
Data Transfer Nodes for Cloud-Storage Providers

by

Soham Sinha

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c© Soham Sinha, 2016

Abstract

We provide a case study of current inefficiencies in how traffic to well-known

cloud-storage providers (e.g., Dropbox, Google Drive, Microsoft OneDrive)

can vary significantly in throughput (e.g., a factor of 5 or more) depending on

the location of the source and sink of the data. Our case study supplements

previous work on resilient overlay networks (RON) and other related ideas.

These inefficiencies exist in the presence of vendor-specific points-of-presence

(POP), which try to provide better network performance to the clients. In fact,

the existence of special-purpose networks (e.g., national research networks,

PlanetLab) and complicated peering relationships between networks, means

that performance problems might exist in many wide-area networks (WANs).

Our main contribution is to continue the cataloging of network inefficien-

cies so that practitioners and experimenters are aware of them. But, we also

show how simple routing detours, can improve throughput by factors of over

3x for client-to-cloud-storage. Routing detours are implemented by adding

intermediate nodes in the routing path. These special-purpose intermediate

nodes are called data transfer nodes (DTNs). We have also implemented an

optimization in these DTNs in the form of cut-through routing.

Although the specific inefficiencies in this paper might be transitory (and

we agree with that characterization), WAN bottlenecks due to routing, sub-

optimal middlebox configuration, and congestion persist as real problems to

be cataloged, discussed, and addressed through the use of detours, or data

transfer nodes (DTNs), or RONs. Additionally, we provide a brief overview of

the beneficial routing detours in 20 PlanetLab nodes in North America.

ii

Preface

Some parts of all the Chapters in this thesis have been previously submit-

ted and accepted in 21st IEEE Workshop on Dependable Parallel, Distributed

and Network-Centric Systems [18]. This is collaborative work with author-

ship shared among myself, Di Niu, Zhi Wang and Paul Lu. I have designed

the experiments, conducted them on the PlanetLab platform and deduced

important observations from the experimental results. The other co-authors

have provided feedbacks on the design of the experiments, improvement of the

methodologies and the presentation of the paper.

iii

To my maa, dadu and MH Sir

For being the inspirations of my life.

iv

Perfecting oneself is as much unlearning as it is learning.

– Edsger W. Dijkstra.

v

Acknowledgements

I would like to thank my supervisors, Prof. Paul Lu and Prof. Di Niu, for

their support and guidance all along this journey. Their insightful discussions

about the research have enlightened me to think in the right direction for my

research. Right from the beginning, they have shown me different paths to

pursue and helped me getting over any roadblocks that I faced.

A special thanks to Trellis group members, especially Nooshin Eghbal and

Hamidreza Ansari. I thoroughly enjoyed our research meetings and learned a

lot out of those extended sessions.

I would also like thank my friends - Debajyoti, Arnab, Dipanjan, Ratul,

Sinchan, Sanket, Sankalp, Adam, Luke, Shaiful for all the moral and techno-

logical support. I would like to thank my father, brother and extended family

for their continuous support to pursue my dream. I could not have come for

this degree without the encouragement of my undergraduate advisor, Prof.

Manas Hira. He has been and always will be one of the inspirations to mo-

tivate myself to be in the academia. Finally, this was impossible without my

mother. Thanks to her for being the source of positivity in both good and bad

days.

Furthermore, thank you to Cybera (www.cybera.ca), CANARIE (www.canarie.ca),

the Natural Sciences and Engineering Research Council of Canada (NSERC)

(www.nserc.ca), Prof. Zhi Wang from Tsinghua University and PlanetLab

(www.planet-lab.org) for their support of this research.

vi

Table of Contents

1 Introduction 1

2 Background and Related Work 4
2.1 Background . 4
2.2 Related Work . 8

3 Experimental Set-up 12
3.1 Cloud-storage APIs . 12

3.1.1 Details of Chunked-upload Mechanism 14
3.1.2 Discussion and Examples 16

3.2 Experimental Design . 18
3.3 Cut-through Routing . 21
3.4 Collection of PlanetLab Statistics 23

4 Results and Analysis 24
4.1 UBC: Direct Uploads vs. Detours 25
4.2 Purdue: Choice of Detoured Node 29
4.3 UCLA: Where Detours Do Not Help 33
4.4 Discussion . 36
4.5 Cut-through Routing Results 38
4.6 Detour Routing Statistics on PlanetLab Nodes 45

5 Summary and Conclusions 61
5.1 Directions for Future Work . 62

Bibliography 64

vii

List of Tables

3.1 Dropbox File-transfer APIs in Java Client Library. 13

4.1 Summary of the average file transfer times from three client
locations to the three cloud-storage providers, using different
routes. See also Table 4.5. 25

4.2 UBC-to-Google Drive Average Transfer Times through different
routes. 27

4.3 Purdue-to-Google Drive Average Transfer Times through differ-
ent routes . 31

4.4 The mean and standard deviation of upload times (in seconds)
from Purdue. Same data as in Figures 4.6 and 4.7, but quanti-
tatively for 60 MB and 100 MB only. 34

4.5 Geographical summary of fastest routes for three client-locations
and cloud-storage services. [Direct: solid; Detour: dashed-
dotted] See also Table 4.1. 35

4.6 UBC-to-Google Drive Percentage of Decrement in Transfer time
of Only Detour and Detour with Cut-through over Direct route
(February - March 2016). 41

4.7 UBC-to-Dropbox via UofA transfer times (January - February
2016). 41

4.8 UBC-to-Dropbox via UMich transfer times (January - February
2016). 44

4.9 Classification of cut-through routing timings based on its com-
parative performance with direct and simple detour timings . 44

4.11 List of benefited client node locations among 20 PlanetLab
nodes with their beneficial intermediate nodes for different cloud-
storage providers using simple detour routing. [See Fig. 4.32 for
graphical representation of number of detours for each Planet-
Lab location]. 49

4.10 Classification of Cut-through timings based on the slowest links
among client-to-intermediate-node (C2I) and intermediate-
node-to-cloud-storage-server (I2CS). 53

viii

List of Figures

1.1 Schematic diagram of a 100 MB file transfer from UBC to
Google Drive via direct route and via UofA. 2

2.1 Locations of clients, intermediate nodes and cloud-storage servers.
Same as Fig. 3.3 . 7

3.1 Chunked-upload mechanism of file upload in Dropbox. 15
3.2 Schematic diagram of our experimental design for uploading

data to the cloud-storage servers. 19
3.3 Locations of clients, intermediate nodes and cloud-storage servers.

Same as Fig. 2.1. 20
3.4 Data Transfer Technique in Store-And-Forward Routing and

Cut-through Routing with respect to the data transfer node
(DTN). 22

4.1 Upload performance from UBC to Google Drive (direct routes
and detours) [Error bar: One Standard deviation]. 26

4.2 Upload performance from UBC to Dropbox (direct routes
and detours) [Error bar: One Standard deviation]. 28

4.3 UBC to Google Drive Server traceroute. 28
4.4 UofA to Google Drive Server traceroute. 29
4.5 Upload performance from Purdue to Google Drive (direct routes

and detours) [Error bar: One Standard deviation]. 30
4.6 Upload performance from Purdue to Dropbox (direct routes and

detours) [Error bar: One Standard deviation]. 32
4.7 Upload performance from Purdue to OneDrive (direct routes

and detours) [Error bar: One Standard deviation]. 33
4.8 Upload performance from UCLA to Google Drive (direct

routes and detours) [Error bar: One Standard deviation]. . . . 36
4.9 Upload performance from UCLA to Dropbox (direct routes

and detours). 37
4.10 Cut-through Routing Results for UBC to Google Drive via

UMich (February - March 2016) [Error bars: One Standard
deviation] [Direct < Cut-through < Simple Detour]. 39

4.11 Cut-through Routing Results for UBC to Google Drive via
UofA (February - March 2016) [Error bars: One Standard de-
viation] [Cut-through < Simple Detour < Direct]. 40

4.12 Cut-through Routing Results for UBC to Dropbox via UMich
(January - February 2016) [Error bars: One Standard deviation]
[Direct < Cut-through < Simple Detour]. 42

ix

4.13 Cut-through Routing Results for UBC to Dropbox via UofA
(January - February 2016) [Error bars: One Standard deviation]
[Direct ∼ Cut-through < Simple Detour]. 43

4.14 Cut-through Routing Results for UBC to OneDrive via UMich
(Feb-March 2016) [Error bar: One Standard deviation] [Direct
< Cut-through < Simple Detour]. 46

4.15 Cut-through Routing Results for UBC to OneDrive via UofA
(Feb-March 2016) [Error bar: One Standard deviation] [Direct
< Simple Detour ∼ Cut-through]. 47

4.16 Cut-through Routing Results for Purdue to Google Drive
via UMich (February - March 2016) [Error bar: One Standard
deviation] [Cut-through ∼ Simple Detour < Direct]. 48

