs capable of extracting

target fields corresponding to each database-specific file format. Extracted concepts from each

database are then pooled and compared to resolve internal and external links. Internal links are

those explicitly referenced by the entry in the source database. For example, Citric Acid

(DrugBank DB04272) is listed as interacting with aspirin, as aspirin “may increase the

anticoagulant activity of citric acid”. Therefore, the node on citric acid is internally linked to the

node on aspirin in the knowledge graph. “Cellular tumor antigen p53” is referenced in the

DrugBank [23] entry for aspirin (Acetylsalicyclic acid, DB00945), therefore gene TP53 (UniProt

entry P04637 P53_HUMAN) is linked to aspirin with an external link. In a scenario where a

node is referencing external concepts that are not represented explicitly in the knowledge graph,

we create “dummy nodes” with only concept IDs for future graph expansions. Links in the

knowledge graph are directed, with the source node representing concepts described by the

source database, and the target node represent concepts referenced by the source database. Each

85

concept on the knowledge graph is standardized to contain a list of synonyms and a description.

In cases where a description or synopsis is available in the source database, BioKB extracts key

sentences from the original description as a description for the concept. In cases where a

description is not available or the original description is too short, BioKB generates descriptions

using predefined description templates using attribute information found for the same entry.

Algorithm and example templates as well as entries for generating concept descriptions are

discussed in detail in Chapter 5 and Appendix A.

4.4 BioQA’s Algorithms

BioQA utilizes a diverse collection of custom-developed algorithms to analyze user

queries, perform concept and text snippet retrieval, transform documents and concept retrieval

results and synthesize or paraphrase answers in various forms. Figure 23 shows the overall

BioQA workflow, its modules/algorithms and the relationships between its various modules.

When given a question in natural language text, the “Question Analysis” module analyzes the

question to extract the question type, the lexical answer type, the query keywords, any

association words, and contextual noun phrases. Contextual noun phrases are noun phrases that

are not query keywords but can be used to enhance the search query formation. The “Query

Processing” module formulates queries for both BioKB and PolySearch2. Query Processing

module retrieves key concepts derived from the question using BioKB’s underlying

ElasticSearch [71] index. This module then generates descriptions for each available concept

using the “Description Generator”, and finally extracts concept networks spanned by the

concepts in the question and builds co-mentioned concept networks from the relevant

documents. PolySearch2 accepts a formulated PolySearch2 query and returns a list of relevant

concepts and text snippets using the PolySearch algorithm [16, 17]. Based on the query analysis,

and query processing results, the “Answer Synthesis” module ranks relevant concepts, formats

the concept networks, and synthesizes structured textual answers. The final textual answers are

synthesized using descriptions retrieved from the “Description Generator”, as well as via

summarization of relevant snippets using BioQA’s greedy LSI (Latent Semantic Index) [38, 46]

based summarization algorithm, or via summarization based on relationships among concepts in

86

the knowledge graphs. Upon user request, the “Paraphrase Module” is called to transform the

initial free-text answer into a paraphrased document. Users can post their questions and view

relevant concepts, knowledge graphs, and textual answers on the BioQA web interface.

Figure 23: BioQA's knowledge and algorithmic components.

In this section, we briefly described BioQA’s algorithms for: 1) question analysis; 2)

named entity recognition; 3) concept and text snippet retrieval; 4) description generation; 5)

answer synthesis, and 6) automated paraphrasing. More information about BioQA’s algorithms

can be found in Chapter 5 and the Appendices. Chapter 5 describes each algorithm in detail

while Appendix A shows example description templates for generating descriptions from the

DrugBank [51] database. Appendix B shows examples of paraphrasing rules used by the

automated paraphrasing module to transform sentences into equivalent sentence forms. Finally,

Appendix C describes other information extraction algorithms used by BioQA and BioKB in

parsing database entries. These algorithms combine the implicit knowledge in BioKB with each

user query to arrive at a final answer as seen in the BioQA web interface.

BioQA’s Question Analysis module extracts useful information from posted questions for

all downstream question-answering processes. Given a question, this module: 1) identifies

question types, 2) extracts Lexical Answer Type (LAT) information, 3) extracts keywords, 4)

87

extracts association words, and 5) extracts contextual noun phrases. This extracted information

from the posted question is used to build search queries for concept and text snippet retrieval as

well as for answer synthesis. BioQA supports both descriptive and associative question types. So

the Question Analysis module needs to determine whether the posted question is asking for a

description of certain biomedical entities (descriptive) or asking for associations between certain

entities (associative). The Question Analysis module uses a rule-based system, which analyzes

the question prefix to determine the type of question being asked. Another important aspect of

the Question Analysis module is to extract query keywords and other elements to formulate an

appropriate search query for BioKB and PolySearch2. BioQA analyzes a given question using

natural language processing techniques (syntactic analysis and pattern matching) to identify

query words, contextual noun phrases (non-query noun phrases), lexical answer types, and

association words. The Question Analysis module tokenizes question text, performs Part-of-

Speech (POS) tagging, and conducts shallow syntactic parsing to identify sentence constituents

such as the subject(s), verb(s), and predicate(s). Noun phrases are also extracted from the parsed

sentence using regular expression pattern matching as well as dictionary lookups using the

PolySearch2 thesaurus [52], and search queries using WordNet [62]. Extracted noun phrases are

assigned to the query keyword(s) or contextual noun phrases (non-query noun phrase for

enhancing the specificity of the search query) based on their positions in the sentence. Lexical

Answer Type (LAT) extraction is use to determine the type or format of the intended answer. For

example, in a PolySearch2 query, the LAT is the type of biomedical entity we wish to find.

Consider the following a few examples (with each LAT underlined): “Which parasite causes

malaria?”, “What diseases are associated with chemical BPA?”. BioQA uses a rule-based

method to identify the LAT in a posted question. BioQA extract noun phrases in the subject

between the query prefix words and main verb of a sentence and uses predefined rules to map

noun phrases to the target LAT. Verbs, adjectives, adverbs, and prepositions in the posted

question are classified as association words. Using the output from Question Analysis module,

The Query Processing module combines query keywords, contextual NPs, LATs, and association

words to form search queries for PolySearch2 and BioKB. In particular, the Query Processing

module issues formatted queries to PolySearch2 to retrieve relevant concepts with relevancy

scores. This module also issues search queries to BioKB to find concept descriptions, relevant

database entries, supporting documents and text snippets. Query Processing results are further

88

processed by the Answer Synthesis module to form natural language answers with supporting

evidence. An example of a Question Analysis output for the question: “What is aspirin?” is

shown in Table 10.

Input Question

What is aspirin?

Question Analysis Results

Query Keyword: Aspirin

Contextual NPs: None

Question Type: Descriptive

LAT: Aspirin

Table 10: Example Question Analysis results for the question “What is aspirin?”.

The ability for BioQA to “recognize” or “tag” biomedical entities in a given free-text

question as well as entities in relevant sentence snippets is particularly important for Question

Analysis, Query Processing, and Answer Synthesis. BioQA uses BioTagger, its Named Entity

Recognition module, to parse noun phrases mentioning biomedical terms. BioTagger, as shown

in Figure 18 and Figure 19, will take a given natural language sentence, tag biomedical entities,

color code them, and hyperlink them to corresponding BioKB database entries. The BioTagger

algorithm combines exact dictionary matching, shallow syntactic parsing, and N-gram language

models to identify noun phrases. BioTagger first tries to match surface terms to terms in the

BioKB thesauri by exact dictionary matching a concept’s synonyms against the BioKB thesauri.

When no exact matching is available, BioTagger performs a combination of POS tagging,

Probabilistic Context-Free Grammar (PCFG) [46] parsing, and regular expression pattern

matching to extract noun phrases (NPs) that partially match terms in the BioKB thesauri. Finally,

BioTagger generates frequent N-grams (for N ranging from 1 to 5) from given sentences and

searches against an N-gram dataset generated using the entire MEDLINE abstract database.

BioTagger prefers terms with exact dictionary matches over extracted noun phrases with partial

89

matching or frequent N-grams. BioTagger also prefers longer terms over shorter terms, and more

frequent terms than less frequent terms. By using a number of algorithmic improvements and

optimizations, BioTagger is very efficient in processing retrieved documents with a memory

requirement that is linear to the size of the BioKB thesauri. Furthermore, its time efficiency is

(best case) linear O(N) or (worst case) O(N2) to the length of the input sentence. An example of a

BioTagger output for the question: “What is aspirin?” is given in Table 11.

The Answer Synthesis module generates structured textual answers and augments these

answers with reference citations, relevant documents and concept network diagrams using

description generation, concept graph generation, automated summarization and paraphrasing.

BioQA uses the Description Generator to create descriptions for concepts in a database without a

description field. The Description Generator first parses a database entry for information fields

according to the database’s specific schema and stores extracted fields in a lookup dictionary. It

then generates descriptions by filling in the blanks using pre-defined sentence templates, thereby

producing a structured description paragraph. Description templates consist of sentence

templates grouped into multiple ordered sentence groups. A sentence group represents a single

sentence describing one or more properties for a database entry. Each sentence group contains

various hand-crafted sentence templates conveying similar information with different syntactic

variations. Each sentence template contains one or more blank fields to be filled with

information extracted from corresponding database entry. When all blank fields in a sentence

template have the corresponding information for a database entry, these sentence templates are

“triggered”. The Description Generator then randomly selects a “triggered” sentence template in

the same sentence group to produce one descriptive sentence. The Description Generator module

then processes each sentence group to produce the remaining descriptive sentences and join all

generated sentences to produce a free-text paragraph describing the target biomedical concept.

An example of a Description Generator output for the question: “What is aspirin?” is given in

Table 12.

90

Input Question

What is aspirin?

BioTagger Results

DB00945: Acetylsalicylic acid (DrugBank)

 130 Synonyms: Aspirin; Acetylsalicylic acid; 2-Acetoxybenzenecarboxylic acid; 2-

Acetoxybenzoic acid; Azetylsalizylsäure; Acetylsalicylate; Acide acétylsalicylique; ácido

acetilsalicílico; Acidum acetylsalicylicum; ASA; o-acetoxybenzoic acid; O-

acetylsalicylic acid; Aspirin; o-carboxyphenyl acetate; Polopiryna; Acenterine; Adiro;

Aspergum; Aspro; Bayer Aspirin; Easprin; Ecotrin; Empirin; Entrophen; Nu-seals;

Rhodine; Rhonal; Solprin; Solprin acid; St. Joseph Aspirin for Adults; Tasprin; Aspirin;

2-Carboxyphenyl acetate; 8-hour Bayer; A.S.A.; A.S.A. Empirin; Acesal; Acetal;

Aceticyl; Acetilsalicilico; Acetilum acidulatum; Acetisal; Acetol; Acetonyl; Acetophen;

Acetosal; Acetosalic acid; Acetosalin; Acetoxybenzoic acid; Acetylin; Acetylsal;

Acetysalicylic acid; Acido O-acetil-benzoico; Acido acetilsalicilico; Acimetten; Acisal;

Acylpyrin; Asagran; Asatard; Ascoden-30; Aspalon; Aspec; Aspirdrops; Aspirine;

Asteric; Bayer; Bayer Extra Strength Aspirin For Migraine Pain; Benaspir; Bi-prin;

Bialpirina; Bialpirinia; Bufferin; Caprin; Cemirit; Claradin; Clariprin; Colfarit;

Contrheuma retard; Coricidin; ….

HMDB01879: Aspirin (HMDB)

 63 Synonyms: 2-(Acetyloxy)benzoate; 2-(Acetyloxy)benzoic acid; 2-

Acetoxybenzenecarboxylic acid; ….

D001241: Aspirin (MeSH)

 19 Synonyms: 2-(Acetyloxy)benzoic Acid; Acetysal; Acylpyrin; Aloxiprimum; ….

T3D2936: Aspirin (T3DB)

 26 Synonyms: 2-Acetoxybenzenecarboxylic Acid; 2-Acetoxybenzoic Acid; 2-

Carboxyphenyl acetate; A.S.A.; ASA; ….

Table 11: Example BioTagger result for the input question “What is aspirin?”.

91

Input Question

What is aspirin?

Description Generator Result

Aspirin (USAN), also known as acetylsalicylic acid (INN, ASA), is a salicylate drug, often

used as an analgesic to relieve minor aches and pains, as an antipyretic to reduce fever, and

as an anti-inflammatory medication.

Table 12: Description Generator results for the question “What is aspirin?”

BioQA uses a Concept Graph Generator module to build a concept graph from the

relevant concepts found in BioKB’s concept network as well as the co-mentioned concepts found

in relevant text snippets. A concept graph is an undirected graph where vertices represent

biomedical concepts and edges represent connections between concepts. Two concepts are

connected by an edge if either 1) one concept references another concept in a database record, or

2) both concepts are frequently co-mentioned (above certain statistical cut-off) from the retrieved

text snippets. As mentioned above, the Question Analysis module parses query keywords and

noun phrases from a given question, and BioTagger maps them to a collection of corresponding

biomedical concepts. To build a concept graph from concepts in BioKB’s concept network, the

Concept Graph Generator module simply extracts the subgraph spanned by the collection of

concepts found in the given question. In particular, the extracted subgraph includes: nodes

representing the query term, biomedical terms representing the contextual noun phrases, their

immediate neighbors and all connecting edges. To build a concept graph from co-mentioned

concepts in retrieved text snippets, the Concept Graph Generator module scans each relevant

sentence and extracts pairs of biomedical concepts found in a same sentence. It also keeps a

numerical count of the frequency of each concept pair in a dictionary data structure. The

dictionary represents an implicit background concept network, where each pair of co-mentioned

concepts is connected by an edge, with the strength of an edge being proportional to the

frequency of it being co-mentioned in a sentence. Next, the module trims this implicit

background concept network by scoring and ranking each co-mentioned concept pair using Z-

92

distribution statistics. Edges with a Z-score lower than 0 (therefore the observed association is

likely due to chance) are removed from the implicit background network. Finally, the Concept

Graph Generator module extracts subgraphs from the trimmed background network by including

only those nodes and edges connecting to concepts found in the given question. Both concept

networks can be visualized in the BioQA user interface as shown in Figure 21 and Figure 22. An

example of a Concept Graph Generator output for the question: “What is aspirin?” is given in

Table 13.

Source

ID

Source

Node

Type

Source Node

Name

Target Node

ID

Target

Node Type

Target Node Name

DB00945 Drug Acetylsalicylic

acid

C081124 Compound acetyl chloride

DB00945 Drug Acetylsalicylic

acid

D014481 MeSH United States

DB00945 Drug Acetylsalicylic

acid

DB00316 Drug APAP

C081124 Compound acetyl chloride DB00936

Drug Salicyclic acid

D014481

MeSH United States D014486 MeSH United States Food

and Drug

Administration

D014481 MeSH United States D047828 MeSH World War I

D014481 MeSH United States DB00497 Drug Oxycodone

DB00316 Drug APAP HMDB01859 Human

Metabolite

4'-

Hydroxyacetanilide

DB00316 Drug APAP C526278 Compound acetaminophen,

codeine drug

combination

DB00316 Drug APAP C019552 Compound Saridon

Table 13: Example of a Concept Graph Generator output on the input question “What is

aspirin?”. A subset of 10 edges in the concept graph (51 nodes, 44 edges) are shown in this table.

This table shows the concept ID, node type, and node name for source and target nodes for

selected edges.

93

Input Question

What is aspirin?

Summarization Engine Output

Aspirin (USAN), also known as acetylsalicylic acid (INN, ASA), is a salicylate drug, often

used as an analgesic to relieve minor aches and pains, as an antipyretic to reduce fever, and

as an anti-inflammatory medication. Although aspirin 's use as an antipyretic in adults is

well-established, many medical societies and regulatory agencies (including the American

Academy of Family Physicians, the American Academy of Pediatrics, and the U.S. Food

and Drug Administration (FDA)) strongly advise against using aspirin for treatment of fever

in children because of the risk of Reye 's syndrome, a rare but often fatal illness associated

with the use of aspirin or other salicylates in children during episodes of viral or bacterial

infection. After the association between Reye's syndrome and aspirin was reported, and

safety measures to prevent it (including a Surgeon General 's warning, and changes to the

labeling of aspirin-containing drugs) were implemented, aspirin taken by children declined

considerably in the United States, as did the number of reported cases of Reye's syndrome; a

similar decline was found in the United Kingdom after warnings against pediatric aspirin use

were issued. The company's attempts to hold onto its Aspirin sales incited criticism from

muckraking journalists and the American Medical Association, especially after the 1906

Pure Food and Drug Act that prevented trademarked drugs from being listed in the United

States Pharmacopeia; Bayer listed ASA with an intentionally convoluted generic name

(monoacetic acid ester of salicylic acid) to discourage doctors referring to anything but

Aspirin. Surgeon General, the Food and Drug Administration, the Centers for Disease

Control and Prevention, and the American Academy of Pediatrics recommend that aspirin

and combination products containing aspirin not be given to children under 19 years of age

during episodes of fever-causing illnesses, because of a concern about Reye's Syndrome.

Table 14: Summarization engine output for the question “What is aspirin?”.

