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Abstract

The dynamic fragmentation of granite at impact energies of 6 to 28 J is examined

in this paper. Results indicate that more dense materials, or those with a higher

quartz content, produce less fractured mass, and have larger dominant fragment

sizes and smaller aspect ratios in their fragment probability distributions. Val-

ues of the peaks in fragment size distributions are in agreement with theoretical

predictions. Examination of the fracture surfaces reveals information concerning

transgranular cracking, crack bifurcation mechanisms and evidence of comminu-

tion of sub-micron K-feldspar and plagioclase fragments. Fractal dimensions of

the cumulative distribution of fragment sizes were ' 2, indicating that comminu-

tion was a dominant fragmentation mechanism in these tests. Peaks in the prob-

ability distributions of sub-micron fragments on fracture surfaces reveal a limit

of coherent fragments of approximately 0.60 µm for plagioclase and K-feldspar.

The smallest fragments found on the surfaces were approximately 0.30 µm and

this is considered to be the comminution limit for these materials.
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mechanisms, comminution, grinding limit, granite fracture, fractals and

fragmentation, brittle fracture, scanning electron microscopy of rock, image

analysis of rock fragments

1. Introduction

The fracture and fragmentation of brittle materials and, in particular, of rock

has been an area of continued scientific research since the early works by Mott [1,

2]. Applications include: developing new ceramic-metal shielding systems for

military use [3]; in space science where the collision and fragmentation of plan-

etary bodies play important roles in the development of our solar system [4]; in

geology research where fragmentation of rock is important in understanding fault-

ing [5], rock slides [6] and associated earthquakes [7]; in exploration drilling for

oil, gas and mineral deposits; production drilling and related reservoir fracturing

techniques (e.g., shale gas); and in mining and blasting applications, where the

safe excavation and transportation of rock is a daily concern [8, 9]. The fragmen-

tation of brittle materials continues to be an active field of materials research [10–

22] and is the topic of this paper.

During brittle fragmentation, cracks initiate at stress concentrations, grow and

propagate to a fraction of the Rayleigh wave speed [23], and eventually coalesce

with one another to form fragments. Energy dissipation during brittle fracture has

many forms. Minor dissipation mechanisms include the kinetic energy of moving

fragments [1, 2, 24], acoustic emission [7, 25], and thermal dissipation [26]. The

primary mechanism of energy dissipation during fracture in brittle materials is the

generation of new surface area [11, 13, 15, 17, 18].

Energy dissipated via fragmentation is related to the number of fragments,
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the size of these fragments, and, more specifically, the generation of new surface

area [27]. Past experimental investigations have had to rely on size (or grouped

mass measurements) of fragments as small as approximately 500 µm in order

to gain insight into the fracture processes due to the difficulty of counting and

sizing fragments smaller than this [28]. However, fragments smaller than 500 µm

account for a large percentage of the total number of fragments generated during

fragmentation and, hence, represent a notable portion of the total energy dissipated

during fracture. Fragments as small as 10 µm are considered in the low-speed

impact tests conducted in this study.

Analytical models [1, 2, 13, 14, 16–18, 29–32] and numerical models [12,

33, 34] have been developed to predict mean fragment size and distributions.

Early work by Rosin and Rammler [29] used an exponential function to describe

fragment size distributions. Later, Mott stimulated the theoretical modelling of

fragmentation of rapidly expanding rings [1, 2]. Mott’s theory of fragmentation

suggested that the distribution of fragment sizes is dependent on the propagation

of the release waves generated during fracture and the on-going straining over

the range of failure strain distributions. He further postulated that unloading of

the material proceeds at much lower speeds and made an estimate of the stress-

history in a rigid-plastic material model [2, 35]. Grady [17] developed on Mott’s

theory by considering the instantaneous appearance of fracture and defining the

statistical properties of the failure strain [36]. Grady [17] used an energy balance

approach to predict the average fragment size under high strain-rates by assum-

ing that all local kinetic energy was converted into fracture energy. He predicted

that the average fragment size decreased with increasing strain rate and material

brittleness. Glenn and Chudnovsky [31] extended the work by Grady to include
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the contribution from the elastic potential energy, which dominates at low loading

rates. They also predicted a quasi-static average fragment size that is indepen-

dent of strain rate. Experimental results have shown the energy-balance models of

Grady [17] and Glenn and Chudnovsky [31] over-estimate the dominant fragment

size [37, 38].

More recently, Zhou et al. [33, 39] and Levy and Molinari [12] have proposed

equations for predicting dominant fragment size based on numerical simulation

results. Their numerical models account for the evolution of the residual damage,

as well as the wave reflections and interactions; something that the energy-based

models are not able to accommodate. The energy-based model of Grady [17]

has also been modified recently [15], and now includes the concept of entry and

exit correlation length scales for the dynamic fragmentation of brittle materials.

Over these scales, the fragmentation process is considered scale invariant. The

theories proposed by Glenn and Chudnovsky [31], and more recently by Zhou et

al. [33, 39], Levy and Molinari [12], and Grady [15] are explored in greater detail

in this paper.