4.17 Cut-through Routing Results for Purdue to Google Drive
via UofA (February - March 2016) [Error bar: One Standard
deviation] [Cut-through ∼ Simple Detour < Direct]. 49

4.18 Cut-through Routing Results for Purdue to Dropbox via
UMich (January - February 2016) [Error bar: One Standard
deviation] [Cut-through ∼ Simple Detour ∼ Direct]. 52

4.19 Cut-through Routing Results for Purdue to Dropbox via
UofA (January - February 2016) [Error bar: One Standard
deviation] [Cut-through ∼ Simple Detour ∼ Direct]. 52

4.20 Cut-through Routing Results for Purdue to OneDrive via
UMich (February - March 2016) [Error bar: One Standard
deviation] [Cut-through ∼ Simple Detour ∼ Direct]. 54

4.21 Cut-through Routing Results for Purdue to OneDrive via
UofA (February - March 2016) [Error bar: One Standard de-
viation] [Cut-through ∼ Simple Detour ∼ Direct]. 54

4.22 Cut-through Routing Results for UCLA to Google Drive via
UMich (January - February 2016) [Error bar: One Standard
deviation] [Direct < Cut-through < Simple Detour]. 55

4.23 Cut-through Routing Results for UCLA to Google Drive
via UofA (January - February 2016) [Error bar: One Standard
deviation] [Cut-through < Direct < Simple Detour]. 55

4.24 Cut-through Routing Results for UCLA to Dropbox via
UMich (January - February 2016) [Error bar: One Standard
deviation] [Direct ∼ Cut-through < Simple Detour]. 56

4.25 Cut-through Routing Results for UCLA to Dropbox via
UofA (January - February 2016) [Error bar: One Standard
deviation] [Direct ∼ Cut-through < Simple Detour]. 56

4.26 Cut-through Routing Results for UCLA to OneDrive via
UMich (Feb - March 2016) [Error bar: One Standard deviation]
[Direct ∼ Cut-through < Simple Detour]. 57

4.27 Cut-through Routing Results for UCLA to OneDrive via
UofA (Feb - March 2016) [Error bar: One Standard deviation]
[Direct ∼ Cut-through ∼ Simple Detour]. 57

4.28 Time to upload a 10 MB file from various PlanetLab locations
to Google Drive. 58

4.29 Time to transfer a 10 MB file from Purdue University PlanetLab
node to other PlanetLab locations and cloud-storage servers. . 58

4.30 Time to upload a 10 MB file from various PlanetLab locations
to Dropbox. 59

4.31 Time to upload a 10 MB file from various PlanetLab locations
to OneDrive. 59

x

4.32 Number of beneficial detours for 20 PlanetLab locations and for
all 3 cloud-storage services [See Table 4.11 for details]. 60

xi

Chapter 1

Introduction

Non-optimal and inefficient routing on the Internet is known to exist. But

with networks evolving over time (e.g., special research networks, like Canada’s

CANARIE1) and different traffic types emerging (e.g., Web vs. video streams

vs. cloud-storage data), it is useful to revisit and catalog the known network

issues that, in the past, have motivated ideas such as resilient overlay networks

(RONs) [1], and data transfer nodes (DTNs) [5].

For example, many cloud-storage providers have multiple points-of-presence

(POPs) across, say, the United States of America to improve throughput for

their clients. However, we found and document how the effective throughput

to popular cloud-storage providers can still be far from optimal. For exam-

ple (Fig. 1.1), uploading a 100 MB binary file from a University of British

Columbia (UBC) PlanetLab node to Google Drive (using Google’s application

programming interface (API)) takes 87 seconds (s). The same file transferred

from a non-PlanetLab node at the University of Alberta (UofA) to Google

Drive takes 17s. Furthermore, transferring the file from the UBC PlanetLab

node to the UofA non-PlanetLab node takes 19s (this is carried by default,

over the CANARIE research network). Together, by using UofA as a part of

a detour from UBC to Google Drive, the 100 MB file can be transferred in 36s

(= 17+19) instead of 87s.

On the one hand, transferring the data from UBC to Google Drive via UofA

has extra overheads because of the involvement of an additional node. It is also

1http://www.canarie.ca/

1

our implementation of routing detours is shown to improve net transfer time

performance by factors of 3 or more, depending on file size, source of the data,

and cloud-storage provider. Admittedly, the scale of the improvement says

more about the performance problem than it does about the importance of

our contribution. However, we note that routing detours fall within a set of

simple ideas that have nonetheless made it into practice. For example, Science

DMZ’s concept of a DTN improves performance by (in part) bypassing firewall

bottlenecks, which are normally configured for non-bulk data transfers [5].

And, overlay networks [1] were conceived (in part) to explicitly control routing

on an Internet with decentralized control. Our routing detours are a similar

attempt to bypass bottlenecks and explicitly control routing.

In our solution of detour routing, we adopt the concept of DTNs. These

DTNs open up possibilities of more optimizations. We have implemented one

such optimization which is cut-through routing. Cut-through routing has been

explained in Chapter 3. Optimizations like these can improve the performance

further from the solution of using simple detours. As we explain in Chapter 4,

cut-through routing can improve simple detour’s throughput, sometimes by

50% (Fig. 4.14).

In the medium term, the identification of these inefficiencies may encour-

age cloud-storage providers to add additional POPs or gateways to their in-

ternal networks. Universities and institutions with the appropriate means can

provide routing detours to use research networks or vendor POPs more effec-

tively, without having to convince external parties (such as Internet Service

Providers) to change their routing configurations. And, finally, our group plans

to expand the functionality of our routing detours to deal with firewall bottle-

necks (like Science DMZ) and to monitor and bypass dynamic bottlenecks on

the WAN, as future work. We argue that careful examination of network traffic

is useful for large organizations with multiple POPs. Along with meaningful

and substantial knowledge of network traffic (like the information of higher

share of cloud-storage traffic in a particular network), extensive experimenta-

tion of the networking infrastructure (such as done in our work) can lead to

potential performance benefits.

3

Chapter 2

Background and Related Work

2.1 Background

In this section, we present some details of personal cloud-storage services and

how we conceived of the idea of designing a special-purpose overlay network

for personal cloud-storage services. We also explain the importance of such

an overlay network in the context of modern network architecture such as the

Science DMZ [5].

Personal cloud-storage providers provide application programming inter-

face (API) for developers to build applications, implementing different func-

tionalities of the cloud-storage. The cloud-storage providers also develop client

applications for mobile devices, desktops, personal computers (PCs) to upload,

download and synchronize local files and folders to the cloud-storage. For ex-

ample, Google Drive 1, Dropbox 2, Microsoft OneDrive 3 have their own client

applications for Android, iOS and desktop operating systems (OSes). The

client applications for each of these services are different, based on the OS

of the client-machine. Therefore, the APIs which are serviced from a cloud-

storage server, are based on generalized web-based requests to serve queries

from all types of clients. These web-based requests are mostly Hypertext

Transfer Protocol (HTTP)-requests.

HTTP is a widely used application layer protocol for transferring different

1https://www.google.com/drive/download/
2https://www.dropbox.com/install
3https://onedrive.live.com/about/en-ca/download/

4

types of content (e.g., files, web-pages, etc.) over the Internet. HTTP has

defined certain methods (e.g., GET, PUT) which are used to specify a set of

actions. For example, GET is used to request data from the server without any

other effect. Personal cloud-storage services use these types of HTTP requests

to serve the files to the client applications through their set of APIs.

Most of the personal cloud-storage providers use these HTTP requests in

a RESTful architecture [8]. Representational state transfer (REST) is an ar-

chitectural design for web-based services. It has a set of constraints that need

to be followed by the applications, to be considered as REST ful. For ex-

ample, one constraint is supporting Stateless protocol. In Stateless protocol,

the client’s session is not stored on the server. Rather, whenever the client

communicates with the server, it contacts the server with all the required infor-

mation including the session state. However, the server can transfer a client’s

state internally (e.g., to a database) for authentication and other purposes.

Dropbox, Google Drive and OneDrive - all of them use such RESTful HTTP

request-based APIs.

For authentication purposes, major cloud-storage providers use the OAuth2

[10] authorization standard. OAuth2 simplifies and builds on the OAuth proto-

col. Although the specific implementations of OAuth2 may differ for different

cloud-storage providers, the core idea remains the same. The server issues

access tokens to the client applications on behalf of the developer (or the user

of the applications). The access token is then used by the applications to au-

thenticate and access certain services (such as cloud-storage APIs) from the

cloud-storage servers.