94

Input Question

What is aspirin?

Paraphrasing Engine Output

Acetysal (USAN), also known as acetylsalicylic acid (INN, argininosuccinic acid), is a

salicylate drug, often used as an analgesic to relieve nonaged aches and pains, as an

antipyretic to reduce hyperthermias, and as an anti-inflammatory medication. Although

acetysal's use as an antipyretic in adults is well-established, many medical societies and

regulatory agencies (including the American Academy of extended Family Physicians, the

American Academy of Pediatrics, and the U.S. Food and Drug Administration (FDA))

strongly advise against using acetysal for therapeutics of fevers in children because of the

comparative Risks of Reye's symptom Cluster, a rare but often fatal unwellness associated

with the use of acetysal or other salicylates in children during episodes of viral or bacterial

Infections. After the associations between Reye's symptom Cluster and acetysal was reported,

and refuge measures to prevent it (including a Surgeon General's warning, and changes to the

labeling of acetysal-containing drugs) were implemented, acetysal taken by children declined

well in the United States, as did the figure of reported cases of Reye's symptom Cluster; a

similar diminution was found in the United Kingdom after warnings against paediatric

acetysal use were issued. The company's attempts to hold onto its acylpyrin sales incited

unfavorable judgment from muckraking journalists and the association, American Medical,

especially after the 1906 Pure Food and Drug Act that prevented trademarked drugs from

being listed in the United States Pharmacopeia; acetyl2-Hydroxybenzoic Acid listed

argininosuccinic acid with a deliberately convoluted generic name (monoacetic acid ester of

2-Hydroxybenzoic Acid) to discourage doctors referring to anything but acylpyrin. Surgeon

General, the foods and Drug Administration, the Centers for Disease Control and Prevention,

and the American Academy of Pediatrics recommend that acetysal and combining products

containing acetysal not be given to children under 19 years of historic period during episodes

of fever-causing illnesses, because of a care about Reye's symptom Cluster.

Table 15: Example Paraphrasing Engine output for synthesized answers with input question

“What is aspirin?”.

95

BioQA synthesizes its answers in natural language text using the Summarization Engine

module. The Summarization Engine combines concept descriptions retrieved from BioKB or

generated using the Description Generator, with answer paragraphs describing the association

between relevant concepts. The Summarization Engine “composes” its answers using two

different algorithms: a) Summarization by Co-mentioned Concept Graph, that is generating a

summary paragraph from co-mentioned concept information, and 2) Summarization by Greedy

LSI, that is generating a summary paragraph from relevant text snippets using a greedy algorithm

on a Latent Semantic Index data structure for relevant documents. The first algorithm

(Summarization by Co-mentioned Concept Graph) takes advantage of the co-mentioned concept

graph (built by the Concept Graph Generator module) and the interconnectivity of relevant

concepts. Synthesizing answers using a co-mentioned concept graph involves a form of implicit

reasoning, where the algorithm joins sentences describing entity connections across multiple

linked concepts in the natural order found in the relevant text snippets. In other words, to

generate a paragraph describing the association between two concepts X and Y, this algorithm

first finds a shortest path (if any) in the co-mentioned concept graph using the Single Source

Shortest Path algorithm (e.g. a shortest path connecting concept X and Y could be X-Z-Y, where

concept Z connects both X and Y) [20]. Then the algorithm traverses each pair of concepts in the

shortest path (e.g. X-Z, and Z-Y) from the source concept X to the target concept Y, and selects

the highest ranked sentence (based on PolySearch2’s relevancy score) from all sentences

containing both concept X and concept Y. The strength of this algorithm is that only sentences

containing the strongest evidence for the association between the two concepts are included in

the final summary. The weakness of this algorithm is that a path between two concepts may not

exist in co-mentioned concept graph. In this case, a default summary is generated using the

second algorithm (Summarization by Greedy LSI), where the given question “grows” to a

summary paragraph with the help of a latent semantic index from the relevant documents.

Synthesizing answers using a document matrix with a latent semantic index involves information

filtering to identify key terms and key sentences among all relevant text snippets. The second

algorithm (Summarization by Greedy LSI) first builds a Latent Semantic Index (LSI) from the

retrieved relevant documents. Then starting from the given question sentence it greedily

includes the next most similar sentence to the current summary. Given a question and a

collection of relevant documents (or text snippets), this algorithm converts each relevant snippet

96

to a document vector representation and then forms a document matrix via a vector space model

[46, 56]. It then calculates eigenvectors and eigenvalues of the document matrix using Singular

Value Deposition (SVD) and reduces the dimension of the document matrix by projecting

document vectors onto a lower dimension space spanned by the eigenvectors. The eigenvectors

of the document matrix represent key topics (biomedical terms) found among relevant

documents. Therefore, this dimensional reduction step effectively filters key topics among the

collection of relevant snippets and indexes each text snippet with key terms. Finally, the

algorithm greedily generates a summary paragraph using the initial question document vector

and the LSI document index in subsequent iterations. That is, given an initial question document

vector, the algorithm retrieves text snippets corresponding to the most similar document vector in

the document index by Cosine Similarity measure. The algorithm adds the retrieved snippets to

the summary paragraph, removes snippets similar to the current snippet above an empirical

threshold, and recalculates the document index, now containing fewer documents. This process

is repeated until the summary paragraph grows to a certain length, or the document matrix

contains too few relevant snippets to continue the indexing process. Finally, the Summarization

Engine performs post-processing on the generated summary paragraph to enhance readability

and fixes grammatical artifacts (introduced during summarization) to produce the final summary

paragraphs. An example of a Summarization Engine output generated using the two different

algorithms in this Engine for the question: “What is aspirin?” is given in Table 14.

The answers that BioQA generates are almost always composed of previously existing

text that may or may not be copyrighted. Therefore, BioQA also supports automated

paraphrasing of natural language answers for those users who wish to include all or part of

BioQA’s answer in a document without the need to manually paraphrase the answer. The

Paraphrasing Engine module takes an initial BioQA textual answer, and paraphrases it, sentence

by sentence according a set of pre-defined rules. Paraphrasing rules falls into substitution,

enumeration, rearrangement, and transformation categories. Please refer to Appendix C for more

details and examples regarding these paraphrasing rules. The Paraphrasing Engine module

applies phrase substitution, word-sense substitution, and synonym substitution to an input

sentence. In particular, this module applies 2000+ phrase or word substitution rules (see

Appendix B) to an input sentence to replace a phrase with its semantic equivalent. These

97

substitution rules can be simple or word-sense dependent (substitution rules depends on the Part-

of-Speech tags for the original words). Simple substitution replaces a phrase with an equivalent

phrase. For example, substituting “also known as” with “also referred to as”. Word-sense

substitution switches a word based on its Part-of-Speech tag. For example, the word “witness”

can be substituted with “observe” when “witness” is used as a verb, but with “observer” when

“witness” is used as a noun. The paraphrase engine then substitutes a word with a valid synonym

by searching WordNet [62] (English dictionary words) and the BioKB thesaurus (biomedical

terms). The module recognizes phrases or common expressions such that synonyms substitution

does not replace a part of a phrase or common expression by mistake. Besides word

substitutions, this module also performs transformations, enumerations, and rearrangements to

paraphrase an input sentence. Transformation rules changes a numerical measure to an

equivalent with different units. Rearrangement rules rearrange words in an expression. In

paraphrasing, the module also obeys other rules that don’t easily fit into the previous categories.

For example, it should never change anything in quotes, and never change proper nouns,

acronyms (“BPA”) or entity names (“Bisphenol A”). When multiple rules are applicable to an

input sentence, there could be a potential conflict between rules, as more than one rule could be

substituting the same part of the sentence yielding different results. In this case, only one rule is

selected among the conflicting rules (according to predefined rule precedence or at random) to

paraphrase a sentence. Besides handling conflicting rules, The Paraphrasing Engine also

randomizes paraphrasing results to a certain degree to provide a higher degree of syntactic

variance. Running the paraphrasing function over and over again should yield a slightly different

paragraph (but with the same meaning) each time it is run. The output from the Paraphrasing

Engine is a paraphrased version of the original answer/paragraph with original references. An

example of a Paraphrasing Engine output (before and after running the Engine) for the question:

“What is aspirin?” is given in Table 15.

 In this section, we briefly discussed the various algorithms that BioQA uses for

performing question analysis, query processing, and answer synthesis. Answer synthesis utilizes

an algorithm to generate concept descriptions from database entries using predefined templates.

It also uses an algorithm to build relevant concept graphs from BioKB’s concept network and co-

mentioned concept graph. It then uses an algorithm to automatically summarize concept

98

associations using the concept graph or document matrix, and an algorithm to automatically

paraphrase the answer. Working as a whole, these algorithms and modules transform an input

question into answers in a variety of different forms, including natural language answers with

reference citations, a ranked list of relevant concepts, and an image of the relevant concept

graphs.

4.5 Performance Evaluations

In Chapter 3 we previously evaluated the performance of PolySearch2 [8] with regard to

its information retrieval capacity and sensitivity. In this section we present two different,

independent evaluations on BioQA with regard to its Query Processing and Answer Synthesis

components. We first evaluate BioQA’s question analysis module by evaluating its question type

identification capability. Next, we evaluate BioQA’s answer synthesis modules using the

BioASQ challenge dataset [82, 88, 89].

4.5.1 Question Analysis Evaluation

A key aspect for any free-text question-answering system is its ability to accurately

identify the type of input question being asked. In most cases it is a matter of distinguishing if a

question is descriptive or associative. We evaluated BioQA’s question type identification

algorithm using the BioASQ’s training dataset [82, 88], which consisted of 600 questions with

specific question types: 1) yes/no, 2) descriptive, 3) associative, and 4) summary. In this

evaluation we classify summary questions as associative question types. We compare BioQA’s

prefix rule-based algorithm with three other commonly used algorithms: 1) a K-nearest neighbor

algorithm 2) a Support Vector Machine classifier, and 3) a Random Forest classifier. The K-

nearest neighbor algorithm is an instance-based learning algorithm, and is often used to evaluate

classification problems as a baseline system due to its simplicity. Our K-nearest neighbor

algorithm takes the majority of the top 3 questions that are most similar to the given question in

the BioASQ training dataset. If the top 3 questions are of different types, we take the question

type belonging to the most similar question. Support Vector Machine and Random Forest

99

classifiers are both popular choices for classification tasks in text mining due to their excellent

capacity to handle high dimensional features. In all three classification algorithms, we used

stemmed bag-of-words features vectors, and Term Frequency / Inversed Document Frequency

(TF-IDF) term weighting schema [46, 56]. We use cosine similarity as similarity measure

between feature vectors. Note that in this evaluation, stop-words are not removed as stop words

can be valuable features for question type prediction. We evaluated all three supervised

classification algorithms using 5-fold cross validation, and compared their performance with the

prefix rule-based algorithm used in BioQA. As seen in Table 16, BioQA’s prefix rule algorithm

outperforms all three supervised classification algorithms. These data illustrate that a supervised

classification algorithm may not be a better option in question type analysis than a system based

on hand-crafted empirical rules for this kind of task. We speculate that for supervised

classification algorithms to achieve the desired accuracy, we would need a much larger training

dataset. This is likely due to the fact that questions of same type may not share enough words or

features to sufficiently characterize a specific type of question. Rule-based systems that uses

hand-craft empirical rules, on the other hand, examine question prefixes based on empirical

rules, and so they are less prone to the size of training dataset.

To test this hypothesis, we conducted the following experiment: we converted each

question in the BioASQ training dataset into a feature vector with stemmed bag-of-words

features. Similar to our evaluation, stop words were preserved in the feature vectors. We

weighted each feature using TF-IDF, and measured the cosine similarity between each question

and the most similar question (excluding itself) among all three question types (yes/no,

associative, descriptive). We visualized the similarity scores using a series of scatter plots

(Figure 24, Figure 25, and Figure 26). Each question can be visualized as a data point on a

scatter plot. The location of each data point corresponds to its maximum similarity score to a

question type along an axis. If instances of each question type are well separable based on their

feature vectors, we should see questions of same type cluster into relatively distinct clusters.

Based on the data in Figure 24, Figure 25, and Figure 26, we see that this is not the case. In

particular, there is little clustering, indicating question types may not be easily predicted using

linear machine learned classifiers. Based on this observation, and the overall superior

performance, BioQA uses an empirical rule-based question type identification algorithm.

100

Question

Type

Performance

Measure

Prefix Rule KNN SVM Random

Forest

Yes/No Precision 0.9241 0.4233 0.5541 0.5468

Recall 1.00 0.4533 0.2482 0.2165

Accuracy 0.9769 0.6733 0.7174 0.7289

F-measure 0.9605 0.4378 0.3428 0.3102

Associative Precision 0.9438 0.6678 0.6891 0.7558

Recall 0.6981 0.6294 0.5344 0.5138

Accuracy 0.8291 0.6598 0.6273 0.6748

F-measure 0.8026 0.6483 0.6028 0.6117

Descriptive Precision 0.5811 0.4655 0.6394 0.6809

Recall 0.8602 0.4839 0.2142 0.2712

Accuracy 0.8315 0.7623 0.7832 0.8081

F-measure 0.6936 0.4745 0.3209 0.3879

Table 16: Performance statistics of BioQA’s question type prediction algorithm (prefix rule) in

comparison with K-nearest neighbor (KNN), Support Vector Machine (SVM), and Random

Forest classifiers on the BioASQ training dataset with 600 questions with question type labels.

101

Figure 24: BioASQ Question Similarity Scatter plots: Yes/No questions versus Associative

questions.

102

Figure 25: BioASQ Question Similarity Scatter plots: Yes/No questions versus Descriptive

questions.

103

Figure 26: BioASQ Question Similarity Scatter plots: Associative question versus Descriptive

questions.

104

4.5.2 Answer Synthesis Evaluation

To assess the overall performance of BioQA in terms of question answering, we

evaluated it by participating in the first and second BioASQ challenges. The first BioASQ

challenge took place in 2013, and the second BioASQ challenge took place in 2014. A total of 11

participants were involved in BioASQ-1 (2013) and 15 participants in BioASQ-2 (2014) for

Task B. BioASQ (http://bioasq.org) [82, 88] is a semantic question answering challenge with two

distinct tasks. Task A challenges participants to automatically index novel MEDLINE abstracts

with MeSH tags; Task B challenges participants to annotate given natural language questions

with relevant articles, text snippets, and RDF triples from designated document and concept

repositories (Phase A), and eventually return an “exact” and an “ideal” answer in natural

language (Phase B). Participants are allowed to process a challenge question set and submit

answers within 24 hours. Submission results are evaluated automatically and manually by a

panel of biomedical experts. Please refer to Satsaronis et al. [82, 88] and Malakasiotis et al. [55]

for details on the BioASQ challenge and evaluation measures. Specifically, we evaluated

BioQA’s modules in both Task A and Task B with modifications in order to comply with

challenge guidelines. The information retrieval module in BioQA was temporarily customized to

retrieve information from the BioASQ article and concept repository instead of from BioQA’s

local document and concept repository (BioKB). The Question Processing module was

customized to accept natural language questions with given question types. The Answer

Synthesis module was customized to process relevant articles, snippets, and concepts (provided

by BioASQ) plus information retrieved locally from BioKB and PolySearch2 (e.g. concept

descriptions and associations), to synthesize the final “exact” and “ideal” answers. Note that the

version of BioQA used in the first BioASQ challenge was Version v1.1 while the version of

BioQA used in the second BioASQ challenge was Version v1.2. Version v1.1 is equipped with

core algorithms for question analysis and answer synthesis. Version v1.2 exploits an algorithm

for greedily removing sentences with redundant information and “smoothing” sentence transition

within an answer paragraph by rearranging sentences based on their information connection. The

current version of BioQA is Version v1.3. Version v1.3 is enhanced with public web interface,

concept graph visualization, and automated paraphrasing. Performance evaluation presented in

this section is based on the participation of BioQA version v1.1 in the first BioASQ challenge,

105

and version v1.2 in the second BioASQ challenge. Challenge results are publicly available on the

BioASQ challenge website (http://bioasq.org), and are discussed in Partalas et al. [72] and

Balikas et al. [12] with references to BioQA as the “Wishart” systems. Performance statistics

including precision, recall, accuracy, mean reciprocal rank (MRR), and F-measure and accuracy

are presented in Table 17 for exact answer formation in six evaluation runs. Automatic and

manual evaluation scores are presented in Table 18 for ideal answer formation in same six runs.

Performance evaluations are also available on the evaluation page of the BioQA web server.

BioQA’s performance in concept retrieval were evaluated with PolySearch2

(http://polysearch2.ca) [52]. In this section, we focus on discussing BioQA’s ability in

formulating exact and ideal answers. We used a two-sample t-test to compare key performance

statistics of BioQA against the performance statistics of the best system among other BioASQ

participants.

106

 Yes/No Factoid List

Exact answer

Acc.* Strict

Acc.

Lenient

Acc.

MRR* Mean

Prec.