The goal of this paper is to investigate the fragmentation (i.e., number, size,

and shape of fragments) for three types of granite rock under low-energy im-

pact loadings of 5.9 J to 28.0 J. The experiments were performed three times for

each material-impact energy combination in order to investigate variability. Ex-

perimental results are compared with theoretical models. Scanning electron mi-

croscopy is used to investigate microscale fragmentation mechanisms that govern

the fragmentation processes; an approach not typically considered in other works.
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2. Experimental Setup and Analysis Methods

The drop-test apparatus shown in Figure 1 was used to study the fragmenta-

tion of three types of granite. Tubes over 1 m in length and 32 mm in diameter

directed steel impactors onto the targets, which were placed flat on a steel plate

to help produce the desired fragmentation. Three steel cylinder impactors, masses

of 590 g, 830 g and 1080 g, with a hemispherical end were used (Figure 2). Drop

heights and impactors were varied to achieve kinetic energies at impact of 5.9,

8.4, 11.0, 15.0, 19.4, and 28.0 Joules.

All targets were cut approximately 45 mm by 45 mm and 15 mm thick. For

simplicity, they are labelled Black, Red and White in this paper. The Black mate-

rial mainly contained plagioclase (pale in colour), biotite (black), and quartz (translu-

cent and glassy). The Red material primarily contained K-feldspar (pale pink in

colour), with less amounts of biotite and quartz. The White samples mainly com-

prised plagioclase and quartz, with some traces of garnet (red). These targets

are massive igneous and metamorphic rocks and are free from obvious weak-

ness planes, such as pre-existing micro-cracks, joints and faults. The densities of

each material were 2300 kg/m3 for Red, 2500 kg/m3 for Black, and 2900 kg/m3

for White. Photographs of the materials are shown in Figure 3. The blocks

were weighed before impact and fragments larger than 10 mm were collected

and weighed after each impact using a Scientech S120 scale with resolution of

±1×10−4 g. Fragments larger than 10 mm were part of the initial targets, while

the remaining fragments were assumed to be part of the fragmentation process. As

will be shown later, the smaller fragments represent over 99 % of the total num-

ber of fragments generated, therefore his approach is acceptable from a statistical

standpoint. The difference between the original mass and the large fragments
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was used to define the mass of the fragments generated as a result of impact. In

turn, this was used to study the effect of material type and impact energy on the

fragmentation of the blocks.

A Hitachi SU-70 analytical Field Emission Scanning Electron Microscope

(FESEM) was used to take secondary electron (SE) images of the granitic frag-

ments. The acceleration voltage range was 100 V to 30 kV with a beam current

of a few nano-amperes. The resolution of the FESEM is 1.0 nm at 15 kV and

1.4 nm at a landing voltage of 1 kV. The composition of the mineral phases was

determined by Energy Dispersive X-ray Spectroscopy (EDS) using an INCAx-act

LN2-free Analytical Silicon Drift Detector at 15 kV accelerating voltage and 5 nA

beam current, with acquisition times of 100 s for all elements.

2.1. Determination of fragment size and shape distributions

Analysis of the number, size and shape of the fragments was primarily accom-

plished using a Nikon SMZ-U zoom binocular microscope equipped with a x0.5

ED (extra-low dispersion) plane objective and DS-Fi1 (524 megapixel) digital

camera system. Samples were prepared by physically pouring out fragments from

a container onto a sheet of black paper and agitating the fragments to spatially

distribute them. Smaller fragments were typically re-distributed towards the bot-

tom of the container throughout transportation, therefore initial samples contained

larger fragments. Subsequent samples got smaller in size. Samples were catego-

rized as ”large”, ”medium”, ”small” and ”fine” according to their size. Among all

the four sample sets, the fine samples have the lowest peak value in their proba-

bility density distribution of fragment sizes. Photographs of fragments for various

size ranges are shown in Figures 4, 5, and 6 for the Black, Red and White materi-

als, respectively.
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Figure 7 illustrates the procedure used to determine the number, size and as-

pect ratio, or shape, of sample fragments. The Red material at a impact energy

of 19.4 J is used as an example (Figure 7). A high-resolution photographic im-

age of a sample was taken (Figure 7a). The image was then converted to a black

and white image (Figure 7b) and Matlab [40] was used to determine the major 1

and minor axes 2 (µm), area 3 (µm2) and shape (major/minor axis) of the frag-

ments. Histogram distributions of the minor and major axes, area and shape of

the fragments using a log10 transformation are shown in Figure 7c. Logarithmic

transformations were taken to force near-normality of the data for curve fitting. A

least squares fit of generalized extreme value (gev) distribution [41] in the form of

equation (1) was fit to the data:

gev(x, ξ, σ, µ) =
1

σ

[

1+ξ

(

x − µ

σ

)]

−1/ξ−1

exp

(

−
[

1+ξ

(

x − µ

σ

)]

−1/ξ)

(1)

where ξ is a shape parameter, σ is a scale parameter, and µ is a shift parameter. The

solution to equation (1) must satisfy 1+ξ(x-µ)σ>0. Rayleigh [12], Wiebull [42]

and log-normal distributions [38] were used elsewhere, but gev-fits are chosen

here because of the added parameter to describe the distribution (i.e., µ). Peaks

in the minor and major axis, area, and shape distributions occur at 81 µm (1.91),

132 µm (2.12), 11,749 µm2 (4.07), and 1.51 (0.18), respectively. Log10 values are

shown in parentheses here and throughout this paper.