Most of the previous research [7, 15] concerning personal cloud-storage

providers, have investigated the client applications, rather than the cloud-

storage APIs. Since many people use these client applications, it is worthwhile

to look at these applications closely. However, when we are monitoring the

client applications, in reality, we do not exactly know what we are benchmark-

ing. In other words, it becomes a black-box testing where the black box is the

client application. The client applications may have special set of permissions,

features, implementations based on many factors such as the OS. For example,

5

previous research has shown that Dropbox provides de-duplication in its client

[7]. But, we have not found any evidence of its de-duplication feature through

its publicly available APIs. Therefore, those kinds of special features may only

be available to the clients. We chose to benchmark the APIs because we could

then customize the uploading mechanism, if needed. As we have implemented

detour routing and cut-through routing, we had to use the APIs to develop

our own programs for those routing mechanisms. Also, we did not want a

black-box type of benchmarking mechanism, since that would not help us give

any insight about how the transferring of files work. Here, a pertinent question

could be why we decided to benchmark personal cloud-storage and not some

other types of services.

Drago et. al. have shown that personal cloud-storage network traffic now-

a-days accounts for as much as one-third of YouTube traffic in university-

campuses [6]. On the one hand, this proportion of traffic is a significant amount

of the whole network traffic. On the other hand, Dart et. al. have shown that

in today’s world, network bottleneck could be avoided if we can treat certain

types of traffic specially [5]. A significant share of network traffic (such as

cloud-storage network traffic) is a good candidate to be treated specially in

the network, rather than generally with all other types of network traffic.

Therefore, we decided that the cloud-storage services should be the type of

network traffic to carry forward our experiments.

To mitigate routing inefficiencies on the Internet and improve the perfor-

mance of the cloud-storage services, we revisited the ideas of overlay network-

ing [12, 1]. Although overlay network is an old concept, it becomes important

in the context of the new Science DMZ [5] network architecture. The Sci-

ence DMZ design proposes deployment of special-purpose data transfer nodes

(DTNs) in Local Area Networks to ensure high-speed data-transfer in Wide

Area Networks. DTNs are special machines configured for high-speed data-

transfer. These machines sit somewhere in between a network route. This

is why we call the DTNs also as the intermediate nodes. These terms are

used interchangeably through out this thesis. In case of Science DMZ, DTN

is confined to the local area network. We extend the idea of DTN and make

6

we explain in Chapter 4, using the DTNs as a part of the detour routing may

improve the speed of data-transfer in many cases.

There are also other benefits of using the DTNs. There can be optimiza-

tions and improvements made in the DTNs. One example of such optimiza-

tions is implementing cut-through routing [14]. We discuss the implementation

of cut-through routing more in Chapter 3.

We have conducted our experiments on the PlanetLab experimental plat-

form. PlanetLab is an well-known platform where thousands of nodes across

the globe are connected. We have chosen PlanetLab because "One of Plan-

etLab’s main purposes is to serve as a testbed for overlay networks." 4. Our

experimental set-up on PlanetLab has been described in Sec. 3.2.

2.2 Related Work

The performance of cloud-storage providers has been studied in the past from

the client-side point-of-view by many researchers in the past. Most of the

previous work focus on the specific details of the client applications of the

cloud-storage providers and improvements concerning these applications. In

this section, we provide an overview of the previous work in this area and

distinguish our work from the previous research.

Li et. al. examined the data synchronization traffic for the client applica-

tions of six cloud-storage providers, Google Drive, OneDrive, Dropbox, Box,

Ubuntu One and SugarSync [15]. The authors coined a novel metric, namely

Traffic Usage Efficiency, to compare different cloud-storage services. They

intercept and monitor the file-synchronization traffic for both desktop and

mobile client applications. They make some important observations regard-

ing the synchronization traffic such as more number of small files translates

into poor TUE, the synchronization traffic is not optimal for several major

players in personal cloud-storage services, and it is financially burdensome not

only for the users but also for the cloud-storage providers. Although these

observations and probable improvements are important, implementing these

4https://www.planet-lab.org/about

8

suggestions require the involvement of the cloud-storage providers. Therefore,

users of the these cloud-storage providers cannot actively do much according

to these observations. However, following our experimentation, large organiza-

tions with multiple locations of presence or cohort of organizations can build

their own overlay network to rip out throughput benefits for cloud-storage

network-traffic. Our experimental set-up is discussed in more details in Chap-

ter 4.

Drago et. al. characterize network traffic to the cloud-storage providers,

mainly Dropbox, by doing passive measurements from different locations in

Europe [7]. The authors first establish that Dropbox is more popular than

other cloud-storage providers in the examined locations. However, it is wor-

thy to note that Google Drive and OneDrive (previously, Sky Drive) were

just launched when the experiments were conducted. Since then, Google has

started providing unlimited storage in Google Drive for its Google Apps Edu-

cation services. Sky Drive has also improved their services in different aspects,

such as user-interaction, advanced set of APIs. These factors may have been

encouraged greater adoption of these services. Another observation made by

Drago et. al. is that the share of Dropbox traffic is equivalent to one-third

of YouTube traffic in university campuses [7]. As explained in the previous

section, the knowledge about the Dropbox’s traffic share has encouraged us to

experiment with the cloud-storage network traffic.

Apart from the client-side performance measurements, there is also re-

search on the cloud-storage services from a server-side point-of-view. For ex-

ample, Wang et. al. investigated the cause of synchronization delay in the

cloud-storage services like Dropbox [20]. They found that the virtualized en-

vironment in Amazon EC2 and the segregation of storage and computation

have severe effect on the delay-issues. Furthermore, Bergen et. al. provide

a performance analysis of Amazon AWS [3] which is used by cloud-storage

providers and applications. They show in their paper how the improvements

in the server-side of the cloud-storage providers can be overridden by the client

bandwidth and related factors on the client-side. It is important to note that

the implementation of any suggestions for the improvement on the server-side

9

needs the intervention of the cloud-storage providers which are usually large

companies, reluctant to make quick changes or fixes on the server-side.

Our work is different from various attempts to use multiple network paths

simultaneously (e.g., Begen et. al [2]) to improve latency, loss, or other proper-

ties. Most of these works target the streaming media contents. Therefore, they

also focus on the media encoding strategies and optimizations. Additionally,

these papers talk about using more than one path for delivering the contents

to the clients because the single path is often not the best one. However, our

presented ideas of routing detours pick a single path, known for improved per-

formance to a particular cloud-storage provider. Future use of multiple paths

would require changes to the cloud-storage provider’s API significantly.

The main concept behind our proposed design of detour routing is related

to the idea of overlay networking [1, 12]. Overlay network is an well-established

concept where multiple nodes form an overlay on top of the existing networking

infrastructure. Forming overlay is beneficial because it has existing knowledge

of the network and its problems. Therefore, it can get over the problems

to accomplish efficiency. Resilience Overlay Network or RON [1] is used to

provide flexibility in the presence of networking problems such as link outages,

lower throughput, routing anomalies, etc.

RON is generally applied on the application layer of the networking stack.

The idea of overlay networking has been applied to many kinds of systems

such as media streaming [19] [22], peer-to-peer network schemes [17] [4] [16].

Many of them try to ameliorate the longer latency issues.

Ideas of overlay networking now need a careful revision to be applied on

different applications because of the emergence of new network designs like the

Science DMZ [5]. Dart et. al. propose the Science DMZ network architecture

which enables high-speed data-transfer. The Science DMZ network model rec-

ommends a set of network configurations, security suggestions, performance-

based tools to be deployed on the local area network. The authors also show

that their recommendations are useful in detecting networking problems in

different networks such as universities, research labs. One of the important

recommendations made in the Science DMZ paper is to deploy a special node

10

at the terminal of local area network. This special node is configured to trans-

fer data in high speed, and hence called a data transfer node (DTN). We

conceptualized the idea of DTNs to implement it in Wide Area Networks in

our work, instead of confining it to local area network as it has been in the

Science DMZ work.

In the DTNs, we have implemented one improvement in the form of cut-

through routing [9]. Normally, a DTN would not start transferring a file to

the destination until the whole file is received in the DTN from the source.

This technique of file-transfer is called Store-and-Forward. However, in cut-

through routing, the DTN starts the file-transfer even though the whole file

is not present in the DTN. The DTN transfers the available part of the file to

the destination. In the meantime, the source machine also transfers the rest

of the file to the DTN. This technique of simultaneous data-transfers is called

cut-through routing.

Another use of DTNs and overlay networking, although not in this thesis, is

to address latency anomalies such as the Triangle Inequality Violation (TIV).

The Triangle Inequality is the geometrical property which states that the sum

of the length of two sides of a triangle is greater than the length of the other

side of the triangle. Intuitively, one expects the most direct network path to

have less latency than a path which covers a greater geographical distance.

However, previous work has shown that TIV for latency exists on the Internet

[23] [21] [13]. Zheng et. al. make the point that TIVs can be exploited for

performance improvments [23].

However, TIV is not applicable for bandwidth. Bandwidth is not inherently

a property of the distance between nodes and depends on other factors such

as networking policies, infrastructure and other design decisions. In contrast,

round trip time (i.e., latency) often depends largely on the distance between

two nodes. In our work, we discover routing inefficiencies on the Internet, and

show that we can improve the bandwidth of a particular type of network traffic

(cloud-storage traffic) by choosing an alternate route.