Recall F-

measur

e*

Task 1b

Phase B

Batch 1

BioQA 0.9200 0.2222 0.3333 0.3056 0.3186 0.2147 0.2290

Other

Best

0.4800 0.0000 0.2222 0.1056 0.0153 0.0402 0.0204

Task1b

Phase B

Batch 2

BioQA 0.9615 0.2500 0.3000 0.3000 0.4060 0.3127 0.3336

Other

Best

0.5000 0.0000 0.2500 0.0725 0.0612 0.2062 0.0789

Task2b

Phase B

Batch1

BioQA 0.8438 0.4400 0.4800 0.4600 0.4478 0.3335 0.3456

Other

Best

0.9375 0.1600 0.1600 0.1600 0.0572 0.0702 0.0614

Task2b

PhaseB

Batch2

BioQA 0.9286 0.1304 0.1304 0.1304 0.5120 0.4399 0.4261

Other

Best

0.8214 0.0435 0.1739 0.0942 0.1596 0.2057 0.1618

Task2b

PhaseB

Batch3

BioQA 0.8889 0.0417 0.0833 0.0556 0.4584 0.3763 0.3909

Other

Best

0.8333 0.0417 0.1250 0.0833 0.1195 0.1780 0.1373

Task2b

PhaseB

Batch4

BioQA 0.9375 0.2500 0.2813 0.2813 0.2659 0.4029 0.2963

Other

Best

0.8750 0.0625 0.1875 0.1120 0.1233 0.1365 0.1062

Overall

Average

BioQA 0.9133

0.0415

0.2224

0.1342

0.2681

0.1438

0.2555

0.1432

 0.4015

0.0926

0.3467

0.0793

0.3369

0.0696

Other

Best

0.7412

0.1989

0.0513

0.0589

0.1864

0.0446

0.1046

0.0307

0.0894

0.0535

0.1395

0.0707

0.0943

0.0516

Table 17: BioASQ Challenge Task B Exact answer formation. This table shows the performance

statistics for BioQA v1.1 in Task1b, and BioQA v1.2 in Task 2b. Stric Acc. and Lenient Acc.

stands for Strict Accuracy, and Lenient Accuracy respectively. MRR stands for mean reciprocal

rank. Official ranking measures for each answer category are marked with asterisks. Those

measures for which BioQA’s overall performance was significantly better than the best among

other participants are shown in bold.

107

 Automatic Scores Manual Scores

Ideal answer

Rouge-2 Rouge-

SU4

Readability Recall Precision Repetition

Task1b

PhaseB

Batch1

BioQA 0.2059 0.2202 3.97 3.71 3.83 4.27

Other

Best

0.2266 0.2636 2.55 3.15 2.54 3.21

Task1b

PhaseB

Batch 1

BioQA 0.2106 0.2387 4.14 4.14 4.17 4.48

Other

Best

0.2204 0.2659 2.92 3.87 3.08 3.50

Task2b

PhaseB

Batch1

BioQA 0.4802 0.4814 - - - -

Other

Best

0.4971 0.4971 - - - -

Task2b

PhaseB

Batch2

BioQA 0.3914 0.4089 - - - -

Other

Best

0.3352 0.3493 - - - -

Task2b

PhaseB

Batch3

BioQA 0.4331 0.4427 - - - -

Other

Best

0.4282 0.4386 - - - -

Task2b

PhaseB

Batch4

BioQA 0.4072 0.4295 - - - -

Other

Best

0.3273 0.3677 - - - -

Overall

Average

(Standard

Deviation)

BioQA 0.3547

 0.1174

0.3702

0.3952

4.055

0.1202

3.93

0.30

4.00

0.24

4.38

0.15

Other

Best

0.3391

 0.1094

0.3637

0.0930

2.7400

0.2600

3.51

0.51

2.81

0.38

3.36

0.21

Table 18: BioASQ Challenge Task B Ideal answer formation. This table shows performance

statistics for BioQA v1.1 in Task1b, and BioQA v1.2 in Task 2b. Manual scores for Task 2 were

not available. Those measures for which BioQA’s overall performance scores were significantly

better than the best among other participants are shown in bold.

108

In the task of formulating exact answers, BioQA responded to each question by providing

“yes” or “no” answers to Yes/No questions, a list of at most five concepts to factoid questions,

and a list of at most 100 concepts to list questions. Yes/No questions were evaluated with an

accuracy score, while factoid questions were evaluated by Mean Reciprocal Rank (MRR), which

rewards responses containing golden answers (provided by experts) higher in the returned list of

factoids. List questions were evaluated using standard precision, recall, and F-measure scores

averaged over all submitted responses. As seen in Table 17, BioQA achieved significantly higher

accuracy [0.8438 – 0.9615] in Yes/No questions (t = 2.076, df = 5, p = 0.046), significantly

higher mean reciprocal ranks [0.0556 – 0.4600] in Factoid questions (t = 2.5229, df = 5, p =

0.0265), and significantly higher F-measure [0.2290 – 0.4261] (t = 6.8542, df = 5, p = 0.0001) in

list questions than the best system among other participants. This result shows that BioQA is

quite effective in formulating exact answers. BioQA’s performance in formulating exact answers

can be attributed to the performance of the named entity recognition and concept ranking

algorithm in PolySearch2 [52].

In the task of formulating ideal answers (Table 18), BioQA responded to each question

by synthesizing a natural language text answer with at most 200 words. Submitted responses

were evaluated using both automatic scores (Rouge-2 and Rouge-SU4) and manual scores

(readability, recall, precision, and repetition). The automatic scoring schemes (Rouge-2 and

Rouge-SU4) measure overlap ratios between the submitted summary and a set of “gold standard”

summaries curated by biomedical experts using skip bigrams (Rouge-2) and skip unigrams

(Rouge-SU4). Manual scores evaluate the readability, recall (concepts in the gold standard also

occurs in the submitted answer), precision (concepts in the submitted answer also occur in the

gold standard), and repetition (lack of repeating the same concepts in the submitted answer).

Manual score ranges from 1 (worst) to 5 (best) and are assigned manually by biomedical experts.

Readability scores assess how readable a summary is in terms of its content, grammar and style.

Precision scores and Recall scores are not traditional precision and recall measures, as they

assess, using a score from 1 to 5, how much information is shared between the submitted

summary and the set of reference summaries, in comparison with the submitted summary

(precision score), or the set of reference summaries (recall score). Finally, the Repetition score

assesses the submitted summary for lack of repetition of the same concepts or text snippets. A

109

higher repetition score indicates the submitted summary contains less repeating information, and

therefore is a better answer. In this evaluation, BioQA achieves moderate performance in

automatic scores (Rouge-2 = [0.2059 – 0.4802], Rouge-SU4 = [0.2202 – 0.4814]) in comparison

with other participating systems. None of BioQA’s automatic scores proved to be significantly

higher than the best systems among other BioASQ participants. However, when evaluated by

biomedical experts with manual scores ranging from one (worst) to five (best), BioQA achieved

a significantly higher Readability score [3.97 - 4.14] (t = 6.4835, df = 2, p = 0.0487), Recall

score [3.83 – 4.17] (t = 3.7297, df = 2, p = 0.0325), and Repetition score [4.27 – 4.48] (t =

5.6975, df = 2, p = 0.0147) than the best system among other participants. BioQA achieved a

moderately higher (not statistically significant) Precision score [3.71 – 4.14] in comparison with

other systems. Comparing two versions of BioQA, v1.2 achieves higher automatic scores

(ROUGE-2 and ROUGE-SU4) thanks to the few enhancements implemented in the answer

synthesis module, which reduces redundant information in the final answer, therefore leaving

space to more relevant information, and leading to higher ROUGE-2 and ROUGE-SU4 scores.

BioQA’s relatively high readability score can be attributed to BioQA’s Summarization

Module with “information smoothing” enhancements. That is, to ensure a smoother transition

between sentences, BioQA selects a subsequent sentence in the summary based on currently

selected sentences, avoids sentences starting with anaphor (pronouns referring to information in

previous sentence), and actively rearranges selected sentences to achieve a better transition

between sentences. BioQA’s high recall and precision scores can be attributed to the

Summarization Module’s strict sentence selection techniques. The high repetition score (lack of

repeated information) can be attributed to BioQA’s Summarization Module which was optimized

to reduce repeating information. To avoid including repeating information in its final summary,

BioQA only selects a single key sentence from a set of sentences describing an association from

a graph-based summarization, and it actively trims sentences containing similar information in

its sentence matrix-based summarization. Furthermore, avoiding repeated information appears to

improve the recall score, as the submitted summaries are limited to a maximum of 200 words.

Therefore, including less repetitive or redundant information means BioQA can deliver a more

comprehensive summary thereby increasing its chances of overlapping with the “gold standard”

reference answers. The above result shows that BioQA’s summaries are relatively easy to read,

110

contain more information (as measured against gold-standard answers), and contain less

redundant information than any other biomedical question-answering system. BioQA also

achieves a well-balanced performance that takes into account both accuracy and readability when

synthesizing its answer summaries. However, BioQA is not perfect. All four manual scores for

its answer quality are still around 4.0, which suggests there are still room for improvement

before BioQA can achieve a satisfying performance (overall scores of 5 across all four manual

scores) to rival human experts.

4.6 Limitations and Future Plans

No question answering system is perfect and BioQA certainly still has plenty of room for

improvement. One major limitation is that BioQA is not yet capable of adapting to a specific

annotation needs. Search engines like Google and Bing monitor user search activity through

search-log mining and web click frequencies. These can be used to create better rankings, and

provide more personalized searches by considering a user’s previous search history. Currently,

BioQA is a state-less machine, meaning that it treats each search query as a brand new query and

does not make reference to previous searches. However, a natural use-case scenario for BioQA

could be that user progressively asks more specific questions through a sequence of related

searches. Another scenario is that different users may have different needs and some users may

favor precision over recall while others refer the opposite. We could enhance BioQA to be an

“adaptive QA” system that constantly improves its answers based on previous query submissions

(from the same user or during the same search session). In order to adapt to an individual,

BioQA could be modified to automatically build a custom collection of search keywords from a

user’s previous searches, and use this keyword list to adjust ranking scores for retrieving

concepts, text snippets, and answer synthesis. By providing a way for users to rank returned

answers it may also be possible to help BioQA better adapt to a user’s specific needs. By keeping

track of a series of questions asked by the same user and taking user feedback into consideration

for subsequent searches, BioQA could progressively improve upon itself and adapt to individual

user needs. Over the long term, through the use of the web’s adaptive monitoring tools, BioQA

111

could evolve to be an adaptive and conversational QA engine that delivers answers to users

through a sequence of human-machine dialogues.

Another limitation to the current version of BioQA is that it is unable to perform logical

inference. BioQA addresses the information needs of users by automatically parsing user

questions, searching for relevant information, and synthesizing textual answers with references.

The current BioQA framework is solely based on information retrieval, text snippet extraction

and statistical summarization. It lacks the capacity to perform logical or semantic reasoning. This

limitation is partly due to a lack of available logical knowledge representations in the biomedical

domain. Modern QA systems are moving towards reasoning and semantic processing to enhance

their question answering capabilities and user experience. For example, IBM Watson supports a

certain degree of semantic reasoning through the use of semantic “frames” that encapsulate

semantic relations. For example, Watson [28] is able to answer question about capital city in a

country without the need to perform an extensive text search and summarization. Knowledge

Engines such as Wolfram Alpha [99] support certain logical reasoning operations like solving

simple mathematical equations. In order for BioQA to support reasoning, it needs to convert user

questions to more than just search queries, but also to logical representation to validate against a

collection of logical entailments representing existing biomedical knowledge. Knowledge

resource equivalents to FrameNet [11] are still scarce in the biomedical domain. BioQA’s

biomedical concept network is a first step towards building a biomedical “FrameNet” that

captures explicit relations between biomedical entities. BioQA can also take advantage of

domain knowledge available within a smaller subfield. For example, within certain subfields,

highly structured or curated information exists. For example, KEGG captures knowledge on

biochemical pathways and reactions between chemicals and enzymes. Therefore, KEGG can be

used to make certain inferences on biochemical pathways. In this regard it may be possible to

build and attach specific “inference engines” with subfield-specific knowledge to BioQA,

thereby enhancing its question answering capability with basic inference capabilities.

112

4.7 Conclusion

In this chapter, we introduced BioQA, a novel, high-performance biomedical question-

answering system. BioQA contributes to the field of biomedical question-answering by

introducing an end-to-end QA framework focusing on answering common biomedical questions.

The task of question answering presents two unique challenges: knowledge representation and

knowledge transformation. The former deals with knowledge acquisition and representation.

BioQA solves this component by making use of its unique and extensive knowledgebase –

BioKB. BioKB encapsulates large numbers of curated thesauri, natural language documents, and

database entries into a single entity for efficient access. BioQA solves the knowledge

transformation challenge using a variety of custom algorithms for question analysis, concept and

text snippet retrieval, and answer synthesis (automated summarization and paraphrasing). In an

effort to make BioQA accessible and transparent we have also made all of the data in BioKB

publicly available and have built a public web interface to serve the general public. The BioQA

framework follows a standard Model-View-Controller (MVC) design, with BioQA’s web

interface (the view), its underlying knowledge base BioKB (the model), and the collection of

algorithms (the controller) being fully integrated to realize BioQA’s question answering

capabilities. BioQA serves as useful framework to illustrate the potential of applying question

answering, information retrieval and natural language processing techniques to the field of

biomedicine. It also serves as a useful, publicly assessable web-based server to help researchers,

educators and the general public address their information needs. We evaluated BioQA’s

performance by participating in two separate BioASQ biomedical question answering

challenges. BioQA performed exceptionally well and appears to be the top performing system.

However, the results also make it clear that there is still room for future improvements for both

BioQA and other QA systems. Given the progress to date and the growing utility that question-

answering systems are already having, we expect many more high-performing, open access and

domain-specific question answering systems will soon appear. These QA systems could have a

significant and positive effect on how data is stored, how information is gained and how

knowledge is acquired.

113

5. BioQA’s Algorithmic Framework

BioQA uses a collection of algorithms to analyze user queries, perform concept and text

snippet retrieval, transform document and concept retrieval results, and synthesize or paraphrase

answers. Figure 27 shows an overview of BioQA’s algorithmic framework and the relationships

among its constituent modules.

Figure 27: A flow chart showing BioQA's algorithms and the data flow through the system.

Given a question in natural language text, BioQA’s “Question Analysis” module analyzes

the question to extract question types, lexical answer types, query keywords, association words,

and contextual noun phrases. Contextual noun phrases are noun phrases that are not query

keywords but can be used to enhance search query formation. The Query Processing module

formulates queries to search BioKB and PolySearch2. BioQA’s Query Processing module

retrieves key concepts in the question from BioKB’s underlying ElasticSearch [71] index

associated with BioKB and generates descriptions for each available concept using the

“Description Generator”. BioKB also contains concept networks spanned by relevant concepts,

and houses co-mentioned concept networks from relevant documents. BioQA uses PolySearch2

[52] to retrieve relevant documents and snippets from an in-house document collection.

PolySearch2 accepts a formulated search query and returns a list of relevant concepts and

114

snippets using the PolySearch2 algorithm [16, 17]. Based on the query analysis and query

processing results, the “Answer Synthesis” module ranks relevant concepts, formats concept

networks, and synthesizes textual answers. The final textual answers are synthesized using

descriptions retrieved from the Description Generator. Summarization can also be done on

relevant text snippets using BioQA’s greedy Latent Semantic Index (LSI) [56] based

summarization algorithm, or summarization can also be done based on relationships among

concepts in knowledge graphs. Users may also access the “Paraphrase module” which can be

called to transform the final textual answer into a paraphrased paragraph with random syntactic

variance.

In this chapter, I describe BioQA’s various algorithms for question analysis, named entity

recognition, concept and snippet retrieval, description generation, answer synthesis, and

automated paraphrasing.

5.1 Named Entity Recognition

Named Entity Recognition (NER) is a task for identifying concepts mentioned in a given

text paragraph. These concepts could be implicitly expressed in various manifestations in the

surface text (expressions that are actually used in a sentence). Named Entity Recognition require

the parsing of surface text tokens corresponding to a certain concept, or Named Entity (NE).

BioQA’s Named Entity Recognition (NER) module, called “BioTagger”, recognizes or “tags”

biomedical terms mentioned in natural language text. Moreover, given a natural language

sentence, BioTagger assigns words in the sentence as biomedical terms, query terms, association

words, stop words, negation words, punctuation words, or non-keywords. BioTagger is an

essential building block which serves multiple purposes within BioQA. These include: 1)

extracting keywords from user question to form search queries in question analysis; 2)

recognizing concepts mentioned in relevant snippets during concepts and snippets retrieval; 3)

indexing relevant sentences by concepts for building co-mentioned networks and synthesizing

answers. Figure 28 shows an example MEDLINE abstract tagged using BioTagger. Surface text

tokens recognized as biomedical entities are tagged, color-coded, and hyperlinked to

corresponding database records.

115

Figure 28: An example MEDLINE abstract tagged by BioTagger. Surface text tokens recognized

as biomedical entities are tagged, color coded, and hyperlinked to corresponding database

records.