Following image collection, the fragments were re-distributed through agita-

tion and another image was taken. This was repeated for a total of three image

1Major axis is the largest dimension of a fragment.
2Minor axis is perpendicular to the largest dimension.
3Area is the total projected area of the fragment on the image.
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partners to investigate the variation within a sample. Shown in Figure 7d is the

variation in the major axis dimension and shape for the three image partners used

in this example. Peaks in the major axis distribution are similar for each image

partner, occurring at 126 µm (2.10), 132 µm (2.12), and 132 µm (2.12). Peaks in

the shape distribution occur at 1.51 (0.18) for all cases. Only one image partner is

considered hereafter since little variation exists.

The variation among the major axis dimension and shape for three comparably-

sized samples from the same trial is shown in Figure 7e and f, respectively. This

was done to show that multiple samples contain similar peaks in their distributions

and, hence, demonstrating that not all fragments need to be counted. Instead, rep-

resentative samples from each size range may be extrapolated to estimate the to-

tal number of fragments generated for each material-impact energy combination.

This will be applied later to estimate the total number of fragments. The major

axis dimension in Figure 7e varies from 129 µm (2.11) to 135 µm (2.13), and the

shape in Figure 7f varies from 1.48 (0.17) to 1.51 (0.18). Again, little variation is

found.

3. Experimental Results

Initially, the fragment mass is plotted against impact energy in Figure 8. A

least squares fit of a logarithmic function in the form of equation (2) was used to

fit the data:

fragment mass = αmateriallog(βmaterialKE) (2)

where KE is the kinetic energy at impact, and αmaterial and βmaterial are material

coefficients. The logarithmic curve-fits and coefficient values are also shown in

Figure 8. The coefficient of determination, R2, is roughly 0.90 for all cases indi-
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cating that a logarithmic curve fit is suitable for this data. The amount of fragment

mass generated from impact increases from White to Black to Red. This is the

order of decreasing densities, from 2900 kg/m3 for White to 2300 kg/m3 for Red;

suggesting more dense materials generate less fragment mass during fracture un-

der the loading conditions used in this study. More likely, this result is associated

with the material properties (e.g., fracture toughness, yield and shear strength) of

the constituent minerals in the types of granite. Since the red has the greatest per-

centage composition of fracture-prone K-feldspar and plagioclase, then it is likely

to fracture the most. Conversely, the White material has the least percentage com-

position of these minerals, and the highest-percentage composition of quartz and

almandine, therefore it fractures the least. These results indicate that the percent-

age mass of fragments, generated from low-speed impact with a steel backing

plate, asymptotically approaches a finite mass, or volume, of fragments as the

impact energy is increased.

Next, the total number of fragments, mass of the fragments, and size distribu-

tions were estimated by extrapolating measurements from 10 images of samples

for each material-impact energy combination. One image was the ”fine” sam-

ple, three images were ”small” samples, three were ”medium” samples, and three

”large” samples. An example of this procedure for Red material and the 5.9 J

impact is shown in Table 1. For brevity, the three images used for the ”small”,

”medium”, and ”large” samples are combined in the table. Each fragment mass is

estimated using:

mass of fragment = ρ
4π

3
area × minor axis (3)

where ρ is the material density, and the area and the minor axis dimension were
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previously defined. An interesting feature of Table 1 is the estimation of 10,662

total number of fragments for the low impact energy and Red material. Similar

estimates of the total number fragments for all material-impact energy combina-

tions are shown in Table 2 and are plotted with power-law curve fits in Figure 9.

The number of fragments increase substantially for an increase in impact energy.

Fragment estimates as high as 75,000 are obtained.

Major axis dimension histogram distributions of the extrapolated data with

gev-fits are shown in Figures 10a, b, and c for each material and impact energy.

A log10 transformation is again used to force near-normality for curve fitting. The

peak in the major axis distribution decreases signficiantly and the distribution be-

comes more narrow-band as the impact energy is increased for all materials. The

distribution peaks for the minor and major axis dimension, area, shape and the

curve-fit parameters σ and ξ from equation (1) are shown in Table 2. The values

of ξ increases and the values of σ decreases for increases in impact energy for all

materials. These are plotted in Figure 10d.

The trends of the dominant peaks in the probability distributions for the minor

and major axis, area, and shape (data from Table 2) are shown in Figure 11. A

power-law curve in the form of equation (4) was used to fit the data:

fragment size = amaterial KEnmaterial (4)

where amaterial and nmaterial are material dependent coefficients. The coefficient

values are also shown in the Figures 11a, b and c. For all cases, R2 is larger than

0.91, confirming that a power-law fit is appropriate for this data. The White ma-

terial has the largest major axis dimension for all impact energies, followed by

Black and then Red (Figure 11b). A similar power-law trend in the area measure-
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ments is shown in Figure 11c. For all cases the minor axis, major axis, and area

decreases as the impact energy is increased, as expected. The variation in shape

(major/minor axis) for each material and impact energy is shown in Figure 11d.

The shape for each material remains relatively constant, and does not increase at a

statistically significant rate over the range of impact energies studied; with a mean

value of 1.60 for Red, 1.53 for Black, and 1.48 for White. Together, these results

indicate that more dense materials, or those with higher quartz content, have larger

dominant fragment sizes and smaller aspect ratios.