11

Chapter 3

Experimental Set-up

In this chapter, we describe some details of the experimental set-up and also

some of the related information. We first present some of the file-transfer APIs

and describe how they work. It is important to understand the mechanisms

of these APIs for different reasons such as enabling optimizations. We then

show our experimental design in Sec. 3.2. Furthermore, we also delineate how

cut-through routing works in our design scenario.

3.1 Cloud-storage APIs

Using the RESTful APIs, developers can access certain web-services from the

cloud-storage providers. Programming languages which support the HTTP

requests (e.g., Java, Python, etc.) can be used to access these APIs. For our

experiments, we have used Java as our programming language and used the

official libraries released by Google and Dropbox. For OneDrive, we used and

modified an open-source Java library 1 as OneDrive does not have any official

Java client library during the time of our experiments. For our experiments,

we focus on the file-transfer operations in the API libraries, i.e., uploading

a file and downloading a file from the server. We discuss the details of a

few Dropbox APIs. Google Drive and OneDrive APIs follow almost similar

mechanism.

The Core Dropbox API has enabled the developers to upload and download

files by using the HTTP requests. The Core APIs have other functionalities as

1https://github.com/tjeerdnet/OneDriveAPI

12

Table 3.1: Dropbox File-transfer APIs in Java Client Library.

Function Name Description Note
uploadFile Uploads a specified

local file to the
remote Dropbox
server

If the file-size is greater
than 8MB, it internally
uses chunked-upload
APIs to upload the file
with chunk-size of 4MB.

getFile Downloads a remote
file from Dropbox
server

No mechanism of using
multiple chunks

chunkedUploadFirst,

chunkedUploadAppend,

chunkedUploadFinish

Uploads a single file
in multiple chunks

An upload ID is
set when the first
chunk is uploaded via
chunkedUploadFirst.
Subsequent chunks
are sequentially
appended with
chunkedUploadAppend,
corresponding to the
upload ID.

well. We will be concentrating on upload and download functions only, because

these are the major file-transfer operations. We have used the Java Client

API 2, officially developed by Dropbox. Table 3.1 summarizes the functions

that we have used from the Java client library.

uploadFile and getFile are two straightforward functions which are used

for uploading and downloading a file. These functions take the remote-server

file-path and local file-path for file-transfer operations. For example, the fol-

lowing code snippet shows how to upload a file to Dropbox using uploadFile.

File localFile = new java.io.File("myLocalFile.txt");

FileInputStream inputStream = new FileInputStream(localFile);

String remoteFilePath = "/myRemoteFile.txt";

DbxEntry.File uploadedFile = DBclient.uploadFile(remoteFilePath,

DbxWriteMode.force(),

localFile.length(),

inputStream);

2https://github.com/dropbox/dropbox-sdk-java

13

Additionally, Dropbox provides an alternative way to upload a file. De-

velopers can split a file in multiple chunks and upload those separate chunks

sequentially. This is achieved by using the function chunkedUploadFirst. The

detailed mechanism of chunked-upload is explained later in Sec. 3.1.1. Impor-

tant point to be noted is that the normal file-uploading function, uploadFile

falls back to chunked-upload whenever file-size is greater than 8 MB. We dis-

covered this behavior when we explored the source-code of uploadFile. In

case of the fall–back option of uploadFile, it uses 4 MB chunks to upload the

same file. In our opinion, Dropbox employs this kind of mechanism to increase

the reliability of its API. If there is an interruption while uploading a big file

without any chunks, the uploaded bytes up to the point of interruption would

be wasted. That is why chunked-upload is a safer option. However, Dropbox

does not have an option to download files in multiple chunks. This strategy of

using direct upload via uploadFile for smaller files is specific to Dropbox, and

neither to Google Drive nor OneDrive. Google and OneDrive have separate

APIs for chunked and direct upload.

3.1.1 Details of Chunked-upload Mechanism

Chunking mechanism provides a safer option to upload a file in multiple chunks

so that even if there is an interruption during the upload, we do not lose much

of the previously uploaded bytes (hence, bandwidth). The size of the chunks

is also important for throughput. Higher throughput can be obtained using

larger chunks. However, in case of interruption, we will lose more with large-

sized chunks.

Fig. 3.1 explains the mechanism behind chunked-upload of Dropbox. In

this figure, the edges represent requests or responses, and the rectangular

boxes are nodes. In case of client to server requests, labels have structures like

: function-name, parameters. For example, chunkedUploadAppend request

has 3 parameters. They are uploadID, remote offset (a number), new chunk

(only the size of the chunk is written inside the third-brackets in the figure).

Chunked-upload starts with a function call to chunkedUploadFirst. This

function takes the first chunk as parameter and returns an upload identifier

14

from the request of chunkedUploadAppend with its own saved offset. If both

of them matches, the chunk is then appended to the server, and the server

offset is increased by the size of the current chunk. In the example in second

sub-figure, the parameter offset (10) and the actual remote offset (which is also

set to 10 inside “Server” box, previously by chunkedUploadFirst) matches.

Therefore, the server successfully appends the chunk. It sends -1 to client as

an acknowledgement of success. The server offset is then increased by 15 (size

of current chunk), which can be seen in “Server” box of the third sub-figure.

In the third sub-figure of Fig. 3.1, the client sends a wrong remote offset

(30) as its parameter. This does not match with 25 which is the actual remote

offset in the server, set by the previous step. In case of wrong and unmatched

offset such as this one, the Dropbox server discards the chunk and returns the

actual offset from the server (which is 25 in our case). Finally, in the last

sub-figure the client sends the correct offset 25 to the server. Then, the server

accepts the chunk and returns -1 as usual.

The client finally has to call chunkedUploadFinish with the upload ID

to complete the uploading process. Then the server commits the file into

itself, and we can access the same file in our Dropbox folder. This final

chunkedUploadFinish call has not been shown in the figure.

3.1.2 Discussion and Examples

Traditionally, users utilize the official client applications of different cloud-

storage providers to upload, download their files to or from the cloud-storage

servers from or to their local machines. The client applications are available

for different OSes. For example, Dropbox has their client applications for

desktop OSes 3 (Windows, Linux, Mac) and mobile OSes 4 (iOS, Android,

Windows Mobile). It also supports web-browsers in both mobile and desktop.

On the one hand, these client applications may internally use the cloud-storage

APIs to connect to the cloud-storage servers. On the other hand, application

developers directly use the cloud-storage APIs to connect to the cloud-storage

3https://www.dropbox.com/install
4https://www.dropbox.com/mobile

16

servers for their own applications. Therefore, these APIs are the underlying

layer of connections between the clients and the cloud-storage servers, most

possibly in both the cases. Thus, we selected these APIs to measure the

performance of personal cloud-storage services.

We have already given an example of code-snippet for uploading file to

Dropbox. Following is a similar example for Google Drive:

java.io.File localFile = new java.io.File("myLocalFile.txt");

String remoteFilePath = "myRemoteFile.txt";

com.google.api.services.drive.model.File fileMetadata =

new com.google.api.services.drive.model.File();

fileMetadata.setTitle(remoteFilePath);

InputStreamContent mediaContent = new InputStreamContent(null,

new BufferedInputStream(

new FileInputStream(localFile)));

Drive.Files.Insert insert = driveService.files().

insert(fileMetadata, mediaContent);

MediaHttpUploader uploader = insert.getMediaHttpUploader();

uploader.setDirectUploadEnabled(true);

com.google.api.services.drive.model.File googleModelFile =

insert.execute();

Next, we provide an example for OneDrive. As it has been implemented

and customized from a third-party code-base, we have not developed all the

features for this library. For example, in the following case, the remote file

name is not given and assumed to be the same as the local file name.

java.io.File localFile = new java.io.File("myLocalFile.txt");

net.tjeerd.onedrive.json.folder.FileResponse oneDriveFile =

17

oneDriveClient.uploadFile(localFile, "");

//second parameter is the folder ID

//where empty means home folder

3.2 Experimental Design

Now, we explain our idea on how we propose to transfer files faster for cloud-

storage services. The idea has been presented schematically in Fig. 3.2. In the

figure, the User Machine is the client machine or the source machine from (to)

where we need to upload (download) files to (from) the cloud-storage servers.

Cloud-storage APIs can directly be used for the file-transfers as described ear-

lier and shown in the figure by the horizontal line between User Machine and

Cloud-Storage Server. However, we have observed that uploading directly to

cloud-storage servers are sometimes slow. This can happen due to various

reasons, such as low bandwidth, routing inefficiencies and other unknown bot-

tlenecks. As we explain in our experimental results, these types of anomalies

can cause significant performance degradation. In those cases, an Intermedi-

ate Node becomes crucial. An Intermediate Node can help a User Machine in

different ways, for example, by caching or by its higher data-transfer speed.