The BioTagger algorithm combines exact dictionary matching against the BioKB

thesauri, with noun phrase extraction, and N-gram language models. In the preprocessing stage,

BioTagger tags stop words, association words, and punctuation using exact dictionary matches

against a predefined list of such terms. In the term recognition stage, BioTagger first tries to

recognize an exact match of any surface form of a biomedical concept; when no exact match is

available, BioTagger uses Part-of-Speech (POS) tagging [46], Probabilistic Context-Free

Grammar (PCFG) patterns [46], and regular expression patterns to extract noun phrases (NPs) as

keywords; if no noun phrases are found, BioTagger generates frequent N-grams (for N ranging

from 1 to 5) from the given sentences according to BioKB’s MEDLINE N-gram dataset

(available on the BioQA web server). In the above data processing steps, BioTagger prefers

terms recognized using exact dictionary matches over noun phrases, or frequent N-grams.

BioTagger also greedily prefers longer terms than shorter terms, as well as more frequent terms

over less frequent terms. With algorithmic and implementation improvements, BioTagger is

efficient in processing natural language sentences. Its memory efficient is linear to the size of

thesauri, and its time efficiency is (best case) linear O(N) or (worst case) O(N2) to length N of

input sentence.

116

5.2 Question Analysis

BioQA’s question analysis module extracts useful information from posted questions for

downstream question answering process. Given a question, this module 1) predicts question

types, 2) extracts Lexical Answer Types (LAT) [28], 3) extracts keywords, 4) extracts

association words, and 5) extracts contextual noun phrases. Such information extracted from the

given question is used to build search queries for concept and text snippet retrieval as well as

answer synthesis (described in further details below).

BioQA supports both descriptive and associative question types. The question analysis

module needs to determine whether the posted question is asking for a description of certain

biomedical entities (descriptive) or finding associations between entities (associative). “Yes and

no” questions are a special case of associative questions in the sense that such questions are

looking at verifying the association as positive or negative between entities. Therefore, Yes/No

questions are treated as associative questions. The question analysis module uses a rule-based

algorithm to determine whether a posted question is descriptive or associative. This rule-based

question type analysis algorithm examines the first five words of a posted question and predicts

question types based on hand-crafted empirical rules. Here are a few examples in the collection

of empirical rules on question prefix analysis:

 if a question starts with “which”, “list”, “name”, “where”, it is more likely an associative

question;

 if a question starts with “can”, “could”, “has”, “is”, “are”, “was”, “were”, “have”, “does”,

“did”, “should”, etc., such question is more likely a yes/no question and therefore also an

associative question in general.

 if a question starts with “describe”, “what”, “how”, “define”, “show”, “explain”,

“provide”, “elaborate”, “who”, or other verbs signifying actions or request, it is more

likely a descriptive question.

We conducted an evaluation using the BioASQ’s training dataset [88] of 100 questions, and

BioQA’s question type predictor achieve F-measure of 0.8026 for associative questions (0.9605

117

for yes/no questions), and 0.6936 for descriptive questions. Details for BioQA’s question type

analysis evaluation are presented in Chapter 4.

Besides determining the question type from a posted question, BioQA also analyzes the

given question syntactically to identify query keywords, contextual noun phrases, lexical answer

types, and association words. It is important for BioQA to recognize the main verb, subject, and

predicate in a given sentence. BioQA first identifies the main verb in a given question through

Part-of-Speech tagging, and uses shallow syntactic parsing to identify boundaries for the Subject

and Predicate. Noun phrases (NPs) in a posted question are also important as they provide clues

(query keyword or contextual NPs) for BioQA to search and filter for relevant document and

snippets. Noun phrases are extracted from a question using regular expression pattern matching

on a POS-tagged question. A sequence of words is defined as a noun phrase if they are:

1) one or more proper nouns,

2) one or more common nouns in singular or plural forms, or

3) a proper noun or prepositional phrase, followed by an optional adjective, followed by

one or more common nouns.

NPs that are adjacent to the main verb in the predicate are treated as query keyword, while

remaining NPs in the predicate are treated as contextual NPs. The query keyword is used for

searching document collections for relevant documents, while contextual NPs are useful for

ranking documents and filtering out relevant text snippets. Both query keyword and contextual

NPs are used to formulate a customized PolySearch2 query for retrieving relevant concepts and

snippets. Lexical Answer Types (LAT) are the type of the intended answer. For example, in a

PolySearch2 query, the LAT is the type of biomedical entity or entities we wish to find. Consider

the following a few examples (with the LAT underlined): “Which parasite causes malaria?”,

“What diseases are associated with chemical BPA?”. BioQA uses a rule-based method to

identify LATs in a posted question. BioQA extracts noun phrases in the subject between the

query prefix words and the main verb of a sentence. It also uses predefined rules to map noun

phrases to target LATs. Finally, verbs, adjectives, adverbs, and prepositions in the posted

question are classified as association words.

118

5.3 Concepts and Snippets Retrieval

BioQA retrieves relevant concepts, documents, and snippets through PolySearch2. For

more information on PolySearch2 [52], please refer to Chapter 3. Here we discuss how BioQA

uses PolySearch2 to achieve its text mining objectives. From Question Analysis, BioQA forms a

customized PolySearch2 query using information extracted from the input question and submits

it to PolySearch2 for processing. PolySearch2 processes the customized query differently from

other general queries, especially with regard to the following aspects: PolySearch2 uses the

query keyword as a search term to find relevant documents, and then uses the lexical answer type

and contextual noun phrases in ranking and filtering relevant text snippets. PolySearch2 then

recognizes concepts (of all categories) mentioned in relevant snippets and scores them for

relevant concepts. If too few concepts are recognized after filtering relevant concepts with an

empirical cut-off, PolySearch2 performs an expanded query to include other noun phrases in the

customized query.

BioQA uses PolySearch2 results in the following areas: 1) building co-mentioned

concept networks from the list of relevant concepts and snippets, 2) synthesizing textual answers

by combining PolySearhc2's snippet results with BioKB's descriptions and relevant snippets in

the summarization module. 3) integrating PolySearch2's result as relevant concepts for the input

question.

119

Template Sentence Group Example Generated Sentence

- DRUG_NAME is also known as

DRUG_SYNONYM_LIST.

- DRUG_NAME, also known as

DRUG_SYNONYM_LIST, is a

DRUG_CATEGORY.

-…..

Moricizine, also known as

Moracizinum, Ethmozin, Etmozin,

Moracizine, or Moracizina, is an anti-

arrhythmia agents and voltage-gated

sodium channel blockers.

- DRUG_NAME is used in the treatment of

DISEASE_AND_CONDITION.

- DRUG_NAME is used in the treatment of

DISEASE_AND_CONDITION.

INDICATION_SYNOPSIS.

- DRUG_NAME is for used in treating

DISEASE_AND_CONDITION.

- ….

Moricizine is used used to treat

irregular heartbeats (arrhythmias) and

maintain a normal heart rate.

- DRUG_NAME is branded as

BRAND_NAME_LIST.

- Major brands of DRUG_NAME are

BRAND_NAME_LIST.

- Known brands of DRUG_NAME are

BRAND_NAME_LIST.

- ….

Major brands of Moricizine are

Ethmozine and Etmozins.

- DRUG_NAME is a PHYSICAL_STATE.

- DRUG_NAME is a PHYSICAL_STATE with a

melting point of MELTING_POINT and boiling

point of BOILING_POINT.

- ….

This substance is a solid.

- DRUG_NAME belongs to the

CHEMICAL_CLASS_LIST group of drugs, which

are known to act via the mechanism of action that

MECHANISM_OF_ACTION_SYNOPSIS.

- DRUG_NAME belongs to such chemical

classes as CHEMICAL_CLASS_LIST.

DRUG_CLASS_DESCRIPTION.

- ….

This compound belongs to the

phenothiazines.

Table 19: Example sentence templates in a group and generated description for a DrugBank

entry DB00680 Moricizine.

120

5.4 Description Generator

BioQA ensures each database entry in BioKB contains a description. BioQA extracts

available description from database entries, and generates descriptions using description

templates for database entries that are missing a description field, or when the original

description is too short (e.g. less than 200 characters). Description Generator first parses a given

database entry for target information fields and stores the extracted fields in a dictionary. It then

generates descriptions by filling in corresponding blanks using pre-defined sentence templates

and produces a description paragraph. Description templates consist of sentence templates

organized in multiple sentence groups. Appendix A shows some example description templates

for DrugBank [8] entries. Table 19 shows an example sentence group and examples of generated

descriptive sentences.

A sentence group represents a single sentence describing one or more properties for a

database entry. Each sentence group contains multiple hand-crafted sentence templates

conveying similar information in different syntactic variations. Each sentence template contains

one or more blank fields (uppercase words as shown in Table 19) to be filled with information

extracted from the corresponding database entry. A sentence template is “triggered” if all blank

fields have the corresponding information extracted from the database entry. It is common that a

database entry simultaneously triggers multiple templates in a sentence group. In that case,

templates with a greater number of satisfied blank fields (hence carrying more information) are

preferred. Finally, one triggered template in the group is selected at random to produce a

descriptive sentence to induce artificial syntactic variations to give the impression of human

editing. If no templates are triggered due to missing information, no sentence is produced for

such a sentence group. Sentence templates shown in Table 19 contain multiple sentence

templates describing a drug chemical’s name, physical state, melting and boiling point. If a

DrugBank entry contains drug name, physical state, and melting point, any sentence template

containing all or some of these fields are “triggered”. The Description Generator then randomly

selects a sentence template to fill in blank fields and produce the final descriptive sentence.

Description Generator iterates through each sentence group to produce descriptive sentences, and

organizes them into a descriptive paragraph based on the pre-defined order of sentence groups.

Sentences are organized into a paragraph in a fixed order to improve readability. For example,

121

the sentence groups in Appendix A describe a DrugBank drug chemical by first describing its

name, synonyms, and drug category. Then the description provides information about diseases or

conditions that the drug is intended to treat and the indications for the medication; the text then

describes brands and manufacturers for the drug and drug approval information. It further

discusses the drug’s physical state, melting point and boiling point (shown in Table 19),

chemical and drug class, mechanism of action, absorption, half-life, and route of elimination.

Finally, the description paragraph describes interacting drugs, drug targets, and catalyzing

enzymes. Appendix A shows more examples of several generated descriptions with

corresponding original DrugBank descriptions for comparison. Generated descriptions, along

with extracted descriptions from database entries, are indexed in BioKB.

5.5 Answer Synthesis

BioQA synthesizes answers in natural language using automated summarization. First of

all, BioQA retrieves descriptions from BioKB’s description collection and composes a

descriptive paragraph to describe key concepts identified in the input question. Besides this first

descriptive paragraph, BioQA synthesizes further answer paragraphs by summarizing sentences

describing concept associations in a co-mentioned concept network, and a document index built

from relevant concepts and snippets retrieved from the PolySearch2 results. This section

discusses BioQA’s summarization algorithm in using both data structures.

BioQA summarizes answer paragraphs describing associations between relevant concepts

using a co-mentioned concept graph, built on-the-fly from relevant concepts and snippets. Nodes

in the “concept graph” are biomedical entities, and edges in the graph indicate associations

between entities. Nodes can be biomedical entities identified from the input question (query

nodes), or from retrieved relevant snippets (relevant nodes). Edges represent an association

between two connecting nodes. Edges are non-directional and are weighted based on the co-

occurrence frequency of entities represented by the two connecting nodes. BioQA builds a

concept graph on-the-fly from relevant snippets retrieved for a given question. BioQA keeps

track of the co-occurrence frequency for each pair of concepts mentioned in the relevant

sentences. Concept pairs with co-occurrence frequencies above an empirical threshold establish

122

an edge in the concept graph, with relevant sentences mentioning such concept pairs as

supporting evidence. BioQA then transforms the concept graph to a summary paragraph. BioQA

first identifies the target subgraph spanned by all question nodes. The target subgraph consists of

all question nodes, plus any relevant nodes along the shortest paths between each pair of question

nodes. This target subgraph represents the “concept space” spanned by a given question. BioQA

then traverses the target subgraph, along shortest paths between each pair of target nodes, and

joins the supporting sentences to form a summary paragraph in the order of traversal. If there is

more than one supporting sentence along an edge, a single supporting sentence is selected at

random among top ranked (according to PolySearch2’s relevancy scores) supporting sentences.

Figure 29 shows a pseudocode algorithm for BioQA’s summarization algorithm with a co-

mentioned concept graph. Figure 30 shows pseudocode for building a concept graph.

Figure 29: BioQA's algorithm on summarization via the co-occurrence concept graph.

123

Figure 30: The Build-Concept-Graph algorithm builds concept graphs from relevant text snippets.

124

Figure 31: BioQA’s summarization algorithm using document matrix and Latent Semantic

Indexing techniques.

125

Figure 32: BioQA's automatic summarization algorithm for building a vector space model from

retrieved text snippets.

BioQA also generates a summary paragraph from relevant text snippets using Latent

Semantic Indexing (LSI) [56] on a document matrix. This additional summary is needed when a

target concept graph is not available or the summary generated from the concept graph is too

short. Figure 31 shows the pseudocode algorithm for generating descriptions using the document

matrix and the greedy Latent Semantic Index. Figure 32 shows the pseudocode algorithm for

building document matrix from a collection of relevant documents. BioQA first builds an LSI

data structure from relevant concepts (Figure 32), then greedily retrieves the next most similar

sentence to the current summary, and then updates both the current summary and the LSI data

structure until the summary reaches a certain length or the LSI data structure is exhausted. Given

a question and a collection of relevant snippets. BioQA converts relevant snippets to a document

vectors and form a document matrix using a vector space model. Rows in the document matrix

represent text snippets, while columns in the document matrix represent terms (or topics).

BioQA then calculates eigenvalues and eigenvectors of the document matrix using Singular

126

Value Decomposition (SVD) and projects the document matrix to a lower dimension. This step

effectively filters key terms (topics) among the collection of relevant snippets and indexes each

snippet with key terms. Next, BioQA greedily forms a summary paragraph using the initial

question document vector and the document index in subsequent iterations (Figure 31). Given an

initial question document vector, BioQA retrieves snippets corresponding to the most similar

document vector in the document index by Cosine Similarity. BioQA adds the retrieved snippets

to the summary paragraph, removes snippets similar to the current snippet above an empirical

threshold, and recalculates the document index, now containing fewer documents. This process

is repeated until the summary paragraph grows to a certain length, or the document matrix

contains too few relevant snippets to continue the indexing process.

BioQA generates summary paragraphs using both of the above algorithms and also

performs post-processing to produce final summary paragraphs. During the post-processing step,

BioQA rearranges sentences within summary paragraph to enhance readability and fixes

grammatical artifacts introduced during the summarization process. Synthesizing answer

paragraphs using the document matrix with latent semantic indexing is a process of information

filtering for identifying key terms and key snippets among all relevant snippets. On the other

hand, synthesizing answers using a concept graph built on co-mentioned concepts represents a

process of implicit reasoning, where we join sentences describing connections of entity across

multiple connections in the natural order that are found to be associative in relevant snippets.

127

5.6 Paraphrasing Module

In addition to synthesizing textual answers, BioQA also provides an optional

paraphrasing function for users to include all or part of the synthesized answer in their own work

without the need to manually paraphrase BioQA’s synthesized answer. BioQA’s paraphrasing

module accepts an initially synthesized textual answer, and paraphrases it, sentence by sentence,

according to a set of substitution, enumeration, rearrangement, and transformation rules. Please

refer to Appendix B for examples of rules corresponding to these categories. This section briefly

describes each category of rules and their applications in automated paraphrasing.

The paraphrase engine applies phrase substitution, word-sense substitution, and synonym

substitution to an input sentence. The paraphrase engine first applies 2000+ phrase or word

substitution rules (see Appendix B) to an input sentence to replace a phrase with its semantic

equivalent. These substitution rules can be simple or word-sense dependent (substitution rules

depends on the Part-of-Speech tag for the original words). Simple substitution replaces a phrase

with an equivalent phrase. For example, substituting “also known as” with “also referred to as”.

Word-sense substitution substitutes a word based on its Part-of-Speech tag. For example, the

word “witness” can be substitute with “observe” when “witness” is used as a verb, but with

“observer” when “witness” is used as a noun. The paraphrase engine then substitutes a word with

a valid synonym by searching WordNet [62] (English dictionary words) and the PolySearch2

biomedical thesaurus [52] (biomedical terms). The paraphrase engine recognizes phrases or

common expressions such that synonyms substitution does not replace part of a phrase or

common expression by mistake. Besides substitutions, the paraphrase engine also performs

transformation, enumeration, and rearrangement rules to paraphrase an input sentence.

Transformation rules changes a numerical measure to an equivalent expression with different

units. For example, changing “1000 feet” to “305 meters”, or “10 lb” to 4.5 kg”. If the input

sentence contains an enumeration of several items, the paraphrase engine randomizes the order

of items within the enumeration. For example, changing “animals, plants, and fungi” to “plants,

fungi, and animals”. The paraphrase engine also rearranges words in an expression. For example,

changing “The A of the B” to “The B’s A”, and changing “A said B” to “B, said A”. These rules

further paraphrase an input sentence after substitutions.