4. Comparison of Results with Theory

The fragment distribution and average fragment size are two important char-

acteristics of fragmentation events. Grady’s [15] model to calculate fragment size

assumes local kinetic energy is converted to the necessary energy for creating new

surfaces. The average fragment size according to Grady [15] can be calculated as:

sGrady =

(

48Gc

ρε̇2

)1/3

(5)

where ρ is the material density (kg/m3), ε̇ is strain rate (s−1), and Gc is the fracture

energy (J/m2).

Glenn and Chudnovksy [31] modified Grady’s theory to include a strain en-

ergy term and assumed that the stored strain energy and the local kinetic energy

are converted to fracture energy following fragmentation. They deduced an equa-

tion for the average fragment size:

sGC = 4

√

3

α
sinh

(

φ

3

)

(6)
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where

φ = sinh−1

[

β

(

3

α

)3/2
]

(7)

and

α =
3σ2

c

ρEε̇2
(8)

β =
3Gc

2ρε̇2
(9)

where E is Young’s modulus (Pa) and σc is the compressive strength of the mate-

rial before failure (Pa).

Zhou et al. [33, 39] proposed the strain-rate dependent fragment size as:

sZhou =
4.5EGc

σ2
c

[

1 + 0.77

(

ε̇

cσ3
c/E

2Gc

)1/4

+ 5.4

(

ε̇

cσ3
c/E

2Gc

)3/4]−1

(10)

where c is the longitudinal wave speed (m/s) given by:

c =
√

Eρ (11)

Levy and Molinari [12] proposed the average fragment size be calculated as:

sLM = t0Ceff
3

1 + 4.5

(

Et0/µinit

)2/3

ε̇2/3

(12)

where Ceff is effective longitudinal wave speed and given as:

Ceff = c

(

2

a + 1

)1/2(
σc,min

µinit

)1/5

(13)

where c is the wave speed, σc,min is the strength of the weakest link in a proba-
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bility distribution of defects, µinit is the average strength, a is a scaling parameter

depending on what type of distribution is chosen (e.g., Wiebull, Gaussian), and t0

is a characteristic time (s) defined by Zhou et al. [39] as:

t0 =
EGc

cσ2
c

(14)

To compare with the experimental results, values are taken as: ρ=2,700 kg/m3,

Gc= 70 J/m2 [43], E= 80 GPa [43], σc=240 MPa [44], µinit=σc/2 (based on ratios

used by Levy and Molinari [12]), and a=0.65 [12]. Strain rate varies. Shown in

Figure 12 is the theoretical dominant fragment size plotted against strain rate and

the experimental results from the impact tests presented in this paper. The strain

rate is estimated as v/h for the drop tests, where v is the impact velocity (m/s)

and h is the thickness of the target (m). This simplification results in having only

three different strain rates (300 s−1, 400 s−1, and 480 s−1) for the five different

impact energies since the impact velocities are the same for two sets of impact

energies. The experimental results plotted in Figure 12 are bounded above by

the Levy and Molinari model [12] prediction and roughly agree with the Glenn

and Chudnovksy equation [31]; with the equation proposed by Grady [15] over-

predicting the size by greater than a 100 times. These results experimental confirm

the models proposed by the other authors, and for engineering purposes, predict

the dominant fragment sizes adequately.

In addition to predicting a dominant fragment size, Grady [15] also explored

the theory of brittle fragmentation and noted that brittle materials tend to undergo

failure and fragmentation at an elevated elastic strain energy than is predicted

using quasi-static methods. He attributed this to nonequilibrium fragmentation

(Figure 13). Here, the correlation length λc at the onset of fracture determines the
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initial fracture length that is able to dissipate the strain energy [15]. Fractures at

a length of λc are not capable of dissipating all of the strain energy stored in the

body preceding failure; therefore, cracks proceed to cascade and branch until the

strain energy is dissipated at a second, smaller fracture length of λe.

Grady [15] suggests that the values for the governing length scales, λe and

λc, are those bounding the region of the Mott plot described by the power-law

function (a straight line in a loglog plot):

G(r) = Cr−D (15)

where r is the fragment size, C is a proportionality constant, D is the fractal di-

mension, and G(r) is a mapping function. The fractal dimension is a non-negative

rational number and was introduced by Mandelbrot [45] to better describe irreg-

ular forms that are too complex to be described by Euclidean geometry. Since

fractals are able to describe self-similar response at any scale, they have been

routinely applied to describing the fragmentation process in all types of materi-

als [46–48]. The fractal dimension of a particle size distribution can be used to

estimate the degree of fragmentation during, for example, comminution. Com-

minution is the process of grinding and crushing a solid body to form smaller

fragments. For finer comminution, the fractal dimension is near 2, indicating that

the fragmentation occurs primarily on the surface [49]. A value of D closer to 3

suggests the damage is more spatially distributed [49].

The values of λe, λc and D are all of particular interest here because they yield

insight into the dynamic behaviour of the brittle material. A Mott plot representa-

tion is a plot of the logarithm of the cumulative fraction of fragments larger than

the individual fragment size (i.e., major axis), r, on the independent-axis. The

14



cumulative distribution of the fragment sizes is given by:

F (r) =

∫ r

−∞

f(ζ)dζ (16)

where f(ζ) is the probability distribution of data. Plots of the cumulative distri-

butions of the fragments are shown in Mott plot form in Figure 14. The direction

of increasing impact energy is highlighted. This is now explored in greater detail.