We have observed in our experiments that if we upload a file via certain in-

termediate node(s), then we can achieve higher throughput (lower time to

transfer files) than uploading via a direct route to the cloud-storage servers.

To upload files via the detour routes, we use scp5 to transfer files between a

User Machine and an Intermediate Node and lastly use cloud-storage APIs to

upload files finally to the cloud-storage servers from the Intermediate Nodes.

The detour has been shown in Figure 3.2 by the curved lines from the User

Machine node towards the Cloud-Storage Server node via the Intermediate

Node. Intermediate Node can also be called Data Transfer Node (DTN) since

its main motive is to transfer files or data.

It should be noted that the files on the Intermediate Node(s) are always

deleted before benchmarking, so there is no benefit gained from the file-transfer

5http://linux.die.net/man/1/scp

18

(Dropbox), Mountain View, CA (Google Drive) and Seattle, WA (OneDrive).

Fig. 3.3 shows the geographical locations (obtained from traceroute and IP

Location Finder [11]) of all the tested clients, intermediate nodes, and cloud

storage servers in our experiments.

3.3 Cut-through Routing

Cut-through routing is a known and straightforward concept in the area of

data-transfer and network routing. It is an effective way to speed up the data-

transfer by harnessing the pipelining and parallelism aspects in networking.

We describe the cut-through routing below. We also explain how we use cut-

through routing in our design scenario to increase the overall throughput.

In our experiments, we have seen that sometime it is beneficial to transfer

the data via an intermediate node or DTN instead of directly uploading to the

cloud-storage servers from the client nodes. To transfer a file via intermediate

node, we first move the whole file from the client machine to the intermediate

node. After the whole file is completely transferred to the intermediate node,

we start uploading the file finally to the cloud-storage servers. This is called

Store-And-Forward Routing. It is schematically presented in the left side of

Fig. 3.4. In this process, we need to wait for the whole file to become available

on the intermediate node or DTN before we can transfer it to the cloud-storage

server. However, a part of the file may already be available on the intermediate

node, even if the file is not completely transferred from the client machine.

Cut-through routing takes advantage of the availability of the partial file on

the intermediate node.

In cut-through routing (presented schematically in the right side of Fig. 3.4),

we start transferring a file from the DTN to the cloud-storage servers, even if

the full file is not available. We keep uploading the available part of the file

from the DTN while the unavailable part of the file is being transferred from

the client node. We use scp to transfer data between the intermediate node

and the client machine. When scp transfers a file from source to destination,

it creates the final file in the destination machine and keeps appending more

21

cumulated enough data to be transferred to the Google Drive server from the

intermediate node. For these reasons, we modified Google Drive’s open source

API, to continuously monitor the transferred file in the intermediate node, for

reasons such as the size of the available data crosses the threshold of 256 KB

and then, we will be able to upload a part of the file to the Google Drive

server.

We have implemented cut-through routing and documented the perfor-

mance of it in every examined client node and intermediate node locations. As

desired and explained in Chapter 4, cut-through routing increases the through-

put in almost every case.

3.4 Collection of PlanetLab Statistics

While we were conducting our experiments in the PlanetLab nodes, we dis-

covered some interesting results in this platform. We describe and explain

those results in Chapter 4. Briefly, we observed that detours can improve the

performance from client-to-cloud-storage servers significantly for some client

nodes and some cloud-storage providers (detours alone and with other tech-

niques such as cut-through routing). This encouraged us to investigate more

such scenarios. Therefore, we chose 20 active nodes in PlanetLab to conduct

brief experiments. As PlanetLab is a fairly old and established experimental

platform, many of its nodes are often not maintained and become inactive.

We chose only the first 20 active nodes that we found in North America and

have no location bias in the selection process. In those 20 nodes, we mea-

sured the transfer-times for a 10 MB binary file for all those 20 nodes, using

scp. We also measured the uploading time to all three cloud-storage providers

(Dropbox, Google Drive, OneDrive) from those 20 PlanetLab nodes, using the

cloud-storage APIs. This helps us to recognize beneficial detours among the

20 PlanetLab nodes, if there are any. Detailed results of these measurements

are presented in next chapter in Sec. 4.6.

23

Chapter 4

Results and Analysis

In this chapter, we present our results from the experiments conducted on

PlanetLab nodes spread across multiple locations in North America. We ex-

plain our findings regarding network speed to three popular personal cloud-

storage services including Dropbox, Google Drive and Microsoft OneDrive.

Our experimental results demonstrate that the common intuition that net-

work speed to cloud-storage providers largely depends on the proximity is not

always true—sometimes a detour can save transfer time, although the relative

benefits of detour routing may vary for different clients, services, and even file

sizes. We present our results for three case studies of uploading files from (A)

University of British Columbia (UBC), (B) Purdue University, and (C) Uni-

versity of California, Los Angeles (UCLA) to the mentioned storage services,

respectively, and summarize the relative performance of various routes for dif-

ferent file sizes in Table 4.1. We also present Table 4.5 which captures the

experimental best routes for all of the three client-locations and cloud-storage

services in geographical maps.

While detours may not always improve the throughput, they open up the

possibility of using an intermediate node between the client machine and cloud-

storage server. In the intermediate node, we have added an optimization

called cut-through routing which is already explained in the previous chapter.

Briefly, cut-through routing enables simultaneous data-transfers to and from

the intermediate node. The results of enabling cut-through routing has also

been discussed later in Sec. 4.5.

24

Table 4.1: Summary of the average file transfer times from three client lo-
cations to the three cloud-storage providers, using different routes. See also
Table 4.5.

Clients
Services

Google Drive Dropbox OneDrive

(A) UBC Fastest: via UofA
Fast: Direct
Slowest: via
UMich

Fastest: Direct
Fast: via UofA
Slowest: via
UMich

Fastest: Direct
Fast: UofA
Slowest: via
UMich

(B) Purdue Fastest: via UofA
and via UMich
Slowest: Direct

Fastest: Direct
Slowest: via UofA
and via UMich 1

Fastest: Direct
Slowest: via UofA
and via UMich 2

(C) UCLA Fastest: Direct
Fast: via UofA
Slowest: via
UMich 3

Fastest: Direct
Fast: via UofA
Slowest: via
UMich

Fastest: Direct
Fast: via UofA
Slowest: via
UMich 4

1

Exceptions: 40 MB - Slowest: via UMich, Fast: Direct, Fastest: via UofA,
60 MB - Slowest: Direct, Fast: via UMich, Fastest: via UofA

2

Exceptions: 10, 60 MB - Slowest: Direct and via UMich, Fastest: via
UofA, 100 MB - Slowest: Direct, Fast: via UofA, Fastest: via UMich

3

Exceptions: 10, 20 MB - Slowest: via UofA, Fast: Direct, Fastest: via
UMich, 100 MB - Slowest: via UofA, Fast: via UMich, Fastest: Direct

4

Exceptions: 10 MB - Slowest: via UofA, Fast: via UMich, Fastest: Direct

4.1 UBC: Direct Uploads vs. Detours

First, we present our results measured from the PlanetLab node at the UBC.

We upload our test files from UBC to Dropbox, Google Drive, and OneDrive,

respectively. Our baseline is to use the APIs of these services to upload files

directly from UBC to their storage servers. We compare such direct uploads

with detoured transfers which route traffic via another intermediate node, as

has been described in Chapter 3. For this experiment, our candidate interme-

diate nodes include our computing cluster (non-PlanetLab) at the University

of Alberta (UofA or UAlberta) and a PlanetLab node at the University of

Michigan (UMich). We only consider one extra hop in our experiments.

Fig. 4.1 compares the performance of a direct upload from UBC to Google

Drive, versus detoured uploads via UofA and UMich. For all file sizes, the

25

Table 4.2: UBC-to-Google Drive Average Transfer Times through different
routes.

File size (MB) Direct (s) via UofA (s) [%] via UMich (s) [%]
10 9.5 6.5 [-31.5%] 15.4 [+62.9%]
20 18.6 8.2 [-55.5%] 27.7 [+48.9%]
30 28.7 13.8 [-51.7%] 39.1 [+36.6%]
40 36.9 17.4 [-52.8%] 51.9 [+40.7%]
50 42.3 19.4 [-54.1%] 63.7 [+50.7%]
60 51.1 22.0 [-57.0%] 80.7 [+57.9%]
100 86.9 35.8 [-58.8%] 132.2 [+52.1%]

via UofA reduces the file-transfer time by 58.8% which is given inside the

parenthesis in third column. But detour through UMich increases the transfer-

time by 52.1% for 100 MB file. Similar cases can be observed for other file sizes.

Therefore, we can conclude that UofA-detour is able to improve the transfer

times by more than 50% in almost all of the cases, while UMich-detour is not

able to.