128

In paraphrasing, the module also obeys other rules that don’t fit into the previous

categories. For example, it should never change anything in quotes, and never change proper

nouns, acronyms (“BPA”) or entity names (“Bisphenol A”). This paraphrasing process preserves

quotes by first extracting quotes from the sentence, paraphrasing the rest, and re-substituting the

quote back to the paraphrased results. The paraphrase module also detects acronyms (spelled

entirely in uppercase letters), proper nouns (through syntactic parsing) and entity names (through

the use of our biomedical thesauri), and preserves these during paraphrasing. Finally, the

paraphrasing module goes over sentences to detect and fix any article errors (e.g. Changing “a

immature” to “an immature”, and changing “an historical” to “a historical”) introduced

accidently during paraphrasing. When multiple rules are applicable to an input sentence, there

could be a potential conflict between rules, as more than one rule could be substituting the same

part of the sentence yielding different results. In this case, only one rule is selected among the

conflicting rules (according to rule precedence or at random) to paraphrase a sentence. Besides

conflicting rules, BioQA also randomizes paraphrasing results to a certain degree to provide

higher degree of syntactic variance. Running the paraphrasing function again will yield a slightly

different result based on the same synthesized answer.

5.7 Conclusion

In this chapter, I described BioQA’s algorithmic framework for named entity recognition,

question analysis, concepts and snippets retrieval, description generation, answer synthesis, and

automated paraphrasing. These algorithms are crucial components of BioQA. Working together

as a whole, these algorithms transform input question to search queries for finding relevant

concepts and snippets, and then further derive an answer summary from the retrieved documents

and database records.

129

6. Concluding Remarks

The central objective of this thesis was to advance the field of biomedical question

answering. Traditionally QA systems have focused on answering simple questions or general

knowledge questions in the open-domain. These might include “What is the temperature in

Edmonton today?” or “What is the population of Canada?” Recently there have been significant

advances in the open domain for more difficult tasks associated with question answering,

particularly with the roll-out of IBM's Watson [28] on Jeopardy!. However, the field of

biomedicine still attracts relatively little attention with regard to question answering.

In this thesis, I hypothesized that with existing technology, it would be possible to build a

prototype biomedical QA system that could significantly advance the field of QA in

biomedicine. This served as the motivation to design and implement a comprehensive, end-to-

end QA system called BioQA for biomedical question answering. Noting that a high throughput

search engine is crucial for BioQA, I started my research by building around the PolySearch

algorithm [16, 17]. PolySearch was previously developed in 2006-2008 to perform targeted text

mining of the PubMed/Medline text corpus. I expanded PolySearch to be a much more general

purpose biomedical search engine (PolySearch2) [52] that could be used to retrieve relevant

concepts and text snippets from a far wider variety of databases. I also spent much effort in

creating and curating a controlled vocabulary and dictionary (i.e. the PolySearch2 thesaurus

collection) as well as maintaining a much larger and more comprehensive collection of databases

and text resources. I also developed a number of speed-ups, hardware modifications and

algorithmic improvements that reduced search times in PolySearch from 10s of minutes to mere

seconds. I further demonstrated that the new version of PolySearch was able to out-perform the

old version of PolySearch in many different search and query tasks (see Chapter 3 for more

details). With the completion of PolySearch2 and the assembly of some of the key data

infrastructure, I began to explore the next phase of the biomedical QA challenge. In particular, I

proposed and implemented a number of innovative algorithms (Chapter 5) to transform input

questions into search queries, to perform accurate ranking of relevant text snippets, to synthesize

and paraphrase natural language answers, as well as to generate informative concept graphs. I

evaluated BioQA’s performance for its various modules using local experiments as well as on

130

the shared tasks of BioASQ challenge [88, 89]. The results from this open and objective

assessment showed that BioQA performs significantly better than all current biomedical QA

systems. In an effort to make this resource open and accessible to all, I built a user interface, the

BioQA web server, and implemented a number of useful graphical displays and interactive

functions (Chapter 4).

Through the implementation of BioQA, I learned that 1) a comprehensive biomedical

thesaurus is essential for almost all steps of biomedical question answering, and 2) effective

summarization algorithms are key to deriving natural language answers from relevant concepts

and snippets. A comprehensive biomedical thesaurus is crucial for query processing (parsing

named entities from input question), documents and snippets retrieval (indexing and retrieving

documents based on biomedical concepts), and answer synthesis (weighting and organizing

sentences in summary using concepts mentioned in relevant snippets). A collection of effective

summarization algorithms, either using statistical summarizations or paths in a concept graph, to

join relevant sentences and form natural language answers is essential to convert a seemingly

random collection of relevant sentences and snippets to form a comprehensive summary.

Therefore, enrichment of BioQA’s biomedical thesaurus and enhancements to BioQA’s

summarization algorithms should effectively boost BioQA’s overall performance.

While the current implementation of BioQA offers many positive and useful features,

there are a number of capabilities or features that could be added to make it better. Currently,

BioQA is a state-less QA or state-less query system, meaning that it treats each question or query

as a brand new query and does not make reference to previous searches. I believe it could be

possible to enhance BioQA to be an “adaptive QA” system that constantly improves its answers

based on previous query submissions. In order to adapt to an individual, BioQA could be

modified to automatically build a custom collection of search keywords from a user’s previous

searches, and to use this keyword list to adjust its ranking scores and the way it performs its

answer synthesis. By providing an interactive tool (through BioQA’s web site) it may be possible

for users to rank returned answers thereby acquiring knowledge or training data for BioQA to

adapt to a user’s specific needs. By keeping track of a series of questions asked by the same user

and taking user feedback into consideration for subsequent searches, BioQA could progressively

improve upon itself and adapt to individual user needs. BioQA currently lacks the capacity to

131

perform logical or semantic reasoning. Modern QA systems are moving towards reasoning and

semantic processing to enhance their question answering capabilities and user experience. For

example, IBM Watson supports a certain degree of semantic reasoning through the use of

semantic “frames” that encapsulate semantic relations. Knowledge Engines such as Wolfram

Alpha support certain logical reasoning operations like solving simple mathematical equations.

In order for BioQA to support reasoning, it needs to convert user questions to more than just

search queries, but also to logical representation to validate against a collection of logical

entailments representing existing biomedical knowledge. This will represent a significant

challenge, but as more biomedical databases become more logically structured, this may soon be

possible. I also believe that BioQA could be designed to take advantage of domain knowledge

available within a smaller subfield. For example, within certain subfields, highly structured or

curated information exists. For example, SMPDB [45] captures knowledge on biochemical

pathways and reactions between chemicals and enzymes. Therefore, SMPDB can be used to

make certain inferences on biochemical pathways. In this regard it may be possible to build and

attach specific “inference engines” with subfield-specific knowledge to BioQA, thereby

enhancing its question answering capability with basic inference.

This work represents one of the first efforts to bring QA concepts into the biomedical

domain. I believe BioQA is the first biomedical QA system to integrate such a broad range of

databases and offer such a broad range of capabilities. It is also the first QA system capable of

searching both highly structured databases and natural language text databases. I believe BioQA

represents an important new step in the development of text retrieval and data mining tools for

biomedical research. Continuing our research on the BioQA framework proposed here, we could

transform not only the way researchers, physicians, educators and the general public use the web

but also how they learn and do their research.

132

Bibliography

[1] Akella, L.M., Norton, C.N., Miller, H. (2012) NetiNeti: discovery of scientific names from

text using machine learning methods. BMC Bioinformatics. Aug 22;13:211.

[2] Anwar, S. (2014). Representing, Reasoning and Answering Question about Biological

Pathways Various Applications. Dissertation, Arizona State University, Ann Arbor:

ProQuest/UMI, May.

[3] Apache Software Foundation. (2016) ElasticSearch. http://www.elastic.co (Accessed July 11).

[4] Arndt, D., Xia, J., Liu, Y., Zhou, Y., Guo, A.C., Cruz, J.A., Sinelnikov, I., Budwill, K.,

Nesbo, C.L., Wishart, D.S. (2012) METAGENassist: a comprehensive web server for

comparative metagenomics. Nucleic Acids Research. Jul;40(Web Server issue):W88-95.

[5] Aronson, A.R., Lang, F.M. (2010) An overview of MetaMap: historical perspective and

recent advances. Journal of American Medical Informatics Association. May-Jun;17(3):229-

36.

[6] Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P.,

Dolinski, K., Dwight, S.S., Eppig, J.T. et al. (2000) Gene ontology: tool for the unification of

biology. The Gene Ontology Consortium. Nature genetics, 25, 25-29.

[7] Athenikos, S.J., and Han, H. (2010) Biomedical question answering: A survey. Computer

Methods and Programs in Biomedicine, 99(1):1-24, July.

[8] Averill, R.F., Mullin, R.L., Steinbeck, B.A., Goldfield, N.I. and Grant, T.M. (1998)

Development of the ICD-10 Procedure Coding System (ICD-10-PCS). Journal of AHIMA /

American Health Information Management Association, 69, 65-72.

[9] Baasiri, R.A., Glasser, S.R., Steffen, D.L. and Wheeler, D.A. (1999) The breast cancer gene

database: a collaborative information resource. Oncogene, 18, 7958-7965.

[10] Bagchi, S., Ferrucci, D.A., Gondek, D., Levas, A., and Mueller, E.T. (2013) Watson:

Beyond jeopardy! Artificial Intelligence, 199:93-105. August.

[11] Baker, C., Fillmore C., and Lowe J. (1998) The Berkeley FrameNet project. In

Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics

and 17th International Conference on Computational Linguistics - Volume 1, ACL 1998,

pages 86-90, Stroudsburg, PA, USA.

133

[12] Balikas, G., Partalas, I., Ngomo, A.N., Kirthara, A., Gaussier, E., Paliouras, G. (2014)

Result of the BioASQ Track of the Question Answering Lab at CLEF 2014. In CLEF2014

Working Notes. Working Notes for CLEF 2014 Conference. Sheffield, UK, September 15-18.

[13] Bekhuis, T. (2006) Conceptual biology, hypothesis discovery, and text mining:

Swanson's legacy. Biomedical Digital Library. Apr 3;3:2.

[14] Bodenreider, O. (2004) The Unified Medical Language System (UMLS): integrating

biomedical terminology. Nucleic Acids Research. Jan 1;32(Database issue):D267-70.

[15] Caspi, R., Altman, T., Billington, R., Dreher, K., Foerster, H., Fulcher, C.A., Holland,

T.A., Keseler, I.M., Kothari, A., Kubo, A. et al. (2014) The MetaCyc database of metabolic

pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic

Acids Research, 42, D459-471.

[16] Cheng, D., (2007) PolySearch: A Web based text mining system for extracting

relationships between human diseases, genes, mutations, drugs and metabolites. (Master’s

thesis). Retrieved from ProQuest Dissertations and Thesis. Ann Arbor: ProQuest/UMI

(Association Order No. [MR33217])

[17] Cheng, D., Knox, C., Young, N., Stothard, P., Damaraju, S. and Wishart, D.S. (2008)

PolySearch: a web-based text mining system for extracting relationships between human

diseases, genes, mutations, drugs and metabolites. Nucleic Acids Research, 36, W399-405.

[18] Clark, K., Karsch-Mizrachi I., Lipman D.J., Ostell J., Sayers E.W. (2016) GenBank.

Nucleic Acids Research. Jan 4;44(D1):D67-72.

[19] Corlan, A.D. (2004) Medline trend: automated yearly statistics of PubMed results for

any query. http://dan.corlan.net/medline-trend.html (Accessed February).

[20] Cormen, T., Leiserson, C., Rivest, R., Stein, C. (2001) Introduction to Algorithm. (2nd

ed.). McGraw-Hill Higher Education.

[21] Cruz, J., Liu, Y., Liang, Y., Zhou, Y., Wilson, M., Dennis, J.J., Stothard, P., Van

Domselaar G., Wishart, D.S. (2012) BacMap: an up-to-date electronic atlas of annotated

bacterial genomes. Nucleic Acids Research. Jan;40(Database issue):D599-604.

[22] Doms, A. and Schroeder, M. (2005) GoPubMed: exploring PubMed with the Gene

Ontology. Nucleic Acids Research, 33, W783-786.

[23] Dong, X.L., Halevy, A.Y., Yu, C. (2009) Data integration with uncertainty. The VLDB

Journal. Apr;18(2):469-500.

http://dan.corlan.net/medline-trend.html

134

[24] Fan, J., Kalyanpur, A., Gondek, D. C., and Ferrucci, D. A. (2012) Automatic knowledge

extraction from documents. IBM Journal of Research and Development, 56(3.4), 5:1–5:10.

[25] Fan, J., Kalyanpur, A., Gondek, D. C., Ferrucci, D. A. Allen, P.G., Angele, J., Baxter, D.,

Barker, K., Curtis, J., Chaudhri, V.K., Chaw, S.Y., Clark, P., Friedland, N.S., Fan, J., Israel,

D.J., Matthews, G., Miraglia, P., Mönch, E., Oppermann, H., Porter, B.W., Shepard, B.,

Staab, S., Tecuci, D., Witbrock, M.J., Wenke, D., & Yeh, P.Z. (2004). Project Halo: Towards

a Digital Aristotle. AI Magazine, 25:29-48.

[26] Faro, A., Giordano, D., Spampinato, C. (2012) Combining literature text mining with

microarray data: advances for system biology modeling. Briefings in Bioinformatics. 13(1),

61-82.

[27] Fernald, G.H., Capriotti, E., Daneshjou, R., Karczewski, K.J., Altman, R.B. (2011)

Bioinformatics challenges for personalized medicine. Bioinformatics. 27(13), 1741-1748.

[28] Ferrucci, D., Brown E., Chu-Carroll, J., Fan, J., Gondek, D., Kalyanpur, A.A., Lally, A.,

Murdock, J.W., Nyberg, E., Prager, J., Schlaefer, N., and Welty, C. (2010) Building watson:

an overview of the DeepQA project. AI Magazine, September.

[29] Fontaine, J.F., Priller, F., Barbosa-Silva, A., Andrade-Navarro, M.A. (2011) Genie:

literature-based gene prioritization at multi genomic scale. Nuclear Acids Research, 39 (Web

Server issue), W455-461.

[30] Forney, G.D. (1973) The viterbi algorithm. in Proceedings of the IEEE, vol. 61, no. 3, pp.

268-278.

[31] Gasteiger, E., Jung, E. and Bairoch, A. (2001) SWISS-PROT: connecting biomolecular

knowledge via a protein database. Current issues in molecular biology, 3, 47-55.

[32] Gerner, M., Nenadic, G., Bergman, C.M. (2010) LINNAEUS: a species name

identification system for biomedical literature. BMC Bioinformatics. Feb 11;11:85.

[33] Google (2006) Google N-Gram Data, http://googleresearch.blogspot.ca/2006/08/all-our-

n-gram-are-belong-to-you.html (Accessed November).

[34] Gu, B., Kashani, M.M., Liu, Y., Melli, G., Popowich, F., Shi, Z., Sarkar, A., & Wang, Y.

(2007). Question Answering Summarization of Multiple Biomedical Documents. In

Proceedings of the 20th conference of the Canadian Society for Computational Studies of

Intelligence on Advances in Artificial Intelligence, 284-295, May 28-30.

http://googleresearch.blogspot.ca/2006/08/all-our-n-gram-are-belong-to-you.html
http://googleresearch.blogspot.ca/2006/08/all-our-n-gram-are-belong-to-you.html

135

[35] Guo, A.C., Jewison, T., Wilson, M., Liu, Y., Knox, C., Djoumbou, Y., Lo, P., Mandal,

R., Krishnamurthy, R. and Wishart, D.S. (2013) ECMDB: the E. coli Metabolome Database.

Nucleic Acids Research, 41, D625-630.

[36] Hamosh, A., Scott, A.F., Amberger, J.S., Bocchini, C.A. and McKusick, V.A. (2005)

Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and

genetic disorders. Nucleic Acids Research, 33, D514-517.

[37] Hastie, T., Tibshirani, R., and Friedman, J. (2003) The Elements of Statistical Learning:

Data Mining, Inference, and Prediction. Springer, corrected edition.

[38] Hatcher, E., and Gospodnetic, O. (2004) Lucene in Action. Manning Publications.

[39] Hettne, K.M., Stierum, R.H., Schuemie, M.J., Hendriksen, P.J., Schijvenaars, B.J.,

Mulligen, E.M., Kleinjans, J., Kors, J.A. (2009) A dictionary to identify small molecules and

drugs in free text. Bioinformatics. 25(22):2983-91.

[40] Hirschman, L., Burns, G.A., Krallinger, M., Arighi, C., Cohen, K.B., Valencia, A., Wu,

C.H., Chatr-Aryamontri, A., Dowell, K.G., Huala, E., Lourenço, A., Nash, R., Veuthey, A.L.,

Wiegers, T., Winter, A.G. (2012) Text mining for the biocuration workflow. Database

(Oxford). Apr 18; 2012:bas020.

[41] Hoy, M.B. (2010). Wolfphram Alpha: A brief introduction. Medical Reference Services

Quarterly, 29(1):6774.