The values of λe, λc and D depend on which subset, s, of the total set of

fragments, S, is chosen. A least squares optimization algorithm was developed to

compute a power-law curve fit in the form of equation (15), thereby determining

the values of λe, λc and D, for all S − s + 1 possible subsets of size n, where

100 < s < S. The ”best” subset of size s was selected to maximize the coefficient

of determination, R2, and the range of the bounding length scales, ∆λ=λc-λe,

over the respected subset. Shown in Figure 15 is the dependance of R2 and D

on ∆λ for the Red material. Values of ∆λ were determined from Figure 15a at

the junction where there R2 began to decrease significantly. Values of λe and λc

were subsequently obtained from ∆λ. The corresponding values of D were then

obtained from Figure 15b. In addition, the ratio of:

FG =
λc

λe

(17)

was determined. Values of λe, λc, D and FG were obtained similarly for the Black

and White materials.

Values of λe, λc, ∆λ, D, and FG for all materials and impact energies are dis-

played in Table 3. Associated plots are shown in Figure 16. Shown in Figure 16a

is the dependence of λe on impact energy for all materials. For all cases λe is on
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the order of the peak in the major axis probability density distribution. The value

of λe decreases for an increase in impact energy. For all cases, the values of λe

correspond to between 0.55 and 0.65 on the y-axis of the Mott plots in Figure 14.

That is to say, between 55 % and 65 % of the total number of fragments is larger

than λe. This is expected since the distributions of fragment sizes in Figure 10 are

positively skewed.

Shown in Figure 16b is the dependence of ∆λ on impact energy. The value

of ∆λ decreases for an increase in impact energy (Figure 16b). This might be

expected since the probability density distribution becomes more narrowband as

the impact energy is increased (from Figure 10). Shown in Figure 16c is the

dependence of λc on λe. Here λc increases as λe increases. Again, this is expected

based on the two previous figures.

Shown in Figure 16d is the dependence of the fractal dimension, D, on the

impact energy. The results indicate that D increases slightly with an increase in

impact energy. This is consistent with previous investigations [49, 50], and is asso-

ciated with an increase in smaller fragments. In addition, fractal dimensions near

2 suggest the fragmentation processes are primarily surface-related (e.g., com-

minution). Figure 16e shows that FG decreases for increasing impact energy for

all material types. Again, this might be expected since the value of λc decreases

more more rapidly than λe when the impact energy is increased. Lastly, the re-

lationship between D and FG is plotted in Figure 16f. The values of D decrease

slightly when FG is increased. More importantly, this plot defines a relationship

between two non-dimensional values, where D is a measure of the cascading ef-

fect of fragmentation from λc to λe, and FG is a measure of the nature of the size

distribution (i.e., how narrow-band the distribution is).
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5. Scanning Electron Microscopy of the Fracture Surfaces

The dynamic fragmentation of rock is a seemingly stochastic process where

cracks initiate, grow, and coalesce along roughened, complicated mineral sur-

faces to form, as these experimental results and many others indicate, distinct

fragments of similar size and shape. Characteristics of these surfaces and the

physical mechanisms that drive fragmentation are often overlooked, especially in

numerical works, but are explored here. Shown in Figure 17 are scanning electron

microscope images of a collection of fragments taken from the 28.0 J impacts for

the White and Red materials. The shapes of the fragments are ”blocky”, as might

be expected since plagioclase and K-feldspar minerals compose a large percent-

age of these fragments, and fracturing in these minerals primarily occurs along

cleavage planes. There are also many complicated shapes and surface characteris-

tics associated with each mineral type. In addition, the fragments contain ”sharp”

corners, which are likely sites of branching of the propagating cracks to form

fragments. Crack propagation and branching are now investigated.

5.1. Fracture and Branching

Evidence of crack propagation, especially transgranular cracking, reveals load-

ing history information and the sequence of fracture events as a result of the low-

speed impacts. Shown in Figure 18a and b are through-grain cracks found in

plagioclase and K-feldspar, respectively. Tensile stresses needed to cause trans-

granular cracking in these minerals are in the order of 2 GPa [4]. Evidence of even

higher localized stresses are found in the form of transgranular cracking in quartz

grains (Figures 18c to f). Shown in Figure 18c is the location of the quartz grain

containing the crack, which is sandwiched between two plagioclase grains. At a
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higher magnification (Figure 18d and e), the crack is jagged. The curvilinear, or

wave-like, crack propagation in the quartz is attributed to incremental crack ex-

tension [51] as a result of non-uniform stress field and mixed-mode fracture [52].

High magnification SEM imagery (Figure 18f) reveals that the crack’s surface

is relatively smooth. Tensile stresses needed to cause transgranular cracking in

quartz are slightly greater than 2 GPa [4, 53], confirming that these stresses are

reached during these low-speed impact tests.

Branching is a subsequent stage of fracture following crack propagation. The

branching phenomenon has been studied by many researchers, most of whom at-

tempt to seek a necessary condition for branching through comparison of stress

states before and after branching [23, 54, 55]. Little appreciation has been given

to the physical mechanisms. Shown in Figure 19 are bifurcation points for crack

branching on fragment tips. The fragments examined in this figure contain dis-

tinct fracture tips and, hence, are assumed to be bifurcation points for cracks. An

example of a fragment tip in quartz is shown in Figure 19a. Bifurcation occurs

in the granite samples when propagating cracks in other mineral phases encounter

quartz because of its higher hardness. An example of a bifurcation point in K-

feldspar is shown in Figure 19b. Here a localized region is melted and plastically

deformed over much of the tip. The region encompassed by the melt is approxi-

mately 38 µm from the fracture tip. Bulk temperatures needed to cause local melt-

ing of these minerals are in the order of 830 K [5]. High temperatures are likely

associated with grain-on-grain contact produced by global fragment motion. The

generation of localized heat during fracture has been noted previously [26, 27].