In order to understand UofA-detour’s enhanced performance over direct

route, we first look at the geographical locations of UBC, UofA and Google

Server. Through traceroute to Google Drive from UBC (Fig. 4.3) and from

UofA (Fig. 4.4), we can see that all three direct and indirect upload modes lead

to the same Google Drive server located in Mountain View, CA, USA, based

on IP Geo-location services [11]. From Fig. 3.3, we can see that going from

UBC to Google Drive in Mountain View via UofA is a significant geographical

detour. Yet, the detour has a higher bandwidth than the direct route. This

observation of a detour’s possibility of having more bandwidth implies that

geographical proximity or a direct route may not necessarily indicate higher

upload bandwidth than detoured transfers. Such an observation also brings

about the opportunities to increase network speed by judiciously choosing an

intermediate routing node in an overlay network for cloud storage services.

Moreover, even if the routes to be compared are both direct routes, Fig. 4.1

reveals that geographic proximity may not be positively correlated with the

network speed. For example, although UBC is located closer to the same

Google Drive server in Mountain View than UofA is, UBC has a slower upload

27

Figure 4.4: UofA to Google Drive Server traceroute.

traceroute to www.googleapis.com (216.58.216.138)
 1 ww-fw.cs.ualberta.ca (129.128.184.254)
 2 * * *
 3 172.26.244.22 (172.26.244.22)
 4 172.26.244.17 (172.26.244.17)
 5 core1-sc.backbone.ualberta.ca (129.128.0.10)
 6 gsb-asr-core1.backbone.ualberta.ca (129.128.0.21)
 7 uofa-p-1-edm.cybera.ca (199.116.233.66)
 8 edmn1rtr2.canarie.ca (199.212.24.68)
 9 vncv1rtr2.canarie.ca (199.212.24.1)
10 * * *
11 209.85.249.32 (209.85.249.32)
12 216.239.51.159 (216.239.51.159)
13 sea15s01-in-f138.1e100.net (216.58.216.138)

link to the Google Drive server from that middlebox, whereas the traffic from

UofA is directly transferred to the Google Drive server through an unknown

hop (denoted by *** in 10th hop).

However, intermediate node(s) must be carefully chosen to increase the

transfer performance to cloud-storage providers. The performance gain ob-

served for one service may not appear in another service. Fig. 4.2 plots the

performance of file uploads from UBC to another cloud storage service, namely

Dropbox. We can see here that direct upload outperforms both indirect routes

via UofA and UMich. Thus, in this case, choosing UofA or UMich as an in-

termediate node could be a worse choice and is unlikely to yield performance

gain. Similar results are observed for OneDrive, and hence, are not plotted

here for brevity.

4.2 Purdue: Choice of Detoured Node

We now discuss the experimental results from Purdue University, with the

same candidate intermediate nodes UMich and UofA, for all three cloud storage

providers tested before. Tests in Purdue reveal more on how the choice of

the intermediate node in detour routing is important. Purdue is located in

the eastern part of North America, which is geographically far away from our

previous point of experiment, UBC. However, similar to UBC for Google Drive,

a detour for Purdue results in faster uploads (Fig. 4.5). And, both the detours

(i.e., through either UofA and UMich) are faster than a direct upload, which is

29

Table 4.3: Purdue-to-Google Drive Average Transfer Times through different
routes

File size (MB) Direct (s) via UofA (s) [%] via UMich (s) [%]
10 98.9 17.6 [-82.2%] 30.6 [-69.0%]
20 288.2 70.5 [-75.5%] 83.6 [-71.0%]
30 480.9 120.7 [-74.9%] 111.4 [-76.9%]
40 585.5 94.4 [-83.9%] 173.5 [-70.4%]
50 557.9 138.0 [-75.3%] 126.8 [-77.3%]
60 610.9 142.1 [-76.8%] 183.8 [-69.9%]
100 748.0 195.9 [-73.8] 184.1 [-75.4%]

loads from Purdue to Dropbox and OneDrive, as shown in Fig. 4.6 and Fig. 4.7,

respectively. The relative performance of direct uploads vs. detoured uploads

here is dependent on file sizes. In Fig. 4.6, except for 40 MB and 60 MB

files, detoured uploads (2nd and 3rd bar) have higher upload time than direct

upload (1st bar). Therefore, detoured transfers via intermediate nodes are

generally no better than direct uploads, except for those two file-sizes. For

40 MB files, detoured uploads via UofA (112.2s) outperform direct uploads

(131.6s), although a detour via UMich (190.1s) does not. For 60 MB files,

both detoured uploads via UofA (174.5s) and UMich (203.8s) outperform di-

rect uploads (212.7s).

Similarly, for file uploads from Purdue to OneDrive, as shown in Fig. 4.7,

the relative gain from detoured transfers also varies as file sizes change. More

evidently, for the case of OneDrive, detoured transfers via intermediate nodes

can bring more benefits for larger files. For, 60 MB and 100 MB files, the

detoured uploads (2nd and 3rd bar in Fig. 4.7) have lower transfer time, but for

10–50 MB files, they have higher transfer time. As a result, in such scenarios

where the relative performance of different routes also depends on the size

of the file to be transferred, it is tricky to decide between the direct route

and detours, and choose the best intermediate node for a high speed detoured

transfer.

Furthermore, we have not only evaluated the relative performance of differ-

ent routes by the mean upload time taken, but have also recorded the variations

of the time measurements on each route. For example, in Fig. 4.6, with 40

31

Table 4.4: The mean and standard deviation of upload times (in seconds) from
Purdue. Same data as in Figures 4.6 and 4.7, but quantitatively for 60 MB
and 100 MB only.

File-size
(MB)

Type Mean (s) Standard devia-
tion

100

Dropbox (Direct) 177.9 36.0
Dropbox (via UofA) 237.8 56.1
Dropbox (via UMich) 226.4 50.5
OneDrive (Direct) 387.7 117.8
OneDrive (via UofA) 201.9 38.6
OneDrive (via UMich) 197.2 58.2

60

Dropbox (Direct) 212.7 74.9
Dropbox (via UofA) 174.5 50.2
Dropbox (via UMich) 203.8 26.9
OneDrive (Direct) 179.4 51.5
OneDrive (via UofA) 145.9 50.1
OneDrive (via UMich) 175.4 26.1

outgoing bandwidth of the above tested PlanetLab nodes did not form the

bottleneck in the corresponding experiments. However, we need to emphasize

that it is harder for the detoured transfer to improve the throughput where

the network bottleneck is the last mile bandwidth of the end host being tested.

The experimental results of uploading files from UCLA to Google Drive and

Dropbox have illustrated this phenomenon. Our measurement suggests that

the PlanetLab node at UCLA may have limited bandwidth. Fig. 4.8 shows the

performance of uploading files from UCLA to Google Drive. In that figure, the

bottom bars representing the file transfers from UCLA to all other locations

including the Google Drive server, UofA, etc., take a long time. In this case,

there is little chance to reduce transfer time by identifying faster detours,

since the network bottleneck is (we speculate) UCLA’s outgoing bandwidth

from that PlanetLab node. Similar observations are made for Dropbox and

OneDrive. We plot the results for Dropbox in Fig. 4.9 and skipped the results

of OneDrive for brevity.

34

4.5 Cut-through Routing Results

Cut-through routing has been already explained in Sec. 3.3. In this section,

we discuss the results of cut-through routing for every client location and

intermediate node locations. As desired, in most of the cases, cut-through

routing decreases the total transfer-time from simple detour routing time, if

a detour through an intermediate node is taken. However, the cut-through

detour routing may not always be the best choice.

It is worth pointing out that some of the results in this section are similar to

what we have seen in the previous sections in this chapter, but the experiments

were done in different time-frames. For example, we can compare the Figures

4.1, 4.10 and 4.11. In Fig. 4.1, the timings for UBC-to-Google Drive via UMich

(third bars) are taller than direct uploading time (first bars). This is similar

to what has been observed in Fig. 4.10 where second bars (representing the

simple detour of UBC-to-Google Drive via UMich) are taller than first bars

(representing direct route). Similarly, in Fig. 4.1, the timings for UBC-to-

Google Drive via UofA (second bars) are smaller than direct uploading time

(first bars), and in Fig. 4.11 as well, second bars (representing the simple detour

of UBC-to-Google Drive via UofA) is smaller than first bars (representing

direct route).

Fig. 4.10 and 4.11 demonstrate the comparison of performances from UBC

to Google Drive server for detours via UMich and UofA respectively, along with

their results for cut-through routing. These figures depict both the scenario

where cut-through routing can improve the performance and where it cannot,

compared to the throughput of direct route. To be precise, in Fig. 4.10, the

third bars are taller than the first bars for all file-sizes, and in Fig. 4.11, the

third bars are smaller than the first bars.