[42] Humphreys, B.L., Lindberg, D.A., Schoolman, H.M. and Barnett, G.O. (1998) The

Unified Medical Language System: an informatics research collaboration. Journal of the

American Medical Informatics Association: JAMIA, 5, 1-11.

[43] Hur, J., Schuyler, A.D., States, D.J., Feldman, E.L. (2009) SciMiner: web-based

literature mining tool for target identification and functional enrichment analysis.

Bioinformatics. 25(6), 838-840.

[44] Jewison, T., Knox, C., Neveu, V., Djoumbou, Y., Guo, A.C., Lee, J., Liu, P., Mandal, R.,

Krishnamurthy, R., Sinelnikov, I. et al. (2012) YMDB: the Yeast Metabolome Database.

Nucleic Acids Research, 40, D815-820.

[45] Jewison, T., Su, Y., Disfany, F.M., Liang, Y., Knox, C., Maciejewski, A., Poelzer, J.,

Huynh, J., Zhou, Y., Arndt, D., Djoumbou, Y., Liu, Y., Deng, L., Guo, A.C., Han, B., Pon,

A., Wilson, M., Rafatnia, S., Liu, P., Wishart, D.S. (2014) SMPDB 2.0: big improvements to

136

the Small Molecule Pathway Database. Nucleic Acids Research. Jan;42(Database

issue):D478-84.

[46] Jurafsky D., and Martin J.H. (2000) Speech and Language Processing: An Introduction

to Natural Language Processing, Computational Linguistics and Speech Recognition.

Prentice Hall Series in Artificial Intelligence. Prentice Hall, 1 edition, February.

[47] Kanehisa, M. and Goto, S. (2000) KEGG: kyoto encyclopedia of genes and genomes.

Nucleic Acids Research, 28, 27-30.

[48] Kim, M.Y., Dou, Q., Zaiane, O.R., and Goebel, R. (2010) Unsupervised mapping of

sentences to biomedical concepts based on integrated information retrieval model and

clustering. In Proceedings of the First ACM International Conference on Bioinformatics and

Computational Biology, BCB 10, pages 322-329, New York, NY, USA.

[49] Knox, C., Shrivastava, S., Stothard, P., Eisner, R., Wishart, D.S. (2007) BioSpider: a

web server for automating metabolome annotations. Pacific Symposium on Biocomputing.

145-56.

[50] Krallinger, M., Leitner, F., Vazquez, M., Salgado, D., Marcelle, C., Tyers, M., Valencia,

A., Chatr-aryamontri, A. (2012) How to link ontologies and protein-protein interactions to

literature: text-mining approaches and the BioCreative experience. Database (Oxford). Mar

21;2012:bas017.

[51] Law, V., Knox, C., Djoumbou, Y., Jewison, T., Guo, A.C., Liu, Y., Maciejewski, A.,

Arndt, D., Wilson, M., Neveu, V. et al. (2014) DrugBank 4.0: shedding new light on drug

metabolism. Nucleic Acids Research, 42, D1091-1097.

[52] Liu, Y., Liang, Y., Wishart, D. (2015) PolySearch2: a significantly improved text-mining

system for discovering associations between human diseases, genes, drugs, metabolites,

toxins and more. Nucleic Acids Research. Jul 1;43(W1):W535-42.

[53] Lu, C.J., Tormey, D., McCreedy, L., Browne, A.C., (2014) Using Element Words to

Generate (Multi)Words for the SPECIALIST Lexicon. AMIA 2014 Annual Symposium,

Washington., DC, Nov. 15-19, P.1499.

[54] Lu, Z. (2011) PubMed and beyond: a survey of web tools for searching biomedical

literature. Database: the journal of biological databases and curation, baq036.

[55] Malakasiotis, P., I. Androutsopoulos, Y. Almirantis, D. Polychronopoulos, and I.

Pavlopoulos, (2013) Tutorials and Guidelines. BioASQ, Project Deliverable D3.4, Jan.

137

[56] Manning C.D. and Schuetze, H. (1999) Foundations of Statistical Natural Language

Processing. The MIT Press, 1 edition, June.

[57] Mao, Y., Wei, C.H., Lu, Z. (2014) NCBI at the 2014 BioASQ challenge task: large-scale

biomedical semantic indexing and question answering. In: CLEF2014 Working Notes. CLEF

2014 Workshop Proceedings. Sheffield, UK. September 15-18.

[58] Marcus, M.P., Marcinkiewicz, M.A., and Santorini, B. (1993) Building a large annotated

corpus of English: the penn treebank. Computational. Linguist. 19:2, 313-330.

[59] McEntyre, J.R., Ananiadou, S., Andrews, S., Black, W.J., Boulderstone, R., Buttery, P.,

Chaplin, D., Chevuru, S., Cobley, N., Coleman, L.A. et al. (2011) UKPMC: a full text article

resource for the life sciences. Nucleic Acids Research, 39, D58-65.

[60] Microsoft. (2009) Bing. http://www.bing.com/ (accessed July).

[61] Millar, J. (2016) The Need for a Global Language - SNOMED CT Introduction. Studies

in Health Technology and Informatics. 225:683-5.

[62] Miller G. (1995) WordNet: A Lexical Database for English. Communications of the

ACM Vol. 38, No. 11:39-41.

[63] Mishra G.R., Suresh M., Kumaran K., Kannabiran N., Suresh S., Bala P., Shivakumar K.,

Anuradha N., Reddy R., Raghavan T.M., Menon S., Hanumanthu G., Gupta M., Upendran S.,

Gupta S., Mahesh M., Jacob B., Mathew P., Chatterjee P., Arun K.S., Sharma S., Chandrika

K.N., Deshpande N., Palvankar K., Raghavnath R., Krishnakanth R., Karathia H., Rekha B.,

Nayak R., Vishnupriya G., Kumar H.G., Nagini M., Kumar G.S., Jose R., Deepthi P., Mohan

S.S., Gandhi T.K., Harsha H.C., Deshpande K.S., Sarker M., Prasad T.S., Pandey A. (2006)

Human protein reference database--2006 update. Nucleic Acids Research. Jan 1;34(Database

issue):D411-4.

[64] Moreau, Y., Tranchevent, L.C. (2012) Computational tools for prioritizing candidate

genes: boosting disease gene discovery. Nature Reviews Genetics, 13, 523-526.

[65] Narayanaswamy, M., Ravikumar, K.E., Vijay-Shanker, K. (2003) A biological named

entity recognizer. Pacific Symposium on Biocomputing. 427-38.

[66] NCBI Resource Coordinators. (2014) Database resources of the National Center for

Biotechnology Information. Nucleic Acids Research. Jan;42(Database issue):D7-17.

[67] NCBI Resource Coordinators. (2015) Database resources of the National Center for

Biotechnology Information. Nucleic Acids Research, 43, D6-D17.

http://www.bing.com/

138

[68] Page, L., Brin, S., Motwani, R., and Winograd, T. (1999) The PageRank Citation

Ranking: Bringing Order to the Web. Technical Report. Stanford InfoLab.

[69] Parasuraman, S. (2012) Protein data bank. Journal of Pharmacolology &

Pharmacotherapeutics. 2012 Oct;3(4):351-2.

[70] Parkinson, H., Kapushesky, M., Shojatalab, M., Abeygunawardena, N., Coulson, R.,

Farne, A., Holloway, E., Kolesnykov, N., Lilja, P., Lukk, M., Mani, R., Rayner, T., Sharma,

A., William, E., Sarkans, U., Brazma, A. (2007) ArrayExpress--a public database of

microarray experiments and gene expression profiles. Nucleic Acids Research.

Jan;35(Databaseissue):D747-50.

[71] Paro, A. (2013) Elasticsearch Cookbook. Packt Publishing.

[72] Partalas, I., Gaussier, E., Ngomo, A.N. (2013) Result of the First BioASQ Workshop. In:

Proceedings of the first Workshop on Bio-Medical Semantic Indexing and Question

Answering, a Post-Conference Workshop of Conference and Labs of the Evaluation Forum

(CLEF 2013). Valencia, Span, September 27.

[73] Pennings, J.L., Koster, M.P., Rodenburg, W., Schielen, P.C., de Vries, A. (2009)

Discovery of novel serum biomarkers for prenatal Down syndrome screening by integrative

data mining. PLoS One. 4(11), e8010.

[74] Pesquita, C., Faria, D., Falcão, A.O., Lord, P., Couto, F.M. (2009) Semantic similarity in

biomedical ontologies. PLoS Computational Biololgy. Jul;5(7):e1000443.

[75] Povey, S., Lovering, R., Bruford, E., Wright, M., Lush, M. and Wain, H. (2001) The

HUGO Gene Nomenclature Committee (HGNC). Human genetics, 109, 678-680.

[76] Pruess, M., Kersey P., Apweiler R. (2005) The Integr8 project--a resource for genomic

and proteomic data. In Silicon Biology. 2005;5(2):179-85.

[77] Psychogios, N., Hau, D.D., Peng, J., Guo, A.C., Mandal, R., Bouatra, S., Sinelnikov, I.,

Krishnamurthy, R., Eisner, R., Gautam, B., Young, N., Xia, J., Knox, C., Dong, E., Huang, P.,

Hollander, Z., Pedersen, T.L., Smith, S.R., Bamforth, F., Greiner, R., McManus, B., Newman,

J.W., Goodfriend, T., Wishart, D.S. (2011) The Human Serum Metabolome. PLoS One. 6(2),

e16957.

[78] Ran, J., Li, H., Fu, J., Liu, L., Xing, Y., Li, X., Shen, H., Chen, Y., Jiang, X., Li, Y., Li,

H. (2013) Construction and analysis of the protein-protein interaction network related to

essential hypertension. BMC Systems Biology, 12, 7:32.

139

[79] Rebholz-Schuhmann, D., Kirsch, H., Arregui, M., Gaudan, S., Riethoven, M. and Stoehr,

P. (2007) EBIMed--text crunching to gather facts for proteins from Medline. Bioinformatics

(Oxford, England), 23, e237-244.

[80] Rigden, D.J., Fernández-Suárez, X.M., Galperin, M.Y. (2016) The 2016 database issue

of Nucleic Acids Research and an updated molecular biology database collection. Nucleic

Acids Research. Jan 4;44(D1):D1-6.

[81] Rogers, F.B. (1963) Medical subject headings. Bulletin of the Medical Library

Association, 51, 114-116.

[82] Satsaronis, G., Schroeder, M., Paliouras, G., Almirantis, Y., Gaussier, E., Gallinari, P.,

Artieres, T., Alvers, M.R., Zschunke, M., Gmbh, T., and Ngomo, A.N. (2012) BioASQ: A

Challenge on Large-Scale Biomedical Semantic Indexing and Question Answering.

Information Retrieval and Knowledge Discovery in Biomedical Text, 2012 AAAI Fall

Symposium series.

[83] Schuler, K.K. (2005) Verbnet: A Broad-coverage, Comprehensive Verb Lexicon. PhD

thesis, University of Philadelphia, Philadelphia, PA, USA.

[84] Takahashi, K., Koike, A., Takagi, T. (2004). Question answersing system in biomedical

domain. In Proceedings of the Genome Informatics (GIW 2004), 161-162.

[85] Tan, P.N., Kumar, V., and Srivastava, J. (2000) Indirect association: Mining higher order

dependencies in data. In Principles of Data Mining and Knowledge Discovery, pages 632-

637.

[86] Tejera, E., Bernardes, J., Rebelo, I. (2012) Preeclampsia: a bioinformatics approach

through protein-protein interaction network analysis. BMC Systems Biology, 8; 6:97.

[87] Thompson, P., McNaught, J., Montemagni, S., Calzolari, N., del Gratta, R., Lee, V.,

Marchi, S., Monachini, M., Pezik, P., Quochi, V., Rupp, C.J., Sasaki, Y., Venturi, G.,

Rebholz-Schuhmann, D., Ananiadou, S. (2011) The BioLexicon: a large-scale terminological

resource for biomedical text mining. BMC Bioinformatics. 12:397.

[88] Tsatsaronis, G., Balikas, G., Malakasiotis, P., Partalas, I., Zschunke, M., Alvers, M.R.,

Weissenborn, D., Krithara, A., Petridis, S., Polychronopoulos, D., Almirantis, Y.,

Pavlopoulos, J., Baskiotis, N., Gallinari, P., Artiéres, T., Ngomo, A.C., Heino, N., Gaussier,

E., Barrio-Alvers, L., Schroeder, M., Androutsopoulos, I., Paliouras, G. (2015) An overview

140

of the BIOASQ large-scale biomedical semantic indexing and question answering

competition. BMC Bioinformatics. 16:138.

[89] Tsatsaronis, G., Schroeder, M., Paliouras, G., Almirantis, Y., Gaussier, E., Gallinari, P.,

Artieres, T., Alvers, M.R., Zschunke, M., Gmbh, T., and Ngomo, A.N. (2012) BioASQ: A

Challenge on Large-Scale Biomedical Semantic Indexing and Question Answering.

Information Retrieval and Knowledge Discovery in Biomedical Text, AAAI Fall Symposium

series. Jan.

[90] Tsuruoka, Y., Tsujii, J., Ananiadou, S. (2008) FACTA: a text search engine for finding

associated biomedical concepts. Bioinformatics. 24(21), 2559-2560.

[91] Tunstall-Pedoe, W. (2010). True Knowledge: Open-Domain Question Answering Using

Structured Knowledge and Inference. AI Magazine, 31:80-92.

[92] UniProt Consortium. (2015) UniProt: a hub for protein information. Nucleic Acids

Research. Jan;43(Database issue):D204-12.

[93] Wei, C.H., Harris, B.R., Li, D., Berardini, T.Z., Huala, E., Kao, H.Y., Lu, Z. (2012)

Accelerating literature curation with text-mining tools: a case study of using PubTator to

curate genes in PubMed abstracts. Database (Oxford). Nov 17;2012:bas041.

[94] Wei, C.H., Kao, H.Y. (2011) Cross-species gene normalization by species inference.

BMC Bioinformatics. Oct 3;12 Suppl 8:S5.

[95] Wei, C.H., Kao, H.Y., Lu, Z. (2013) PubTator: a web-based text mining tool for

assisting biocuration. Nucleic Acids Research. Jul;41(Web Server issue):W518-22.

[96] Wishart Research Lab. (2016) FooDB: Food Component Database. http://foodb.ca/

(access July 11).

[97] Wishart, D., Arndt, D., Pon, A., Sajed, T., Guo, A.C., Djoumbou, Y., Knox, C., Wilson,

M., Liang, Y., Grant, J. et al. (2015) T3DB: the toxic exposome database. Nucleic Acids

Research, 43, D928-934.

[98] Wishart, D.S., Jewison, T., Guo, A.C., Wilson, M., Knox, C., Liu, Y., Djoumbou, Y.,

Mandal, R., Aziat, F., Dong, E. et al. (2013) HMDB 3.0--The Human Metabolome Database

in 2013. Nucleic Acids Research, 41, D801-807.

[99] Wolfram Research. (2009) Wolfram Alpha. http://www.wolframalpha.com/ (accessed

July).

http://foodb.ca/
http://www.wolframalpha.com/

141

[100] Wren, J.D. (2011) Question answering systems in biology and medicine--the time is now.

Bioinformatics. Jul 15;27(14):2025-6.

[101] Yang, H., Swaminathan, R., Sharma, A., Ketkar, V., and D’Silva, J. (2011) Mining

biomedical text towards building a quantitative food-disease-gene network. Studies in

Computational Intelligence. 375:205-225, Springer.

[102] Zhou, D., He, Y. (2008) Extracting interactions between proteins from the literature.

Journal of Biomedical Informatics. Apr;41(2):393-407.

[103] Zhu, D., Li, D. Carterette, B., Liu, H. (2013) An incremental approach for medline mesh

indexing. In: 1st BioASQ Workshop: A Challenge on Large-Scale Biomedical Semantic

Indexing and Question Answering. CEUR Workshop Proceedings. Aachen, Germany.

142

Appendices

Appendix A: Description Templates for Drugbank Entries

BioQA uses its Description Generator algorithm to automatically generate short

descriptions for biomedical entities retrieved from annotated databases without a description

field. The Description Generator first parses a given database entry for information fields and

stores the extracted fields in a dictionary. It then generates descriptions by filling in the

corresponding blanks in pre-defined sentence templates and producing a description paragraph.

Description templates consist of sentence templates grouped into multiple sentence groups. The

logic behind Description Generator is discussed in detail in Chapter 5. This section shows

sentence templates in groups used to describe a DrugBank [51] drug chemical by first describing

its name, synonyms, and drug category (group 1). Then it talks about diseases or conditions that

the drug is intended to treat along with the medication’s indication (group 2). Then the

description talks about brands and manufacturers for the drug, and drug approval information

(group 3-5). It further discusses the drug’s physical state, melting point and boiling point (group

6), chemical and drug class, mechanism of action (group 7), absorption, half-life, and route of

elimination (group 8). Finally, the paragraph describes interactive drugs (group 9), drug targets

(group 10), and catalyzing enzymes (group 11).