More evidence of localized melting at bifurcation points is shown in Figure 19c

on the fracture tip of a plagioclase fragment. The extent of the plastic deformation
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region, initiated by melting, is approximately 2.8 µm from the tip. It should be

noted that this plagioclase fragment is smaller in size than the K-feldspar frag-

ment presented in Figure 19b, which may account for the smaller plastic tip re-

gion. Highlighted in Figure 19c is evidence of a melt connection on the surface of

a plagioclase fragment. The circled region is further magnified in Figure 19d. The

melt-connection in Figure 19d is approximately 1.3 µm in length, while smaller

pieces of melt, roughly 0.3 µm in size, are highlighted on the left. These results

confirm the realization of temperatures in the order of 830 K at bifurcation points

in K-feldspar and plagioclase fragment tips. Again, these high localized tempera-

tures are a result of grain-on-grain contact brought on by fracture surface motion

and recovered heat from exceeding the elastic limit.

5.2. Surface Debris

A dominant feature in all SEM images is the scatter of debris on their surfaces.

The nature of the debris is explored further in Figure 20. Debris on the surface

of a K-feldspar grain are shown in Figure 20a, while higher magnification images

of surface debris on garnet and plagioclase are shown in Figures 20b, c and d,

respectively. EDS analysis of the debris on the K-feldspar and garnet surfaces re-

veals that they are mainly K-feldspar in composition, while plagioclase debris is

scattered on the plagioclase surfaces. Similar techniques as used in Figure 7 and

gev curve-fits were used to determine the major axis dimension and shape distri-

butions of these fragments . The distributions are shown in Figures 21a (minor

axis) and b (shape), with corresponding peak values displayed in Table 4. The

value of the smallest fragment size on these surfaces is also displayed in Table 4.

At a magnification of 300X (Figure 20a on the K-feldspar surface), the peak in the

major axis distributions occurs at 1.36 µm, and the peak in the shape distribution
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occurs at 1.49. The peak in the distribution decreases to 0.55 µm on the garnet

surface (Figure 20b), while the shape value remains similar at 1.51. The peak in

major axis distribution on the plagioclase surfaces are slightly less at 0.55 µm and

0.61 µm, respectively. The smallest debris found on the surfaces of the 1,000X-

magnification images are approximately 0.30 µm. The physical meaning of these

results and highlights from the other experimental results are now discussed fur-

ther.

6. Discussion

Experimental results indicate that the mass of fragments generated as a result

of impact under these loading conditions asymptotically increases as the impact

energy is increased. The White material produces the least amount of fragment

mass, and the Red material produces the most. This is associated with the larger

percentage composition of fracture-prone K-feldspar and plagioclase minerals in

the Red material, followed by the Black and then White materials. The asymp-

totical increase to a finite mass, or volume, of fragments is a result of the use of

a steel backing. This enhances crushing/comminution-type loading on the rock,

as the other experimental results would indicate. The total number of fragments

≥10 µm generated from impact increases substantially as the impact energy is in-

creased. The fragment estimate is as high as 75,000. Estimates of the total number

fragments would substantially increase if those <10 µm were included.

The peak in the probability distributions of sizes, including minor and ma-

jor axes and area, decreases and the distribution becomes more narrow-band as

the impact energy is increased. Shape results remain consistent over the impact

energies studied, with mean values of 1.60 for Red, 1.53 for Black, and 1.48
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for White. These results indicate that more dense minerals, or those with higher

quartz content, have larger dominant fragment sizes and smaller shapes (smaller

aspect ratios) under the impact conditions used here. The size results are bounded

above by the Levy and Molinari model [12] prediction, and below by the Glenn

and Chudnovksy equation [31], indicating that these models predict fragment size

adequately for engineering purposes.

Values of the correlation length scales, fractal dimension, and ratio between λc

and λe were examined in order to gain insight into the dynamic behaviour of the

granite materials. The value of λe was on the order of the peak in the major axis

probability density distribution for all cases. Values of λe, λc, and FG decrease

for an increase in impact energy. This might be expected since the probability

density distribution becomes more narrowband as the impact energy is increased,

resulting in a decrease of ∆λ and, by association, λe, λc, and FG. The fractal

dimension, D, was found to increase as the impact energy was increased. This is

consistent with previous investigations [49, 50]. In addition, fractal dimensions

near 2 suggest the fragmentation processes involved are primarily surface-related

(e.g., comminution). This is consistent with the fragment mass data and the dom-

inant fragment size results.

Physical mechanisms of fragmentation were investigated on fracture surfaces.

Through-grain cracks in plagioclase, K-feldspar, and quartz were observed, sug-

gesting that localized tensile stresses in the order of 2 GPa were reached [4, 53].