We now explain individual cases further. For the case of UBC-to-Google

Drive with a detour via UMich, the detour (second bars in Fig. 4.10) is not

beneficial, and takes higher time than direct uploading time (first bars in the

figure) for all file-sizes. However, employing cut-through routing mechanism

here decreases the transfer-time in a such a way that now transfer-time for cut-

38

Table 4.6: UBC-to-Google Drive Percentage of Decrement in Transfer time
of Only Detour and Detour with Cut-through over Direct route (February -
March 2016).

File
size
(MB)

Only
Detour

(UofA) %

Detour with
Cut-through
(UofA) %

Only
Detour

(UMich) %

Detour with
Cut-through
(UMich) %

10 -23.5 -34.2 +1.6 -12.3
20 -29.7 -49.0 +11.6 -4.1
30 -22.7 -58.1 +53.4 +39.1
40 -33.5 -51.2 +43.8 +24.3
50 -33.5 -50.7 +46.5 +27.5
60 -47.2 -59.3 +38.6 +18.3
100 -38.9 -67.9 +58.3 +25.5

Table 4.7: UBC-to-Dropbox via UofA transfer times (January - February
2016).

File size
(MB)

UBC to UofA
(s)

UofA to
Dropbox (s)

UofA-Detour +
Cut-through (s)

10 2.4 13.3 18.0
20 5.3 16.3 19.8
30 5.8 26.2 28.5
40 8.0 31.3 33.8
50 11.7 39.6 41.0
60 13.2 40.4 42.1
100 14.2 60.2 64.6

When cut-through routing is enabled, detour takes almost 34s which is closer

to the time to transfer the file from UofA to Dropbox (31s). Therefore we can

conclude that the slowest link affects the cut-through routing’s transfer time.

Somewhat similar result can be observed for UMich-detour in Table 4.8.

However, for UMich-detour, both of the intermediate links, UBC-to-UMich

and UMich-to-Dropbox have comparable transfer times. Hence, cut-through

can effectively decrease the transfer times of simple detours, nearly by 50%.

Although 50% improvement might look significant, it is still not comparable to

direct route timings, as it can be observed in Fig. 4.12. Therefore, cut-through

routing can only improve the performance to a certain extent, limited by the

slowest link in a path.

Fig. 4.14 and 4.15 show the results of cut-through routing for OneDrive

41

Table 4.8: UBC-to-Dropbox via UMich transfer times (January - February
2016).

File size
(MB)

UBC to UMich
(s)

UMich to
Dropbox (s)

UMich-Detour +
Cut-through (s)

10 12.4 9.5 16.6
20 23.9 19.7 27.2
30 34.8 34.8 40.2
40 46.1 40.8 52.9
50 57.2 56.2 71.1
60 68.4 47.0 72.8
100 113.0 76.0 116.3

in Fig. 4.16, 4.17, 4.18, 4.19, 4.20, 4.21, 4.22, 4.23, 4.24, 4.25, 4.26, 4.27.

Table 4.9: Classification of cut-through routing timings based on its compar-
ative performance with direct and simple detour timings

Client
location

UBC Purdue UCLA

Direct <
Cut-

through <
Simple
Detour

Google Drive(via
UMich)-F. 4.10,

Dropbox(via
UMich)-F. 4.12,
OneDrive(via

UMich)-F. 4.14

Google Drive(via
UMich)-F. 4.22

Cut-
through <

Simple
Detour <

Direct

Google Drive(via
UofA)-F. 4.11

Cut-
through <
Direct <
Simple
Detour

Google Drive(via
UofA)-F. 4.23

Direct <
Simple

Detour ∼

Cut-
through

OneDrive(via
UofA)-F. 4.27

44

Direct ∼

Cut-
through <

Simple
Detour

Dropbox(via
UofA)-F. 4.13

Dropbox(via
UMich)-F. 4.24,

Dropbox(via
UofA)-F. 4.25,
OneDrive(via

UMich)-F. 4.26
Cut-

through ∼

Simple
Detour <

Direct

Google Drive(via
UMich)-F. 4.16,
Google Drive(via

UofA)-F. 4.17

Cut-
through ∼

Simple
Detour ∼

Direct

OneDrive(via
UofA)-F. 4.15

Dropbox(via
UMich)-F. 4.18,

Dropbox(via
UofA)-F. 4.19,
OneDrive(via

UMich)-F. 4.20,
OneDrive(via
UofA)-F. 4.21

4.6 Detour Routing Statistics on PlanetLab Nodes

We have extensively studied 3 PlanetLab client locations (UBC, Purdue, UCLA)

and 2 intermediate nodes (UMich - PlanetLab, UofA cluster) in the previous

sections. However, we wanted to get a brief overview of the inefficiencies in

PlanetLab. Therefore, we have also experimented with 20 PlanetLab nodes to

find out probable beneficial detours in the platform in North America. This

experimentation also helps us pointing out that these types of efficiencies are

not only constrained to our selected 3 locations (i.e - UBC, UCLA, Purdue).

Rather, such anomalies do exist pervasively in a popular experimentation plat-

form like PlanetLab.

It is worth noting that these experimentations with 20 PlanetLab nodes

are not as extensive as the other experiments discussed in previous sections.

We only experimented with a randomly generated 10 MB file. That single file

has been uploaded from the client locations directly and through detours, to

the cloud-storage servers. Out of total 7 runs, average of the last 5 runs is

45

UCLA OkState, UTA,
UNebraska

UMich UMCP
Rutgers UMich, UWM,

Princeton,
OkState, UTA,
UMCP, USF

UMCP UMich, Princeton

UWash UOregon UBC UBC
UPitt UBC, UMich,

UCLA, Rice,
Rutgers, UOregon,

UWM, Boston,
Princeton,

OkState, Brown,
UTA, UNM,

UWash,
UNebraska,

UMCP, IUB, USF

Princeton,
OkState

IUB UMich, UWM,
OkState

UMich, UWM,
Princeton,

OkState, UTA,
UNebraska,
UMCP, USF

Rice UMCP OkState
Boston Rutgers,

Princeton, Brown,
UMCP, UPitt

UMich, Rice,
Rutgers, UWM,

Princeton,
OkState, Brown,
UTA, UNebraska,

UMCP, UPitt,
IUB, USF

OkState UNebraska
UTA UNebraska,

UMCP
UNM UBC, UMich,

Rutgers, UWM,
OkState, Brown,

UWash,
UNebraska,

UMCP
UOregon UBC

50

USF UBC, UMich,
Rice, Rutgers,

UWM, OkState,
Brown, UTA,
UNebraska,
UMCP, IUB

Brown OkState

51

Table 4.10: Classification of Cut-through timings based on the slowest links
among client-to-intermediate-node (C2I) and intermediate-node-to-
cloud-storage-server (I2CS).

Client-
node

location

Cut-through
time

proportional
to C2I time

Cut-
through
time pro-

portional to
I2CS time

Cut-
through
time pro-

portional to
both

Indecisive

UBC Google
Drive(via
UMich)-
F. 4.10,

Dropbox(via
UMich)-F. 4.12

Dropbox(via
UofA)-F. 4.11

Google
Drive(via
UofA)-
F. 4.11,

OneDrive(via
UMich)-
F. 4.14

OneDrive(via
UofA)-
F. 4.15

Purdue Google
Drive(via
UMich)-

F. 4.16, Google
Drive(via

UofA)-F. 4.17,
Dropbox(via

UMich)-
F. 4.18,

Dropbox(via
UofA)-F. 4.19,
OneDrive(via

UMich)-
F. 4.20,

OneDrive (via
UofA)-F. 4.21

UCLA Google
Drive(via
UMich)-

F. 4.22, Google
Drive(via

UofA)-F. 4.23,
OneDrive(via

UMich)-
F. 4.26,

OneDrive(via
UofA)-F. 4.27

Dropbox(via
UMich)-
F. 4.24,

Dropbox(via
UofA)-F. 4.25

53

Figure 4.30: Time to upload a 10 MB file from various PlanetLab locations to
Dropbox.

Figure 4.31: Time to upload a 10 MB file from various PlanetLab locations to
OneDrive.

59

Chapter 5

Summary and Conclusions

Cloud-storage services are becoming more and more popular day-by-day for

their conveniences and other advantages. However, their benefits are con-

strained by the bandwidths of users’ network connection. While normal users

may not have much control over the network to maximize the throughput, large

organizations may have that capability. Our presented work shows how cloud-

storage services are affected by the users’ network bandwidth and locations.

We also describe how the large organizations with multiple points of presence

can get benefits by examining their existing networking infrastructure.

As a cautionary tale and case study, we have identified some inefficiencies

in how traffic to well-known cloud-storage providers can vary significantly by

a factor of 5 or more, depending on the location of the source and sink of

the data. Using simple routing detours, we show how the client-to-cloud-

storage throughput can be improved by factors of over 3x, even with the

detour overheads. Although the specific inefficiencies in this paper might be

transitory, they do affect a growing class of traffic of data, namely traffic

between clients and cloud-storage providers. As part of the larger discussion

of data transfer nodes (DTNs) and overlay networks, our routing detours are

simple and effective for a contemporary use case.