A.1 Example DrugBank Description Templates

Group 1: Describe a drug’s name, list of synonyms, and its primary drug effect.

- DRUG_NAME is also known as DRUG_SYNONYM_LIST.

- DRUG_NAME, also known as DRUG_SYNONYM_LIST, is a DRUG_CATEGORY.

- DRUG_NAME, also known as DRUG_SYNONYM_LIST, is commonly used for its

DRUG_EFFECT_LIST effects.

- Known as DRUG_SYNONYM_LIST, DRUG_NAME is most commonly used for its

DRUG_EFFECT_LIST effects.

143

- Commonly used in the treatment of DISEASE_AND_CONDITION, DRUG_NAME is a

type of DRUG_CATEGORY drug.

Group 2: Describe which disease and conditions a drug is intended to treat. It’s drug

category and indications.

- DRUG_NAME is used in the treatment of DISEASE_AND_CONDITION.

- DRUG_NAME is used in the treatment of DISEASE_AND_CONDITION.

INDICATION_SYNOPSIS.

- DRUG_NAME is for used in treating DISEASE_AND_CONDITION.

- DRUG_NAME is for used in treating DISEASE_AND_CONDITION.

INDICATION_SYNOPSIS.

- DRUG_NAME is approved in treating DISEASE_AND_CONDITION.

- DRUG_NAME is approved in treating DISEASE_AND_CONDITION.

INDICATION_SYNOPSIS.

- A type of DRUG_CATEGORY, DRUG_NAME is commonly used in the treatment of

DISEASE_AND_CONDITION.

- DRUG_NAME is a type of DRUG_CATEGORY commonly used in the treatment of

DISEASE_AND_CONDITION.

- Although most commonly in for the treatment of DISEASE_AND_CONDITION,

DRUG_NAME is also sometimes used FOR_INDICATION_SYNOPSIS.

- Although DRUG_NAME is used FOR_INDICATION_SYNOPSIS, it is most commonly

indicated for use in the treatment of DISEASE_AND_CONDITION.

- DRUG_NAME is indicated in the treatment of DISEASE_AND_CONDITION, but has

also been used FOR_INDICATION_SYNOPSIS.

- DRUG_NAME is indicated for use in the treatment of many conditions, including

FOR_INDICATION_SYNOPSIS.

- DRUG_NAME is used FOR_INDICATION_SYNOPSIS.

- Although DRUG_NAME INVESTIGATED_INDICATION_SYNOPSIS, it is most

commonly indicated for use in the treatment of DISEASE_AND_CONDITION.

- DRUG_NAME is indicated in the treatment of DISEASE_AND_CONDITION, but has

also been INVESTIGATED_INDICATION_SYNOPSIS.

144

- DRUG_NAME is INVESTIGATED_INDICATION_SYNOPSIS.

- DRUG_NAME is investigated in clinical trials for treating CLINICAL_TRIALS.

Group 3: Describe a drug’s brand names.

- DRUG_NAME is branded as BRAND_NAME_LIST.

- Major brands of DRUG_NAME are BRAND_NAME_LIST.

- Known brands of DRUG_NAME are BRAND_NAME_LIST.

Group 4: Describe a drug’s various manufacturers.

- DRUG_NAME is manufactured by pharmaceutical companies include

MANUFACTUROR_LIST.

- Major manufacturer of DRUG_NAME are MANUFACTUROR_LIST.

Group 5: Describe a drug’s approval status with approval country, approval date, and

patent ID number.

- DRUG_NAME is approved in APPROVAL_COUNTRY on APPROVAL_DATE

(Patent PATTENT_ID).

Group 6: Describe a drug’s physical state, melting point, and boiling point.

- DRUG_NAME is a PHYSICAL_STATE.

- DRUG_NAME is a PHYSICAL_STATE with a melting point of MELTING_POINT and

boiling point of BOILING_POINT.

- DRUG_NAME is a PHYSICAL_STATE with a melting point of MELTING_POINT.

- In room temperature, DRUG_NAME is a PHYSICAL_STATE with a melting point of

MELTING_POINT.

- DRUG_NAME is a PHYSICAL_STATE; its melting point is measured to be

MELTING_POINT.

- DRUG_NAME is a PHYSICAL_STATE with a melting point of MELTING_POINT and

boiling point of BOILING_POINT.

- DRUG_NAME is a PHYSICAL_STATE with a melting point and a boiling point of

MELTING_POINT and BOILING_POINT, respectively.

145

- DRUG_NAME is a PHYSICAL_STATE with melting points and boiling points of

MELTING_POINT and BOILING_POINT, respectively.

- DRUG_NAME is a PHYSICAL_STATE with a melting point of MELTING_POINT.

- DRUG_NAME is a PHYSICAL_STATE with a boiling point of BOILING_POINT.

Group 7: Describe a drug’s chemical class, drug class, and mechanism of action.

- DRUG_NAME is a type of CHEMICAL_CLASS_LIST that acts by such mechanism of

action: MECHANISM_OF_ACTION_SYNOPSIS.

- DRUG_NAME is a type of CHEMICAL_CLASS_LIST that acts by such mechanism of

action: MECHANISM_OF_ACTION_SYNOPSIS. DRUG_CLASS_DESCRIPTION.

- MECHANISM_OF_ACTION_SYNOPSIS. It is a type of CHEMICAL_CLASS_LIST.

DRUG_CLASS_DESCRIPTION.

- MECHANISM_OF_ACTION_SYNOPSIS. It is a type of CHEMICAL_CLASS_LIST.

- DRUG_NAME belongs to the chemical class known as CHEMICAL_CLASS_LIST

group of drugs, which are known to act via the mechanism of action that

MECHANISM_OF_ACTION_SYNOPSIS.

- DRUG_NAME belongs to the CHEMICAL_CLASS_LIST group of drugs, which are

known to act via the mechanism of action that

MECHANISM_OF_ACTION_SYNOPSIS.

- DRUG_NAME is a type of CHEMICAL_CLASS_LIST, which are known to act via the

mechanism of action that MECHANISM_OF_ACTION_SYNOPSIS.

DRUG_CLASS_DESCRIPTION.

- DRUG_NAME is a type of CHEMICAL_CLASS_LIST, and is believed to work via the

mechanism of action that MECHANISM_OF_ACTION_SYNOPSIS.

- DRUG_NAME belongs to such chemical classes as CHEMICAL_CLASS_LIST.

DRUG_CLASS_DESCRIPTION.

- DRUG_NAME belongs to such chemical classes as CHEMICAL_CLASS_LIST.

- MECHANISM_OF_ACTION_SYNOPSIS.

- DRUG_CLASS_DESCRIPTION.

146

Group 8: Describes a drug’s absorption, half-life, volume of distribution, and route of

elimination.

- DRUG_NAME's ABSORPTION and its half-life is HALF_LIFE.

ROUTE_OF_ELIMINATION.

- DRUG_NAME's ABSORPTION and with half life of HALF_LIFE.

- DRUG_NAME has a half-life of HALF_LIFE and its absorption is that ABSORPTION.

- DRUG_NAME has an absorption rate of ABSORPTION along with a half-life of

HALF_LIFE.

- DRUG_NAME has an absorption rate of ABSORPTION, a half-life of HALF_LIFE, and

a volume of distribution of VOLUME_OF_DISTRIBUTION.

- DRUG_NAME's half-life is HALF_LIFE, while its absorption and volume of distribution

are ABSORPTION and VOLUME_OF_DISTRIBUTION, respectively.

Group 9: Describes a drug’s interacting drugs.

- It is known that DRUG_NAME interacts with NUM_INTERACTION_DRUGS number

of drugs including INTERACTION_DRUG_LIST.

- It is known that DRUG_NAME interacts with INTERACTION_DRUG.

- DRUG_NAME interacts with NUM_INTERACTION_DRUGS number of drugs

(INTERACTION_DRUG_LIST).

- DRUG_NAME interacts with NUM_INTERACTION_DRUGS drugs including

INTERACTION_DRUG_LIST.

- NUM_INTERACTION_DRUGS drugs are known to interact with DRUG_NAME

including INTERACTION_DRUG_LIST.

- It is known that NUM_INTERACTION_DRUGS drugs interact with DRUG_NAME

including INTERACTION_DRUG_LIST.

- NUM_INTERACTION_DRUGS drugs interact with DRUG_NAME. These include

INTERACTION_DRUG_LIST.

- INTERACTION_DRUG is known to interact with DRUG_NAME.

Group 10: Describes a drug’s protein targets.

- DRUG_NAME interacts with target protein TARGET_PROTEIN_LIST.

147

- DRUG_NAME interacts with target protein TARGET_PROTEIN.

- Known drug targets of DRUG_NAME include DRUG_TARGET_LIST.

- Known drug targets of DRUG_NAME is TARGET_PROTEIN.

- Known drug targets of DRUG_NAME including DRUG_TARGET_LIST.

- DRUG_NAME is known to target DRUG_TARGET_LIST.

- DRUG_NAME is known to target DRUG_TARGET.

- The proteins that DRUG_NAME targets include DRUG_TARGET_LIST.

- DRUG_NAME targets the proteins DRUG_TARGET_LIST.

- DRUG_NAME targets the protein DRUG_TARGET.

Group 11: Describe a drug’s catalyzing enzymes.

- Enzymes catalyzing DRUG_NAME includes ENZYME_LIST.

- It is known that DRUG_NAME is metabolized by ENZYME_LIST.

- It is known that DRUG_NAME is metabolized by ENZYME.

- The enzymes known to metabolize DRUG_NAME are ENZYME_LIST.

- The enzyme known to metabolize DRUG_NAME is ENZYME.

- ENZYME_LIST are known to metabolize DRUG_NAME.

- ENZYME is known to metabolize DRUG_NAME.

148

A.2 Example DrugBank Generated Descriptions

Here are a few examples of DrugBank’s original and synthesized descriptions:

DB00680 Moricizine

Original

Description

An antiarrhythmia agent used primarily for ventricular rhythm disturbances.

[PubChem]

Generated

Description

Moricizine, also known as Moracizinum, Ethmozin, Etmozin, Moracizine, or

Moracizina, is an anti-arrhythmia agents and voltage-gated sodium channel

blockers. Moricizine is used to treat irregular heartbeats (arrhythmias) and

maintain a normal heart rate. Major brands of Moricizine are Ethmozine and

Etmozins. This substance is a solid. This compound belongs to the

phenothiazines. These are polycyclic aromatic compounds containing a

phenothiazine moiety, which is a linear tricyclic system that consists of a two

benzene rings joined by a para-thiazine ring. Moricizine has a half-life of 2

hours (range 1.5-3.5 hours). and its absorption is that well absorbed, absorption

is complete within 2 to 3 hours Significant first-pass metabolism results in an

absolute bioavailability of approximately 38% Administration within 30

minutes after a meal slows the rate, but does not affect the extent of absorption,

although peak plasma concentrations are reduced. Moricizine targets the protein

sodium channel protein type 5 subunit alpha. An antiarrhythmia agent used

primarily for ventricular rhythm disturbances. [PubChem]

149

DB00686 Pentosan Polysulfate

Original

Description

A sulfated pentosyl polysaccharide with heparin-like properties. [PubChem]

Generated

Description

Pentosan Polysulfate is also known as Pentosan sulfuric polyester, Pentosani

polysulfas, Pentosanpolysulfat, Pentosano polisulfato, or Pentosane polysulfate.

Pentosan Polysulfate is used for the relief of bladder pain or discomfort

associated with interstitial cystitis. Major brands of Pentosan Polysulfate are

Comfora, Tavan-SP, Elmiron, Hemoclar, Thrombocid, Fibrezym, Fibrase, and

Hemoclar. Pentosan Polysulfate is a solid. Pentosan polysulfate is a polymer of

xylose hydrogen sulfate and contains two sulfate groups per carbohydrate

monomer. Pentosan Polysulfate's slow and with half life of 4.8 hours. Known

drug targets of Pentosan Polysulfate include fibroblast growth factor 2,

fibroblast growth factor 4, and fibroblast growth factor 1.

DB00689 Cephaloglycin

Original

Description

A cephalorsporin antibiotic that is no longer commonly used.

Generated

Description

Cephaloglycin, also known as Cefaloglycinum, Cefaloglycine, or

Cefaloglicina, is an anti-bacterial agents. Cephaloglycin is used for treatment

of severe infections caused by susceptible bacteria. This drug is a solid. This

compound belongs to the cephalosporins. These are compounds containing a

1,2-thiazine fused to a 2-azetidinone to for an oxo-5-thia-1-

azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid moeity or a derivative thereof.

This drug targets the protein penicillin-binding protein 2a.

150

DB00217 Bethanidine

Original

Description

A guanidinium antihypertensive agent that acts by blocking adrenergic

transmission.

Generated

Description

Bethanidine, also known as N,N'-dimethyl-N''-(phenylmethyl)-guanidine or

Betanidine, is a sympatholytics, antihypertensive agents, and adrenergic

agents. Bethanidine is used for the treatment of hypertension. This substance

is a solid. This compound belongs to the benzene and substituted derivatives.

These are aromatic compounds containing at least one benzene ring.

Bethanidine's absorbed rapidly in the gastrointestinal tract following oral

administration and with half life of 9 hours (range 7 to 11 hours).

Bethanidine is known to target alpha-2b adrenergic receptor, alpha-2a

adrenergic receptor, atp-sensitive inward rectifier potassium channel 1, and

alpha-2c adrenergic receptor.

DB01326 Cefamandole

Original

Description

Cefamandole (INN, also known as cephamandole) is a broad-spectrum

cephalosporin antibiotic. The clinically used form of cefamandole is the

formate ester cefamandole nafate, a prodrug which is administered

parenterally. Cefamandole is no longer available in the United States.

Generated

Description

Cefamandole, also known as Cefadole or Cefamandole nafate, is an anti-

bacterial agents. Cefamandole is used for the treatment of serious infections

caused by susceptible strains of microorganisms. This medication is a solid.

Like all beta-lactam antibiotics, cefamandole binds to specific penicillin-

binding proteins (PBPs) located inside the bacterial cell wall, causing the

inhibition of the third and last stage of bacterial cell wall synthesis. It targets

the protein penicillin-binding protein 2. Cefamandole (INN, also known as

cephamandole) is a broad-spectrum cephalosporin antibiotic. The clinically

used form of cefamandole is the formate ester cefamandole nafate, a prodrug

which is administered parenterally.

151

DB01325 Quinethazone

Original

Description

Quinethazone (INN, brand name Hydromox) is a thiazide diuretic used to

treat hypertension. Common side effects include dizziness, dry mouth,

nausea, and low potassium levels.

Generated

Description

Quinethazone is also known as Chinetazone, Quinethazon, Quinethazonum,

Quinetazona, or Chinethazonum. Quinethazone is used used to treat

hypertension. Known brands of Quinethazone are Aquamox, Hydromox, and

Idrokin. It is a solid. This compound belongs to the quinazolines. These are

compounds containing a quinazoline moiety, which is made up of two fused

six-member aromatic rings, a benzene ring and a pyrimidine ring. Known

drug targets of Quinethazone including solute carrier family 12 member 1,

solute carrier family 12 member 2, carbonic anhydrase 2, solute carrier family

12 member 3, and carbonic anhydrase 1.

152

DB00318 Codeine

Original

Description

An opioid analgesic related to morphine but with less potent analgesic

properties and mild sedative effects. It also acts centrally to suppress cough.

[PubChem]

Generated

Description

Codeine, also known as Methylmorphine, morphine-3-methyl ether,

Morphine monomethyl ether, Codein, or Codeine anhydrous, is a narcotics,

antitussive agents, and analgesics, opioid. Codeine is used for treatment and

management of pain (systemic). Codeine is a solid. This compound belongs

to the morphinans. These are polycyclic compounds with a four-ring

skeleton with three condensed six-member rings forming a partially

hydrogenated phenanthrene moiety, one of which is aromatic while the two

others are alicyclic. Codeine's well absorbed following oral administration

with a bioavailability of approximately 90% Maximum plasma

concentration occurs 60 minutes post-administration Food does not effect

the rate or extent of absorption of codeine and with half life of plasma half-

lives of codeine and its metabolites have been reported to be approximately

3 hours. Codeine targets the proteins mu-type opioid receptor, kappa-type

opioid receptor, and delta-type opioid receptor. Udp-

glucuronosyltransferase 2B4, Cytochrome P450 2D6, Cytochrome P450

3A5, UDP-glucuronosyltransferase 2B7, Cytochrome P450 3A7, and

Cytochrome P450 3A4 are known to metabolize Codeine.

153

DB01452 Heroin

Original

Description

A narcotic analgesic that may be habit-forming. It is a controlled substance

(opium derivative) listed in the U.S. Code of Federal Regulations, Title 21

Parts 329.1, 1308.11 (1987). Sale is forbidden in the United States by Federal

statute. (Merck Index, 11th ed) Internationally, heroin is controlled under

Schedules I and IV of the Single Convention on Narcotic Drugs. It is illegal

to manufacture, possess, or sell heroin in the United States and the UK.

However, under the name diamorphine, heroin is a legal prescription drug in

the United Kingdom.