Bifurcation mechanisms were also examined and the results indicate that bifur-

cation occurs at quartz grain boundaries due to the relatively higher hardness of

this mineral. In K-feldspar and plagioclase, bifurcation regions posses evidence

of the realization of localized temperatures in the order of 830 K [5]. High tem-
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peratures were created by frictional melting via recovered heat from exceeding

the elastic limit and vibration. The region encompassed by the melt was found to

vary depending on the size of the fragment containing the fracture tip.

Large amounts of microscopic surface debris are a dominant feature of the

fracture surfaces. The nature of the debris was examined at high magnification,

which revealed dominant peaks in their distributions at sub-micron values be-

tween 0.55 µm and 0.69 µm. Without consideration of the fragment debris, the

experimental results presented in Figure 16 indicate that the scale-invariant rela-

tionships, as defined by the theory presented by Grady [15], falters when applied

to the fragments smaller than λe. If the distributions for the microscopic surface

debris are extrapolated over the total surface area, as was done to determine the

total number of fragments, then it is expected that these microscopic fragments

will also represent the peak in the histogram distribution of fragment sizes. This

is noteworthy since Grady [15] suggests that the exit length scale, λe, can be cal-

culated as:

λe'3(Kc/σhel)
2 (18)

where Kc is the fracture toughness of the material (Pa
√

m) and σhel is its Hugo-

ninot elastic limit (Pa). The Hugoniot elastic limit is the limit of elastic defor-

mation that ceramics can endure before deforming plastically or brittly under dy-

namic loading. It is defined as:

σhel =
1 − ν

1 − 2ν
Yyield (19)

where ν is the Poisson ratio and Yyield is the yield stress (Pa). If values of ν=0.11 [5],

Yyield=2 GPa [5], and Kc=1 MPa m1/2 [5] are used then λe is estimated as 0.58 µm
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for K-feldspar. This is in the order of the peaks in Table 4, suggesting Grady’s [15]

estimation of λe is plausible.

Our results suggest that the scale-invariant relationship falters when applied

to the fragments smaller than λe'0.60 µm. This is the limit at which coherent,

or dominant, fragments are generated from the constitutive materials under these

loading conditions. The smallest fragments found on the surfaces were approx-

imately 0.30 µm. This lower limit is referred to as the comminution or grind-

ing limit [5]. Comminution can occur at strain rates as low as 10−7 s−1 (e.g.,

low creeping faults to as large as 107 s−1 (e.g., seismogenic and impact-related

events) [5]. Comminution is controlled by the mechanical properties of the mate-

rials being crushed, such as yield and shear strength, fracture toughness, and ther-

mal conductivity [5]. Comminution has been explored by numerous researchers

and results indicate that the fragment size limit is sub-micron [56–61]. There have

been several explanations for this limit:

1. At a critical size, the smaller particles absorb the compressive and shear

forces through cumulative elasticity and relative movement (bulk yield).

This limits further fracturing.

2. Below a critical size, cracks cannot initiate or grow under compression, and

particles yield plastically instead of fracturing (i.e., the shear strength is

grain-size dependent below the critical size).

3. The smaller sizes undergo agglomeration to produce larger clusters, which

define an apparent grinding limit [56].

4. Fragments smaller than a critical size are melted as a result of the high strain

rates and associated adiabatic conditions [57].

Although not the subject of this paper, results from these experiments indicate
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comminution plays an important role in the fragmentation and energy dissipation

processes; even at very low loading energies. Together, the results presented here

indicate that propagating cracks dominate the fragmentation process at mm-size

scales, while at micron-grain scales the fragmentation process is dominated by

comminution initiated by the kinetics and abrasion between adjacent grain sur-

faces. This is especially true for the K-feldspar and plagioclase-family minerals,

which are much more susceptible to fracture than quartz. Results from Table 4 in-

dicate that comminution processes generate fragments as small as 0.28 µm. Sev-

eral theories attempt to explain this limit [56–61].

7. Conclusions

Statistical analysis of the fragments generated from the dynamic fragmenta-

tion of granite at impact energies of 6 to 28 J indicate larger dominant fragment

sizes and smaller shapes (smaller aspect ratios) for the granites with higher quartz

content. Scanning electron microscopy revealed evidence of localized tensile

stresses and temperatures in the order of at least 2 GPa and 830 K were obtained

as a result of the impact. Sub-micron fragments on the fracture surfaces were ex-

amined and peaks in the probability distributions were found to be approximately

0.60 µm. This is the limit at which coherent fragments are generated under these

loading conditions. The smallest fragments found on the surfaces were approxi-

mately 0.30 µm. This is referred to as the comminution limit.

The results presented in this paper offer insight into the catastrophic dynamic

fragmentation of rock under low-energy impact and provide useful guidelines for

those numerically modelling the fragmentation of rock. Typically, fracture events

are modelled from a continuum perspective, and micro-scale aspects of the frag-
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mentation process are not considered due to the computational costs associated

with the requirement of having elements less than 100 nm in size in order to

fully capture the cracking, comminution and heat generation processes at these

fine scales. In conclusion, a more detailed evaluation of fracture mechanisms and

their contribution to the evolution of fracture will ultimately lead to more efficient

use of brittle materials in engineering applications.
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Table 1: Extrapolating total number of fragments and their estimated mass for Red material at

5.9 J.

Group # Mass Major Shape

Type Fragments Estimate (g) Axis (µm)