Overlay networking is an well-established concept where researchers want

to take advantage of existing knowledge about a network. However, overlay

networking should be revisited because the emergence of new network design

pattern such as the Science DMZ network architecture [5]. Therefore, we

61

design the simple detours with DTNs and experimented on popular experi-

mental platform, PlanetLab to show that overlay networking can be applied

on cloud-storage network traffic for the opportunities of benefits.

We have also implemented one optimization (cut-through routing) inside

the DTNs to further improve the throughput of client-to-cloud-storage data-

transfer. Cut-through routing is able to decrease the total transfer times,

sometimes by 50% from the transfer times of simple detour. Although cut-

through routing may not always produce the best results (i.e - may not always

be better than direct routes), it mostly does not hurt the performance of simple

detours, as it can be seen in Sec. 4.5.

Cut-through routing is an example of optimizations between consecutive

nodes in a network path. We apply cut-through routing in a DTN which

coordinates between a client node and a cloud-storage server. However, there

are other types of optimizations which can be applied in a single DTN. We

discuss in Sec. 5.1 about such an optimization (caching) on which we are

currently working.

Furthermore, as future work, our group plans to expand the functionality

of our routing detours to deal with other bottlenecks (e.g., firewalls, like Sci-

ence DMZ) and to monitor and bypass dynamic bottlenecks on the wide-area

network.

5.1 Directions for Future Work

Apart from optimizations between multiple nodes, there are possibilities to

improve throughput by employing optimizations inside a node, in our case the

DTNs. Overall network throughput (client-to-cloud-storage throughput) can

further be improved by employing caching inside the DTNs. We are currently

working on caching block-level data inside the DTNs. Block-level caching is

especially advantageous when the same file is being uploaded multiple times

with a few modifications. In cloud-storage services, users often upload different

versions of same files such as log files of a process or a research experiment.

Block-level caching can be beneficial in those cases.

62

Another possible direction for future work is to automate the intermediate

node or DTN selection process, based on certain parameters. Right now, we

have pre-selected the intermediate nodes and presented a measurement study

for those nodes against some client node locations. However, the selection

of intermediate nodes can be made automatically based on file sizes, current

network-loads, etc. If an intermediate node is chosen based on selected set of

features, that might give more advantage than static or manual selection of

nodes. However, the selection algorithm needs to investigate the proper set

of parameters which affect the network throughput between client nodes and

cloud-storage services. Finding effective parameters to the intermediate node

selection algorithm and finally developing such an algorithm may encourage a

larger research project.

63

Bibliography

[1] D. Andersen, H. Balakrishnan, M.F. Kaashoek, and R. Morris. Resilient
Overlay Networks. In 18th Symposium on Operating System Principles
(SOSP), pages 131–145, Banff, Canada, October 2001.

[2] Ali C. Begen, Yucel Altunbasak, and Ozlem Ergun. Multi-path selection
for multiple description encoded video streaming. In Communications,
2003. ICC’03. IEEE International Conference on, volume 3, pages 1583–
1589. IEEE, 2003.

[3] A. Bergen, Y. Coady, and R. McGeer. Client bandwidth: The forgot-
ten metric of online storage providers. In Communications, Computers
and Signal Processing (PacRim), 2011 IEEE Pacific Rim Conference on,
pages 543–548, Aug 2011.

[4] Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Nick Lanham, and Scott
Shenker. Making gnutella-like p2p systems scalable. In Proceedings of
the 2003 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications, SIGCOMM ’03, pages 407–418,
New York, NY, USA, 2003. ACM.

[5] Eli Dart, Lauren Rotman, Brian Tierney, Mary Hester, and Jason Zu-
rawski. The science dmz: A network design pattern for data-intensive
science. In Proceedings of the International Conference on High Per-
formance Computing, Networking, Storage and Analysis, SC ’13, pages
85:1–85:10, New York, NY, USA, 2013. ACM.

[6] Idilio Drago, Enrico Bocchi, Marco Mellia, Herman Slatman, and Aiko
Pras. Benchmarking personal cloud storage. In Proceedings of the 2012
ACM Conference on Internet Measurement Conference, pages 205–212.
ACM Press, 2013.

[7] Idilio Drago, Marco Mellia, Maurizio M. Munafo, Anna Sperotto, Ramin
Sadre, and Aiko Pras. Inside Dropbox: Understanding Personal Cloud
Storage Services. In Proceedings of the 2012 ACM Conference on Internet
Measurement Conference, IMC ’12, pages 481–494, New York, NY, USA,
2012. ACM.

[8] Roy T. Fielding and Richard N. Taylor. Principled design of the modern
web architecture. In Proceedings of the 22Nd International Conference
on Software Engineering, ICSE ’00, pages 407–416, New York, NY, USA,
2000. ACM.

[9] D Holman, D Lee, et al. A survey of routing techniques in store-and-
forward and wormhole interconnects. Sandia National Laboratories Albu-
querque, New Mexico, 87185, 2008.

64

[10] IETF. The OAuth 2.0 Authorization Framework.
https://tools.ietf.org/html/rfc6749. Last accessed: 06-Mar-2016.

[11] IP Location Finder. https://www.iplocation.net/. Last accessed: 06-Mar-
2016.

[12] John Jannotti, David K. Gifford, Kirk L. Johnson, M. Frans Kaashoek,
and James W. O’Toole, Jr. Overcast: Reliable multicasting with on over-
lay network. In Proceedings of the 4th Conference on Symposium on Op-
erating System Design & Implementation - Volume 4, OSDI’00, pages
14–14, Berkeley, CA, USA, 2000. USENIX Association.

[13] Ryoichi Kawahara, Eng Keong Lua, Masato Uchida, Satoshi Kamei, and
Hideaki Yoshino. On the quality of triangle inequality violation aware
routing overlay architecture. In INFOCOM 2009, IEEE, pages 2761–
2765. IEEE, 2009.

[14] Parviz Kermani and Leonard Kleinrock. Virtual cut-through: A new com-
puter communication switching technique. Computer Networks (1976),
3(4):267–286, 1979.

[15] Zhenhua Li, Cheng Jin, Tianyin Xu, Christo Wilson, Yao Liu, Linsong
Cheng, Yunhao Liu, Yafei Dai, and Zhi-Li Zhang. Towards network-level
efficiency for cloud storage services. In Proceedings of the 2014 Conference
on Internet Measurement Conference, IMC ’14, pages 115–128, New York,
NY, USA, 2014. ACM.

[16] Eng Keong Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim. A survey
and comparison of peer-to-peer overlay network schemes. Communica-
tions Surveys Tutorials, IEEE, 7(2):72–93, Second 2005.

[17] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Shenker. A scalable content-addressable network. In Proceedings of the
2001 Conference on Applications, Technologies, Architectures, and Proto-
cols for Computer Communications, SIGCOMM ’01, pages 161–172, New
York, NY, USA, 2001. ACM.

[18] Soham Sinha, Di Niu, Zhi Wang, and Paul Lu. Mitigating routing inef-
ficiencies to cloud-storage providers: A case study. In Parallel and Dis-
tributed Processing Symposium Workshop (IPDPSW), 2016 IEEE Inter-
national. IEEE, 2016.

[19] D.A. Tran, K.A. Hua, and T. Do. Zigzag: an efficient peer-to-peer scheme
for media streaming. In INFOCOM 2003. Twenty-Second Annual Joint
Conference of the IEEE Computer and Communications. IEEE Societies,
volume 2, pages 1283–1292 vol.2, March 2003.

[20] Haiyang Wang, Ryan Shea, Feng Wang, and Jiangchuan Liu. On the
Impact of Virtualization on Dropbox-like Cloud File Storage/Synchro-
nization Services. In IEEE Workshop on Quality of Service, IWQoS ’12,
pages 11:1–11:9, Piscataway, NJ, USA, 2012. IEEE Press.

[21] Bo Zhang, T.S.E. Ng, A. Nandi, Rudolf H. Riedi, P. Druschel, and Guohui
Wang. Measurement-based analysis, modeling, and synthesis of the inter-
net delay space. Networking, IEEE/ACM Transactions on, 18(1):229–242,
Feb 2010.

65

[22] Xinyan Zhang, Jiangchuan Liu, Bo Li, and T.P. Yum. Coolstreaming/-
donet: a data-driven overlay network for peer-to-peer live media stream-
ing. In INFOCOM 2005. 24th Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings IEEE, volume 3,
pages 2102–2111 vol. 3, March 2005.

[23] Han Zheng, Eng Keong Lua, Marcelo Pias, and Timothy G Griffin. Inter-
net routing policies and round-trip-times. In Passive and Active Network
Measurement, pages 236–250. Springer, 2005.

66