Generated

Description

Heroin is also known as morphine diacetate, diacetylmorphine, or

diamorphine. Heroin is used used in the treatment of acute pain, myocardial

infarction, acute pulmonary oedema, and chronic pain. This drug is a solid.

This compound belongs to the morphinans. These are polycyclic compounds

with a four-ring skeleton with three condensed six-member rings forming a

partially hydrogenated phenanthrene moiety, one of which is aromatic while

the two others are alicyclic. Heroin's bioavailability is less than 35% and with

half life of <10 minutes. The proteins that Heroin targets include kappa-type

opioid receptor, mu-type opioid receptor, and delta-type opioid receptor.A

narcotic analgesic that may be habit-forming. It is a controlled substance

(opium derivative) listed in the U.S. Code of Federal Regulations, Title 21

Parts 329.1, 1308.11 (1987). (Merck Index, 11th ed) Internationally, heroin is

controlled under Schedules I and IV of the Single Convention on Narcotic

Drugs. It is illegal to manufacture, possess, or sell heroin in the United States

and the UK.

154

Appendix B: Automated Paraphrasing Rules

BioQA uses an automated paraphrasing algorithm to transform a synthesized answer to a

paraphrased answer. Details for BioQA’s paraphrasing algorithm are discussed in Chapter 5.

This section shows example paraphrasing rules used by the algorithm to transform sentences.

BioQA’s automated paraphrasing module achieves paraphrasing results by paraphrasing a

paragraph sentence-by-sentence according to a set of predefined, hand-crafted paraphrasing

rules. These rules dictate how part of a sentence should be substituted, enumerated, rearranged,

or transformed into equivalent expressions. This section shows example paraphrasing rules for

B.1) simple substitutions, B.2) substitutions based on word sense, B.3) substitutions based on

enumerations, B.4) rearrangement substitutions, B.5) conversion substitutions, and B.6) other

substitution rules. Synonym substitution rules with WordNet (English Dictionary words) [62]

and PolySearch2’s thesausi (Biomedical terms) [52] are not shown here for simplicity.

B.1 Simple Substitution Rules

Phrase substitution Rules

- the town of ↔the city of - on a voyage ↔ on a journey

- the United Kingdom ↔ the UK - the construction of ↔ the creation of

- the United Kingdom ↔ the Great Britain - the primary means of ↔ the main way of

- the United States ↔ the U.S. - a collection of ↔ a combination of

- in the vicinity of ↔ in the neighborhood

of

 - a couple of ↔ a few

- it is believed that ↔ it is considered that - a form of ↔ a type of

- it is endemic to > it is native to - under the command of ↔ under the leadership

of

- it is possible to ↔ it is likely to - under the direction of ↔ under the leadership of

- it is threatened by ↔ it is endangered by … (total 1042 phrase substitution rules)

155

Simple Substitution Rules

- Every now and then ↔ occasionally - Offered ↔ made available

- Stumble upon ↔ discover - Exclusively ↔ selectively

- Unique ↔ one of a kind - Magical ↔ Amazing

- Difficult to ↔ hard to - A masterpiece ↔ superb

- Get ↔ obtain - That is ↔ that's

- In general distribution ↔ widely

available

- Is truly ↔ is definitely

- Some of these ↔ A few of these - A product ↔ a creation

- Available ↔ obtainable - Precision ↔ exacting

- Very small ↔ tiny - At its best ↔ without precedent

- So good ↔ of such high quality - Hand-picked ↔ specially selected

- Regularly ↔ routinely (Total 853 simple substitution rules)

B.2 Word Sense Substitution Rules

- form (JJ) ↔ type (JJ) - Refuses (VB) ↔ declines

- form (NN) ↔ document (NN) - Refuse (NN) ↔ waste (NN)

- transportation (VB) ↔ transport (VB) - Decline (NN) ↔ way down

- Drag (VB) ↔ haul - Slight (JJ) ↔ small

- Drag (NN) ↔ burden - Slight (NN) ↔ snub

- Really (JJ) ↔ very - causes (NN) ↔ reasons

- Really (RB) ↔ actually - causes (VB) ↔ leads to

- Result (VB) ↔ arise - cause (NN) ↔ reason

- Result (NN) ↔ finding - cause (VB) ↔ lead to

- Brief (JJ) ↔ concise (JJ) - study (NN) ↔ report

- roughly (RB) ↔ approximately - study (VB) ↔ learn

- mean (NN) ↔ average (NN) - state (VB) ↔ say

- Calculating (VB) ↔ determining (VB) - crash (VB) ↔ collide

- Calculating (JJ) ↔ conniving (JJ) - crash (NN) ↔ collision

- Stirring (VB) ↔ mixing - launching (VB) ↔ sending

156

- Stirring (JJ) ↔ inspiring - launching (NN) ↔ initiation

- Witness (NN) ↔ observer (NN) - Expressive (JJ) ↔ evident

- Witnesses (NN) ↔ observers (NN) - Blend (NN) ↔ mixture

- Witness (VB) ↔ observe - Pretty (RB) ↔ very

- Refuse (VB) ↔ decline - Beverage ↔ drink (NN)

- Experience (NN) ↔ overview - Addition (NN) ↔ arrival

- Addition (VB) ↔ adding

- Leader (JJ) ↔ ahead (JJ)

- Leader (NN) ↔ boss - That (RB) ↔ which

- That (NN) ↔ this - Cause of (NN) ↔ reason for

- The cause (NN) ↔ The reason for this - Cause (NN) ↔ source

- Cause (VB) ↔ generate - absent (NN) ↔ gone

- absent (VB) ↔ without - murder (NN) ↔ homicide

- murder (VB) ↔ kill - throughout (NN) ↔ everywhere

- throughout (JJ) ↔ around - Beloved (VB) ↔ much loved

- Blend (VB) ↔ mix - Pretty (JJ) > beautiful

- Try (NN) ↔ attempt - Try (VB) ↔ make an effort

- Meeting (NN) ↔ conference - Meeting (VB) ↔ connecting

- Support (VB) ↔ hold up - Support (JJ) ↔ backing

- Use (NN) ↔ application - Use (VB) ↔ employ

- Function (VB) ↔ play a role - Function (NN) ↔ role

- First (NN) ↔ number one - First (JJ) ↔ initial

- Show off (NN) ↔ attention grabber - Show off (VB) ↔ Draw attention to

him/herself

- Accepting (VB) ↔ taking in - Accepting (NN) ↔ tolerant

- Relative (JJ) ↔ comparative - Relative (NN) ↔ family relation

- Form (VB) ↔ make - Form (NN) ↔ shape

- Fail (VB) ↔ not succeed - Fall (VB) ↔ drop

- Fall (NN) ↔ autumn - Pioneer (VB) ↔ lead the way

- Fall (NN) ↔ drop - Pioneer (VB) ↔ open up

157

- Pioneer (NN) ↔ forerunner - Testing (VB) ↔ assessing

- Testing (JJ) > taxing - Experienced (VB) ↔ witnessed

- Experienced (NN) ↔ veteran - Present (VB) ↔ show

- Prevent (VB) ↔ stop (VB)

B.3 Enumeration Rules

- noun1, noun2 and noun3 ↔ noun3, noun1 and noun 2

- Adjective 1 and adjective 2 ↔ adjective 2 and adjective 1

- Adjective1, adjective2 and adjective3 ↔ adjective3, adjective1 and adjective2

B.4 Rearrangement Rules

- some XXXs ↔ several XXXs

- cost of XXX ↔ XXX prices

- Looking forward to XXXing ↔ Hoping to XXX

- Over XX ↔ more than XX (where XX is a number)

- The XXXion of ↔ XXXing

- XXX (noun) department ↔ department of XXX

- XXX (noun) department ↔ department for XXX

- XXX (noun) faculty ↔ faculty of XXX

- XXX (noun) office ↔ office of XXX

- XXX (noun) office ↔ office for XXX

- The [Adj] of the [Noun] ↔ the [Noun]'s [Adj]

- XXX said "QUOTEBODY" ↔ "QUOTEBODY" said XXX

- XXX said "QUOTEBODY" ↔ XXX noted "QUOTEBODY"

B.5 Conversion Rules

- Convert XXX feet to YY meters

- Convert XXX pounds to YY kilograms

- Convert XXX ft to YY meters

158

- Convert XXX lbs to YY kilograms

- Convert XXX inches to YY centimeters

- Convert XXX in. to YY cm.

B.6 Other Rules

- Never change anything in quotes

- Never change proper nouns, acronyms or names (terms with upper case letters in the first

letter position)

159

Appendix C: Other Information Extraction Techniques in BioQA

In this section, I discuss BioQA’s approach for recognizing chemical terms from free text

documents, and another approach for extracting attributes for biomedical terms based on

PolySearch2 [52]. Both algorithms are used in the construction of BioKB, the knowledge base

component for BioQA. C.1 discusses a chemical term recognition algorithm used to parse

chemical names from surface text (expressions that are actually used in a sentence). C.2 discuss

an approach to automatically extract attributes from text.

C.1 Chemical Term Recognition

Recognizing chemical names from text is challenging as thesauri for chemical names will

never be complete as new compounds are constantly being discovered and synthesized. In

developing BioKB, we developed a chemical term recognizer which is capable of recognizing

IUPAC and IUPAC-like chemical names from text. This chemical term recognizer uses a hybrid

approach. Given a text paragraph, it first identifies chemical names using strict dictionary match

with a unified name thesaurus generated by combining Jochem [39], PubChem, DrugBank [51],

and HMDB [98] names/synonyms. To extract terms that are not present in our chemical

thesaurus, the chemical name recognizer generates candidate terms by removing all words

appearing in a general English dictionary, as well as punctuation marks. Candidate terms are then

classified by a binary Support Vector Machine classifier, trained using N-character substring

features of chemical names and synonyms in our chemical thesaurus in contrast with words in a

general English dictionary. Each term is classified as being IUPAC-like or not, and then the

compound term is assigned a score based on the number of IUPAC terms it contains. Finally, an

empirical cut-off is used to select compound terms that are most likely to be chemical names.

Using this chemical name recognizer, we were able to identify 120+ novel compounds that are

mentioned to be present in urine but not yet captured in the previous version of HMDB [98].

Additionally, we were also able to confirme 500+ urine compounds that are already in the

current version of HMDB. The chemical name recognizer is still imperfect as it picks up species

160

names and medical procedures as these terms have not been included as negative examples in the

original training set.

C.2 Attribute Extraction

Attribute extraction is yet another important task central to biomedical information

extraction. For example: 1) given a name for a species or genus, we would like to extract its

phenotype from a collection of reference databases, 2) given a name for a compound, we would

like to extract its health effects from a collection of free-text. In developing BioKB, we directed

a great deal of effort in extracting attributes for biomedical entities from text. In this approach,

we customized PolySearch2 [52] to each of the information extraction tasks. We first search the

literature (MEDLINE, PubMed Central articles, etc.) using a target term’s name and synonym as

search keyword, and then scan relevant text snippets to target the term of interest (a predefined

list of potential attributes). Finally, an empirical cut-off is applied to the final result so only

strong associations are considered for further refinement. In this section, we showcase the

approach for attribute extraction based on the PolySearch2 [52] association finding algorithm.

Furthermore, we illustrate the approach in action for extracting phenotypic information for

prokaryotes and health effects for food metabolites.

Prokaryotes are a kingdom of microbes that include both eubacteria and archaebacteria.

Phenotypic information for bacteria and archaea are scattered in various bioinformatics databases

with different formats and different levels of coverage. In a recent effort to consolidate

phenotypic information for all known prokaryotes (bacteria and archaea), we mined more than a

dozen online databases and compiled the most comprehensive bacterial phenotype database to

date. Furthermore, missing data in the phenotype database was calculated from information

contained in sequenced bacteria genomes, inferred from biochemical pathways, and extrapolated

from closely related species along branches of the phylogenetic tree. Using the above methods,

we successfully increase the percent coverage of all data fields from 55.30% to 65.11% with text

mining and calculations, and finally to 86.92% with taxonomic extrapolation. Table 20 details

the percent coverage of 14 data fields after initial data wrangling (initial coverage), text mining,

and extrapolation using taxonomic relations in the NCBI taxonomy. The resulting phenotypic

161

database contains comprehensive phenotypic information for 10,835 prokaryote species and

strains. This phenotype database contains 38 data fields, including oxygen requirements, gram

stain, cell shape, motility, temperature range, metabolism, energy sources, associated diseases

and pathogenicity, just to name a few. Information in this database are integrated in BacMap

[21], an up-to-date electronic atlas of annotated bacterial genomes, and METAGENassist [4], an

analytical pipeline for comparative meta-genomic studies.

Data Field Initial Coverage (%) Text Mining

Coverage (%)

Taxonomic Extrapolation

Coverage (%)

Gram Stain 69.00 71.09 94.68

Cell Shape 83.56 87.02 97.99

Motility 50.50 53.26 90.95

Human Pathogen (Y/N) 17.58 18.76 68.10

Oxygen Requirement 61.51 63.51 93.38

Temperature Range 37.27 39.20 82.06

Symbiotic (Y/N) 20.02 21.35 71.23

Habitat 78.49 81.53 96.63

Host Name 11.19 12.06 52.57

Cell Arrangement 36.80 38.96 78.35

Sporulation (Y/N) 16.63 17.76 61.94

Energy Source 33.81 36.30 81.88

Metabolism 3.42 57.26 91.22

Disease Association 2.03 96.38 99.34

Total 55.30 65.11 86.92

Table 20: Percent (%) coverage for selected data fields in the prokaryotic phenotype database in

BacMap and MetaGenAssist. The phenotype database contains a total of 38 data fields (14

shown here) for 10,835 prokaryote species, subspecies and strains.

162

Metabolite Health Effects Score Num.

Ref

Evidence

Curcumin anti-oxidant 2454 278 (PMID: 20508869) ... indicating that the

potent antioxidant curcumin can be used as

an adjuvant in antiepileptic therapy.

Curcumin anti-

inflammatory

1291 155 (PMID: 17569207) in this review, we

describe both antioxidant and anti-

inammatory properties of curcumin, …

Curcumin anti-cancer 759 92 (PMID: 20655375) the present study

indicated the potential of tf-c-sln in

enhancing the anticancer effect of curcumin

in breast cancer cells in vitro.

Curcumin anti-tumor 466 56 (PMID: 16364242) the induction of growth-

arrest and apoptosis ... suggests this be a

mechanism by which curcumin induces

antitumor activity in t cell leukemia.

Curcumin apoptotic 417 50 (PMID: 20138829) in this study we found

that curcumin induces apoptotic cell death in

mcf-7 cells ...

Curcumin Neuroprotectant 389 37 (PMID: 16075466) these findings attribute

the neuroprotective effect of curcumin

against i/r-induced neuronal damage...

Curcumin anti-depressant 108 7 (PMID: 19882093) curcumin can be a useful

antidepressant especially in cases which

respond to drugs having mixed effects

Curcumin anti-viral 96 12 (PMID: 21299124) thus, our results suggest

an important antiviral effect of curcumin

wherein it potently inhibits coxsackievirus

replication ...

Curcumin anti-fungal 59 6 (PMID: 17199240) these results indicate an

antinociceptive activity of resveratrol and

curcumin ...

Table 21: An example of potential health effects extracted from MEDLINE abstracts for

curcumin, a phytochemical found in the popular Indian spice turmeric. This table lists examples

of potential health effect (extracted using the in-house attribute extractor), their scores in co-

occurrence analysis, and supporting evidence from reference publications.

163

We also applied similar techniques to extract health effects for food metabolites. Over the

past few years we have developed a health effect annotator to mine health effects, food tastes,

and food functions from MEDLINE abstracts for 42,000+ food metabolites that are being

annotated in the FooDB project. More specifically, the health effect annotator takes a list of

compound names/synonyms and a manually curated health effect thesaurus as input, and then

searches MEDLINE abstracts for co-occurrences of health effect terms and compound names

using a customized PolySearch algorithm [16, 17]. Similar to PolySearch2 [52], the association

between compounds and health effects are scored and ranked by the frequency of term co-

occurrence. Tighter co-occurrences are given higher scores. We found that specific attention

should be given to the conclusion part of MEDLINE abstracts, as co-occurrences of compound

names and health effect terms often signifies a conclusive statement of the association. Table 21

shows a few examples of the extracted potential health effects of curcumin, a phytochemical

found in the popular Indian spice turmeric. Same analysis has been conducted on more than

24,000 compounds in FooDB [96].

We are working to expand the health effect annotator to be a general attribute learner that

takes an arbitrary biomedical term, a set of thesaurus terms, and extracts descriptive attributes of

an entity. Extracted attributes can be used to generate descriptions for a biomedical entity based

on a certain template. For example, a statement regarding the health effects of curcumin can be

synthesized as “Curcumin has been shown to exhibit anti-oxidant, anti-inflammatory, anti-

cancer, anti-tumor, apoptotic, neuroprotectant, anti-depressant, anti-viral, anti-fungal, and

immunomodulator effects.” Many descriptions in ECMDB [35], HMDB [98], and FooDB [96]

are generated or enriched using this method.