Smallest 2,276 0.08 162 1.45

Small 1,876 0.08 200 1.45

Medium 1,375 0.32 501 1.62 Actual Extrapolated

Large 58 0.40 1,047 1.58 Mass (g) #
Total (A) 5,585 (B) 0.88 (C) 1.68 (AxC/B) 10,662

Nomenclature

a Scaling parameter for the Levy and Molinari [12] prediction of fragment size

amaterial Material scaling coefficient in power-law function curve-fit

c Longitudinal wave speed, m/s

C Proportionality constant

D Fractal dimension

E Young’s modulus, Pa

f(ζ) Probability distribution of fragment sizes

F (r) Cumulative distribution of the fragment sizes

FG λc/λe

G(r) Mapping function

Gc Fracture energy, J/m2

h Thickness of target, m

KE Kinetic energy, J

Kc Fracture toughness, Pa
√

m

nmaterial Material scaling coefficient in power-law function curve-fit
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Table 2: Total fragment number estimates for each material type and impact energy.

Material Impact # of Major Minor Area Shape ξ σ
Type Energy (J) fragments Axis (µm) Axis (µm) (µm2)

Red 5.9 10,662 162 145 16,898 1.45 -0.186 0.323

Red 11.0 17,137 155 132 8,511 1.62 -0.177 0.333

Red 15.0 24,162 141 113 5,495 1.59 -0.165 0.298

Red 19.4 35,389 120 100 6,918 1.66 -0.125 0.302

Red 28.0 59,786 115 93 6,166 1.70 -0.130 0.260

Black 5.9 4,199 195 141 18,620 1.54 -0.167 0.268

Black 11.0 16,095 182 102 10,470 1.51 -0.137 0.217

Black 15.0 25,980 151 89 8,913 1.51 -0.129 0.210

Black 19.4 37,520 126 71 10,000 1.55 -0.142 0.209

Black 28.0 74,895 105 65 5,248 1.55 -0.090 0.171

White 5.9 10,537 209 170 16,980 1.47 -0.204 0.325

White 11.0 15,566 204 129 15,850 1.48 -0.150 0.289

White 15.0 28,168 156 105 10,230 1.45 -0.099 0.247

White 19.4 41,006 132 126 9,120 1.51 -0.097 0.230

White 28.0 65,717 117 100 5,012 1.45 -0.078 0.225
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Table 3: Values of λe, λc, ∆λ, D, and FG.

Material Impact λe λc ∆λ D FG

Type Energy (J) (µm) (µm) (µm) (λc/λe)

Red 5.9 177 7,521 7,344 1.74 42

Red 11.0 165 7,650 7,485 1.66 46

Red 15.0 168 4,510 4,342 1.92 27

Red 19.4 117 2,751 2,634 1.99 24

Red 28.0 105 2,475 2,370 2.17 24

Black 5.9 210 8,288 8,078 1.66 39

Black 11.0 194 7,425 7,231 1.89 38

Black 15.0 162 4,321 4,159 2.04 27

Black 19.4 124 2,651 2,527 2.00 21

Black 28.0 110 2,575 2,465 2.05 23

White 5.9 222 7,430 7,208 1.69 33

White 11.0 205 7,567 7,362 1.78 37

White 19.4 183 4,640 4,457 1.97 25

White 19.4 180 2,751 2,571 2.28 15

White 28.0 154 2,475 2,321 2.32 16
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Table 4: Major axis and shape distributions for debris on the fracture surfaces. The values in

brackets are the log10 of the corresponding peak values.

Image Major Axis (µm) Shape Smallest Size (µm)

(a) K-feldspar 1.36 (0.134) 1.49 (0.173) 0.91 (-0.039)

(b) Garnet 0.69 (-0.164) 1.51 (0.180) 0.34 (-0.463)

(c) Plagioclase 0.55 (-0.267) 1.60 (0.205) 0.33 (-0.487)

(d) Plagioclase 0.61 (-0.211) 1.62 (0.211) 0.28 (-0.560)

r Fragment size, m

R2 Coefficient of determination

sGC Average fragment size according to Glenn and Chudnovksy [31], m

sGrady Average fragment size according to Grady [15], m

sZhou Average fragment size according to Zhou [33, 39], m

sLM Average fragment size according to Levy and Molinari [12], m

sGC Average fragment size according to Glenn and Chudnovksy [31], m

t0 Characteristic time defined by Zhou [33, 39], s

v Impact velocity, m/s

Yyield Yield stress, Pa

αmaterial Material scaling coefficient in logarithmic function curve-fit

βmaterial Material scaling coefficient in logarithmic function curve-fit

∆λ λc-λe

ε̇ Strain rate, s−1

λe Exit correlation length according to Grady’s [15] nonequilibrium fragmentation theory, m

λc Entry correlation length according to Grady’s [15] nonequilibrium fragmentation theory, m

µ Shift parameter in generalized extreme value distribution curve-fit

µinit Average strength for the Levy and Molinari [12] prediction of fragment size, Pa
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ν Poisson ratio

ρ Material density, kg/m3

σ Scale parameter in generalized extreme value distribution curve-fit

σc Compressive strength of the material before failure, Pa

σc,min Strength of the weakest link in a probability distribution of defects [12], Pa

σhel Hugoniot elastic limit, Pa

ξ Shape parameter in generalized extreme value distribution curve-fit
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